
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
ソフトウェア共同開発における 変更作業支援ワークフ

ローモデル

Author(s) Phan, Huyen Thi Thanh

Citation

Issue Date 2010-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/9145

Rights

Description
Supervisor:Professor Koichiro Ochimizu, 情報科学

研究科, 修士



A Change Support Workflow Model for Cooperative
Software Development

By Phan, Huyen Thi Thanh

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Koichiro Ochimizu

September, 2010



A Change Support Workflow Model for Cooperative
Software Development

By Phan, Huyen Thi Thanh (0810202)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Koichiro Ochimizu

and approved by
Professor Koichiro Ochimizu

Associate Professor Masato Suzuki
Associate Professor Toshiaki Aoki

August, 2010 (Submitted)

Copyright c⃝ 2010 by Phan, Huyen Thi Thanh



Acknowledgment

First and foremost I offer my sincerest gratitude to my supervisor, Professor Koichiro
Ochimizu, who has supported me throughout my study with his knowledge, guidance and
encouragement. Without his consistent help this thesis would not have been completed
or written.

In addition, I would like to thank the Japanese Government (Monbukagakusho) Schol-
arship Program for financial support during my stay in Japan.

Last but not least, I thank my family who endured this long process with me, always
offering love, support and understanding. Thanks are also due to numerous friends,
especially those at Ochimizu Laboratory for their willingness to participate in challenging
discussion and give help to tackle the language barrier in my daily life.



Abstract

This thesis proposes an approach to synchronize changes on shared software artifacts
in a change support environment for cooperative software development, by detecting and
solving errors caused by uncontrolled access to shared data by Change Support Workflows
(CSWs). CSW is a sequence of activities defined to carry out a change request. Activities
in CSWs take care of creating new software artifacts or modifying exiting ones.

In this thesis, we abstract errors caused by uncontrolled access to shared data as Unin-
tentional Change in In-use Data (UCID), a situation in which some data values are lost or
some data elements are assigned values different from the intentions of workflow design-
ers, due to non-deterministic access to shared data by different activities. We first solve
UCID problem in a general workflow management system and then apply the solution to
the change support environment.

In contrast to previous work, we identify UCID patterns caused by not only concurrent
activities in the same workflow, intra-UCID, but also activities in different concurrent
workflows, inter-UCID. We also propose a Time Data Workflow (TDW), an extension of
the WF-Net by integrating data and time as attributes of WF-Net transitions. Algorithms
which help detect intra-UCID and inter-UCID patterns at build time in a Concurrent
TDW Management System are developed too. Then, algorithm evaluation and some
solutions to resolve UCID problem are given. Finally, we present how to apply the UCID
theory to the change support environment to detect and resolve errors concerning shared
software artifacts among CSWs.



Contents

1 Introduction 1

2 Background 3
2.1 Change Support Environment - Flow of Control . . . . . . . . . . . . . . . 3

2.1.1 Information Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Change Support Workflow Model - Our research . . . . . . . . . . . 5

2.2 The Thesis’s Objectives and the Change Support Environment . . . . . . . 6
2.2.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 UCID Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Modeling Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Classical Petri Net . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 High-level Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Workflow Net (WF-Net) . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Related Work 14
3.1 Previous Work on Data Flow Verification . . . . . . . . . . . . . . . . . . . 14
3.2 Version Control System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Concurrency Control Techniques of Database Management Systems . . . . 16

3.3.1 Two-Phase Locking Techniques for Concurrency Control . . . . . . 16
3.3.2 Concurrency Control based on Timestamp Ordering . . . . . . . . . 17
3.3.3 Multiversion Concurrency Control Techniques . . . . . . . . . . . . 19

4 Time Data Workflow 20

5 UCID Patterns in a Concurrent TDW Management System 23

6 Detection of Potential UCID in a Concurrent TDW Management Sys-
tem 25
6.1 Potential Intra-UCID Detection Algorithm . . . . . . . . . . . . . . . . . . 25
6.2 Potential Inter-UCID Detection Algorithm . . . . . . . . . . . . . . . . . . 26

6.2.1 Calculation of Estimated Active Interval . . . . . . . . . . . . . . . 27
6.2.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.3 Algorithm Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



7 Potential UCID Resolution 32
7.1 Potential Intra-UCID Resolution . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 Potential Inter-UCID Resolution . . . . . . . . . . . . . . . . . . . . . . . . 32

8 UCID Theory and Change Support Workflow Model 35
8.1 Applying the UCID Theory to the Change Support Workflow Model . . . . 35
8.2 Generating a CSW based on Data Flow Skeleton . . . . . . . . . . . . . . . 35
8.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9 Discussion 41
9.1 Evaluation of the Proposed Method . . . . . . . . . . . . . . . . . . . . . . 41
9.2 Consideration of a New Method . . . . . . . . . . . . . . . . . . . . . . . . 41
9.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

10 Conclusion 46

ii



List of Figures

2.1 Flow of control of CSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 A classic Petri Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 Workflow primitives specified by TDW . . . . . . . . . . . . . . . . . . . . 21

5.1 Inter-UCID patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.1 Potential intra-UCID example result . . . . . . . . . . . . . . . . . . . . . 26
6.2 A Concurrent TDW Model example . . . . . . . . . . . . . . . . . . . . . . 29
6.3 Data flow matrix example . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 Potential intra-UCID resolution . . . . . . . . . . . . . . . . . . . . . . . . 33
7.2 Potential inter-UCID resolution . . . . . . . . . . . . . . . . . . . . . . . . 34

8.1 Generating CSW from data flow skeleton . . . . . . . . . . . . . . . . . . . 38
8.2 Example of dependency relationships between software artifacts created

during a software development process . . . . . . . . . . . . . . . . . . . . 39
8.3 Examples of CSWs created based on the dependency relationships between

software artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8.4 Global UCID-related Workflow of CSWs described in Figure 8.3 . . . . . . 40

9.1 Example of workflows with visualized data elements . . . . . . . . . . . . 43

iii



List of Tables

6.1 Potential intra-UCID example result . . . . . . . . . . . . . . . . . . . . . 26
6.2 Potential inter-UCID example result . . . . . . . . . . . . . . . . . . . . . 30

8.1 Time aspect of activities in CSWs described in Figure 8.3 . . . . . . . . . . 40

iv



Chapter 1

Introduction

”The only permanent thing is change”, said the Greek philosopher Hippocrates, and soft-
ware system is not an exception. It must be changed under various circumstances during
development and after delivery, such as for new requirements, error correction, perfor-
mance improvement, etc. However, software change is not an easy task, especially in a
cooperative environment where software artifacts with very complex dependency relation-
ships are created based on the cooperation of many people. Also, other problems such as
concurrent changes and synchronization of changes on shared artifacts, etc. make this task
more difficult. Therefore, a better change support environment is necessary. CSE (Change
Support Environment) is our project to build a change support environment for cooper-
ative software development. One unique feature of this project is to semi-automatically
generate workflows which represent tasks needed to implement change requests. Change
workers can perform change activities safely and efficiently in a cooperative environment
based on the generated workflows. The project is divided in two phases: (1) building an
information model and (2) building an operation model.
In the first phase of the project, the information model has been built. This model

helps to generate automatically dependency relationships among UML model elements,
among Java classes, and between a UML model element and a group of Java collaboration
Java classes. A dependency relationship is defined as a relationship between two elements
in which a change in the supplier element requires a change in the client element.
As part of the CSE project, we are responsible for building the operation model which

we call Change Support Workflow Model (CSW Model). We define a Change Support
Workflow (CSW) as a sequence of activities defined to carry out a change request. A CSW
Model is responsible for CSW construction and management. Activities in CSW take
care of creating new software artifacts or modifying exiting ones. This means that data
elements of CSW are software artifacts which need to be read, modified or created in the
change implementation process. Inputs to this model are the dependency relationships
generated by the information model. Tracing the generated dependency relationships
helps to identify these data elements and the orders between them as well. In other
words, the flow of control and data flow of CSW can be identified. However, in a large and
cooperative system, there are many CSWs executed at the same time and they may share
some software artifacts. Therefore, the CSW Model must consider not only the sequence

1



of activities of CSWs but also the synchronization of changes on shared artifacts, and
access control problem. In the scope of this thesis, we concentrate on the synchronization
control problems. Because workflow designers work independently, we need to detect and
resolve errors caused by uncontrolled access to shared data by different CSWs in order to
synchronize changes on shared data. In this thesis, we are going to abstract these problems
as Unintentional Change in In-use Data (UCID), a situation in which some data
values are lost or some data elements are assigned values different from the intentions of
workflow designers, due to non-deterministic access to shared data by different activities.
We first solve this problem in a general Workflow Management System and then apply
the solution to the CSW Model.
Differently from previous studies, we consider UCID in two different ways: between

concurrent activities in a single workflow (intra-UCID) and between activities in different
concurrent workflows (inter-UCID). We first investigate UCID situations in a workflow
management system, and then we define a Time Data Workflow, an extension of WF-
Net with time and data factors, with many attributes supporting UCID detection and
correction. Based on these definitions, we develop an algorithm which helps to detect
potential intra/inter-UCID at build time, along with algorithm evaluation and UCID
resolution methods. Our approach in UCID detection is to observe behaviors of activities
with data relations. For activities in the same workflow, their total orders can be decided
based on control flow. However, control flow is useless in the case of activities in different
workflows. Therefore, we must use activities’ execution time attribute to identify their
total orders. Regarding UCID resolution, we take advantage of composition features of
Petri Net to create new workflows with UCIDs resolved.
In the remainder of this thesis, Chapter 2 covers the background of our research by in-

troducing an overview of the CSE project, our research scope and approach. This chapter
includes an introduction of Petri Net, the foundation of our workflow modeling language.
Chapter 3 presents related work. Chapter 4 defines the Time Data Workflow (TDW), an
extension of the Workflow Net with time and data factors. Chapter 5 identifies UCID
patterns caused by concurrent activities in the same workflow (intra-UCID) or activi-
ties in different concurrent workflows (inter-UCID). Algorithms for detecting potential
intra/inter-UCID at build time, along with algorithm evaluation, are given in Chapter 6.
Chapter 7 describes UCID resolution methods. In Chapter 8, we give an instruction to
apply UCID theory to the Change Support Workflow Model. Chapter 9 begins by some
evaluation of the proposed method, followed by some improvement suggestions, and ends
with future work. The last chapter concludes the thesis.

2



Chapter 2

Background

This chapter introduces the Change Support Environment Project in detail to help readers
have a more comprehensive view of the purpose of our research. Our research objectives
and approach are also clarified in this chapter. Finally we introduce Petri Net, a popular
mathematical modeling language, which we use as a basis for modeling CSWs.

2.1 Change Support Environment - Flow of Control

The software change process can be divided into 4 phases: understanding the change,
planning the change, implementing the change and validating the change. Most of pre-
vious works concentrated on supporting the first phase, understanding the change, in
particular change impact analysis. Therefore, we want to build a change support envi-
ronment for cooperative software development, CSE Project, which supports not only the
first phase but also the second phase and the third phase of the software change process.
Figure 2.1 shows the control flow of the CSE system. There are two main tasks of the

project: building an information model and building a Change Support Workflow Model
(CSW Model).
The information model is in charge of generating the dependency relationships between

UML model elements, and between UML model elements and Java collaboration classes.

1. Defining the Dependency Generation Model consisting of basic rules for identifying
the dependency types between UML model elements.

2. Developing a dependency generator to generate the dependency relationships be-
tween UML model elements. The generator receives UML diagrams and process in-
formation, and returns the UML diagrams with the dependency relationships added.

3. Defining Meta patterns of popular Design Patterns.

4. Developing an algorithm for extracting the collaboration classes from Java source
code based on the Meta patterns.

3



 (1) Dependency GenerationModel for UML model elements (2) Generating Dependency Relationships between UML model elements(3) Metapatterns(4) Extracting collaboration classes(5) Generating Dependency Relationships between UML Model Elements and Java Collaboration Classes
Process InformationUML DiagramsJava source codeUML diagrams UML - JavaDependency Relationships

UML Diagrams with  Dependency Relationships(6) Creating Change Support Workflows (7) Managing Change Support Workflows(8) Executive Engine
Information Model Change Support Workflow Model (CSW Model)

Sequence of Activities Synchronization ControlAccess Control

Figure 2.1: Flow of control of CSE

5. Developing an algorithm to generate the dependency relationships between UML
model elements and Java collaboration classes.

The CSW Model is responsible for CSW construction and management. A Change Sup-
port Workflow (CSW) is a sequence of activities defined to carry out a change request.

6. The dependency relationships generated from the information model are input to
the CSWModel. By tracing the generated dependency relationships, we can identify
the data elements (software artifact impacted by a change request) and the control
flow (change order of impacted software artifacts) of CSW.

7. In a large and cooperative project, there may be many workflows executing simul-
taneously and sharing data elements. Therefore, it is very important to have a
mechanism to manage CSWs, especially synchronization of changes on shared arti-
facts and access control.

8. Finally, an execution engine will be developed.

2.1.1 Information Model

Generating Dependency Relationships between UML Model Elements

From the dependency concept in UML (a relationship between 2 elements in which a
change to one element, the Target, may affect or supply information needed by another
element, the Source), the authors [1] defined 4 types of basic dependency relationship
(BDR) among UML model elements: Exist Together (Source will not exist without Tar-
get), Information Sharing (Information on the target is a part of information in the
source), Copy (Information on the target and source is the same), Detail (Information in
the source is made based on information on the target but at more detail levels).

4



To generate the dependency relationships automatically, they gave a Dependency Gen-
eration Model consisting of comparison rules, addition rules and selection rules. This
model accepts as input a group of UML diagrams and information of phases to which
they belong. Outputs will be these UML diagrams with newly added BDRs. Comparison
rules look for pairs of UML model elements which may have some BDRs based on the
similarity in names between UML model elements and inclusion relationships between a
diagram and its components. Addition rules search types of BDR which may be set to a
pair of UML model elements. First, UML model elements are classified into Generation
Model Elements. Then, based on the diagram predefining BDRs which can be set between
Generation Model Elements, we can know BDR candidates between them. Regarding in-
formation about phase, diagram, type and name of UML model elements, selection rules
decide the attached type of BDR to the selected pair from candidates of BDR found by
addition rules.

Generating UML-Java Dependency Relationships

In order to generate UML-Java dependency relationships, the authors [2] have performed
two steps: extracting collaboration classes from Java source code and mapping UML
class diagrams to collaboration classes. Proposed method is based on an assumption that
design patterns are used to write Java source code and UML class diagram.
In the first step, collaboration classes are extracted based on Meta patterns given by

William Pree: the unification Meta pattern, 1:1 Connection Meta pattern, 1:N Connection
Meta pattern, 1:1 Recursive Connection, 1:1 Recursive Unification Meta patterns, 1:N
Recursive Connection, and 1:N Recursive Unification Meta patterns. If Meta patterns
are not enough, structure features (connection, instance, inheritance, multiplication), and
behavior features (method definition, variable definition, data flow) of Java classes are
used to extract collaboration classes.
In the second step, they built a diagram of implementation groups in which each element

is a group of collaboration classes. Next, diagram of implementation groups and UML
class diagram are transformed into graphs. Finally, sub-graph isomorphism algorithm of
Jeffrey David Ullman is used to find connections between classes in UML class diagram
and groups of collaboration classes. These connections are the UML-Java dependency
relationships.

2.1.2 Change Support Workflow Model - Our research

Change Support Workflow Model (CSW Model) is responsible for CSW construction and
management. Inputs to this model are the dependency relationships generated by the
information model.
Starting from the changed elements, we can identify potentially impacted elements

by tracing the dependency relationship generated among software artifacts. Intuitively,
these relationships represent the order of works when we change model elements. However,
impacted elements and the change order certainly are not the same for different change
requirements and types of change, for instance, deletion, extension, and modification.

5



Therefore, these dependencies must be carefully analyzed according to each change type
and requirement.
In addition, due to the importance of workflow data (software artifacts which need to

be read, modified or created in the change implementation process), we must consider
the correctness of data flow. In a large and cooperative environment, there may be many
CSW running at the same time, and if some of these workflows modify software artifacts
being used by others, this will affect the correctness of the whole work. Therefore, it is
necessary to have a suitable method for verifying workflow data based on existing solutions
which meets unique features of this problem.
Another fundamental issue in workflow’s security is access control. Access control is

a mechanism by which users are permitted access to various operations or data within a
computer system, according to their identity (established by authentication) and associ-
ated privileges (established by authorization). In the context of workflow systems, it may
operate at the level of: (a) log-on to the workflow service, and (b) access to undertake
particular activities or work items according to functional role and/or data sensitivity
[23]. To ensure that authorized subjects gain access on the required objects only during
the execution of the specific task in a workflow application, granting and revoking of
privileges need to be synchronized with the progression of the workflow from one task to
another. This is not feasible unless there is a workflow access control mechanism that
authorizes an individual in synchronization with the progression of workflow. Role Based
Access Control (RBAC) is one of the most widely used access control models because of
its flexibility and policy neutral. It separates users from permissions logically through the
concept of role: users are assigned to roles, permissions are assigned to roles and users
acquire permissions by being members of roles. However, RBAC does not consider work-
flow and does not support dynamic changes of access control in the software development
process either. Therefore, we want to develop an access control model that overcomes the
shortcomings of RBAC in workflow domain and satisfies synchronous authorization and
dynamic access control requirement of this workflow model.
In summary, there are three major issues which the CSW Model will solve: CSW

construction, synchronization of changes to shared data by different CSWs, and access
control.

2.2 The Thesis’s Objectives and the Change Support

Environment

In the scope of this thesis, we concentrate on synchronization control problem by detecting
and resolving errors caused by uncontrolled access to shared data by CSWs in a CSW
Model.

6



2.2.1 Motivating Example

Let us take an example. We have two workflows W1 and W2, which are designed by dif-
ferent designers who work independently. Workflow activities are modeled by rectangles,
and data modified by an activity are written inside the corresponding rectangle. A small
arrow is attached to a rectangle to denote an activity which is currently being executed.
Data of the system are stored in a central repository. For simplicity, we just show shared
data elements and data elements are modified based on these shared data elements. W1

has five activities A11, A12, A13, A14, and A15. Data elements B and D of workflow W1

are modified based on the value of data element A created by A12. W2 also includes five
activities which are A21, A22, A23, A24, and A25. Both A12 and A22 will modify data
element A, but designers of W1 and W2, who don’t have a comprehensive view of the
whole system, may not recognize this problem. This is a common problem, especially in
a big system with many workflows.
Figure 2.2 shows some snapshots of the system at different times. In Snapshot 1, A12

changes value of A to a1. In Snapshot 2, A13 modifies value of B based on the value of A,
a1. In the next snapshot, A22 changes value of A from a1 to a2. In the last snapshot, A15

modifies value of D based on the current value of A which is a2. If a1 is different from a2,
there are two problems in this scenario: a1 is lost and D is assigned an unexpected value
because D is modified based on the value a2 instead of the value created by activity A12,
a1. This is different from the intentions of the designers of workflow W1 and may cause
an inconsistency between B and D.
The first problem is similar to the lost update problem in database theory. Lost update

problem occurs when two transactions that access the same database items have their
operations interleaved in a way that makes the value of some database items incorrect
[21]. In this case, version control systems (VCSs) can be used if data of the system are
individual artifacts like documents, source codes, etc.
Unfortunately, VCS cannot help to avoid the second problem. In this situation, if

data of the system are stored in a central database, the database management system
(DBMS) can provide some concurrency control techniques, which are used to ensure
the noninterference or isolation property of concurrently executing transactions, such
as locking techniques, timestamp ordering based techniques, etc. However, database
transactions often require some critical data to be locked during the transactions which
take only a few seconds. Therefore, treating them as a database transaction will be
complex or completely impractical because of the long-running nature of workflows. In
other words, an effective method to deal with these problems is necessary.
We have abstracted these problems as Unintentional Change in In-use Data

(UCID). We define UCID as a situation in which some data values are lost or some
data elements are assigned values different from the intentions of workflow designers, due
to non-deterministic access to shared data by different activities. In the scope of this the-
sis, we concentrate on solving UCID problem in a general Workflow Management System
and then apply the solution to the CSW Model.

7



 

W1
W2

A B = f(A) …  …
……A…

D = g(A)
…

A11 A12 A13 A14 A15
A21 A22 A23 A24 A25

Central Data RepositorySnapshot 4

W1
W2

A B = f(A) …  …
……A…

D = g(A)
…

A11 A12 A13 A14 A15
A21 A22 A23 A24 A25

Central Data RepositorySnapshot 3

W1
W2

A B = f(A) …  …
……A…

D = g(A)
…

A11 A12 A13 A14 A15
A21 A22 A23 A24 A25

Central Data RepositorySnapshot 2

W1
W2

A B = f(A) …  …
……A…

D = g(A)
…

A11 A12 A13 A14 A15
A21 A22 A23 A24 A25

Central Data RepositorySnapshot 1
… A B … D … … … …… a1 f(a1) … d0 ... … … …

… A B … D … … … …… a1 b0 … d0 ... … … …

… A B … D … … … …… a2 f(a1) … d0 ... … … …
… A B … D … … … …… a2 f(a1) … g(a2) ... … … …

Figure 2.2: Motivating example

8



2.2.2 UCID Approach

In a workflow model, data flow can be implemented explicitly as a part of the workflow
model by using a separate channel to pass data from one activity to another. Otherwise,
it can also be implemented implicitly through a control flow or process data store [3].
The process data store is basically a central repository where all activities of workflows
can access or update their data. We choose implicit data flow through the process data
store as a basis for our approach. Also, we do not pay attention to the type of workflow
data stored in the central repository of the system and the implementation of the central
repository as well.
If UCID is discovered at runtime, a recovery mechanism must be performed to ensure the

correctness of the whole system. However, recovery is a rather expensive work, especially
in a cooperative environment with many concurrently executing workflows. Therefore, our
approach is to detect potential UCID patterns at build time to reduce risk to the target
process. In our approach, we assume that control flow (order of activities in workflow) and
data flow can be given before workflow execution. CSE project satisfies these assumptions
because the dependency relationships generated by the information model of this project
help us to identify the structure (control flow) and data elements of CSW at build time.
First, we identify UCID patterns. Because different workflows are designed for different

purposes by different designers and a designer may know nothing about the work of the
others, detecting and resolving UCID relating to many workflows are more complicated
and they should be considered separately. Therefore, we distinguish two types of UCID:
intra-UCID and inter-UCID. The former is caused by concurrent activities in the same
workflow while the latter is caused by concurrent activities in different workflows. In
order to detect potential UCID patterns, we observe total orders of concurrent activities
with data relations and map them to UCID patterns. For activities in the same workflow,
their total orders can be decided based on control flow. However, control flow does not
help in the case of activities in different workflows. Assuming that estimated execution
time (earliest start time and latest finish time) of activities can be identified at build
time, we can use this time attribute to identify total orders of activities in different
workflows. In this case, early UCID detection will help workflow designers to have a more
comprehensive view of the system, and make timely adjustments to the original workflows
to avoid errors at runtime. With reference to workflows in which estimated execution time
is not available at design time, UCID patterns and detection method can be used to detect
UCID errors from workflow execution histories. However, this is outside the scope of this
thesis. Regarding UCID resolution, we take advantage of fusion features of Petri Net to
create new workflows with UCIDs resolved.
In order to use the UCID theory in the CSW Model, we need to model CSWs as TDWs

and then use potential UCID detection algorithm to check the existences of potential
UCID patterns. If some errors are reported, workflow designer should review original
CSWs based on the suggested UCID resolutions of the system.

9



2.3 Modeling Language

There are many way to model a workflow, such as directed graphs, UML activity dia-
gram, BPEL (Business Process Execution Language), BPMN (Business Process Modeling
Notation), etc. In this thesis, we chose the WF-Net based approach to model the work-
flow process, because it has many useful features needed in the area of business process
modeling, in addition to the mathematical nature of the underlying Petri Net (PN) for-
malism [19]. WF-Net is a subclass of Petri Net dedicated to process/workflow modeling
and analysis.
Petri Net was devised in 1962 by Carl Adam Petri as a tool for modeling and analyzing

processes. One of the strengths of this tool is that it enables processes to be described
graphically. Although Petri Net is graphical, it has a strong mathematics basis and is
entirely formalized. Therefore, it is often possible to make strong statements about the
properties of modeled processes. There are also several analysis techniques and tools
available to analyze a given Petri net. Over the years, the original model has been
extended in many different ways to be able to model more complex processes. In this
section, we will introduce some basic concepts of classical Petri Net and some popular
extensions of classical Petri Net. The content of this section is based on reference [10].

2.3.1 Classical Petri Net

The classical Petri Net is a directed bipartite graph with two node types called places
and transitions. The nodes are connected via directed arcs. Connections between two
nodes of the same type are not allowed. Places are represented by circles and transitions
by rectangles.

Petri Net Definition A Petri Net is a triple (P, T, F ):

• P is a finite set of places;

• T is a finite set of transitions (P ∩ T = ∅);

• F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation)

A place p is called an input place of a transition t if and only if there exists a directed
arc from p to t. Place p is called an output place of transition t if and only if there exists
a directed arc from t to p. We use ·t to denote the set of input places for a transition t.
The notations t·, ·p and p· have similar meanings, e.g., p· is the set of transitions sharing
p as an input place.
At any time a place contains zero or more tokens, drawn as black dots. State M , often

referred to as marking, is the distribution of tokens over places, i.e., M ∈ P → IN . To
compare states we define a partial ordering. For any two states M1 and M2, M1 ≤ M2 iff
for all p ∈ P : M1(p) ≤ M2(p), where M(p) denotes the number of tokens in place p in
state M . The number of tokens may change during the execution of the net. Transitions
are the active components in a Petri net: they change the state of the net according to
the following firing rule:

10



• A transition t is said to be enabled iff each input place p of t contains at least one
token.

• An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t.

Figure 2.3: A classic Petri Net

2.3.2 High-level Petri Nets

The Color Extension

Token are used to model a whole range of things. However, in the classic Petri Net, it
is impossible to distinguish between two tokens in the same place. In order to enable
the coupling of an object’s characteristics with the corresponding token, the classic PN is
extended using ”color”. This extension ensures that each token is provided with a value
or color. Because each token has a value, we can distinguish different tokens from one
another.
A firing transition produces tokens which are based upon the values of those consumed

during firing. The value of a produced token may therefore depend upon those of con-
sumed ones. Unlike in the classic Petri Net, the number of tokens produced is also variable:
the number of tokens produced is determined by the values of those consumed.
In a color-extended Petri Net, we can set conditions for the values of the tokens to be

consumed. If this is the case, then a transition is only enabled once there is a token at
each of the input points and the preconditions have been met. A transition’s precondition
is a logical requirement connected with the values of the tokens to be consumed.
The result of color extension is that, in contrast to the classic Petri Net, the graphic

representation no longer contains all the information. For each transition, the following
factors must be specified:

• Whether there is a precondition. If there is, then this must be defined precisely.

• The number of tokens produced per output point during each firing.

• The values of the tokens produced.

11



The Time Extension

Given a process modeled as a Petri Net, we often want to be able to make statements on
its expected performance. In order to be able to answer these questions, it is necessary
to include pertinent information about the timing of a process in the model. The classic
Petri net does not, however, allow the modeling of ’time’. Even with color extension, it
is still difficult to model the timing of a process. Therefore, this classic Petri Net is also
extended with time.
Using the time extension, tokens receive a timestamp as well as a value. This indicates

the time from which the token is available. A transition is only enabled at the moment
when each of the tokens to be consumed has a timestamp equal or prior to the current
time. In other words, the enabling time of a transition is the earliest moment at which its
input places contain enough available tokens. Tokens are consumed on a FIFO (first-in,
first-out) basis. The token with the earliest timestamp is thus the first to be consumed.
Furthermore, it is the transition with the earliest enabling time which fires first. If there
is more than one transition with the same enabling time, which fires first is not indicated.
Moreover, the firing of one transition may affect the enabling time of another.
If a transition fires and tokens are produced, then each of these is given a timestamp

equal to or later than the time of firing. The tokens produced are thus given a delay,
which is determined by the firing transition. The timestamp of a produced token is equal
to the time of firing plus this delay. The length of the delay may depend upon the value
of the tokens consumed. However, it is also possible that the delay has a fixed value (for
example, 0) or that the delay is decided at random. Firing itself is instant, and takes no
time.

The Hierarchical Extension

Although we can already describe very complex processes using the color and time exten-
sions, the resulting PN will still not usually provide a proper reflection of the process being
modeled. Because the modeling of such a process results in a single, extensive network,
any structure is lost. We do not observe the hierarchical structure in the process being
modeled by the PN. The hierarchical extension therefore ensures that it does become
possible to add structure to the PN model.
In order to structure a PN hierarchically, a new ’building block’ is introduced into PN: a

double-bordered square. This element is called a process. It represents a subnetwork com-
prising places, transitions, arcs and subprocesses. Because a process can be constructed
from subprocesses, which in turn can also be constructed from (further) subprocesses, it
is possible to structure a complex process hierarchically.

2.3.3 Workflow Net (WF-Net)

A Petri Net which models the control-flow dimension of a workflow is called a Workflow
Net (WF-Net). It should be noted that a WF-Net specifies the dynamic behavior of a
single case in isolation.

12



WF-net Definition A Petri Net PN = (P, T, F ) is a WF-Net (Workflow Net) if and
only if:

• There is one source place i ∈ P such that ·i = ∅;

• There is one sink place o ∈ P such that o· = ∅;

• Every node x ∈ P ∪ T is on a path from i to o.

A WF-Net has one input place i and one output place o because any case handled by the
procedure represented by the WF-Net is created when it enters the Workflow Management
System (WFMS) and is deleted once it is completely handled by the WFMS, i.e., the
WF-Net specifies the lifecycle of a case. The third requirement in this definition has been
added to avoid ’dangling tasks and/or conditions’, i.e., tasks and conditions which do not
contribute to the processing of cases.

13



Chapter 3

Related Work

In this chapter, we present related work in workflow data verification and some existing
approaches to deal with problems of lost data or data conflict mentioned in the motivating
example: CVS and concurrency control techniques of Database Management System.

3.1 Previous Work on Data Flow Verification

Workflow is a collection of activities to carry out a well-defined business process [3] and
a workflow model is a formal representation of the process. Workflow can be viewed
from three aspects: 1) the control aspect, describing logical order of activities; 2) the
data aspect, describing information exchanged between activities; 3) the resource aspect,
describing entities that are capable of doing work [7].
Correctness of a workflow model is very important, because errors in workflow can lead

to execution failure of the corresponding process. Therefore, workflow should be verified
carefully before execution to reduce risks to the target process. Workflow verification has
received a lot of attention since the birth of the workflow concept. However, researchers
have only focused on structure verification, temporal verification and resource verification
[4] [6] [9] [11]. Most verification techniques ignore the data aspect and there is little
support for data flow verification. Previous work on the data flow aspect has concentrated
on detecting common data flow errors such as missing data, redundant data, inconsistent
data, garbage data, etc.
Reference [5] was one of the first studies to mention the importance of data-flow verifi-

cation, and identified possible errors in the data-flow, like missing data, redundant data,
conflict data, etc. Some discussions on data flow modeling, specifications and verifications
have been given, but they have only been in abstraction. Authors in [14] used data flow
matrix and UML activity diagram to specify data flow. Based on this specification, an
algorithm for detection of some data anomalies in [5], such as missing data, redundant
data, and potential data conflicts, was given. In [11], a new workflow model, named Dual
Workflow Nets, was defined to explicitly describe both control flow and data flow. A
graph traversal approach was used in [12] to build an algorithm for detecting lost data,
missing data and redundant data. More data flow errors were recognized and conceptu-

14



alized as data flow anti-patterns and expressed in terms of temporal logic CTL* [7], [8].
By using temporal logic, available model checking techniques can be applied to discover
these anti-patterns.
Nevertheless, all of these studies consider data flow errors in a single workflow only. In

contrast to previous work, we address not only the interactions of concurrent activities
inside a single workflow, but also the mutual influences between concurrent workflows,
which are the sources of data flow errors. Regarding these two aspects, we focus on UCID
errors and identify UCID situations. A new workflow model, extending the Petri-net
with time and data factors, and using potential UCID detection algorithms, allows us to
detect potential UCID at build time efficiently. Furthermore, some heuristics for making
the algorithm more flexible and effective are discussed. UCID resolution methods are also
proposed in this paper.
Concerning the mutual influences of the concurrent workflows approach, the research

that is closest to ours is [9]. However [9] addressed the verification of workflow resource
constraints, and in that work, by nature, handling the resource problem is simpler than the
data problem. A Time Constraint Workflow Net was defined to model workflow. Then,
they identified the problem of resource constraints in WFMS and proposed a pseudocode
algorithm which checked the resource dependency between every two activities. Reference
[6] used hybrid automata to model the influences between concurrent workflows, and
adopted a model checking technique to detect resource conflict problems.

3.2 Version Control System

Version Control System can be used to manage changes to software artifacts in the CSW
Model because of the ability to maintain different versions of a software artifacts. In this
section, we introduce some basic concepts in version control based on reference [24].
Version control or revision control is the management of changes to documents, pro-

grams, and other information stored as computer files. Changes are usually identified by
a number or letter code, termed the ”revision number”. Each revision is associated with
a timestamp and the person making the change. Revisions can be compared, restored,
and with some types of files, merged. Some popular version control systems (VCSs) are
Concurrent Version System (CVS), Subversion (SVN), Revision Control System (RCS),
etc.
Traditional VCSs use a centralized model where all the revision control functions take

place on a shared server. If two developers try to change the same file at the same
time, without some method of managing access the developers may end up overwriting
each other’s work. Centralized revision control systems solve this problem in one of two
different ”source management models”: file locking and version merging.
File locking is the simplest method in which only one developer at a time has write

access to the central ”repository” copies of those files. Once one developer ”checks out”
a file, others can read that file, but no one else may change that file until that developer
”checks in” the updated version (or cancels the checkout). This technique has both merits
and drawbacks. It can provide some protection against difficult merge conflicts when a

15



user is making radical changes to many sections of a large file (or group of files). However,
if the files are left exclusively locked for too long, other developers may be tempted to
bypass the revision control software and change the files locally, leading to more serious
problems.
Most version control systems allow multiple developers to edit the same file at the same

time. The first developer to ”check in” changes to the central repository always succeeds.
The system may provide facilities to merge further changes into the central repository, and
preserve the changes from the first developer when other developers check in. Merging
two files can be a very delicate operation, and usually possible only if the data structure
is simple, as in text files. Therefore, the second developer checking in code will need to
take care with the merge, to make sure that the changes are compatible and that the
merge operation does not introduce its own logic errors within the files. These problems
limit the availability of automatic or semi-automatic merge operations mainly to simple
text based documents, unless a specific merge plugin is available for the file types.

3.3 Concurrency Control Techniques of Database Man-

agement Systems

As discussed in Section 2.2.1, Motivating Example, Database Management Systems (DBMSs)
have already provided some concurrency control techniques to ensure the noninterference
property of concurrently executing transactions. Most of the concurrency control tech-
niques that are used most often in practice employ the technique of locking data items
to prevent multiple transactions from accessing the items concurrently. Unfortunately,
locking technique is perhaps unsuitable in the workflow management system because of
the long-running nature of workflows which are different from the short-running nature
of database transactions. However, because DBMSs are mature systems, it is useful to
consider their concurrency control techniques and apply them to workflow area if possible.
A database transaction is a transaction which satisfies the ACID (atomicity, consis-

tency, isolation and durability) properties. These properties should be enforced by the
concurrency control and recovery methods of the DBMS.
Transactions submitted by various users may execute concurrently and may access and

update the same database items. If this concurrent execution is uncontrolled, it may
lead to problems, such as an inconsistent database. This section introduces a number of
popular concurrency control techniques that are used to enforce isolation (through mu-
tual exclusion) among conflicting transactions, to preserve database consistency through
consistency preserving execution of transactions and to resolve read-write and write-write
conflicts [21].

3.3.1 Two-Phase Locking Techniques for Concurrency Control

A lock is a variable associated with a data item that describes the status of the item with
respect to possible operations that can be applied to it. Generally, there is one lock for

16



each data item in the database. Locks are used as a means of synchronizing the access by
concurrent transactions to the database items.
Two major types of locks are utilized:

• Write-lock (exclusive lock) is associated with a database item by a transaction before
writing this item.

• Read-lock (shared lock) is associated with a database item by a transaction before
reading this item.

A transaction is said to follow the two-phase locking protocol if all locking operations
(read-lock, write-lock) precede the first unlock operation in the transaction. According to
the two-phase locking protocol, a transaction handles its locks in two distinct, consecutive
phases during the transaction’s execution:

• Expanding phase: new locks on items can be acquired but none are released.

• Shrinking phase: existing locks can be released but no new locks can be acquired

There are a number of variations of two-phase locking (2PL). The technique just de-
scribed is known as basic 2PL. A variation known as conservative 2PL (or static
2PL) requires a transaction to lock all the items it accesses before the transaction begins
execution, by pre-declaring its read-set (the set of all items that the transaction reads),
and the write-set (the set of all items that the transaction writes). If any of the pre-
declared item needed cannot be locked, the transaction does not lock any item; instead, it
waits until all the items are available for locking. This protocol is deadlock-free protocol.
However, it is difficult to use in practice because of the need to pre-declare the read-set,
write-set, which is not possible in most situations.
In practice, the most popular variation of 2PL is strict 2PL, which guarantees strict

schedules. In this variation, a transaction T does not release any of its exclusive (write)
locks until after it commits or aborts. Hence, no other transaction can read or write
an item that is written by T unless T has committed, leading to a strict schedule for
recoverability. Strict 2PL is not deadlock-free. A more restrictive variation of strict 2PL
is rigorous 2PL, which also guarantees strict schedules. In this variation, a transaction
T does not release any of its locks (shared or exclusive) until after it commits or aborts,
and so it is easier to implement than strict 2PL.

3.3.2 Concurrency Control based on Timestamp Ordering

Timestamp is a monotonically increasing variable (integer) indicating the age of an oper-
ation or a transaction. A larger timestamp value indicates a more recent event or opera-
tion. Timestamp based algorithm uses timestamp to serialize the execution of concurrent
transactions.

17



Basic Timestamp Ordering

1. Transaction T issues a write item(X) operation:

• If read TS(X) > TS(T) or if write TS(X) > TS(T), then a younger transac-
tion has already read the data item so abort and roll-back T and reject the
operation.

• If the condition in part (a) does not exist, then execute write item(X) of T and
set write TS(X) to TS(T).

2. Transaction T issues a read item(X) operation:

• If write TS(X) > TS(T), then a younger transaction has already written to the
data item so abort and roll-back T and reject the operation.

• If write TS(X) ≤ TS(T), then execute read item(X) of T and set read TS(X)
to the larger of TS(T) and the current read TS(X).

Strict Timestamp Ordering

Strict TO is a variation of basic TO which ensures that the schedules are both strict (for
easy recoverability) and (conflict) serializable.

1. Transaction T issues a write item(X) operation:

• If TS(T) > read TS(X), then delay T until the transaction T’ that wrote or
read X has terminated (committed or aborted).

2. Transaction T issues a read item(X) operation:

• If TS(T) > write TS(X), then delay T until the transaction T’ that wrote or
read X has terminated (committed or aborted).

Thomas’s Write Rule

A modification of the basic TO algorithm does not enforce conflict serializability; but it
rejects fewer write operations.

1. If read TS(X) > TS(T),then abort and roll-back T and reject the operation.

2. If write TS(X) > TS(T),then just ignore the write operation and continue execution.

3. If the conditions given in 1 and 2 above do not occur, then execute write item(X)
of T and set write TS(X) to TS(T).

18



3.3.3 Multiversion Concurrency Control Techniques

Multiversion concurrency control techniques maintain a number of versions of a data
item and allocate the right version to a read operation of a transaction. Thus unlike other
mechanisms, a read operation in this mechanism is never rejected.
An obvious drawback of this technique is that more storage is needed to maintain

multiple versions of the database items. To check unlimited growth of versions, a garbage
collection is run when some criteria is satisfied.
Two popular multiversion concurrency control schemes are multiversion techniques

based on timestamp ordering and multiversion techniques based on 2PL.

19



Chapter 4

Time Data Workflow

There are many ways to model a workflow, such as directed graphs, UML activity diagram,
PERT, etc. In this thesis, we chose the WF-Net based approach to model the workflow
process. WF-Net is a subclass of Petri Net dedicated to process/workflow modeling and
analysis. Therefore, it has many useful features needed in the area of business process
modeling, in addition to the mathematical nature of the underlying Petri Net formalism
[19] .
Our Time Data Workflow (TDW) is an extension of WF-Net with time and data factors.

Time and data are represented as attributes of transitions in a TDW. In this thesis, we
consider two types of relationships between an activity and a data element. First, an
activity may read a particular data element as its input data. Second, an activity may
write a particular data element as its output data. This means that this data element
can be assigned a new value. Inside an activity, read operation on a data element always
happens before the write operation in the same data element. Assuming that durations of
activities can be estimated at build time, we augment each activity A with two time values
min(A),max(A) which describe the minimum and maximum execution durations of A,
respectively. The time unit is selected depending on specific workflow applications. Based
on reference point P , which is the start time of its corresponding workflow, we can infer
the Earliest Start Time, EST (A), and the Latest Finish Time, LFT (A) of A. If S(A)
and F (A) are the Start Time and Finish Time of this activity at run time respectively, we
can conclude that the Active Interval of A, [S(A), F (A)], is within its Estimated Active
Interval, [EST (A), LFT (A)], that is, [S(A), F (A)] ⊆ [EST (A), LFT (A)].
In a TDW, activities are modeled by transitions, and causal dependencies are mod-

eled by places and arcs, as shown in Figure 4.1. Building blocks such as the AND-Split,
AND-Join, OR-Split and OR-Join are used to model sequential, conditional, parallel and
iterative control structures of workflows. AND-Split and OR-Split transitions correspond
to transitions with two or more output places, while AND-Join and OR-Join transitions
correspond to transitions with multiple incoming arcs. Different symbols are attached to
original rectangles to distinguish normal transitions from transitions containing branching
conditions. Figure 4.1a illustrates a typical transition in a TDW, with execution dura-
tion ranging from d1 to d2; data elements a, b are inputs and c, d, e are outputs. The
other parts of Figure 4.1 show how basic constructions of a workflow are represented by

20



 

 
Activity i Activity j Activity k 

(b) (c) Activity i 
Pj Pk Activity i Activity j Activity k tj Pj Pk Activity i Activity j Activity k 

Sequential Structure AND-Split Transition ti Pk1 Pk2 Activity k AND-Join Transition 
Activity i Pk1 Pk2 Activity k Activity j OR-Join Transition ti Pj Pk Activity i Activity j Activity k Iterative Structure 

 ti tk  
tk   tj tj 

tj 
tk tj ti 

(d) 
(f) (g) tk 

Pj Pk Activity j OR-Split Transition  ti tj tk (e) ti 
tk 

{d1, d2} (a) Pi Pj Transition r: a, b w: c, d, e Pi PlPi PlPm
PlPi Pi Pi Pi Pj Pi 

Pm
Pl Pl
Pl

A typical transition  

Figure 4.1: Workflow primitives specified by TDW

TDW notations. For the sake of simplicity, each activity is represented by a transition.
Therefore, the terms ’activity’ and ’transition’ are interchangeably used in this thesis.
As an extension of WF-Net, TDW specifies the time and data properties of a single case

in isolation, assuming that different cases are completely independent from each other.
Therefore, UCIDs are caused by activities in a single TDW instance or activities belonging
to workflow instances of different TDWs. Without the loss of generality, we assume that
each TDW has one instance only.

Definition 1 (Time Data Workflow - TDW) A TDW, w, is a tuple
< P, T, F, id,D,R,DE, TI > where:

• < P, T, F > is a WF-Net with places P , transitions T and arcs F .

• id is the workflow identifier.

• D is a set of data elements.

• R = {r, w, u} is the set of possible access rights to data elements (r: read, w: write,
u: use (either read or write)).

21



• DE : T ×R → 2D is a function that returns a set of data elements associated with
a transition and an access right.

• TI : T → (R+×R+) is a time interval function that returns minimum and maximum
execution durations of a transition.

Definition 2 (Concurrent Time Data Workflow Model) A Concurrent TDW
Model cwm = (W,Tcwm) is a collection of TDWs which have overlapping execution times
(concurrent TDWs):

• W = {w1, w2, · · · , wn} is a set of concurrent TDWs, where

wi =< Pi, Ti, Fi, idi, Di, Ri, DEi, T Ii >.

• Tcwm = T1 ∪ T2 ∪ · · · ∪ Tn is the set of all transitions (activities) in cwm.

Given a TDW w =< P, T, F, id,D,R,DE, TI > as in Definition 1, we have the following
definitions:

Definition 3 (Path)A Path in a TDW is a sequence of consecutive arcs p = (xo, x1, · · · , xk)
such that (xi, xi+1) ∈ F , where 0 ≤ i < k − 1, xi ∈ (P ∪ T )

Definition 4 (Transition Path) A sequence p = (t0, p1, t1, · · · , pk, tk) is a Transition
Path iff p is a path and t0, tk ∈ T .

Definition 5 (Transition Reachability) Transition ti is reachable from tj if there is
a transition path (ti, · · · , tj) in TDW. It can be denoted as a Boolean function:

Reachable(ti, tj) =

{
true, ∃ transition path p = (ti, · · · , tj)
false, otherwise

Definition 6 (Transition Distance) The distance between two transitions ti, tj in a
TDW can be computed as follows:

Distance(ti, tj) =


Min{|ps||ps = (ti, · · · , tj), s = 1, · · · ,m}, Reachable(ti, tj) = true
Min{|ps||ps = (tj, · · · , ti), s = 1, · · · ,m}, Reachable(tj, ti) = true

+∞, otherwise
where ps represents all paths between ti and tj.

Definition 7 (Nearest Common Transition) Given two transitions ti, tj where
Reachable(ti, tj) = false and where Reachable(tj, ti) = false, their Nearest Common
Transition is the transition t from which Reachable(t, ti) = true and Reachable(t, tj) =
true, and the distances are shortest, denoted as tnct.

Definition 8 (Closest Data Relation Transition)Given two transitions ti, tj, where
their Nearest Common Transition is not an OR-Split transition, tj is called the Closest
Data Relation Transition of ti on data element d if both tj and ti use (read/write) d, and
tj just precedes ti in terms of time, denoted as tp−cdrt, or tj just succeeds ti in terms of
time, denoted as ts−cdrt.

22



Chapter 5

UCID Patterns in a Concurrent
TDW Management System

A Concurrent TDW Management System is a workflow management system which is
responsible for TDW construction and management. A module for UCID detection and
correction is also integrated into this system.

Given a Concurrent TDW Model cwm as in Definition 2, we have the following defini-
tions:

Definition 9 (Data Relation) Two activities ai, aj (i ̸= j) have a data relation if
DE(ai, u) ∩DE(aj, u) ̸= ∅.

Definition 10 (Concurrent activities) Two activities are called concurrent activities
if and only if they belong to two parallel branches of a single TDW, or if they are in
different TDWs and have overlapping Active Intervals.

Definition 11 (Unintentional Change in In-use Data) A situation in which some
data values are lost or some data elements are assigned values different from the inten-
tions of workflow designers, due to non-deterministic access to shared data by different
activities.

Here we distinguish two kinds of UCID: intra-UCID and inter-UCID. The former con-
siders UCID situations concerning concurrent activities in the same workflow, while the
latter is related to concurrent activities in different workflows. Definitions 12, 13 are based
on definitions of read-write conflict and write-write conflict in [3] .

Definition 12 (RW Intra-UCID) A situation in which an activity A tries to read
data from a shared data element x and an activity B tries to write data to the same
shared data element x and vice versa, where A, B are concurrent activities in the same
workflow.

Definition 13 (WW Intra-UCID) A situation in which two concurrent activities in
the same workflow, A and B, try to write data to the same shared data element.

23



 
 TDW wn F(ank) F(D) S(C) S(D) S(B) S(amj) S(ank) S(ami) S(A Activity ank Time 

TDW wm Activity ami Activity amj u: t u:t w: t Activity A r: x Activity B w: x Activity D w: y Activity C w: y 
F(C) F(amj) F(B) F(A) F(ami) 

Figure 5.1: Inter-UCID patterns

Definition 14 (RW Inter-UCID) A situation in which an activity A tries to read
data from a shared data element x and an activity B tries to write data to the same shared
data element x and vice versa, where A and B are in different concurrent workflows and
have overlapping Active Interval.

Definition 15 (WW Inter-UCID) A situation in which two activities A and B try
to write data to the same shared data element, where A and B are in different concurrent
workflows and have overlapping Active Interval.

Definition 16 (UWU Inter-UCID) A situation in which there are inconsistent views
of shared data elements by two activities in the same workflow, because their shared data
elements are written externally by an activity in a different concurrent workflow.

As depicted in Figure 5.1, two activities ami, amj of TDW wm use (read or write)
data element t, where amj is the closest to ami in terms of time and F (amj) < S(ami),
which means tp−cdrt(ami, t) = amj. A UWU Inter-UCID happens because activity ank of a
different workflow wn writes to t within the time interval [F (amj), S(ami)]. We also have
RW Inter-UCID between activities A and B, and WW Inter-UCID between activities C
and D.

24



Chapter 6

Detection of Potential UCID in a
Concurrent TDW Management
System

6.1 Potential Intra-UCID Detection Algorithm

This algorithm checks potential intra-UCIDs of a TDW w =< P, T, F, id,D,R,DE, TI >.
The main idea is to select one activity in TDW and compare it with other activities. If
two concurrent activities have data relation, we will check if this situation is a potential
intra-UCID with respect to Definitions 12 and 13.

Step 1 Initialization:
1.1 Let S be a set of unchecked activities.

S is initialized with all activities in w: S = T ;
1.2 flag = TRUE is a Boolean variable;

Step 2 Repeat the following steps until S = ∅:
2.1 Remove an element, denoted as ai, from S;
2.2 For each element aj in S, execute the following steps:

2.2.1 DE(ai, u) ∩DE(aj, u) = Uij; /* Check Data Relation */
2.2.2 If (Uij = ∅) or ((DE(ai, w) ∩ Uij = ∅) ∧ (DE(aj, w) ∩ Uij = ∅)), then jump to

2.2; /* No Data Relation or both ai and aj just have read access on shared data */
2.2.3 If (Reachable(ai, aj) = true) or (Reachable(aj, ai) = true), then jump to 2.2;

/* sequential activities */
2.2.4 If tnct(ai, aj) is an OR-split block, jump to 2.2;
/* ai, aj are concurrent activities → check intra-UCID */
2.2.5 Repeat the following steps until Uij = ∅;

2.2.5.1 Remove a data element, denoted as dijk, from Uij;
2.2.5.2 If dijk ∈ DE(ai, w) and dijk ∈ DE(aj, w), then flag = FALSE, printf

(”Potential WW Intra-UCID between: ”, ai, aj, ”on data element ”, dijk);
jump to 2.2.5;

25



2.2.5.3 If dijk ∈ DE(ai, r) and dijk ∈ DE(aj, w), then flag = FALSE, printf
(”Potential RW Intra-UCID between: ”, ai, aj, ”on data element ”, dijk);
jump to 2.2.5;

2.2.5.4 If dijk ∈ DE(ai, w) and dijk ∈ DE(aj, r), then flag = FALSE, printf
(”Potential RW Intra-UCID between: ”, aj, ai, ”on data element ”, dijk);

Step 3 Return flag. G   A B D  … w: x …  C r: x,y   Start  E w: x,y  F … …    End  
Figure 6.1: Potential intra-UCID example result

Figure 6.1 describes a simple example of a TDW. For the sake of simplicity, unnecessary
information such as time and unrelated data are omitted. The main running steps and
results when applying the above algorithm to this workflow are presented in Table 6.1.
Potential WW Intra-UCID on data element x between B and E, and potential RW Intra-
UCID on data elements x, y between C and E are reported.

Table 6.1: Potential intra-UCID example result

S Result
{A,B,C,D,E, F,G} < A,B >, < A,C >, < A,D >, < A,E >, < A,F >,

< A,G >: 2.2.2 (No data relation)
{B,C,D,E, F,G} < B,C >: 2.2.3 (Sequential Activities)

< B,D >, < B,F >, < B,G >: 2.2.2 (No data relation)
< B,E >: 2.2.5.2 (Potential WW Intra-UCID on x)

{C,D,E, F,G} < C,D >, < C,F >, < C,G >: 2.2.2 (No data relation)
< C,E >: 2.2.5.3 (Potential RW Intra-UCID on x, y)

{D,E, F,G} < D,E >, < D,F >, < D,G > : 2.2.2 (No data relation)
{E,F,G} < E,F >, < E,G >: 2.2.2 (No data relation)
{F,G} < F,G >: 2.2.2 (No data relation)

6.2 Potential Inter-UCID Detection Algorithm

Regarding UCID definitions, inter-UCIDs are identified based on the Active Interval of
activities with data relation. However, Active Interval of an activity can only be deter-
mined at runtime when it has finished its execution. Therefore, we use Estimated Active

26



Interval instead of Active Interval to find potential UCID at build time, before a new
TDW is put into the Concurrent TDW Management System to execute.

6.2.1 Calculation of Estimated Active Interval

Designating the start time of a TDW w as a reference point, Pw, we can infer the Estimated
Active Interval of an activity A, [EST (A), LFT (A)], with respect to its minimum and
maximum execution durations {min(A),max(A)} and basic control structures.
Let us say that As is the Start activity of a TDW w, then we have EST (As) = Pw and

LFT (As) = Pw +max(As). For activity A in progress, EST (A) = S(A) and LFT (A) =
F (A) if A has been completed.

Sequential Connection (Figure 4.1b)
EST (Aj) = EST (Ai) +min(Ai);LFT (Aj) = LFT (Ai) +max(Aj)

AND-Split Connection (Figure 4.1c)
EST (Aj) = EST (Ai) +min(Ai);LFT (Aj) = LFT (Ai) +max(Aj)
EST (Ak) = EST (Ai) +min(Ai);LFT (Ak) = LFT (Ai) +max(Ak)

AND-Join Connection (Figure 4.1d)
EST (Ak) = MAX{EST (Ai) +min(Ai);EST (Aj) +min(Aj)}
LFT (Ak) = MAX{LFT (Ai), LFT (Aj)}+max(Ak)

OR-Split Connection (Figure 4.1e)
EST (Aj) = EST (Ai) +min(Ai);LFT (Aj) = LFT (Ai) +max(Aj)
EST (Ak) = EST (Ai) +min(Ai);LFT (Ak) = LFT (Ai) +max(Ak)

OR-Join Connection (Figure 4.1f)
EST (Ak) = MIN{EST (Ai) +min(Ai);EST (Aj) +min(Aj)}
LFT (Ak) = MAX{LFT (Ai), LFT (Aj)}+max(Ak)

6.2.2 Algorithm

Given a Concurrent TDW Model cwm = (W,Tcwm), where W = {w1, w2, · · · , wk} and
Tcwm = T1 ∪ T2 ∪ · · · ∪ Tk, we assume that no errors are reported when applying the
intra-UCID detection algorithm to all workflows in cwm. This algorithm is similar to the
previous one, except that every two compared activities are in different workflows, and we
must calculate the Estimated Active Intervals for all activities. If two activities have data
relation and overlapping Estimated Time Intervals, there is a possibility of a RW/WW
inter-UCID occurrence. If only the data relation exists and one activity occurs before the
other, we will compare this situation with the pattern in Figure 5.1 to find out a potential
UWU inter-UCID.

Step 1 Initialization:
1.1 Let S be a set of unchecked activities.

27



S is initialized with all unfinished activities of Tcwm;
1.2 Calculate Estimated Active Interval for all activities in S;
1.3 flag = TRUE is a Boolean variable;
1.4 S ′ is the set of all unordered combination of ami, ank where (ami, ank ∈ S)

∧((ami ∈ T (wm)) ∧ (wm ∈ W )) ∧ ((ank ∈ T (wn)) ∧ (wn ∈ W )) ∧ (wm ̸= wn);

Step 2 Repeat the following steps until S ′ = ∅:
2.1 Remove a data element in S ′, denoted as < ami, ank >;
2.2 Execute the following steps:

/* Check Data Relation */
2.2.1 DE(ami, u) ∩DE(ank, u) = Umnik

2.2.2 If (Umnik = ∅) or ((DE(ami, w) ∩ Umnik = ∅) ∧ (DE(ank, w) ∩ Umnik = ∅)),
then jump to 2.1; /* No Data Relation or both ami and ank just have read
access on shared data*/

/* check RW/WW inter-UCID */
2.2.3 If [EST (ami), LFT (ami)] ∧ [EST (ank), LFT (ank)] ̸= ∅,

then repeat the following steps until Umnik = ∅;
2.2.3.1 Remove a data element, denoted as dmnikl, from Umnik;
2.2.3.2 If dmnikl ∈ DE(ami, w) and dmnikl ∈ DE(ank, w), then flag = FALSE,

printf(”Potential WW Inter-UCID between: ”, ami, ank, ”of workflows ”,
wm, wn,”respectively on data element ”, dmnikl); jump to 2.2.3;

2.2.3.3 If dmnikl ∈ DE(ami, r) and dmnikl ∈ DE(ank, w), then flag = FALSE,
printf(”Potential RW Inter-UCID between: ”, ami, ank, ”of workflows ”,
wm, wn, ”respectively on data element ”, dmnikl); jump to 2.2.3;

2.2.3.4 If dmnikl ∈ DE(ami, w) and dmnikl ∈ DE(ank, r), then flag = FALSE,
printf(”Potential RW Inter-UCID between: ”, ank, ami, ”of workflows ”,
wn, wm, ”respectively on data element ”, dmnikl); jump to 2.2.3;

/* check UWU inter-UCID based on Figure 5.1*/
2.2.4 If LFT (ank) < EST (ami), then repeat the following steps until Umnik = ∅;

2.2.4.1 Remove a data element,denoted as dmnikl, from Umnik;
2.2.4.2 If dmnikl ∈ DE(ank, w), then find the Preceding Closest Data Relation

Transition of ami on dmnikl denoted as amj: amj = tp−cdrt(ami, dmnikl);
2.2.4.3 If ((amj ̸= null) ∧ ([EST (ank), LFT (ank)] ⊂ [LFT (amj), EST (ami)])),

then flag = FALSE, printf(”Potential UWU Inter-UCID among: ”, ami, amj,
ank, ”of workflows ”, wm, wm, wn, ”respectively on data element ”, dmnikl);

2.2.4.4 If dmnikl ∈ DE(ami, w), then find the Succeeding Closest Data Relation
Transition of ank on dmnikl denoted as anq: anq = ts−cdrt(ank, dmnikl);

2.2.4.5 If ((anq ̸= null) ∧ ([EST (ami), LFT (ami)] ⊂ [LFT (ank), EST (anq)])),
then flag = FALSE, printf(”Potential UWU Inter-UCID among: ”, anq, ank,
ami, ”of workflows ”, wn, wn, wm, ”respectively on data element ”, dmnikl);

28



2.2.5 If LFT (ank) > EST (ami), then repeat the following steps until Umnik = ∅;
2.2.5.1 Remove a data element,denoted as dmnikl, from Umnik;
2.2.5.2 If dmnikl ∈ DE(ank, w), then find the Succeeding Closest Data Relation

Transition of ami on dmnikl denoted as amo: amo = ts−cdrt(ami, dmnikl);
2.2.5.3 If ((amo ̸= null) ∧ ([EST (ank), LFT (ank)] ⊂ [LFT (ami), EST (amo)])),

then flag = FALSE, printf(”Potential UWU Inter-UCID among: ”, ami, amo,
ank, ”of workflows ”, wm, wm, wn, ”respectively on data element ”, dmnikl);

2.2.5.4 If dmnikl ∈ DE(ami, w), then find the Preceding Closest Data Relation
Transition of ank on dmnikl denoted as anp: anp = tp−cdrt(ank, dmnikl);

2.2.5.5 If ((anp ̸= null) ∧ ([EST (ami), LFT (ami)] ⊂ [LFT (anp), EST (ank)])),
then flag = FALSE, printf(”Potential UWU Inter-UCID among: ”, ank, anp,
ami, ”of workflows ”, wn, wn, wm, ”respectively on data element ”, dmnikl);

Step 3 Return flag.

We now show an example to demonstrate the efficiency of potential inter-UCID detec-
tion algorithm. Referring to Figure 6.2, we have a Concurrent TDW Model, cwm, with
two TDWs wm and wn. wn has been started, and activity M has already completed with
the active interval [S(M), F (M)] = [2, 3]. TDW wm intends to execute at Pw = 3.5.
As described in Section 6.2.1, we can calculate the Estimated Active Interval of activ-
ities in cwm as follows: [EST (M), LFT (M)] = [2, 3], [EST (N), LFT (N)] = [3, 5.5],
[EST (P ), LFT (P )] = [5, 7.5], [EST (A), LFT (A)] = [3.5, 4.5], [EST (B), LFT (B)] =
[3.5, 11.5], [EST (C), LFT (C)] = [8.5, 14.5], [EST (D), LFT (D)] = [3.5, 7.5],
[EST (E), LFT (E)] = [5.5, 9.5], [EST (F ), LFT (F )] = [10.5, 16.5]. 

 
{5,7} {2,3} 

Start 
[3.5,11.5] [8.5,14.5] {1,2} [5.5,9.5] Pwm= 3.5 TDW wm 

N M 
B {2,3} [S(M),F(M)] = [2,3] {2,2.5} 

{1,2} {0,1} F   A  w: y …  C   Start w: x  E … …   
 D w: x  P w: y  … 

r: y 
{1,2} TDW wn   [3,5.5] [5,7.5] [3.5,7.5] [10.5,16.5] [3.5,4.5] Concurrent TDW Model cwmmn 

Pwn= 2 
  End 

End 
Figure 6.2: A Concurrent TDW Model example

Table 6.2 describes the main steps and the result when executing this algorithm on
cwm. The following errors are detected: potential WW Inter-UCID on data element x

29



between N and D, potential UWU Inter-UCID on data element y among C, P , A.

Table 6.2: Potential inter-UCID example result

S’ Result
{< N,A >,< N,B >, < N,A >,< N,B >,< N,C >,< N,E >,< N,F > : 2.2.2
< N,C >,< N,D >, (No data relation)
< N,E >,< N,F >, < N,D >: 2.2.3.2 (Potential WW Inter-UCID on x)
< P,A >,< P,B >, < P,B >,< P,D >,< P,E >,< P, F > : 2.2.2
< P,C >,< P,D >, (No data relation)
< P,E >,< P, F >, } < P,A >: 2.2.4.5 (Potential UWU Inter-UCID on y

among C, A, P) where C = ts−cdrt(A, y)
< P,C >: 2.2.5.5 (Potential UWU Inter-UCID on y
among C,A, P ) where A = tp−cdrt(C, y)

6.3 Algorithm Evaluation

Let’s say n is the number of unfinished activities in a Concurrent TDW Model cwm. In
general, we must inspect C2

n combinations of any two unfinished activities to find some
potential UCIDs. This algorithm allows us to detect not only potential UCID at build
time of pre-execution TDWs, but also potential UCID at run time of running TDWs by
recalculating the Estimated Active Intervals of their unfinished activities more accurately,
based on the Active Intervals of finished activities. However, depending on application, we
can reduce the number of checking steps by considering some of the following heuristics:

• A two-dimensional table can be used to record the access rights to data elements
of activities in a Concurrent TDW Model cwm. Figure 6.3 shows an example of
data flow matrix of a Concurrent TDW Model with three TDWs W1, W2 and W3.
{D1, · · · , D10} is the data set of the Concurrent TDW Model. Parallelization can
be applied here to reduce execution time. For each element in the data set of cwm,
there is a thread responsible for checking potential UCIDs caused by activities using
this data element.

• After designing a new TDW, UCID check is conducted to find potential UCIDs be-
fore this TDW is put into the Concurrent TDW Management System for execution.
Let’s say m is the number of activities in the pre-execution TDW under consider-
ation, k is the total number of activities in the other pre-execution TDWs and l is
the total number of unfinished activities in running TDWs, we have n = m+ k+ l.
Because the other pre-execution TDWs have been checked previously, we can skip
combinations of two activities in these TDWs to reduce the number of combination
inspected to C2

n − C2
k . If we just want to detect UCIDs caused by activities of the

TDW under consideration, we will verify m× n activity combinations only. A par-
allel solution in this case is to create m threads. Each thread will be responsible for

30



 
A11 A21 A12 A13 A31 A22 A32 A14 A23 A33D1 W R RD2 RD3 W RD4 W R R RD5 W RD6 W RD7 W R W R RD8 W RD9 W RD10 W

W1 W2 W3

Figure 6.3: Data flow matrix example

one activity in this TDW and will verify potential UCIDs on combinations created
by this activity with other activities in different TDWs.

• Because potential UCIDs just occur in activities that have shared data, we will only
verify activities having shared a data element only. Each data element will store
IDs of unfinished activities using it. Therefore, the set of checked activities can be
limited to unfinished activities with data relation in the Concurrent TDW Model.
If the number of data elements is small, we can start from data elements of the pre-
execution TDW under consideration to select unfinished activities in the Concurrent
TDW Model with data relations, and use UCID patterns to find potential errors.

31



Chapter 7

Potential UCID Resolution

In general, if potential UCIDs are detected, a review of designed workflows should be
conducted to make sure that these situations were not created on purpose. Our given
solutions (some of which will change the workflow structure) are simply reference models.
The final decision will depend on workflow designers to perform modifications that actually
lead to a resolution of the model.

7.1 Potential Intra-UCID Resolution

Potential Intra-UCID may be caused by a mistake by workflow designers in designing
parallel branches of a workflow. Therefore, our solution for Intra-UCID is to change the
workflow structure by sequentializing or combining UCID-related activities. Two activ-
ities causing potential WW Intra-UCID are merged into one by place/transition fusion
(Figure 7.1a). Regarding RW Intra-UCID, sequentialization is applied to the related ac-
tivities. One solution is to schedule the read activity before the write activity, and another
is to schedule the write activity to occur before the read activity (Figure 7.1b). Resolution
priority will proceed from WW Intra-UCID cases to RW Intra-UCID cases. Regarding
potential UCIDs belonging to the same group, the priority is the order of occurrence.

7.2 Potential Inter-UCID Resolution

Resolving potential inter-UCID is more complex because workflows are designed for dif-
ferent purposes by different designers, and a designer may know nothing about the work of
the others. To resolve inter-UCID, the cooperation from different designers is necessary,
and the result will highly depend on the willingness of designers to communicate with
each other.
One solution is to adjust the workflow schedule by modifying the workflow start time

and the maximum and minimum execution durations of activities in workflows, so that
inter-UCID patterns do not occur. However, rescheduling algorithm is outside the scope
of this thesis.

32



 
r: x ...w: x ...Activity A Activity BActivity C Activity D ... r: x ......Activity A Activity BActivity C Activity D... .........Activity A Activity BActivity C Activity D... ...w: xr: xw: x

w: y ...w: y ...Activity E Activity FActivity G Activity H... ... ......Activity FActivity H... ...w: yActivity EG
...(b) RW Intra-UCID Resolution by sequentialization

(a) WW Intra-UCID Resolution by place / transition fusion

Figure 7.1: Potential intra-UCID resolution

Here, we suggest creating a Global UCID-related Workflow (GUW). GUW is a
synthesis of UCID-related workflows in which global constraints, constraints among UCID-
related activities in different workflows, are added to resolve UCID patterns. Change
workers can still perform change activities by following their original workflows with re-
spect to the GUW. The GUW is operated by the Concurrent TDW workflow management
system. System will observe the behavior of sub-workflows to update the states of ac-
tivities in GUW. When the UCID-related activities prepare to be performed, system will
notify related workers risky points and force them to follow the global constraints speci-
fied in the GUW. GUW is created by combining UCID related workflows into one with
the help of AND-Split, AND-Join transitions and Time Start Transitions. In this work-
flow, fusion technique of Petri Net and sequentialization are used to reorder UCID-related
transitions.
First, we will combine related TDWs into one workflow by using AND-Split and AND-

Join transitions. In order to preserve the structure of the original TDWs, the source
place of GUW connects to the AND-Split transition and its sink place is connected to
the AND-Join transition. Each merged TDW corresponds to a subnet starting from
the AND-Split transition and ending at the AND-Join transition. Because the merged
TDWs start at different times, we insert a Time Start transition between the Start place
of each merged TDW and the AND-Split transition so that we can control when sub-
workflows start. Time activities are just null activities with some duration and they
help to combine TDWs without modifying the start time of merged TDWs. The AND-
Split transition, AND-Join transition, Time Start transitions, places and arcs connecting
the related workflows together represent the global constraints between UCID-related
activities in different workflows. They will not be used to identify the total order of
activities in detecting potential intra-UCID in the synthesis workflow. In the case of a
running TDW, we can create a new TDW from the original workflow by removing its
finished activities, and this new TDW will be combined with other TDWs in a normal
way.

33



 

wm Start wm End wn Start wn EndTDW wm TDW wn u: d u: dw: dActivity I Activity JActivity KPk PhPi PjPt StartAnd-Split Start wm Time Start wm Start wn Start wm Endwn Endwn Time Start Activity I Activity JPi PjPtActivity KPk Phu: d w: d u: d(c) UWU Inter-UCID Resolution by sequentialization

w: x ...w: x ...Activity A Activity BActivity C Activity Dwm Start wm End wn Start wn End ......Activity BActivity Dw: xActivity ACStartTDW wm  TDW wn And-Split Start Pa PbPc Pd wm Time Start wm Start wn Start wm Endwn EndPbPdwn Time Start (a) WW Inter-UCID Resolution by place/ transition fusion PaPc

StartAnd-Split Start wm Time Start wm Start wn Start wm Endwn Endwn Time Start Activity I Activity JPi PjPtActivity KPk Phu: d w: d u: d

wm Start wm End wn Start wn End StartTDW wmTDW wn And-Split Start wm Time Start wm Start wn Start wm Endwn Endwn Time Start r: y ...w: y ...Activity E Activity FActivity G Activity HPg PhPe Pf r: y ......Activity E
Activity FActivity G Activity Hw: y PfPg PhStartAnd-Split Start wm Time Start wm Start wn Start wm Endwn Endwn Time Start ......Activity E Activity FActivity G Activity HPfPg Phw: yr: y

Pe
Pe

(b) RW Inter-UCID Resolution by sequentialization EndAnd-Join End 
EndAnd-Join End 

EndAnd-Join End 
EndAnd-Join End 
EndAnd-Join End 

Figure 7.2: Potential inter-UCID resolution

Next, we will deal with activities causing potential Inter-UCID. The mechanism to
handle potential WW/RW Intra-UCID is applied to potential WW/RW Inter-UCID cases.
Two activities causing WW Inter-UCID are merged in to one using the transition fusion
(Figure 7.2a). In the case of RW Inter-UCID, the read activity can be scheduled before or
after the write activity (Figure 7.2b). Regarding potential UWU-UCID, the write activity
causing the inconsistent view is rescheduled to occur before or after the two use activities,
as shown in (Figure 7.2c). If there are many potential Inter-UCIDs between the same two
TDWs, the priority is first by Inter-UCID types (WW > RW > UWU) and then by time
of activities.
Although GUW offers a more comprehensive view of UCID-related workflows, the pro-

posed solution is still simple and not effective in all cases. We will try to improve it in
future work.

34



Chapter 8

UCID Theory and Change Support
Workflow Model

In this chapter, we present how to apply the UCID Theory to the Change Support Work-
flow Model and give an example of this process.

8.1 Applying the UCID Theory to the Change Sup-

port Workflow Model

In order to apply the UCID theory to the CSW Model, we need to model CSWs as TDWs.
To implement this task, we will create a data flow skeleton of CSW and use the algorithm
given in Section 8.2 to generate a CSW based on the given data flow skeleton.
This draft of CSW will help workflow designers in developing the schedule of the change

process. The other steps in developing change schedule, such as estimating activity re-
sources and activity durations will be performed by workflow designers. From Activity
Duration estimated by designers, minimum and maximum execution durations of tran-
sitions in this CSW can be derived. Because all necessary information for UCID check
is enough, potential UCID detection algorithms can be executed on the system with the
newly designed CSW. If some potential UCIDs are reported, UCID-related CSWs, espe-
cially the new CSW, should be reviewed based on suggested UCID resolutions.

8.2 Generating a CSW based on Data Flow Skeleton

Data flow skeleton of a CSW is generated based on dependency relationships among
software artifacts supplied by the information model. In a naive way, this skeleton is con-
structed by tracing these relationships starting from the elements receiving the change
request directly. However, construction of this skeleton is affected by many factors besides
dependency relationships such as change requirements, resource, etc. Therefore, imple-
mentation of this task will be left as future work. In this section, we focus on how to
generate a CSW from data flow skeleton by using TDW modeling language.

35



Assuming that we have already generated a data flow skeleton of the CSW which is a
directed graph G where:

• Nodes are software artifacts that will be created or modified to fulfill a change
request.

• An arc e = (x, y) is considered to be directed from x to y, y is called the head and
x is called the tail of the arc, if there is a dependency relationship with the Supplier
x and the Client y.

• Direct Predecessor of a node y, P (y) is a set of nodes x so that there is a
dependency relationship with the Supplier x and the Client y.

• Indegree of a node v is the number of head endpoints adjacent to it.

• Outdegree of a node v is the number of tail endpoints adjacent to it.

• Source is a node with indegree(v) = 0 (no input).

• Sink is a node with outdegree(v) = 0 (no output).

From G, we can generate CSW using TDW as follows (Figure 8.1). Each node d in
G is modeled by a transition t in TDW. Write data set of t is the collection of output
node of d and read data set is the collection of input node and output node of d. The arc
between two transitions is identified based on the arc connecting corresponding nodes in
G. Transitions with no input are connected to the source place by an AND-split transition
and transitions with no output are connected to the sink place by an AND-Join transition.

1. Initialization

(a) Create a source place and a sink place

(b) For each node d of G, create a transition t with one input place pi and one
output place po: DE(t, w) = d, DE(t, r) = d ∪ P (d);

2. For each arc (d1, d2) in G with d1 represented by transition t1 and d2 represented
by transition t2, execute the following steps:

(a) If outdegree(d1) = indegree(d2) = 1, then merge output place of t1 with the
input place of t2;

(b) If outdegree(d1) > 1, indegree(d2) = 1, then:

• If t1 is not an AND-Split transition, then merge output place of t1 with
the input place of t2 and add the AND-Split property to t1;

• If t1 is an AND-Split transition, then add an arc connecting t1 to the input
place of t2;

(c) If outdegree(d1) = 1, indegree(d2) > 1, then:

36



• If t2 is not an AND-Join transition, then merge output place of t1 with the
input place of t2 and add the AND-Join property to t2;

• If t2 is an AND-Join transition, then add an arc connecting the output
place of t1 to t2;

(d) If outdegree(d1) > 1, indegree(d2) > 1, then:

• If t1 is not AND-Split transitions and t2 is not an AND-Join transition,
then merge output place of t1 with the input place of t2, add the AND-split
property to t1 and add the AND-Join property to t2;

• If t1 is an AND-split transition and t2 is not an AND-Join transition, then
add an arc connecting t1 to the input place of t2 and add the AND-Join
property to t2;

• If t1 is not an AND-split transition and t2 is an AND-Join transition, then
add an arc connecting the output place of t1 to t2 and add the AND-Split
property to t1;

• If t1 is an AND-split transition and t2 is an AND-Join transition, then add
a new place and connect t1 to t2 via new place;

3. Source place and sink place

(a) If there are many source nodes (indegree = 0), then connect the input places
of the corresponding transitions to the source place by an AND-split transition;

(b) If there is only one source node (indegree = 0), then merge the input place of
this transition with the source place;

(c) If there are many sink nodes (outdegree = 0), then connect the output places
of the corresponding transitions to the sink place by an AND-Join transition;

(d) If there is one sink node (outdegree = 0), then merge the output place of this
transition with the sink place;

8.3 Example

Let us take an example.
Figure 8.2 shows an example of dependency relationships between software artifacts

created in different phases of a software development process. If we change Artifact 1,
we need to change Artifacts 4, 5, 8 and 9 because of the relationships between them.
Similarly, if we change Artifact 2, we need to change Artifacts 5, 6, 9, 10 and 11.
Using algorithm in Section 8.2, we can create two CSWs to respond to change require-

ments on Artifact 1 and Artifact 2 (Figure 8.3).
Based on the generated workflows, the project manager can conduct other steps in

project time management such as estimating activity resources, estimating activity du-
rations, etc. Information about activity duration is used to detect potential UCIDs. In

37



 r: {d}∪P(d)w: dActivity t
...Activity t1 ...Activity t2Outdegree > 1 Indegree > 1 ...Activity t1 Activity t2Activity t1 ...Activity t2Outdegree > 1 Indegree > 1 ...Activity t1 Activity t2... ......

...Activity t1 ...Activity t2Outdegree > 1 Indegree = 1 ...Activity t1 ...Activity t2Activity t1 ...Activity t2Outdegree > 1 Indegree = 1 ...Activity t1 ...Activity t2......Activity t1 ...Activity t2Outdegree = 1 Indegree > 1 Activity t1 Activity t2Activity t1 ...Activity t2Outdegree = 1 Indegree > 1... ......Activity t1 Activity t2......Indegree = 0...Activity t1Start ...Activity t1Start
Indegree = 0...Activity t1...Activity t1Start ...Activity t1...Activity t1StartAND-split activityIndegree = 0

EndAND-joint activity...Activity t1...Activity t2Outdegree = 0 End...Activity t1...Activity t2Outdegree = 0 End...Activity t1 ...Activity t1 End...Activity t1 ...Activity t2Outdegree = 1 Indegree = 1 ...Activity t1 ...Activity t2 ...Activity t1 Activity t2Outdegree > 1 Indegree > 1 ...Activity t1 Activity t2Activity t1 Activity t2Outdegree > 1 Indegree > 1 ...Activity t1 Activity t2... ............
Figure 8.1: Generating CSW from data flow skeleton

Table 3, the minimum and maximum execution durations of each activity in CSWs de-
scribed in Figure 8.3 are calculated from the Activity Duration Estimate which is the
quantitative assessment of the likely number of work periods that will be required to
complete an activity [20] , of the corresponding activity in the project time management.
Based on these values and the start time of the corresponding workflow, we can calculate
the Estimated Active Intervals using the formulas given in Section 6.2.1.
After executing the Inter-UCID detection algorithms, the following potential Inter-

UCIDs are reported: WW Inter-UCID between Activity 3 and Activity B on Artifact
5, WW Inter-UCID between Activity 5 and Activity D on Artifact 9, RW Inter-UCID
between Activity 3 and Activity A on Artifact 2, RW Inter-UCID between Activity 5 and
Activity B on Artifact 5.
By applying the second Inter-UCID resolution method, we receive the Global UCID-

related Workflow shown in Figure 8.4.

38



 Artifact 4
Artifact 6Artifact 5 Artifact 8Artifact 92nd Phase 3rd Phase1st PhaseArtifact 1Artifact 2 Artifact 10Artifact 11Artifact 3 Artifact 7 Artifact 12

Figure 8.2: Example of dependency relationships between software artifacts created during
a software development process

 r: d1w: d1Activity 1 Activity 2 r: d4,d8w: d8 r: d5,d9w: d9Activity 4 Activity 5 EndAND-Join activityStart Activity 3Start r: d2,d4,d5w: d5r: d2,d6w: d6Activity BActivity Cr: d2w: d2Activity A r: d5,d9w: d9r: d6,d10w: d10 Activity DActivity E r: d6,d10,d11w: d11Activity F EndAND-Join activity
r: d2,d4,d5w: d5r: d1,d4w: d4

Figure 8.3: Examples of CSWs created based on the dependency relationships between
software artifacts

39



Table 8.1: Time aspect of activities in CSWs described in Figure 8.3

CSW ID Start Time Activity Name Activity Duration Minimum and Estimated
Pw Estimates (days) Maximum Active

Execution Interval
Duration

W1 5 Activity 1 7.5 ± 0.5 {7,8} [5,13]
Activity 2 5.5 ± 0.5 {5,6} [12,19]
Activity 3 11 ± 1 {10,12} [17,31]
Activity 4 6 ± 1 {5,7} [17,26]
Activity 5 7 ± 1 {6,8} [27,39]
And-Join 0 {0,0} [33,39]

W2 15 Activity A 6 ± 1 {5,7} [15,22]
Activity B 5 ± 1 {4,6} [20,28]
Activity C 5 ± 1 {4,6} [20,28]
Activity D 10 ± 1 {9,11} [24,39]
Activity E 5.5 ± 0.5 {5,6} [24,34]
Activity F 6 ± 1 {5,7} [29,41]
And-Join 0 {0,0} [34,41]

 r: d1w: d1Activity 1 Activity 2 r: d4,d8w: d8Activity 4
Activity 5-DAND-Join activityActivity 3-B

r: d2,d6w: d6r: d2w: d2Activity A r: d6,d10w: d10 r: d6,d10,d11w: d11AND-Join activity
r: d5,d9w: d9r: d2,d4,d5w: d5GUW_Start And-Split Start Time Start 2 

Time Start 1 
Activity C Activity E Activity F

r: d1,d4w: d4
GUW_EndAnd-Join End 

Figure 8.4: Global UCID-related Workflow of CSWs described in Figure 8.3

40



Chapter 9

Discussion

9.1 Evaluation of the Proposed Method

In this thesis, we have presented UCID patterns and methods to detect and resolve po-
tential UCID errors at build time. Although there are some previous works on data
flow verification, they only considered detecting errors in a single workflow. Therefore,
by detecting and resolving UCID patterns caused by concurrent activities not only in a
single workflow but also in different workflows, our approach is more complete. When
applying the UCID solution to a Workflow Management System (WFMS), workflow de-
signers could achieve a more comprehensive view of data related workflows in the system.
In addition, detecting potential UCID at build time also helps workflow designers make
timely adjustments to the original workflows to avoid errors at runtime. Also, Global
UCID-related Workflow will help change workers to have a better cooperation in solving
problems concerning shared data. It can also be used in the recovery process in the case
of workflow failure.
However, there are still some limitations in our approach. Because we use the time

metric to detect potential inter-UCIDs at build time, our problem domain is limited to
static systems where execution time can be estimated before execution. However, this
disadvantage could be overcome if we use this approach to detect UCID errors from
workflow execution histories. Another disadvantage is that UCID detection algorithm is
a best-effort method. We must check all transitions in a Concurrent TDWModel to detect
potential UCIDs because data elements are integrated as attributes of transitions instead
of being modeled explicitly. Also, the potential Inter-UCID resolution using Global UCID-
Related Workflow demands considerable investments of time and effort to make it become
an effective method.

9.2 Consideration of a New Method

To deal with the limitations of the proposed method, we are considering modeling workflow
data as independent elements of workflow. In this way, we can manage data relations of
all activities in a WFMS. Similar to the Global UCID-Related Workflow, we can build

41



a Global Data-related Net (GDN) which is a comprehensive view of data-related
activities in the WFMS. When a new workflow is designed, it can be integrated into
the existing GDN easily by merging shared data element. Data-related activities can be
identified at a very early stage to have timely adjustment to reduce design errors as much
as possible. Global constraints can be added to the GDN to control order of activities
with data relation in different workflows. If UCID detection algorithm is applied here, its
checking domain should be greatly reduced. GDN can also be used to manage workflows at
run time by informing change workers of data-related activities when an activity prepares
to use the shared data, and by supplying a dynamic channel to these change workers to
help them reach an agreement in the case of potential UCID. The model versioning system
AMOR [22] offers some methods to resolve collaborative conflict in model versioning. In
AMOR approach, all of the people who perform changes are involved in eliminating the
conflicts to obtain one consistent model version. We will consider applying this approach
in our environment to increase flexibility of the system.
In the new method, we will still choose Petri Net as the foundation for modeling work-

flow. Existing Petri Net tools such as WoPeD [19] , CPN Tools [25] , Yasper [26], can also
be leveraged to edit, simulate the execution of generated workflows or analyze proper-
ties of these workflows such as boundedness, liveness, Free-choice violence, etc. However,
when data elements are modeled explicitly, the complexity of the generated workflows will
increase. How to balance these two factors is one of the problems we must solve in future
work. Therefore, we need to spend more time and efforts to answer the question about
the effectiveness of this method.
Figure 9.1a show an example of this method. We transform workflows described in the

motivating example into the new model using WoPeD tool [19] as follows:

• Because WoPeD does not support data modeling, we model each data element as
a composite transition with two input places to receive Read Request and Write
Request, and two output places to return Read Response and Write Response.

• Each activity of workflows is modeled by a transition.

• Activity which reads data will have an extra transition to prepare its input data:
pre-transition. The pre-transition is connected to the input place which receives
the Read Request of the corresponding data element. The main transition is also
connected from the output place which returns the Write Response of this data
element.

• Main transition of activity which writes data is connected to the input place re-
ceiving the Write Request of the corresponding data element. The output place
which returns the Write Response of this data element will be connected to the
transitions succeeding this transition. In the case of no succeeding transition, an
extra-transition is added: post-transition to receive the Write Response.

Figure 9.1b is another example of the new method using Yasper tool [26]. We use ”data
store” concept of the Yasper tool to represent data element. A store is like a place in

42



 W1W2 r:Aw:A r: Aw: B = f(A) …… ……X… r: Aw: D = g(A)…A11 A12 A13 A14 A15A21 A22 A23 A24 A25(a) WoPeD

(b) Yasper

Figure 9.1: Example of workflows with visualized data elements

that it is connected with transition by a special arc type. This arc type is different the
normal arc types since tokens cannot be added to or removed from a store. Instead, it
can be specified whether a transition can create (C), read (R), update (U) and/or delete
(D) values in the store. In this figure, each activity is modeled by a transition and each
data element is modeled by a data store. Therefore, compared with modeling by WoPeD
tool, modeling by Yasper is simpler. However, Yarper does not use the specifications of
stores and store arcs in any way; simulations ignore them. Therefore, we must handle
data analysis by ourselves.

43



9.3 Future Work

As mentioned in Chapter 1 and Section 2.1.2, the aim of our research is to develop
the CSW Model, a part in the project on building a change support environment for
cooperative software development. Therefore, in future, we will continue the remaining
works in building the CSW Model:

1. Synchronization of changes on shared software artifacts by different CSWs

In the scope of this thesis, we have tried to detect and solve error caused by uncon-
trolled access to shared data, UCID, in a general WFMS and have applied it to the
CSW Model. There are still some drawbacks in this approach as we have discussed
in Section 9.1. Therefore, we will improve and expand the proposed method with
regard to the new method mentioned in Section 9.2:

(a) Improving the Inter-UCID correction method.

(b) Solving UCID detection and correction at run time.

2. Access control

(a) An access control model is proposed by adapting RBAC model to specific re-
quirements of software development process and change supporting workflow
domain. RBAC consistent rules considered in this model are: cardinality con-
straints, role hierarchy constraints and separation of duties constraints. In a
cooperative environment, this access control model must allow simultaneous
access of the same data by multiple users under the software concurrent per-
mission and policies of data access control should be adjusted dynamically as
changes of projects can happen at any stages in the whole cycle. By assigning
a local access control matrix to each transition in a workflow to grant rights
to subjects (that will execute the transition) only to data being consumed or
produced by the transition, subjects will have only the access rights (specified
by this matrix) when the transition is active. This method makes sure that au-
thorized subjects gain access on the required objects only during the execution
of the specific task.

(b) After that, we will study a formal technique to model and analyze our access
control model using CPN and CPN Tool for editing, simulating and analyzing
CPN. CPN Tools provides a graphical representation and an analysis frame-
work that can be used easily by security administrators to understand why some
permissions are granted or not and to detect whether security constraints are
violated

3. CSW Construction

To implement this task, we will create the data flow of CSW and develop an algo-
rithm that can generate a CSW based on the data flow skeleton.

44



(a) Generating data flow skeleton

i. First, we will develop an algorithm that can generate a draft of data flow
skeleton of CSW from UML model elements with dependency relationships
described in [1]. In developing the algorithm, we need to consider how to
remove redundant relationships because the result described in [1] may
include a lot of redundant relationships.

ii. Next, we must define some selection rules to identify UML model elements
which need to be changed and their change orders as exactly as possible
according to the change requirement. These rules can be constructed by
analyzing influences to each Basic Dependency Relationship defined in
[1] of different kinds of change: deletion, extension (the substitution of
an entity for another one that preserves the information, behavior and
structure of the initial entity), modification (the substitution of an entity
for another one that (partially) destroys the initial information, behavior
and structure).

iii. As selection rules cannot cover every change situation, we can integrate
knowledge of workers involved in the software change process by allowing
them to revise the generated data flow.

(b) Generating CSW

CSW can be built directly from the data flow skeleton generated in the pre-
ceding step by using the algorithm presented in Section 8.2. However, because
there are many aspects besides data such as human resource, access control,
the control flow of the generated CSW can be different from this data flow
skeleton.

4. Finally, the workflow model is realized as an Eclipse plug-in to increase its usability
and applicability. Another possibility is to integrate our theory into open source
systems, for example, WoPeD [19].

45



Chapter 10

Conclusion

This thesis is our first efforts in building the Change Support Workflow Model which is
responsible for CSW construction and management in the CSE project. In this thesis, we
have proposed an approach to synchronize changes on shared data by different CSWs in
a cooperative software development environment by detecting and resolving errors caused
by non-deterministic access to shared data by different CSWs. We have abstracted this
kind of errors as Unintentional Change in In-use Data, a situation in which some data
values are lost or some data elements are assigned values different from the intentions
of workflow designers, due to non-deterministic access to shared data by different activi-
ties. In contrast to previous work, we have considered UCID patterns caused by not only
the interactions of concurrent activities inside a single workflow, intra-UCID, but also
the mutual influences between concurrent workflows, inter-UCID. We have also proposed
a Time Data Workflow based on the WF-Net with many attributes supporting UCID
estimation. Algorithms which help detect intra-UCID and inter-UCID patterns in a Con-
current TDW Management System have been developed too. Then, algorithm evaluation
and some solutions to resolve UCID problem have been given. Finally, we have presented
how to apply UCID theory to the Change Support Workflow Model to detect and resolve
errors concerning shared data among CSWs at build time.
As future work, we will improve the algorithms and inter-UCID resolutions with paying

attention to unique features of the CSW Model. Detecting and resolving this problem at
runtime are our next targets. We will continue with the unsolved problems of the CSW
Model: access control, CSW construction and finally a plugin as a realization of the CSW
Model.

46



Publication

1. Phan Thi Thanh Huyen and Koichiro Ochimizu: Detection of Unintentional Change
on In-use Data for Concurrent Workflows. In: Proceedings of the 2010 International
Conference on Software Engineering Research and Practice (SERP 10), pp 277-283.
Las Vegas, Nevada, USA (2010)

2. Thi Thanh Huyen Phan and Koichiro Ochimizu: Detecting and Repairing Uninten-
tional Change inn In-use Data in Concurrent Workflow Management System. In:
Proceedings of the International Workshop on Petri Nets and Software Engineering
(PNSE’10), pp 89-110. Braga, Portugal (2010)

47



Bibliography

[1] Masayuki Kotani and Koichiro Ochimizu: Automatic Generation of Dependency
Relationships between UML Elements for Change Impact Analysis. Journal of Infor-
mation Processing Society of Japan, vol. 49, no.7, pp 2265-2291 (2008)

[2] Nguyen Van Tuan and Koichiro Ochimizu: Extracting Collaboration Classes from
Java Source Code. Master Thesis, Japan Advanced Institute of Science and Technol-
ogy (2010)

[3] Lee, M., Han, D., Shim, J.: Set-based access conflicts analysis of concurrent work-
flow definition. In: Proceedings of Third International Symposium on Cooperative
Database Systems and Applications, pp. 189–196. Beijing, China (2001)

[4] Li, H., Yang, Y., and Chen, T. Y.: Resource constraints analysis of workflow speci-
fications. J. Syst. Softw. 73, 2, pp. 271–285 (2004)

[5] 5. Sadiq, S., Orlowska M., Sadiq W. and Foulger C.: Data flow and validation in
workflow modeling. In: Proceedings of 15th Australasian Database Conference. LI,
H. pp. 207–214 (2004)

[6] Kikuchi S., Tsuchiya S., Adachi M., and Katsuyama T.: Constraint Verification for
Concurrent System Management Workflows Sharing Resources. In: Third Interna-
tional Conference on Autonomic and Autonomous Systems (2007)

[7] Trcka N., van der Aalst W.M.P., and Sidorova N.: Analyzing Control-Flow and Data-
Flow in Workfow Processes in a Unified Way. Technical Report CS 08/31, Eindhoven
University of Technology (2008)

[8] Trcka N., van der Aalst W.M.P., and Sidorova N.: Data-Flow Anti-Patterns: Discov-
ering Data-Flow Errors in Workflows. In: 21st International Conference on Advanced
Information Systems (CAiSE’09). LNCS, vol. 5565, pp. 425–439. Springer-Verlag
Berlin Heidelberg (2009)

[9] Zhong, J. and Song, B.: Verification of resource constraints for concurrent workflows.
In: Proceedings of the Seventh International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, pp. 253–261 (2005)

[10] Wil van der Aalst, Kees Max van Hee: Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA (2004)

48



[11] Zeng, Q., Wang, H. and Xu, D: Conflict detection and resolution for workflows con-
strained by resources and non-determined duration. Journal of Systems and Software
81(9), pp 1491–1504 (2008)

[12] Sundari M.H., Sen A.K., and Bagchi A.: Detecting Data Flow Errors in Work-
flows: A Systematic Graph Traversal Approach. In: 17th Workshop on Information
Technology & Systems (WITS-2007). Montreal (2007)

[13] Fan S., Dou W.C., and Chen J.: Dual Workflow Nets: Mixed Control/Data-Flow
Representation for Workflow Modeling and Verification. In: Advances in Web and
Network Technologies, and Information Management (APWeb/WAIM 2007Work-
shops), LNCS, vol. 4537, pp 433–444. Springer-Verlag, Berlin (2007)

[14] Sun S.X., Zhao J.L., Nunamaker J.F., and Liu Sheng O.R.: Formulating the Data
Flow Perspective for Business Process Management. Information Systems Research,
17(4), pp 374–391 (2006)

[15] Heinlein, C.: Workflow and process synchronization with interaction expressions and
graphs. In: Proceedings of the 17th International Conference on Data Engineering
(ICDE ’01), pp. 243-252 (2001)

[16] Workflow Patterns, http://www.workflowpatterns.com

[17] Russell N., van der Aalst W.M.P., and ter Hofstede A.H.M.: Designing a Workflow
System Using Coloured Petri Nets. Transactions on Petri Nets and Other Models of
Concurrency (ToPNoC) III, 5800, pp 1–24 (2009)

[18] Awad, A., Decker, G. and Lohmann, N.: Diagnosing and Repairing Data Anomalies
in Process Models. In: 5th International Workshop on Business Process Design.
LNBIP, pp 1–24. Springer, Heidelberg (2009)

[19] Workflow Petri Net Designer, http://193.196.7.195:8080/woped

[20] PMBOK Guide Fourth Edition. Project Management Institute (2008)

[21] Elmasri, R. and Navathe, S. B.: Fundamentals of database systems, Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA (1989)

[22] Adaptable Model Versioning, http://modelversioning.org/

[23] Workflow Management Coalition, Workflow Security Considerations - White Paper
Document Number WFMC-TC-1019, Document Status - Issue 1.0 (1998)

[24] Revision Control, http://en.wikipedia.org/wiki/Revision control

[25] Computer Tool for Colored Petri Nets, http://wiki.daimi.au.dk/cpntools/ home.wiki

[26] Yet Another Smart Process Editor, http://www.yasper.org/

49


