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Transactions Papers

Achieving Near-Capacity Performance on
Multiple-Antenna Channels with a

Simple Concatenation Scheme
Nghi H. Tran, Member, IEEE, Tho Le-Ngoc, Fellow, IEEE, Tad Matsumoto, Fellow, IEEE,

and Ha H. Nguyen, Senior Member, IEEE

Abstract—This paper proposes a capacity-approaching, yet
simple scheme for multi-input multiple-output (MIMO) channels.
The proposed scheme is based on a concatenation of a mixture of
short memory-length convolutional codes or repetition codes and
a short, and simple rate-1 linear block code, followed by either
1-dimensional (1-D) anti-Gray or Gray mapping of quadrature
phase-shift keying (QPSK) modulation. By interpreting the rate-1
code and the 1-D mapping as a multi-D mapping performed over
multiple transmit antennas, the error performance is analyzed in
two regions. In the error-floor region, a tight union bound and the
corresponding design criterion on the asymptotic performance
are derived. The bound provides a useful tool to predict the error
performance at relatively low bit error rate (BER) values. Based
on the obtained design criterion, an optimal rate-1 code for each
1-D mapping is then constructed to achieve the best asymptotic
performance. In the turbo pinch-off region, by using extrinsic
information transfer (EXIT) charts, the most suitable mixed
codes are selected for both symmetric and asymmetric antenna
configurations. It is demonstrated that the simple concatenation
scheme can achieve a near-capacity performance over the MIMO
channels. Furthermore, its error performance is shown to be com-
parable to that obtained by using well-designed irregular LDPC
and RA codes, and therefore, the proposed scheme significantly
outperforms a scheme employing a parallel concatenated turbo
code. Simulation results in various cases are provided to verify
the analysis.

Index Terms—Multiple-antenna channels, capacity-
approaching performance, EXIT chart, convolutional code,
repetition code, block code, anti-Gray mapping, Gray mapping,
multi-dimensional mapping, error bound.
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I. INTRODUCTION

IT has been widely acknowledged that the use of multiple
antennas at the transmitter and/or receiver provides a much

higher channel capacity compared to that of single-antenna
counterparts over wireless fading channels [1], [2]. With
the recent developments in iterative decoding, a number of
pragmatic approaches using powerful turbo-like codes such
as low density parity check (LDPC) codes, repeat-accumulate
(RA) codes, or turbo codes themselves have been proposed
[3]–[6] to achieve a close-capacity performance under a bit-
interleaved coded modulation (BICM) framework [7], [8]. For
instance, by directly transmitting signals that are coded with
an outer turbo code, it was shown in [3] that a near-capacity
performance can be attained in a symmetric antenna setup
where the number of receive antennas equals the number of
transmit antennas. However, the error performance of such
turbo-coded systems experiences a severe degradation when
the antenna scenario is asymmetric [4], [9], i.e., the number
of receive antennas is smaller than the number of transmit
antennas. As an alternative, reference [4] proposes an LDPC
coded modulation scheme that performs very close to the
capacity limit, even when the antenna setup is asymmetric.
Using a similar approach as in [4], equally good performances
are also obtained in [5] by using outer irregular RA codes.

In the above-mentioned coded modulation methods employ-
ing either LDPC, RA, or turbo codes, the mapping function
from binary bits to signal points is implemented independently
and identically for each transmit antenna using complex 1-
dimensional (1-D) Gray mapping. More recently, the idea of
multi-D mapping, first proposed for single-antenna channels
[10]–[12], has been further adopted in a multiple-antenna
system together with an outer convolutional code [13]. In a
multi-D mapping system, a group of binary bits is simulta-
neously mapped to multi-D signal points in such a way that
a signal pair at a larger Euclidean distance corresponds to a
smaller Hamming distance in labeling [11]. By considering
only the symmetric antenna scenario, it was demonstrated in
[13] that a significant coding gain can be achieved by using
only a simple convolutional code. However, the simulation
results in [13] indicate that the performance of a turbo coded
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system employing conventional Gray mapping is still better
than that of the multi-D mapping system. Furthermore, since
[13] only considers the symmetric antenna setup, it is not clear
how the multi-D mapping system performs in the asymmetric
scenario. The advantage of a multi-D mapping system is
that it offers a lower decoding complexity than a system
using turbo-like codes, since only a soft-output decoder of a
simple convolutional code is required. To our best knowledge,
the designs in [4] using LDPC codes and in [5] with RA
codes are still the most effective coded modulation techniques
over multiple-antenna wireless fading channels under various
antenna configurations.

This paper is also concerned with the multi-D mapping
technique but in a different paradigm for near-capacity perfor-
mance over both symmetric and asymmetric multiple-antenna
channels with quadrature phase-shift keying (QPSK) modu-
lation. In particular, a capacity-approaching but yet simple
serial concatenation of a mixture of short memory-length
convolutional codes or repetition codes and a short rate-1
linear block code followed by either 1-D anti-Gray or Gray
mapping1 is introduced. By interpreting rate-1 code together
with the 1-D mapping as a multi-D mapping employed over
multiple transmit antennas, the error performance is analyzed
in two regions, the error-floor and turbo pinch-off regions.
In the former one, a tight union bound and design criterion
on the asymptotic performance are derived, which provide
a useful mathematical tool to predict the error performance
at relatively low bit error rate (BER). These derivations
allow us to determine optimal rate-1 block codes for anti-
Gray and Gray mappings to achieve the best asymptotic
performance. The turbo pinch-off region is then examined
using extrinsic information transfer (EXIT) chart [4], [14],
[15] to identify the most suitable mixed code for each antenna
configuration. It is demonstrated that the simple concatenation
scheme achieves near-capacity performance. In some cases,
the selected mixed code is just a simple repetition code.
Furthermore, analytical and simulation results indicate that a
comparable performance to that using well-designed irregular
LDPC and RA codes in [4], [5] can be achieved. Its also means
that the proposed scheme significantly outperforms a scheme
employing a parallel concatenated (turbo) code, especially
when there are more transmit antennas than receive antennas,
while having a lower computational complexity. This novel,
high-performance yet low-complexity scheme would therefore
have potential applications in the next and future generations
of wireless communications using multiple antennas.

The remaining of the paper is organized as follows. Section
II introduces the system model. In Section III, the error anal-
ysis based on the assumption of perfect a priori information
fed back from the decoder to the demodulator is derived.
A design criterion on the asymptotic performance is also
provided in this section. These derivations are helpful in
predicting the BER performance and in constructing optimal
rate-1 codes. Section IV studies the turbo pinch-off region
for the system under consideration by using the EXIT chart
technique. Comparison with schemes employing LDPC and

1Anti-Gray and Gray mappings are the only two mapping rules available
for QPSK.

RA codes proposed in [4], [5] is also made in this section.
Numerical and simulation results are provided in Section V to
demonstrate the advantages of the proposed system. Finally,
Section VI concludes the paper.

It should be noted that this paper assumes an ergodic
multiple-input multiple-output (MIMO) fading channel model
where only the receiver but not the transmitter knows the
channel. Furthermore, similar to [3], [4], a direct transmission
over multiple transmit antennas is considered without the use
of special multiple-antenna code-design such as space-time
codes [16]–[19]. It is certainly absorbing to further extend the
proposed technique to cover both spatial and temporal do-
mains. The possibility of exploiting its advantage in adaptive
coded-modulation where the channel knowledge is available
at both the transmitter and receiver would also be of particular
interest for further studies.

II. SYSTEM MODEL

A. Transmitter

A block diagram of the transmitter of the proposed con-
catenation system equipped with 𝑁𝑡 transmit and 𝑁𝑟 receive
antennas is depicted in Fig. 1 (a). First, a binary information
block 𝒖 of length 𝐿𝑢 is divided into two binary sequences
𝒖𝐼 and 𝒖𝐼𝐼 of lengths 𝐿𝐼 and 𝐿𝐼𝐼 , respectively, using a de-
multiplexer. Each sequence 𝒖𝑙, 𝑙 ∈ {𝐼, 𝐼𝐼}, is encoded by a
suitable rate-𝑘𝑙/𝑛𝑙 binary encoder 𝐶𝑙 into a coded sequence 𝒄𝑙
consisting of 𝑇𝑙 = 𝐿𝑙𝑛𝑙/𝑘𝑙 coded bits. These binary encoders
could be simple convolutional or repetition codes and shall be
determined later. Coded sequences 𝒄𝐼 and 𝒄𝐼𝐼 are then serially
combined by a multiplexer to create a coded sequence 𝒄 of
length 𝑇𝑐 = 𝑇𝐼 +𝑇𝐼𝐼 . This encoding structure, inherited from
the code doping technique proposed in [20], [21], is referred to
as a mixed code of 𝐾 = 2 binary codes, with code doping ratio
𝛼 = 𝐿𝐼/𝐿𝑢. The value of 𝛼 is in the range 0 ≤ 𝛼 < 1. For
𝛼 = 0, there is only a single code 𝐶𝐼𝐼 , whilst for 0 < 𝛼 < 1, a
code 𝐶𝐼 is added producing a mixed code. As shall be shown
later, this mixed code provides a flexible structure to control
the convergence behavior of the system. Note that the number
of binary encoders can be straightforwardly generalized to
𝐾 > 2. Furthermore, the use of a single outer convolutional
or repetition code is a special case of the proposed mixed code
for 𝛼 = 0.

After being interleaved, each group of 𝑀 = 2𝑁𝑡

coded bits of the interleaved sequence 𝒄, denoted as 𝒗 =
(𝑣1, 𝑣2, . . . , 𝑣𝑀 )⊤, is fed to a rate-1 linear block code with
generator matrix 𝑮 of size 𝑀×𝑀 over Galois field 2 (GF(2)).
The design of 𝑮 is discussed in the next section. A vector of
𝑀 output coded bits 𝒃 = (𝑏1, 𝑏2, . . . , 𝑏𝑀 )⊤ is given as:

𝒃 = 𝑮 ⋅ 𝒗. (1)

In (1), all operations are defined over GF(2). To guarantee
that there is one-to-one correspondence between 𝒗 and 𝒃, a
condition of invertibility is imposed on 𝑮, i.e., 𝑮 is a full-rank
matrix. Then two consecutive bits (𝑏2𝑖−1, 𝑏2𝑖), 1 ≤ 𝑖 ≤ 𝑁𝑡,
are grouped together and mapped to a complex QPSK symbol
𝑠𝑖 using either 1-D anti-Gray or Gray mapping. A sequence
of 𝑁𝑡 1-D complex symbols {𝑠𝑖} is considered to be a super
symbol 𝒔 = [𝑠1, 𝑠2, . . . , 𝑠𝑁𝑡 ]

⊤ in an 𝑁𝑡-D constellation Ψ
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Fig. 1. The proposed concatenation scheme equipped with 𝑁𝑡 transmit and 𝑁𝑟 receive antennas.

with cardinality ∣Ψ∣ = 2𝑀 . Each component 𝑠𝑖 is finally
transmitted by the 𝑖th transmit antenna.

The combination of rate-1 block code and 1-D mapping
above can be interpreted as a special case of a multi-D
mapping technique in which a vector of 𝑀 binary bits 𝒗 =
[𝑣1, 𝑣2, . . . , 𝑣𝑀 ]⊤ are mapped directly to a super symbol 𝒔
according to some multi-D mapping rule [11], [13]. Hereafter,
vector 𝒗 is referred to as the label of 𝒔. Theoretically, there are
(2𝑀 )! possible mappings for Ψ. These mapping can be further
classified in a smaller number of classes, each consisting of
two or more mappings that result in an identical performance
[22]. It is possible to find an equivalent rate-1 code for a
certain class of mapping. However, this paper focuses only on
optimal rate-1 codes in terms of the asymptotic performance.
As we shall see shortly, given an outer mixed code, there exists
an optimal rate-1 code for each 1-D mapping that yields the
same optimal multi-D mapping 𝜉 over all possible mappings
of Ψ, and hence achieves the best asymptotic performance.

B. Receiver

Consider an ergodic frequency-flat Rayleigh fading channel.
The 𝑁𝑟 × 1 received vector 𝒓 is given as:

𝒓 = 𝑯 ⋅ 𝒔+ 𝒏. (2)

In (2), the matrix 𝑯 is an 𝑁𝑟 × 𝑁𝑡 complex matrix known
perfectly at the receiver and its components are 𝒞𝒩 (0, 1)2, 𝒏
is an 𝑁𝑟×1 vector representing additive white Gaussian noise
(AWGN) whose entries are 𝒞𝒩 (0, 𝑁0).

At the receiver, a typical concatenation of a MIMO detector,
an a posteriori probability (APP) bit decoder of the rate-1
block code, and a soft-input soft-output (SISO) outer decoder
can be applied. Similar to the design in [5], the MIMO
detector and rate-1 block decoder can be combined in one
block as shown in Fig. 1 (b) to reduce decoding complexity
and improve robustness. More specifically, by representing the
rate-1 block code and 1-D mapping as a multi-D mapping 𝜉,
the combined detector performs APP detection to provide the

2Here 𝒞𝒩 (0, 𝜎2) denotes a circularly symmetric complex Gaussian ran-
dom variable with variance 𝜎2/2 per dimension.

extrinsic probability of the 𝑘 coded bit 𝑣𝑘, 1 ≤ 𝑘 ≤ 𝑀 , being
set at 𝑏, 𝑏 ∈ {0, 1}, as:

𝑃 (𝑣𝑘 = 𝑏;𝑂) =∑
𝒔∈Ψ𝑘

𝑏

⎡⎣exp(−∣∣𝒓 −𝑯 ⋅ 𝒔∣∣2
𝑁0

)∏
𝑗 ∕=𝑘

𝑃 (𝑣𝑗 = 𝑣𝑗(𝒔); 𝐼)

⎤⎦ .(3)

In (3), Ψ𝑘
𝑏 denotes a subset of Ψ that contains all symbols

whose labels have the value 𝑏 at the 𝑘th position. Clearly, Ψ𝑘
𝑏

is determined by the mapping rule 𝜉. Furthermore, 𝑣𝑗(𝒔) is
the value of the 𝑗th bit in the label of 𝒔 and 𝑃 (𝑣𝑗 = 𝑣𝑗(𝒔); 𝐼)
is the a priori probability of the other bits, 𝑗 ∕= 𝑘, on the
same channel symbol. Observe that the computation of the
extrinsic information of the coded bit in (3) involves the set
of 2𝑀−1 super symbols in Ψ𝑘

𝑏 , which has the same complexity
as that of the MIMO detector [3], [4]. Note that, for a multi-
D mapping system, it is not possible to apply some low-
complexity demodulators, such as the SISO minimum mean
squared error (MMSE) detectors proposed in [23], [24]. This
is because all 𝑁𝑡 transmit antennas are connected by the
mapping and the demodulation process cannot be performed
separately on each interfering 1 × 𝑁𝑟 subchannel. However,
some other simple and suboptimal demodulation methods,
such as the list sphere decoder in [3], can be used to reduce the
complexity. Since this paper emphasizes on the near-capacity
performance, only the APP detector shall be implemented.

Let {𝑃 (𝑐 = 𝑏;𝑂)} be the sequence of the extrinsic
information of 𝑇 coded bits at the output of the detector.
As shown in Fig. 1 (b), its deinterleaved version is then de-
multiplexed and the extrinsic information of the corresponding
𝑇𝐼 and 𝑇𝐼𝐼 coded bits is forwarded to the two SISO channel
decoders, respectively. For convolutional codes, the SISO
channel decoder uses the forward-backward algorithm [25],
[26]. If the binary encoder is a rate-1/𝑛 repetition code, the
extrinsic information for each coded bit is simply calculated
as:

𝑃 (𝑐𝑖 = 𝑏;𝑂) =
𝑛∏

𝑗=1,𝑗 ∕=𝑖

𝑃 (𝑐𝑗 = 𝑏; 𝐼) . (4)

There is an iterative processing between the combined detector
and outer channel decoder to exchange the extrinsic informa-
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tion of the coded bits 𝑃 (𝑐;𝑂) and 𝑃 (𝑐;𝑂). After being inter-
leaved, 𝑃 (𝑐;𝑂) and 𝑃 (𝑐;𝑂) become the a priori information
𝑃 (𝑐; 𝐼) and 𝑃 (𝑐; 𝐼) at the input of the SISO decoder and the
combined detector, respectively. The a posteriori probabilities
of the information bits can be computed to make the hard
decisions at the output of the decoder after each iteration.

III. TIGHT UNION BOUND AND DESIGN CRITERION ON

THE ASYMPTOTIC PERFORMANCE AND OPTIMAL RATE-1
CODES

With the representation of the rate-1 block code together
with 1-D mapping as a multi-D mapping 𝜉, this section
presents a tight union bound on the asymptotic performance of
the proposed system. The derivation is based on the assump-
tion of an ideal interleaver and perfect a priori information
of coded bits fed back from the decoder to the combined
detector as normally seen in the analysis of BICM with
iterative decoding (BICM-ID) systems [11], [27]. The derived
bound can be used to accurately predict the asymptotic BER
performance without the need of time-consuming simulations.
Furthermore, a design criterion is obtained, which is helpful
in developing an optimal rate-1 code together with either anti-
Gray or Gray mapping.

A. Tight Union Bound and Design Criterion on The Asymp-
totic Performance

Following the analysis in [8], the bit error probability (BEP)
for a BICM system using a mixed code with code doping ratio
𝛼 and an ideal interleaver can be expressed as:

𝑃𝑏 = 𝛼𝑃
(𝐼)
𝑏 + (1− 𝛼)𝑃

(𝐼𝐼)
𝑏 , (5)

where 𝑃
(𝐼)
𝑏 and 𝑃

(𝐼𝐼)
𝑏 are the BEPs of BICM systems using

binary codes I and II, respectively. When the 𝑙th component
code is a rate-𝑘𝑙/𝑛𝑙 convolutional code, the union bound on
𝑃

(𝑙)
𝑏 is expressed as [8]:

𝑃
(𝑙)
𝑏 ≤ 1

𝑘𝑙

∞∑
𝑑=𝑑

(𝑙)
𝐻

𝑐
(𝑙)
𝑑 𝑓(𝑑,Ψ, 𝜉), (6)

In (6), 𝑐(𝑙)𝑑 is the total information weight of all of the error
events at Hamming distance 𝑑 and 𝑑

(𝑙)
𝐻 is the free Hamming

distance of the binary code 𝑙. In the case that the 𝑙th component
code is a rate-𝑘𝑙/𝑛𝑙 block code, the summation in (6) is
taken from 𝑑

(𝑙)
𝐻 to 𝑛𝑙, since the Hamming distance between

two codewords is less than or equal to 𝑛𝑙 [8]. The function
𝑓(𝑑,Ψ, 𝜉) is an average pairwise error probability (PEP),
which depends on the Hamming distance 𝑑, the constellation
Ψ, and the mapping rule 𝜉. In the following, the function
𝑓(𝑑,Ψ, 𝜉) is computed from the PEP of two codewords.

Let 𝒄 and 𝒄 be the input and decoded sequences with
Hamming distance 𝑑 and without loss of generality, assume
that they differ in the first 𝑑 consecutive bits. With the use of a
sufficiently long interleaver, it can be assumed that the binary
sequences 𝒄 and 𝒄 correspond to symbol sequences 𝑺 and 𝑺 of
𝑑 𝑁𝑡-D signal points 𝑺 = [𝒔1, . . . , 𝒔𝑑] and 𝑺 = [𝒔1, . . . , 𝒔𝑑].
Here, 𝒔𝑒 and 𝒔𝑒, 1 ≤ 𝑒 ≤ 𝑑, belong to the constellation
Ψ. Also, let 𝑯 = [𝑯1, . . . ,𝑯𝑑] be the sequence of channel

matrices. Similar to the analysis in [16], after averaging over
the channel sequence 𝑯 , the unconditional PEP between 𝑺
and 𝑺 can be obtained by using the Gaussian probability
integral 𝑄

(√
2𝛾
)
= 1

𝜋

∫ 𝜋/2

0 exp
(− 𝛾

sin2 𝜃

)
d𝜃 as:

𝑃 (𝑺 → 𝑺) =
1

𝜋

∫ 𝜋/2

0

(
𝑑∏

𝑒=1

Δ𝑒

)
d𝜃, (7)

where

Δ𝑒 =

𝑁𝑡∏
𝑖=1

(
1 +

1

4𝑁0

𝜆𝑒,𝑖

sin2 𝜃

)−𝑁𝑟

. (8)

In (8), {𝜆𝑒,𝑖} are the eigenvalues of 𝑨𝑒 = (𝒔𝑒−𝒔𝑒)(𝒔𝑒−𝒔𝑒)†.
Since 𝒔𝑒 and 𝒔𝑒 are 𝑁𝑡-D vectors, Δ𝑒 can be simplified to:

Δ𝑒 =

(
1 +

∣∣𝒔𝑒 − 𝒔𝑒∣∣2
4𝑁0sin

2 𝜃

)−𝑁𝑟

. (9)

With an assumption that perfect a priori information of
coded bits fed back from the decoder to the combined detector
is achieved, one has an ideal knowledge of the other coded
bits carried by the transmitted symbol 𝒔𝑒. As a result, only
two signal points 𝒔𝑒 and 𝒔𝑒 whose labels differ in only 1 bit
need to be considered. Then the union bound on 𝑓(𝑑,Ψ, 𝜉)
can be computed by averaging over all signal points 𝒔 and 𝒑
in the 𝑁𝑡-D constellation Ψ whose labels differ in only 1 bit
at position 𝑘, 1 ≤ 𝑘 ≤ 𝑀 as

𝑓(𝑑,Ψ, 𝜉) ≤ 1

𝜋

∫ 𝜋/2

0

𝐸

{(
1 +

∣∣𝒔− 𝒑∣∣2
4𝑁0 sin

2 𝜃

)−𝑁𝑟
}𝑑

d𝜃, (10)

where

𝐸

{(
1 +

∣∣𝒔− 𝒑∣∣2
4𝑁0 sin

2 𝜃

)−𝑁𝑟
}

=
1

𝑀2𝑀

∑
𝒔∈Ψ

𝑀∑
𝑘=1

[(
1 +

∣∣𝒔− 𝒑∣∣2
4𝑁0 sin

2 𝜃

)−𝑁𝑟
]
. (11)

The single integral in (10) can be efficiently computed and, as
shall be verified later, it provides an accurate approximation
on the BER performance in the error-floor area.

To understand the influence of a multi-D mapping 𝜉 to the
asymptotic behavior of the BER, one can apply the inequality
𝑄
(√

2𝛾
)

< 1
2exp(−𝛾). It is then easy to verify that the

function 𝑓(𝑑,Ψ, 𝜉) can be approximated as:

𝑓(𝑑,Ψ, 𝜉) ∼ 1

2
[𝛿(Ψ, 𝜉)]

𝑑
, (12)

where 𝛿(Ψ, 𝜉) is written as:

𝛿(Ψ, 𝜉) =
1

𝑀2𝑀

∑
𝒔∈Ψ

𝑀∑
𝑘=1

[(
1 +

∣∣𝒔− 𝒑∣∣2
4𝑁0

)−𝑁𝑟
]
. (13)

At high signal to noise ratio (SNR), 𝛿(Ψ, 𝜉) can be further
simplified to

𝛿(Ψ, 𝜉) ≈ (4𝑁0)
𝑁𝑟

(
1

𝑀2𝑀

∑
𝒔∈Ψ

𝑀∑
𝑘=1

∣∣𝒔− 𝒑∣∣−2𝑁𝑟

)
= (4𝑁0)

𝑁𝑟𝛿(Ψ, 𝜉). (14)
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where

𝛿(Ψ, 𝜉) =
1

𝑀2𝑀

∑
𝒔∈Ψ

𝑀∑
𝑘=1

∣∣𝒔− 𝒑∣∣−2𝑁𝑟 . (15)

The parameter 𝛿(Ψ, 𝜉) above does not depend on SNR and
it can be conveniently used to characterize the effect of a
mapping 𝜉 to the asymptotic performance. More specifically,
in terms of the asymptotic performance, 𝛿(Ψ, 𝜉) should be
made as small as possible to minimize the BER. Loosely
speaking, this can be done by using a mapping rule 𝜉 such
that two signal points 𝒔 and 𝒑 whose labels differ in only 1
bit should be placed as far apart as possible in terms of the
Euclidean distance. In the next subsection, in combining with
either anti-Gray or Gray mapping, an optimal rate-1 code is
introduced to minimize 𝛿(Ψ, 𝜉) in (15) over all mapping rules
{𝜉} of Ψ.

B. Optimal Rate-1 Block Codes

Without loss of generality, assume that the coordinates of
the four QPSK symbols are [+1,+1], [+1,−1], [−1,+1],
and [−1,−1]. By representing the super constellation Ψ as
a hypercube in 𝑁𝑡-D signal space, it was shown in [11] that
for any symbol 𝒔, there is only one symbol 𝒑 at the largest
squared Euclidean distance 4𝑀 to 𝒔. Furthermore, there are 𝑀
symbols {𝒑} at the second largest squared Euclidean distance
4(𝑀−1) to 𝒔. Thus, for an ideal mapping 𝜉, over 𝑀 possible
symbols {𝒑} whose labels differ in only 1 bit to that of 𝒔, there
is one symbol at squared Euclidean distance 4𝑀 and (𝑀−1)
symbols at squared Euclidean distance 4(𝑀 − 1) to 𝒔. This
implies the following lower bound on 𝛿(Ψ, 𝜉):

𝛿(Ψ, 𝜉)

≥ 1

𝑀

(
1 ⋅ 1

(4𝑀)−𝑁𝑟
+ (𝑀 − 1) ⋅ 1

(4(𝑀 − 1))−𝑁𝑟

)
=

4−𝑁𝑟

𝑀

[
𝑀−𝑁𝑟 + (𝑀 − 1)−(𝑁𝑟−1)

]
. (16)

It is simple to see that a mapping rule 𝜉 that satisfies the
following condition achieves the equality in (16), or equiva-
lently, minimizes 𝛿(Ψ, 𝜉) over all possible mappings of the
𝑁𝑡-D hypercube Ψ:

Condition 1: For any symbol 𝒔 ∈ Ψ, let Ψ𝒔 be a set of 𝑀
symbols {𝒑} whose labels differ in only 1 bit to that of 𝒔. In
Ψ𝒔, there are one symbol at squared Euclidean distance 4𝑀
and (𝑀−1) symbols at squared Euclidean distances 4(𝑀−1)
to 𝒔.

When combining with an 1-D mapping, a rate-1 code 𝑮 is
called optimal if it is invertible and the combination leads
to a multi-D mapping 𝜉 that satisfies Condition 1. In the
following, this optimal code is determined for both anti-Gray
and Gray mappings. For convenience, the notations 𝑾 and
𝑭 are used to indicate rate-1 code for anti-Gray and Gray
mappings, respectively.

1) Optimal codes for anti-Gray mapping: When anti-Gray
mapping is used, it can be easily verified that a group of 2
binary bits (𝑏2𝑖−1, 𝑏2𝑖), 1 ≤ 𝑖 ≤ 𝑁𝑡, shall be mapped to a
QPSK symbol 𝑠𝑖 = [2(𝑏2𝑖−1 ⊕ 𝑏2𝑖) − 1, 2𝑏2𝑖−1 − 1, ], where

⊕ denotes GF(2) addition. As a result, a symbol 𝒔 ∈ Ψ with
label 𝒗 carrying 𝑀 bits 𝒃, 𝒃 = 𝑮 ⋅ 𝒗, can be represented as:

𝒔 = [2(𝑏1⊕𝑏2)−1, 2𝑏1−1, . . . , 2(𝑏𝑀−1⊕𝑏𝑀 )−1, 2𝑏𝑀−1−1]⊤.
(17)

One then has the following necessary condition for an optimal
𝑾 .

Condition 2: For any optimal 𝑾 , let 𝒘𝑘 =
[𝑤1,𝑘, . . . , 𝑤𝑀,𝑘]

⊤ be its 𝑘th column. Then

[𝑤2𝑖−1,𝑘, 𝑤2𝑖,𝑘] = [1, 0] (18)

for at least (𝑁𝑡 − 1) values of 𝑖, 1 ≤ 𝑖 ≤ 𝑁𝑡.
The proof that an optimal 𝑾 satisfies Condition 2 is quite

simple. In particular, consider two symbols 𝒔 = [𝑠1, . . . , 𝑠𝑁𝑡 ]
⊤

and 𝒑 = [𝑝1, . . . , 𝑝𝑁𝑡 ]
⊤ whose labels 𝒗 and 𝒚 differ in only 1

bit at position 𝑘. For a given optimal 𝑾 , let 𝒃 = 𝑾 ⋅ 𝒗 and
𝒂 = 𝑾 ⋅ 𝒚. It then follows that:

𝒃⊕ 𝒂 = 𝑾 ⋅ (𝒗 ⊕ 𝒚) = 𝒘𝑘. (19)

Since 𝑾 is optimal, ∣∣𝒔 − 𝒑∣∣2 ≥ 4(𝑀 − 1). Equivalently,
∣∣𝑠𝑖 − 𝑝𝑖∣∣2 = 8 for at least (𝑁𝑡 − 1) values of 𝑖, 1 ≤ 𝑖 ≤ 𝑁𝑡.
Furthermore, from (17), one has:

∣∣𝑠𝑖 − 𝑝𝑖∣∣2 =

4
(
(𝑏2𝑖−1 − 𝑎2𝑖−1)

2 + ((𝑏2𝑖−1 ⊕ 𝑏2𝑖)− (𝑎2𝑖−1 ⊕ 𝑎2𝑖))
2
)
.

(20)

It can be observed from (20) that ∣∣𝑠𝑖 − 𝑝𝑖∣∣2 = 8 if and only
if [𝑏2𝑖−1 ⊕ 𝑎2𝑖−1, 𝑏2𝑖 ⊕ 𝑎2𝑖] = [1, 0]. In combining with (19),
this result indicates that any optimal 𝑾 satisfies Condition 2.

Condition 2 shows an important structure of an optimal 𝑾 .
Based on it, the following proposition provides an optimal 𝑾
for anti-Gray mapping.

Proposition 1: For anti-Gray mapping, the entries of the
optimal rate-1 block code 𝑾 are given as:

[𝑤2𝑖−1,𝑘, 𝑤2𝑖,𝑘] =⎧⎨⎩
[1, 0], 𝑘 = 1, 1 ≤ 𝑖 ≤ 𝑁𝑡

[1, 0], 1 < 𝑘 ≤ 𝑀, 𝑖 ∕= (𝑘 + 1) div 2, 1 ≤ 𝑖 ≤ 𝑁𝑡

[0, 1], 1 < 𝑘 ≤ 𝑀,𝑘 mod 2 = 0, 𝑖 = (𝑘 + 1) div 2
[1, 1], 1 < 𝑘 ≤ 𝑀,𝑘 mod 2 = 1, 𝑖 = (𝑘 + 1) div 2

.(21)

Proof : First, let 𝒛 = [𝑧1, . . . , 𝑧𝑀 ]⊤ be a vector of 𝑀 binary
bits and 𝑧 = 𝑧1⊕𝑧2⊕ . . .⊕𝑧𝑀 . Consider the following linear
combination:

𝒙 = 𝑧1𝒘1 ⊕ 𝑧2𝒘2 ⊕ . . .⊕ 𝑧𝑀𝒘𝑀 (22)

It then follows from (21) that:

𝒙 = [𝑧⊕𝑧2, 𝑧2, . . . , 𝑧⊕𝑧2𝑖, 𝑧2𝑖−1⊕𝑧2𝑖, . . . , 𝑧𝑀 , 𝑧𝑀−1⊕𝑧𝑀 ]⊤

(23)
Therefore, 𝒙 = 0 if and only if 𝒛 = 0. As a result, all
𝑀 columns of 𝑾 are linearly independent, which make 𝑾
invertible. Furthermore, let 𝜉 be a mapping constructed from
the combination of 𝑾 and anti-Gray mapping. Consider two
symbols 𝒔 and 𝒑 whose label differ in only 1 bit at position
𝑘. One has two separate cases as follows:

∙ If 𝑘 = 1, it can be verified that ∣∣𝑠𝑖 − 𝑝𝑖∣∣2 = 8 for all
1 ≤ 𝑖 ≤ 𝑁𝑡, since [𝑤2𝑖−1,𝑘, 𝑤2𝑖,𝑘] = [1, 0]. This makes
∣∣𝒔− 𝒑∣∣2 = 4𝑀
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∙ If 𝑘 > 1, ∣∣𝑠𝑖 − 𝑝𝑖∣∣2 = 8 for all 1 ≤ 𝑖 ≤ 𝑁𝑡 but 𝑖 =
(𝑘 + 1) div 2. When 𝑖 = (𝑘 + 1) div 2, it follows from
(21) and (20) that ∣∣𝑠𝑖−𝑝𝑖∣∣2 = 4. Therefore, ∣∣𝒔−𝒑∣∣2 =
4(𝑀 − 1).

Combining the above results, it can be concluded that the
mapping 𝜉 satisfies Condition 1. Since 𝑾 is invertible and
its combination with anti-Gray mapping results in a mapping
that satisfies Condition 1, it is optimal. Proposition 1 is thus
proved. As an example, the optimal 𝑾 for 𝑁𝑡 = 4 can be
expressed as:

𝑾 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 1 1 1 1 1
0 1 0 0 0 0 0 0
1 1 1 0 1 1 1 1
0 0 1 1 0 0 0 0
1 1 1 1 1 0 1 1
0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (24)

Besides the optimal 𝑾 in (21), it is worth noting that by
permuting any two columns of 𝑾 , another optimal code can
also be obtained. The proof is omitted here for brevity of the
presentation.

2) Optimal codes for Gray mapping: For a given optimal
𝑾 in (21), define 𝑭 as a 𝑀 ×𝑀 matrix over GF(2) whose
elements are: {

𝑓2𝑖−1,𝑘 = 𝑤2𝑖−1,𝑘 ⊕ 𝑤2𝑖,𝑘

𝑓2𝑖,𝑘 = 𝑤2𝑖−1,𝑘
(25)

The following proposition states the optimality of 𝑭 .
Proposition 2: The use of rate-1 code 𝑭 in (25) together

with Gray mapping results in the same mapping rule 𝜉
attainted by combining rate-1 code 𝑾 in (21) and anti-
Gray mapping. Consequently, 𝑭 in (25) is optimal for Gray
mapping.

Proof : Let 𝒗 be a vector of binary inputs. When 𝑾 in (21)
is used together with anti-Gray mapping, a symbol 𝒔 ∈ Ψ with
label 𝒗 carrying 𝑀 bits 𝒃, 𝒃 = 𝑮 ⋅𝒗, is given in (17). On the
other hand, with rate-1 code 𝑭 followed by Gray mapping, a
symbol 𝒑 ∈ Ψ carrying 𝑀 bits 𝒂, 𝒂 = 𝑭 ⋅𝒗, can be expressed
as:

𝒑 = [2𝑎1 − 1, 2𝑎2 − 1, . . . , 2𝑎𝑀−1 − 1, 2𝑎𝑀 − 1]⊤. (26)

From (25), one has:{
𝑎2𝑖−1 = 𝒇 (2𝑖−1) ⋅ 𝒗 =

(
𝒘(2𝑖−1) ⊕𝒘(2𝑖)

)
⋅ 𝒗 = 𝑏2𝑖−1 ⊕ 𝑏2𝑖

𝑎2𝑖 = 𝒇 (2𝑖−1) ⋅ 𝒗 = 𝒘(2𝑖−1) ⋅ 𝒗 = 𝑏2𝑖−1

(27)
where 𝒇 (𝑘) and 𝒘(𝑘) are the 𝑘th rows of 𝑭 and 𝑾 , respec-
tively. It then follows from (17), (26), and (27) that 𝒔 = 𝒑. It
means that a combination of either 𝑭 and Gray mapping or
𝑾 and anti-Gray mapping leads to the same mapping rule 𝜉.
Proposition 2 is proved.

Combining the above results, it can be concluded that the
combination of rate-1 code 𝑾 in (21) followed by anti-Gray
mapping is equivalent to the combination of rate-1 code 𝑭
in (25) and Gray mapping. Furthermore, these combinations
minimize 𝛿(Ψ, 𝜉) in (15) over all possible mappings of Ψ.
It means that for a given outer mixed code, the proposed
concatenation is optimal as far as the asymptotic performance
is concerned.

TABLE I
ASYMPTOTIC GAINS WITH RESPECT TO GRAY MAPPING

𝑁𝑡 ×𝑁𝑟 Proposed scheme Best mapping obtained in [13]

4× 4 8.51dB 7.26dB

3× 4 7.10dB 6.16dB

3× 2 7.11dB 6.24dB

3× 1 7.11dB 6.52dB

To further justify the advantage of the above mapping con-
struction over other mapping rules, the so-called asymptotic
gain between two mappings defined in [13] can be used. In
particular, the asymptotic gain of mapping 𝜉1 with respect to
mapping 𝜉2 is calculated as [13]:

GaindB =
1

𝑁𝑟
10 log10

(
𝛿(Ψ, 𝜉2)

𝛿(Ψ, 𝜉1)

)
. (28)

It is not hard to verify that the asymptotic gain of the
developed mapping with respect to Gray mapping is:

Gainopt
dB =

1

𝑁𝑟
10 log10

(
𝑀

𝑀−𝑁𝑟 + (𝑀 − 1)−(𝑁𝑟−1)

)
. (29)

Table I compares Gainopt
dB with the asymptotic gain with

respect to Gray mapping of the best mapping rules found
by search techniques in [13]. It is not surprising to observe
from Table I that the proposed scheme provides a better
asymptotic gain. It is because our construction leads to a
globally optimal mapping, whilst computer-based searching
methods usually end up with only a local optimum, especially
in a high dimensional signal space.

IV. OUTER MIXED CODE DESIGN USING EXIT CHARTS

The analysis presented in Section III is only useful to
predict the error performance of an iterative demodulation and
decoding scheme at the BER floor region. In this region, a
reasonably low BER can be achieved at a sufficiently high
SNR value. This however might not be of practical interest.
In order to examine whether an iterative demodulation and
decoding system can achieve near-capacity, one needs to take
into account the convergence behavior in the turbo pinch-
off, or water-fall, region, where a significant BER decrease is
observed over iterations (please see [28] and references therein
for detailed discussions).

This section analyzes the convergence property of the
proposed scheme at the turbo pinch-off region by means of
extrinsic information transfer (EXIT) chart [14]. Following the
same notations as in [14], let 𝐼𝐴1 and 𝐼𝐸1 denote the mutual
information between the a priori LLR and the transmitted
coded bit, and between extrinsic LLR and the transmitted
coded bit at the input and output of the detector, respectively.
Similarly, let 𝐼𝐸2 and 𝐼𝐴2 be the mutual information repre-
senting the a priori knowledge and the extrinsic information
of the coded bits at the input and output of the SISO decoder.
After being deinterleaved, the extrinsic output of the detector
is used as the a priori input to the decoder, i.e., 𝐼𝐴2 = 𝐼𝐸1 .
Furthermore, after being interleavered, the extrinsic informa-
tion of the decoder becomes the a priori information to be
provided to the detector, i.e., 𝐼𝐴1 = 𝐼𝐸2 .



1054 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 4, APRIL 2010

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

I
A1

I E
1

MIMO detector
Combined detector, random code
Combined detector, optimal code

E
b
/N

0
=5dB

N
t
=4, N

r
=4

N
t
=4, N

r
=1

Fig. 2. The MIMO and combined detector EXIT curves at 𝐸𝑏/𝑁0=5dB.

In the following, the difference between the conventional
MIMO detector with Gray mapping employed in coded
modulation systems using powerful turbo-like codes [3]–[6]
and the combined detector considered in this paper is first
demonstrated with the aid of EXIT curves. Note that the
MIMO detector can also be understood as a combined detector
in which the rate-1 code is an identity matrix. Furthermore,
the combined detector of optimal codes is the same for both
cases of rate-1 code 𝑾 in (21) with anti-Gray mapping
and rate-1 code 𝑭 in (25) with Gray mapping, since they
are equivalent. Then a combination of the combined detector
of optimal codes and a mixture of simple convolutional or
repetition decoders, with which close-capacity performance
can be achieved, is proposed by having the combined detector
EXIT curve matched to the decoder EXIT curve. We only use
the same rate-1/2 component codes, which results in an overall
rate 𝑟𝑐 = 1/2 outer mixed code. The analysis and design can
be easily extended to other code rates. The ratio of energy per
information bit at the receiver over noise power, 𝐸𝑏/𝑁0, is
defined as [3], [4]:

𝐸𝑏/𝑁0(dB) = 𝐸𝑠/𝑁0(dB) + 10 log 10
𝑁𝑟

𝑟𝑐𝑁𝑡𝑚𝑐
, (30)

where 𝐸𝑠 is total energy used over 𝑁𝑡 transmit antennas and
𝑚𝑐 = 2 for QPSK.

A. EXIT curves of the MIMO detector and combined detector

Fig. 2 shows EXIT curves of the MIMO detector and
combined detectors for two different rate-1 invertible codes at
𝐸𝑏/𝑁0 = 5dB with 𝑁𝑡 = 4 and different numbers of receive
antennas to demonstrate the effectiveness of the optimal codes
developed earlier. Besides the optimal ones, we also consider

the below invertible code that is generated randomly:

𝑾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1 0 1
1 1 0 0 1 1 1 0
1 0 0 1 0 0 0 0
1 0 1 1 0 0 0 0
1 0 0 0 0 1 1 0
1 0 0 0 1 1 1 0
0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (31)

For a 4× 4 channel, it can be seen from Fig. 2 that the EXIT
curve of the MIMO detector is flat compared to those of the
two combined detectors. Therefore, the use of Gray mapping
alone is matched to powerful turbo-like codes, including
LDPC codes optimized for binary input channels. This is
because EXIT curves of these powerful codes are also almost
horizontal [4], [6]. However, for an asymmetric channel, i.e.,
when 𝑁𝑡 > 𝑁𝑟, the EXIT curve of the MIMO detector ex-
hibits a steeper slope. This phenomenon causes a performance
degradation when Gray mapping is used together with the
above-mentioned turbo-like codes [4], [9]. This problem can
be overcome by using well-designed irregular LDPC or RA
codes as recently proposed in [4], [5].

In the case of the combined detectors, it can be observed
from Fig. 2 that the EXIT curves of both combined detectors
exhibit higher slopes over that of the MIMO detector. As
shown in Appendix A, the use of an optimal code maxi-
mizes the bitwise mutual information with perfect a priori
information, i.e., 𝐼𝐸1(𝐼𝐴1 = 1). Therefore, 𝐼𝐸1(𝐼𝐴1 = 1)
attained by using the optimal codes is much larger than that
of both the MIMO detector and the combined detector using
the code 𝑾 . Since the block codes are of rate 1, the areas
under the EXIT curves of the combined detectors and MIMO
detector must be equal [29]. Consequently, the combined
detector’s EXIT curve of the optimal codes has the highest
slope, with the largest mutual information at the right end of
the curve. This makes the combination of either rate-1 code
𝑾 in (21) with anti-Gray mapping or rate-1 code 𝑭 in (25)
with Gray mapping a perfect match to a simple outer code,
which also have decayed EXIT curves. Certainly, a different
outer code can also be constructed to work well with the
code 𝑾 . However, due to a flatter slope of the combined
detector’s EXIT curve, a more complicated outer code is
required. As shown in the next subsection, the optimal codes
can be indeed combined with very simple outer mixed codes of
short-memory length convolutional codes or repetition codes
to achieve near-capacity performance over both symmetric and
asymmetric multiple-antenna channels.

B. EXIT curve matching

This subsection applies the EXIT chart technique [14] to
select a suitable mixed code for the combined detector of the
optimal rate-1 codes. This detector is referred to as the optimal
combined detector hereafter. By using EXIT charts, both EXIT
curves of the optimal combined detector and decoder are
placed in the same graph, but the axes of the EXIT curve of the
decoder are swapped [14] so that the convergence behavior of
the concatenation scheme can be well visualized. It should be
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Fig. 3. EXIT charts of the optimal combined detector with 𝑁𝑡 = 𝑁𝑟 = 4
at 𝐸𝑏/𝑁0=1.82dB, rate-1/2, 2-state cc with g1 = [1, 1] and g2 = [1, 0], and
rate-1/2 4-state cc with g1 = [1, 1, 1] and g2 = [1, 0, 1].

mentioned that for the system under consideration, the EXIT
curve of a rate-𝑟𝑐 mixed code does not depend on SNR and
always crosses the middle point (0.5, 𝑟𝑐) [14].

We first examine the symmetric case with 𝑁𝑡 = 𝑁𝑟 = 4.
Fig. 3 plots the EXIT curve of the optimal combined detector
at 𝐸𝑏/𝑁0=1.82dB and the EXIT curves of two standard rate-
1/2, 2-state convolutional code with generator polynomials
g1 = [1, 1] and g2 = [1, 0], and rate-1/2, 4-state convo-
lutional code with generator polynomials g1 = [1, 1, 1] and
g2 = [1, 0, 1]. The above SNR is chosen to make sure that the
middle point of the detector EXIT curve 𝐼𝐸1(0.5) is larger
than 0.5. It is clear from Fig. 3 that the EXIT curve of the
standard rate-1/2, 4-state convolutional code with generator
polynomials g1 = [1, 1, 1] and g2 = [1, 0, 1] does not fit
well to the detector EXIT curve, since the two EXIT curves
quickly intersect and the intersection point falls in the lower
left quadrant of the EXIT plane. Because the EXIT curve of a
more powerful rate-1/2 convolutional code exhibits a sharper
slope at the beginning, it is straightforward to see that stronger
convolutional codes are not suitable either. The EXIT curve
of rate-1/2, 2-state convolutional code intersects the optimal
combined detector EXIT curve in the upper right quadrant of
the EXIT plane, but at a low mutual information, which does
not guarantee low BER.

To overcome the above disadvantages, a mixed code of the
two standard convolutional codes, denoted as 𝐶1(𝛼), can be
used to achieve better curve matching. In particular, Fig. 4
shows the EXIT curve of the optimal combined detector at
𝐸𝑏/𝑁0=1.82dB and the EXIT curve of 𝐶1(0.35), which is a
mixture of 4-state and 2-state codes with code doping ratio
𝛼 = 0.35. It is interesting to see that the EXIT curve of this
mixed code matches very well to the detector EXIT curve. The
two EXIT curves do not intersect until reaching the ending
point 𝐼𝐴1(1) with very high mutual information, leading to a
low BER. This match is very similar to that obtained in [4], [5]
using an irregular LDPC or RA code and Gray mapping alone,

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

I
A1

,I
E2

I A
2,I

E
1

Optimal combined detector
rate 1/2 mixed code C

1
(0.35)

N
t
=4, N

r
=4

E
b
/N

0
=1.82dB

Fig. 4. EXIT charts of the optimal combined detector with 𝑁𝑡 = 𝑁𝑟 = 4
at 𝐸𝑏/𝑁0=1.82dB and a rate-1/2 mixed code 𝐶1(0.35), which is a mixture
of rate-1/2 4-state and 2-state codes with code doping ratio 𝛼 = 0.35.
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where the curves fit at the pinch-off limit3 𝐸𝑏/𝑁0 = 1.8dB.
Furthermore, this curve fit happens close to the capacity limit,
which is at 𝐸𝑏/𝑁0 = 1.47dB.

In the case of asymmetric configurations, mixed codes can
also be effectively applied to match with the optimal combined
detector EXIT curves. Fig. 5 provides the optimal combined
detector EXIT curves in two asymmetric setups i) 𝑁𝑡 = 4 and
𝑁𝑟 = 3; and ii) 𝑁𝑡 = 4 and 𝑁𝑟 = 2 at 𝐸𝑏/𝑁0=2.285dB and
𝐸𝑏/𝑁0=3.285dB, respectively, and the EXIT curves of mixed
codes 𝐶1(0.2) and 𝐶1(0.07) of 4-state and 2-state codes.
Observe that the EXIT curves are matched very well in all
cases. Similar to the symmetric scenario, these results are very
comparable to those achieved in [4], [5].

C. Further Results with Asymmetric Setups

It is of further interest to consider an asymmetric antenna
setup in which multiple antennas are only equipped at the

3The pinch-off point is understood at the smallest 𝐸𝑏/𝑁0 at which two
EXIT curves fit.
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respectively, and EXIT curves of rate-1/2 mixed codes 𝐶2(0) and 𝐶2(0.8).

base-station. This antenna configuration is very common in
the downlink of a cellular system, where it is physically not
possible to place multiple antennas on a small handset. Under
this scenario, it can be seen from Fig. 2 that the combined
detector EXIT curves of the optimal rate-1 codes experience
much higher slope, especially when the number of transmit
antennas is large. This suggests that a simpler mixed code
should be used for a good convergence.

The EXIT curves of the optimal combined detector for
two antenna configurations i) 𝑁𝑡=6, 𝑁𝑟=14; and ii) 𝑁𝑡=4,
𝑁𝑟=1 antennas at 𝐸𝑏/𝑁0=11.28dB and 𝐸𝑏/𝑁0=7.55dB, re-
spectively, are shown in Fig. 6. Note that the corresponding
capacity limits are at 𝐸𝑏/𝑁0=10.77dB and 𝐸𝑏/𝑁0=6.65dB.
Also plotted in Fig. 6 are the EXIT curves of rate-1/2 mixed
codes 𝐶2(0.8) and 𝐶2(0) of a component rate-1/2, 2-state
convolutional code and rate-1/2 repetition code with code
doping ratios 𝛼 = 0.8 and 𝛼 = 0, respectively. Note that
the code 𝐶2(0) corresponds to the case of a single rate-1/2
repetition code. It can be seen from Fig. 6 that 𝐶2(0.8) is a
good match for the system with 𝑁𝑡=4 and 𝑁𝑟=1. Furthermore,
it is observed from Fig. 6 that the optimal combined detector
EXIT curve of the (𝑁𝑡=6, 𝑁𝑟=1) setup fits well to that of
𝐶2(0), which is the simplest possible code. More impressively,
this curve match is achieved at only 0.5dB away from the
capacity limit.

Table II summarizes the results obtained in this section
and those in [4], [5] for comparison. The respective capacity
limits are also provided. Clearly, the pinch-off 𝐸𝑏/𝑁0 in
Table II shows that the concatenation scheme employing only
simple outer mixed codes and inner rate-1 block code can
approach close to the capacity limit for the both symmetric and
asymmetric antenna setups. The convergence and asymptotic
properties discussed in this section are verified by the BER
performances in the next section.

Before closing this section, it should be pointed out that

4Such a 6× 1 system requires a complicated APP detector at the receiver.
This single receive antenna system typically requires a low-cost receiver. As
such, a simpler decoder, such as the list sphere decoder in [3], could be used
as an alternative to the APP detector.
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Fig. 7. BER performance of the proposed systems equipped with 𝑁𝑡 = 4
transmit and 𝑁𝑟 = 4, 𝑁𝑟 = 3, and 𝑁𝑟 = 2 receive antennas. The outer codes
are rate-1/2 mixed codes 𝐶1(0.35), 𝐶1(0.2), and 𝐶1(0.07), respectively.

the derived optimal codes in (21) and in (25) are to optimize
the error-floor performance for a given outer code, or equiva-
lently, to maximize 𝐼𝐸1(𝐼𝐴1 = 1) for the combined detector.
There might be other rate-1 codes that achieve a comparable
𝐼𝐸1(𝐼𝐴1 = 1) while providing a different combined detector’s
EXIT curve. These codes, if exist, can be matched with
a different set of component codes in the turbo pinch-off
region for achieving closer to the capacity limit. To solve this
challenging problem, care should be taken in optimizing the
code over all values of prior information 𝐼𝐴1 . This interesting
topic therefore deserves a further investigation.

V. ILLUSTRATIVE RESULTS

This section provides numerical and simulation results
to verify the analysis made in the previous sections and
to demonstrate the excellent performance achieved by the
proposed systems using the optimal rate-1 code. A random
interleaver of length 1 × 105, which is the same to those
considered in [4], [5], is used. Each point in the BER curves is
simulated with 6×106 to 109 coded bits. In the computation of
the asymptotic bound for 𝑃𝑏 in (5) and (6), if a convolutional
code is used as a component code, its first 20 Hamming
distances in the distance spectrum are included.

Fig. 7 shows the BER performances with 80 iterations of
the concatenation scheme using 𝑁𝑡 = 4 transmit antennas
and 𝑁𝑟 = 4, 𝑁𝑟 = 3, and 𝑁𝑟 = 2 receive antennas.
Besides the optimal rate-1 code, the BER performances for the
system using the randomly generated code 𝑾 in (31) are also
provided for comparison. The outer codes are rate-1/2 mixed
codes 𝐶1(0.35), 𝐶1(0.2), and 𝐶1(0.07), respectively. For the
system employing the optimal rate-1 code, it can be seen from
Fig. 7 that the analytical results obtained by EXIT charts
agree with the BER curves. In particular, the turbo pinch-
off region happens around 𝐸𝑏/𝑁0=2dB, 𝐸𝑏/𝑁0=2.48dB,
and 𝐸𝑏/𝑁0=3.50dB and near-capacity performances can be
achieved, given the practical BER level of 10−4 or 10−5 as
a target. On the other hand, the system using the code 𝑾
experiences a very high error floor and it operates far from the
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TABLE II
CAPACITY AND PINCH-OFF POINTS OF THE PROPOSED SYSTEM AND THOSE ACHIEVED IN [4], [5].

𝑁𝑡 ×𝑁𝑟 Proposed system Proposed system Schemes in [4], [5] Capacity

channel Outer mixed code Curves fit at 𝐸𝑏/𝑁0 Curves fit at 𝐸𝑏/𝑁0 𝐸𝑏/𝑁0

4× 4 𝐶1(0.35) 1.82dB 1.80dB 1.47dB

4× 3 𝐶1(0.20) 2.285dB 2.30dB 1.97dB

4× 2 𝐶1(0.07) 3.285dB 3.30dB 2.95dB

4× 1 𝐶2(0.8) 7.55dB 7dB 6.65dB

6× 1 𝐶2(0) 11.28dB N/A 10.77dB
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Fig. 8. BER performances with 50 iterations of the proposed systems
equipped with 𝑁𝑡 = 6 and 𝑁𝑡 = 4 transmit antennas, and 𝑁𝑟 = 1 receive
antenna. The outer codes are rate-1/2 mixed codes 𝐶2(0) and 𝐶2(0.8),
respectively.

capacity limit. Further performance improvement for such a
system can only be achieved by using more complicated outer
codes as discussed earlier. The tightness of the asymptotic
bound in the error floor region is clearly observed for all the
systems under consideration. This makes the bound effective
in predicting the error performance at reasonable high SNR
regions.

Similar near-capacity performances are also obtained in the
asymmetric antenna configurations when there is only a single
receive antenna at the receiver. In particular, Fig. 8 plots the
BER performance with 50 iterations of the 6 × 1 and 4 × 1
systems using the optimal rate-1 code. The corresponding
outer codes for the two systems are the rate-1/2 mixed codes
𝐶2(0) and 𝐶2(0.8), respectively. The results appear impressive
for such simple systems, since the turbo pinch-off happens
very close to the capacity limit. The error floor kicks in at
the BER of 10−4, which is still reasonable. Note that the
derived asymptotic bound slightly overestimates the actual
BER performance for the two systems. It is merely due to the
reason that in the range of the SNR shown in Fig. 8, a perfect a
priori information of coded bits has not been achieved, which
can also be seen by EXIT charts in Fig. 6. The tightness of the
error bound is indeed observed at a higher SNR region, which
still makes the error bound useful in estimating the BER in
the error-floor region.

Table III briefly summarizes the simulation results for the
proposed scheme using the optimal rate-1 code where the

BER of 10−4 is measured. The results obtained in [4], [5]
using irregular LDPC and RA codes, as well as those attained
by using the standard UMTS parallel concatenated turbo
code constructed from memory-three constituent codes, with
feedback and feedforward generator polynomials [1, 0, 1, 1]
and [1, 1, 0, 1] are also included. It can be seen that the
simple concatenation scheme achieves very comparable error
performances to those in [4], [5]. Furthermore, it outperforms
the standard UMTS turbo coded system, especially in the
asymmetric scenarios.

VI. CONCLUSIONS

This paper introduced a novel coded modulation scheme
over multiple-antenna channels with QPSK using a concate-
nation of a simple outer mixed code and a short rate-1
linear block code followed by either 1-D anti-Gray or Gray
mapping. In the error-floor region, the error bound and design
criterion were first derived, which can be used to accurately
predict the error performance. Optimal rate-1 block codes
were then developed for both anti-Gray and Gray mappings to
achieve the best asymptotic performance. Furthermore, it has
been shown through EXIT chart analysis that the proposed
system achieves comparable performances to those using well-
designed LDPC and RA codes in the turbo pinch-off region.
As a result, it approaches near-capacity performance over both
symmetric and asymmetric multiple-antenna channels, and
thereby, outperforms a scheme employing a standard parallel
concatenated (turbo) code at a lower decoding complexity. The
performance improvement was shown to be more significant
when there are more transmit antennas than receive antennas.
The proposed system is therefore an attractive alternative
for other coded modulation schemes over multiple-antenna
wireless fading channels.

Finally, it is worthwhile mentioning that it is interesting to
extend the proposed technique to higher modulation schemes,
such as 8-PSK or 16-QAM. The problem is currently under
investigation for 8-PSK, using the fact that this modulation
scheme can be decomposed into two sets of QPSK constella-
tions.
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TABLE III
ERROR PERFORMANCE COMPARISON FOR THE PROPOSED SYSTEM AND THOSE IN [4], [5].

𝑁𝑡 ×𝑁𝑟 Proposed system Schemes in [4], [5] UMTS turbo-coded system

channel BER 10−4 at 𝐸𝑏/𝑁0 BER 10−4 at 𝐸𝑏/𝑁0 BER 10−4 at 𝐸𝑏/𝑁0

4× 4 2.05dB 1.95dB 2.40dB

4× 3 2.52dB 2.45dB 3.20dB

4× 2 3.56dB 3.60dB 5.40dB

4× 1 8.10dB 7.90dB 13.80dB

APPENDIX A
BITWISE MUTUAL INFORMATION WITH PERFECT A PRIORI

INFORMATION OF THE COMBINED DETECTOR

For a given constellation Ψ and mapping rule 𝜉, it was
shown in [14] that the bitwise mutual information with perfect
priori information is equal to 𝐼𝐸1(𝐼𝐴1 = 1). By interpreting
the combination of rate-1 code and 1-D mapping as a multi-D
mapping 𝜉, 𝐼𝐸1(𝐼𝐴1 = 1) can be calculated as follows:

𝐼𝐸1(𝐼𝐴1 = 1) =
1

𝑀2𝑀

∑
𝒔∈Ψ

𝑀∑
𝑘=1

𝐼𝑘(𝒔,𝒑), (32)

where 𝐼𝑘(𝒔,𝒑) is the average mutual information of a BPSK-
like constellation consisting of two signal points 𝒔 and 𝒑
whose labels differ in only 1 bit at position 𝑘. Due to
the symmetry of a BPSK-like constellation, the conditional
𝐼𝑘(𝒔,𝒑)∣𝑯 for a given channelization 𝑯 can be expressed
as:

𝐼𝑘(𝒔,𝒑)∣𝑯
= 1−

[
1

(𝜋𝑁0)𝑁𝑟

∫
𝒓∈𝒞𝑁𝑟

exp

(
−∣∣𝒓 −𝑯 ⋅ 𝒔∣∣2

𝑁0

)

× log

(
1 + exp

( ∣∣𝒓 −𝑯 ⋅ 𝒔∣∣2 − ∣∣𝒓 −𝑯 ⋅ 𝒑∣∣2
𝑁0

))
d𝒓

]
.

(33)

By using the symmetric cut-off rate and Jensen inequality as
similar to the analysis in [30], 𝐼𝑘(𝒔,𝒑) can be approximated
as:

𝐼𝑘(𝒔,𝒑)

∼ 1− log

(
1 + 𝐸𝑯

[
exp

(
−∣∣𝑯 ⋅ (𝒔− 𝒑)∣∣2

4𝑁0

)])
= 1− log

(
1 +

(
1 +

∣∣𝒔− 𝒑∣∣2
4𝑁0

)−𝑁𝑟
)

. (34)

By substituting 𝐼𝑘(𝒔,𝒑) from (34) to (32), it is observed that
the expression in (32) is similar to the design criteria in (13)
and (15). Since the combination of either rate-1 block code
𝑾 in (21) with anti-Gray mapping or rate-1 block code 𝑭
in (25) with Gray mapping minimizes 𝛿(Ψ, 𝜉) in (15), it is
clear that 𝐼𝐸1(𝐼𝐴1 = 1) of the combined detector can also
be maximized, and therefore, substantially outperforms that
of the MIMO detector.
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