
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
An architecture for non-stop upgrading of Web

application

Author(s) Hoang, Ha Manh

Citation

Issue Date 2010-09

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/9148

Rights

Description
Supervisor:Associate Professor Masato Suzuki, 情

報科学研究科, 修士

An architecture for non-stop upgrading of Web
application

By Hoang Ha Manh

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Masato Suzuki

September, 2010

An architecture for non-stop upgrading of Web
application

By Hoang Ha Manh (0810208)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Associate Professor Masato Suzuki

and approved by
Associate Professor Masato Suzuki

Professor Koichiro Ochimizu
Associate Professor Toshiaki Aoki

August, 2010 (Submitted)

Copyright c© 2010 by Hoang Ha Manh

1

Abstract

Keyword: dynamic upgrading, non-stop upgrading, E-Commerce System, web application, non-stop

upgrading architecture.

Today, information technology is not an unfamiliar concept. Information technology is using in many

fields such as economy, transport, health care or science, research, etc… Information technology can

be applied in many ways but the evident example is using software to improve business process. We

can see many advantages of information technology. It can make globalization, help the company to

run more effective, reduce cost of time in many activities, etc… With the important of applying

information technology, software development industrial becomes an essential part in information

technology.

There are many steps in the software development process: design, implementation, testing,

deployment and maintenance. Maintenance step is one of the most costly steps in this process. This

is especially true with web-based application software such as economic application, transfer

management application or air control system, etc… These systems need to work continuously. So

we need architecture for making the updating of these application systems without stopping their

services.

First of all, we introduced a new way to model the web application system. For easily control the

data in the system, we need a formal definition language to describe the system activities. We

combine the usage of Architecture Analysis and Design Language (AADL) with a simple Sequence

Diagram that we call Restricted Sequence Diagram. With this combination, we can model the data of

system formally and easily to control.

2

After that, we determine characteristics of upgrading. Depend on the characteristics we categorize

the updating type into 5 types. We find out the features of each of updating type and define each

type identities.

Next, we introduced a real use case using the Electronic Commerce System. Electronic Commerce

System is the standard of a commerce application so that we use it as the real example for applying

our modeling method. We will find out all functions of the Electronic Commerce System and model it

using the combination of AADL and Restricted Sequence Diagram.

Finally, we evaluate the ability of upgrading web application through system data model. We also

discuss about the process of making non-stop upgrading without overall data affection and stopping

the application services. We will have a general view of the data using in an application and

determine that the non-stop upgrading can be made or not in a specific situation.

3

Acknowledgement

I would like to show my gratitude to all those who gave me the possibility to complete this thesis. In

the first place, I would like to express my sincere gratitude and appreciation to my supervisor,

Associate Professor Masato Suzuki for his constant guidance, advice, assistance and support during

the whole period of my Master’s course.

I would like also to express my sincere thanks to my principal supervisor Professor Koichiro Ochimizu

for his encouragement and helpful comments.

I wish to say grateful thanks to Associate Professor Toshiaki Aoki and Professor Koichiro Ochimizu for

their useful comments for the first draft of this dissertation and in my defense day.

I would like to thanks to Ministry of Education and Training for their financial support for my study

time in Japan.

I would like to show my sincere appreciation to Japan Advanced Institute of Science and Technology

for not only providing me support and great working environment but also a wonderful living

condition during my study time here.

I am grateful to thanks all members in Software Structure laboratory for their kindly helps to me not

only in research work but also in my daily life.

It will be a mistake if I forget to thank all members in Vietnamese group at JAIST. With all your helps,

one year in here becomes enjoyable.

Last but not least, I would like to give my special thanks to my family members, especially my

parents whose encouragements and helps enable me to complete my degree.

4

Content

Chapter 1: Introduction .. 10

1.1. Problem ... 11

1.2. Objective ... 11

1.3. Dissertation organization: ... 12

Chapter 2: Non-stop upgrading .. 13

2.1. Software maintenance .. 13

2.2. Web-based systems .. 15

2.3. The Electronic Commerce System (E-Commerce System) .. 16

2.4. Non-stop upgrading of application: .. 16

2.5. Related work: .. 17

Chapter 3: Our approach for non-stop upgrading .. 18

3.1. Formal definition of an application ... 18

3.1.1. Architecture Analysis and Design Language (AADL) ... 18

3.1.2. Restricted Sequence Diagram ... 20

3.2. Categorization of updating types .. 22

3.2.1. Type 0: ... 23

3.2.2. Type 1: ... 24

3.2.3. Type 2: ... 26

3.2.4. Type 3: ... 27

3.2.5. Type 4: ... 28

3.3. Our architecture for upgrading: .. 30

3.3.1. Interceptor pattern: .. 30

3.3.2. Our defined architecture: ... 30

3.4. Our updating architecture specification: .. 33

3.4.1. Type 1 .. 33

3.4.2. Type 2 .. 37

5

3.4.3. Type 3 .. 41

3.4.4. Type 4 .. 43

Chapter 4: Case study ... 46

4.1. Overview functions of E-Commerce System ... 46

4.1.1. Browse Catalog: .. 50

4.1.2. Place Requisition: .. 50

4.1.3. Process Delivery Order: ... 52

4.1.4. Confirm Shipment ... 53

4.1.5. Confirm Delivery ... 53

4.1.6. Send Invoice: ... 55

4.2. Structure ... 56

4.2.1. Browse Catalog: .. 58

4.2.2. Place Requisition ... 60

4.2.3. Process Delivery Order .. 64

4.2.4. Confirm Shipment ... 66

4.2.5. Confirm Delivery ... 69

4.2.6. Send Invoice .. 71

4.3. Updating type using E-Commerce System: ... 74

4.3.1. Updating Type 0 in E-Commerce System .. 74

4.3.2. Updating Type 1 in E-Commerce System .. 74

4.3.3. Updating Type 3 in E-Commerce System: ... 78

Chapter 5: Evaluation.. 82

5.1. Upgrading web application ... 82

5.2. Step to make a non-stop upgrading.. 83

5.3. Upgrading achievement .. 83

5.4. Concrete example ... 84

Chapter 6: Conclusion and future works .. 87

6

List of figures

Figure 1: 3-Tiers Java Enterprise Edition application model ... 15

Figure 2: 3 types of an AADL specification .. 20

Figure 3: An example of Restricted Sequence Diagram .. 21

Figure 4: Updating Type: Type 0 ... 23

Figure 5: Updating Type: Type 1 ... 25

Figure 6: Updating Type: Type 2 ... 26

Figure 7: Updating Type: Type 3 ... 27

Figure 8: Updating Type: Type 4 ... 28

Figure 9: Restricted Sequence Diagram of updating type 4 ... 29

Figure 10: Concept diagram of Interceptor architecture .. 30

Figure 11: Our architecture for non-stop upgrading .. 31

Figure 12: Component Controller ... 32

Figure 13: The Flow Order Controller ... 33

Figure 14: Updating type 1 - Before .. 34

Figure 15: Updating type 1 - After .. 34

Figure 16: Interceptor implementation in updating type 1 .. 35

Figure 17: Interceptor implementation after updating type 1 ... 36

Figure 18: Updating type 2 - Before .. 37

Figure 19: Updating type 2 - After .. 38

Figure 20: Case 1 ... 38

Figure 21: Case 2 ... 38

Figure 22: Interceptor in type 2 - Before .. 39

Figure 23: Interceptor in type 2 – After (Case 1) .. 39

Figure 24: Interceptor in type 2 – After (Case 2) .. 40

Figure 25: Updating type 3 - Before .. 41

Figure 26: Updating type 3 - After .. 41

Figure 27: Interceptor in type 3 - Before .. 42

Figure 28: Interceptor in type 3 – After .. 42

7

Figure 29: Updating type 4 - Before .. 43

Figure 30: Updating type 4 - After .. 43

Figure 31: Interceptor in type 4 - Before .. 44

Figure 32: Interceptor in type 4 - After ... 45

Figure 33: E-Commerce Function .. 46

Figure 34: Six function of E-Commerce System .. 49

Figure 35: Browse Catalog Function ... 50

Figure 36: Place Requisition Function ... 51

Figure 37: Process Delivery Order Function ... 52

Figure 38: Confirm Shipment Function ... 53

Figure 39: Confirm Delivery Function ... 54

Figure 40: Send Invoice Function .. 55

Figure 41: All function of E-Commerce System .. 57

Figure 42: Browse Catalog in AADL ... 58

Figure 43: Place Requisition in AADL .. 60

Figure 44: Process Delivery Order in AADL ... 64

Figure 45: Confirm Shipment in AADL .. 67

Figure 46: Confirm Delivery in AADL ... 69

Figure 47: Send Invoice in AADL ... 71

Figure 48: Browse Catalog before updating ... 75

Figure 49: Browse Catalog after updating .. 75

Figure 50: Browse Catalog Restricted Sequence Diagram before updating ... 76

Figure 51: Browse Catalog Restricted Sequence Diagram after updating .. 77

Figure 52: Place Requisition before update .. 78

Figure 53: Place Requisition after update ... 78

Figure 54: Place Requisition Restricted Sequence Diagram before update ... 79

Figure 55: Place Requisition Restricted Sequence Diagram after update .. 80

Figure 56: Upgrading system S .. 82

Figure 57: Upgrading System State 0 .. 84

Figure 58: First part of upgrading S ... 84

Figure 59: Second part of upgrading S .. 84

8

Figure 60: Upgrading System State 1 .. 85

Figure 61: Upgrading System State 2 .. 85

Figure 62: Finish state of upgrading system S .. 85

Figure 63: Upgrade path ... 86

9

List of tables

Table 1: Proportional software maintenance costs for its supplier. ... 14

Table 2: Structure of all data entity in E-Commerce System .. 48

10

Chapter 1:

 Introduction

Nowadays, we are living in the society in which computers and the Internet is very popular. Not like

twenty years ago, computers are something rare and expensive, using almost in science or industrial.

At that time, programming is an unfamiliar definition in my country. Programs at that time almost

are local programs, small and primary simple application running on local computer. The Internet is

very expensive and very slow so that it is very hard to update a program. So there is almost no

update for programs. Things are change very much now. Computer is very popular; nearly everyone

has a personal computer. Now we have high-speed internet and the cost is very low. I mention these

changes so we can imagine how much programs change now.

Today, software is very large and popular. Software is not only local programs but also the Internet-

based programs (can be called web applications). We can see many types software such as system

software, programming software, application software. The most popular type is application

software. They are broadly use in many areas from entertainment to hospital or education. With the

fast Internet connection, application can be updated easily. They need to be updated to fix bug,

change content or design, add new features… So the update of software is one of the most

important parts in development software industry.

However, when compared to a traditional application, a web application provides a wider range of

application users, a wider range of tasks and interaction styles, more complex technological

infrastructure and a broader range of contextual issues. For this reason, when updating a web

application, we often make sequence updates instead of independent update. The updating process

of web application is often called “upgrading”. So with a technique that can make the non-stop

updating a component, we cannot confirm that it can be applied in the reality because we cannot

sure about the data after a sequence of updating process. In a web application, almost application is

very large and the data that is changed by updating a component can effect to other components.

Furthermore, the data path of an application can be changed frequently because of changing

business rules.

11

1.1. Problem

There will be no problem if all applications can use normal update method. In the simplest method,

upgrades require the application to be stopped, made updates then restarted it again. This method

is still acceptable with some local applications or programs that not need to work continuously.

However, as I mentioned before, the increasing of the Internet’s importance and the relationship

between it and global economy has made many non-stop services. Non-stop means the application

run continuously without any interruption. These applications need to operate continuously because

the cost of stopping service is very high. The economic cost of downtime for some online shop such

as amazon.com or eBay can be hundreds of thousands of dollar per hour, the cost even higher for

credit card providers, brokerages; it can be millions of dollar per hours. Besides economic

applications, there are many other computer programs that must be non-stop working. This is

especially necessary to critical applications such as financial applications, air traffic control systems,

etc…

All of these applications need non-stop operation and still need upgrades. So the simplest update

method cannot apply for these non-stop applications. So we need other method to solve this

problem. Moreover, there are many other applications that do not necessarily require non-stop

upgrade but would get benefit from it. For example, instead of rebooting desktop computer every

time its operating system is upgraded, we would prefer to make the updates dynamically.

1.2. Objective

With above overview, we can see that the non-stop upgrade has an important role today. There are

many researches to find the way to solve this problem. I will mention more about these approaches

later. My research goal is to find the architecture for making non-stop upgrading web applications.

However my target in the research is not focus on implementation part of making non-stop

upgrading architecture. Instead of that, I focus on checking and evaluating the upgraded system to

inspect about the consistency of system data.

12

1.3. Dissertation organization:

In chapter 2, we will discuss about the background knowledge using in this research. In this chapter,

we will deal with some basic idea related to making a non-stop upgrading system. We will present

about the maintenance process using in software development, about the web-based systems. We

will also study about a concrete application system, the Electronic Commerce System. The last

content in this chapter are some background about non-stop upgrading of application and some

related work in local programming language, C for example.

In chapter 3, we will present about our approach for making non-stop upgrading for web application

system. In this chapter, we will examine the tools using for modeling a system. Using these tools, we

can easily control the operation of the system in component viewpoint and data viewpoint. We will

use two tools in our research that are Architecture Analysis and Design Language (AADL) and

Restricted Sequence Diagram. After that, we will categorize updating operation by using two

mentioned tools.

The next chapter, chapter 4, we will apply our approach to analysis concrete example by using the

Electronic Commerce System (E-Commerce). We will introduce about E-Commerce functions then

we will model its structure by using AADL. And then, with the combination of AADL and Restricted

Sequence Diagram, we will study all types of updating in E-Commerce System.

In chapter 5, we will examine about non-stop upgrading process and the step to achieve non-stop

upgrading web application. And the last chapter is the conclusion and the works in the future.

13

Chapter 2:

 Non-stop upgrading

2.1. Software maintenance

Software maintenance is a step in software development processes. Software maintenance is the

modification of a software product after the deployment of that product. Software maintenance

purpose is correcting bugs or improving the performance. However, software maintenance is

considerably understudied area while the company and other organizations are still paying the

maintenance cost. This problem is referred by Seacord et al. in 2003 and summarized by Jussi

Koskinen in the following table:

14

Year Proportion of

software

maintenance costs

Definition Reference

2000 >90% Software cost devoted to system

maintenance & evolution / total

software costs

Erlikh (2000)

1993 75% Software maintenance / information

system budget

(in Fortune 1000 companies)

Eastwood (1993)

1990 >90% Software cost devoted to system

maintenance & evolution / total

software costs

Moad (1990)

1990 60-70% Software maintenance / total

management information systems

(MIS) operating budgets

Huff (1990)

1988 60-70% Software maintenance / total

management information systems

(MIS) operating budgets

Port (1988)

1984 65-75% Effort spent on software

maintenance / total available

software engineering effort.

McKee (1984)

1981 >50% Staff time spent on maintenance /

total time (in 487 organizations)

Lientz & Swanson

(1981)

1979 67% Maintenance costs / total software

costs

Zelkowitz et al.

(1979)

Table 1: Proportional software maintenance costs for its supplier.

We can see in the table, the software maintenance cost ratio is increased over time. The

maintenance cost is a very large part in software development.

2.2. Web-based systems

Web-based systems are still application system but the

the Internet. With this characteristic, the mechanism for making update a web

different to the mechanism for making update a local system

There are some standards for making web application system. However, in this research, we choose

Java Enterprise Edition as the design standard for web application.

Edition application model:

Figure 1: 3-

In this architecture, users through client send the request to web application. The request usually is

the command to get some information from the system. Web application, or the

Java Enterprise Edition, will process these request and send the query to retrieve data to the

database. The database will reply the data back to the web application and the web application will

response the data to users.

15

based systems

based systems are still application system but the main different is that these system work over

With this characteristic, the mechanism for making update a web-based system is

different to the mechanism for making update a local system.

There are some standards for making web application system. However, in this research, we choose

Java Enterprise Edition as the design standard for web application. This is 3-Tier Java Enterprise

-Tiers Java Enterprise Edition application model

In this architecture, users through client send the request to web application. The request usually is

the command to get some information from the system. Web application, or the business object in

Java Enterprise Edition, will process these request and send the query to retrieve data to the

database. The database will reply the data back to the web application and the web application will

different is that these system work over

based system is

There are some standards for making web application system. However, in this research, we choose

Tier Java Enterprise

In this architecture, users through client send the request to web application. The request usually is

business object in

Java Enterprise Edition, will process these request and send the query to retrieve data to the

database. The database will reply the data back to the web application and the web application will

16

2.3. The Electronic Commerce System (E-Commerce System)

The Electronic Commerce System case study is a World Wide Web-based application. E-Commerce

System uses software agents as intermediaries between user interface clients and servers. In 3-Tier

application model viewpoint, the agents are the business objects.

We choose the Electronic Commerce System as our concrete example for case study because of its

specific features. As we know, a generic electronic commerce system is a large-scale system. So we

can use it to represent to other web application system. Other feature of Electronic Commerce

System is that the data in the system can change frequently because of the change of business rules.

The data flow in the system is not fixed like many local systems. Each function in Electronic

Commerce System can work independent to other functions.

2.4. Non-stop upgrading of application:

The maintenance cost is a large part in software development process. This is true especially with

global economic system. These types of application cannot stop working in any reason or they will

waste a lot of money. So it is natural to appear the need of making maintenance without stopping

the system.

In order to discuss about the mechanism of non-stop upgrading, we have to distinguish the term

“update” and “upgrade”. We use updating as process that we modify or replace a part of the system.

“Upgrading” is close meaning to “updating”. We also use upgrading as a process that changes the

system. However, upgrading is often concerned with sequence processes to make changes to the

system. In other words, upgrading is the process that achieves system maintenance by applying a

sequence of updating. In this dissertation, we focus on the architecture for realize the non-stop

upgrading the system.

17

2.5. Related work:

There are some approaches to this problem. Dynamic linking is a well-known mechanism to making

dynamic update. Systems based upon dynamic linking may add new code to a running program but

they cannot replace existing bindings with new one (Appel 1994; Perterson et al. 1997).

In 2005, Michael Hicks and Scott Nettles presented an idea about a general-purpose framework for

updating a program as it runs. They called that “dynamic software updating”. The requirement of

the framework is flexible, robust, easy to use, and efficient. Their research focuses on the task of

dynamically updating the code and state of a single process.

To concretize the research about “dynamic software updating”, in 2006, Iulian Neamtiu, Michael

Hicks, Gareth Stoyle, and Manuel Oriol introduced a practical dynamic software updating framework

for C, called Ginseng. Ginseng is an implementation of a “dynamic software updating” system.

These approaches are for C language software. For the Java application, Edward Curry, Desmond

Chambers, and Gerard Lyons have designed the Chameleon framework. This framework is designed

to support the use of interceptors with a Message-Oriented Middleware platform to facilitate

dynamic changes.

There are some approaches for making non-stop software updating. Kuo-Feng Ssu and Hewijin

Christine Jiau introduce a method to compose a program using two replicated execution blocks. By

switching the execution blocks, the program can be modified without terminating its service.

Douglas Schmidt et al also introduced update patterns in 2000. There is a pattern called the

Interceptor architectural pattern. This pattern allows services to be added transparently to a

framework and triggered automatically when certain events occur.

However these approaches only focus on technical problem. They give us the structure to

programming the non-stop software updating.

18

Chapter 3:

 Our approach for non-stop upgrading

3.1. Formal definition of an application

In order to archive the goal, we need tools that can help us to describe the system formally. We

need a language to model the application precisely but not so particularly. We only focus on the data

and how the system controls the data, so we choose Architecture Analysis and Design Language in

this research.

3.1.1. Architecture Analysis and Design Language (AADL)

The AADL is a modeling language released by the Society of Automotive Engineers in November

2004. The AADL provides us formal modeling concepts; we can use these concepts to describe and

analyze applications or systems architecture. Architecture Analysis and Design Language describe

the system in terms of components and their interactions so that AADL is effective for model-based

analysis of system applications.

The central element in AADL is component. Each component will be assigned a unique identity. A

component is declared by type and implementation. Component type is used for define interface

elements and external attributes of the component. Otherwise, component implementation

declaration defines the component’s internal structure. There are three sets of components in AADL:

• Application software: thread, thread group, process, data, subprograms.

• Execution platform: processor, memory, device, bus.

• Composite: combine of two such as system.

19

The AADL structure for defining a component type is as following:

component_type {name}

extends {component type}

features

flows

properties

A component {name} of type {component_type} can be extended by another component type.

{features} are the interfaces of this component. {flows} specify channels of information transfer in

this component. {properties} define intrinsic characteristics of the component.

A component implementation specifies an internal structure of the component.

Type implementation {type name}.{implementation name}

 extends

 refines type

 subcomponents

 calls

 connections

 flows

 modes

 properties

Besides two main elements component type and component implementation, AADL language still

has other elements. There are packages, property sets and annexes. However, in this research, we

only care about component type and component implementation so we do not need to go to detail

with other elements.

An AADL specification can be expressed by three types: text, graphic or Extensible Markup Language

(XML).

Figure

3.1.2. Restricted Sequence Diagram

We can use AADL to describe the elements of system. Using AADL we can easily control the

components and the transference of data in the system. We can easily see how many data port each

component has, where the data goes. However, we cannot determine

use another tool for solving this problem.

is a kind of interaction diagram that shows how processes operate with

order. In our research, we do not need to use all function of UML Sequence Diagram, we use some

main idea of Sequence Diagram to help us in describe the system more clearly. We call this

Restricted Sequence Diagram.

The reasons that we call it Restricted Sequence Diagram because of two following reasons:

• The first one is that we will ignore guard conditions of the data flow in original Sequence

Diagram. In Sequence Diagram, some flows need the specific condition with the format

[Condition] f. However, in Restricted Sequence Diagram, we ignore this.

• The second one is that we will ignore the arguments of the data flow because these

arguments are described in AADL.

In Restricted Sequence Diagram, we care about three elements: objects, flows and their

each of flow f, we have the source of

is belongs to the set of objects. The order of flows is a reflex from natural number to the flow

20

Figure 2: 3 types of an AADL specification

Restricted Sequence Diagram

We can use AADL to describe the elements of system. Using AADL we can easily control the

and the transference of data in the system. We can easily see how many data port each

ata goes. However, we cannot determine the order of data flows so we

use another tool for solving this problem. A Sequence Diagram in Unified Modeling Language (UML)

is a kind of interaction diagram that shows how processes operate with other processes

ur research, we do not need to use all function of UML Sequence Diagram, we use some

main idea of Sequence Diagram to help us in describe the system more clearly. We call this

estricted Sequence Diagram because of two following reasons:

The first one is that we will ignore guard conditions of the data flow in original Sequence

Diagram. In Sequence Diagram, some flows need the specific condition with the format

ever, in Restricted Sequence Diagram, we ignore this.

The second one is that we will ignore the arguments of the data flow because these

arguments are described in AADL.

In Restricted Sequence Diagram, we care about three elements: objects, flows and their

the source of f and destination of f. The source and the destination of a flow

is belongs to the set of objects. The order of flows is a reflex from natural number to the flow

We can use AADL to describe the elements of system. Using AADL we can easily control the

and the transference of data in the system. We can easily see how many data port each

the order of data flows so we

iagram in Unified Modeling Language (UML)

other processes and their

ur research, we do not need to use all function of UML Sequence Diagram, we use some

main idea of Sequence Diagram to help us in describe the system more clearly. We call this

estricted Sequence Diagram because of two following reasons:

The first one is that we will ignore guard conditions of the data flow in original Sequence

Diagram. In Sequence Diagram, some flows need the specific condition with the format

The second one is that we will ignore the arguments of the data flow because these

In Restricted Sequence Diagram, we care about three elements: objects, flows and their order. For

. The source and the destination of a flow

is belongs to the set of objects. The order of flows is a reflex from natural number to the flow f.

21

Definition 3.1:

Restricted Sequence Diagram can be defined as following formula:

��� = (�,�, ���	�)

ℎ	�	:

�: �	� � ���	��� �� �������	�

�: �	� � �	����	 ��
�

∀ ∈ �: ������	,�	����������

�����	,�	��������� ∈ �

order: ℕ → F = {< 1, f� >, < 2, f� >, … , < �, f� >, … }

Figure 3 is an example of Restricted Sequence Diagram. In this example, we have 3 object o1, o2, o3;

three flow f1 from o1 to o2, f2 from o2 to o3, f3 from o3 to o1. And the order of three flow is f1, f2,

f3 corresponding.

Figure 3: An example of Restricted Sequence Diagram

�� �ℎ��:

� = ���, ��, ���

� = �� ���, ���,����, ���,����, ����

���	�: {< 1,� >< 2,� >< 3,� >}

Using Restricted Sequence Diagram, we can express the system’s action with more accurately and

more precisely. Combining with AADL, we can easily describe dependencies caused by message

flows of the system.

22

3.2. Categorization of updating types

We know that a web application is a large-scale system. So the update also has many different forms.

In order to research about non-stop upgrading, we need to distinguish these kinds of updating to

know about the different of data using in each type and the identity of each updating type.

In our research, we categorize updating type of system into 5 types. The purpose of this is specifying

each type of updating

• Type 0: the component is updated only inside of this component.

• Type 1: the component will have a new connection to a new component.

• Type 2: the component will have a new connection with existed component and the

direction of this connection is not specified.

• Type 3: the component will have a new connection with existed component like type 2 but

the direction of this connection is depend on existed connection.

• Type 4: a new component will be added between two existed components.

In this part, we use some definition as following:

��: �	� � �����	� ���	��� �� �	������	� �	 �	��	 �������.

��: �	� � �����	� ��
� �� �	������	� �	 �	��	 �������.

��������: !ℎ	 �	� � ���� ����� � �
ℎ	�	 � �� � ������	��.

��	���:!ℎ	 �	� � ���� ����� ��	� �"
ℎ	�	 �� � ���� ��
.

Where ports and used are calculated from AADL description corresponding to component o and flow

f.

The compatible between two components is defined as the port of first component o1 is equivalent

to the port of second component o2. That means component o1 can be replaced by the component

o2 without changing of message flow or data flow and vice versa.

Definition 3.2:

�� ������ �	�
��
��� ���� �	�

�����������, ��� ≡ ��������� ~

3.2.1. Type 0:

We call first type of updating as updating

internal changes. This updating type is

function of a method frequently. For example, we often need some minor update to application

such as change the message to notify the customer or change the business of a function

In Figure 4, the updated version C1’ of C1 is made by updating C1’s

In this type, the input and output data flow of new component is same to old component.

component data ports must be same to old component data ports.

update does not change the component from outside viewpoint. So the

an extension of old component F1. Similarly, F2’ must be an

Definition 3.3:

�� ����� �	� �	� ������ � ������
� � ���� ���	 �� � � �, ��

�� �	� ������ ���� ������! ��
�� � ����� ���	 ��

� � � ��, ���
"�����! ���� 0 �� ������ � ��:
"� %�& � ��
�	���

�������� � � , �’ � ��
��������
23

� ������	
��
����� ��� ��������:

� � ~ ���������

as updating type 0. In this type, the updated component only has

This updating type is implemented a lot in reality because we need to change

function of a method frequently. For example, we often need some minor update to application

such as change the message to notify the customer or change the business of a function

pdated version C1’ of C1 is made by updating C1’s internal elements, F1 and F2.

Figure 4: Updating Type: Type 0

In this type, the input and output data flow of new component is same to old component.

same to old component data ports. In other words, this type of

update does not change the component from outside viewpoint. So the new component F1’ must be

an extension of old component F1. Similarly, F2’ must be an extension of old component F2.

����� �����	� 	�

	�

������	
�� ��� , ��’ �

the updated component only has

implemented a lot in reality because we need to change

function of a method frequently. For example, we often need some minor update to application

such as change the message to notify the customer or change the business of a function.

elements, F1 and F2.

In this type, the input and output data flow of new component is same to old component. All of new

In other words, this type of

new component F1’ must be

extension of old component F2.

24

The compatible between two internal parts of a component means that the updated part does not

change the function and data flow of this component.

Characteristic of type 0 updating:

• AADL:

o Number of components is unchanged.

o Data port: same

o Data flow: same

• Restricted Sequence Diagram

o Set of object: same

o Set of flow: same

3.2.2. Type 1:

The next type of updating is called updating type 1. In this type, a component in system will have a

new connection to a new component. For example, instead of getting only customer information,

we want to update the customer business object to get the total fund that the customer spent. In

this case, the customer business needs to have a new connection to account database, for example,

to get the extra data.

Figure 5 is showed the description model that the component P will have new connection to new

component Cnew.

Definition 3.4:

�� ����� �	� �	� ������ � ������
� � � (, ��, ���

�� �	� ������ �’ ���� ������!
�’ � �(’, ��, ��, �����

"�����! ���� 1 �� ������ � ��:
"� %�& � ��’�

Characteristic of type 1 updating:

• AADL:

o Number of components after update i

o Data port: data ports

component.

o Data flow: similar to the changing of data ports.

• Restricted Sequence Diagram:

o Set of object: set O’ (after update) is

*’ � * ∪ Δ*

o Set of flow: similarly, set F’ (after update) is

 ’ � ∪ ΔF
o New flows must be related only to new objects.

 �����Δ � � �����
25

Figure 5: Updating Type: Type 1

����� �����	� 	�:

�����	� �	��
�:

umber of components after update increased by one.

Data port: data ports of P are increased proportional to the addition of

Data flow: similar to the changing of data ports.

Restricted Sequence Diagram:

set O’ (after update) is a superset of set O.

similarly, set F’ (after update) is a superset of set F.

flows must be related only to new objects.

������Δ�� ∪ ���������� ∖ ��������!

increased proportional to the addition of the new

3.2.3. Type 2:

Next, the updating type 2 has a little similar to the updating type 1.

will have a new connection with an

of this connection is not considered.

For example, the original version of a function is getting

component to get the extra description from the same database, this

Consider this updating model in Figure 6

red color). The order of this connection can be from

Definition 3.5:

"�����! ���� 2 �� ���
���������
"2 %�& � ����

�	���

/ � � ���, ���
�� � ���� , ��

��0
�� ��������� ⊂ ��������

��
�� ��������� ⊂ ��������

��

Characteristic of type 2 updating:

• AADL:

o Number of components is

o Data port: data ports after updating

o Data flow: data flow after updating increased

• Restricted Sequence Diagram:

26

Next, the updating type 2 has a little similar to the updating type 1. In type 2 updating, a component

an existed component instead of a new component

ed.

For example, the original version of a function is getting id and price of products. If we update the

component to get the extra description from the same database, this is called the updating type 2.

Figure 6: Updating Type: Type 2

in Figure 6, after updating we have a new connection from C

red color). The order of this connection can be from C1’ to C2’ or vice versa.

�������� "1 �� "2 	�:

umber of components is unchanged.

Data port: data ports after updating are increased corresponding to the flow

Data flow: data flow after updating increased by one.

Restricted Sequence Diagram:

In type 2 updating, a component

instead of a new component. The direction

id and price of products. If we update the

is called the updating type 2.

, after updating we have a new connection from C1’ to C2’ (in

are increased corresponding to the flow.

o Set of object: set O’ is same to set O.

o Set of flow: set F’ (after update) is

3.2.4. Type 3:

Updating type 3 is similar to updating type 2 except the direction of new data flow is depend on

previous data flow. For example, after buying items, the application w

database. However; if we want more guarantee, we will update the application that respon

confirmation for successful updating.

The new data flow (in red color) depends on the existed data flow.

Definition 3.6:

"�����! ���� 3 �� ���
���������
"�

%�& � ����

�	���

/ � � ���, ���
�� � ���� , ��

��0
�� ��������� ⊂ ��������

��
�� ��������� ⊂ ��������

��

Characteristic of type 3 updating:

• AADL:

o Number of components is

o Data port: data ports after updating

o Data flow: data flow after updating increased

• Restricted Sequence Diagram:

27

O’ is same to set O.

Set of flow: set F’ (after update) is a superset of set F.

Updating type 3 is similar to updating type 2 except the direction of new data flow is depend on

previous data flow. For example, after buying items, the application will store the order in the order

database. However; if we want more guarantee, we will update the application that respon

confirmation for successful updating.

Figure 7: Updating Type: Type 3

r) depends on the existed data flow.

�������� "��� "� 	�

umber of components is unchanged.

Data port: data ports after updating are increased corresponding to flow

Data flow: data flow after updating increased by one.

Restricted Sequence Diagram:

Updating type 3 is similar to updating type 2 except the direction of new data flow is depend on

ill store the order in the order

database. However; if we want more guarantee, we will update the application that response the

increased corresponding to flow.

o Set of object: set O’ is same to set O.

o Set of flow: set F’ (after update) is

�� ����� �	� �����
�	�� ��	� � �����

o Order: in this type, the order will have specific condition: the source of new data

flow must be the destination of existed data flow.

3.2.5. Type 4:

In this final type of updating, th

components. Data flow between two existed components will be sent to a middle component, the

new one.

In the example, data between two existed

component, a new component, Cnew

Definition 3.7

"

%�& � ����

�	��� � � ���, ��� �� �� � ���, �
�� ����������

� � ��������� ∪ �����

28

of object: set O’ is same to set O.

Set of flow: set F’ (after update) is a superset of set F.

����� �� � ∈ Δ� 	� �� � &�� ���� ��������	 , �

����� ' 1 ���� &�(� ���� �
�����	��
���
 , ������	

Order: in this type, the order will have specific condition: the source of new data

flow must be the destination of existed data flow.

In this final type of updating, there will be a new component added between two existed

components. Data flow between two existed components will be sent to a middle component, the

Figure 8: Updating Type: Type 4

In the example, data between two existed components, C1 and C2, will pass to an intermediate

new.

� "�, "
	��

� ������"��

�������������

��	
���

Order: in this type, the order will have specific condition: the source of new data

ere will be a new component added between two existed

components. Data flow between two existed components will be sent to a middle component, the

components, C1 and C2, will pass to an intermediate

29

Characteristic of type 4 updating:

• AADL:

o Number of components is increased by one.

o Data port: data ports after updating is more than those before updating.

∀� ∈ ������Δ��, � ∈ ������#���� ∪ ������#�� ∪ ������#��

o Data flow: data flow after updating increased too.

• Restricted Sequence Diagram:

Figure 9: Restricted Sequence Diagram of updating type 4

o Set of object: number element of set O’ is more than the number element of set O.

�� = � ∪ Δ�

o Set of flow: set F’ (after update) is

�� = Δ�

3.3. Our architecture for upgrading:

3.3.1. Interceptor pattern:

The Interceptor architectural pattern is one of pattern

as a pattern for concurrent and networked objects.

services to be added transparently to a framework and triggered automatically when certain events

occur.

So we can use this architecture to control data flow in the system.

Figure 10

In our research, we define architecture depend on the idea of

3.3.2. Our defined architecture:

We want to improve the behavior of Interceptor pattern by introducing Interceptor

The Interceptor Configuration will control the activities of Interceptor to perform the updating in the

system.

30

Our architecture for upgrading:

Interceptor pattern:

The Interceptor architectural pattern is one of pattern-oriented software architecture introduced in

as a pattern for concurrent and networked objects. The Interceptor architectural pattern allows

services to be added transparently to a framework and triggered automatically when certain events

So we can use this architecture to control data flow in the system.

10: Concept diagram of Interceptor architecture

In our research, we define architecture depend on the idea of the Interceptor architectural

Our defined architecture:

We want to improve the behavior of Interceptor pattern by introducing Interceptor

The Interceptor Configuration will control the activities of Interceptor to perform the updating in the

oriented software architecture introduced in

The Interceptor architectural pattern allows

services to be added transparently to a framework and triggered automatically when certain events

architectural pattern.

We want to improve the behavior of Interceptor pattern by introducing Interceptor Configuration.

The Interceptor Configuration will control the activities of Interceptor to perform the updating in the

Figure 11

In our architecture, after sending upgrading reque

controllers: Component Controller and Flow Order Controller. These two controllers will affect the

Interceptor Configuration. The Interceptor Configuration will control the behavior of Interceptor in

the system so that it will control the data flow in the system to perform non

3.3.2.1. Role of Component Controller

The Component Controller will get the information about the changing of component

depend on AADL of system before and afte

31

11: Our architecture for non-stop upgrading

In our architecture, after sending upgrading request to the system, the request will be sent to two

controllers: Component Controller and Flow Order Controller. These two controllers will affect the

Interceptor Configuration. The Interceptor Configuration will control the behavior of Interceptor in

it will control the data flow in the system to perform non-stop upgrading.

Role of Component Controller

The Component Controller will get the information about the changing of components

before and after each updating.

st to the system, the request will be sent to two

controllers: Component Controller and Flow Order Controller. These two controllers will affect the

Interceptor Configuration. The Interceptor Configuration will control the behavior of Interceptor in

stop upgrading.

s in the system

The Component Controller has these functions:

• Manage components and data ports before and after update

• Send this information to Interceptor Configuration to determine what update

performed.

3.3.2.2. Role of Flow Order Controller

The Flow Order Controller will get information from RSD specification and send information to

Interceptor Configuration to control the updating time of the system.

32

Figure 12: Component Controller

The Component Controller has these functions:

Manage components and data ports before and after update

Send this information to Interceptor Configuration to determine what update

Role of Flow Order Controller

The Flow Order Controller will get information from RSD specification and send information to

Interceptor Configuration to control the updating time of the system.

Send this information to Interceptor Configuration to determine what update will be

The Flow Order Controller will get information from RSD specification and send information to

The role of Flow Order Controller:

• Manage the order of message flow before and after update

• Send information to Interceptor Configuration to determine the suitable time to update.

3.4. Our updating architecture specification:

3.4.1. Type 1

3.4.1.1. Specification and updating operation request

33

Figure 13: The Flow Order Controller

Manage the order of message flow before and after update

Send information to Interceptor Configuration to determine the suitable time to update.

Our updating architecture specification:

ification and updating operation request

Send information to Interceptor Configuration to determine the suitable time to update.

In updating type 1, we have two components as following:

After updating, the diagram changes into:

Update Operation request will be sent to the controllers with following specification:

Update_Type1 (C1)

{

 Add_Component (C3);

 Add_Connection (m3 (C

 Add_Connection (m4 (C

}

Upgrading is a sequence of updating so that

component being updated:

Update_Type1 (C1)

34

we have two components as following:

Figure 14: Updating type 1 - Before

, the diagram changes into:

Figure 15: Updating type 1 - After

will be sent to the controllers with following specification:

(C1, C3));

(C3, C1));

Upgrading is a sequence of updating so that the specification included the updating type and the

the specification included the updating type and the

In this case, updating type 1 will have 3 commands. The first one is the command that add a new

component. Two next commands are two adding connection command

command will include the name of the new connection, the source and the destination of the

connection.

 Add_Component (C3);

 Add_Connection (m3 (C

 Add_Connection (m4 (C

3.4.1.2. The real architecture using Interceptor

In the real implementation of our architecture, Interceptor pattern has the role of intermediate

controller between components in the system. Interceptor will control data flow in the system in

order to manage system updating.

Figure 16: Interceptor implementation in updating type 1

Interceptor Configuration store the information about activities of Interceptor Proxy

m1 (C1, C2)

{

m11 (C1, IP: pi1)

m12 (IP: po1, C2)

}

m2 (C2, C1)

{

m21 (C2, IP: pi2)

35

In this case, updating type 1 will have 3 commands. The first one is the command that add a new

component. Two next commands are two adding connection commands. The connection adding

command will include the name of the new connection, the source and the destination of the

(C1, C3));

(C3, C1));

The real architecture using Interceptor Proxy

In the real implementation of our architecture, Interceptor pattern has the role of intermediate

controller between components in the system. Interceptor will control data flow in the system in

: Interceptor implementation in updating type 1

Interceptor Configuration store the information about activities of Interceptor Proxy

In this case, updating type 1 will have 3 commands. The first one is the command that add a new

s. The connection adding

command will include the name of the new connection, the source and the destination of the

In the real implementation of our architecture, Interceptor pattern has the role of intermediate

controller between components in the system. Interceptor will control data flow in the system in

m22 (IP: po2, C1)

}

The first line define the name of connection

m1 (C1, C2)

This connection will be managed by two real connections. In each of these connections, the

specification describes the source and the destination.

will specify the input or output port of Interceptor.

m11 (C1, IP: pi1)

m12 (IP: po1, C2)

For example, the connection m11 from C

Interceptor.

The implement system after updating is described as following:

Figure 17: Interceptor implementation

36

The first line define the name of connection including the source and destination of it

This connection will be managed by two real connections. In each of these connections, the

specification describes the source and the destination. If the destination or source is Interceptor, we

will specify the input or output port of Interceptor.

from C1 to Interceptor will be specified the input port pi

updating is described as following:

Interceptor implementation after updating type 1

This connection will be managed by two real connections. In each of these connections, the

If the destination or source is Interceptor, we

to Interceptor will be specified the input port pi1 in the

m1 (C1, C2)

{

m11 (C1, IP: pi1)

m12 (IP: po1, C2)

}

m2 (C2, C1)

{

m21 (C2, IP: pi2)

m22 (IP: po2, C1)

}

// New elements:

m3 (C1, C3)

{

m11 (C1, IP: pi1)

m32 (IP: po3, C3)

}

m4 (C3, C1)

{

m41 (C3, IP: pi3)

m22 (IP: po2, C1)

}

Depend on the specification of Interceptor Configuration; we can determine the updating time when

m22 is finished.

3.4.2. Type 2

3.4.2.1. Specification

In updating type 2, we have two components as following

37

Depend on the specification of Interceptor Configuration; we can determine the updating time when

Specification and updating operation request

In updating type 2, we have two components as following

Figure 18: Updating type 2 - Before

Depend on the specification of Interceptor Configuration; we can determine the updating time when

After updating, the diagram changes into:

Update Operation request will be sent to the controllers with following specification

Update_Type2 (C1,C2)

{

 Add_Connection (m2 (C

}

Update_Type2 (C1,C2)

{

 Add_Connection (m2 (C

}

38

After updating, the diagram changes into:

Figure 19: Updating type 2 - After

Update Operation request will be sent to the controllers with following specification for each case

Figure 20: Case 1

(C2, C1));

Figure 21: Case 2

(C1, C2));

for each case:

3.4.2.2. The real architecture using Interceptor Proxy

The implementation using Interceptor b

Figure

m1 (C1, C2)

{

m11 (C1, IP: pi1)

m12 (IP: po1, C2)

}

And after updating:

Figure

39

The real architecture using Interceptor Proxy

The implementation using Interceptor before updating is as following:

Figure 22: Interceptor in type 2 - Before

Figure 23: Interceptor in type 2 – After (Case 1)

m1 (C1, C2)

{

m11 (C1, IP: pi1)

m12 (IP: po1, C2)

}

//New

m2 (C2, C1)

{

m21 (C2, IP: pi2)

m22 (IP: po2, C1)

}

Case 2 of updating type 2:

Figure

m1 (C1, C2)

{

m11 (C1, IP: pi1)

m12 (IP: po1, C2)

}

//New

m2 (C1, C2)

{

m11 (C1, IP: pi1)

m12 (IP: po1, C2)

}

40

Figure 24: Interceptor in type 2 – After (Case 2)

3.4.3. Type 3

3.4.3.1. Specification and updating operation

In updating type 3, we have two components as following be

After updating, the diagram changes into:

Update Operation request will be sent to the controllers with following specification:

Update_Type2 (C1,C2)

{

 Add_Connection (m2 (C

}

3.4.3.2. The real architecture using Interceptor Proxy

41

Specification and updating operation request

In updating type 3, we have two components as following before updating:

Figure 25: Updating type 3 - Before

After updating, the diagram changes into:

Figure 26: Updating type 3 - After

Operation request will be sent to the controllers with following specification:

(C2, C1));

The real architecture using Interceptor Proxy

The implementation using Interceptor before updating is as followi

Figure

m1 (C1, C2)

{

m11 (C1, IP: pi1)

m12 (IP: po1, C2)

}

After Updating

Figure

42

The implementation using Interceptor before updating is as following:

Figure 27: Interceptor in type 3 - Before

Figure 28: Interceptor in type 3 – After

m1 (C1, C2)

{

m11 (C1, IP: pi1)

m12 (IP: po1, C2)

}

m2 (C2, C1)

{

m21 (C2, IP: pi2)

m22 (IP: po2, C1)

}

3.4.4. Type 4

3.4.4.1. Specification and updating operation request

In updating type 4, we have two components as following

After updating, the diagram changes into:

43

Specification and updating operation request

, we have two components as following

Figure 29: Updating type 4 - Before

diagram changes into:

Figure 30: Updating type 4 - After

Update Operation request will be sent to the controllers with following specification:

Update_Type4 (C1, C2)

{

 Add_Component (C3);

 Add_Connection (m11 (C

 Add_Connection (m12 (C

 Add_Connection (m21 (C

 Add_Connection (m22 (C

}

3.4.4.2. The real architecture using Interceptor Proxy

The implementation using Interceptor before updating is as following:

Figure

Interceptor Configuration stores the information

m1 (C1, C2)

{

m11 (C1, IP: pi1)

m12 (IP: po1, C2)

}

m2 (C2, C1)

{

m21 (C2, IP: pi2)

m22 (IP: po2, C1)

}

44

Update Operation request will be sent to the controllers with following specification:

(C1, C3));

(C3, C2));

(C2, C3));

(C3, C1));

The real architecture using Interceptor Proxy

The implementation using Interceptor before updating is as following:

Figure 31: Interceptor in type 4 - Before

the information about activities of Interceptor:

After Updating:

Figure

m11 (C1, C3)

{

m111 (C1, IP: pi1)

m112 (IP: po3, C3)

}

m12 (C3, C1)

{

m121 (C3, IP: pi3)

m122 (IP: po2, C1)

}

m21 (C2, C3)

{

m211 (C2, IP: pi2)

m212 (IP: po3, C3)

}

m22 (C3, C1)

{

m221 (C3, IP: pi3)

m222 (IP: po2, C1)

}

45

Figure 32: Interceptor in type 4 - After

Chapter 4:

 Case study

After preparing background knowledge about the using of A

Language and Restricted Sequence Diagram

describe the system. In this chapter, we will put them into practice by apply to the concrete example.

In this case, we will analyze the updating types on the Electronic Commerce System case study (E

Commerce).

4.1. Overview functions of E

In the electronic commerce system, there are customers and suppliers. Each customer has a contract

with a supplier for purchases from that supplier and has one or more bank accounts to make the

payments to suppliers. Each supplier provides a catalog of items, accepts customer orders, a

receives payment from customers.

46

preparing background knowledge about the using of Architecture Analysis and Design

anguage and Restricted Sequence Diagram, categorizing types of updating, we have the tools to

chapter, we will put them into practice by apply to the concrete example.

In this case, we will analyze the updating types on the Electronic Commerce System case study (E

functions of E-Commerce System

tem, there are customers and suppliers. Each customer has a contract

with a supplier for purchases from that supplier and has one or more bank accounts to make the

payments to suppliers. Each supplier provides a catalog of items, accepts customer orders, a

Figure 33: E-Commerce Function

rchitecture Analysis and Design

, categorizing types of updating, we have the tools to

chapter, we will put them into practice by apply to the concrete example.

In this case, we will analyze the updating types on the Electronic Commerce System case study (E-

tem, there are customers and suppliers. Each customer has a contract

with a supplier for purchases from that supplier and has one or more bank accounts to make the

payments to suppliers. Each supplier provides a catalog of items, accepts customer orders, and

47

A customer is able to browse several catalogs provided by the suppliers and make selections of items

that he need to purchase. The customer’s order needs to be checked against the available contracts

to determine if there is a valid customer contract with the supplier. These contracts will be used for

charging the purchase. Each contract has operations funds committed to it. It is necessary to

determine that sufficient funds are available for the customer order. Assuming that the contract and

funds are in place, a delivery order is created and sent to the catalog supplier. The supplier confirms

the order and enters a planned shipping date. When the order is shipped, the customer is notified.

The customer acknowledges when the shipment is received and the delivery order is updated. After

receipt of shipment, authorization for payment of the invoice is made. The invoice is checked against

the contract, available funds, and delivery order status. After that, the invoice is sent to accounts

payable which authorizes payment of funds. Payment is made through electronic funds transfer

from the customer bank to the supplier bank.

The data using in E-Commerce is list in the following table:

Entity Data

Customer customerID: Integer

address: String

telephoneNumber: String

faxNumber: String

Inventory itemID: Integer

itemDescription: String

quantity: Integer

price: Real

reorderTime: Date

BankAccount bankID: Integer

locationOfBank: String

bankAccountNumber: String

accountType: String

DeliveryOrder orderID: Integer

plannedShipDate: Date

actualShipDate: Date

48

creationDate: Date

orderStatus: String

amountDue: Real

receivedDate: Date

Contract contractID: Integer

maxPurchase: Real

Supplier supplierID: Integer

address: String

telephoneNumber: String

faxNumber: String

Invoice invoiceID: Integer

amountDue: Real

invoiceDate: Date

SelectedItem itemID: Integer

unitCost: Real

quantity: Integer

Catalog itemID: Integer

itemDescription: String

unitCost: Real

Payment paymentID: String

amount: Real

date: Date

status: String

Requisition requisitionID: Integer

amount: Real

status: String

OperationFunds operationFundsID: Integer

totalFunds: Real

committedFunds: Real

reservedFunds: Real

Table 2: Structure of all data entity in E-Commerce System

In E-Commerce System, there are six functions.

Figure

49

Commerce System, there are six functions.

Figure 34: Six function of E-Commerce System

4.1.1. Browse Catalog:

First function is Browse Catalog function. Using this function, users use Customer Client to send a

browse catalog request. After receiving the request from client,

a query to server to get the catalog information from catalog database.

business object will response the data back to customer client.

4.1.2. Place Requisition:

50

Figure 35: Browse Catalog Function

First function is Browse Catalog function. Using this function, users use Customer Client to send a

browse catalog request. After receiving the request from client, customer business object will make

uery to server to get the catalog information from catalog database. After that, customer

business object will response the data back to customer client.

Place Requisition:

First function is Browse Catalog function. Using this function, users use Customer Client to send a

business object will make

After that, customer

The next function in E-Commerce System is Place Requisition function. In this function, a customer

will select item from catalog and send the request to create a requisition through Customer Client.

Then the request will be sent to Customer Business Object

the Requisition Business Object and passes customer’s request to it.

Next, Requisition Business Object will check from Contracts Database to check whether the contract

between the customer and the supplier

send a reserve funds request to the Operations Funds Server to hold the funds from a given contract

for this requisition.

After receiving confirm that the funds have been reserved, Requisition Busines

requisition and stores at the Requisition Database. Requisition Business Object sends the requisition

status to the Customer Business Object then the Customer Business Object instantiates a Delivery

51

Figure 36: Place Requisition Function

Commerce System is Place Requisition function. In this function, a customer

will select item from catalog and send the request to create a requisition through Customer Client.

Then the request will be sent to Customer Business Object. Customer Business Object instantiates

the Requisition Business Object and passes customer’s request to it.

Next, Requisition Business Object will check from Contracts Database to check whether the contract

between the customer and the supplier is existed. If contract is ok, Requisition Business Object will

send a reserve funds request to the Operations Funds Server to hold the funds from a given contract

After receiving confirm that the funds have been reserved, Requisition Business Object approves the

requisition and stores at the Requisition Database. Requisition Business Object sends the requisition

status to the Customer Business Object then the Customer Business Object instantiates a Delivery

Commerce System is Place Requisition function. In this function, a customer

will select item from catalog and send the request to create a requisition through Customer Client.

. Customer Business Object instantiates

Next, Requisition Business Object will check from Contracts Database to check whether the contract

If contract is ok, Requisition Business Object will

send a reserve funds request to the Operations Funds Server to hold the funds from a given contract

s Object approves the

requisition and stores at the Requisition Database. Requisition Business Object sends the requisition

status to the Customer Business Object then the Customer Business Object instantiates a Delivery

Order Business Object and sends the

new delivery order in Orders Server.

Finally, Customer Business Object sends the requisition status to the Customer Client to display the

status to the customer.

4.1.3. Process Delivery Order:

Figure

1. The supplier requests a new delivery order through Supplier Client.

2. The Supplier Client forwards the request to the Supplier Business Object.

3. The Supplier Business Object sends the order req

4. The Delivery Order Business Object selects a delivery order by querying the Orders Server.

5. The Delivery Order Business Object sends the delivery order back to the Supplier Business

Object

6. The Supplier Business Object checks whether the items are available in Inventory Server.

52

Order Business Object and sends the purchase request to it. Delivery Order Business Object stores

new delivery order in Orders Server.

sends the requisition status to the Customer Client to display the

Process Delivery Order:

gure 37: Process Delivery Order Function

The supplier requests a new delivery order through Supplier Client.

The Supplier Client forwards the request to the Supplier Business Object.

The Supplier Business Object sends the order request to the Delivery Order Business Object

The Delivery Order Business Object selects a delivery order by querying the Orders Server.

The Delivery Order Business Object sends the delivery order back to the Supplier Business

Object checks whether the items are available in Inventory Server.

purchase request to it. Delivery Order Business Object stores

sends the requisition status to the Customer Client to display the

uest to the Delivery Order Business Object

The Delivery Order Business Object selects a delivery order by querying the Orders Server.

The Delivery Order Business Object sends the delivery order back to the Supplier Business

Object checks whether the items are available in Inventory Server.

7. The Supplier Business Object sends the order status to the Supplier Client to display the

delivery order and inventory information to supplier.

4.1.4. Confirm Shipment

Figure

1. The supplier inputs the shipping information.

2. The Supplier Client sends the supplier request to the Supplier Business Object.

3. The Supplier Business Object updates the inventory stored at the Inventory Server.

4. The Supplier Business Object sends the order status to the Delivery Order Business Object.

5. The Delivery Order Business Object updates order status the Orders Server.

6. The Delivery Order Business Object sends the order status to the Customer Business Object.

7. The Customer Business Object forwards the order status to the Customer Client to display to

the customer.

4.1.5. Confirm Delivery

53

The Supplier Business Object sends the order status to the Supplier Client to display the

delivery order and inventory information to supplier.

Confirm Shipment

Figure 38: Confirm Shipment Function

The supplier inputs the shipping information.

The Supplier Client sends the supplier request to the Supplier Business Object.

The Supplier Business Object updates the inventory stored at the Inventory Server.

er Business Object sends the order status to the Delivery Order Business Object.

The Delivery Order Business Object updates order status the Orders Server.

The Delivery Order Business Object sends the order status to the Customer Business Object.

mer Business Object forwards the order status to the Customer Client to display to

Confirm Delivery

The Supplier Business Object sends the order status to the Supplier Client to display the

The Supplier Business Object updates the inventory stored at the Inventory Server.

er Business Object sends the order status to the Delivery Order Business Object.

The Delivery Order Business Object sends the order status to the Customer Business Object.

mer Business Object forwards the order status to the Customer Client to display to

1. Customer uses Customer Client to send delivery confirmation to the Customer Business

Object.

2. The Customer Business Object sends a Shipment Received message to the Delivery Order

Business Object.

3. The Delivery Order Business Object updates the status at the Orders S

4. The Customer Business Object sends a Shipment Received message to the Requisition

Business Object.

5. The Requisition Business Object updates the status of the requisition stored at the

Requisition Server.

6. The Requisition Business Object commits the

Funds Server.

54

Figure 39: Confirm Delivery Function

uses Customer Client to send delivery confirmation to the Customer Business

Business Object sends a Shipment Received message to the Delivery Order

The Delivery Order Business Object updates the status at the Orders Server.

The Customer Business Object sends a Shipment Received message to the Requisition

The Requisition Business Object updates the status of the requisition stored at the

The Requisition Business Object commits the funds for this requisition with the Operations

uses Customer Client to send delivery confirmation to the Customer Business

Business Object sends a Shipment Received message to the Delivery Order

The Customer Business Object sends a Shipment Received message to the Requisition

The Requisition Business Object updates the status of the requisition stored at the

funds for this requisition with the Operations

4.1.6. Send Invoice:

1. The Supplier Business Object sends the invoice information to the Invoice Business Object.

2. The Invoice Business Object s

3. The Delivery Order Business Object notifies the Invoice Business Object that the goods have

been received.

4. The Invoice Business Object sends a contract query to the Contracts Server.

5. The Contracts Server confirms the contract.

6. The invoice Business Object sends a funds query to the Operation Funds Server.

7. The Operation Funds Server confirms that the funds are available and committed.

8. The Invoice Business Object sends the invoice to the Accounts Payable Server.

9. The Accounts Payable Server sends the payment status to the Invoice Business Object.

10. The Invoice Business Object stores the invoice at the Invoice Server.

11. The Invoice Business Object sends the electronic payment to the customer’s bank via the

Bank Server Client.

12. Bank Server Client sends the electronic funds to the customer’s bank for payment to the

supplier.

13. The Invoice Business Object sends the invoice status to the Supplier Business Object.

14. The Supplier Business Object sends the invoice status to the Sup

15. The Supplier Client displays

55

Figure 40: Send Invoice Function

The Supplier Business Object sends the invoice information to the Invoice Business Object.

The Invoice Business Object subscribes to the Delivery Order Business Object.

The Delivery Order Business Object notifies the Invoice Business Object that the goods have

The Invoice Business Object sends a contract query to the Contracts Server.

firms the contract.

The invoice Business Object sends a funds query to the Operation Funds Server.

The Operation Funds Server confirms that the funds are available and committed.

The Invoice Business Object sends the invoice to the Accounts Payable Server.

The Accounts Payable Server sends the payment status to the Invoice Business Object.

The Invoice Business Object stores the invoice at the Invoice Server.

The Invoice Business Object sends the electronic payment to the customer’s bank via the

Bank Server Client sends the electronic funds to the customer’s bank for payment to the

The Invoice Business Object sends the invoice status to the Supplier Business Object.

The Supplier Business Object sends the invoice status to the Supplier Client.

The Supplier Client displays the invoice status to the supplier.

The Supplier Business Object sends the invoice information to the Invoice Business Object.

The Delivery Order Business Object notifies the Invoice Business Object that the goods have

The invoice Business Object sends a funds query to the Operation Funds Server.

The Operation Funds Server confirms that the funds are available and committed.

The Accounts Payable Server sends the payment status to the Invoice Business Object.

The Invoice Business Object sends the electronic payment to the customer’s bank via the

Bank Server Client sends the electronic funds to the customer’s bank for payment to the

The Invoice Business Object sends the invoice status to the Supplier Business Object.

56

4.2. Structure

In the previous section, we examined all function of the E-Commerce System. In this part, we will

model E-Commerce System by using Architecture Analysis and Design Language. With AADL model

of E-Commerce System, we will easily control the data port of each component in the system.

Figure

57

Figure 41: All function of E-Commerce System

4.2.1. Browse Catalog:

In the first function, Browse Catalog,

graphical type as following:

4.2.1.1. System Definition

The first component we describe in the system is Customer Client component. This component ha

two data ports: the first data port oCatalogBrowse is out

Customer Business Object and the second one iCatalogResponse is in

response data back from the Customer Business Object. In th

ports are event data port because they need specific event to trigger sending or receiving data.

Component Customer Client can be

system CustomerClient

 features

 oCatalogBrowse: out event data port string;

 iCatalogResponse: in event data port dCatalog.reg;

end CustomerClient;

The next component is the Customer Business Object component. Customer Business Object has 4

data ports: two input ports and two output ports. First, the Customer Business Object receives the

catalog browsing request through the input event data port iCatalogBrowse. After that, it will make a

query to Catalog Database through the output event data port oCatalogQuery

by input event data port iCatalogResult. Finally, the data will be sent back to Customer Client using

output event data port oCatalogResponse.

system CustomerBusiness

 features

 iCatalogBrowse: in event data port string;

58

In the first function, Browse Catalog, the overview of this function can be described using AADL

Figure 42: Browse Catalog in AADL

System Definition

The first component we describe in the system is Customer Client component. This component ha

two data ports: the first data port oCatalogBrowse is output data port to send a request string to

Customer Business Object and the second one iCatalogResponse is input data port to receive the

response data back from the Customer Business Object. In the E-Commerce System, almost all data

ports are event data port because they need specific event to trigger sending or receiving data.

Component Customer Client can be described by AADL text type as following:

se: out event data port string;

iCatalogResponse: in event data port dCatalog.reg;

The next component is the Customer Business Object component. Customer Business Object has 4

ports and two output ports. First, the Customer Business Object receives the

catalog browsing request through the input event data port iCatalogBrowse. After that, it will make a

query to Catalog Database through the output event data port oCatalogQuery and get the response

by input event data port iCatalogResult. Finally, the data will be sent back to Customer Client using

output event data port oCatalogResponse.

iCatalogBrowse: in event data port string;

overview of this function can be described using AADL

The first component we describe in the system is Customer Client component. This component have

data port to send a request string to

data port to receive the

Commerce System, almost all data

ports are event data port because they need specific event to trigger sending or receiving data.

The next component is the Customer Business Object component. Customer Business Object has 4

ports and two output ports. First, the Customer Business Object receives the

catalog browsing request through the input event data port iCatalogBrowse. After that, it will make a

and get the response

by input event data port iCatalogResult. Finally, the data will be sent back to Customer Client using

59

 oCatalogQuery: out event data port string;

 iCatalogResult: in event data port dCatalog.reg;

 oCatalogResponse: out event data port dCatalog.reg;

end CustomerBusiness;

The last component in this Browse Catalog function is Catalog Database (CatalogDB). CatalogDB

receives the browse catalog query from Customer Business Object and returns the catalog data to

the Customer Client.

system CatalogDB

 features

 iCatalogQuery: in event data port string;

 oCatalogResult: out event data port dCatalog.reg;

end CatalogDB;

4.2.1.2. Data Definition

The data use in this function is string for making the query and the result is dCatalog with the

structure is dCatalog.reg (regular implementation).

data dCatalog

end dCatalog;

data implementation dCatalog.reg

 subcomponents

 itemID: int;

 itemDescription: string;

 unitCost: real;

end dCatalog.reg;

4.2.2. Place Requisition

The graphic model of this function is as following:

4.2.2.1. System Definition

In the Place Requisition function, Customer Client has two more ports: output data port

oRequisitionPlace and input data port iRequisitionPlaceResponse. Customer will use client to send

his selected item through oRequisitionPlace output port and then will

requisition through iRequisitionPlaceResponse input port.

system CustomerClient

 features

 oRequisitionPlace: out event data port dSelectedItem.reg;

 iRequisitionPlaceResponse: in event data port dRequisition.reg;

end CustomerClient;

CustomerBusiness component also has more ports: 2 input ports and 3 output ports.

system CustomerBusiness

 features

 iRequisitionPlace: in event data port dSelectedItem.reg;

 oRequisitionPlacePass: out event data port dSelectedItem.reg;

 iRequisitionPlaceResult: in event data port dRequisition.reg;

 oPurchaseRequest: out event data port dDeliveryOrder.reg;

60

Place Requisition

The graphic model of this function is as following:

Figure 43: Place Requisition in AADL

System Definition

In the Place Requisition function, Customer Client has two more ports: output data port

and input data port iRequisitionPlaceResponse. Customer will use client to send

his selected item through oRequisitionPlace output port and then will get the status of his

requisition through iRequisitionPlaceResponse input port.

oRequisitionPlace: out event data port dSelectedItem.reg;

iRequisitionPlaceResponse: in event data port dRequisition.reg;

CustomerBusiness component also has more ports: 2 input ports and 3 output ports.

iRequisitionPlace: in event data port dSelectedItem.reg;

oRequisitionPlacePass: out event data port dSelectedItem.reg;

iRequisitionPlaceResult: in event data port dRequisition.reg;

oPurchaseRequest: out event data port dDeliveryOrder.reg;

In the Place Requisition function, Customer Client has two more ports: output data port

and input data port iRequisitionPlaceResponse. Customer will use client to send

get the status of his

oRequisitionPlace: out event data port dSelectedItem.reg;

iRequisitionPlaceResponse: in event data port dRequisition.reg;

iRequisitionPlace: in event data port dSelectedItem.reg;

oRequisitionPlacePass: out event data port dSelectedItem.reg;

iRequisitionPlaceResult: in event data port dRequisition.reg;

oPurchaseRequest: out event data port dDeliveryOrder.reg;

61

 oRequisitionPlaceResponse: out event data port

dRequisition.reg;

end CustomerBusiness;

This is the data port of RequisitionBusiness component.

system RequisitionBusiness

 features

 iRequisitionPlacePass: in event data port dSelectedItem.reg;

 oContractQuery: out event data port dCustom.PR2;

 iContractResult: in event data port dContract.reg;

 oFundReserve: out event data port dCustom.PR3;

 iFundReserveResult: in event data port dOperationFunds.reg;

 oRequisitionStore: out event data port dRequisition.reg;

 oRequisitionPlaceResult: out event data port dRequisition.reg;

end RequisitionBusiness;

Next is the data components.

ContractDB component:

system ContractDB

 features

 iContractQuery: in event data port dCustom.PR2;

 oContractResult: out event data port dContract.reg;

end ContractDB;

OperationFundsDB component:

system OperationFundsDB

 features

 iFundReserve: in event data port dCustom.PR3;

 oFundReserveResult: out event data port dOperationFunds.reg;

end OperationFundsDB;

RequisitionDB component:

system RequisitionDB

 features

62

 iRequisitionStore: in event data port dRequisition.reg;

end RequisitionDB;

OrderDB component:

system OrderDB

 features

 iDeliveryOrderCreate: in event data port dDeliveryOrder.reg;

end OrderDB;

Finally, this is the structure of DeliveryOrderBusiness component:

system DeliveryOrderBusiness

 features

 iPurchaseRequest: in event data port dDeliveryOrder.reg;

 oDeliveryOrderCreate: out event data port dDeliveryOrder.reg;

end DeliveryOrderBusiness;

4.2.2.2. Data Definition

In the Place Requisition function, we need to use some custom structure of data so we call it

dCustom.

data dCustom

end dCustom;

With this custom structure data, we define two internal structures (two implementations) of

dCustom. First implementation is dCustom.PR2.

data implementation dCustom.PR2

 subcomponents

 customerID: int;

 supplierID: int;

end dCustom.PR2;

Second implementation is dCustom.PR3.

data implementation dCustom.PR3

 subcomponents

63

 contractID: int;

 reservedFunds: real;

end dCustom.PR3;

The customer selects items they want to buy and send it to Customer Business to request the

creation of requisition. Structure of selected item data is as following:

data dSelectedItem

end dSelectedItem;

data implementation dSelectedItem.reg

 subcomponents

 itemID: int;

 quantity: real;

 unitCost: real;

end dSelectedItem.reg;

After the Requisition Business has sent a contract query to the Contract Server, the Contract Server

returns the contracts data with following structure.

data dContract

end dContract;

data implementation dContract.reg

 subcomponents

 contractID: int;

 maxPurchase: real;

end dContract.reg;

Operations Funds data structure:

data dOperationFunds

end dOperationFunds;

data implementation dOperationFunds.reg

 subcomponents

 operationFundsID: int;

 totalFunds: real;

 committedFunds: real

 reservedFunds: real;

end dOperationFunds.reg;

Requisition data structure:

data dRequisition

end dRequisition;

data implementation dRequisition.reg

 subcomponents

 requisitionID: int;

 amount: real;

 status: string;

end dRequisition.reg;

4.2.3. Process Delivery Order

The graphic model of this function is as

Figure

4.2.3.1. System Definition

Supplier Client

system SupplierClient

 features

 oRequestNewDeliveryOrder: out event data port string;

 iRequestNewDeliveryOrderResponse: in event data por

dInventory.reg;

64

reservedFunds: real;

data implementation dRequisition.reg

requisitionID: int;

status: string;

Process Delivery Order

The graphic model of this function is as following:

Figure 44: Process Delivery Order in AADL

System Definition

oRequestNewDeliveryOrder: out event data port string;

iRequestNewDeliveryOrderResponse: in event data port

oRequestNewDeliveryOrder: out event data port string;

t

65

end SupplierClient;

Supplier Business

system SupplierBusiness

 features

 iRequestNewDeliveryOrder: in event data port string;

 oForwardRequest: out event data port string;

 iNewDeliveryResponse: in event data port dDeliveryOrder.reg[];

 oCheckInventory: out event data port dDeliveryOrder.reg ;

 iCheckInventoryResult: in event data port dInventory.reg[];

 oRequestNewDeliveryOrderResponse: out event data port

dInventory.reg;

end SupplierBusiness;

Delivery Order Business

system DeliveryOrderBusiness

 features

 iForwardRequest: in event data port string;

 oQueryNewDeliveryOrder: out event data port string;

 iNewDeliveryOrderResult: in event data port

dDeliveryOrder.reg[];

 oNewDeliveryResponse: out event data port dDeliveryOrder.reg[];

end DeliveryOrderBusiness;

Orders Database

system OrdersDB

 features

 iQueryNewDeliveryOrder: in event data port string;

 oNewDeliveryOrderResult: out event data port

dDeliveryOrder.reg[];

end OrdersDB;

Inventory Database

system InventoryDB

 features

66

 iCheckInventory: in event data port dDeliveryOrder.reg;

 oCheckInventoryResult: out event data port dInventory.reg[];

end InventoryDB;

4.2.3.2. Data Definition

Delivery Order data

data dDeliveryOrder

end dDeliveryOrder;

data implementation dDeliveryOrder.reg

 subcomponents

 orderId: int;

 plannedShipDate: date;

 actualShipDate: date;

 creationDate: date;

 orderStatus: string;

 amountDue: real;

 receivedDate: date;

end dDeliveryOrder.reg;

Inventory data

data dInventory

end dInventory;

data implementation dInventory.reg

 subcomponents

 itemID: int;

 itemDescription: string;

 quantity: int;

 price: real;

 reorderTime: date;

end dInventory.reg;

4.2.4. Confirm Shipment

The graphic model of this function is as following:

Figure

4.2.4.1. System Definition

Supplier Client

system SupplierClient

 features

 oConfirmShipment: out event data port dCustom.CS1;

end SupplierClient;

Supplier Business

system SupplierBusiness

 features

 iConfirmShipment: in event data port dCustom.CS1;

 oUpdateInventory: out event data port dCustom.CS1;

 oSendOrderStatus: out event data port dCustom.CS1;

end SupplierBusiness;

Delivery Order Business

system DeliveryOrderBusiness

 features

 iSendOrderStatus: in event data port dCustom.CS1;

 oUpdateOrder: out event data port dCustom.CS1;

 oSendOrderStatusCustomer: out event data port dCustom.CS1;

67

Figure 45: Confirm Shipment in AADL

System Definition

oConfirmShipment: out event data port dCustom.CS1;

iConfirmShipment: in event data port dCustom.CS1;

oUpdateInventory: out event data port dCustom.CS1;

oSendOrderStatus: out event data port dCustom.CS1;

system DeliveryOrderBusiness

iSendOrderStatus: in event data port dCustom.CS1;

oUpdateOrder: out event data port dCustom.CS1;

oSendOrderStatusCustomer: out event data port dCustom.CS1;oSendOrderStatusCustomer: out event data port dCustom.CS1;

68

end DeliveryOrderBusiness;

Order Database

system OrderDB

 features

 iUpdateOrder: in event data port dCustom.CS1;

end OrderDB;

Customer Business

system CustomerBusiness

 features

 iSendOrderStatusCustomer: in event data port dCustom.CS1;

 oDisplayOrderStatus: out event data port dCustom.CS1;

end CustomerBusiness;

Customer Client

system CustomerClient

 features

 iDisplayOrderStatus: in event data port dCustom.CS1;

end CustomerClient

Inventory Database

system InventoryDB

 features

 iUpdateInventory: in event data port dCustom.CS1;

end InventoryDB;

4.2.4.2. Data Definition

Another custom data: dCustom.CS1

data implementation dCustom.CS1

 subcomponents

 orderID: int;

 actualShipDate: date;

 orderStatus: string;

 itemID[]: int[];

 quantity[]: int[];

end dCustom.CS1;

4.2.5. Confirm Delivery

The overview of this function can be described using AADL

4.2.5.1. System Definition

Customer Client

system CustomerClient

 features

 oConfirmDelivery: out event data port dCustom.CS1;

end CustomerClient;

Customer Business

system CustomerBusiness

 features

 iConfirmDelivery: in event data port dCustom.CS1;

69

orderStatus: string;

itemID[]: int[];

quantity[]: int[];

Confirm Delivery

The overview of this function can be described using AADL graphical type as following.

Figure 46: Confirm Delivery in AADL

System Definition

oConfirmDelivery: out event data port dCustom.CS1;

iConfirmDelivery: in event data port dCustom.CS1;

70

 oForwardUpdateOrderStatus: out event data port dCustom.CS1;

 oForwardUpdateRequisition: out event data port

dRequisition.reg;

end CustomerBusiness;

Delivery Order Business

system DeliveryOrderBusiness

 features

 iForwardUpdateOrderStatus: in event data port dCustom.CS1;

 oUpdateOrderStatus: out event data port dCustom.CS1;

end DeliveryOrderBusiness;

Order Database

system OrderDB

 features

 iUpdateOrderStatus: in event data port dCustom.CS1;

end OrderDB;

Requisition Business

system RequisitionBusiness

 features

 iForwardUpdateRequisition: in event data port dRequisition.reg;

 oUpdateRequisition: out event data port dRequisition.reg;

 oCommitFund: out event data port dOperationFunds.reg;

 iCommitFundResult: in event data port dOperationFunds.reg;

end RequisitionBusiness;

Operation Funds Database

system OperationFundsDB

 features

 iCommitFund: in event data port dOperationFunds.reg;

 oCommitFundResult: out event data port dOperationFunds.reg;

end OperationFundsDB;

4.2.5.2. Data Definition

There is no new data using in this function.

4.2.6. Send Invoice

The overview of final function can be described using AADL graphical type as following.

4.2.6.1. System Definition

Supplier Business

system SupplierBusiness

 features

 oSendInvoice: out event data port dInvoice.reg;

 iSendInvoiceStatus: in event data port dInvoice.reg;

 oDisplayInvoiceStatus: out event data port dInvoice.reg

end SupplierBusiness;

71

Data Definition

There is no new data using in this function.

The overview of final function can be described using AADL graphical type as following.

Figure 47: Send Invoice in AADL

System Definition

oSendInvoice: out event data port dInvoice.reg;

iSendInvoiceStatus: in event data port dInvoice.reg;

oDisplayInvoiceStatus: out event data port dInvoice.reg

The overview of final function can be described using AADL graphical type as following.

oDisplayInvoiceStatus: out event data port dInvoice.reg;

72

Supplier Client

system SupplierClient

 features

 iDisplayInvoiceStatus: in event data port dInvoice.reg;

end SupplierClient;

A new component that appears in this Send Invoice function is Invoice Business.

system InvoiceBusiness

 features

 iSendInvoice: in event data port dInvoice.reg;

 oCheckReceive: out event data port dCustom.CS1;

 iCheckReceiveResponse: in event data port dCustom.CS1;

 oCheckContract: out event data port dCustom.PR3;

 iCheckContractResponse: in event data port dContract.reg;

 oCheckFunds: out event data port dOperationFunds.reg;

 iCheckFundsResponse: in event data port dOperationFunds.reg;

 oAuthorizePayment: out event data port dInvoice.reg;

 iAuthorizePaymentResponse: in event data port dPayment.reg;

 oStoreInvoice: out event data port dInvoice.reg;

 oSendPaymentToCustomer: out event data port dPayment.reg;

 oSendInvoiceStatus: out event data port dInvoice.reg;

end

Delivery Order Business

system DeliveryOrderBusiness

 features

 iCheckReceive: in event data port dCustom.CS1;

 oCheckReceiveResponse: out event data port dCustom.CS1;

end DeliveryOrderBusiness;

Contract Database

system ContractDB

 features

 iCheckContract: in event data port dCustom.PR3;

 oCheckContractResponse: out event data port dContract.reg;

73

end ContractDB;

Operation Funds Database

system OperationFundsDB

 features

 iCheckFunds: in event data port dOperationFunds.reg;

 oCheckFundsResponse: out event data port dOperationFunds.reg;

end OperationFundsDB;

A new data component is Accounts Payable Database.

system AccountsPayableDB

 features

 iAuthorizePayment: in event data port dInvoice.reg;

 oAuthorizePaymentResponse: out event data port dPayment.reg;

end AccountsPayableDB;

Invoice Database

system InvoiceDB

 features

 iStoreInvoice: in event data port dInvoice.reg;

end InvoiceDB;

Bank Server Client

system BankServerClient

 features

 iSendPaymentToCustomer: in event data port dPayment.reg;

end BankServerClient;

4.2.6.2. Data Definition

Invoice data

data dInvoice

end dInvoice;

data implementation dInvoice.reg

74

 subcomponents

 invoiceID: int;

 amountDue: real;

 invoiceDate: date;

end dInvoice.reg;

Payment data

data dPayment

end dPayment;

data implementation dPayment.reg

 subcomponents

 paymentID: string;

 amount: real;

 date: date;

 status: string;

end dPayment.reg;

4.3. Updating type using E-Commerce System:

Although the Electronic Commerce System is satisfied the basic business of a commerce system, as

mention before, E-Commerce System still need to updating. Some reasons can be fixing bugs, add

new functions, or improve performance.

4.3.1. Updating Type 0 in E-Commerce System

Because of the characteristic of updating type 0, this updating type is not change external data flow

of the updated component so we can ignore it during making non-stop upgrading of the web

application.

4.3.2. Updating Type 1 in E-Commerce System

In the example for applying updating type 1 in E-Commerce System, we use the Browse Catalog use

case. In the original of this function, customers will use client to send the request to Customer

Business Object. The business object will retrieve catalog data in database and send back to the

client.

Figure

For this example, the update is that the Customer Business not only retrieves data from Catalog

database but also check the Inventory database to response to customer not all catalog but only

catalogs in stock.

Figure

The change to AADL description of Customer Business is two more ports oCheckInventory and

iCheckInventoryResult:

system CustomerBusiness

 features

 iCatalogBrowse: in event d

 oCatalogQuery: out event data port string;

 iCatalogResult: in event data port dCatalog.reg[];

 oCatalogResponse: out event data port dCatalog.reg[];

 oCheckInventory: out event data port dCatalog.reg;

 iCheckInventoryResult: in even

end CustomerBusiness;

75

Figure 48: Browse Catalog before updating

For this example, the update is that the Customer Business not only retrieves data from Catalog

database but also check the Inventory database to response to customer not all catalog but only

Figure 49: Browse Catalog after updating

The change to AADL description of Customer Business is two more ports oCheckInventory and

iCatalogBrowse: in event data port string;

oCatalogQuery: out event data port string;

iCatalogResult: in event data port dCatalog.reg[];

oCatalogResponse: out event data port dCatalog.reg[];

oCheckInventory: out event data port dCatalog.reg;

iCheckInventoryResult: in event data port bool;

For this example, the update is that the Customer Business not only retrieves data from Catalog

database but also check the Inventory database to response to customer not all catalog but only

The change to AADL description of Customer Business is two more ports oCheckInventory and

oCatalogResponse: out event data port dCatalog.reg[];

76

And the change to Inventory Database is two more port too:

system InventoryDB

 features

 iCheckInventory: in event data port dCatalog.reg;

 oCheckInventoryResult: out event data port bool;

end InventoryDB;

The Restricted Sequence Diagram of the Browse Catalog function is below:

Figure 50: Browse Catalog Restricted Sequence Diagram before updating

77

Set of objects:

� = {�������	�
����,�������	�������,����
��� }

Set of flows:

� = { �� < �������	�
���� ,�������	������� >,

�� < �������	�������,����
��� >,

�� < ����
���,�������	������� >,

�� < �������	�������,�������	�
���� > }

Orders:

�< 1,�� > < 2,�� > < 3,�� > < 4,�� >�

Figure 51: Browse Catalog Restricted Sequence Diagram after updating

Set of objects:

� � � ����	
�������, ����	
�

Set of flows:

� � � �� � ����	
������� , ����	
����������

�� � ����	
����������

�� � ����	���, ����	
����������

�� � ����	
����������

�� � ����	
����������

�� � ������	����

Orders:

�� 1, �� � � 2, �� � � 3, �� � � 4,

4.3.3. Updating Type 3 in E

Updating type 3 is a specific case of updating type 2 so that we consider type 3 of updating. Part of

Place Requisition AADL graphic is as following.

Figure

In the original of Place Requisition function, Requisition Business only sends query to store new

requisition to Requisition Database.

that storing requisition is successful so that we need a confirmation from Requisition Database.

Figure

78

��������	��
����, ������	, �����������

��������	��
���� �,

��������	��
����, ������	 �,

��������	��
���� �,

��������	��
����, ����������
��� �,

��������	��
����, ����������	 �,

����������	, ��������	��
���� � !

, "� � # 5, "� � # 6, &� �!

Updating Type 3 in E-Commerce System:

Updating type 3 is a specific case of updating type 2 so that we consider type 3 of updating. Part of

as following.

Figure 52: Place Requisition before update

In the original of Place Requisition function, Requisition Business only sends query to store new

requisition to Requisition Database. In the example of using updating type 3, we want to confirm

t storing requisition is successful so that we need a confirmation from Requisition Database.

Figure 53: Place Requisition after update

���������	
 �

Updating type 3 is a specific case of updating type 2 so that we consider type 3 of updating. Part of

In the original of Place Requisition function, Requisition Business only sends query to store new

In the example of using updating type 3, we want to confirm

t storing requisition is successful so that we need a confirmation from Requisition Database.

79

system RequisitionBusiness

 features

 iRequisitionPlacePass: in event data port dSelectedItem.reg;

 oRequisitionStore: out event data port dRequisition.reg;

 iRequisitionStoreResult: in event data port bool;

 oRequisitionPlaceResult: out event data port dRequisition.reg;

end RequisitionBusiness;

system RequisitionDB

 features

 iRequisitionStore: in event data port dRequisition.reg;

 oRequisitionStoreResult: out event data port bool;

end RequisitionDB;

Restricted Sequence Diagram before update is described below.

Figure 54: Place Requisition Restricted Sequence Diagram before update

80

Set of objects

� = {�������	�
����,�������	�������,������������������,������������ }

Set of flows

� = { �1 < �������	�
���� ,�������	������� >,

�2 < �������	�������,������������������ >,

�3 < ������������������,������������ >,

�4 < ������������������,�������	������� >,

�5 < �������	�������,�������	�
���� > }

Orders:

�< 1,�1 > < 2,�2 > < 3,�3 > < 4,�4 > < 5,�5 >�

And the diagram changed as following after updating.

Figure 55: Place Requisition Restricted Sequence Diagram after update

Set of objects

81

� = {�������	�
����,�������	�������,������������������,������������ }

Set of flows

�: { �1 < �������	�
���� ,�������	������� >,

�2 < �������	�������,������������������ >,

�3 < ������������������,������������ >,

�4 < ������������������,�������	������� >,

�5 < �������	�������,�������	�
���� >,

�� < ������������,������������������ > }

Orders:

�< 1,�1 > < 2,�2 > < 3,�3 > < 4,�� > < 5,�4 > < 6,�5 >�

Identify: <3,f3> and the new <4,f6>, the source and destination of f3 maybe same or in reverse order

to f6

Chapter 5:

 Evaluation

5.1. Upgrading web application

We all know that the web application is very large and has many components. These components

can be worked independent to other components. However, in some

results can also affect to other components activities. So the effective way of making non

upgrading is ensuring that the data after making an update is not effect to other update. This will

guarantee that the upgrading process will be done successfully and safely.

There are 3 issues we meet when making a

• Typical change might be achieved

• During each upgrade operation, service

• No data missing.

In the reality, each time we need to make the system maintenance, we often need to perform a

sequence of updating process. From this viewpoint

considered as the upgrading process.

Assume we apply a sequence of updating

82

Upgrading web application

We all know that the web application is very large and has many components. These components

can be worked independent to other components. However, in some specific case, these component

other components activities. So the effective way of making non

upgrading is ensuring that the data after making an update is not effect to other update. This will

process will be done successfully and safely.

There are 3 issues we meet when making a non-stop upgrading of system:

Typical change might be achieved by some upgrading operations.

each upgrade operation, service progresses must not corrupted.

In the reality, each time we need to make the system maintenance, we often need to perform a

From this viewpoint, almost all maintenance process

the upgrading process.

ce of updating U1, U2, U3... to the system S.

Figure 56: Upgrading system S

We all know that the web application is very large and has many components. These components

specific case, these component

other components activities. So the effective way of making non-stop

upgrading is ensuring that the data after making an update is not effect to other update. This will

In the reality, each time we need to make the system maintenance, we often need to perform a

, almost all maintenance process can be

83

Because this is a web application system, we can choose the order of updating operation. There will

have many ways to finish the upgrading of system S.

For example we have n operations of upgrade then number of updating path becomes n! unless they

collapse.

5.2. Step to make a non-stop upgrading

Non-stop upgrading means that the service may postpone but never terminated during upgrading. In

order to guarantee that the upgrading process does not change or ignored the overall system

activities, we should follow these steps when doing the upgrading:

First of all, we will use the AADL description to describe the data ports of the updating component.

In this step, we will have the general view about the data ports using by updating components. We

also identify the data sending out and in of these components.

Next, we need to describe the data flow between these components by using Restricted Sequence

Diagram.

After that, we will use AADL description and Restricted Sequence Diagram to model the system after

updating. Depend on these model, we can determine what type of the update.

With each of specific update, we can define what data the update changes and we can determine

the order of upgrading process or know that the upgrading process cannot be done.

5.3. Upgrading achievement

Non-stop upgrading can be achieved by satisfy two viewpoints in our architecture:

• Static viewpoint: data is not missing or corruption after upgrading.

• Dynamic viewpoint: the overall message flows are correct.

5.4. Concrete example

Figure 33 describes a system with 3 components O

between them. This is the original state

Assume that we want to upgrade S

another in 05. First update is type 1,

inserting a new object O5 between O

Figure 58: First part of upgrading S

There will have two middle states of system S before finishing upgrading. We assume that S

state after finishing type 1 update and S

84

Concrete example

Figure 33 describes a system with 3 components O1, O2, O3, and there are the data flows f

between them. This is the original state of the system S, we called this state S0.

Figure 57: Upgrading System State 0

Assume that we want to upgrade S0 in order to extend two functions. One is implemented in 0

type 1, making a new connection from O1 to O4. Second update is

between O2 and O3.

: First part of upgrading S Figure 59: Second part of upgrading S

There will have two middle states of system S before finishing upgrading. We assume that S

state after finishing type 1 update and S2 is the state after making type 4 update.

, and there are the data flows f1, f2

in order to extend two functions. One is implemented in 04 and

. Second update is type 4,

: Second part of upgrading S

There will have two middle states of system S before finishing upgrading. We assume that S1 is the

We must complete two previous states to finish this upgrading requirement. The final model of

upgrading the system S is S12 and is described in Figure 38.

Figure

So we have two paths to reach the complete

85

Figure 60: Upgrading System State 1

Figure 61: Upgrading System State 2

We must complete two previous states to finish this upgrading requirement. The final model of

and is described in Figure 38.

Figure 62: Finish state of upgrading system S

to reach the complete upgrading state of system S.

We must complete two previous states to finish this upgrading requirement. The final model of

The update is possible if in each state of updating process; the data can

For example, after making type 1 update, the system is S1 in Figure 36. This update is possible if the

data can be sent without change from O

Because of time restriction, we cannot clarify detail case

of updating type. This works should be done in the future.

86

Figure 63: Upgrade path

The update is possible if in each state of updating process; the data can be sent without confliction.

For example, after making type 1 update, the system is S1 in Figure 36. This update is possible if the

data can be sent without change from O1 � O2 � O3 and vice versa.

Because of time restriction, we cannot clarify detail cases of data confliction and all the combination

of updating type. This works should be done in the future.

be sent without confliction.

For example, after making type 1 update, the system is S1 in Figure 36. This update is possible if the

s of data confliction and all the combination

87

Chapter 6:

 Conclusion and future works

The task of making non-stop upgrading is an important and challenging task in software

development. This problem relates to both local and web-based software development. Because of

characteristic of each updating type, this task is divided into two independent tasks.

In local software development domain, the entire program is running in local computer so that the

upgrading task is too different to the upgrading task of web-based applications. In web application,

the system is very large, it uses database to store the data and address of components or data is not

gather in one specific address. In a web application, two databases can be placed at more than one

address.

These different points make the mechanism for making non-stop upgrading web application and

local application different. There are many researches to achieve the goal for both web application

and local application. However, these researches for non-stop upgrading web application only focus

only the technique for deployment in real application. In other words, these researches focus on

programming technique to realize non-stop upgrading web application.

In this dissertation, we not focus on these techniques but we focus on finding a good method to

describe the system and data using in the system. We addressed a solution based on Interceptor

architecture and component-based approach. With our method, we have a simple and clear view of

the data using in the system. Furthermore we use a new way to control the upgrading process of the

system so that we can achieve the goal of the research: non-stop upgrading of web application.

First we need to describe the system formally to control the data in the system in order to manage

upgrading work. So we define a new way to model the system using the combination of AADL and

RSD. With our method, we can easily understand the behavior of the system, including data flow and

order of the data sending in the system.

88

Secondly we define an upgrading as a sequence of updating operations and categorize them into five

patterns. Each type of update can change the system differently and can affect the time we upgrade

the system. The first case is internal changes of components. The second is the case that a new

component is added into the system. Next case is that we add new connection from two existed

components. Final case is that we have a new component between two existed components.

Next we showed a mechanism for using Interceptor pattern. The Interceptor architectural pattern is

one of pattern-oriented software architecture introduced in as a pattern for concurrent and

networked objects. The Interceptor architectural pattern allows services to be added transparently

to a framework and triggered automatically when certain events occur. So we can apply this

architecture to control data flow in the system to achieve the goal.

Our solution has many advantages to traditional approaches such that we can control the

consistency of the data in the system as well as the overall system data flow and our solution has the

flexibility and extendibility for development.

The most important one is consistency, which means the data in the system after upgrading is not

conflict with other process of the system. Our mechanism also has flexibility and extendibility for

improving in the future.

In many cases, the non-stop upgrading can be achieved without any problems. However, there will

be some situations that the data is conflicted between updating processes or the data flow can be

incorrect after upgrading. We are now engaging in examining all possible upgrading case. In the

future, we need to consider all of the cases to clarify detail of data confliction may be existed. And

the most important and difficult part is that apply the theory into practical, we need to work a lot in

the future to apply our architecture into real application.

89

Reference

1. A simple equation: IT on = Business on. Parker, S. s.l. : The IT Journal, Hewlett Packard, 2001.

2. Larman, Craig. Applying UML and Patterns. An Introduction to Object-Oriented Analysis and

Design. s.l. : Prentice Hall PTR, 1998. ISBN 0-13-78880-7.

3. Koskinen, Jussi. Software Maintenance Costs. Information Technology Research Institute, Finland :

s.n., 2003.

4. Gomaa, Hassan. E-Commerce: Designing Concurrent, Distributed, and Real-time applications with

UML. s.l. : Addison-Wesley, July 2001. ISBN 0-201-65793-7, Second Printing.

5. Bell, Donald. UML basics: The sequence diagram. IBM developerWorks web site. [Online] IBM,

2004. http://www.ibm.com/developerworks/rational/library/3101.html.

6. Ambler, Scott W. Introduction to UML 2 Sequence Diagrams. Agile Modeling (AM). [Online]

Ambysoft Inc, 2003-2010. http://www.agilemodeling.com/artifacts/sequenceDiagram.htm.

7. Peter H. Feiler, David P. Gluch, and John J. Hudak. The Architecture Analysis & Design Language

(AADL): An Introduction. February 2006. CMU/SEI-2006-TN-011.

8. Sequence diagram. Wikipedia, the free encyclopedia. [Online]

http://en.wikipedia.org/wiki/Sequence_diagram.

9. ROC-1: Hardware Support for Recovery-Oriented Computing. David Oppenheimer, Aaron Brown,

James Beck, Daniel Hettena, Jon Kuroda,Noah Treuhaft, David A. Patterson, Fellow, IEEE, and

Katherine Yelick, Member, IEEE. s.l. : IEEE TRANSACTIONS ON COMPUTERS, 2002, Vol. 51.

10. Practical Dynamic Software Updating for C. Iulian Neamtiu, Michael Hicks, Gareth Stoyle,

Manuel Oriol. Ottawa, Ontario, Canada : ACM, 2006.

11. Douglas Schmidt, Michael Stal, Hans Rohnert and Frank Buschmann. Pattern-Oriented Software

Architecture, Patterns for Concurrent and Networked Objects, Volume 2. s.l. : John Wiley & Sons,

2000. ISBN 0471606952.

90

12. Online Non-stop Software Updating Using Replicated Execution Blocks. Kuo-Feng Ssu, Hewijin

Christine Jiau. Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan

701 : International Computer Software and Applications Conference, 2000.

13. Mutatis Mutandis: Safe and Predictable Dynamic Software Updating. Gareth Stoyle, Michael

Hicks, Gavin Bierman, Peter Sewell, Iulian Neamtiu. California, USA : ACM, 2005.

14. Implementation of Non-stop Software Update for Client-Server Applications. Wen-Kang Wei,

Kuo-Feng Ssu, Hewijin Christine Jiau. Department of Electrical Engineering, National Cheng Kung

University, Tainan, Taiwan 701 : Computer Software and Applications Conference, 2003.

15. Extending Message-Oriented Middleware using Interception. Edward Curry, Desmond Chambers,

and Gerard Lyons. Department of Information Technology, National University of Ireland, Galway,

Ireland : s.n.

16. Christopher M. Hayden, Eric A. Hardisty, Michael Hicks, and Jeffrey S. Foster. Efficient

systematic testing for dynamically updatable software. s.l. : ACM, 2009. ISBN 978-1-60558-723-3 .

17. Dynamic Software Updating. Michael Hicks and Scott Nettles. s.l. : ACM Transactions on

Programming Languages and Systems.

18. Inderjeet Singh, Beth Stearns, Mark Johnson, and the Enterprise Team. Designing Enterprise

Applications with the J2EE Platform, Second Edition. s.l. : Addison-Wesley, 2002. ISBN 0-201-78790-3.

19. CHARACTERISTICS OF WEB APPLICATIONS THAT AFFECT USABILITY: A REVIEW. Vince Bruno,

Audrey Tam, James Thom. Canberra, Australia : OZCHI 2005, 2005.

20. Aspects in the industry standard AADL. Dionisio de Niz and Peter H. Feiler. New York, USA : ACM,

2007. ISBN:978-1-59593-658-5.

