
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Synchronizing model refactoring for web

applications

Author(s) My Viet, Tran

Citation

Issue Date 2010-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/9141

Rights

Description
Supervisor:Professor Koichiro Ochimizu, 情報科学

研究科, 修士

Synchronizing model refactoring for web applications

By Tran My Viet

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Koichiro Ochimizu

September, 2010

Synchronizing model refactoring for web applications

By Tran My Viet (0810206)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Koichiro Ochimizu

and approved by
Professor Koichiro Ochimizu

Associate Professor Masato Suzuki
Professor Mizuhito Ogawa

August, 2010 (Submitted)

Copyright c© 2010 by Tran My Viet

1 | P a g e

Acknowledgements

First and foremost, I would like to thank my supervisor - professor Koichiro

Ochimizu, for his guidance through the course of study in JAIST, Japan. His invaluable

advices and support have carried me through difficulties and joy during my study in Japan.

He has made me interested in science and doing research. My study could not have been

completed without him.

Secondly, I would like to acknowledge the friendship and fun with my colleagues

at JAIST, Japan. Besides, I also would like to express my grateful to staffs and officers at

JAIST, Japan who have made this research practical.

Thirdly, I would like to acknowledge Vietnamese and Japanese governments for

their financial support. I would like to thank the Secondary School of Security II and the

University of Science HCMC for their support in completing procedures and first year of

this course in Vietnam.

Finally and most importantly, I would like to thank my family for their

unconditional love and support through the course of study and throughout my life.

My Viet Tran,

JAIST, Japan, Aug. 2010.

2 | P a g e

Abstract

Software engineering community is interested in models for developing software

systems and developing web applications. Many approaches for developing web

applications have been pursued, each usually contains three or four models. For example,

in WebML approach, there are three models, namely content navigation model and

presentation model; in UWE approach, there are four models, namely content model,

navigation, presentation model and process model. One of the most feasible techniques is

the web model refactoring technique since it supports us to restructure the model in order

to improve some quality attributes of the model with preserving the behavior. However,

when model refactoring is implemented, it usually causes inconsistent in the system. In order to

make the system consistent, synchronization is necessitated. In this study, model synchronization

is realized by explicit correspondences at model level and by transformation rules using

triple graph grammars. Then algorithms are constructed and a Magic Draw UML plug-in

tool is built for synchronizing systematically and automatically.

3 | P a g e

Contents

Acknowledgements..1

Abstract ...2

Contents ..3

List of Figures ...4

List of Tables ..4

Chapter 1 – Introduction ..5

Chapter 2 - Model Synchronization ..8

2.1 Web modeling with UWE ...8

2.2. Relationships between model elements .. 11

2.3. Correspondences .. 12

2.4 Transformation rules using triple graph grammars ... 14

2.4.1. Models and meta models ... 15

2.4.2. Graph grammars ... 17

Chapter 3 - The synchronization of UWE’s content model and navigation model 20

3.1. Specification of explicit correspondences .. 20

3.2. UWE Model Synchronization ... 22

3.2.1. Rule 1 (Renaming rule) ... 22

3.2.2. Rule 2 (Adding rule) ... 23

3.2.3. Rule 3 (Deleting rule) .. 25

3.2.4. Rule 4 (checking valid index rule) .. 26

Chapter 4 - Experiments and Results .. 27

4.1. Algorithms for operational transformation rules.. 27

4.1.1. Algorithms for renaming rule .. 30

4.1.2. Algorithms for adding rule .. 30

4.1.3. Algorithms for deleting rule .. 31

4.1.4. Algorithms for checking valid index rule .. 32

4.2. Plug-in tool of transformation rules using Java .. 34

4.3. Practical Evaluation ... 36

Chapter 5 - Conclusions and future work .. 38

Bibliography ... 39

Appendix 1... 41

1. Presentation Package ... 41

2. Process Package ... 50

Appendix 2... 55

4 | P a g e

List of Figures

Fig.1.1. Original index display [2] ...5

Fig.1.2. Index display enriched with more information from Fig.1.1 [2]..6

Fig.2.1. UML class meta model [7] ..8

Fig.2.2.Navigation meta model [6] ...9

Fig.2.3. The content model of Simple Website [15] ... 10

Fig.2.4. The navigation model of the Simple Website [15] ... 10

Fig.2.5. Relationship of the navigation meta model and UML class ... 11

Fig.2.6. Correspondence meta model [20].. 13

Fig.2.7. A transformation rule [22] ... 15

Fig.2.8. A Petri net model [24].. 16

Fig.2.9. A meta-model for Petri nets [24] ... 16

Fig.2.10. Petri net as an object diagram [24] .. 17

Fig.2.11. A graph grammar rule [24] ... 17

Fig.2.12. The Petri net after applying the rule [24] ... 19

Fig.2.13. Short hand form for the graph grammar [24] ... 19

Fig.3.1. "same name" correspondence model of Simple Website .. 20

Fig.3.2. "valid index" correspondence model of Simple Website ... 21

Fig.3.3. "renaming" transformation rule ... 22

Fig.3.4. Applying renaming rule to change the name of content class “Article” to “SE_Article” 23

Fig.3.5. After applying renaming rule in Fig.3.4 ... 23

Fig.3.6. "Adding" transformation rule ... 24

Fig.3.7. Adding "Article" class applying adding rule .. 24

Fig.3.8. Correspondence "Article" is established after applying adding rule 25

Fig.3.9. “Deleting” transformation rule .. 25

Fig.3.10. Delete "Article" content class using rule in Fig.3.9 .. 26

Fig.3.11. After deleting content class "Article" using deleting rule .. 26

Fig.4.1. The content class Article is renamed to SE_Article, the renaming tool renames the

correspondence navigation class .. 34

Fig.4.2. When the content class “Author” is added to content model with composite association,

the tool will create the new navigation Author class. ... 35

Fig.4.3. When the content class “Article” is deleted, the tool will delete the correspondence class

in navigation model. .. 36

Fig.4. 4. When user needs to verify the “valid index” the tool will run and notify the user. 36

List of Tables

Table 1. The effectiveness of proposed rules on the examined models... 37

5 | P a g e

Chapter 1 – Introduction

Separating system into multi models is a useful technique for developing web

applications. In this technique, the system is separated into individual concern which is

known as model that focuses on each aspect of the web applications. However, the

individual concerns are not independent since there exist relationships among them.

Therefore, the consistency among models must be maintained in web application

development.

 In each cycle of web application development, it is necessary to modify models to

evolve them. The common modifications are adding, deleting, and editing elements. One

of the modification techniques is web model refactoring technique. In web model

refactoring technique, we can modify the models while preserve the behavior of web

applications [1]. Web model refactoring is getting more and more popular in software

engineering, especially in the perspective of rapidly developing web applications. For

example, Fig.1.1 is original index appearance of a website. If the website is evolved,

information is added to each entry of the index including the CD picture, price, rating, sale

information, links to list of sellers, year of edition, etc. After evolvement, the appearance

of the website is shown in Fig.1.2.

Fig.1.1. Original index display [2]

It is observed from Figs. 1.1 and 1.2 that the set of possible operational semantics and the

navigability, are preserved while the models are changed, affecting the consistency of the

system. In order to maintain the consistency among models, synchronizing model

refactoring is necessary.

6 | P a g e

Fig.1.2. Index display enriched with more information from Fig.1.1 [2]

 Model synchronization is the problem interested by many researchers. Alejandra

Garrido et al [2] proposed the web model refactoring technique. They defined refactorings

on the navigation models and presentation models. Although this technique is useful in web

modification but, it can make models inconsistent. Synchronization is identified as a

crucial factor to improve the consistency problem. Similarly, Tom Mens et al [3] also

observed that model synchronization is a challenging problem in order to implement the

model refactoring technique. In order to solve this problem, Daniel Ruiz-Gonz´alez et al

[4] proposed two approaches. The first approach which is called the intensional approach,

deals with model synchronization problem at meta model level by using relationship

among meta model elements. The second approach which is named as extensional

approach, deals with model synchronization problem by using techniques that focus on

relationship among model elements.

 On the one hand, there exist many model driven web engineering (MDWE)

approaches such as WebML [8], UWE [6], UWA [9], WSDM [10], OOWS [11], OOHDM

[12], etc for designing web applications. After requirements are selected, web applications

are usually designed in several models such as content, navigation, presentation, process

models. Among existing MDWE approaches, UML-based Web Engineering approach

(UWE) is a well-known methodology. UWE defines four basic meta models which are

content, navigation, process and presentation meta models, on a web system for structuring

its respective models. Moreover, the profile for UWE meta models is also provided in

7 | P a g e

reference [13]. However, UWE approach does not provide mechanisms for synchronizing.

Thus, this thesis focuses on synchronization techniques for UWE models.

 On the other hand, intensional and extensional approaches have its own advantage

and disadvantage. The advantage of the first one is that whole of one’s model can be

transformed to another model. For example, the block model is transformed to UML class

model [5]. Therefore, synchronization problem can be solved by applying transformation

rules again and again in some ways. Holger Giese and Robert Wagner [5] proposed some

increments based on bidirectional transformation rules using triple graph grammars. Their

improvements increased the efficient execution of transformation rules. However, the

disadvantage of this approach is that it does not always exist a transformation between

complicate meta models like UWE meta models. The advantage of the extensional

approach is that if we provide enough information for explicit correspondences among

specific model elements, changes can be propagated from one model to another model. An

example of this approach is to provide correspondences with tracing information using

OCL [6]. Meanwhile, the disadvantage of this approach is that, we have to specify explicit

correspondences between specific models which is a tedious task.

 The thesis adopts mainly explicit approach by using operational transformation

rules based on explicit correspondences. In this technique, the relationship between content

model and navigation model is first examined in the context of UWE [6] approach. A

correspondence model that specifies explicit correspondences is then proposed to represent

these relationships. Next, operational transformation rules and algorithms for

synchronization are proposed to synchronize these models. Finally, a Magic Draw UML

[14] plug-in tool is developed to implement the transformation rules automatically and

systematically based on the algorithms.

The thesis is organized in 5 Chapters. Chapter 1 presents some introduction on the

development of synchronization problem and limitations of the available methods in the

literature. Based on which the scopes of this thesis is proposed. Techniques for

synchronization are detailed in Chapter 2. Chapter 3 specifies the applications of these

techniques for synchronizing between content model and navigation model in the context

of UWE approach. Chapter 4 presents some experiments in applying these techniques to

synchronize content model and navigation model systematically and automatically. Some

conclusions obtained from this study as well as directions for further development of

complete synchronization tool are presented in Chapter 5.

8 | P a g e

Chapter 2 - Model Synchronization

2.1 Web modeling with UWE

 UML-based Web Engineering (UWE) [6] is Model-Driven Web Engineering

(MDWE) methodology for web application development. In UWE, the system design is

separated into content model, navigation model, presentation model, and process model.

Each of the model concerns with one aspect of the system.

 The first model is content model which does not differ from UML class model as

shown in Fig.2.1. As normal, each class contains properties and operations. Thus, standard

UML model elements for structure modeling as classes, associations are used.

Fig.2.1. UML class meta model [7]

 The second model is the navigation model whose meta model is represented in

Fig.2.2. A pair of abstract meta classes Node and Link and the associations between these

elements are the backbone of the navigation meta model. In addition, NavigationClass and

ProcessClass with the related Navigation Link and ProcessLink as well as Menu and the

access primitive Index, GuidedTour and Query are sets of subclasses of Node and Link

provide the web domain specific meta classes for building the navigation model.

9 | P a g e

Fig.2.2.Navigation meta model [6]

Because the scope of this thesis relates to content model and navigation model of

UWE, so the details of the other meta models are described in the appendix 1. Next, the

Simple Website [15] is selected as a running example to illustrate the proposed technique.

The example is described as follow:

- The system will offer Project page as a home page with an introductory text, an

index to a set of “Article” pages, and a link to an "Acknowledgement" page.

The index consists of a set of entries, each composes of a name and a brief

description. The Acknowledgement section contains just text.

- Each of the “Article” pages that can be accessed from the home page consists of

an introductory text, an index to its sections, and a fixed set of sections

("Requirements", "Solutions", "Comparison", "Contributors" and "References").

Each of these sections contains text, and possible references to external pages.

- It is possible to navigate from the home page to the rest of the pages, and from

them back to the home page. Within a Web page, it is possible to navigate from

the index of a section to the index of another section, and vice versa from them

back to the top of the page.

10 | P a g e

Fig.2.3. The content model of Simple Website [15]

Fig.2.4. The navigation model of the Simple Website [15]

- No passage of information from the source to the destination page occurs.

11 | P a g e

This Chapter only concentrates on the content model and navigation model of web

applications. The content model of Simple Website is described in Fig.2.3 whereas the

navigation model of the Simple Website is shown in Fig.2.4.

2.2. Relationships between model elements

In model driven architecture (MDA) approaches, the system is separated into

several models. Each of these models concerns one aspect of the system. However, these

models are not completely independent from each others. There always exist relationships

among them. As introduced in section 2.1, UWE is a MDA approach, so there must be

relationships among their models. Relationships exist among concrete models’ elements.

This section will investigate the relationships between content model and navigation model

of UWE.

Relationship between content model and navigation model is briefly shown in

Fig.2.5. Each node of navigation model relates to some content classes. Each navigation

property is also related some content class property. Each link in navigation model is

inherited from UML association. More detail is described next parts.

Fig.2.5. Relationship of the navigation meta model and UML class

Firstly, nodes in navigation model represent the navigation of a web page. Each

node has to contain some data for presenting or processing. Meanwhile, the data is

contained in content model in the form of classes. Thus, for convenient, people usually put

the name of the content class on the navigation node which relates to its data. Then,

relationship “same name” is established between the content class and navigation node.

For example, in Simple Website of section 2.1, the nodes Project, Article, Section have

“same name” relationships respectively to the correspondence classes in content model.

12 | P a g e

Secondly, when index node is used in navigation such as ArticleIndex of Simple

Website, it needs to navigate to a target node. Therefore, this target node must have a multi

property and contains some data. Thus, target node owns “same name” relationship to a

class in content model. For instance, the target node in Fig.2.4 is Article. Moreover, there

must be a source class which requests the index class. If this source class contains some

data, it will own “same name” relation. If this source node does not contain data, it can be

process node or something else. In this case, it is called middle nodes. However, the source

of these middle nodes must contains some data to send request to middle nodes, so it owns

“same name” relation. For example, the source class in this example is Project. If all of

these conditions are satisfied, a “valid index” relationship is established.

“Same name” and “valid index” are the key relationships between content model

and navigation model. These relationships are also suggested in reference [4] in the form

of correspondence types. This thesis proposes a synchronization technique based on these

two relationships.

2.3. Correspondences
 Correspondence is a statement by which some terms or linguistic constructs in the

specification of a model are associated with terms or constructs in the specification of a

second model. Correspondences do not form any part of the models, but provide

statements expressing their semantic relationships [16]. Besides, correspondence also

specifies the relationships between the elements, together with the constraints to guarantee

the consistency among these elements. The role of correspondences in model

synchronization problem has attracted many researchers. This section presents two forms

of correspondence the correspondence at meta model and the correspondence at model

level.

Correspondences at meta model level are defined based on relationships between

types of model elements, i.e., between meta model elements and out of individual model

elements. This approach has been realized by several authors. Akehurst et al in [17] used

correspondences for relating concepts from different meta models. Dijkman [18] also used

relations and consistency rules in his framework for preserving consistency among meta

models. The fact that change propagations can be considered as particular cases of model

transformations, suggests the use of model transformation languages as a good solution to

the problem of representing meta model correspondences. However, the problem is that at

13 | P a g e

the meta level it is not that simple and elegant to determine which particular objects should

be related.

Fig.2.6. Correspondence meta model [20]

Correspondence at model level specifies relationship among individual model

elements. For instance, if models are expressed as UML models, the UML 2 language

defines abstraction dependencies, possibly constrained by OCL statements, as the natural

mechanism to model a relationship that relates two elements or sets of elements [19]. An

alternative approach to represent correspondences has been defined by ISO/IEC and ITU-T

in the context of the UML4ODP standardization project [20]. The UML4ODP

correspondence meta model is shown in Fig.2.6.

In this approach, a correspondence specification is composed of a set of

correspondence rules and a set of correspondence links. It describes consistency

relationships between terms belonging to two models. In ODP, a term is a linguistic

construct which is used to refer to a model element. When a correspondence rule and a

correspondence link are related, the constraint in the correspondence rule must be enforced

by the set of terms referenced by the correspondence link. In UML4ODP, a

correspondence rule is expressed by a constraint that must be enforced by a set of terms

belonging to two models. A correspondence link is established between two models. Each

end of the correspondence link is called a correspondence endpoint, which is composed of

terms involving in the consistency relationship. One of the major benefits of this modeling

correspondences is that it combines the abilities of previous approaches: allowing not only

the establishment of correspondences that express simple relationships (e.g., traces)

between multiple elements, but also expressing the correspondences which need to be

Correspondence model model

Correspondence Rule

Expression: Constraint

Correspondence Link

Correspondence Endpoint

Term

0..* 2

0..* 0..*

2

1 .. *

14 | P a g e

modeled as constraints between the sets of related elements. This approach works well for

relating individual elements in two models although it does not allow simultaneously

relating sets of elements in each meta model, something required in some situations.

In this thesis, a technique of using explicit correspondence at model level is

proposed. Correspondence models represent relationships among individual elements. This

technique uses strings for presenting correspondences and the detail will be presented in

chapter 3.

2.4 Transformation rules using triple graph grammars
Graphs play an important role in many applications of computer science [21]. In

model-driven architecture, graphs are realized by their model similar characteristics. For

example, a graph includes nodes and edges meanwhile a model includes classes and

associations. Operations used in graph are insert, delete and modify. These operations are

similar to operations used in model engineering namely add, delete and modify. Because of

these similarities, graphs can be used to represent models. Moreover, methodologies

dealing with graph problems can be applied to models. Triple graph grammars are a

formalism for the specification of complex interdependencies between graph-like data

structures [21].

Using transformation rules based on triple graph grammars is considered as a

technique for synchronization. Fig.2.7 is an example of a transformation rule based on

triple graph grammars. The meaning of this rule is that when a block of the left model is

added, a correspondence corrBlock is added to corresponding model and a UML class

clazz is added to the right model. The technique of model synchronization using

transformation rules is realized by several authors. In [23], the problem of model

synchronization using triple graph grammars is discussed. Graphs are employed to depict

the conceptual view of software models. Meanwhile, model transformations are viewed in

terms of basic graph transformations such as node insertions and deletions. Based on this

view, a set of transformations applied to one model is traced and propagated to the other by

choosing, from a set of possible transformation paths, a path that maximizes underlying

model dependencies. However, the problem of how we can choose a maximized

dependency path is not proposed. In [22], the improvements for executing transformation

rules using triple graph grammars at meta model level is studied. The efficient execution of

transformation rules is evolved. However, the problem of how to apply their increments in

15 | P a g e

specific approach like UWE where it is difficult to construct transformation rules at meta

model level has not been realized.

Fig.2.7. A transformation rule [22]

In short, using triple graph grammars for representing transformation rules become

an important technique for synchronization purpose. However, the technique for

establishing transformation rules based on graph grammars has not been well studied.

Thus, the issue will be detailed in the following section based on the study of the authors in

reference [24]. Moreover, the application of this technique in UWE methodology is

detailed in chapter 3.

2.4.1. Models and meta models

Triple Graph Grammars [TGGs] have been introduced by Andy Schurr in 1994 as a

technique for representing model transformation [21]. The idea of triple graph grammars is

represented as follow:

 A simple Petri net model is shown in Fig.2.8. It consists of places, transitions, and

arcs, where the places are graphically represented as circles, the transitions as

squares, and the arcs as arrows. Moreover, some places contain a token, which is

graphically represented by a black dot inside the corresponding place. This model

conforms to the meta model in Fig.2.9.

 The meaning of the meta model in Fig.2.9 is: A Petri net consists of nodes and arcs,

where a node can be either a transition or a place; all these concepts are represented

as classes in the class diagram. The class Node is abstract, since a concrete node

needs to be a transition or a place. An arc connects two nodes, which is represented

by the two associations between the classes Node and Arc. In Petri nets, it is not

allowed to have an arc between two places or between two transitions; this

condition is expressed by the OCL constraint for the class Arc. The association

16 | P a g e

between the class Place and the class Token indicates the tokens belonging to each

place.

Fig.2.8. A Petri net model [24]

Fig.2.9. A meta-model for Petri nets [24]

Actually, Fig.2.8 shows a Petri net in its graphical representation, which is often

called its concrete syntax. In UML, a Petri net can be represented as an object diagram.

The object diagram corresponding to the Petri net of Fig.2.8 is shown in Fig.2.10. Of

course, this is not very readable anymore, since arcs are now explicitly shown as objects.

The type of each object is indicated by the name of the class following a colon. The

relation to other objects is indicated by links. This form of representation of a Petri net

model is called a model in abstract syntax. And this will be the models on which

transformations, and in particular our TGG-transformations, work. Clearly, object

diagrams are some version of typed graphs, which is the reason for applying techniques

from graph grammars for model transformation.

17 | P a g e

Fig.2.10. Petri net as an object diagram [24]

2.4.2. Graph grammars

In order to present the mechanism of TGGs, graph grammars need to be discussed

first. In this discussion, there is a restriction that is graph grammars without deletion rules.

The graphs to be transformed will be object diagrams. Fig.2.11 shows a simple graph

grammar rule for the Petri net example. Basically, it consists of a pair of object diagrams.

The first object diagram is the left-hand side of the graph grammar rule. In this example, it

consists of three objects: two places p, q and one token d with a link to the first place p.

These elements occur in the right-hand side of the graph grammar again, which is

represented by the second object diagram. The use of the same names p, q and d, indicates

which the elements have occurred in the left-hand side already. In addition, there are a new

transition and two new arcs, which connect the transition to the two places. Basically, the

rule says that we can add a transition between two places, if the source place has a token.

Fig.2.11. A graph grammar rule [24]

18 | P a g e

The semantics of a graph grammar rule is similar to classical grammars in formal

languages. A graph grammar rule can be applied to some graphs. Therefore, the graph

grammar rule from Fig.2.11 is applicable to the object diagram in Fig.2.10. In order to

apply the rule at a particular position in this object diagram, the nodes and the links of the

left-hand side of the rule are mapped to the objects and links of the object diagram. In this

example, node p of the graph grammar is mapped to object p3 of the object diagram, node

d to object d2, and node q to object p4; the link between p and d in the rule is mapped to

the link between p3 and d2 in the object diagram. Of course, the types of the objects must

match and all links, which are in the left-hand side of the rule, must be between the

corresponding nodes in the object diagram. Then, this mapping is called matching left-

hand side of the rule to the object diagram. Note that the given match is only one out of six

other possible matchings. If a matching mapping is found, we can apply the graph

grammar rule in this mapping which means that new copies are inserted for all the objects

and links which occur in the right-hand side of the rule, but not in left-hand side of the rule,

where the context of the mapping is kept. In this example, this means that the transition t4

and the arcs a9 and a10 along with the corresponding links are introduced as shown in

Fig.2.12. Applying a graph grammar rule changes an object diagram in a similar way the

application of a string grammar rule changes a character string. The rule could be applied

over and over again with different or even the same matchings, introducing more and more

elements.

Note that in this grammar rule, the right-hand side contains all the elements that occurred

in the left-hand side. This is called a non-deleting rule. Non-deleting rules can be

represented in a more concise way. For instance, Fig.2.13 shows the short hand form for

the rule from Fig.2.11. The black objects and links represent the elements that occur on

both sides of the graph grammar rule; the green objects and links, which in addition are

labeled with ++, represent the elements occurring on the right-hand side of the rule only.

The labels ++ emphasize that there are nodes to be added to the object diagram once the

black nodes are matched in the original object diagram and the rule is applied.

19 | P a g e

Fig.2.12. The Petri net after applying the rule [24]

Fig.2.13. Short hand form for the graph grammar rule [24]

This interpretation of transformation rule in Fig.2.7 is in accordance with the graph

grammar interpretation. Thus, transformation rules between models can be established

based on correspondence model. This technique is applied in next chapter to construct

operational transformation rules for synchronization.

20 | P a g e

Chapter 3 -

The synchronization of UWE’s content model and navigation model

3.1. Specification of explicit correspondences

 As introduced in section 2.2, the relationships “same name” and “valid

index” are considered as basis for synchronization. In addition, from section 2.3 it is

known that correspondences do not form part of any one of the models, but provide

statements which express their semantic relationships. Thus, this chapter proposes

the presentation of explicit correspondences for these two relationships as follow:

 String data type is used to store the name of navigation node which has the

relationship “same name” with the content class. For example, in Simple Website

[15], there are three correspondences: “Acknowledgement”, “Project”, and

“Article”. A text file with each String per line is used to store these

correspondences. Triple graph grammars can be used to represent graphically these

correspondences. For example, the “same name” correspondence model of Simple

Website is in the middle between two dash lanes shown in Fig.3.1.

Fig.3.1. "same name" correspondence model of Simple Website

source target
crm:CorrespondenceModel nm: NavigationModel cm:ContentModel

<<content class>>

 name: Acknowledgement

<<navigation class>>

 name: Acknowledgement

“Acknowledgement” source target

<<content class>>

 name: Project

<<navigation class>>

 name: Project

target source
“Project”

<<content class>>

name: Article

<<navigation class>>

name: Article

target source
“Article”

21 | P a g e

These correspondences conform to meta model described in Fig.2.6 where each string

corresponds to a correspondence link. Meanwhile, correspondence endpoints and terms are

implicit represent. For instance, in Fig.3.1, string “Acknowledgement” represents a

correspondence link, its respective content class and navigation class are the endpoints and

each endpoint in this case has only one term.

As “same name” correspondence model above, strings are also used to represent the “valid

index” correspondences so that they conform to meta model in Fig.2.6. Each string

represents one “valid index” correspondence in the following format:

“valid index” string = “targetClassName – indexName– first middleName –

 second middleName – … – sourceClassName”

 The sourceClassName is the name of the source class on the directed path to index

node.

 The targetClassName is the name of the target class of the index node.

 The middleName is the name of the node on the directed path from source class to

index node.

 The indexName is the name of the index node.

 In which, source class and target class must have “same name” relationship.

Using triple graph grammars to present “valid index” correspondence model of Simple

Website is shown in the two dash lanes of Fig.3.2:

Fig.3.2. "valid index" correspondence model of Simple Website

source target
crm:CorrespondenceModel nm: NavigationModel cm:ContentModel

“Article – ArticleIndex – Project”

source

source

source

source

<<content class>>

name: Article

<<navigation class>>

name: Article

<<content class>>

name: Project

<<navigation class>>

name: Project

22 | P a g e

In Fig.3.2, the string “Article – ArticleIndex – Project” represents correspondence

link. Project, Article content classes are the one endpoint. Project, Article navigation

classes are the other endpoint. In this case, each endpoint has two terms. For example, the

two terms of the first endpoint are Project class and Article class.

3.2. UWE Model Synchronization

In order to synchronize content model and navigation model of UWE methodology,

the operational transformation rules are proposed. The rules are based on the “same name”,

correspondence model and operations that can change the model such as renaming, adding,

and deleting. In addition, the rule for checking correction of “valid index” correspondences

is also proposed.

3.2.1. Rule 1 (Renaming rule)

Definition: if the name of a class in content model is changed and there exist a

class with the “same name” in navigation model, its name will be modified in order to

maintain the “same name” relationship.

Using triple graph grammars, the rule can be represented as shown in Fig.3.3.

Fig.3.3. "renaming" transformation rule

In Fig.3.3, the black part is the original state where there are a left model – content

model, a right model – navigation model, and a correspondence model. In addition, a

++ ++

source target
crm:CorrespondenceModel nm: NavigationModel cm:ContentModel

:ContentClass

:NavigationClass

target source
:String

newName:String

++
++

newName:String

++
++

newName:String

++

23 | P a g e

content class relates to a navigation class and their relationship is represented by a string in

correspondence model. The green part with ++ marks means that, when a newName

replaces the name of the content class, this newName replaces the correspondence string

and also replaces the name of the respective navigation class. Applying this rule to Simple

Website to change the class name “Article” to “SE_Article” is shown in Fig.3.4. After the

rule is implemented, the new correspondence “SE_Article” replaces the old

correspondence “Article”.

Fig.3.4. Applying renaming rule to change the name of content class “Article” to “SE_Article”

After applying the rule, the name “SE_Article” replaces the name “Article” of the content

class. Of course, the correspondence string and the navigation class name are also replaced

respectively.

Fig.3.5. After applying renaming rule in Fig.3.4

3.2.2. Rule 2 (Adding rule)

Definition: if a class with a composite association is added to content model, then a

class with the “same name” will be added to navigation model.

source target
crm:CorrespondenceModel nm: NavigationModel cm:ContentModel

<<content class>>

name: Article

:NavigationClass

name: Article

target source
:String

“SE_Article”

++
++

“SE_Article”

++
++

“SE_Article”

++

++ ++

crm:CorrespondenceModel nm: NavigationModel cm:ContentModel
target source

<<content class>>

 name: SE_Article

<<navigation class>>

 name: SE_Article

target source
“SE_Article”

24 | P a g e

In Fig.3.6, the black part is the original state of models, content model on the left,

navigation model on the right and correspondence model in the middle. In other part of this

figure, the green part with ++ marks means that when a content model with a composite

association is added to content model, a navigation class with the same name will be added

to navigation model and a “same name” correspondence is established.

Fig.3.6. "Adding" transformation rule

An example for this rule is to add Article with a composite association to content model as

shown in Fig.3.7. The Article navigation class is added and correspondence string “Article”

is added to its model.

Fig.3.7. Adding "Article" class applying adding rule

crm:CorrespondenceModel nm: NavigationModel parentCl:ContentModel
target source

:String

++

++

target

++

source
:NavigationClass

++

++

:ContentClass

++

++

++

: CompositeAssociation

++

crm:CorrespondenceModel nm: NavigationModel parentCl:ContentClass
target source

<<content class>>

 name: Article

++

++

comp: CompositeAssociation

++

<<navigation class>>

 name: Article

“Article”

++

++

target

++

source

++

++

25 | P a g e

Fig.3.8. Correspondence "Article" is established after applying adding rule

3.2.3. Rule 3 (Deleting rule)

Definition: if a class in content model is deleted and there exist a class with the

“same name” in navigation model, then the “same name” class in navigation model, all

associations come from and come to it and all classes inherited from it will be deleted.

 The rule in triple graph grammars form is shown in Fig.3.9. As usual, the black part

is the original part which contains a content model on the left, a navigation model on the

right and the middle is a correspondence model. The normal green with ++ marks is

changed to red with – – marks implies that the elements of models will be reduced. The

meaning of the rule is that when a “same name” content class is deleted from content

model, a navigation class along with its associations and inherited classes will be deleted.

Of course, the respective correspondence string will be deleted, too.

Fig.3.9. “Deleting” transformation rule

: Association[]

– –

crm:CorrespondenceModel nm: NavigationModel cm:ContentModel
target source

– –

– –

– –

:String – – – – :ContentClass

– –

:NavigationClass

– –

: Association[]

– –

– –

: InheritedNavigationClass[]

– –

– –
– –

crm:CorrespondenceModel nm: NavigationModel cm:ContentModel
target source

<<content class>>

name: Article

<<navigation class>>

 name: Article

target source
“Article”

26 | P a g e

Fig.3.10. Delete "Article" content class using rule in Fig.3.9

Applying this rule for deleting “Article” content class of Simple Website is shown in

Fig.3.10. In this case, the content Article class with its six associations is deleted from

content model so that the navigation Article class with its four associations and respective

correspondence string “Article” are also deleted.

After the rule is implemented, the content class “Article” and its associations, the

navigation class “Article” and its associations, the correspondence string “Article” is

deleted from respective models. The remaining part after deleting is shown in Fig.3.11.

Fig.3.11. After deleting content class "Article" using deleting rule

3.2.4. Rule 4 (checking valid index rule)

Definition: if there is an index class in navigation model, then there will be a target

class classNB which has a multi association with this index class and a source classNA on

the paths to this index class so that classNA, classNB have “same name” classes classCA,

classCB, respectively, in content model and classCA, classCB have a multi association.

The graphical representation of the “valid index” correspondence is shown in

Fig.3.2. This rule is not a transformation rule. It is used to check whether “valid index”

correspondences are correct. This task is performed by using an algorithm which is

detailed in the next chapter.

– –

crm:CorrespondenceModel nm: NavigationModel cm:ContentModel
target source

– – – –

“Article”

– – – – <<content class>>

 name: Article

– –

<<navigation class>>

name: Article

– –

asso: Association[4]

– –

– – – –

asso: Association[6]

– –

crm:CorrespondenceModel nm: NavigationModel cm:ContentModel
target source

27 | P a g e

Chapter 4 - Experiments and Results

4.1. Algorithms for operational transformation rules

In order to implement the operational transformation rules described in chapter 3,

algorithms for these rules need to be proposed and will be represented in this section.

 Assume that transformation rules are applied on a synchronized system. After

running time, the system needs to be improved and operations such as adding, deleting,

renaming are implemented. These operations affect the models of the system. Therefore,

the consistency among models can be broken. Thus, the models need to be synchronized

immediately.

 The synchronization process starts with establishing correspondence models. Then,

operations such as adding, deleting, and renaming are performed. By establishing

correspondence models and algorithms for transformation rules, synchronization tool is

implemented so that the consistency is maintained.

 The first task of synchronization process is to establish “same name”

correspondence model, since all the transformation rules are based on this model. The

algorithm for establishing this model is described as follow:

1. Start from a content model cm and navigation model nm which are synchronized,

an array of pointers navCrr is used alongside with “same name” string

correspondence model snc

2. For each content class conCls in content model:

(a) For each class navCls in navigation model,

(b) If there exists a “same name” class conCls in cm, a correspondence

between conCls and navCls is established by adding a string of the name

of conCls into correspondence model snc and the pointer of navCls is

also added to navCrr.

The Java-pseudo-code for this process is presented as follow:

28 | P a g e

void generatingSameNameCrrModel(ContentModel cn, NavigationModel nm,

String[] snc, NavigationClass[] navCrr){

 int i = 0;

 while(!cm.hasNext()){

 Element elm = cm.next();

 if(isContentClass(elm){

 ContentClass conCls = elm;

 boolean naviCrrFound = false;

 nm.restart();//Search from begining

 while(!naviCrrFound && nm.hasNext()){

 Element elm = nm.next();

 if(isNavigationClass(elm)){

 NavigationClass naviCls = elm;

 if(conCls.getName().

 compareTo(naviCls.getName()) == 0){

 naviCrrFound = true;

 snc[i] = conCls.getName();

 navCrr[i] = naviCls;

 i++;

 }

 }

 }

 }

 }

}

Next, “valid index” correspondence model is generated from synchronized system with

the proposed algorithm described as follow:

1. Start from a content model cm and navigation model nm which are synchronized,

an array of pointers navCrr is used alongside with “same name” string

correspondence model snc and an empty string “valid index” correspondence

model vic;

2. For each index of navigation class indexCls in navigation model:

(a) Find the target class and add its name to current string of vic

(b) Find the middle class and add its name to current string of vic

29 | P a g e

(c) Find the source class and add its name to current string of vic

(d) Create new “valid index” string in vic

void generatingValidIndexCrrModel(ContentModel cn, NavigationModel nm,

String[] snc, NavigationClass[] navCrr){

 String vldIndex = “”;

 while(!nm.hasNext()){

 Element elm = nm.next();

 if(isIndexClass(elm)){//an index class

 IndexClass indexCls = elm;

 vldIndex = indexCls.getName();

 NavigationClass targetCls = getTargetClass(nm,

 indexCls);

 insertTargetCls(vldIndex, target.getName());

 //find the middle and source classes

 getValidIndex(cm, nm, snc, navCrr, vic, vldIndex,

 indexCls);

 }

 }

}

void getValidIndex (ContentModel cn, NavigationModel nm, String[] snc,

NavigationClass[] navCrr, String[] vic, String vldIndex, IndexClass

indexCls){ //recursive

 for each directed association direasso to indexCls{

 Element elm = sourceOf(direasso)

 String name = elm.getName();

 if(isSameName(snc, name)){//element is the source

 insertSourceCls(vldIndex, name);

 append(vic, vldIndex);

 }else{

 insertMiddle(vldIndex, name); //element is the middle

 getValidIndex(cm, nm, snc, navCrr, vic, vldIndex,

 indexCls);

 }

 }

}

30 | P a g e

After having the “same name” and the “valid index” correspondence models,

renaming, adding, and deleting rules are implemented automatically. The algorithms for

these rules are described in the next sections.

4.1.1. Algorithms for renaming rule

 The input of this rule is new content class name newName. The scenario of this rule

is when the name of “same name” content class which is called oldName, is replaced by

newName. The algorithm is based on the rule in Fig.3.3 and described as follow.

1. Start with ContentModel cm, NavigationModel nm, an array of pointers navCrr is

used alongside with “same name” string correspondence collection snc, String

newName, oldName.

2. Content class name is changed by user.

3. For each string samename in snc.

If samename equal to oldName then replace samename with newName and

replace the name of correspondence navigation class in navCrr with newName.

Algorithm in Java pseudo-code is described as follow:

void renamingRule(ContentModel cm, NavigationModel nm, String[] snc,

NavigationClass[] navCrr, String oldName, String newName){

 int i = 0; boolean found = false;

 while(snc.line[i] != EOF && !found){

 if(oldName.compareTo(snc.line[i]) == 0){

 found = true;

 replace(snc.line[i], newName);

 replace(navCrr[i].name, newName);

 }

 i++;

 }

}

4.1.2. Algorithms for adding rule

 This rule is performed when a new content class is added to content model. If the

added class is one end of a composite association then a navigation class is added to

navigation model and “same name” correspondence between these new classes is

established. The algorithm of this rule is based on its graphical presentation in Fig.3.6 and

proposed as follow:

31 | P a g e

1. Start with ContentModel cm, NavigationModel nm, String[] snc, NavigationClass[]

navCrr, CotentClass newConCls.

2. Content class newConCls is added to content model by user.

3. For each association of newConCls

If association is composite then

(a) Add new navigation class newNaviCls with the name of newConCls

(b) Add name of newConCls to snc

(c) Add the address of newNaviClss to navCrr array

void addingRule(ContentModel cm, NavigationModel nm, String[] snc,

NavigationClass[] navCrr, ContentClass newConCls){

 int i = 0; boolean found = false;

 Association[] assoList = newConCls.getAssociation();

 while(!isEmpty(assoList) && !found){

 if(isComposite(assoList[i])){

 found = true;

 String conClsName = newConCls.getName();

 append(snc, conClsName);

 nm.addElement(new NavigationClass(conClsName));

 }

 }

}

4.1.3. Algorithms for deleting rule

This rule is implemented when a content class is deleted from content model. If

deleted class is “same name” corresponding to a navigation class, then the navigation class,

all its inherited classes and correspondence string will be deleted. The proposed algorithm

of this rule is presented as follow based on its graphical presentation in Fig.3.9:

1. Start with ContentModel cm, NavigationModel nm, String[] snc, NavigationClass[]

navCrr, CotentClass deletedConCls.

2. deletedConCls is deleted by user.

3. For each string in “same name” correspondence model snc

32 | P a g e

if this string equal to the name of deletedConCls, then

(a) Delete this string.

(b) Delete corresponding pointer in navCrr.

(c) Rearrange string correspondence model snc and corresponding array

navCrr.

The algorithm in Java pseudo code is proposed as follow:

void deletingRule(ContentModel cm, NavigationModel nm, String[] snc,

NavigationClass[] navCrr, ContentClass deletedConCls){

 int i = 0; boolean found = false;

 while(snc.line[i] != EOF && !found){

 if(deletedConCls.getName().compareTo(snc.line[i]) == 0){

 found = true;

 remove(snc,i);

 remove(navCrr, i);

 rearrange(snc);

 rearrange(navCrr);

 }

 i++;

 }

}

4.1.4. Algorithms for checking valid index rule

After operations such as renaming, adding, and deleting, navigation index node can

be affected and needs to be checked for validations. The algorithm to implement this rule is

described as follow.

1. Start with ContentModel cm, NavigationModel nm, SameNameCorrespondence

String[] snc, NavigationClass[] navCrr, ValidIndexCorrespondence String[] vic.

2. Navigation model is changed by user

3. For each index node indexCls of nm

a. If indexCls is valid then

i. If indexCls is in vic then

33 | P a g e

Update vic

ii. Else

Add indexCls to vic

b. Else

i. Mark indexCls with label “INVALIDINDEX”

ii. If indexCls is in vic then

 Delete from vic

The proposed algorithm is presented by Java pseudo-code as follow:

void UpdateValidIndex(ContentModel cm, NavigationModel nm, String[] snc,

NavigationClass[] naviCrr, String[] vic){

 while(nm.hasNext()){

 Element elm = nm.next();

 if(isIndexCls(elm)){

 IndexClass indexCls = elm;

 if(getTargetCls(indexCls))

 if((String[] vldIdxList = isValidIndex(cm, nm,

snc, naviCrr, vic, indexCls))

!= null)

 if(isInVIC(indexCls))

 updateVIC(vldIdxList);

 else

 add2VIC(vldIdxList);

 else mark(INVALIDINDEX);

 }

 }

}

boolean isValidIndex(ContentModel cm, NavigationModel nm, String[] snc,

NavigationClass[] naviCrr, String[] vic, String[] vldIndexList,

IndexClass indexCls){

 int i = 0;

 String vldIndex = getName(indexCls);

 for each directed association direasso to indexCls{

 Element elm = getSourceOf(direasso);

34 | P a g e

 String name = getName(elm);

 if(isSameName(name)){ //element is the source

 insertSource(vldIndex, name);

 vldIndexList[i++] = vldIndex;

 }else{

 insertMiddle(vldIndex, name);

 return isValidIndex(cm, nm, snc, naviCrr, vic,

 vldIndexList,

elm)

 }

 }

 return null;

}

Having these algorithms, a tool for implementing these rules is built. Next section

introduces the tool in detail.

4.2. Plug-in tool of transformation rules using Java

The objective of this study is to build an automatic tool to catch the changing

events, namely renaming, adding, and deleting events, which correspond to the proposed

rules,. The performance of the built transformation rules is summarized as follow:

Fig.4.1. The content class Article is renamed to SE_Article, the renaming tool renames the

correspondence navigation class

35 | P a g e

The performance of renaming rule is shown in Fig.4.1. In this situation, the name of

the content class “Article” is renamed to “SE_Article” and the event “Property change” is

activated. Then, the tool checks the “same name” correspondence model and finds the

respective class in navigation model. Finally, the name of navigation class “Article” is

changed to “SE_Article”.

The performance of the adding rule is presented in Fig.4.2. The content class

“Author” with composite association is added and the “property change” is activated. Then

the tool will create the class “Author” in navigation model.

Fig.4.2. When the content class “Author” is added to content model with composite association,

the tool will create the new navigation Author class.

The performance of deleting rule is depicted in Fig.4.3. The class

“Acknowledgement” in content model is deleted. Then the “property change” event is

activated. Next, the tool deletes the “Acknowledgement” class in navigation model.

The performance of the checking valid index rule is summarized in Fig.4. 4. This

module implement checking valid index for indexes which are not contain in

correspondence model. The notification will appear in two cases, namely “NO invalid

indexes” or “INVALIDINDEX”

36 | P a g e

Fig.4.3. When the content class “Article” is deleted, the tool will delete the correspondence

class in navigation model.

Fig.4. 4. When user needs to verify the “valid index” the tool will run and notify the user.

 The tool performs renaming, adding, deleting rules automatically. The checking

valid index rule is implemented when it is requested to perform. The tool is built on Java

Eclipse with open API of Magic Draw UML version 16.0.

4.3. Practical Evaluation
 In order to evaluate the effectiveness of proposed rules, content model and

naviation model of Ochimizu lab home page were constructed. These models are shown in

37 | P a g e

appendix 2. Moreover, these rules are also applied on some other examples from [25]. The

results of the application are shown in table 1.

Rule

Example
Renaming Adding Deleting

Checking

“valid index”

Simple Website

Ochimizu lab

Address Book

Address Book With

Search

Address Book With

Content Update

Music Portal

Table 1. The effectiveness of proposed rules on the examined models

The mark shows that the rule is valid on respective example and mark vice versal. It

is true that the rules have worked on all of these examples.

http://uwe.pst.ifi.lmu.de/exampleMusicPortal.html

38 | P a g e

Chapter 5 - Conclusions and future work

In conclusion, this study has examined some of the primary relationships between

content model and navigation model used in UWE approach. Besides, the technique of

representing explicit correspondences is proposed. Next, operational transformation rules

have been constructed using the triple graph grammars. These rules are based on

operations that users usually do such as renaming, adding, and deleting. Finally, an

automatic plug-in tool has been proposed to illustrate the constructed rules.

Although the thesis has proposed a solution for synchronizing content model and

navigation model of UWE approach, room for further development of a complete solution

for synchronizing all models in UWE is available. First, other relationships than the

relationship between content and navigation model such as the relationship among

navigation model presentation model and process model should be investigated to

construct a completely correspondence model. In addition, transformation rules can be

built for the technique of constructing rule. Besides, a complete tool needs to be compiled

to solve the synchronization problem systematically and automatically.

39 | P a g e

Bibliography

[1] Model Refactorings through Rule Based In-consistency Resolution. Ragnhild Van Der Straeten,

Maja DHondt. 2006, In Proceedings of the 2006 ACM symposium on Applied computing.

[2] Model refactoring in web applications. Alejandra Garrido, Gustavo Rossi and Daminano

Distante. Paris, France : WSE 2007 The 9th IEEE Symposium on Web Site Evolution Co-Located

with ICSM, 2007.

[3] Challenges in Model Refactoring. Tom Mens and Gabriele Taentzer and Dirk Müller. s.l. : In:

Proc. 1st Workshop on Refactoring Tools University of Berlin, 2007.

[4] Viewpoint Synchronization of UWE Models. Daniel Ruiz-Gonz´alez, Nora Koch, Christian

Kroiss, Jos´e-Ra´ul Romero, and Antonio Vallecillo. San Sebastián, Spain : Proceeding in the Fifth

International Workshop on Model-Driven Web Engineering (MDWE 2009) San Sebastián, June 22,

2009.

[5] From model transformation to incremental bidirectional model synchronization. Holger Giese

and Robert Wagner. s.l. : Springer-verlag, 2008.

[6] Christian Kroiß and Nora Koch. The UWE Metamodel and Profile – User Guide and Reference

Version 1.0. s.l. : Technical Report 0802- Germany, 2008.

[7] Unified Modeling Language version 2.0. OMG, 2005

[7] Towards Automatic Model Synchronization from Model Transformations. Y. Xiong, D. Liu, Z.

Hu, H. Zhao, M. Takeichi, and H. Mei. s.l. : In ASE '07: Proceedings of the twenty-second

IEEE/ACM international conference on Automated software engineering, 2007.

[8] Web Modeling Language (WebML): a Modeling Language for Designing Web Sites. Ceri, S.,

Fraternali, P., Bongio, A. s.l. : Proc WWW9 Conference, Amsterdam, NL, May 2000 (also in

Computer Networks, 33 (2000), pp. 137-157).

[9] Ubiquitous Web Applications. UWA Consortium. Prague, Czech Republic : Proceedings of the

eBusiness and eWork Conference, 2002.

[10] WSDM: A User-Centered Design Method for Web Sites. De Troyer O., Leune C. s.l. : Computer

Networks and ISDN systems, Proc. of the 7th Int. WWW Conf. Elsevier, 1998.

[11] An Object-Oriented Approach to Automate Web Applications Development. Pastor, O.,

Abrahao, S.M., Fons, J. Munich, Germany : Proceedings of EC-Web 2001, 2001.

[12] An Object Oriented Approach to Web-Based Application Design. Theory and Practice of Object

Systems. Schwabe, D., Rossi, G. s.l. : Wiley and Sons, 1998, Vol. 4(4).

[13] München, LMU – Ludwig-Maximilians-Universität. publicationsMetamodelAndProfile.html.

http://uwe.pst.ifi.lmu.de. [Online]

[14] No Magic, Inc. http://www.magicdraw.com/. [Online]

40 | P a g e

[15] LMU – Ludwig-Maximilians-Universität München. exampleSimpleWebsite.html.

http://uwe.pst.ifi.lmu.de/. [Online]

[16] Black Cats and Coloured Birds What do ViewpointCorrespondences Do? Linington, P.

Maryland, USA : In Proc. of WODPEC 2007 , Oct. 2007.

[17] A relational approach to defining and implementing transformations between meta models.

D. Akehurst, S. Kent, and O. Patrascoiu. 2003, Vol. Software and Systems modeling (SoSyM).

[18] Consistency in Multi-Viewpoint Architectural . R.Dijkman. s.l. : University of Twente, 2006.

[19] Realizing correspondences in multi-viewpoint specifications. Romero, J.R., Vallecillo, A. s.l. :

In: Proc. of EDOC 2009, Auckland, New Zealand, IEEE CS Press, 2009.

[20] ISO/IEC. Information technology – Open distributed processing – Use of UML for ODP system

specifications. s.l. : ISO and ITU-T, 2008. ISO/IEC IS 19793, ITU-T X.906.

[21] Specification of graph translators with triple graph grammars. Schurr, A. Herrsching,

Germany : 20th International Workshop, June 1994.

[22] Incremental Model Synchronization with Triple Graph Grammars. H. Giese and R. Wagner.

Genova, Italy : In Proc. Of the 9th International Conference on Model Driven Engineering

Languages and Systems (MoDELS), Oct. 2006, Vol. volume 4199 of LNCS.

[23] Model Synchronization as a Problem of Maximizing Model Dependencies. Igor Ivkovic, Kostas

Kontogiannis. s.l. : Proceedings of the International Conference on Information Technology, 2004.

[24] Triple Graph Grammars: Concepts, Extensions, Implementations, and Application Scenarios.

Paderborn, Germany : Department of Computer Science, June 2007.

[25] http://uwe.pst.ifi.lmu.de/examples.html

41 | P a g e

Appendix 1

1. Presentation Package
The presentation model provides an abstract view on the user interface (UI) of a web

application. It is based on the navigation model. The presentation model abstracts from

concrete aspects of the UI, like the use of colors, fonts, and where the UI elements are

placed on the web page; instead, the presentation model describes the basic structure of the

user interface, i.e., which UI elements (e.g. text, images, anchors, forms) are used to

present the navigation nodes (see Figure 1 and Figure 2). Also, the UI elements do not

represent concrete components of any presentation technology but rather describe what

functionality is required at that particular point in the user interface. This could simply

mean that a text or image has to be displayed or for example that the user should be

enabled to trigger a transition in the navigation model. In the last case, it is clear that an

Anchor would be used in the UWE presentation model, but UWE does not define how the

anchor should be rendered in the final web application. This could of course be just an

anchor element of HTML (<a>), but also a button or even an embedded flash applet could

serve the purpose.

The basic elements of a presentation model are the presentation classes, which are directly

based on nodes from the navigation model, i.e. navigation classes, menus, access

primitives, and process classes. Presentation classes can contain other presentation

elements. This is accomplished through presentation properties that use the included

presentation elements as type. In the case of UI elements, like text or image, the

presentation property is associated with a navigation property that contains the content to

be rendered.

The inclusion of presentation classes into other presentation classes or pages leads to a

tree of presentation classes that are shown together. This means that the links between their

corresponding navigation nodes are effectively “followed automatically”. On the other

hand, if two presentation classes do not belong to the same inclusion tree, then the link

between their navigation nodes has to be triggered by user action.

In contrast to presentation classes and pages, a presentation group defines a set of

presentation classes that are shown alternatively, depending on navigation. In the sense of

the description above, a presentation group creates a set of alternative inclusion trees.

42 | P a g e

Figure 1. The Backbone of the Presentation Package

Figure 2. Presentation Elements

1.1 Class Descriptions

1.1.1 PresentationElement

43 | P a g e

PresentationElement is the abstract super class of all model elements of the presentation

package.

Generalizations

 Class (from UML)

Attributes

No additional attributes.

Associations

No additional associations.

1.1.2 PresentationClass

A presentation class defines the combination of presentation elements that show the

contents of a navigation node. If the associated navigation node is reached, the complete

composed content of the corresponding inclusion tree is shown.

Generalizations

 PresentationElement on page 13 of reference [6].

Attributes

No additional attributes.

Associations

 node : Node [0..1]

The navigation node that is rendered by

the presentation class.

 presentationProperty :

PresentationProperty [*]

{subsets ownedAttribute}

The collection of presentation properties

that constitute the content of the

presentation class.

1.1.3 PresentationProperty

44 | P a g e

Presentation properties are used to define the content of presentation classes. The

presentation element that should be included is used as the type of the presentation

property. If the contained element is an UI element (like text, image, text input, etc.) then

the presentation property can be associated with a navigation or process property that

defines the location of data to be presented or edited.

If the property has a multiplicity higher than one, it means that the contained element is

rendered repeatedly by iteration over a source collection of values. This collection is given

implicitly when the presentation property represents the anchors of an index. Otherwise,

the associated navigation or process property must have a multiplicity higher than one, too.

Generalizations

 Property (from UML)

Attributes

No additional attributes.

Associations

 presentationElement:

PresentationElement[1]

{subsets type}

The presentation element that should be

included inside the presentation class that

owns the presentation property.

 navigationProperty:

NavigationProperty [0..1]

The navigation or process property that

defines the location of data that is

presented or edited by the included

presentation element.

1.1.4 Page

A page has the same semantics as a presentation class, with the exception that it may not

be included inside another presentation class. This means that a page always defines the

root of an inclusion tree of presentation classes. Unlike a presentation class, a page does

not have to be associated with a navigation node, as long as it includes at least one

presentation class that provides the reference to the navigation model.

45 | P a g e

Generalizations

 PresentationClass on page 13 of reference [6].

Attributes

No additional attributes.

Associations

No additional associations.

1.1.5 PresentationGroup

A presentation group is used to define a set of presentation classes whose contents are

shown alternatively on the same area of the page, depending on navigation. If a navigation

node is reached that is associated with one of the alternatives, the content of this

presentation class replaces the content of the presentation class that is shown at that

moment. One of the presentation classes can be defined as the default, which is selected if

none of the associated navigation nodes has been reached yet. The inclusion of alternatives

works just like the inclusion of presentation elements in normal presentation classes, so

each alternative presentation class is used as the type of a presentation property that is

owned by the presentation group.

Generalizations

 PresentationClass on page 13 of reference [6].

Attributes

No additional attributes.

Associations

 default:

PresentationProperty[0..1]

Defines which presentation class is used

as the default when none of the

alternatives’ associated navigation nodes

has been reached yet.

1.1.6 UIElement

46 | P a g e

UIElement is the abstract super class for presentation elements that are responsible for

presenting or editing content. Every UIElement has to be included in a presentation class

that is associated with a navigation node. The subclasses of UIElement can be divided into

four groups:

 UI containers like forms can contain other UI elements.

 Static elements, such as Image or Text, are used to display content. They can be

connected with a navigation property to specify where the displayed data is

retrieved from, as described in section 1.1.3. Alternatively, they can be used to

provide values for query parameters.

 Elements that handle user input like TextInput or Choice. They can be connected

with a navigation- or process property in order to specify how the user input is

handled.

 Anchor and Button both trigger transitions on the navigation model or process

model. It is important to remember that the UWE presentation model does not

specify concretely how an UI element is rendered in terms of which element of the

used presentation technology is used. For example, a UWE choice that allows

selection of one element could be rendered by an HTML <select> element as well

as by a group of radio buttons.

Generalizations

 PresentationElement on page 13 of reference [6].

Attributes

No additional attributes.

Associations

 uiContainer:

UIContainer[0..1]

The UIContainer that contains the

UIElement.

1.1.7 UIContainer

A UIContainer is an abstract super class not linked to any data by itself but can include

other UI elements.

Generalizations

47 | P a g e

 UIElement on page 15 of reference [6].

Attributes

No additional attributes.

Associations

 elements: UIElement [*] The contained UI elements.

1.1.8 Form

A form groups user interface elements that are used to provide data for a process.

Generalizations

 UIContainer on page 16 of reference [6].

Attributes

No additional attributes.

Associations

No additional associations.

1.1.9 AnchoredCollection

An anchored collection is an UI container that can only contain anchors. It can be used to

model the presentation of a menu or an index.

Generalizations

 UIContainer on page 16 of reference [6].

Attributes

No additional attributes.

Associations

 anchors: Anchor [1..*] The anchors contained by the anchored collection.

1.1.10 Anchor

48 | P a g e

An anchor allows the user to trigger a transition in the navigation model alongside a

specified link. Note that the UWE presentation model does not specify how an anchor is

rendered. In HTML, for example, both an anchor element (<a>) as well as a button may be

used.

Generalizations

 UIElement on page 15 of reference [6].

Attributes

No additional attributes

Associations

 link: Link [0..1] The link that is followed when the anchor is clicked.

1.1.11 Button

A button in general is an element that enables the user to initiate some action of the web

application. The most common usage is in conjunction with input elements to submit data

and execute a query or a process. Just like mentioned in section 1.1.10, UWE does not

specify how a button is rendered. If HTML is used as presentation technology, an <input>

element with type “button” could be used as well as an <a> element or even an image,

(given that JavaScript is enabled).

Generalizations

 UIElement on page 15 of reference [6].

Attributes

No additional attributes

Associations

No additional associations.

1.1.12 Text

A text element is used to displays static text. The content can be provided by a navigation

property as described in section 1.1.3.

49 | P a g e

Generalizations

 UIElement on page 15 of reference [6].

Attributes

No additional attributes

Associations

No additional associations.

1.1.13 Image

An image element is used to display a static image. The content provided by the

corresponding navigation property (see section 1.1.3) could be interpreted as an URL

specifying the location of an image file or directly as image data in any format.

Generalizations

 UIElement on page 15 of reference [6].

Attributes

No additional attributes

Associations

No additional associations.

1.1.14 TextInput

A text input element allows the user to enter text.

Generalizations

 UIElement on page 15 of reference [6].

Attributes

No additional attributes

Associations

No additional associations.

50 | P a g e

1.1.15 Choice

A choice allows selecting one or more values from a set of possibilities. In a web

application, there are several different ways how this functionality could be realized by

concrete HTML elements, e.g.:

 By a <select> element

 By a group of radio buttons to select one value out of several values

 By a group of checkboxes to select multiple values

 By one checkbox if the edited property is of type Boolean

Generalizations

 UIElement on page 15 of reference [6].

Attributes

 multiple : Boolean

(default = false)

Defines whether the choice allows

selecting more than one value.

Associations

No additional associations.

2. Process Package
The process package provides model elements for integrating business processes into an

UWE web application model. This can be separated into three tasks:

 Integration of business processes into the navigation model

This is enabled by the two metaclasses ProcessClass and ProcessLink that extend

Node and Link respectively and that allow defining how a process can be reached

through navigation and how navigation will continue after the process.

 Definition of a user interface to support the processes

Processes most likely require a user interface for data input and presentation. This

user interface can be defined with the UWE presentation model for each process

class just like the UI for navigation classes as described in section 5. However, user

input may be required at several points in the process flow. This is solved by

creating one process class for each step and associating them with the main process

51 | P a g e

class that is integrated in the navigation model. For each of these process classes, a

presentation class will be created defining the user interface. The UI elements are

connected with process properties of the corresponding process class.

 Definition of the behaviour

The behaviour of a process is defined by an UML activity that is owned by the

main process class. The following restrictions and special semantics apply:

o A special UserAction is used to mark a point in the control flow when the user

is asked to enter data. The user action is associated with a process class to

identify what data is edited and what presentation class is shown. The control

flow of the activity continues after the user has submitted the requested data.

Each process property of the process class provides entered data from the

corresponding UI element through an output pin of the user action that has the

same name as the process property. Similarly, the process properties of a

process class can be set with input pins of the corresponding user action. These

values are used as initial values for the connected UI elements.

o In many cases, a process needs some input from its predecessor node in the

navigation graph. For example, an EditContact process would need an instance

of the content class Contact as input. This instance could be provided by a

navigation class Contact from which the user, over a menu, can chooses to edit

the particular contact. This situation can be modeled by an activity parameter

node that is used instead of an initial action node. The parameter node must

have the same type as the content class of the navigation class that precedes the

process class.

o The actions in the process activity that are not user actions may call operations

of the input parameter object and on every instance that is created during the

process activity. How access to other contexts is expressed is up to the modeler.

o The process could create or select a content class instance that should be passed

to a succeeding node (navigation class or process class). This can be modeled

by an activity parameter node that is used instead of an activity final node.

o Other processes can be embedded by calling the corresponding process activity

using UML CallBehaviorActions. The model elements presented above and the

relationships between them are shown in Figure 3. These model elements are

described in the following subsections.

52 | P a g e

Figure 3. The Process Package

2.1 Class Descriptions

2.1.1 ProcessClass

Process classes are used to integrate business processes into the navigation model and to

define the data that is exchanged with the user during the process.

In the navigation model, process classes can be connected to other navigation nodes using

process links. This defines how a process can be reached through navigation. If a process

involves several steps with different user interfaces, each step has to be backed up by a

process class that is associated with a user action (see section 2.1.4). The user interface of

each step is defined by a presentation class that is associated with the process class using

the “node” role. However, only one class is integrated in the navigation model. This class

becomes the “main process class” and has to be associated with the activity that defines the

process flow.

The properties of process classes (process properties) are each connected with a UI

element and provide means to define how data retrieved from the user interface is used

within the process (see sections 2.1.3 and 2.1.4).

Generalizations

 Node on page 7 of reference [6].

Attributes

53 | P a g e

No additional attributes

Associations

 processActivity : Activity[0..1]

The UML activity that defines the

process flow. This is only used for the

main process class of a business process

(the one that’s used as a node in the

navigation model). As an abbreviation,

the activity can be encapsulated in the

process class using the ownedBehavior

feature.

 processProperty :

ProcessProperty [*]

{subsets ownedAttribute}

A collection of properties that are each

connected to a UI element and are used to

define how input from these UI elements

is handled by the process.

2.1.2 ProcessLink

Process links are used to connect process classes to other navigation nodes.

Generalizations

 Link on page 7 of reference [6].

Attributes

No additional attributes.

Associations

processClass:

ProcessClass [1..*]

The target node(s) of the process link

.2.1.3 ProcessProperty

A process property is owned by a process and is used to define how data retrieved from a

UIelement is used within the process flow. The relation to the UI element is established by

the feature navigationProperty of PresentationProperty (see section 5.1.3).

Generalizations

 NavigationProperty on page 8 of reference [6].

54 | P a g e

Attributes

 rangeExpression : String [0..1]

An expression that can be used to define a range of possible values for input into the

related UIelement.

Associations

No additional associations.

2.1.4 UserAction

A user action defines a point in the process flow when the user is asked to input data. It is

associated to a process class that in turn is referenced by a presentation class. When the

user action is reached in the control flow of the process activity, the UI elements of the

corresponding presentation class are shown. After the user has submitted data, the process

flow is continued. The data that has been entered in the user interface elements is available

via output pins of the user action that are named equal to the process properties that back

up the UI elements (see section 2.1.3). Analogically, input pins can be used to define that

data from the activity’s object flow should be displayed by the corresponding UI elements.

Generalizations

 CallAction (from UML)

Attributes

No additional attributes.

Associations

 processClass :

ProcessClass [1]

A process class that is referenced by a presentation class and that provides process

properties that are on their part referenced by UI elements.

55 | P a g e

Appendix 2

Ochimizu lab home page content model:

56 | P a g e

Ochimizu lab home page navigation model:

