JAIST Repository

https://dspace.jaist.ac.jp/

Title

An architecture for

non-sftop upgradi

application
Author(s) Hoang, Ha Manh
Citation
Issue Date 2010-09
Type Thesis or Dissertation

Text version

aut hor

t/ 10119/ 9148

URL http:/7/7 hdl handl e. ne
Rights

. Supervisor: Associ at e
Description

gooood, HEN

Profpssor Mas at

AIST

JAPAN
ADVANCED INSTITUTE OF
. SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

An architecture for non-stop upgrading of Web
application

By Hoang Ha Manh

A thesis submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Associate Professor Masato Suzuki

September, 2010

An architecture for non-stop upgrading of Web
application

By Hoang Ha Manh (0810208)

A thesis submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Associate Professor Masato Suzuki

and approved by
Associate Professor Masato Suzuki
Professor Koichiro Ochimizu
Associate Professor Toshiaki Aoki

August, 2010 (Submitted)

Copyright (© 2010 by Hoang Ha Manh

Abstract

Keyword: dynamic upgrading, non-stop upgrading, E-Commerce System, web application, non-stop

upgrading architecture.

Today, information technology is not an unfamiliar concept. Information technology is using in many
fields such as economy, transport, health care or science, research, etc... Information technology can
be applied in many ways but the evident example is using software to improve business process. We
can see many advantages of information technology. It can make globalization, help the company to
run more effective, reduce cost of time in many activities, etc... With the important of applying
information technology, software development industrial becomes an essential part in information

technology.

There are many steps in the software development process: design, implementation, testing,
deployment and maintenance. Maintenance step is one of the most costly steps in this process. This
is especially true with web-based application software such as economic application, transfer
management application or air control system, etc... These systems need to work continuously. So
we need architecture for making the updating of these application systems without stopping their

services.

First of all, we introduced a new way to model the web application system. For easily control the
data in the system, we need a formal definition language to describe the system activities. We
combine the usage of Architecture Analysis and Design Language (AADL) with a simple Sequence
Diagram that we call Restricted Sequence Diagram. With this combination, we can model the data of

system formally and easily to control.

After that, we determine characteristics of upgrading. Depend on the characteristics we categorize
the updating type into 5 types. We find out the features of each of updating type and define each

type identities.

Next, we introduced a real use case using the Electronic Commerce System. Electronic Commerce
System is the standard of a commerce application so that we use it as the real example for applying
our modeling method. We will find out all functions of the Electronic Commerce System and model it

using the combination of AADL and Restricted Sequence Diagram.

Finally, we evaluate the ability of upgrading web application through system data model. We also
discuss about the process of making non-stop upgrading without overall data affection and stopping
the application services. We will have a general view of the data using in an application and

determine that the non-stop upgrading can be made or not in a specific situation.

Acknowledgement

| would like to show my gratitude to all those who gave me the possibility to complete this thesis. In
the first place, | would like to express my sincere gratitude and appreciation to my supervisor,
Associate Professor Masato Suzuki for his constant guidance, advice, assistance and support during

the whole period of my Master’s course.

| would like also to express my sincere thanks to my principal supervisor Professor Koichiro Ochimizu

for his encouragement and helpful comments.

| wish to say grateful thanks to Associate Professor Toshiaki Aoki and Professor Koichiro Ochimizu for

their useful comments for the first draft of this dissertation and in my defense day.

| would like to thanks to Ministry of Education and Training for their financial support for my study

time in Japan.

| would like to show my sincere appreciation to Japan Advanced Institute of Science and Technology
for not only providing me support and great working environment but also a wonderful living

condition during my study time here.

| am grateful to thanks all members in Software Structure laboratory for their kindly helps to me not

only in research work but also in my daily life.

It will be a mistake if | forget to thank all members in Vietnamese group at JAIST. With all your helps,

one year in here becomes enjoyable.

Last but not least, | would like to give my special thanks to my family members, especially my

parents whose encouragements and helps enable me to complete my degree.

Content

Chapter 1: oY d oo [V 4o o NP PSR 10
00t O o o] o] 1= 3 s T O T T SO SO PO TP T ST TOPUTOPPPTPN 11
00 O o [Tt {17 JE USSPt 11
1.3, Dissertation OrganizatioN i i iiiiieeee et e s e ee e e e e e s essbbeareeeeeeseesssnnnnrens 12

Chapter 2: [\ FoT o By doT o U] o=4 o [T = PSP RR 13
2.1, SOTtWAre MaiNtENANCE ...ccueiiiiieet ettt sttt st st st st seeesaeeeaneereas 13
D2 V= o B o F 1Y =Y I V) A= 1 LTSN 15
2.3. The Electronic Commerce System (E-Commerce SYStem).......ccoveieecirveeeciiiieeeeccreeeeeeeieeee 16
2.4. Non-stop upgrading of apPliCatioN:ccueeeiiiiiee e 16
2.5, REIAEEA WOIK: .ttt sttt sttt e re e s e e re s 17

Chapter 3: Our approach for NON-stoP UPEradingccccuveeeeiiiiiiieeeiieeeecceeee e errreeeeerre e e eereeeeeaens 18
3.1. Formal definition of an application........c.uueiiiiiiii i 18

3.1.1. Architecture Analysis and Design Language (AADL)coccveeeeeciieeeceeciiee e 18
3.1.2. Restricted SEqUENCE DIaBramcciiiiiiiieieiiie e ceiiee ettt sre e s esaaee s e s sabbe e e s sanseeas 20
3.2. Categorization of Updating tyPeS...cuuiiiiiiiii i 22
3.2.1. Y7 o L30T PP PPPPPPPPRNN 23
3.2.2. BNV 1= 24
3.2.3. Y < L3O TP TP PPPPPPPPRN 26
3.2.4. Y o LI H O U PP PPPPPPPPRNN 27
3.2.5. BN L= 28
3.3, Ourarchitecture for UPgrading:.....couiiieciieee ittt e e e eerae e e s e rae e e e esnbaaeeeas 30
3.3.1. [N LT (ol T oY o] gl o I- | {=] o o OO U PP PPUPPPUPRN 30
3.3.2. Our defined arChiteCtUIE:ooii it 30
3.4. Our updating architecture specifiCation:cccceeeiiiiiieieiiiee e e e eereee e 33
3.4.1. BN/ 1= 33
3.4.2. Y < L3 2O PP TP PPPPPPPPRNN 37

3.4.3. [T 41

3.4.4. [N L= 43
Chapter 4: (07 YT U Lo LY PRPRPURNt 46
4.1. Overview functions of E-COMMEIrce SYSTEM......ccuvviiieiiieee et 46
4.1.1. 2T oLV Y Y =N 0] =1 Lo SRR 50
4.1.2. Place REQUISTTION: 1iiieiiiie ittt et e e e s e e s sabaee s esbaee s eeabteeessasreeas 50
4.1.3. Process DElIVEIY Oluuiiieeiieee ettt e s e e sba e e s e saae e s e s sabbeeessasneeas 52
4.1.4. CoNfirm SNIPMENT ..ot e e rre e e e s re e e e st aae e s taaeessennaeeeennnes 53
4.1.5. CONTIFM DEIIVEIY eveiiicitie ettt e et e e s e te e e e e sbbee s eabeaeesssasaeaeennnes 53
4.1.6. SENA INVOICE! ..ttt ettt et et e et e e s bt e e st e s sabeesabaeeeabeeebes 55

N ¥ ¥ o1 { U] PSPPI T PP PPPRPPP 56
4.2.1. BroWSE Catalog: .ooeiiiiiiie ittt ettt e e e e e et ae e e b e e e bt re e e e sanreeas 58
4.2.2. Place REQUISTTION cieiieiiiie ittt ettt ee e ettt e s e e s s raae s e aae e e e e abbeeessanneeas 60
4.2.3. Process DEIIVEIY OFUeI ... uuiiieeiiiee e ceeee e eetee et e e e ree e str e e e esaaae s e ettraeessanneeas 64
4.2.4, (0070 1000 I 1175 0= 2 X AP PRSPt 66
4.2.5. CONTIFM DEIIVEIY eveeieeieie ettt ettt e et e e e e sttt e e e e e abe e e e eetbaeeenraeeessannaeeeennnes 69
4.2.6. SENA INVOICE ...ttt ettt e sttt et e bt e bt set e bt e sbeeeaeeembeenseenee 71

4.3. Updating type using E-COMMEICE SYSTEM:.....ccciviiiieeeciiiee et eeteee e eree e e arae e e be e e saneeas 74
4.3.1. Updating Type 0in E-COMMEIrCe SYSTEMcciiiiiiiee ettt stree e evtre e e 74
4.3.2. Updating Type 1in E-COMMErCe SYSTEMuiiiiiiiiiieeeiiieee ettt svree s svre e e 74
4.3.3. Updating Type 3 in E-COMMEIrCe SYSTEM:.....cciiiiiiiiee ettt ctree e errree e e eatre e e 78
Chapter 5: Y=Y VT 4o o TSR 82
5.1. Upgrading Web appliCationccoiiciiiiiieiiiiee sttt st e s abe e e e 82
5.2. Step to make a NON-StOP UPEIradiNg.....cccuuieiiiiuriieiiiiiieeeeiiieeessiteeeesieeeeserreesssreeeessssreeeesan 83
5.3, Upgrading aChieVeMENt....ccccciiiii ittt e et e e e s rae e e e e abaaee s 83
L3 B 0o o Tol ¢ o1 W) [oo | [P PRTR 84
Chapter 6: Conclusion and fUtUre WOTKSeuiiiieiiiiec e 87

List of figures

Figure 1: 3-Tiers Java Enterprise Edition application model.........ccccuviiiiiiiiiiiiiiiiie e 15
Figure 2: 3 types of an AADL SPeCIfiCatioN........uciiieiiiiiiiiie et svee e 20
Figure 3: An example of Restricted SEqUENCE Diagram.......ccccccueeieeeiiieeee e e ceiree e eerrre e e eeere e e e e eareee e 21
Figure 4: Updating TYPE: TYPE O ..euueeiieeeiiieee ettt etttee e eette e e s tre e e eettteeessaaseeeesnnsasesennsaeessensseseeessssesenns 23
Figure 5: Updating TYPE: TYPE L ...uueeiie ettt eette e e tre e e et te e e e stae e e e sabraaesennsaeeesenteeeeesssseeeens 25
Figure 6: Updating TYPE: TYPE 2 c..uuuiiie it e e ettt e e eittee e eette e e s e tte s eesttteeessaaseeeesassasesesnsaeessansseeeeessssenenns 26
Figure 7: Updating TYPe: TYPE 3 ...uueiiieccciiieee ettt e e etteee e eette e e s e tte e e e sttteeessaaseeeesassasesennsaeeesansseseeensssesenns 27
Figure 8: Updating TyYPe: TYPE 4 ...ueeeiiiieiiieee ettt et ee e stte e s tte e e et te e e e s e e e e sabteeessnbaeeesensseeeesssseeeeenn 28
Figure 9: Restricted Sequence Diagram of updating type 4oeeeeiiieeeicieiee et 29
Figure 10: Concept diagram of Interceptor archit@CtUre.......cccuvieeecieeei i 30
Figure 11: Our architecture for NON-StoP UPZIradingccveeeeiiiieieeeiieee ettt vaeee e 31
Figure 12: CompPonent CONTIOIEToiiciiiiee et e e et e e e tae e e s e enre e e e eenbaeaeeas 32
Figure 13: The FIOW Order CONTIOIIETveiii ettt et e e erae e e s e eare e e e e enaaaaeean 33
Figure 14: Updating type 1 - BETOIE....cccuiieee ettt et ee s e etae e e s s enre e e e e eaaaeae e s 34
Figure 15: Updating tyPe 1 = AFLEI ..ueeii ettt e e st e e et ae e e s e nae e e e eeabaeaeean 34

Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:

Interceptor implementation in Updating type L....cccviiieciieeiiiieie e 35
Interceptor implementation after updating type 1......cccvveeiiiiiiiiiiiiie e 36
UpPdating type 2 - BETOIE..uiiiiiiei ittt e s st ae e e st e e e abaa e e n 37
UPdating tyPe 2 = AfEr ceveei ettt e et e e e baaee s 38

INtErcepPtor iNTYPE 2 - BEIOIE ..veiiiiieeei ettt e e e tae e e s e are e e e e eabaaee s 39
Interceptor in type 2 — AFLEr (CaSE 1) .iovuiiiciie e eie ettt e ettt eeaae e eaee s 39
Interceptor in type 2 — AFLEr (CASE 2) .iovuiicciie ettt rtee ettt eaae e saee s 40
UpPdating type 3 - BEIOIE..uiiiiiiee ittt st ae e e aae e e e eabaaee s 41
UPdating tyPe 3 = AfEr cuveeii et et e st baaee s 41
INterceptor iN tYPE 3 - BEIOIE .uuiiiiiiiiicceee et sabaa e s 42

INtErCEPLOr iN TYPE 3 — AfLEI it e e e saaaa e s 42

Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:

UPdating tyPe 4 - BETOIE...ccciiiee ittt te e e e e e e et ae e e s e nte e e e enraaee s 43

UPdAting tyPe 4 = AFLEE c.veee et e e e e st e e e et ae e e s e nae e e e enraaeeean 43
INtErcepPtor iNTYPE 4 - BEIOIE ..vviiieeieeieeeee et e e tae e e s e are e e e e enbaaee s 44
INTEIrCEPLOr INTYPE 4 = AfLOI c.uiiiee it e e rae e e s e aae e e e e eabaaee e s 45
E-COMMEICE FUNCHIONiiiiiiiiee ettt s e e s ea e e e e e e 46
Six function of E-COMMErce SYSLEM c....uiiiiiiiiie ettt ee s rree s e e s saae e e e eaans 49
Browse Catalog FUNCLIONuvieiiieee ettt e e et e e tae e e s e aae e e e e enbaaee s 50
Place REQUISITION FUNCLION.......iiiiiiiee ettt et e e e e e re e e e rae e e s e nae e e e e enbaaeeean 51
Process Delivery Order FUNCLIONooociieeecciiie ettt eveee e tae e e s e nae e e e e eavaaeeean 52
Confirm ShipmMeNnt FUNCLIONuiiei ettt sre e e era e et rae e e s eanaeeeeennes 53
Confirm DeliVery FUNCLIONiiiiiiiee ittt sttt s it e e e e st e ee e st aae e s s sanaeeeesanes 54
SeNd INVOICE FUNCHION ...ttt ettt ettt st e sat e s e e eas 55
All function of E-COMMErce SYSEEM c...euiiiiiiiiie ettt bre e e s saae e e s eaees 57
Browse Catalog in AADL......cccuuieiiiiiiiieceiieee s cette e estie e sttae e e s sae e e e sabaae s esbaeeessateeeeensraaeeeas 58
Place REQUISITION IN AADLuvviiiiiiiiee e ceiieee e citee e ertee e tte e e e e e e sabaeeess e bae e e s eateeeeessbaaeee s 60
Process Delivery Order in AADLciiiccuuieeiiiiieseeiie s eeeiie e e s siiee e e sbaeeessstaeeesssaseesessasaaeeenn 64
Confirm ShIipMENt iN AADL ..ooiiiiiiiee ettt e e e sr e e s ssare e e e s bbae e e s sasaeeeesanes 67
Confirm DelIVErY iNAADL......ooo oottt et e e ette e e e e sar e e e s enavaaeeesbsaeeesennneeasennes 69
SENA INVOICE 1N AADL ittt sttt et sae e s e e s b seeenaie 71
Browse Catalog before Updatingooocvieee i 75
Browse Catalog after Updatingciieciiiiiiiiie e 75

Browse Catalog Restricted Sequence Diagram before updating........ccccoecvvveeivivieiiincieenn. 76
Browse Catalog Restricted Sequence Diagram after updating........ccccceveecvieeiviiieiiencieeen, 77
Place Requisition before Update.......ccocuveeeecciiie et 78
Place Requisition after UPAate.........ueeieciiiee e et earaeee e 78
Place Requisition Restricted Sequence Diagram before updatecccceecvveeevicieieeecveeenn. 79
Place Requisition Restricted Sequence Diagram after updateccccceeeecvveeevicieeeeecieeen, 80
UPErading SYSTEIM S. ...ttt et tee e st re e e et be e e e saeae e e e sateaae s ntaeeesasaeseeesraeeenan 82
Upgrading SYSTeM State O......uuveeiiiiiieieciieee ettt e tre e e e e e e e e e tae e s s e nae e e e eeabaaee e s 84
First part of UPZrading S....oo it e e e tae e e s e abe e e e e snraaee e s 84
Second part Of UPGrading S....cii ittt s ae e e st ae e e s srae e e e eanes 84

Figure 60: Upgrading SYSTEM State L........viiiiiiieieiciieee e ctee et eeete e e e etr e e eerae e e s enre e e e e eanaeaeean 85

Figure 61: Upgrading SYSTEM StAte 2.....uvviieiiiieee ettt e e e e et e e e erae e e s enre e e e e ensaaaeean 85
Figure 62: Finish state of Uupgrading SYSTEM Sccoeiiiii i et ee e 85
Figure 63: UPBrade Path ... ettt e e s e e e st ee st a e e e s enre e e e enabaeaeean 86

List of tables

Table 1: Proportional software maintenance costs for its supplier

Table 2: Structure of all data entity in E-Commerce System..........

Chapter 1:

Introduction

Nowadays, we are living in the society in which computers and the Internet is very popular. Not like
twenty years ago, computers are something rare and expensive, using almost in science or industrial.
At that time, programming is an unfamiliar definition in my country. Programs at that time almost
are local programs, small and primary simple application running on local computer. The Internet is
very expensive and very slow so that it is very hard to update a program. So there is almost no
update for programs. Things are change very much now. Computer is very popular; nearly everyone
has a personal computer. Now we have high-speed internet and the cost is very low. | mention these

changes so we can imagine how much programs change now.

Today, software is very large and popular. Software is not only local programs but also the Internet-
based programs (can be called web applications). We can see many types software such as system
software, programming software, application software. The most popular type is application
software. They are broadly use in many areas from entertainment to hospital or education. With the
fast Internet connection, application can be updated easily. They need to be updated to fix bug,
change content or design, add new features... So the update of software is one of the most

important parts in development software industry.

However, when compared to a traditional application, a web application provides a wider range of
application users, a wider range of tasks and interaction styles, more complex technological
infrastructure and a broader range of contextual issues. For this reason, when updating a web
application, we often make sequence updates instead of independent update. The updating process
of web application is often called “upgrading”. So with a technique that can make the non-stop
updating a component, we cannot confirm that it can be applied in the reality because we cannot
sure about the data after a sequence of updating process. In a web application, almost application is
very large and the data that is changed by updating a component can effect to other components.
Furthermore, the data path of an application can be changed frequently because of changing

business rules.
10

1.1. Problem

There will be no problem if all applications can use normal update method. In the simplest method,
upgrades require the application to be stopped, made updates then restarted it again. This method

is still acceptable with some local applications or programs that not need to work continuously.

However, as | mentioned before, the increasing of the Internet’s importance and the relationship
between it and global economy has made many non-stop services. Non-stop means the application
run continuously without any interruption. These applications need to operate continuously because
the cost of stopping service is very high. The economic cost of downtime for some online shop such
as amazon.com or eBay can be hundreds of thousands of dollar per hour, the cost even higher for
credit card providers, brokerages; it can be millions of dollar per hours. Besides economic
applications, there are many other computer programs that must be non-stop working. This is
especially necessary to critical applications such as financial applications, air traffic control systems,

etc...

All of these applications need non-stop operation and still need upgrades. So the simplest update
method cannot apply for these non-stop applications. So we need other method to solve this
problem. Moreover, there are many other applications that do not necessarily require non-stop
upgrade but would get benefit from it. For example, instead of rebooting desktop computer every

time its operating system is upgraded, we would prefer to make the updates dynamically.

1.2. Objective

With above overview, we can see that the non-stop upgrade has an important role today. There are
many researches to find the way to solve this problem. | will mention more about these approaches
later. My research goal is to find the architecture for making non-stop upgrading web applications.
However my target in the research is not focus on implementation part of making non-stop
upgrading architecture. Instead of that, | focus on checking and evaluating the upgraded system to

inspect about the consistency of system data.

11

1.3. Dissertation organization:

In chapter 2, we will discuss about the background knowledge using in this research. In this chapter,
we will deal with some basic idea related to making a non-stop upgrading system. We will present
about the maintenance process using in software development, about the web-based systems. We
will also study about a concrete application system, the Electronic Commerce System. The last
content in this chapter are some background about non-stop upgrading of application and some

related work in local programming language, C for example.

In chapter 3, we will present about our approach for making non-stop upgrading for web application
system. In this chapter, we will examine the tools using for modeling a system. Using these tools, we
can easily control the operation of the system in component viewpoint and data viewpoint. We will
use two tools in our research that are Architecture Analysis and Design Language (AADL) and
Restricted Sequence Diagram. After that, we will categorize updating operation by using two

mentioned tools.

The next chapter, chapter 4, we will apply our approach to analysis concrete example by using the
Electronic Commerce System (E-Commerce). We will introduce about E-Commerce functions then
we will model its structure by using AADL. And then, with the combination of AADL and Restricted

Sequence Diagram, we will study all types of updating in E-=Commerce System.

In chapter 5, we will examine about non-stop upgrading process and the step to achieve non-stop

upgrading web application. And the last chapter is the conclusion and the works in the future.

12

Chapter 2:
Non-stop upgrading

2.1. Software maintenance

Software maintenance is a step in software development processes. Software maintenance is the
modification of a software product after the deployment of that product. Software maintenance
purpose is correcting bugs or improving the performance. However, software maintenance is
considerably understudied area while the company and other organizations are still paying the
maintenance cost. This problem is referred by Seacord et al. in 2003 and summarized by Jussi

Koskinen in the following table:

13

Year Proportion of Definition Reference
software
maintenance costs

2000 >90% Software cost devoted to system | Erlikh (2000)
maintenance & evolution / total
software costs

1993 75% Software maintenance / information | Eastwood (1993)
system budget
(in Fortune 1000 companies)

1990 >90% Software cost devoted to system | Moad (1990)
maintenance & evolution / total
software costs

1990 60-70% Software maintenance / total | Huff (1990)
management information systems
(MIS) operating budgets

1988 60-70% Software maintenance / total | Port (1988)
management information systems
(MIS) operating budgets

1984 65-75% Effort spent on software | McKee (1984)
maintenance / total available
software engineering effort.

1981 >50% Staff time spent on maintenance / | Lientz & Swanson
total time (in 487 organizations) (1981)

1979 67% Maintenance costs / total software | Zelkowitz et al.
costs (1979)

Table 1: Proportional software maintenance costs for its supplier.

We can see in the table, the software maintenance cost ratio is increased over time. The

maintenance cost is a very large part in software development.

14

2.2. Web-based systems

Web-based systems are still application system but the main different is that these system work over
the Internet. With this characteristic, the mechanism for making update a web-based system is

different to the mechanism for making update a local system.

There are some standards for making web application system. However, in this research, we choose
Java Enterprise Edition as the design standard for web application. This is 3-Tier Java Enterprise

Edition application model:

Figure 1: 3-Tiers Java Enterprise Edition application model

In this architecture, users through client send the request to web application. The request usually is
the command to get some information from the system. Web application, or the business object in
Java Enterprise Edition, will process these request and send the query to retrieve data to the
database. The database will reply the data back to the web application and the web application will

response the data to users.

15

2.3. The Electronic Commerce System (E-Commerce System)

The Electronic Commerce System case study is a World Wide Web-based application. E-Commerce
System uses software agents as intermediaries between user interface clients and servers. In 3-Tier

application model viewpoint, the agents are the business objects.

We choose the Electronic Commerce System as our concrete example for case study because of its
specific features. As we know, a generic electronic commerce system is a large-scale system. So we
can use it to represent to other web application system. Other feature of Electronic Commerce
System is that the data in the system can change frequently because of the change of business rules.
The data flow in the system is not fixed like many local systems. Each function in Electronic

Commerce System can work independent to other functions.

2.4. Non-stop upgrading of application:

The maintenance cost is a large part in software development process. This is true especially with
global economic system. These types of application cannot stop working in any reason or they will
waste a lot of money. So it is natural to appear the need of making maintenance without stopping

the system.

In order to discuss about the mechanism of non-stop upgrading, we have to distinguish the term
“update” and “upgrade”. We use updating as process that we modify or replace a part of the system.
“Upgrading” is close meaning to “updating”. We also use upgrading as a process that changes the
system. However, upgrading is often concerned with sequence processes to make changes to the
system. In other words, upgrading is the process that achieves system maintenance by applying a
sequence of updating. In this dissertation, we focus on the architecture for realize the non-stop

upgrading the system.

16

2.5. Related work:

There are some approaches to this problem. Dynamic linking is a well-known mechanism to making
dynamic update. Systems based upon dynamic linking may add new code to a running program but

they cannot replace existing bindings with new one (Appel 1994; Perterson et al. 1997).

In 2005, Michael Hicks and Scott Nettles presented an idea about a general-purpose framework for
updating a program as it runs. They called that “dynamic software updating”. The requirement of
the framework is flexible, robust, easy to use, and efficient. Their research focuses on the task of

dynamically updating the code and state of a single process.

To concretize the research about “dynamic software updating”, in 2006, lulian Neamtiu, Michael
Hicks, Gareth Stoyle, and Manuel Oriol introduced a practical dynamic software updating framework

for C, called Ginseng. Ginseng is an implementation of a “dynamic software updating” system.

These approaches are for C language software. For the Java application, Edward Curry, Desmond
Chambers, and Gerard Lyons have designed the Chameleon framework. This framework is designed
to support the use of interceptors with a Message-Oriented Middleware platform to facilitate

dynamic changes.

There are some approaches for making non-stop software updating. Kuo-Feng Ssu and Hewijin
Christine Jiau introduce a method to compose a program using two replicated execution blocks. By

switching the execution blocks, the program can be modified without terminating its service.

Douglas Schmidt et al also introduced update patterns in 2000. There is a pattern called the
Interceptor architectural pattern. This pattern allows services to be added transparently to a

framework and triggered automatically when certain events occur.

However these approaches only focus on technical problem. They give us the structure to

programming the non-stop software updating.

17

Chapter 3:

Our approach for non-stop upgrading

3.1.Formal definition of an application

In order to archive the goal, we need tools that can help us to describe the system formally. We
need a language to model the application precisely but not so particularly. We only focus on the data
and how the system controls the data, so we choose Architecture Analysis and Design Language in

this research.

3.1.1. Architecture Analysis and Design Language (AADL)

The AADL is a modeling language released by the Society of Automotive Engineers in November
2004. The AADL provides us formal modeling concepts; we can use these concepts to describe and
analyze applications or systems architecture. Architecture Analysis and Design Language describe
the system in terms of components and their interactions so that AADL is effective for model-based

analysis of system applications.

The central element in AADL is component. Each component will be assigned a unique identity. A
component is declared by type and implementation. Component type is used for define interface
elements and external attributes of the component. Otherwise, component implementation

declaration defines the component’s internal structure. There are three sets of components in AADL:

* Application software: thread, thread group, process, data, subprograms.
e Execution platform: processor, memory, device, bus.

e Composite: combine of two such as system.

18

The AADL structure for defining a component type is as following:

conmponent _type {nane}
ext ends {conponent type}
features

flows

properties

A component {name} of type {component_type} can be extended by another component type.
{features} are the interfaces of this component. {flows} specify channels of information transfer in

this component. {properties} define intrinsic characteristics of the component.
A component implementation specifies an internal structure of the component.

Type inplenmentation {type nane}.{inpl ementati on nane}
ext ends
refines type
subconponent s
calls
connecti ons
flows
nodes

properties

Besides two main elements component type and component implementation, AADL language still
has other elements. There are packages, property sets and annexes. However, in this research, we
only care about component type and component implementation so we do not need to go to detail

with other elements.

An AADL specification can be expressed by three types: text, graphic or Extensible Markup Language
(XML).

19

[AADL Graphical Sy XM[|

Figure 2: 3 types of an AADL specification

3.1.2. Restricted Sequence Diagram

We can use AADL to describe the elements of system. Using AADL we can easily control the
components and the transference of data in the system. We can easily see how many data port each
component has, where the data goes. However, we cannot determine the order of data flows so we
use another tool for solving this problem. A Sequence Diagram in Unified Modeling Language (UML)
is a kind of interaction diagram that shows how processes operate with other processes and their
order. In our research, we do not need to use all function of UML Sequence Diagram, we use some
main idea of Sequence Diagram to help us in describe the system more clearly. We call this

Restricted Sequence Diagram.
The reasons that we call it Restricted Sequence Diagram because of two following reasons:

¢ The first one is that we will ignore guard conditions of the data flow in original Sequence
Diagram. In Sequence Diagram, some flows need the specific condition with the format
[Condition] f. However, in Restricted Sequence Diagram, we ignore this.

e The second one is that we will ignore the arguments of the data flow because these

arguments are described in AADL.

In Restricted Sequence Diagram, we care about three elements: objects, flows and their order. For
each of flow f, we have the source of f and destination of f. The source and the destination of a flow

is belongs to the set of objects. The order of flows is a reflex from natural number to the flow f.

20

Definition 3.1:

Restricted Sequence Di agram can be defined as follow ng fornula:
RSD = (O, F,order)

where:

O: set of objects or instances

F:set of message flows

Vf € F: f(source, destination)

source, destination € O

order:N - F={<1,f ><2,f, > .., <kf>.}

Figure 3 is an example of Restricted Sequence Diagram. In this example, we have 3 object 01, 02, 03;
three flow f1 from o1 to 02, f2 from 02 to 03, f3 from 03 to ol. And the order of three flow is f1, f2,

f3 corresponding.

In this:
o1 02 03
LiF10 R 0 = {04, 0,,03}
2:f20 5 F = {fi (01,02), f2(02,03), f3(03,01)}

order:{< 1,f; >< 2,f, ><3,f3 >}

3:f30

N S
&

Figure 3: An example of Restricted Sequence Diagram

Using Restricted Sequence Diagram, we can express the system’s action with more accurately and
more precisely. Combining with AADL, we can easily describe dependencies caused by message

flows of the system.

21

3.2. Categorization of updating types

We know that a web application is a large-scale system. So the update also has many different forms.
In order to research about non-stop upgrading, we need to distinguish these kinds of updating to

know about the different of data using in each type and the identity of each updating type.

In our research, we categorize updating type of system into 5 types. The purpose of this is specifying

each type of updating

e Type 0: the component is updated only inside of this component.

e Type 1: the component will have a new connection to a new component.

e Type 2: the component will have a new connection with existed component and the
direction of this connection is not specified.

e Type 3: the component will have a new connection with existed component like type 2 but
the direction of this connection is depend on existed connection.

* Type 4: a new component will be added between two existed components.
In this part, we use some definition as following:
AO: Set of updated objects in Restricted Sequence Diagram.
AF: Set of updated flows in Restricted Sequence Diagram.
ports(o): The set of data ports of o where o is a component.
used(f): The set of data ports used by f where f is a data flow.

Where ports and used are calculated from AADL description corresponding to component o and flow

f.

The compatible between two components is defined as the port of first component ol is equivalent
to the port of second component 02. That means component ol can be replaced by the component

02 without changing of message flow or data flow and vice versa.

22

Definition 3.2:
We define the concept about the compatible between two components:

compatible(o4,0,) = ports(o,) ~ ports(0,)

3.2.1. TypeO:

We call first type of updating as updating type 0. In this type, the updated component only has
internal changes. This updating type is implemented a lot in reality because we need to change
function of a method frequently. For example, we often need some minor update to application

such as change the message to notify the customer or change the business of a function.

In Figure 4, the updated version C1’ of C1 is made by updating C1’s internal elements, F1 and F2.

)
y I
et

——
T

Figure 4: Updating Type: Type 0
In this type, the input and output data flow of new component is same to old component. All of new
component data ports must be same to old component data ports. In other words, this type of
update does not change the component from outside viewpoint. So the new component F1’ must be

an extension of old component F1. Similarly, F2’ must be an extension of old component F2.

Definition 3.3:

We assume that the system S before updating is
S ={C,} with ¢, = (F, F,)

so the system after updating is

S' ={C{}with C{ = (F|,F;)

Updating type 0 of system S is:

Up [ST= 5"

where

compatible (F, ,F;’) and compatible (F, ,F,")

23

The compatible between two internal parts of a component means that the updated part does not

change the function and data flow of this component.
Characteristic of type 0 updating:

e AADL:
0 Number of components is unchanged.
0 Data port: same
0 Data flow: same
e Restricted Sequence Diagram
0 Set of object: same

0 Set of flow: same

3.2.2. Typel:

The next type of updating is called updating type 1. In this type, a component in system will have a
new connection to a new component. For example, instead of getting only customer information,
we want to update the customer business object to get the total fund that the customer spent. In

this case, the customer business needs to have a new connection to account database, for example,

to get the extra data.

Figure 5 is showed the description model that the component P will have new connection to new

component Cqy-

24

—1 —1
A W A (N
V4 V4
V4 V4
V4 V4
y4 V4
V4 V4
V4 V4
17 , 17
v r— i/ | ——
1 = = 4
i
Figure 5: Updating Type: Type 1
Definition 3.4:

We assume that the system S before updating is:
S = {P,C,C}

So the system S’ after updating will be:

§'= {P', Cl' C2: Cnew}

Updating type 1 of system S is:

U [S] = (&)

Characteristic of type 1 updating:

e AADL:
0 Number of components after update increased by one.
0 Data port: data ports of P are increased proportional to the addition of the new
component.
0 Data flow: similar to the changing of data ports.
e Restricted Sequence Diagram:

0 Set of object: set O’ (after update) is a superset of set O.

0 =0V A0
0 Set of flow: similarly, set F’ (after update) is a superset of set F.
F'=FU AF

0 New flows must be related only to new objects.
used(AF) = ports(A0) U (ports(P") \ ports(P))
25

3.2.3. Type?2:
Next, the updating type 2 has a little similar to the updating type 1. In type 2 updating, a component
will have a new connection with an existed component instead of a new component. The direction

of this connection is not considered.

For example, the original version of a function is getting id and price of products. If we update the

component to get the extra description from the same database, this is called the updating type 2.

IEEE—N IEEE—N
P Ll — - | — = = P—
Ci C2 —— Ci 2z
L1 L2 = L1 _ L2
—]
=
~a’ ~n/
i Z
e

Figure 6: Updating Type: Type 2
Consider this updating model in Figure 6, after updating we have a new connection from C," to C,’ (in

red color). The order of this connection can be from C,’ to C,’ or vice versa.

Definition 3.5:

Updating type 2 of two components C1 and C2 is:
Uz[s] = (89

where

{S = (€1,C3)
S'= (C1,C3)

and ports(C,) c ports(Cy)

and ports(C,) c ports(Cy)

Characteristic of type 2 updating:

« AADL:
0 Number of components is unchanged.
0 Data port: data ports after updating are increased corresponding to the flow.
0 Data flow: data flow after updating increased by one.

e Restricted Sequence Diagram:
26

0 Set of object: set O’ is same to set O.

0 Setof flow: set F’ (after update) is a superset of set F.

3.2.4. Type3:
Updating type 3 is similar to updating type 2 except the direction of new data flow is depend on
previous data flow. For example, after buying items, the application will store the order in the order
database. However; if we want more guarantee, we will update the application that response the

confirmation for successful updating.

—" —"
—1 2 —_— —17 N ey X4
L L _————— [. ad L
]

Figure 7: Updating Type: Type 3

The new data flow (in red color) depends on the existed data flow.

Definition 3.6:

Updating type 3 of two components C;and C, is
Us[ST= (S")

where

{S = ((1,C)
S'= (€, C)

and ports(C,) c ports(C;)
and ports(C,) c ports(Cy)

Characteristic of type 3 updating:

e« AADL:
0 Number of components is unchanged.
0 Data port: data ports after updating are increased corresponding to flow.
0 Data flow: data flow after updating increased by one.

e Restricted Sequence Diagram:
27

0 Set of object: set O’ is same to set O.

0 Setof flow: set F’ (after update) is a superset of set F.
We assume that order of f € AF isn and f has form f(0soyrcer Odestination)
then f,,_; at order n — 1 must have form f,,_1(0gestination » Osource)

0 Order: in this type, the order will have specific condition: the source of new data

flow must be the destination of existed data flow.

3.2.5. Type4:

In this final type of updating, there will be a new component added between two existed
components. Data flow between two existed components will be sent to a middle component, the

new one.

1

Fals
i

L

Figure 8: Updating Type: Type 4
In the example, data between two existed components, C1 and C2, will pass to an intermediate

component, a new component, Coey.

Definition 3.7

Uy[S1=(S")

where S = (C1,C,) and S’ = (Cy, Cy, Cpow)
and ports(Cpe,) = ports(C;) U ports(C,)

28

Characteristic of type 4 updating:

e AADL:
0 Number of components is increased by one.
0 Data port: data ports after updating is more than those before updating.
Vp € ports(AF), p € ports(Cpey) U ports(Cy) U ports(C,)
0 Data flow: data flow after updating increased too.

e Restricted Sequence Diagram:

Figure 9: Restricted Sequence Diagram of updating type 4

0 Set of object: number element of set O’ is more than the number element of set O.
0'=0UA0

0 Set of flow: set F’ (after update) is
F' = AF

29

3.3. Our architecture for upgrading:

3.3.1. Interceptor pattern:
The Interceptor architectural pattern is one of pattern-oriented software architecture introduced in
as a pattern for concurrent and networked objects. The Interceptor architectural pattern allows
services to be added transparently to a framework and triggered automatically when certain events

occur.

So we can use this architecture to control data flow in the system.

»
re

Figure 10: Concept diagram of Interceptor architecture

In our research, we define architecture depend on the idea of the Interceptor architectural pattern.

3.3.2. Our defined architecture:
We want to improve the behavior of Interceptor pattern by introducing Interceptor Configuration.
The Interceptor Configuration will control the activities of Interceptor to perform the updating in the

system.

30

o e b
LUITIpulIiIciiv

Reques

Figure 11: Our architecture for non-stop upgrading

In our architecture, after sending upgrading request to the system, the request will be sent to two
controllers: Component Controller and Flow Order Controller. These two controllers will affect the
Interceptor Configuration. The Interceptor Configuration will control the behavior of Interceptor in

the system so that it will control the data flow in the system to perform non-stop upgrading.

3.3.2.1. Role of Component Controller

The Component Controller will get the information about the changing of components in the system

depend on AADL of system before and after each updating.

31

|||

»
>

)\ 4
e ————
1
[1Ient |
iindatino
Upaating
MNinAvradin
uperation

Figure 12: Component Controller

The Component Controller has these functions:

¢ Manage components and data ports before and after update
¢ Send this information to Interceptor Configuration to determine what update will be

performed.

3.3.2.2. Role of Flow Order Controller

The Flow Order Controller will get information from RSD specification and send information to

Interceptor Configuration to control the updating time of the system.

32

Figure 13: The Flow Order Controller

The role of Flow Order Controller:

e Manage the order of message flow before and after update

¢ Send information to Interceptor Configuration to determine the suitable time to update.

3.4. Our updating architecture specification:

3.4.1. Typel

3.4.1.1. Specification and updating operation request

33

In updating type 1, we have two components as following:

m.

R
— —
I — I —
I 7 I S

\

Figure 14: Updating type 1 - Before

After updating, the diagram changes into:

Figure 15: Updating type 1 - After

Update Operation request will be sent to the controllers with following specification:

Updat e_Typel (C)

{
Add_Conponent (G);
Add_Connection (m (C;, C));
Add_Connection (m (C;, C));
}

Upgrading is a sequence of updating so that the specification included the updating type and the

component being updated:

Updat e_Typel (C)

34

In this case, updating type 1 will have 3 commands. The first one is the command that add a new

component. Two next commands are two adding connection commands. The connection adding

command will include the name of the new connection, the source and the destination of the

connection.

Add_Conponent (GC;);
Add_Connection (m (C;, G));
Add_Connection (m (C;, C));

3.4.1.2.

The real architecture using Interceptor Proxy

In the real implementation of our architecture, Interceptor pattern has the role of intermediate

controller between components in the system. Interceptor will control data flow

order to manage system updating.

Figure 16: Interceptor implementation in updating type 1

in the system in

Interceptor Configuration store the information about activities of Interceptor Proxy

&)

m (G, &)

{
my (G, 1P pi)
my (IP: poy,

}

m (& G)

{

My (Q! I P pl 2)

ma (1P poy G)

The first line define the name of connection including the source and destination of it

m(C, G)

This connection will be managed by two real connections. In each of these connections, the
specification describes the source and the destination. If the destination or source is Interceptor, we

will specify the input or output port of Interceptor.

m; (G, P pij)
m, (1P po;, &)

For example, the connection my; from C; to Interceptor will be specified the input port pi; in the

Interceptor.

The implement system after updating is described as following:

T4

f 1
I m 1
| My i
! i
—eee —
L 1 L 1
- ~ | r~
— . — (5 |
— 1 — 2
_— _—
A A
1 1
1]
i |
My,

my; ms,

Figure 17: Interceptor implementation after updating type 1

36

m (G, G)

{
mi (G, 1P pij)
m, (1P po;, G)
}
m (G, G)
{
my (G, 1P piy)
M, (1P poy, G)
}
/1 New el emrents:
m (G, G)
{
m; (G, 1P pij)
my (1P pos, G)
}
m (G, C)
{
My (G, P pis)
M, (1P poy, C)
}

Depend on the specification of Interceptor Configuration; we can determine the updating time when

m,, is finished.
3.4.2. Type?2

3.4.2.1. Specification and updating operation request

In updating type 2, we have two components as following

m,

_C N

Figure 18: Updating type 2 - Before

37

After updating, the diagram changes into:

m m
— + — — + | —
[. e 1
I I AhS— [(| [
[N~ e | N~ [T N - I~ B
— y — [&1 y B—

2 m.

m;

Figure 19: Updating type 2 - After

Update Operation request will be sent to the controllers with following specification for each case:

Figure 20: Case 1

Updat e_Type2 (C, G)

{
Add_Connection (m (G, C));

Figure 21: Case 2

Updat e_Type2 (C, G)

{
Add_Connection (m (C;, G));

38

3.4.2.2. The real architecture using Interceptor Proxy

The implementation using Interceptor before updating is as following:

ii

Figure 22: Interceptor in type 2 - Before

m (G, &)
{
m; (C, 1P piyg)
my (1P poi, &)

And after updating:

iTiqq -

E*)
i
i
)
5
NS

I

T
(@]

| ‘l
o]
(@]

[}

—l

my;

Figure 23: Interceptor in type 2 — After (Case 1)

39

m(C, G)

{
my (G, P pij)
my (1P poi, &)
}
[| New
m (G, G)
{
my (G, P piy)
my (1P: poy G)
}

Case 2 of updating type 2:

...,
=
=

3

Figure 24: Interceptor in type 2 — After (Case 2)

m (G, G)
{
my (G, P pi)
my (1P poi, &)

}
[| New
m (C, C)
{
my (G, P pij)
my (1P poi, &)
}

40

3.4.3. Type3

3.4.3.1. Specification and updating operation request

In updating type 3, we have two components as following before updating:

Figure 25: Updating type 3 - Before

After updating, the diagram changes into:

Figure 26: Updating type 3 - After

Update Operation request will be sent to the controllers with following specification:

Updat e_Type2 (C, G)

{
Add_Connection (m (G, C));

3.4.3.2. The real architecture using Interceptor Proxy

41

The implementation using Interceptor before updating is as following:

I
pi, L
]]
— | — . |
| © E— —
v 1 y E—
| —— |
1 —
PC, T
- I
1
m.,
R VA
Figure 27: Interceptor in type 3 - Before
m (G, G)
{
mi (G, 1P pig)
m, (1P po;, &)
}
After Updating
21
! i
I . I
I (o] I DL H
! L \ iz !
[— [—— [——
1 1 1
Y el [1D [~]
[9] I § I~ T
I =T I | —— [V9 |
Y — -1 1 Iy e—
L) no no)
] MY pY2 i
my,
My,

Figure 28: Interceptor in type 3 — After

42

m(C, G)

{
my (G, P pij)
my (1P poi, &)
}
m (G, G)
{
my (G, P piy)
my (1P pox, G)
}

3.44. Type4

3.4.4.1. Specification and updating operation request

In updating type 4, we have two components as following

Figure 29: Updating type 4 - Before

After updating, the diagram changes into:

Figure 30: Updating type 4 - After

Update Operation request will be sent to the controllers with following specification:

Update_Typed (C, C)

{
Add_Conponent (G;);
Add_Connection (my (C, G));
Add_Connection (m, (GCs, G));
Add_Connection (my (G, GC3));
Add_Connection (ms (Cs, C));
}

3.4.4.2. The real architecture using Interceptor Proxy

The implementation using Interceptor before updating is as following:

Sl m..
TTTAL
i i
i i
I]
i i
—
1
— ¢]
 a—
P 1
I'y
/i\
i
[
i
V4

Figure 31: Interceptor in type 4 - Before

Interceptor Configuration stores the information about activities of Interceptor:

m (G, &)
{
m: (G, IP: pij)
mz (1P po;, &)

}
m (G G)
{
my (G, P piy)
my (IP: poy, G)
}

44

After Updating:

] i
i i
i i
I— I—
I a— I ei—
T — — CO5 |
— = | — = |
I ' ; E——
1 POL{ PP2|PO; 1
i i | i
i]
L 1
1
1
I
v
E——
1
I —
[~2 =
Figure 32: Interceptor in type 4 - After
n].l (C.I.v Qi)
{
mu (G, P pig)
mi, (1P pos, G)
}
an (C31 (:l)
{
Mmoo (G, 1P pis)
Mo (1P poy, C)
}
n’kl (Qv Qi)
{
M1 (G, 1P piy)
Mo (1P pos,)
}
n’kZ ((>31 QI.)
{
M1 (G, P pis)
M2 (1P poy G)
}

45

Chapter 4:
Case study

After preparing background knowledge about the using of Architecture Analysis and Design
Language and Restricted Sequence Diagram, categorizing types of updating, we have the tools to
describe the system. In this chapter, we will put them into practice by apply to the concrete example.
In this case, we will analyze the updating types on the Electronic Commerce System case study (E-

Commerce).

4.1. Overview functions of E-Commerce System

In the electronic commerce system, there are customers and suppliers. Each customer has a contract
with a supplier for purchases from that supplier and has one or more bank accounts to make the
payments to suppliers. Each supplier provides a catalog of items, accepts customer orders, and

receives payment from customers.

Requisition

O
—_ X

Invoice Bank

Confirm
Delivery

Figure 33: E-Commerce Function

46

A customer is able to browse several catalogs provided by the suppliers and make selections of items
that he need to purchase. The customer’s order needs to be checked against the available contracts
to determine if there is a valid customer contract with the supplier. These contracts will be used for
charging the purchase. Each contract has operations funds committed to it. It is necessary to
determine that sufficient funds are available for the customer order. Assuming that the contract and
funds are in place, a delivery order is created and sent to the catalog supplier. The supplier confirms
the order and enters a planned shipping date. When the order is shipped, the customer is notified.
The customer acknowledges when the shipment is received and the delivery order is updated. After
receipt of shipment, authorization for payment of the invoice is made. The invoice is checked against
the contract, available funds, and delivery order status. After that, the invoice is sent to accounts
payable which authorizes payment of funds. Payment is made through electronic funds transfer

from the customer bank to the supplier bank.

The data using in E-Commerce is list in the following table:

Entity Data

Customer customerlD: Integer
address: String
telephoneNumber: String

faxNumber: String

Inventory itemID: Integer
itemDescription: String
quantity: Integer
price: Real

reorderTime: Date

BankAccount bankID: Integer
locationOfBank: String
bankAccountNumber: String

accountType: String

DeliveryOrder orderlD: Integer
plannedShipDate: Date

actualShipDate: Date

47

creationDate: Date
orderStatus: String
amountDue: Real

receivedDate: Date

Contract

contractlD: Integer

maxPurchase: Real

Supplier

supplierID: Integer
address: String
telephoneNumber: String

faxNumber: String

Invoice

invoicelD: Integer
amountDue: Real

invoiceDate: Date

Selectedltem

itemID: Integer
unitCost: Real

quantity: Integer

Catalog

itemID: Integer
itemDescription: String

unitCost: Real

Payment

paymentlD: String
amount: Real
date: Date

status: String

Requisition

requisitionlD: Integer
amount: Real

status: String

OperationFunds

operationFundsID: Integer
totalFunds: Real
committedFunds: Real

reservedFunds: Real

Table 2: Structure of all data entity in E-Commerce System

48

In E-Commerce System, there are six functions.

g

Uy

Figure 34: Six function of E-Commerce System

49

4.1.1. Browse Catalog:

Ciictomer Inout
~uUoLvINiIvCa III'JUL
—
—_— 7
—
[A b
—Custorre
I -
e —, ’_

Figure 35: Browse Catalog Function

First function is Browse Catalog function. Using this function, users use Customer Client to send a
browse catalog request. After receiving the request from client, customer business object will make
a query to server to get the catalog information from catalog database. After that, customer

business object will response the data back to customer client.

4.1.2. Place Requisition:

50

Figure 36: Place Requisition Function

The next function in E-Commerce System is Place Requisition function. In this function, a customer
will select item from catalog and send the request to create a requisition through Customer Client.
Then the request will be sent to Customer Business Object. Customer Business Object instantiates

the Requisition Business Object and passes customer’s request to it.

Next, Requisition Business Object will check from Contracts Database to check whether the contract
between the customer and the supplier is existed. If contract is ok, Requisition Business Object will
send a reserve funds request to the Operations Funds Server to hold the funds from a given contract

for this requisition.

After receiving confirm that the funds have been reserved, Requisition Business Object approves the
requisition and stores at the Requisition Database. Requisition Business Object sends the requisition

status to the Customer Business Object then the Customer Business Object instantiates a Delivery

51

Order Business Object and sends the purchase request to it. Delivery Order Business Object stores

new delivery order in Orders Server.

Finally, Customer Business Object sends the requisition status to the Customer Client to display the

status to the customer.

4.1.3. Process Delivery Order:

Delive

Figure 37: Process Delivery Order Function

The supplier requests a new delivery order through Supplier Client.
The Supplier Client forwards the request to the Supplier Business Object.
The Supplier Business Object sends the order request to the Delivery Order Business Object

The Delivery Order Business Object selects a delivery order by querying the Orders Server.

AN S

The Delivery Order Business Object sends the delivery order back to the Supplier Business
Object

6. The Supplier Business Object checks whether the items are available in Inventory Server.

52

7.

N o v ~ w N oPe

The Supplier Business Object sends the order status to the Supplier Client to display the

delivery order and inventory information to supplier.

4.1.4. Confirm Shipment

Suppiier

Figure 38: Confirm Shipment Function

The supplier inputs the shipping information.

The Supplier Client sends the supplier request to the Supplier Business Object.

The Supplier Business Object updates the inventory stored at the Inventory Server.

The Supplier Business Object sends the order status to the Delivery Order Business Object.
The Delivery Order Business Object updates order status the Orders Server.

The Delivery Order Business Object sends the order status to the Customer Business Object.
The Customer Business Object forwards the order status to the Customer Client to display to

the customer.

4.1.5. Confirm Delivery

53

Confirmation

Figure 39: Confirm Delivery Function

Customer uses Customer Client to send delivery confirmation to the Customer Business
Object.

The Customer Business Object sends a Shipment Received message to the Delivery Order
Business Object.

The Delivery Order Business Object updates the status at the Orders Server.

The Customer Business Object sends a Shipment Received message to the Requisition
Business Object.

The Requisition Business Object updates the status of the requisition stored at the
Requisition Server.

The Requisition Business Object commits the funds for this requisition with the Operations

Funds Server.

54

L 0 N o e

11.

12.

13.

14.
15.

4.1.6. Send Invoice:

Eiectronic

e €——— aeaaaaal Electronic

Figure 40: Send Invoice Function

The Supplier Business Object sends the invoice information to the Invoice Business Object.
The Invoice Business Object subscribes to the Delivery Order Business Object.

The Delivery Order Business Object notifies the Invoice Business Object that the goods have
been received.

The Invoice Business Object sends a contract query to the Contracts Server.

The Contracts Server confirms the contract.

The invoice Business Object sends a funds query to the Operation Funds Server.

The Operation Funds Server confirms that the funds are available and committed.

The Invoice Business Object sends the invoice to the Accounts Payable Server.

The Accounts Payable Server sends the payment status to the Invoice Business Object.

. The Invoice Business Object stores the invoice at the Invoice Server.

The Invoice Business Object sends the electronic payment to the customer’s bank via the
Bank Server Client.

Bank Server Client sends the electronic funds to the customer’s bank for payment to the
supplier.

The Invoice Business Object sends the invoice status to the Supplier Business Object.

The Supplier Business Object sends the invoice status to the Supplier Client.

The Supplier Client displays the invoice status to the supplier.
55

4.2, Structure

In the previous section, we examined all function of the E-Commerce System. In this part, we will
model E-Commerce System by using Architecture Analysis and Design Language. With AADL model

of E-Commerce System, we will easily control the data port of each component in the system.

56

——> Browse Catalog ———> Place Requisition ——> Process Delivery Order
———> Confirm Shipment > Confirm Delivery Send Invoice

Figure 41: All function of E-Commerce System

57

4.2.1. Browse Catalog:
In the first function, Browse Catalog, the overview of this function can be described using AADL

graphical type as following:

Figure 42: Browse Catalog in AADL

4.2.1.1. System Definition
The first component we describe in the system is Customer Client component. This component have
two data ports: the first data port oCatalogBrowse is output data port to send a request string to
Customer Business Object and the second one iCatalogResponse is input data port to receive the
response data back from the Customer Business Object. In the E-Commerce System, almost all data
ports are event data port because they need specific event to trigger sending or receiving data.

Component Customer Client can be described by AADL text type as following:

system Custonmer d i ent
features
oCat al ogBrowse: out event data port string;
i Cat al ogResponse: in event data port dCatal og.reg;
end Custonerdient;

The next component is the Customer Business Object component. Customer Business Object has 4
data ports: two input ports and two output ports. First, the Customer Business Object receives the
catalog browsing request through the input event data port iCatalogBrowse. After that, it will make a
query to Catalog Database through the output event data port oCatalogQuery and get the response
by input event data port iCatalogResult. Finally, the data will be sent back to Customer Client using

output event data port oCatalogResponse.

syst em Cust omer Busi ness
features

i Cat al ogBrowse: in event data port string;

58

oCat al ogQuery: out event data port string;
i Catal ogResult: in event data port dCatal og.reg;
oCat al ogResponse: out event data port dCatal og.reg;

end Cust oner Busi ness;

The last component in this Browse Catalog function is Catalog Database (CatalogDB). CatalogDB
receives the browse catalog query from Customer Business Object and returns the catalog data to

the Customer Client.

syst em Cat al ogDB
features
i Catal ogQuery: in event data port string;
oCat al ogResul t: out event data port dCatal og.reg;
end Cat al ogDB;

4.2.1.2. Data Definition
The data use in this function is string for making the query and the result is dCatalog with the

structure is dCatalog.reg (regular implementation).

data dCat al og

end dCat al og;

data i nplenmentation dCatal og.reg

subconponent s

item D int;
i temDescription: string;
uni t Cost: real;

end dCat al og. reg;

59

4.2.2. Place Requisition

The graphic model of this function is as following:

Figure 43: Place Requisition in AADL

4.2.2.1. System Definition
In the Place Requisition function, Customer Client has two more ports: output data port
oRequisitionPlace and input data port iRequisitionPlaceResponse. Customer will use client to send
his selected item through oRequisitionPlace output port and then will get the status of his

requisition through iRequisitionPlaceResponse input port.

system Customer d i ent
features
oRequi sitionPlace: out event data port dSel ectedltemreg;
i Requi si tionPl aceResponse: in event data port dRequisition.reg;

end Custonerdient;

CustomerBusiness component also has more ports: 2 input ports and 3 output ports.

syst em Cust ormer Busi ness
features
i Requi sitionPlace: in event data port dSel ectedltemreg;
oRequi sitionPl acePass: out event data port dSel ectedltemreg;
i Requi sitionPlaceResult: in event data port dRequisition.reg;
oPur chaseRequest: out event data port dDeliveryOrder.reg;

60

oRequi si ti onPl aceResponse: out event data port
dRequi si tion.reg;

end Cust oner Busi ness;

This is the data port of RequisitionBusiness component.

system Requi si ti onBusi ness
features

i Requi sitionPlacePass: in event data port dSel ectedltemreg;
oContract Query: out event data port dCustom PR2;
i ContractResult: in event data port dContract.reg;
oFundReserve: out event data port dCustom PR3;
i FundReserveResult: in event data port dOperati onFunds.reg;
oRequi sitionStore: out event data port dRequisition.reg;
oRequi sitionPl aceResult: out event data port dRequisition.reg;

end Requi sitionBusi ness;

Next is the data components.

ContractDB component:

system Contract DB
features
i ContractQuery: in event data port dCustom PR2;
oContract Result: out event data port dContract.reg;
end Contract DB;

OperationFundsDB component:

syst em Qper ati onFundsDB
features
i FundReserve: in event data port dCustom PR3;
oFundReserveResul t: out event data port dOperationFunds.reg;
end Oper ati onFundsDB;

RequisitionDB component:

system Requi siti onDB

features

61

i Requi sitionStore: in event data port dRequisition.reg;

end Requi sitionDB;

OrderDB component:

system Or der DB
f eat ures
i DeliveryOrderCreate: in event data port dDeliveryOrder.reg;
end OrderDB;

Finally, this is the structure of DeliveryOrderBusiness component:

system Del i ver yOr der Busi ness
features
i PurchaseRequest: in event data port dDeliveryOrder.reg;
oDel i veryOrderCreate: out event data port dDeliveryOrder.reg;

end Del i veryOrder Busi ness;

4.2.2.2. Data Definition
In the Place Requisition function, we need to use some custom structure of data so we call it

dCustom.

data dCustom
end dCustom

With this custom structure data, we define two internal structures (two implementations) of

dCustom. First implementation is dCustom.PR2.

data inplenmentati on dCust om PR2
subconponent s
custoner!| D: int;
supplierlD: int;
end dCustom PR2;

Second implementation is dCustom.PR3.

data i npl enentati on dCustom PR3

subconponent s

62

contractlD: int;
reservedFunds: real;
end dCust om PR3;

The customer selects items they want to buy and send it to Customer Business to request the

creation of requisition. Structure of selected item data is as following:

data dSel ectedltem
end dSel ectedltem
data inplenmentation dSel ectedltemreg
subconponent s
iten D: int;
quantity: real;
uni t Cost: real;

end dSel ectedltemreg;

After the Requisition Business has sent a contract query to the Contract Server, the Contract Server

returns the contracts data with following structure.

dat a dContract
end dContract;

data i npl enentati on dContract.reg
subconponent s
contract!D: int;
maxPur chase: real;

end dContract.reg;

Operations Funds data structure:

data dOperati onFunds
end dQperati onFunds;

data inpl enentati on dOperati onFunds. reg
subconponent s
operationFundsl D: int;
t ot al Funds: real;

conm tt edFunds: real

63

reservedFunds: real;
end dOperati onFunds. reg;

Requisition data structure:

data dRequisition
end dRequi sition;

data inpl ementati on dRequisition.reg
subconponent s
requisitionlD: int;
anmount : real;
status: string;
end dRequi sition.reg;

4.2.3. Process Delivery Order

The graphic model of this function is as following:

Figure 44: Process Delivery Order in AADL

4.2.3.1. System Definition
Supplier Client

system Supplierdient
features
oRequest NewDel i veryOrder: out event data port string;
i Request NewDel i veryOr der Response: in event data port
dl nventory.reg;

64

end Supplierdient;

Supplier Business

system Suppl i er Busi ness
features

i Request NewDel i veryOr der:

oFor war dRequest :
i NewDel i ver yResponse:
oCheckl nvent ory:

i Checkl nventoryResult: i

oRequest NewDel i ver yOr der Response:

dl nventory.reg;

end Suppl i er Busi ness;

in event data port string;

out event data port string;
in event data port dDeliveryOrder.reg[];
out event data port dDeliveryOrder.reg ;

n event data port dlnventory.reg[];
out event data port

Delivery Order Business

system Del i ver yOr der Busi ness
features
i Forwar dRequest :
oQuer yNewDel i veryOr der:
i NewDel i ver yOr der Resul t:
dDel i veryOrder.reg[];
oNewDel i ver yResponse:
end Del i veryOrder Busi ness;

in event data port string;

out event data port string;

in event data port

out event data port dDeliveryOrder.reg[];

Orders Database

system Order sDB
features
i Quer yNewDel i veryOr der:
oNewDel i veryOrder Resul t:
dDel i veryOrder.reg[];
end OrdersDB;

in event data port string;

out event data port

Inventory Database

system | nvent or yDB

features

65

i Checkl nventory: in event data port dDeliveryOrder.reg;
oCheckl nventoryResult: out event data port dlnventory.reg[];

end | nvent or yDB;

4.2.3.2. Data Definition
Delivery Order data

data dDel i veryOrder
end dDel i veryOrder;

data i nplenentati on dDeliveryOrder.reg
subconponent s
orderld: int;
pl annedShi pDat e: dat e;
act ual Shi pDat e: date;
creationDate: date;
order Status: string;
amount Due: real;
recei vedDat e: date;

end dDel i veryOrder.reg;

Inventory data

data dlnventory
end dl nventory;
data i nplenentation dlnventory.reg
subconponent s
item D int;
i tenDescription: string;
gquantity: int;
price: real;
reorderTi ne: date;

end dl nventory.reg;

4.2.4. Confirm Shipment

The graphic model of this function is as following:

66

0
D
\

]‘||'e.-.-.-.| . |

!
f
3
i
o
3
)
i

Figure 45: Confirm Shipment in AADL

4.2.4.1.
Supplier Client

System Definition

system Supplierdient
features

oConf i r mShi pnent :

end Supplierdient;

out event data port dCustom CS1;

Supplier Business

syst em Suppl i er Busi ness

features

i Confi r nShi prrent :
oUpdat el nvent ory:
0SendOr der St at us:

end Suppl i er Busi ness;

in event data port dCustom CS1;
out event data port dCustom CS1;
out event data port dCustom CS1;

Delivery Order Business

system Del i veryOr der Busi ness

features
i SendOrder Status: in event data port dCustom CS1;
oUpdat eOrder: out event data port dCustom CS1;

0SendOr der St at usCust oner :

67

out event data port dCustom CS1;

end Del i veryOrder Busi ness;

Order Database

system Or der DB
features
i Updat eOr der :
end O der DB;

in event data port dCustom CS1;

Customer Business

syst em Cust oner Busi ness

features

i SendCr der St at usCust oner :

oDi spl ayOrder St at us:

end Cust omer Busi ness;

in event data port dCustom CS1;
out event data port dCustom CS1;

Customer Client

system Customer d i ent
features
i Di spl ayOr der St at us:

end Custonerdient

in event data port dCustom CS1;

Inventory Database

system | nvent or yDB
f eat ures
i Updat el nventory:

end | nvent or yDB;

in event data port dCustom CS1;

4.2.4.2. Data Definition

Another custom data: dCustom.CS1

data i npl enentati on dCust om CS1

subconponent s
orderID: int;

act ual Shi pDat e:

dat e;

68

order Status: string;

itemD{]: int[];

quantity[]: int[];
end dCustom CS1;

4.2.5. Confirm Delivery

The overview of this function can be described using AADL graphical type as following.

Figure 46: Confirm Delivery in AADL

4.2.5.1. System Definition

Customer Client

system Cust ormer d i ent
features
oConfirmDelivery: out event data port dCustom CS1;

end Custonerdient;

Customer Business

syst em Cust omer Busi ness
features
i ConfirmDelivery: in event data port dCustom CSI;

69

oForwar dUpdat eOr der St at us: out event data port dCustom CS1;
oForwar dUpdat eRequi sition: out event data port

dRequi si tion.reg;

end Cust omer Busi ness;

Delivery Order Business

system Del i ver yOr der Busi ness
features
i ForwardUpdat eOrder Status: in event data port dCustom CSI;
oUpdat eOrder Status: out event data port dCustom CS1;

end Del i veryOrder Busi ness;

Order Database

system Or der DB
features
i Updat eOrder Status: in event data port dCustom CS1;
end Order DB;

Requisition Business

system Requi si ti onBusi ness
features
i Forwar dUpdat eRequi sition: in event data port dRequisition.reg;
oUpdat eRequi sition: out event data port dRequisition.reg;
oCommi t Fund: out event data port dQperationFunds.reg;
i Commit FundResult: in event data port dQOperationFunds.reg;

end Requi sitionBusi ness;

Operation Funds Database

syst em Oper ati onFundsDB
features
i Commit Fund: in event data port dOperationFunds.reg;
oConmi t FundResul t: out event data port dOperationFunds.reg;
end QOper ati onFundsDB;

70

4.2.5.2. Data Definition

There is no new data using in this function.

4.2.6. Send Invoice

The overview of final function can be described using AADL graphical type as following.

Figure 47: Send Invoice in AADL

4.2.6.1. System Definition

Supplier Business

syst em Suppl i er Busi ness
features
oSendl nvoi ce: out event data port dlnvoice.reg;
i Sendl nvoi ceStatus: in event data port dlnvoice.reg;
oDi spl ayl nvoi ceStatus: out event data port dlnvoice.reg;
end Suppl i er Busi ness;

71

Supplier Client

system Supplierdient
features
i Di spl ayl nvoi ceStatus: in event data port dlnvoice.reg;

end Supplierdient;

A new component that appears in this Send Invoice function is Invoice Business.

system | nvoi ceBusi ness
features

i Sendl nvoi ce: in event data port dlnvoice.reg;
oCheckRecei ve: out event data port dCustom CS1;
i CheckRecei veResponse: in event data port dCustom CS1;
oCheckContract: out event data port dCustom PR3;
i CheckContract Response: in event data port dContract.reg;
oCheckFunds: out event data port dQperationFunds.reg;
i CheckFundsResponse: in event data port dOperationFunds.reg;
OAut hori zePaynent: out event data port dlnvoice.reg;
i Aut hori zePaynment Response: in event data port dPaynent.reg;
oStorel nvoice: out event data port dlnvoice.reg;
oSendPayment ToCust oner: out event data port dPaynent.reg;
oSendl nvoi ceStatus: out event data port dlnvoice.reg;

end

Delivery Order Business

system Del i ver yOr der Busi ness
features
i CheckReceive: in event data port dCustom CS1;
oCheckRecei veResponse: out event data port dCustom CS1;

end Del i veryOrder Busi ness;

Contract Database

system Contract DB
f eat ures
i CheckContract: in event data port dCustom PRS;
oCheckContract Response: out event data port dContract.reg;

72

end Contract DB;

Operation Funds Database

syst em Oper ati onFundsDB
features
i CheckFunds: in event data port dOperationFunds.reg;
oCheckFundsResponse: out event data port dQOperationFunds.reg;
end QOperati onFundsDB;

A new data component is Accounts Payable Database.

syst em Account sPayabl eDB
features
i Aut hori zePaynment: in event data port dlnvoice.reg;
oAut hori zePaynent Response: out event data port dPaynent.reg;
end Account sPayabl eDB;

Invoice Database

system | nvoi ceDB
f eat ures
i Storelnvoice: in event data port dlnvoice.reg;
end | nvoi ceDB;

Bank Server Client

syst em BankServer C i ent
features
i SendPaynent ToCustoner: in event data port dPaynent.reg;

end BankServerd i ent;

4.2.6.2. Data Definition

Invoice data

data dlnvoice
end dl nvoi ce;
data i npl enentation dlnvoice.reg

73

subconponent s
i nvoi celD: int;
anmount Due: real;
i nvoi ceDat e: dat e;

end dl nvoi ce. reg;

Payment data

dat a dPaynent
end dPaynent;
data inplenmentation dPayment.reg
subconponent s
paynent | D: string;
amount : real;
date: date;
status: string;

end dPaymrent.reg;

4.3. Updating type using E-Commerce System:
Although the Electronic Commerce System is satisfied the basic business of a commerce system, as
mention before, E-Commerce System still need to updating. Some reasons can be fixing bugs, add

new functions, or improve performance.

4.3.1. Updating Type 0 in E-Commerce System
Because of the characteristic of updating type 0, this updating type is not change external data flow
of the updated component so we can ignore it during making non-stop upgrading of the web

application.

4.3.2. Updating Type 1 in E-Commerce System
In the example for applying updating type 1 in E-Commerce System, we use the Browse Catalog use
case. In the original of this function, customers will use client to send the request to Customer
Business Object. The business object will retrieve catalog data in database and send back to the

client.

74

Figure 48: Browse Catalog before updating
For this example, the update is that the Customer Business not only retrieves data from Catalog
database but also check the Inventory database to response to customer not all catalog but only

catalogs in stock.

Figure 49: Browse Catalog after updating

The change to AADL description of Customer Business is two more ports oCheckinventory and

iCheckinventoryResult:

syst em Cust onmer Busi ness
features

i Cat al ogBrowse: in event data port string;
oCat al ogQuery: out event data port string;
i Catal ogResult: in event data port dCatal og.reg[];
oCat al ogResponse: out event data port dCatal og.reg[];
oCheckl nventory: out event data port dCatal og.reg;
i ChecklnventoryResult: in event data port bool;

end Cust oner Busi ness;

75

And the change to Inventory Database is two more port too:

system | nvent or yDB
features
i Checkl nventory: in event data port dCatal og.reg;
oCheckl nventoryResult: out event data port bool;

end | nvent or yDB;

The Restricted Sequence Diagram of the Browse Catalog function is below:

Customer Client Customer Business CatalogDB

1: Catalog Request]) _ .

-
U 2 : Query Catalog DE()

3 : Query Catalog Result()

|::|< 4 : Catalog Response()

________________________________q--.--

Figure 50: Browse Catalog Restricted Sequence Diagram before updating

76

Set of objects:

0 = {CustomerClient, CustomerBusiness, CatalogDB }

Set of flows:

F ={f, < CustomerClient ,CustomerBusiness >,

f2 < CustomerBusiness, CatalogDB >,

f3 < CatalogDB, CustomerBusiness >,

fa < CustomerBusiness, CustomerClient >}

Orders:

{<1,1i><2,f,><3,f3><4,f, >}

Customer Client

Customer Business

1: Catalog Request() :

¥

CataloaDB

2 : Query Catalog DB()

&

i

3 : Query Catalog Result])

4 : Check Inventory Stock()

InventoryDB

il

&

F |

& : Catalog Response()

5 : Check Inven

R — 3 S

ry Stock Result])

Figure 51: Browse Catalog Restricted Sequence Diagram after updating

77

Set of objects:
0 = { CustomerClient, CustomerBusiness, CatalogDB, InventoryDB }
Set of flows:

F = {fi < CustomerClient ,CustomerBusiness >,
f> < CustomerBusiness, CatalogDB >,
fz < CatalogDB, CustomerBusiness >,
fa < CustomerBusiness, CustomerClient >,
f5 < CustomerBusiness, InventoryDB >,

fe¢ < InventoryDB, CustomerBusiness >}
Orders:

(K 1L,A><2,f,><3,f3><4,fs><5,f¢><6,f, >}

4.3.3. Updating Type 3 in E-Commerce System:
Updating type 3 is a specific case of updating type 2 so that we consider type 3 of updating. Part of

Place Requisition AADL graphic is as following.

Figure 52: Place Requisition before update

In the original of Place Requisition function, Requisition Business only sends query to store new
requisition to Requisition Database. In the example of using updating type 3, we want to confirm

that storing requisition is successful so that we need a confirmation from Requisition Database.

Customer Customer Requisition —_—
’ : . Requisition
Client Business Business

Database

Figure 53: Place Requisition after update

78

syst em Requi si ti onBusi ness
features
i Requi sitionPlacePass: in event data port dSel ectedltemreg;
oRequi sitionStore: out event data port dRequisition.reg;
i Requi sitionStoreResult: in event data port bool;
oRequi sitionPl aceResult: out event data port dRequisition.reg;

end Requi sitionBusi ness;

system Requi siti onDB
features
i RequisitionStore: in event data port dRequisition.reg;
oRequi sitionStoreResult: out event data port bool;

end Requi siti onDB;

Restricted Sequence Diagram before update is described below.

Customer Client Customer Business Requisition Business Reqguisition DB

1: Place Requisiﬁnnﬂl__ !

o ' '
|_| 2 : Pass Place Requisiﬁg_n(il I
1~ '

3 : Store Requisition :Il .

4 : Reqguisition Place Result()

_q___________

Al
-
5 i Place Requisition Respgonse()

Figure 54: Place Requisition Restricted Sequence Diagram before update

79

Set of objects
0 = {CustomerClient, CustomerBusiness, RequisitionBusiness, RequisitionDB }
Set of flows

F = {f1 < CustomerClient , CustomerBusiness >,
f2 < CustomerBusiness, RequisitionBusiness >,
f3 < RequisitionBusiness, RequisitionDB >,
f4 < RequisitionBusiness, CustomerBusiness >,

f5 < CustomerBusiness, CustomerClient > }
Orders:
{<1,f1><2,f2><3,f3><4,f4><5,f5>}

And the diagram changed as following after updating.

Customer Client Customer Business Reguisition Business Reguisition DB

1 : Place Requisition(]) E

2 : Pass Place Requisiﬁenﬂl :
3 : Store Requisition(). E

|:|:: Store Requisition Resa.lltljl

|_|‘E : Requisition Place Result()

all

|

il 1
u & : Place Requisition Response()

Figure 55: Place Requisition Restricted Sequence Diagram after update

Set of objects
80

0 = {CustomerClient, CustomerBusiness, RequisitionBusiness, RequisitionDB }
Set of flows

F:{f1 < CustomerClient ,CustomerBusiness >,
f2 < CustomerBusiness, RequisitionBusiness >,
f3 < RequisitionBusiness, RequisitionDB >,
f4 < RequisitionBusiness, CustomerBusiness >,
f5 < CustomerBusiness, CustomerClient >,

f6 < RequisitionDB, RequisitionBusiness >}
Orders:
{<1,f1><2,f2><3,f3><4,f6><5,f4><6,f5>}

Identify: <3,f3> and the new <4,f6>, the source and destination of f3 maybe same or in reverse order

to f6

81

Chapter 5:

Evaluation

5.1. Upgrading web application

We all know that the web application is very large and has many components. These components
can be worked independent to other components. However, in some specific case, these component
results can also affect to other components activities. So the effective way of making non-stop
upgrading is ensuring that the data after making an update is not effect to other update. This will

guarantee that the upgrading process will be done successfully and safely.
There are 3 issues we meet when making a non-stop upgrading of system:

e Typical change might be achieved by some upgrading operations.
¢ During each upgrade operation, service progresses must not corrupted.

¢ No data missing.

In the reality, each time we need to make the system maintenance, we often need to perform a
sequence of updating process. From this viewpoint, almost all maintenance process can be

considered as the upgrading process.

Assume we apply a sequence of updating Uy, U,, Us... to the system S.

Us

Figure 56: Upgrading system S
82

Because this is a web application system, we can choose the order of updating operation. There will

have many ways to finish the upgrading of system S.

For example we have n operations of upgrade then number of updating path becomes n! unless they

collapse.

5.2. Step to make a non-stop upgrading

Non-stop upgrading means that the service may postpone but never terminated during upgrading. In
order to guarantee that the upgrading process does not change or ignored the overall system

activities, we should follow these steps when doing the upgrading:

First of all, we will use the AADL description to describe the data ports of the updating component.
In this step, we will have the general view about the data ports using by updating components. We

also identify the data sending out and in of these components.

Next, we need to describe the data flow between these components by using Restricted Sequence

Diagram.

After that, we will use AADL description and Restricted Sequence Diagram to model the system after

updating. Depend on these model, we can determine what type of the update.

With each of specific update, we can define what data the update changes and we can determine

the order of upgrading process or know that the upgrading process cannot be done.

5.3. Upgrading achievement

Non-stop upgrading can be achieved by satisfy two viewpoints in our architecture:

e Static viewpoint: data is not missing or corruption after upgrading.

* Dynamic viewpoint: the overall message flows are correct.

83

5.4. Concrete example
Figure 33 describes a system with 3 components O, O,, Oz, and there are the data flows f;, f,

between them. This is the original state of the system S, we called this state So.

—h

iy
—h
(]

(/)
c
JCZ

\
d
Q
w

[e»]

Figure 57: Upgrading System State 0

Assume that we want to upgrade Sq in order to extend two functions. One is implemented in 0, and

another in Os. First update is type 1, making a new connection from O, to O,4. Second update is type 4,

inserting a new object Os between O, and Os.

—in
k]

~ _ ~ M = = m
(@R - > . Uy Uj
1 2
u
u
m
v
—]
0O [N U, U,
~1 ~2 2 3
e — —
~ rd
AN rd
~ P
TN 7 s
4N 7
Y ' 4
') N N ¥

Figure 58: First part of upgrading S Figure 59: Second part of upgrading S

There will have two middle states of system S before finishing upgrading. We assume that S; is the

state after finishing type 1 update and S, is the state after making type 4 update.

84

==t

t.
i 2
c . i
. 0. L= 0. [N
i 1w 5 = U3
N
N
N
IS
Iy N
- N
~al

@)
N

Figure 60: Upgrading System State 1

1=

b

[%2)

Figure 61: Upgrading System State 2

We must complete two previous states to finish this upgrading requirement. The final model of

upgrading the system S is S;, and is described in Figure 38.

s
NG

]

y4

Figure 62: Finish state of upgrading system S

So we have two paths to reach the complete upgrading state of system S.
85

)

r 4 AN
¥ [of 1
Indate 1 AU Y |
A A N 4 Undate 4
_” N’ N, TR
_” T
- e L
— TN e
y, ~x b 4 N
[- 1 I A 1
L 5 1 it 5, 1
AN v \ < 7
N AN —_ >4
~ 4
T~ -
. ~ -
Undate 4 ™\ _—_ L)
TEmm b RS r Undate 1
V A \ o~ e -
i <
v Y2 1
N 4
S

Figure 63: Upgrade path

The update is possible if in each state of updating process; the data can be sent without confliction.
For example, after making type 1 update, the system is S1 in Figure 36. This update is possible if the

data can be sent without change from O; = O, = 05 and vice versa.

Because of time restriction, we cannot clarify detail cases of data confliction and all the combination

of updating type. This works should be done in the future.

86

Chapter 6:

Conclusion and future works

The task of making non-stop upgrading is an important and challenging task in software
development. This problem relates to both local and web-based software development. Because of

characteristic of each updating type, this task is divided into two independent tasks.

In local software development domain, the entire program is running in local computer so that the
upgrading task is too different to the upgrading task of web-based applications. In web application,
the system is very large, it uses database to store the data and address of components or data is not
gather in one specific address. In a web application, two databases can be placed at more than one

address.

These different points make the mechanism for making non-stop upgrading web application and
local application different. There are many researches to achieve the goal for both web application
and local application. However, these researches for non-stop upgrading web application only focus
only the technique for deployment in real application. In other words, these researches focus on

programming technique to realize non-stop upgrading web application.

In this dissertation, we not focus on these techniques but we focus on finding a good method to
describe the system and data using in the system. We addressed a solution based on Interceptor
architecture and component-based approach. With our method, we have a simple and clear view of
the data using in the system. Furthermore we use a new way to control the upgrading process of the

system so that we can achieve the goal of the research: non-stop upgrading of web application.

First we need to describe the system formally to control the data in the system in order to manage
upgrading work. So we define a new way to model the system using the combination of AADL and
RSD. With our method, we can easily understand the behavior of the system, including data flow and

order of the data sending in the system.

87

Secondly we define an upgrading as a sequence of updating operations and categorize them into five
patterns. Each type of update can change the system differently and can affect the time we upgrade
the system. The first case is internal changes of components. The second is the case that a new
component is added into the system. Next case is that we add new connection from two existed

components. Final case is that we have a new component between two existed components.

Next we showed a mechanism for using Interceptor pattern. The Interceptor architectural pattern is
one of pattern-oriented software architecture introduced in as a pattern for concurrent and
networked objects. The Interceptor architectural pattern allows services to be added transparently
to a framework and triggered automatically when certain events occur. So we can apply this

architecture to control data flow in the system to achieve the goal.

Our solution has many advantages to traditional approaches such that we can control the
consistency of the data in the system as well as the overall system data flow and our solution has the

flexibility and extendibility for development.

The most important one is consistency, which means the data in the system after upgrading is not
conflict with other process of the system. Our mechanism also has flexibility and extendibility for

improving in the future.

In many cases, the non-stop upgrading can be achieved without any problems. However, there will
be some situations that the data is conflicted between updating processes or the data flow can be
incorrect after upgrading. We are now engaging in examining all possible upgrading case. In the
future, we need to consider all of the cases to clarify detail of data confliction may be existed. And
the most important and difficult part is that apply the theory into practical, we need to work a lot in

the future to apply our architecture into real application.

88

Reference

1. A simple equation: IT on = Business on. Parker, S. s.l. : The IT Journal, Hewlett Packard, 2001.

2. Larman, Craig. Applying UML and Patterns. An Introduction to Object-Oriented Analysis and
Design. s.l. : Prentice Hall PTR, 1998. ISBN 0-13-78880-7.

3. Koskinen, Jussi. Software Maintenance Costs. Information Technology Research Institute, Finland :

s.n., 2003.

4. Gomaa, Hassan. E-Commerce: Designing Concurrent, Distributed, and Real-time applications with

UML. s.l. : Addison-Wesley, July 2001. ISBN 0-201-65793-7, Second Printing.

5. Bell, Donald. UML basics: The sequence diagram. IBM developerWorks web site. [Online] IBM,
2004. http://www.ibm.com/developerworks/rational/library/3101.html.

6. Ambler, Scott W. Introduction to UML 2 Sequence Diagrams. Agile Modeling (AM). [Online]

Ambysoft Inc, 2003-2010. http://www.agilemodeling.com/artifacts/sequenceDiagram.htm.

7. Peter H. Feiler, David P. Gluch, and John J. Hudak. The Architecture Analysis & Design Language
(AADL): An Introduction. February 2006. CMU/SEI-2006-TN-011.

8. Sequence diagram. Wikipedia, the free encyclopedia. [Online]

http://en.wikipedia.org/wiki/Sequence_diagram.

9. ROC-1: Hardware Support for Recovery-Oriented Computing. David Oppenheimer, Aaron Brown,
James Beck, Daniel Hettena, Jon Kuroda,Noah Treuhaft, David A. Patterson, Fellow, IEEE, and

Katherine Yelick, Member, IEEE. s.I. : IEEE TRANSACTIONS ON COMPUTERS, 2002, Vol. 51.

10. Practical Dynamic Software Updating for C. lulian Neamtiu, Michael Hicks, Gareth Stoyle,
Manuel Oriol. Ottawa, Ontario, Canada : ACM, 2006.

11. Douglas Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann. Pattern-Oriented Software
Architecture, Patterns for Concurrent and Networked Objects, Volume 2. s.l. : John Wiley & Sons,

2000. ISBN 0471606952.

89

12. Online Non-stop Software Updating Using Replicated Execution Blocks. Kuo-Feng Ssu, Hewijin
Christine Jiau. Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan

701 : International Computer Software and Applications Conference, 2000.

13. Mutatis Mutandis: Safe and Predictable Dynamic Software Updating. Gareth Stoyle, Michael

Hicks, Gavin Bierman, Peter Sewell, lulian Neamtiu. California, USA : ACM, 2005.

14. Implementation of Non-stop Software Update for Client-Server Applications. Wen-Kang Wei,
Kuo-Feng Ssu, Hewijin Christine Jiau. Department of Electrical Engineering, National Cheng Kung

University, Tainan, Taiwan 701 : Computer Software and Applications Conference, 2003.

15. Extending Message-Oriented Middleware using Interception. Edward Curry, Desmond Chambers,
and Gerard Lyons. Department of Information Technology, National University of Ireland, Galway,

Ireland : s.n.

16. Christopher M. Hayden, Eric A. Hardisty, Michael Hicks, and Jeffrey S. Foster. Efficient
systematic testing for dynamically updatable software. s.l. : ACM, 2009. ISBN 978-1-60558-723-3 .

17. Dynamic Software Updating. Michael Hicks and Scott Nettles. s.|.: ACM Transactions on

Programming Languages and Systems.

18. Inderjeet Singh, Beth Stearns, Mark Johnson, and the Enterprise Team. Designing Enterprise

Applications with the J2EE Platform, Second Edition. s.l. : Addison-Wesley, 2002. ISBN 0-201-78790-3.

19. CHARACTERISTICS OF WEB APPLICATIONS THAT AFFECT USABILITY: A REVIEW. Vince Bruno,
Audrey Tam, James Thom. Canberra, Australia : OZCHI 2005, 2005.

20. Aspects in the industry standard AADL. Dionisio de Niz and Peter H. Feiler. New York, USA : ACM,
2007. ISBN:978-1-59593-658-5.

90

