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Abstract

In this thesis, we present proof theoretical investigations for Visser’s logics, classical
logic and the first-order arithmetic. We discuss the following three topics.

First, we introduce sequent calculi for Basic Propositional Logic (BPL) and For-
mal Propositional Logic (FPL) which are introduced by Visser, and prove the cut-
elimination theorems for these by syntactical method. As is well-known, modal logic
S4 corresponds to the intuitionistic propositional logic by the Godel translation. Visser
introduced a logic to which modal logic GL corresponds by the Godel translation. This
logic is FPL. Visser also introduced BPL as a preliminary one for the development of
FPL. A cut-free sequent calculus for BPL can be found in Ardeshir’s Ph.D.thesis, but
it is not satisfactory since it does not satisfies the subformula property. Later, Sasaki
introduced another sequent calculus for BPL and prove the cut-elimination theorem.
However his system involves an ad hoc expression as (A D B)™ which departs from ordi-
nary formulations of sequent calculus and subformula property in this system becomes
a weak form. In this thesis, we introduce another sequent calculi for BPL and FPL,
both of which satisfy subformula property. Furthermore, we prove the cut-elimination
theorem for these by syntactical method.

Next, we introduce another reduction procedure for the first-order classical natural
deduction NK and prove the strong normalization theorem and the Church-Rosser
property. For the first-order classical natural deduction, Prawitz proved the strong nor-
malization theorem for NK which is restricted in the sense that V and 3 are not treated
as primitive logical symbols. For NK with full logical symbols, Stalmarck introduced
a reduction procedure and proved the strong normalization theorem. However this re-
sult is not satisfactory since Stalmarck’s reduction does not satisfy the Church-Rosser
property. Then we introduce another reduction procedure for NK and prove the strong
normalization theorem and the Church-Rosser property. This yields the strong normal-
ization theorem with respect to Andou’s reduction introduced in 1995 since Andou’s
reduction steps are expressed by several steps of ours.

Finally, we discuss proof theoretical study for the first-order arithmetic. We treat
here is provable well-founded relation of I3, where IY; is a subsystem of PA which is
obtained by restricting induction formulae to X-formulae. Let < be a recursive well-
ordering of the natural numbers and let T'I(<) be Vo (Vy(y < z D e(y)) D e(z)) — £(a).
Gentzen proved that if T1(<) is provable in PA, then the ordertype of < is less than &.
Later, Takeuti refined this, i.e., he constructed recursive function f such that if TI(<)
is provable in PA, then ¢ < b & f(a) <* f(b) holds where <* denotes the standard
ordering of type g, and there exists an ordinal u < £¢ such that for every a, f(a) <* u.
Furthermore, Arai weakened the assumption “< is well-ordering” to “< is an irreflexive
and transitive well-founded binary relation”. In this thesis, we consider this problem
for I3, and obtain the similar result to the one for PA, in which we can replace ¢ to

Wk+2-
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Chapter 1

Introduction

In this thesis, we will investigate subsystems of the first-order arithmetic and some
logics by proof theoretical methods. In particular, we will discuss three topics:

1. cut-elimination theorem for Visser’s Basic Propositional Logic and Formal Propo-
sitional Logic,

2. strong normalization theorem for the first-order classical natural deduction and
3. provable well-founded relations of subsystems of the first-order arithmetic.

In this introductory chapter, we first survey historical background of proof theory, in
which one can find what proof theory is. Next, we explain motivations of our studies
and overlook the organization of this thesis.

1.1 Historical background of proof theory

1.1.1 The origin of proof theory

Proof theory is one of the fields of study of the foundations of mathematics or mathe-
matical logic in which we consider proofs as objects of our investigation. However, one
may ask what “proofs as objects” means. Then first of all, we explain the origin of
proof theory in which one can find the reason why we come to treat proofs as objects.

As is well-known, from the end of the nineteenth century to the beginning of the
twentieth century, various paradoxes of set theory were discovered and many mathe-
maticians have obliged to reconsider the foundations of mathematics. For this purpose,
three principles arisen: the logicism by B.Russel, the intuitionism by L.E.J.Brouwer and
the formalism by D.Hilbert. Since proof theory was occurred from Hilbert’s formalism,
here we only explain the formalism and omit other two principles.

So far, we have been considered that mathematical theory developed from some
premises which are called axioms. This is the axiomatism initiated by Hilbert. For
example, the system of axioms for Euclidean geometry due to Hilbert is well-known.
Hilbert also proved the consistency of this system of axioms by constructing a model



for this system of axioms using real numbers (hence strictly speaking, what Hilbert
proved is that if the theory of real numbers is consistent, then Hilbert’s system is also
consistent). The theory of real numbers is based on the theory of natural number
(namely, the arithmetic) and set theory. These notions had been considered as the
most fundamental ones. However, the discovery of paradoxes in the set theory made
ones reconsider Hilbert’s plan.

Then Hilbert thought that we must axiomatize the arithmetic and set theory, and
then we must proof the consistency of these. However, how do we prove the consistency
of these? As mentioned above, the consistency of Hilbert’s system for Euclidean ge-
ometry was proved by constructing a model. However, the “natural numbers” and the
“sets” are the most fundamental notions and hence when we try to prove the consistency
of these theories, we can not carry out the consistency proof by constructing “models”
for these. The unique conceivable method is that we must examine the mathematical
proofs deduced from the system of axioms for set theory or the arithmetic, and try
to prove directly that these systems can not derive a contradiction. For this aim, we
must formalize mathematical proofs in order to make mathematical proofs an object of
study. This is the origin of the proof theory.

Remark. In order to analyze formalized proofs and prove consistency, what method can
we use? For this, Hilbert proposed a finitist standpoint. Today, Hilbert’s plan which is
proving consistency of formalized mathematical theories by finitist standpoints is called
Hilbert’s program. However, we do not explain this in detail here.

1.1.2 Completeness theorem

It had been well-known that mathematical proofs is expressed by using (classical) pred-
icate logic. Therefore, in order to formalize proofs, we must formalize predicate logic.
At the present day, formalization of (classical) predicate logic is carried out by several
ways. In this thesis, we will use mainly Gentzen’s two formalizations which are called
natural deduction system and sequent calculus respectively. However, the original ac-
complishment of formalization of classical predicate logic was due to Whitehead and
Russell [36], and Hilbert and Ackermann [15]. Today this is called Russell-Hilbert style.
For a system which formalize a logic, the following two conditions are required:

1. this system can not derive any “false” formulae, that is to say, formulae which
are derived by this system are only “true” ones;

2. this system can derive all “true” formulae.

Condition 1 is called soundness and proving soundness for classical predicate logic
is not so difficult. On the other hand, condition 2, which is called completeness, is
generally difficult to prove. In fact it was open problem in [15] whether the system due
to Hilbert and Ackermann is complete or not. This was solved affirmatively by K.Godel
in [12]:

Theorem 1.1.1 (Gaédel) Any wvalid formula is provable (in the system due to Hilbert
and Ackermann).



Therefore, this theorem guarantees that formalization of classical predicate logic is com-
pleted and investigation of formalized proofs is appropriate to analyzing mathematical
proofs.

1.1.3 Incompleteness theorems

By Godel’s completeness theorem, formalization of mathematical proofs is accom-
plished. Moreover when we develop mathematical theories in this formalized system,
we must axiomatize these theories, and obtain axiom systems for these theories. These
axiom systems are desired that either A or —A (negation of A) is provable from these
axioms for each sentence A. This property is called completeness of an axiom system
(or theory). However, in [13], G6del proved the following result which answer the above
negatively with respect to the system PM defined in [36] and its extensions:

Theorem 1.1.2 (Godel) Let K be a set of formulae which is primitive recursive and
is w-consistent. Then there exists a sentence A such that neither A nor —A is provable
in PM+K.

That is to say, the above theorem asserts that not only PM is not complete but also
any extension of PM, which is as long as primitive recursive extension and w-consistent,
is not complete. Later Rosser weakened the assumption of the w-consistency to the
consistency in [25].

Furthermore by formalizing the above theorem in PM, Godel proved the following
marvelous result with respect to the consistency problem:

Theorem 1.1.3 (Godel) Let K be a set of formulae which is primitive recursive and
is consistent. Then a sentence which asserts consistency of K is not provable in PM+K.

By this theorem, proving consistency of mathematical theories by (strictly) Hilbert’s
finitist standpoint became impossible.

1.1.4 Gentzen’s works

Hilbert’s program was struck by Godel’s incompleteness theorems, but it is not neces-
sarily impossible to carry out consistency proofs. Godel himself said that there may
exist consistency proofs for a mathematical theory (which is formalized in a certain
system S) by finitist standpoint but can not be formalized in S. In fact, there exists
consistency proof for the first order arithmetic due to Gentzen.

As mentioned above, Gentzen introduced two formalizations for classical predicate
logic other than Russell-Hilbert style, which are called natirlicher klassischer Kalkul
(or NK) and logistischer klassischer Kalkil (or LK). Today, we call the system like
NK natural deduction system and the system like LK sequent calculus. In addition
to this, Gentzen also introduced two formalizations for intuitionistic predicate logic,
namely, NJ due to natural deduction system and LJ due to sequent culculus. Since
these systems will play very important roles in this thesis, in the following, we present
the definitions of NK and LK as well as NJ and LJ.

First, a first-order language £ must be given. £ consists of the following symbols:



e Individual constants, function constants and predicate constants.
e Free and bound variables.
e Logical symbols.

Then terms and formulae are defined in a usual way (see [33]).
In the following, we introduce both natural deduction systems and sequent calculi.

Natural deduction systems

We first present inference rules of NK, where A, A;, A, B, etc. denote formulae.
Furthermore, —A is considered as an abbreviation for A D | and hence the rules for —
are omitted.

A A A AA .
AiAAz (AI) % (AE) (i=1,2)
[A1]  [A2]
A; Av4, BB
IV (VI) (i=1,2) L2 = (VE)
[A]
AEB(DI) 428 4 (5 p)
Ala) VrA(zx)
VrA(zx) (v1) A(t) (VE)
[A(a)]
Alt) JzA(z) B
JrA(x) (31) B (3E)
[-4]
i
7 (RAA)

In (VE) and (3I), t is an arbitrary term. Remark that (VI) and (3E) are subject to
the restriction of eigenvariable described below (see clause 2 of definition of proofs). In
(D I), (VE), (3E) and (RAA), formulae with bracket [ ] (for example, [A] of (D I),
etc.) are the assumptions discharged by this rule.

We now define simultaneously proofs of NK and its assumptions and end-formula
inductively as follows.



1. If A is a formula, then A itself is a proof with the assumption A and with the
end-formula A;

2. Suppose that P, ..., P, be proofs where n = 1,2 or 3, and their end-formulae are
Aq,..., A, respectively. If
Ay ... Ay
A
is an inference rule, say R, then
P ... P,
A
is a proof and its end-formula is A, provided that

e if Ris (VI) of the form
A(a)
I
VrA(zx) (v1)
then a does not occur in the assumptions of P;
e if R is (3F) of the form

[A(a)]

JzA(x) B

= (3B)

then a does not occur in 3z A(x), B and the assumptions of P» except A(a).

IfRis (D), (VE), (3E) or (RAA), then the assumptions of the above proof are
those of P, ..., P, except the ones discharged by R. Otherwise the assumptions
of the above proof are those of Py,..., P,.

A formula A is said to be provable in NK or NK-provable if there exists a proof of
NK with no assumption whose end-formula is A.
NJ is obtained from NK by replacing the rule (RAA) to

(L)

N

Sequent calculi

For sequent calculi, we use sequents instead of formulae. Let Ap, As,..., A, and
By, B, ..., B, be formulae. Then

Al,Ag,...,Am—)Bl,BQ,...,Bn

is called a sequent. Note that m and n may be 0.

Now LK is defined as follows. We first introduce inference rules. In the following,
Greek capital letters I, A, etc. are denote finite (possibly empty) sequences of formulae
separated by commas.



ﬁ (weakening : left)
AAT = A

1T S A (contraction : left)

T, A, B,1I— A
T,B,A,1I— A

(exchange : left)

r-AA AIl—A
I — AJA

(cut)

r—-AA

AT o A (ileft)

Al,F—>A
AL NA T — A

(A:left) (i=1,2)

Al,F—>A Ag,F—)A
Al\/AQ,F—)A

(V : left)

r-AA BII—=A
ADB,INIT — AJA

(D: left)

A(t),I - A
VeA(z), ' = A

(V : left)

Aa),I' - A
JzA(x), I — A

(3 : left)

I‘F—jTAA (weakening : right)
' - AAA . .
m (contractlon H I'lght)
I - AA BA
T : A’B’ A’A (exchange : right)
AT - A .
A, (iright)
F—)A,Al F—>A,A2 e
T A A Ad,  irisht)
I' — A, Az . i
TS A A VA (V:right) (i=1,2)
AT = A, B .
T A, Ao 5 (O risht)
' = A, A(a)
: right
I' = A, VzA(x) (v': right)
I'— A A(t)
3 : right
' = A JzA(z) (3: right)

In (V : left) and (3 : right), ¢ is an arbitrary term and in (V : right) and (3 : left), a does
not occur in the lower sequent. a is called the eigenvariable.
We now define simultaneously proofs of LK and its end-sequent inductively as follows.

1. A — Ais a proof and its end-sequent is A — A. This is called the initial-sequent.

2. Suppose that P, and P are proofs and their end-sequents are S; and Sy respec-

tively. If

or

is an inference rule, then

51
S

S S

S



or
PP

is a proof and its end-sequent is S

A sequent S is said to be provable in LK or LK-provable if there exists a proof of
LK whose end-sequent is S. A formula A is said to be provable in LK or LK-provable
if a sequent — A is provable in LK.

LJ is obtained from LK by modifying it as follows:

1. The succedent (i.e., right side) of each sequent in LJ consists of at most one
formula;

2. Inference rules of LJ are obtained from those of LK by imposing the restriction
that the succedent of each upper and lower sequent consists of at most one formula.

“S is provable in LJ (LJ-provable)” is defined as same as the one of LK.

Gentzen first introduced the natural deduction systems in order to have a logical
calculus close to actual reasoning. However, he thought the natural deduction systems
are not convenient for investigations of logics. Then he invented sequent calculi. In [7],
he proved the equivalency between NK and LK. More precisely, he proved that if A
is provable in NK if and only if A is provable in LK. He also proved that equivalency
between Russell-Hilbert style and his systems.

Furthermore, Gentzen proved the very important property for LK and LJ which is
known as Gentzen’s Hauptsatz or cut-elimination theorem, i.e.,

Theorem 1.1.4 (Gentzen) If a sequent is provable in LK (resp.LJ), then it is prov-
able in LK (resp.LJ) without using cut rule.

There exist numerous applications of this theorem. In fact, cut-free proofs have good
properties. The typical one among them is the subformula property. This property
yields several logical properties, for example, consistency, decidability, interpolation
property, etc. As applications of cut-elimination theorem, Gentzen himself proved that
the consistency of LK and LJ, decidability of the propositional classical logic and the
consistency of the first-order arithmetic without the mathematical induction. Recently
many kinds of non-classical logics are investigated vigorously. In such studies, formal-
izations by use of sequent calculi and cut-elimination theorems are useful methods.

We now turn back to Gentzen’s works. In 1936, Gentzen proved consistency of the
first order arithmetic PA which was formalized in natural deduction system ([8]). Fur-
thermore, in [9], he proved consistency of the first order arithmetic which was formalized
in sequent calculus in 1938. Here we must note that we need a method for consistency
proof for PA which is not derivable in PA by Go6del’s incompleteness theorem. As
this kind of methods, Gentzen used transfinite induction up to first e-number (g9). We
also note that Gentzen introduced the theory of ordinal numbers up to £y by finitist
standpoint and prove transfinite induction up to €y by finitary argument (but beyond
Hilbert’s finitist standpoint). Hence Gentzen’s work can be considered as the extension
of Hilbert’s program.



Now we can see that transfinite induction up to ¢ does not provable in PA indirectly
by virtue of Godel’s incompleteness theorem and Gentzen’s consistency proof. In [10],
Gentzen gave a direct proof for unprovability of transfinite induction up to ¢p in PA.
Namely, he proved the following:

Theorem 1.1.5 If transfinite induction up to an ordinal number o can be proved in
PA, then « is less than €.

Then conversely, can transfinite induction up to an ordinal number « be proved in
PA whenever « is less than ¢¢p? For each k£ € N, we define an ordinal wy inductively
as follows: wpy := 1; wiy1 = w**. Note that w, < gp for all K € N. Then Gentzen
affirmatively answered to the above question:

Theorem 1.1.6 For each natural number n, transfinite induction up to w, can be
proved in PA.

Hence ¢g is the least ordinal number « such that transfinite induction up to « can not
be proved in PA. In general, the least ordinal number « such that transfinite induction
up to a can not be proved in a certain system is called the proof-theoretical ordinal of
this system. Gentzen showed that the proof-theoretical ordinal of PA is ¢g.

Beyond Gentzen’s works for consistency problems, several results for consistency
problems for stronger systems than the first-order arithmetic are obtaiened by G.Takeuti,
K.Shiitte, W.Pohlers, W.Buchholz, M.Rathjen and T.Arai. But we do not argue these
issues further.

1.2 Motivations of the studies in this thesis

In the last section, we explain what proof theory is and the author expects that one can
understand the meaning of “proofs as objects”. By the observation of the last section,
in proof theory (or proof theoretical study), the followings are considered as the main
problem:

e cut-elimination theorems for sequent calculi;
e consistency for mathematics (arithmetic).

In addition to these, there are normalization theorems for natural deduction systems
(which is explained later) can be considered. The studies in this thesis are related with
the above three matters. In the following, we explain motivations of our studies.

First, we are interested in cut-elimination theorems for sequent calculi. When one
intends to investigate logics, formalizing logics by use of sequent calculi and proving
cut-elimination theorem are very useful. We here consider Visser’s propositional logics
BPL and FPL.

Basic Propositional Logic (BPL) and Formal Propositional Logic (FPL) were first
introduced by Visser in [35]. In fact, Visser introduced FPL by interpreting implication



as formal provability and BPL was introduced as a preliminary one for the development
of FPL. We first explain his motivation briefly.

IPL denotes intuitionistic propositional logic. As is well-known, IPL can be embedded
to a modal logic S4 by Godel translation. Namely, if T" denotes Godel translation, then

IPL+ A < S4+ T(A)

holds where IPL F and S4 | denote the provability in IPL and S4 respectively. Visser
raised the question: if we take GL (Gddel-Lob’s provablity logic) instead of S4, then
what logic is considered instead of IPL? His answer is that this is FPL. FPL is character-
ized by finite transitive and irreflexive Kripke-style models. Then he first investigated
a logic which characterized by transitive models, which is BPL.

He described BPL and FPL in the form of natural deduction systems and proved
their completeness with respect to transitive models and finite transitive and irreflexive
models respectively. In 1991, Ruitenburg reintroduced BPL with a philosophical moti-
vation [26] and extended BPL to the first order logic, BQC (Ruitenburg[27]). Ardeshir
and Ruitenburg [5] and Suzuki, Wolter and Zakharyaschev [31] explored the structure
of propositional logics over BPL by model theoretic and algebraic methods.

Now, how do we formalize BPL and FPL by use of sequent calculi? For BPL, a
cut-free sequent calculus already can be found in Ardeshir [4], but it is not satisfactory
since it does not satisfies the subformula property. Later, Sasaki [28] introduced another
sequent calculus GVPL™ for BPL and prove the cut-elimination theorem. However
his system involves an ad hoc expression as (A D B)' which departs from ordinary
formulations of sequent calculus and subformula property in this system becomes a
weak form. Therefore we need another system without an expression like (4 D B)*.

Recently Kikuchi introduced another sequent calculus for BPL, which is called LBP
([18]). This system satisfies the subformula property and is shown to be complete
with respect to transitive models. Furthermore a sequent calculus for FPL, which is
called LFP, is introduced by extending the system for BPL. Roughly speaking, LBP
is obtained from (propositional part of) LK by relpacing rules for D to

Al,E,A—)B,Fl Ag,E,A—)B,FZ Agn,E,A—)B,FZn (D)
,C1,>Dq,....C, DD, -ADB

and LFP is obtained from LK by relpacing rules for D

A, ADB,A—> BTy Ay, ADB,A—> BTy -+ Am, N ADB,A— B,Tsn (D)
,Ci > Dq,...C, DD, - ADB

where n > 0, I'; = {C; | j € v(1)}, A; = {D; | j € §(¢)}, and the sets (i) and 6(7)
of natural numbers are defined as follows: (i) runs through the subsets of {1,...,n}
ordered according to size and (i) = {1,...,n} \ §(¢). Kikuchi proved that the cut rule
is admissible in both LBP and LFP by virtue of the completeness theorems. In other
words, cut-elimination theorems are proved by semantical methods. Then the question
arises: can the cut-elimination theorems for them be proved by syntactical methods?
The rules for (D) which are introduced to define LBP and LFP are quite complicated.



Therefore it seems that Gentzen’s method can not apply to LBP and LFP. However
we can overcome this difficulty by analyzing Gentzen’s proof more circumstantially and
succeed to prove cut-elimination theorems for LBP and LFP. In Chapter 2, we will deal
with these problems and will present the syntactical proofs of cut-elimination theorems
for LBP and LFP.

We mentioned in 1.1.4 that Gentzen introduced two formalizations for classical and
intuitionistic predicate logic. For sequent calculi, we explained that the cut-elimination
theorems are important for these. Then it is natural to ask that what the theorems
which are corresponding to the cut-elimination theorems are for natural deduction sys-
tems. The answer for this is “normalization theorem”. This theorem asserts that all
proofs of NK or NJ can be transformed into normal forms, where normal form means
proof without redundancy!. (This transformations of proofs are also called reductions,
and hence the normalization theorem asserts that for each proof D, there exists a finite
reduction sequence starting from D.) As the cut-elimination theorem for LK, Gentzen
tried to establish the normalization theorem for NK. However his original NK was not
fitted to formulate the normalization theorem since the law of excluded middle (ter-
tium non datur) A V —A is adopted as an axiom schema. In order to overcome this,
Prawitz reformulated the natural deduction system for the classical logic by adding the
rule (RAA) to NJ and omitted the law of excluded middle in [23]. The system NK
which was introduced in 1.1.4 is actually the Prawitz’s system?. In [23] and [24], the
normalization theorems for NK and NJ were proved.

As is well-known, there is a close relationship between natural deduction systems
and A-calculi by the Curry-Howard isomorphism and reductions for proofs correspond
to reductions for A-terms. In A-calculi, a reduction sequence represents a process of
calculation and a normal form represents a result of calculation. Then it is desirable
that every reduction sequence terminates. In the same manner, we strength the nor-
malization theorems as follows: for each proof D, every reduction sequences starting
from D are finite. This statement is called strong normalization theorem. In [24], the
strong normalization theorem for NJ was proved. For NK, however, situations are
more difficult. In [24], Prawitz proved the strong normalization theorem for NK which
is restricted in the sense that V and 3 are not treated as primitive logical symbols. For
NK with full logical symbols, Stalmarck introduced a reduction procedure and proved
the strong normalization theorem([30]). However this result is not satisfactory. In the
following, we explain this dissatisfaction.

Needless to say, the difficulty in establishing the strong normalization theorem for
NK is treating the rule (RAA). Consider the following (RAA)

[~A]

i

A

'For precise definition of normal forms, see Chapter 3
2But we also call this system NK.

10



and suppose that A is the major premise of an elimination rule. For example, we
consider the case where A is of the form A; D Ay as follows:

[-(41 D Ay)]

1 Dy .
L : Dy
1o 4, B 4

Ao

where R is (RAA). Then we would like to define a reduction at A; D Ay which is the
conclusion of R. This is defined as follows:

D,
[Al D Ag]l Al
[—1A2]2 As
[—l(Al D AQ)] I 1
. Dy : —(41 D Ay) )
TS R fiDZ D
1D Az 1 1
5 N 5 (RAA)?

The cases where A is of the form A; A Ay or Vz Ay (z) are defined similarly. If we try to
treat the cases where A is of the form A; V Ay or JzA;(x) in the same way, then, for
the case where A is of the form A; V A,, for example, a reduction is defined as follows
(we call this Red-1):

[A1] - [Ag]
. DQ . Dg
[A,V A)]Y B B
[_'B]2 B 1
(A1 V Az)] T )
iDp A [Al] (A1 V Ay)
1 : Dy D : Dy
ALV Ay ~ B B N % (RAA)2

However, Stalmarck’s definitions are slightly different (we call this Red-2):

[Ai] [As]
DQ Dg
[-B]> B [-B]? B
(4, V A" T 1
[~(A; V Ay)] S——
:Dp (A [Ag] —(A1V Ay)
1 : Dy Dy . Dy
A1VA2 BB B . %(RAA)Q

11



In the author’s opinion, Red-2 seems to be unnatural. Furthermore, the existence of this
reduction causes that failure of the Church-Rosser property3. Therefore, we want to
adopt Red-1. However Stalmarck’s proof for the strong normalization theorem heavily
depends on the definition of Red-2 and hence his proof does not work if we adopt Red-1.

In 1995, Andou introduced a reduction procedure for NK with full logical sym-
bols which is distinct from Stalmarck’s one* and proved normalization theorem([1]).
Furthermore Andou proved that his reduction procedure satisfies the Church-Rosser
property([2]). However it was not known whether strong normalization theorem holds.

In the above observation, our aim is to define a reduction procedure for NK with full
logical symbols satisfying the Church-Rosser property and to prove the strong normal-
ization theorem with respect to this reduction procedure. In Chapter 4, we will discuss
this problem.

Our interests now reach the consistency problem. In 1.1.4, we explain that the
proof-theoretical ordinal of the first-order arithmetic is 9. This fact is expressed more
generally as follows (see [33]). PA(e) denotes Peano arithmetic with an additional unary
predicate €. Let < be a recursive well-ordering. < is called a provable well-ordering of
PA if

Va(Vy(y <z D e(y)) D e(x)) — £(a)

is provable in PA(g). Then Gentzen’s result can be described as follows:
< is provable well-ordering of PA <|<|< ¢g

where |<| denotes the order type of <. Takeuti refined this result ([33]). He proved
that if < is a provable well-ordering of PA, then there exists a recursive function f such
that a < b < f(a) <* f(b), where <* denotes the standard ordering of type ¢y, and
there exists an ordinal p < g¢ such that for every a, f(a) <* "u™, where "u™' denotes
the Godel number of p. Recently Arai extended the above result to the case where <
is well-founded ([3, Section 1]).

Now, as mentioned 1.1.4, the proof-theoretical ordinals are obtained for several sys-
tems which are stronger than PA. However, not only for stronger systems, but also
for systems which is weaker than PA, i.e., for subsystems of PA, the proof-theoretical
ordinals are calculated. Now, for each k € N, let I3, be a subsystem of PA which is
obtained by restricting induction formulae to X;-formulae®. Then the following holds

([19]).
Theorem 1.2.1 (Mints) For each k € N, the proof-theoretical ordinal of ¥y, is wy1.

Then it is natural to ask whether Takeuti and Arai’s refinements are also carried out
for I¥y or not. In fact, this question is treated as an open problem in [3].

3In Chapter 3, a counter-example to Church-Rosser property will be given.
“In Andou’s reduction procedure, the treatment for (RAA) is quitely different. See Chapter 4.
SFor precise definition of Xj-formulae, see Chapter 5.
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Theorem 1.2.1 is proved in a similar way to Gentzen’s proof for PA. In fact, by
Gentzen’s method, if < is provable well-ordering of PA, then there exists an ordinal
a < gg such that |<|< «. This estimate, however, is a little rough. That is to say, while
wp < @ < wpt1 holds for some n in Gentzen’s proof, we can take @ < wy in Mints’
proof. Takeuti’s refinement is deeply depend on Gentzen’s proof and hence this is the
first difficulty for treating I3y.

Secondly, in Takeuti and Arai’s refinements, the above ;1 may be greater than |<|.
More precisely, from the construction of f, though |<|< w, for some n, u may be
greater than w,. Therefore Takeuti and Arai’s methods can not apply directly when
we consider the case where the base system is 1.

In Chapter 5, we will discuss this problem. We can overcome only the first difficulty
and hence our result is a partial one. For the second difficulty, it still remains a open
problem.

1.3 Overview of the results in this thesis

In this section, we list the main results of this thesis.

1. We prove cut-elimination theorems for LBP and LFP where LBP and LFP are
sequent calculi for Visser’s BPL and FPL respectively (Theorem 2.4.1, Theorem 2.4.2).

For proving cut-elimination theorem for LBP, Gentzen’s proof for LK is almost work.
However since the rule (D) in LBP is a little complicated, the ordinary definition of the
rank does not work. Then we have to refining the definition of the rank. Furthermore, in
the rule (D), the succedent of the lower sequent restricts to one formula. This causes the
difficulty in proving by means of the usual technique of cut-elimination. To overcome
this difficulty, we have to consider a special case which is proved in the same way as
the cut-elimination theorem for LK in advance (Lemma 2.4.3).

For proving cut-elimination theorem for LFP, the existence of the diagonal formulae
in the rule (D) (the diagonal formulae are the formulae A O B in the upper sequents)
causes the difficulty in proving by means of the usual technique of cut-elimination. To
overcome this difficulty, we introduce third measure for proofs called the width and
prove cut-elimination theorem by triple induction. This technique is an analogue of
that used in [34].

2. We introduce another reduction procedure satisfying the Church-Rosser property and
prove the strong normalization theorem with respect to this reduction procedure (The-
orem 4.3.1). This reduction procedure is an improvement of the one due to Stalmarck.

For this aim, as Stalmarck’s is used in [30], we introduce the notion of “validity” for

13



proofs and rules®. Then the proof of the strong normalization theorem is carried out in
three steps as follows.

1. Valid proofs are SN.
2. Proofs built of valid rules are valid.

3. All rules are valid.

In the above, proof of 3. is very hard. One of the most difficulty is as follows. In order
to prove the validity of (VE), we have to show the validity of

_ [A] - [A2]
D Dy D
Ai1VA, B B
B

where Dy, Ds, Ds is valid. Especially, a problematic case is the one where the last
inference of D; is (RAA) as follows:

[=(A1 Vv Az)]
g A (A
1 : Dy D3
A1V Ay B B
B

In Stalmarck’s proof, this is not so difficult. However, for our reduction procedure,
Stalmarck’s proof can not be applied. In order to overcome this difficulty, we need
more delicate and complicated syntactical arguments for reductions.

3. If < is a provable well-founded relation of I3, then there exists primitive recursive
function f such that a < b < f(a) <* f(b), where <* denotes the standard ordering
of type wgi2, and there exists an ordinal p < wgyo such that for every a, f(a) <* "p”
(Theorem 5.2.2).

This is obtained by combining Arai’s proof in [3, Section 1] and Mints’ proof in [19]
with a slight modification to overcome the first difficulty mentioned in 1.2.

1.4 Organization of this thesis

In this section, we summarize the contents of the chapters.

In Chapter 2, we consider the cut-elimination theorems for LBP and LFP.
First, we introduce the systems LBP and LFP, and Kripke-style models for BPL
and FPL. Then we summarize that both soundness and completeness are hold for them

This notion is first adopted by Prawitz in [24] to prove the strong normalization theorem for NJ.
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without proofs. Next, we present proofs for cut-elimination theorems for LBP and
LFP by syntactical methods.

In Chapter 3, as preparation for discussing the strong normalization theorem for NK,
we survey Stalmarck’s result. First, we present Stalmarck’s reduction procedure and
summarize the outline of proof due to Stalmarck. We also present a dissatisfaction with
this result. Actually, we give a counter-example for the Church-Rosser property with
respect to Stalmarck’s reduction procedure.

In Chapter 4, we prove the strong normalization theorem for NK with respect to
another reduction procedure. First, we introduce another reduction procedure and
remark the relation between this new reduction procedure and the one due to Andou
[1]. Actually, one can easily verify that strong normalization theorem of our reduction
yields the one of Andou’s reduction. Next, we prove the storg normalizaition theorem.
For this aim, we introduce the notion of validity of proofs, which is a main tool for
proof of strong normalization theorem. There, we show that valid proofs are strongly
normalizable. Hence our purpose change to prove that all proofs are valid. For this
aim, we introduce the validity of inference rules and proof that all rules are valid, which
implies that all proofs are valid. Finally, we remark the Church-Rosser property for
this reduction.

In Chapter 5, we discuss provable well-founded relation of IY,. First, we briefly
recall the system PA and its subsystems IY;, and present the definition of provable
well-founded relations in I3;. Next, we introduce TJ-proofs and reduction steps for
TJ-proofs in order to prove the theorem. Finally, we prove the theorem by using the
notion of TJ-proofs.

Finally, in Chapter 6, we summarize conclusions of this thesis and survey briefly
further studies.
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Chapter 2

Cut-elimination for Visser’s
propositional logics

In this chapter, we shall investigate sequent calculi for Visser’s propositional logics.
we introduce sequent calculi LBP for Basic Propositional Logic (BPL) and LFP for
Formal Propositional Logic (FPL), and prove the cut-elimination theorems for these by
syntactical method. We note that the propositional part of LK and LJ are denoted by
also LK and LJ to the end of this chapter since we consider only propositional logics
in this chapter.

The contents of this chapter are based on [18].

2.1 Introduction

In this section, we first recall modal logics since Visser’s motivation for BPL and FPL
is related to these.

Modal logics are obtained by adding modal operator O to classical logic such that
OA is intended for “A is necessarily true”. There are many variations of modal logics.
Among them, we first introduce K. K is obtained from LK by adding the following
rule:

I'— A
or — a4 (®)

where OI" denotes the sequence of formulae OA¢,...,04, when I is Ay,..., A,.
Next we introduce the system S4. S4 is obtained from K by adding axiom schemes

OADA
and
0OADOOA
i.e., by adding sequents of the forms
—0OADA
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and
— 0A4 D 0O0OA4

as initial sequents.

Modal logics themselves are important objects of study and have been studied (and
now are studying) by many researchers. Furthermore, an interpretation of the prov-
ability of formulae in intuitionistic propositional logic were studied by using a modal
operator. In [14], Gédel describes an interpretation of intuitionistic propositional logic
in a system which is equivalent to S4. In the following, we summarize Godel’s work.

Godel translation T which is a mapping from formulae of a propositional logic without
modal operators to formulae of one with modal operator O is defined inductively as
follows:

1. T(p) = Op for each propositional variable p;
2. T(AANB)=T(A) NT(B);

4. T(AD B) =0O(T(A) D T(B));

(
(
3. T(AV B) = T(4) vV T(B);
(
5. T

-A) =0-T(A).
As is well-known, the following holds.

Theorem 2.1.1 (Goédel, McKinsey, Tarski) A is LI-provable if and only if T(A)
18 S4-provable.

Remark. “Only if” part of this theorem is due to Godel and “if” part is due to McKinsey
and Tarski.

In the above observation, Godel interpreted a modal operator O as “provable by any
correct means” and not as “provable in a given formal system”. Then we next consider
the interpretation of the provability in a given formal system. As this formal system,
we here take Peano arithmetic PA. An interpretation from formulae of a propositional
logic with modal operator O to sentences of PA is defined by assigning a sentence of
PA to each propositional variable and OA to Bew(a) where Bew(z) is the provability
predicate! and a is the Godel number of A. Then as is well-known, there exists a
modal logic GL such that A is GL-provable if and only if A* is PA-provable for each
interpretation * (Solovay [29]). GL, which is called Go6del-Lob’s provablity logic, is
obtained from K by adding axiom schemes

04 > 0O0OA

and
0O(0A D A) D OA.

'For details for provability predicate, see [13].
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Now question arises: what logic L is considered such that A is provable in L if
and only if T'(A) is GL-provable? As this L, Visser introduced a logic called Formal
Propositional Logic (abbreviated by FPL). FPL is characterized by finite transitive and
irreflezive Kripke-style models. Then he first investigated a logic which characterized
by transitive models, which is called Basic Propositional Logic (abbreviated by BPL).

As mentioned in 1.1.4, a cut-free sequent calculus for BPL can be found in Ardeshir
[4], but it is not satisfactory since it does not satisfies the subformula property. Later,
Sasaki [28] introduced another sequent calculus GVPL™ for BPL and prove the cut-
elimination theorem. However his system involves an ad hoc expression as (4 D B)™
which departs from ordinary formulations of sequent calculus and subformula property
in this system becomes a weak form. Therefore we need another system without an
expression like (4 D B)*.

In the following, we introduce sequent calculi LBP for BPL and LFP for FPL in the
ordinary formulation (without ad hoc expressions), both of which satisfy the subformula
property. Roughly speaking, LBP is obtained from LK by relpacing rules for D to

Al,E,A—)B,Fl Ag,E,A—)B,FZ AQn,E,A—)B,FZn ( )
,C1,D>Dq,....C, DD, -ADB

and LFP is obtained from LK by relpacing rules for D

A, X, ADB,A— B,T7 Ay, 3, ADB,A—= B, s -+ A, X ADB,A— B,Tom (D)
,Ci > Dq,...C, DD, - ADB

where n > 0, I'; = {C; | j € v(1)}, A; = {D; | j € §(¢)}, and the sets (i) and 6(7)
of natural numbers are defined as follows: §(i) runs through the subsets of {1,...,n}
ordered according to size and (i) = {1,...,n} \ (). In the following, we prove the
cut-elimination theorem for these by syntactical method as main result of this chapter.

The existence of these rules make difficult to prove cut-elimination theorem by syn-
tactical methods because the principal formulae are not single in these rules and the
ordinary definition of the rank does not work by these rules. We can overcome this
difficulty by refining the definition of the rank.

2.2 A sequent calculus for BPL

In this section, we introduce a sequent calculus for BPL, which is called LBP.

Our propositional language has a denumerably infinite set of propositional variables,
the propositional constant L and the binary connectives A, V and D. Formulae are con-
structed from these in the usual way. Propositional variables are denoted by p,q, ...,
and formulae are denoted by A, B, ..., possibly with subscripts or superscripts. Cap-
ital Greek letters I', A, ... are used for finite sequences of formulae. A sequent is an
expression of the form I' = A. I and A are called the antecedent and the succedent of
a sequent I' — A respectively.

Before the definition of our sequent calculus, we will first explain semantics for BPL,
which is similar to Kripke semantics for intuitionistic propositional logic except that
the accessibility relation is not necessarily reflexive.
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A transitive model is a triple (W, R, V') where W is a non-empty set, R is a transitive
relation on W, and V is a mapping from the set of propositional variables to the power
set of W such that

x € V(p) and 2Ry imply y € V(p).

We say simply a model instead of a transitive model. If W is a finite set, we say that a
model (W, R, V') is finite.
Given a model M = (W, R, V'), the truth-relation I is defined inductively as follows:

,2) Ik p ifft € V(p) foreach propositional variable p,

FAVB iff (M,z)lF Aor (M,z)IF B,

(M, z)

(M, z)

(M,2) - AAB iff (M,z) I Aand (M,z) I+ B,

(M, z)

(M,z)IF AD B iff Vye WzRy and (M,y) IF A imply (M, y) I B].

If M is understood, we write simply = IF A instead of (M,xz) I A. We say that a
formula A is ¢rue in a model (W, R, V) if z |- A for every z € W.
Formulae which are theorems of intuitionistic propositional logic but not true in every
model defined above are, for example, (p A (p D ¢)) Dgand (p D (pDq)) D (pDq).
For a given model M, the truth-relation for sequents is defined as follows:

(M,z) IFT — A iff VA eT'[(M,z) IF A] implies 3A € A[(M, z) I+ A].

We write simply x IF T' — A for (M,z) IF T — A, if M is understood. We say that a
sequent I' = A is true in a model (W, R, V) if x I[F ' — A for every z € W.
Now we introduce a sequent calculus, which is called LBP. Initial sequents of LBP

are of the following forms:
A— A,

1 — .

Rules of inference of LBP consist of the following:

T—=A o r— A o
AT A (weakening : left) TS A (weakening : right)

A AT - A traction - loft ' > AA A traction - rieht
AT S5 A (contraction : left) ToAA (contraction : right)
I'NA,B,II - A ‘ I' - AA B,A .
FBAISA (exchange : left) TS AB AR (exchange : right)

r-AA AIl—-A
III— AA

(cut)
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Al,F—>A F—)A,Al F—>A,A2

(A:left) (i=1,2)

(A : right)

AL NA T — A ' - AA; N Ay
AL, T A AT — A ‘ = A, A; . .
LVLT oA (V : left) TS ALY (V:right) (i=1,2)
Al,E,A—)B,Fl Ag,Z,A—)B,FQ Agn,Z,A—)B,FQn (D)
,C1,>Dq,....C, DD, -ADB

where n > 0, I'; = {C; | 7 € v(i)}, Ay = {Dj | j € 6()}, and the sets v(i) and §(¢)
of natural numbers are defined as follows: (i) runs through the subsets of {1,...,n}
ordered according to size and v(i) = {1,...,n} \ 0(4).

For example, when n = 0, 1,2, the rule (D) is of the forms

,A— B ()
Y>—-ADB ,

E,A—)B,Cl Dl,E,A—)B(D)
>,C. oDy —+ADB ,

and
E,A—)B,Cl,CQ Dl,E,A_)B,CZ DQ,E,A—)B,CI Dl,DQ,Z,A—)B (D)
»,Ci>2D1,Co DDy —ADB ,
respectively.

The formulae Cy; D Dy,...,C, D D, and A D B in the rule (D) are called the
principal formulae of this rule. As for the other rules, the notion is defined in the usual
way. Note that it allows more than one formulae in the succedent of a sequent, although
BPL is a logic weaker than intuitionistic propositional logic for which the Gentzen LJ
does not allow them.

Let LBP ™ be a system obtained from LBP by deleting (cut).

Now, we present the followings without proofs. For proofs, see [18].

Theorem 2.2.1 (Soundness and Completeness) For every sequent I' — A, we
have that I' = A is provable in LBP ™ if and only if ' = A is true in any model.

Corollary 2.2.2 (cut) is admissible in LBP ™.

2.3 A sequent calculus for FPL

Next we introduce a sequent calculus for FPL, which is called LFP.

The sequent calculus LFP is obtained from LBP by providing the antecedent of each
upper sequent in the rule (D) with the formula A D B. Then the rule (D) of LFP is of
the form
A, X, ADB,A— B,T7 Ay, 3, ADB,A—= B,y -+ Am X ADB,A— B,Ton

»,C1D>Dq,....C, DD, - ADB
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where n > 0, and I'; and A; are as in the rule (D) of LBP. This rule extends the rule
(D) of LBP which is derivable from this rule and (weakening:left).

Let LFP ™ be a system obtained from LFP by deleting (cut).

An irreflexive model is a model (W, R, V') in which R is irreflexive, i.e., there is no
x € W such that zRzx.

Then, as same as LBP , the followings hold.

Theorem 2.3.1 (Soundness and Completeness) For every sequent I' — A, we
have that T' — A is provable in LFP™ if and only if T — A is true in any finite
irreflezive model.

Corollary 2.3.2 (cut) is admissible in LFP .

Remark. By Corollaries 2.2.2 and 2.3.2, both LBP and LFP enjoy the cut-elimination
theorems. However the proofs are semantical. Then it is natural to ask whether these
can be proved by syntactical method or not. The answer for this is actually “yes”.

In the next section, we present syntactical proofs of the cut-eliminations of LBP and
LFP.

2.4 Cut-elimination theorems

In this section, we prove the cut-elimination theorems for LBP and LFP following
Gentzen’s method (see, e.g., Takeuti [33]).
2.4.1 Preliminaries

Our aim is to prove the following theorems:

Theorem 2.4.1 If a sequent is provable in LBP, then it is provable in LBP without
using the cut rule.

Theorem 2.4.2 If a sequent is provable in LFP, then it is provable in LFP without
using the cut rule.

In order to prove these, we introduce as usual the mix rule as follows:

' —-—A II—- A
o4 — A4 A

where both A and IT contain the formula A, and A4 and II4 are obtained from A and
IT respectively by deleting all the occurrences of A in them. A is called the miz formula
of this inference. The systems LBP* and LFP* are obtained from LBP and LFP
respectively by replacing the cut rule by the mix rule.

Then in order to prove Theorems 2.4.1 and 2.4.2, it suffices to show the following
lemmata:
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Lemma 2.4.1 If P is a proof of a sequent S in LBP* which contains only one miz
occurring as the last inference, then we can transform P into a proof of S in LBP* in
which no miz occurs.

Lemma 2.4.2 If P is a proof of a sequent S in LFP* which contains only one miz
occurring as the last inference, then we can transform P into a proof of S in LFP* in
which no miz occurs.

A proof which contains no mix is called a miz-free proof.

Before proving the above lemmata, we need some auxiliary definitions.
Let P be a proof in LBP* or LFP* and let E be an occurrence of a formula in P.
The direct ancestors of E are defined inductively as follows:

1. E is a direct ancestor of itself.

2. If a direct ancestor Eq of F is in the lower sequent of a contraction rule in P as

the principal formula, e.g.
El, El, r—-A

El,F%A

then the two E4’s in the upper sequent are direct ancestors of E.

3. If a direct ancestor E; of E is in the lower sequent of an exchange rule in P as
one of the principal formulas, e.g.

By, By, Y — A
F,EQ,EI,E — A

then the F; in the upper sequent is a direct ancestor of FE.

4. If a direct ancestor F; of E is in the lower sequent of an inference in P not as
one of the principal formulas, e.g., if £ is the k-th occurrence of Y in the lower
sequent of a rule (D)

A, X, ADB,A—- B, T Ay, ADB,A— B,y -+ Am, X ADB,A— B,Ton
>,C1.>Dq,...C, DD, +ADB

then the k-th occurrence of ¥ in each upper sequent is a direct ancestor of E.
The grade of a formula A, denoted by g(A), is defined inductively as follows:
1. g(p) =0 for each propositional variable p,
2. g(1L) =0,

3. (ADB)=g(AANB)=g(AV B)=g(A) +¢g(B) + 1.
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The grade of a mix is the grade of the mix formula. When a proof P has a mix only as
the last inference, we define the grade of P, denoted by g(P), to be the grade of this
mix.

Let P be a proof in LBP* or LFP* which has a mix only as the last inference and
P, and P, be the subproofs of P whose end-sequents are the left upper sequent and
the right upper sequent of the mix respectively. We define the rank of a sequent S
contained in P, denoted by r(S5), as follows:

1. S is contained in P;.

(a) If the succedent of S contains no direct ancestor of the occurrences of the
mix formula, then r(S) = 0.

(b) Otherwise, if S is an initial sequent, then r(S) = 1, if S is the lower se-
quent of an inference whose upper sequents are Si,...,S,, then r(S) =
max{r(Si),...,7(Sn)} + 1.

2. S is contained in P,.

(a) If the antecedent of S contains no direct ancestor of the occurrences of the
mix formula, then r(S) = 0.

(b) Otherwise, similar to 1.(b) above.

Let P be a proof in LBP* or LFP* which has a mix only as the last inference and
S1 (S2) be the left (the right) upper sequent of this mix. We define r(P) = r(S1) and
rr(P) = r(S2). The rank of P, denoted by 7(P), is defined as r;(P) + r,(P).

2.4.2 Proof for LBP

In this subsection, we prove Lemma 2.4.1. One of the difficulties in proving this lemma
by means of the usual technique of cut-elimination is caused by the rule (D), which
only restricts the succedent of the lower sequent to one formula. The same difficulty
arises in proof of cut-elimination even for a version of sequent calculus for intuitionistic
logic with similar restriction. To overcome this difficulty, we first consider a special
case which is proved in the same way as the cut-elimination theorem for LK (and so
we omit the proof).

Lemma 2.4.3 Let P be a proof of a sequent S in LBP* which contains only one miz
occurring as the last inference and let Py be the subproof of P whose end-sequent is the
left upper sequent of this miz. If Py contains no (D) and if the succedent of each sequent
occurring in Py consists of at most one formula, then S is provable in LBP* with no
miz.

This lemma is used in the subcase (2-2-1)(c) of the following proof.

Proof of Lemma 2.4.1. We prove the lemma by transfinite induction on w-g(P) +r(P).
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Casel: r(P) = 2.
We treat the case where each upper sequent of the mix is the lower sequent of (D). For
simplicity, we write
D Qk
[Ag, B, A = B, Ti]i<k<on
,CiD>2Dy,....C, DD, —>ADB

instead of
Ql QZ an
Al,E,A—)B,Fl AQ,E,A—)B,FQ Agn,Z,A—)B,FQn
>, C,>Dq,...C, DD, +ADB

We also remark that if C; D D; is identical with C; D D; for i # j then the lower
sequent (without C; D D) is derivable only from the upper sequents Ay, 3, A — B, T,
such that either C;,C; € T'y or D;, D; € Ap. Modified so that the mix formula may
appear just once in the antecedent of the right upper sequent of the mix, the last part
of P is as follows:

L Q; C Qk
[A}, Y, C; — Dy, I'j]i<i<om (A, 2, A = B, Tili<keon
.k, DOF,..,E,DF,—-C;>D; ¥,Ci>Dy,...C,>D,—ADB
Y E,DF,..E, DF,XC DDy,...C;1 DD; 1,Cix1 D Djy1,...C, DD, - ADB

Now take any [ and k such that 1 <1 < 2™ 1 < k < 2" and Cj is contained in I'j.
We consider the following proof P;:

C Qu L Q
Ak,E,A%B,Fk AE,EGC&—)D&FE
Aka 27 Aa (AE)Cla (ZI)Ci - BCia (Fk)Cia Dia FE

(mix)

Since g(Py) < g(P), we can obtain a mix-free proof P, of A, T, A, (A))%, (2)% —
B, (I'x)%, D;,T} by the induction hypothesis.

Next, let 'y be the sequence obtained from I'y by deleting C;. Then D; is contained
in Ay, and we consider the following proof Ps:

L P : Qu
Aka Ea Aa (AE)Cza (EI)Ci - BCia (Fk)Cia Dia FE Ak’a EaA — BaFk’
A, S, A, (ANC (2N (A )Pi, 8Pi AP — (BY)Pi (D)) P (1)) P, B, T

(mix)

Since g(P3) < g(P), we can eliminate the above mix by the induction hypothesis. Notic-
ing that (I'y)% is identical with or a subsequence of I's and that (A;/)Pi is identical with
or a subsequence of A, we obtain a mix-free proof ending with A, X, A, (AE)Ci, (2NC A,
NPi AP — (BY)Pi (Ty)Pi, (I'))Pi, B, Ty and hence obtain a mix-free proof of Ay, A}, 3,
¥/, A — B,T},T'}. This holds for any [ and & such that 1 <1 <2™ 1<k <2"and C;

is contained in I'.
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Now we set Cpyp = Ep and Dyyp = Fp, for all b such that 1 < A < m. Let
(lq1y - qt], [Gt+1, -+ Gntm—1]) be the g-th division of [1, ...,i—1,i4+1,...,n,n+1,...,n+m]
(cf. the definition of LBP in Section 2.2). Then there exists a (k,[) considered above
such that Ag, Aj = Dy, ..., Dg, (= Ay) and Ty, T} = Cy, 5., Cy, ., (= T'y). Therefore
we can construct a required proof as follows:

ALY, YA BT, A3S, YA BTy - Abn 5,5, A = BT
Y, ¥.C1 D Dy,....;Ci1 D Di_1,Ciy1 D Diyy,y.... Cy DDy, By D Fy,...;, Epy D F,y - AD B
(some exchanges)

Y E DF,....,E, D>F,XC D>Dy,...Ci_y DD;_1,Cit1 D Di;1,....C, DD, - ADB

Case2: r(P) > 2.
(2-1) r(P) > 1.
The last part of P is as follows:

)

d U

roAal mia
[,I4 - A4 A

Since 7;(P) > 1, the inference I can not be (D). Then the proof is carried out in the
same way as that for LK.

(2-2) r(P) =1 and r(P) > 1.

(2-2-1) The right upper sequent of the mix is the lower sequent of either a logical
inference whose principal formulae contain no A or a structural inference. The last part
of P is as follows:

d U

F5A ToAl
[I4 — A4 A

We treat the case where I is (D).

(a) I' = A is an initial sequent or the lower sequent of a weakening rule.

In this case, the claim is easy to see and we omit the detail.

(b) I' = A is the lower sequent of (D).

Since the succedent A consists of one formula A, the last part of P is as follows:

B, B, Ry
Q Al,E,B%C,Fl AQ,E,B%C,FQ AQn,E,B%C,FQn I
r—-A H—-B>C

r,nm*—-Bo>C
Consider the following proof Py:
' Q B,
r—-A Ak,E,B — C,Fk
Fa (Ak)Aa EA? BA - Ca [

(mix)
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Since r(P;) < r(P), we can eliminate the above mix by the induction hypothesis.
Therefore for all £ such that 1 <k < 2", we can obtain mix-free proofs P}, ending with
A, T,24 B — C,T;. Noticing that no A is in the principal formulae of I, we can
construct a mix-free proof of I', T4 — B O C as follows:

. P . Py . Pyn
ALT, S4B C Ty AT, N4 B CTy - Agw,I,84, B = C,Ton
r,m*—-Bo>C

(®)

(c) I' = A is the lower sequent of (A : right) or (V : right).
We treat the case of (A : right). The last part of P is as follows:

P Q1 : Qo
r—-AB I'=>A,C ‘R
r—-A"BAC II—A

[ IB8C — A7 A

Consider the following proof:

B —~ B
B,C B B,C - B "R

B,C - BAC I A
B,C,IIBNC 5 A

By applying Lemma 2.4.3 to the above proof, we obtain a mix-free proof P; ending
with B, C,ITPA¢ — A. Then consider the following proof Px:

P Q1 : Py
I' - A'B B,CIIPN 5 A
L,08, (P95 — (ANE A

(mix)

Since g(P,) < g(P), we can eliminate the above mix by the induction hypothesis, and
obtain a mix-free proof P3 ending with I, C, IIPAC — A’ A.
Next, consider the following proof Pj:

L Q2 L Py
I - A'C T,C,IIBN 5 AN
L0, (PO — (AN, A% A

(mix)

Since g(Py) < g(P), we can obtain a mix-free proof ending with I, T¢, (ITP"¢)¢ —
(A", A’, A by the induction hypothesis, and hence obtain a mix-free proof of I', ITBA¢ —
Al A.
(2-2-2) The right upper sequent of the mix is the lower sequent of a logical inference
whose principal formulae contain the mix formula A. This case is treated similarly to
that of the cut-elimination theorem for LK.

This completes the proof of Lemma 2.4.1, and hence of the cut-elimination theorem
of LBP (Theorem 2.4.1). O
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2.4.3 Proof for LFP

In this subsection, we prove Lemma 2.4.2. We assume here that the initial sequents of
the form A — A are restricted to the form such that A is a propositional variable. It
is easy to see that the resulting system is equivalent to the original one. Hence we call
this also LFP*.

Let P be a proof in LFP* which has a rule (D)

A, X, ADB,A— BT Ay, ADB,A—= B,y -+ Am X ADB,A— B,Tsn
>, C,>Dq,...C, DD, +ADB

The (A D B)’s in the upper sequents are called the diagonal formulae of this inference.
We define the width of this inference I to be the number of the inferences I’ whose
principal formulae contain a direct ancestor of the diagonal formulae of I.

Let P be a proof in LFP* which has a mix only as the last inference. The width of
P, denoted by w(P), is defined as follows:

1. The case where the mix formula is of the form A O B.
Let P’ be the subproof of P whose end-sequent is the left upper sequent of the
mix. Then w(P) is the sum of the width of all lowermost (D)’s in P'.

2. Otherwise, w(P) = 0.

Now we prove Lemma 2.4.2. The following technique is an analogue of that used in
[34].

Proof of Lemma 2.4.2. We prove the lemma by transfinite induction on w? - g(P) + w -
w(P) + r(P). Here we treat only the case where r(P) = 2 and each upper sequent of
the mix is the lower sequent of (D). With the modification remarked in the proof of
Lemma 2.4.1, the last part of P is as follows:

L Q) C Qe
[Aga E,a Cz D) Dia Cz — DiaFE]lglng [Ak,E,A D) B,A — B,Fk]lngQn
Y E,DF,..E, DF,— C;D>D; ¥,Cy D> Dy,....C, DD, > ADB
S'E1 D Fi,... By D Fp, 8,01 D Dy, ..., Cim1 D Di—1,Ciy1 D Digy,...,Cpy, D Dy - AD B

Casel: w(P) = 0.

In this case, each topmost direct ancestor of the diagonal formulae C; D D; of I is
the principal formula of a weakening rule (note that all the initial sequents of the form
A — A of our system are of the form p — p for propositional variable p). Hence by
deleting the diagonal formulae C; D D; as well as all direct ancestors of them from P
and some trivial modifications, we obtain proofs ending with [A}, ¥/, C; — D;, I']1<j<om.
Then we proceed in the same way as Casel in the proof of Lemma 2.4.1.

Case2: w(P) > 0.

Let P; be the subproof of P whose end-sequent is the left upper sequent of the mix. In
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this case, there exists an inference I’ whose principal formulae contain a direct ancestor
of the diagonal formulae C; D D; of I. Then P; looks like this:

R,
[A%L,S*,G D H,G H, T*icjcr
¥, J1 D Ky,...(C; D D)., Jy DK, - GDH
L Q
AE,,EI, C; D> D;,C; — Di,Fl,
Y. E,DF,..,.E, D>F, = C; DD

II

T

where C; D D; appears in J; D K, ..., J, D K,, which are all distinct with the modifi-
cation remarked in the proof of Lemma 2.4.1. We transform P; as follows:

1. Delete the part over ¥*, J; D Ky,....,J, D K, - G D H.

2. Transform each remaining sequent IT — A to G D H,II — A.

In the figure obtained in this way, each inference is correct, and each topmost sequent
is provable using structural inferences only. Therefore from this figure, we can obtain
a mix-free proof P, ending with G D H,Y', By D Fy,...,Ep, D Fy, — C; D D;.

Now take any [ such that 1 <1 < 2™, and consider the following proof P;:

D Py L Q)
G D H, EI,El DF,...E, D F, — C; DD AE,EI,Ci D D;,C; — Di,FE
G D H,Y,Ey D Fy, ..., By D Fy,, (A)Ci2Pi (212D Oy — Dy, T

mix)

Since w(P]) < w(P), we can obtain a mix-free proof R; of this end-sequent. Furthermore
take any j with 1 <j <2" such that Cj is contained in I'}, and by the same argument
as Casel in the proof of Lemma 2.4.1 with R; and R; instead of Q) and Q] there, we
finally obtain a mix-free proof R ending with

S\ E1DF,...Ey D Fy, Y (Jy DKy,....J, D K9P 5 G>H.
Next, we again transform P; as follows:
1. Delete the part over ¥*,J; D Ky,...,Jr D K, - G D H.
2. Transform each remaining sequent II — A to ¥/, Ey D F,..., B, D Fyp,, 1T — AL

3. Put on the deleted part the mix-free proof R followed by a weakening rule (and
some exchange rules) whose principal formula is C; D D;.

Since each topmost sequent not in R is provable by structural inferences, we can obtain
a mix-free proof P3 ending with ¥/, £, D Fy, ..., B, D F, — C; D D;.
Finally, consider the following proof Pj:
L Qk
Ps [Ak,E,ADB,A—)B,Fk]ISkSZn
.k, DO F,..E,DF,—-C;>D; ¥.Ci >Dy,...C,DD,—ADB
¥,E1DF,... By D Fy,%,C1 D Dy,....;Cio1 D D;i—1,Ciy1 O Dig,...,Cp, DDy = ADB
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It is easy to see that w(Ps) < w(P). Therefore we can eliminate the above mix by the
induction hypothesis, and obtain a required mix-free proof.

This completes the proof of Lemma 2.4.2, and hence of the cut-elimination theorem
of LFP (Theorem 2.4.2). O
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Chapter 3

Strong normalization theorem for
NK (I) — Survey of Stalmarck’s
result

In this and next chapters, we shall discuss the strong normalization theorem for the
natural deduction system for the first-order classical logic.

For the first-order classical natural deduction with full logical symbols, Stalmarck
already proved the strong normalization theorem. However this result is not satisfactory.
Actually, his reduction procedure does not satisfy the Church-Rosser property. In
this chapter, we survey of Stalmarck’s result and explain the failure of Church-Rosser
property with respect to his reduction procedure.

3.1 System NK

The natural deduction system for which we prove the strong normalization theorem is
the one defined in Chapter 1. For reader’s convenience, we present again the inference
rules of this system. In the following, A, Ay, As, B, etc. denote formulae and —A is
considered as an abbreviation for A D 1 and hence the rules for — are omitted.
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A NA
i (AI) 1Ai 2 (AE) (i=1,2)
[A1]  [As]
A; AiVA, B B
iV (VI) (i=1,2) 1> -2 5 (VE)
[4]
250D 428 4 (5 p)
A(a) VrA(zx)
T aw P)
[A(a)]
Alt) JzA(z) B
dzA(z) (31) B (3E)
[-A]
i
7 (RAA)

In (VE) and (3I), t is an arbitrary term. Furthermore (VI) and (3E) are subject to the
restriction of eigenvariable.

Remark. As usual, we can assume that the eigenvariables must be separated in a proof.

Before defining the reduction procedure, we need a notion of maximum formulae.

Let A be a formula-occurrence in a proof D. A is called a mazimum formula in D if
A satisfies the following conditions:

1. A is a conclusion of an introduction rule, (VE), (3E) or (RAA);
2. A is the major premise of an elimination rule.

A proof is said to be normal if it contains no maximum formula.

3.2 Stalmarck’s reduction procedure

In this section, we present the reduction procedure due to Stalmarck [30].
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Let C' be a maximum formula in a proof which is the conclusion of a rule R. The

reduction at C' is defined as follows.

1. Ris (AI) and C'is Ay A As:

D, i,
Ay Ay
A N4, B L D,
2. Ris (VI) and C'is A; V Ay:
: D [Ai] [A4s] . D
AV Ay B B b
B = B
3. Ris (D I)and C'is A D B:
4]
: D .
B : € A
A>B 1 A . D
B = B
4. Ris (VI) and C is Vz A(x):
: D(a)
A(a)
R .
Vo A(z) : D(t)
A(t) = A(t)
5. Ris (3I) and C is JzA(z):
D [A(a) . D
A(t) r &) A(t)
JrA(x) B D E(t)
B = B
6. Ris (VE)
‘ [A1]  [Ag] [Ai] [As]
;D Dy D3 : D2 : Ds
A1V Ay c c R D, c &1 & C & &
¢ & & AV Ay B B
B R = B
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where the subproof

has to be normal.

7. Ris (3E):

;D1 D
drA(x) C

where the subproof

has to be normal.
8. Ris (RAA):
(a) Cis A1 A Ag:

(b) C'is A D B:
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(c) CisVrA(x):

(d) Cis A1 V Aq:

[=(A41 V Ap)]
:D [A] A
1 & 1 &
A1V Ay B B
B

(e) Cis JzA(x):

[~z A(z)]
: D [A(a)]
L &
JzA(x) B
B

=

VrA(z)]!
CA®W]? A@)

[FzA(x)]! 1
L
—Elacfﬁl(w)

= (RAA)?

9. In addition to the above, we also introduce reductions for “redundant application”:

and

1
T (RAA)

‘D
1

D
1

where no assumption is discharged by this (RAA).
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We note that in clauses 6 and 7, both £ and & are the proofs of the minor premises of
R, if they exist. In the following, we shall not mention this kind of remarks each time.

If D' is obtained from D by the reduction at C, we also say “D’ is obtained from D
by reducing at C” and denoted by D = D’. As usual, 2 denotes the transitive closure
of = and = denotes the reflexive transitive closure of =. If D = D' , D' is called a
reduct of D. Especially, if D = D', D' is called a direct reduct of D.

Remark. In the author’s opinion, the above reduction procedure is not satisfactory in
the following sense.

First, in clauses 6 and 7, the normality of the subproof is required. However these
restrictions are not desirable in establishing the strong normalization theorem. Fur-
thermore, clauses 8 (d) and (e) seem to be unnatural. Actually, these cause the failure
of the Church-Rosser property (see 3.4). However clauses 8 (d) and (e) are necessary
in order to prove the strong normalization theorem. In the next section, we summarize
this point.

3.3 Strong normalization theorem

In order to grasp the strong normalization theorem, we need the following definitions.
A reduction sequence is a sequence Dy, Dy, ... of proofs such that D; = D;;; for all
1 > 0 and the last term in the sequence, if the sequence is finite, is normal.

A proof D is said to be strongly normalizable (abbreviated to SN) if each reduction
sequence starting from D is terminates.

In [30], Stalmarck proved the following.

Theorem 3.3.1 All proofs are strongly normalizable (with respect to the above reduc-
tion procedure).

In order to prove this, we introduce the notion of the validity of proofs and rules.
A proof of the form

is said to be in I-form if A is not an atomic formula and R is an introduction rule or
(RAA).

First, we present the definition of the validity of proofs.

A proof D is said to be wvalid if one of the following conditions is satisfied:

1. D is in I-form of the form

and each D; is valid and each proof of the form

D& &
— 1 R

is valid where R’ is an elimination rule, & and &, are valid (if they exist) and A
is Lif R'is (VE) or (3E).
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2. D is not in I-form and each direct reduct of D is valid and if D is of the form
[A1] - [Ag]
s I
A1V As B B
B

or
[A(a)
: : &1
JzA(x) B
B
then £ and &; are valid.

Then the following lemma is easily verified.

Lemma 3.3.1 Let D be a valid proof. If D = D', then D' is also valid.

Next we define the validity of rules.
Let D be a proof and let D* be a proof which is obtained from D** by substituting
an arbitrary valid proofs for open assumptions is valid where D** is obtained from D by
substituting an arbitrary terms for free variables which are not used as eigenvariables.
For simplicity, we say this “ D* is obtained from D by substitution”. A proof D is said
to be valid under substitution if each proof D* which is obtained from D by substitution
is valid.
An inference rule R is said to be walid if each proof of the form
Dy---D,

1 R

is valid under substitution where each D; is valid under substitution.

Remark. The notion of validity defined above is an analogue to the notion of strong
computability in typed A-calculus due to Tait [32]. In fact, this notion is used in order
to prove the strong normalization theorem for typed A-calculus. In the following, we
summarize the outline of this proof.

A-terms are either x, M N and Ax.M where z is a variable, and M and N are \-terms.
Types are constructed from atomic types and a binary connection — in a usual way.
Typed A-terms are defined inductively as follows:

1. each z% is a typed A-term where z is a variable and « is a type;
2. if M8 and N® is typed A-terms, then (M**SN®)8 is a typed A-term;
3. if M7 is a typed A-term, then (Az®.M5)*>8 is a typed A-term.
B-reduction — g is defined by

(Ax.M)N —g M[N/x]

where M[N/z] is obtained from M by replacing all z in M by N. Then the following
theorem holds.
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Theorem 3.3.2 All typed A-terms are strongly normalizable with respect to B-reduction.

For the proof of this, we introduce the notion of strong computablity of terms.
Strongly computable terms (abbreviated SC terms) are defined inductively as follows:

1. a term of atomic type is SC if it is SN;

2. a term M®~F is SC if the term (M N)? is SC for each SC term N©.
Then the proof of this theorem is carried out in two steps as follows.

1. Each SC term is SN.

2. Every term is SC.

By the help of the Curry-Howard isomorphism, one can easily understand the simi-
larity between validity (for the implicational fragment) and strong computability.

Now we turn back to Stalmarck’s result. The proof of the strong normalization
theorem is carried out in three steps as follows.

1. Valid proofs are SN.
2. Proofs built of valid rules are valid.
3. All rules are valid.

Among the above, 1. and 2. are easy while the proof of 3. is difficult. In the following,
we see that where one uses clauses 8(d) of the definition of the reduction procedure in
the proof of 3.

In order to prove the validity of rules, we first show the validity of introduction rules
and next show the validity of (RAA), and finally show the validity of elimination rules.
In this proof, clause 8(d) is needed when we show that the validity of (VE). In the
following, we see the outline of this proof. For the details, see [30].

When we show that the validity of (VE), the following situation arises. Consider the
following proof D where Dy, £ and & are valid.

[=(A1 V Ag)]
oy LA 4
1 & &
A1V Ay B B
B R

In order to prove that R is valid, we have to show that D is valid. For this aim, we
have to show that the validity of the following proof D', which is obtained from D by
the reduction at 4; V Ag:
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51 . 52
-B] B [-B] B
[Al V AQ] L 1
1
—I(A1 .\/ Az)
Dy
1
B

Now, consider the following valid proof (Note that the end-formula is L):

[—(A1 V Ag)] [A1] [As]
. Dy L & L &
1 -B B -B B
ALV Ay 1 L
1
This is reduced to
[A4] [As]
&1 D &
[Al V AQ] 1 L
S S
—(Ay ‘\/ As)
: Dy
1

and using “redundant application”, this is reduced to

[A1] [Az]
e s
-B B -B B
[Al V AQ] 1 1
1
AV A7)

. Dy
1

which is valid using Lemma 3.3.1. Finally, using the validity of (RAA), we can show
that D' is valid.
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3.4 Failure of Church-Rosser property

As mentioned above, clauses 8 (d) and (e) cause that failure of the Church-Rosser
property. In this section we present a counter-example. Consider the following proof
D:

[Ai] [A2]
D1 DQ [Bl] [BQ]
[Al V AQ]I Bi1VBy B1V By Ds Dy [—|(A1 V Ag)]
BV By C C Ds
C 1 1
(Al V AQ) >C (D) A1V Ay

C

where each D;, 1 < 7 < 5, is normal form and each assumption —(A4; V As) in Dj
(discharged by (RAA)) is not the major premise of an elimination rule. Then it is easy
to see that D is reduced to two normal forms & and & where & is

(A [Bi]  [B] [Ao]  [Bi]  [By]
:D1 D3 1Dy :Dy 1Dy 1Dy
By V By Cc Cc BV By C C
[-C] C [-C] C
(4 V Ay] T T
1
—I(Al ‘\/ Ag)

: D5

i

C

and & is
[B1] [B2] [B1] [Bs]
[A4] Dy : D3 [Ay] Dy
Dy [2C] C -C] C D, [2C] C -C] C
BV By 1 1 BV By 1 1
[Al V AQ] L L
1
(41 V 4y)

: D5
i
C
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Note that if we adopt the reduction step (“Red-1” in Chapter 1)

[A1]  [Ag]
. D2 . Dg
[A,V A)]Y B B
[_'B]2 B 1
[~(Ay V A5)] T )
Dy [A] [Ag] (A1 V A)
1 : Dy 1D . Dy
A1V Ay ~ B B N % (RAA)Z

instead of clause 8(d) of Stalmarck’s definition, then one can easily seen that D has the
unique normal form.

As we have seen above, Stalmarck’s result is not satisfactory. We would like to adopt
the reduction procedure for (RAA) like “Red-1” in Chapter 1 as follows:

[C]Y & &
e [-B]? B
-C
1
: D ~C ont
1 : D
C 51 52 £ 2
B = B (RAA)

However, when we adopt the above reduction, Stalmarck’s proof can not work. In the
next chapter, we present how this difficulty is overcome.
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Chapter 4

Strong normalization theorem for
NK (IT) — New reduction
procedure

This chapter is a sequel to the previous chapter. In this chapter, we introduce another
reduction procedure for NK which is an improvement of Stalmarck’s one satisfying the
Church-Rosser property, and prove the strong normalization theorem with respect to
this reduction procedure. This result yields the strong normalization theorem with
respect to Andou’s reduction procedure introduced in [1]. The contents of this chapter
are based on [17].

4.1 Introduction

As we have seen in Chapter 3, Stalmarck’s reduction procedure is not satisfactory. If
we would like to recover the Church-Rosser property, we have to adopt the reduction
procedure for (RAA) as follows:

[C]Y & &
e [-B]? B
-C
1
. D = O
1 : D
C 51 52 £ 2
-5 - B (RAA)

However this makes a proof for the strong normalization theorem very hard. In this
introductory part, we explain this difficulty and the idea for how this difficulty can be
overcome.

In order to prove the strong normalization theorem using the notion of the validity,
we have to show that all rules are valid. When we show the validity of elimination rules,
the following situation occurs.
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Let D be the following proof:

_ [A] - [A2]
. D1 . D2 . Dg
A VA, B B
B

where Dy, Do, D3 is valid. Then in order to prove the validity of (VE), we have to show
that D is valid. Especially, a problematic case is the one where the last inference of D,
is (RAA) as follows:
[=(A41 V Ay)]
g Al (4]
1L : Dy Dy
A1V Ay B B
B

Genarally, in order to prove the validity of a proof whose last inference is an elimi-
nation rule whose major premise is the conclusion of (RAA) like

-]
D

SR

& &
B

we need the validity of
[A]Y & &
-~B)? B
= (o1
D
(RAA)?

L

B
This proof is ending with (RAA). Then (if B is not atomic) in order to prove the validity
of this, we have to show the validity of

Al & &
[~B]? B
S On
. D
L 2
= (RAA) o
C Ry
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where Ry is an elimination rule. This is a proof whose last inference is an elimination
rule whose major premise is the conclusion of (RAA), i.e., this is the same form of

-]
D

SR

& &
B

Hence in general, we have to repeat the above argument in several time. This is the
main difficulty of the proof. Then how do we overcome this? We next explain the idea
to overcome this difficulty.

By repeating the above argument, we need generally the validity of a proof of the
following form:

[-(A1V Az)]
Dy A [Ag]
1 & 1 &
A1V Ay By By R
Bo 0 &l &l "
B L og2 g2 R
By ’
By gk gk
By B
where Ry,..., Ry are elimination rules. By recalling the definition of validity, there

exists k such that By becomes atomic. On the other hand, strongly normalizability of
a proof of the above form can be proved (this is very hard and complicated) and if the
end-formula is atomic, it is easy to see that SN implies valid. Therefore we can prove
that the above proof is valid.

Remark. Needless to say, the above explanation is only the idea of the proof. As a
matter of fact, we have to modify the definition of validity and for this modification,
the case in which By, for each k in the above is not necessarily atomic arises. Therefore
we have to treat this case in a different way.

In the rest of this chapter, we introduce the new reduction procedure and prove the
strong normalization theorem as well as the Church-Rosser property with respect to
this reduction procedure.

4.2 New reduction procedure

In this section, we introduce a new reduction procedure for which we prove the strong
normalization theorem and the Church-Rosser property. This reduction procedure is
an improvement of Stalmarck’s one presented in Chapter 3.
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Let C' be a maximum formula in a proof which is the conclusion of a rule R. The

reduction at C' is defined as follows.

1. Ris (AI) and C'is Ay A As:

D, i,
Ay Ao
A N4, B L D,
2. Ris (VI) and C'is A; V Ay:
: D [Ai] [A4s] : D
AV Ay B B b
B = B
3. Ris (D I)and C'is A D B:
4]
: D .
B : € A
A>B 1 A . D
B = B
4. Ris (VI) and C is Vz A(x):
: D(a)
A(a)
R .
Vo A(z) : D(t)
A(t) = A(t)
5. Ris (3I) and C is JzA(z):
D [A(a) : D
A(t) r &) A(t)
JrA(x) B D E(t)
B = B
6. Ris (VE)
‘ [A1]  [Ag] [A4] [As]
;D Dy D3 : D : Ds
A1V Ay c c R D, C & & C & &
¢ &1 & ALV Ay B B
B = B

44



7. Ris (3E):

, [A(a)] [A(a)]
: D1 Do . : D2
JrA(z) C Dy C &1 &
c B e & 3w A(z) B
B = B
8. Ris (RAA):
[C]Y & &
] [-B]? B
-C
1
D @ (D I)l
1 : D
=R
C 51 52 £ 2
B = B (RAA)

Remark. The above definition is almost the same as Stalmarck’s one except the follow-
ings.

e In clauses 6 and 7, restrictions about the normality of the subproof are deleted;
e Clause 8 is changed;
e Clause 9 is deleted.

The following remarks are the same as the one for Stalmarck’s reduction procedure.
For reader’s convenience, we repeat these again. If D’ is obtained from D by the
reduction at C, we also say “D’ is obtained from D by reducing at C” and denoted by
D = D'. & denotes the transitive closure of = and = denotes the reflexive transitive
closure of =. If D =& D', D' is called a reduct of D. Especially, if D = D, D' is called
a direct reduct of D.

Suppose that D = D’. If the major premise of the last inference of D is a maximum
formula of D and D’ is obtained by reducing this maximum formula, we say that D' is
obtained by proper reduction from D.

At the end of this section, we remark a relationship between the reduction steps
defined above and Andou’s one defined in [1].

Before defining the reduction steps due to Andou, we define the regularity of a proof
(see [1]).

An assumption-formula in a proof which is discharged by (RAA) is said to be reqular
if it is the major premise of (D F). A proof is said to be regular if each assumption-
formula discharged by any (RAA) is regular. By Lemma 1 of [1], we can consider only
regular proofs.

Then Andou’s reduction steps are the same as ours except the case where R is (RAA).
This is as follows:
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Let Si,...,S, be all (D E)’s whose major premises are discharged by R, if they exist.
Then the reduction is carried out as follows:

-] € C & &
J‘_ % [_IB]I B
: T
L :
=R :
C 51 52 £ 1
B N B (RAA)

Note that the above translation is applied for all 7, 1 <17 < n.

Now, if D’ is obtained from D by the above reduction, then it is easy to see that D =
D' (with respect to our reduction steps). Therefore the strong normalization theorem
for our reduction steps implies that the strong normalization theorem for Andou’s ones.

Finally, we note that it is not necessary that we assume the regularity of proofs
for our reduction steps. Hence our reduction steps are, in the author’s opinion, more
acceptable.

4.3 Strong normalization theorem

In this section, we shall prove the strong normalization theorem with respect to the
reduction procedure defined in the previous section. That is, the aim is the following.

Theorem 4.3.1 All proofs are strongly normalizable.

The rest of this chapter is devoted the proof of this theorem.

4.3.1 Preliminaries

In this subsection, we introduce the notion of the validity of proofs and rules and prove
some properties for valid proofs as preparations of the proof of the theorem. The validity
of proofs defined below is an improvement of the one defined in Chapter 3.

The reduction tree of a proof D is the tree whose paths consist of all the reduction
sequences starting from D. Note that if a proof D is SN, the length of each path of
the reduction tree of D is finite. Therefore, by using Konig’s lemma, there exists the
maximum of the lengths of all paths of the reduction tree of D. This is denoted by
(D).

We recall the definition of I-form. A proof of the form

Dy---D,

A R

is said to be in I-form if A is not an atomic formula and R is an introduction rule or
(RAA).

In the following, we define the notion of validity of proofs. In order to simplify the
description, we introduce the notion of eliminating proofs.
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As usual, the degree of a formula A is defined by the number of logical symbols
contained in A. The degree of a proof D, which is denoted by d(D), is defined by the
degree of the end-formula of D.

Let D be a proof. Suppose that the validity is already defined for proofs whose
degrees are less than d(D). Then an eliminating proof (abbreviated to E-proof) of D is
defined as follows:

1. If the end-formula of D is A1 A Ao, then for each i = 1,2, a proof of the form

D
A1 N As

Ai
is an eliminating proof of D.

2. If the end-formula of D is Ay V As, then each proof of the form

[A1]  [A9]
D & &
A1V Ay B B
B R

is an eliminating proof of D where for each ¢ = 1,2, &; is a proof such that a proof
obtained from &; by substituting an arbitrary valid proof whose end-formula is 4;
for open assumptions which are discharged by R is SN.

3. If the end-formula of D is A D B, then each proof of the form
D £
ADB A
B
is an eliminating proof of D where £ is an arbitrary valid proof whose end-formula
is A.
4. If the end-formula of D is Yz A(x), then each proof of the form
D
VaA(x)
A(?)

is an eliminating proof of D where ¢ is an arbitrary term.

5. If the end-formula of D is 3z A(x), then each proof of the form
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is an eliminating proof of D where £ is a proof such that a proof obtained from &£
by substituting an arbitrary term ¢ for a and substituting an arbitrary valid proof
whose end-formula is A(t) for open assumptions which are discharged by R is SN.

A proof D is said to be valid if one of the following conditions is satisfied:
1. Dis in I-form and

(a) If the end-formula of D is of the form A; A Ay, A D B or YxA(z), then each
E-proof of D is valid.

(b) If the last inference of D is of the form A; V Ay or Iz A(z), then each E-proof
of D is SN and if D is of the form

or

then D; is valid.

2. D is not in I-form and each direct reduct of D is valid and if D is of the form

[A1] - [Ag]
: & 16
A1V As B B

or

then & and &y are valid.

Remark. The above definition is primarily by induction on d(D), and within this by
double induction on (I(D), h(D)) where h(D) denotes the height of D.

Let D be a proof and let D* be a proof which is obtained from D** by substituting
an arbitrary valid proofs for open assumptions is valid where D** is obtained from D by
substituting an arbitrary terms for free variables which are not used as eigenvariables
For simplicity, we say this “ D* is obtained from D by substitution”. A proof D is said
to be valid under substitution if each proof D* which is obtained from D by substitution
is valid.

48



An inference rule R is said to be wvalid if each proof of the form

Dy---D,

A R

is valid under substitution where each D; is valid under substitution.
Lemma 4.3.1 Let D be a valid proof. If D = D', then D' is also valid.

Proof. This is proved by induction on the definition of validity. If D is not in I-form,
then the claim is obvious by the definition of validity. Therefore we consider the case
where D is in I-form. First, we remark that D’ is also in I-form.

Case 1: The end-formula of D is of the form A D B.
We have to show that each E-proof of D’ is valid. Let C’ be an arbitrary E-proof of D’
of the form ‘ _
D £
ADB A
B
where £ is an arbitrary valid proof whose end-formula is A. Now, consider the following
proof C:
D €&
ADB A
B

This is an E-proof of D. Since D is valid, C is valid by the definition of validity, and
obviously C = C'. Hence C' is valid by induction hypothesis.

Case 2: The end-formula of D is of the form A; V As.
We only treat the case where the last inference of D is (VI). Then D is of the form

D,
A;
A1V Ay

and D' is of the form ‘
: Dy
A;
A1V Ay
where D] is a reduct of D;. By induction hypothesis, D] is valid. Furthermore, we have
to show that each E-proof of D' is SN. Let C' be an arbitrary E-proof of D’ of the form

' [A] - [A2]
D ta 16

ALV Ay B B
B R
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where for each 7 = 1, 2, &; is a proof such that a proof obtained from &; by substituting an
arbitrary valid proof whose end-formula is A; for open assumptions which are discharged
by R is SN. Now, consider the following proof C:

[A1]  [A9]

D & &
ALV Ay B B

B R

This is an E-proof of D. Since D is valid, C is SN by the definition of validity, and
obviously C = C’. Hence C' is SN.

Other cases are treated similarly. O
Lemma 4.3.2 Valid proofs are SN.

Proof. This is proved by induction on the definition of validity. Let D be a valid proof.

Case 1: D is not in I-form.

In order to prove that D is SN, it suffices to show that each direct reduct of D is SN.
By the definition of validity, each direct reduct of D is valid and hence SN by induction
hypothesis. Therefore D is SN.

Case 2: D is in I-form.
Let A be the end-formula of D. By the definition of validity, each E-proof of the form

: D

A D D

B R

isvalid (if Ris (AI), (D I) or (V1)) or SN (if Ris (VI) or (3I)). By induction hypothesis,
the above proof is also SN when R is (AI), (D I) or (VI). Therefore D is obviously SN.
O

Lemma 4.3.3 Let D be an SN proof whose end-formula is an atomic formula. Then
D is valid.

Proof. Notice that D cannot be an I-form. Hence the claim is proved immediately by
induction on the definition of validity. a

4.3.2 Validity of the introduction rules

In order to prove Theorem 4.3.1, we shall prove that all inference rules are valid. First,
we consider the introduction rules.
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Lemma 4.3.4 (1) Let D be a proof whose last inference is (AI) of the form
0, D,
Ay Ay
AN Ay
If both D1 and Dy are valid, then D is also valid.
(2) Let D be a proof whose last inference is (O I) of the form
4]
: Dy

If each proof of the form

is valid for each wvalid proof € whose end-formula is A, then D is also valid.
(3) Let D be a proof whose last inference is (VI) of the form

A(a)
Vo A(z)

If each proof obtained from Dy by substituting an arbitrary term for a is valid, then D
s also valid.

Proof. We only prove (2). (1) and (3) are proved similarly.
Now, in order to prove that D is valid, we have to show that each E-proof of D is
valid. Let C be an arbitrary E-proof of D of the form
[A]
Dy
B 1 &
ADB A
B

where £ is an arbitrary valid proof whose end-formula is A. In order to prove that C is
valid, it suffices to show that each direct reduct of C is valid. We show this by induction
on (D) +1(£). Let C' be an arbitrary direct reduct of C.

Case 1: C’ is obtained by the proper reduction.
C' is of the form
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By the assumption, this is valid.

Case 2: C' is obtained by replacing D by its direct reduct.
C' is of the form

where D} is a direct reduct of D;. Obviously, [(D') < I(D). Furthermore, for each valid
proof & whose end-formula is A,
&o

is a direct reduct of

and hence valid by Lemma 4.3.1. Hence C’ is valid by induction hypothesis.

Case 3: C’' is obtained by replacing £ by its direct reduct.
C' is of the form

D &
ADB A
B
Obviously, (') < I(£). Hence C' is valid by induction hypothesis. |

Lemma 4.3.5 (1) Let D be a proof whose last inference is (VI) of the form

D,
L

AV Ay

If D1 is valid, then D is also valid.
(2) Let D be a proof whose last inference is (3I) of the form

If Dy is valid, then D is also valid.

52



Proof. We only prove (1). (2) is proved similarly.
By the assumption, D; is valid. Hence, in order to prove that D is valid, we have to
show that each E-proof of D is SN. Let C be an arbitrary E-proof of D of the form

: Dy [A] 0 [Ag]

A; L& &
AiVAy, B B

B R

where for each 7 = 1, 2, &; is a proof such that a proof obtained from &; by substituting an
arbitrary valid proof whose end-formula is A; for open assumptions which are discharged
by R is SN. In order to prove that C is SN, it suffices to show that each direct reduct
of C is SN. We show this by induction on [(D) + (1) + (). Let C’ be an arbitrary
direct reduct of C.

Case 1: C’ is obtained by the proper reduction.
C' is of the form

By the assumption, this is SN.

Case 2: C' is obtained by replacing D by its direct reduct.
C' is of the form ‘

: Dy (A [4]

Ai . 51 . 52

A1V Ay B B
B R
where D] is a direct reduct of D;. Obviously, [(D') < [(D) and D] is valid by Lemma
4.3.1. Hence C’ is SN by induction hypothesis.

Case 3: &' is obtained by replacing £; by its direct reduct.

&' is of the form
[A1]  [A2]

> g i
ALV Ay B B
B

R

Obviously, I(£]) < I(£1). In order to use induction hypothesis, we have to check that
each proof
: &
Ay
el
B
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is SN where & is an arbitrary valid proof whose end-formula is A;. This is obvious
since the above proof is a direct reduct of

£
Aq
£,
B
which is SN by the assumption. Hence C’ is SN by induction hypothesis.

Case 4: &' is obtained by replacing & by its direct reduct.
Similar to Case 3. O

Now we obtain the following.
Lemma 4.3.6 All introduction rules are valid.
Proof. We only consider (D I). Let D be a proof of the form
4]
: Dy
B
ADB

Then the claim is that if D; is valid under substitution, then so is D. Now, let D* be
a proof which is obtained from D by substitution. Then D* is of the form

ADB

where Dj is obtained from D; by substitution. Consider the following proof

where £ is an arbitrary valid proof whose end-formula is A. This is also obtained from
D1 by substitution and hence valid by the assumption. Therefore D* is valid by Lemma

4.3.4(2).
Other rules are treated similarly. Note that for (VI) and (3I), use Lemma 4.3.5
instead of Lemma 4.3.4. O
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4.3.3 Validity of (RAA)

In this subsection, we consider (RAA).
Lemma 4.3.7 (1) Let D be a proof of the form

_ [A1] - [As]
D& 6
ALV Ay B B
B

Suppose that both £ and &y are valid (resp.SN) and if there exists a mazimum formula
M occurring in Dy (including the case where M is the end-formula of D1), then a
direct reduct of D which is obtained by reducing at M is valid (resp.SN). Then D is
valid (resp.SN).

(2) Let D be a proof of the form

i Dy i€
Az A(z) B
B

Suppose that & is valid (resp.SN) and if there exists a mazimum formula M occurring
in D1 (including the case where M is the end-formula of Dy), then a direct reduct of D
which is obtained by reducing at M is valid (resp.SN). Then D is valid (resp.SN).

Proof. We only prove (1). (2) is proved similarly. We also only prove for validity.

In order to prove that D is valid, we have to show that (a)each direct reduct of D is
valid and (b)both & and &, is valid. But (b) is obvious by the assumption. Therefore,
in the following, we show (a) by induction on [(£1) +1(E3). Let D' be an arbitrary direct
reduct of D.

Case 1: D' is obtained by reducing at a maximum formula occurring in Dj.
By the assumption, D’ is valid.

Case 2: D' is obtained by reducing at a maximum formula occurring in &;.

D' is of the form
[A1]  [A2]

Dig e
A1 VAy, B B
B

where £] is a direct reduct of . Obviously, [(£]) < I(£1). In order to use induction
hypothesis, we have to check that each direct reduct of D' which is obtained by reducing
at a maximum formula M occurring in Dy is valid. Let D" be such an arbitrary direct
reduct of D'. On the other hand, let D" be a direct reduct of D which is obtained by
reducing at a maximum formula M. Then one can easily check that D" = D". By the

assumption, D" is valid and hence D" is also valid by Lemma 4.3.1. Therefore D’ is
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valid by induction hypothesis.

Case 3: D' is obtained by reducing at a maximum formula occurring in &s.
Similar to Case 2. a

Lemma 4.3.8 (1) Let D be a proof whose end-formula is of the form ANB, A D B
or YxA(z). If D is valid, then each E-proof of D is also valid.

(2) Let D be a proof whose end-formula is of the form AV B or xA(zx). If D is valid,
then each E-proof of D is SN.

Proof. We only prove (1). (2) is proved similarly. Furthermore, we only treat the case
where the end-formula of D is of the form A D B.
Let C be an arbitrary E-proof of D of the form

D €&
ADB A
B

where £ is an arbitrary valid proof whose end-formula is A. In order to prove that C is
valid, it suffices to show that each direct reduct of C is valid. We show this by double
induction on (I(D) +1(£), h(D)). Let C’ be an arbitrary direct reduct of C.

Case 1: C' is obtained by replacing D by its direct reduct or replacing £ by its direct
reduct.
The claim is obvious by induction hypothesis.

Case 2: (' is obtained by the proper reduction.
If D is in I-form, the claim is obvious by the definition of validity. Hence we consider
the case where D is not in I-form. Then C is of the form

_ [C1] [Co]
Dy Dy Dy
CivCy ADB ADB &
ADDB A
B
or
C(a)]
E!xC(w) ADB ¢
ADB A
B
We consider the former case. The latter case is treated similarly. Then C’ is of the form
] [Co]
. Dy & Dy 2 E
:Dy ADB A ADB A
CV Oy B B
B
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Note that both D; and Dy are valid by the definition of validity. Therefore, for each
1=1,2,
Gl
:D; €&
ADB A
B

is valid by induction hypothesis. In order to apply Lemma 4.3.7, we show that if
there exists a maximum formula M occurring in Dy, then a direct reduct of ¢’ which is
obtained by reducing at M is valid. Let C" be a direct reduct of C’ obtained by reducing
at M.

Subcase(a): C” is obtained by replacing Dy by its direct reduct.
C" is of the form

[C1] [C5]
Dy i & :Dy i E
:Dy ADB A A>B A
C1V Oy B B
B

Now, consider the following proof Cy:

[C1] [Cs]
Dy D iDy
CivCy ADB AD 5
ADB A
B

By Case 1, this is valid. Furthermore Cy = C"”. Hence C" is valid by Lemma 4.3.1.

Subcase(b): C' is of the form

. Al [C]
: Dy Dy (& i Dy 1 E
Ci ADB A ADB A
CV Oy B B
B
and C" is of the form

By

Ci

. D £

ADB A
B
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In this case, C is of the form

1Dy [C4] [Co]

Ci Dl DQ
CitvCy ADB ADB 5
ADB A
B

Consider a direct reduct of C obtained by reducing at C; V Cs, which is valid by Case
1. This coincides with C"”. Hence C" is valid.

Subcase(c): C' is of the form

D] D] (o) Cy
: : : :Dy 1 & 1Dy &
DivDy, CivVCy Ci1VCy ADB A AD>DB A
Ci1V Oy B B
B
and C" is of the form
[C1] [C] [C1] [Cs]
: ADB A ADB A : ADB A ADB A
: CiV Oy B B CLV Oy B B
DV Dy B B
B

In this case, C is of the form

[D1] [Ds]
: [C1] [Cs]
D1VD2 Cl\/CQ C1VC2 Dl Dg
CV Oy ADB AD : &
ADB A
B
Let C" be the following;:
[D1] [C1] [Co] (D] [C1] [Cs]
: D 2Dy D Dy
: cCtvCy ADB ADB Civ(Cy ADB ADB
Dy V D, ADB ADB L €
ADB A
B

By Case 1, this is valid. Furthermore, it is easy to see that C” = C". Hence C” is valid
by Lemma 4.3.1.
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Subcase(d): C' is of the form

D@ (o] C3)
S : : Dy € :Dy &
JzD(x) C1VvCy A5B A ADB A
C1V Cy B B
B
and C" is of the form
[C1] [Cs]
[D(a)] iDy & IDy L€
; ADB A A>B A
; C1V Cy B B
dzD(z) B
B
Similar to Subcase(c).
Subcase(e): C' is of the form
[F(Ci v Ga)] Y] [Ca]
" Do "Dy G E tDy &
1 ADB A AD>B A
CqV Oy B B
B
and C" is of the form
) (e
Dy & :Dy &
ADB A ADB A
[Cl V 02] B B
[-B] B
L
—(C1 V Cy)
By
L
B

In this case, C is of the form

[-(C1V )]
: Dy [C1] [Co]

1 : Dy : Dy
CqV Oy ADB AD 5
ADB A

B
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Let C" be the following;:

[C1] [Cs]
1 Dy : Dy
[Cl\/CQ] ADB ADB
[~(A D B)] ADB
L
=(Cy V ()
By |
L : &
ADB A
B

By Case 1, this is valid. Furthermore, C" & " holds. Actually, C" is reduced to

: &
[ADB] A [C4] [Co]
[-B] B . Dy : Dy
. [Cyv(Cy] ADB ADB
-(AD B) ADB
N S
—|(01 V 02)
: Dy
i
B
and this is reduced to
[C1] [Cs]
D1 D
[Cl\/CQ] ADB ADB : &
ADB A
[-B] B
L
—(C1 VvV Cy)
: Dy
i
B

and finally this is reduced to C”. Hence C” is valid by Lemma 4.3.1.

Therefore we conclude that C' is valid by Lemma 4.3.7.
Lemma 4.3.9 Let D be a proof whose last inference is (RAA) of the form
[~4]
D,

ol
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and A is of the form Ay V Ay or AxAi(x). If each proof of the form

e
—A
: Dy
1

is valid for each valid proof £ whose end-formula is —A, then D is also valid.

Proof. We only consider the case where A is of the form A; V As.

First, we note that Dy is SN by Lemma 4.3.2 and hence D is also SN.

Now, in order to prove that D is valid, we have to show that each E-proof of D is
SN. Let C be an arbitrary E-proof of D of the form

[~(A1 V Ag)]
i Dy A [Ag]
1 & &
ALV Ay B B
R

B

where for each 7 = 1, 2, &; is a proof such that a proof obtained from &; by substituting an
arbitrary valid proof whose end-formula is A; for open assumptions which are discharged
by R is SN. In order to prove that C is SN, it suffices to show that each direct reduct
of C is SN. We show this by induction on [(D) + (1) + (). Let C’ be an arbitrary
direct reduct of C. If C’ is obtained by a reduction which is not proper, then the proof
is carried out by the similar way to the one for Lemma 4.3.5 (Case 2 and 3). Therefore
we only consider the case where C’' is obtained by proper reduction. In this case, C' is
of the form

[A]  [A2]
. 51 . 52
[A,VAy] B B
[-B] B
1L
—I(A1 ‘\/ Ag)
. Dl
L
B
In the following, we prove
[A1] - [A2]

5 e e
ALV Ay B B
-B B
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is valid where & is valid. First, this is SN since
' [A] - [A2]
I
A1V Ay B B
B

is SN by Lemma 4.3.8(2). Therefore

[Ai]  [As]
& e 6
ALV Ay B B
-B B
1

is valid by Lemma 4.3.3 and hence

[A1] - [Ag]
& 16
[Al V AQ] B B
-B B
L
—I(A1 Vv Ag)
valid by Lemma 4.3.4(2). Therefore
[A1] - [Ag]
& 16
[Al V AQ] B B
-B B
L
—I(A1 Vv Ag)
D,
1
is valid by the assumption and hence SN by Lemma 4.3.2. Hence C’ is also SN. a
Lemma 4.3.10 Let D be a proof whose last inference is (RAA) of the form
[A]
. Dy
L
A
and A is atomic or of the form Ay N Ag, A1 D Ag or Yz Ai(x). If each proof of the form
¢
—A
: Dy
1

is valid for each wvalid proof € whose end-formula is —A, then D is also valid.
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Proof. This is proved by (main-)induction on the degree of A.

Base step. By the definition of validity, it suffices to show that each direct reduct of
D is valid. We prove this by (side-)induction on [(D;). Let D' be an arbitrary direct
reduct of D. Then D’ is of the form

=]
D]

N

where D] is a direct reduct of D;. Obviously {(D]) < I(D;). Furthermore, for each
valid proof £ whose end-formula is — A,

is valid since this is a direct reduct of

¥
—A
: Dy
L

which is valid by the assumption. Hence D’ is valid by induction hypothesis.

Induction step. We only consider the case where A is of the form A; D A,. Other cases
are treated similarly.

First, we note that D; is SN by Lemma 4.3.2 and hence D is also SN.

Now, in order to prove that D is valid, we have to show that each E-proof of D is
valid. Let C be an arbitrary E-proof of D of the form

[=(A1 D A2)]

. Dl
L €
Ay D Ay A

A

where £ is an arbitrary valid proof whose end-formula is A;. In order to prove that C
is valid, it suffices to show that each direct reduct of C is valid. We show this by (side-
)induction on [(D) + I(£). Let C' be an arbitrary direct reduct of C. If ' is obtained
by a reduction which is not proper, then the proof is carried out by the similar way to
the one for Lemma 4.3.4 (Case 2 and 3). Therefore we only consider the case where C’
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is obtained by proper reduction. In this case, C’ is of the form

¥
[Al D) AQ] A2
[—A] Ay
L
—|(A1 .D Ag)
. Dl
AL
Az
First, we prove
R
E A1 DAy Ay
—A, Ay
L

is valid where & and & are valid. This is easy by two applications of Lemma 4.3.8(1).
Therefore
¥
&o [Al D) Ag] As
—As Ag
1
—|(A1 D) Ag)

is valid by Lemma 4.3.4(2) and hence

1 &
“ & [A1 DA A
— 4y Ay
L
—|(A1 .D Ag)
: Dy
1

is valid by the assumption. This means that a proof

¢
[Al D) AQ] As
-4, Ag
1L
—|(A1 .D Ag)
. Dl
I

satisfies the assumption of the lemma. Hence C’ is valid by Lemma 4.3.9 (if A is of the
form By V By or d2B;(x)) or by (main-)induction hypothesis(otherwise). a

Now we obtain the following.

64



Lemma 4.3.11 The rule (RAA) is valid.
Proof. Let D be a proof of the form

4]
. D1
L

A

Then the claim is that if D; is valid under substitution, then so is D. Now, let D* be
a proof which is obtained from D by substitution. Then D* is of the form

[~4]
: D
1

A
where D] is obtained from D; by substitution. Consider the following proof

¥
—A
 D;
1L
where £ is an arbitrary valid proof whose end-formula is —A. This is also obtained

from D; by substitution and hence valid by the assumption. Therefore D* is valid by
Lemmata 4.3.9 or 4.3.10. a

4.3.4 Validity of the elimination rules

Finally, we consider the elimination rules. For this aim, we need the following which is
an improvement of Lemma 4.3.8(2).

Lemma 4.3.12 (1) Let D be a proof whose end-formula is of the form Ay V Ag. If D
is valid, then each proof of the form
. [A1] - [As]
: D & 1 &
A vA, B B
B R

s valid where for each i = 1,2, & 1is a proof such that a proof obtained from &; by
substituting an arbitrary wvalid proof whose end-formula is A; for open assumptions
which are discharged by R s valid.

(2) Let D be a proof whose end-formula is of the form 3xA(x). If D is valid, then each
proof of the form
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is valid where £ is a proof such that a proof obtained from & by substituting t for a and
substituting an arbitrary valid proof whose end-formula is A(t) for open assumptions
which are discharged by R is valid.

The proof of this lemma will be carried out in section 4.4.
Now we obtain the following.
Lemma 4.3.13 The elimination rules are valid.

Proof. For (AE), (D E) and (VE), the claim is easily proved by using Lemma 4.3.8(1).
Now consider (VE). Let D be a proof of the form

_ [A1]  [A2]
D& i h
ALV Ay B B
B

Then the claim is that if Dq, & and & are valid under substitution, then so is D. Now,
let D* be a proof which is obtained from D by substitution. Then D* is of the form

_ [A] - [A9]
ople g
A1V Ay B B
B

where D} obtained from D; by substitution and so on. Then for each ¢ = 1,2, each
proof obtained from & by substituting an arbitrary valid proof whose end-formula is
A; for open assumptions which are discharged by R is also a proof obtained from &;
by substitution and hence valid by the assumption. Therefore D* is valid by Lemma
4.3.12(1).

For (3E), use Lemma 4.3.12(2). O

Proof of Theorem 4.3.1. By induction on the height of a proof, one can prove that all
proofs are valid under substitution using Lemmata 4.3.6, 4.3.11 and 4.3.13. Especially,
all proofs are valid. Hence all proofs are SN by Lemma 4.3.2. |

4.4 Proof of Lemma 4.3.12

In this section, we prove Lemma 4.3.12. For this aim, we need some preparations. First,
we introduce the notion of “parallel reduction”. This is an analogy to the one which is
used in a proof of the Church-Rosser’s theorem for -reduction in A-calculus.

Now we define the parallel reduction =, by induction on the structure of a proof as
follows:
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A=, A

where A is a formula.

D,---Dy, Dy---Dy,
A =p A
where D; =, D fori =1,...,n.
Dy Dy
Ay Ao
AN Ay D;
A; =p A;

where D; =, D) for i =1, 2.

1D A [Ag]
A; c & 16
AiVAy, B B
B =p

where D =, D' and &; =, & for i =1,2.

4]
:D &'
B & A
ADB A D'
B = B
where D =, D' and £ =, &'.
: D(a)
Ala)
VzA(x) D'(t)
A(t) =p  At)

where D(a) =, D'(a).
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D [A(a)] D'
A(t) : &(a) A(t)
dzA(z) B : E(t)
B = B
where D =, D' and £(a) =, £'(a).
8.
[A] - [Ag] [A4] [Az]
D Dy D . D) : Dy
A VA, C ¢ p O & &g O &g
¢ & & ALV Ay B B
B =p B
where D; =, D} for i =1,2,3 and & =, &) for i =1,2.
9.
[A(a)] [A(a)]
: Dl DZ . : Dé
JzA(z) C Dy C & &L
C & & dxA(x) B
B = B
where D; =, D} fori =1,2 and & =, &/ for i = 1,2.
10.
€ & &
] [-B]? B
-C
1
‘D —c 0N
L : D
C & & L 2
B =, B (RAA)

where D =, D' and &; =, & for i =1,2.
The following lemma is easily verified by the definition of =,.

Lemma 4.4.1 (1) D =, D for each proof D.
(2) If D= D', then D =, D'.

(3) If D=, D', then D= D'

(4) If D=, D' and € =, &', then
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Next, we define a binary relation on proofs =j. D = D’ denotes

e D is of the form

4]
: D
B L€
A—>B A
B
L C
and D' is
e
A
fD
B
e
or
e D is of the form

C & &
B R
or
A
HmA(a:) C
C & &
B R
or
C]
E
cC & & R

which is satisfying that R is an elimination rule and B is not a maximum formula
in D, and D’ is obtained from D by reducing at the major premise C of R.

The following lemma plays the important role in proving Lemma 4.3.12.
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Lemma 4.4.2 If D =, D' and D =, D", then there exists D" such that D' =, D"
and D" =, D".

Proof. This is proved by induction on h(D).
Case 1: The reduction D =4 D" is proper.

Case 1.1: D is of the form

4]
. D1 .
B : Dy
ADB A
B
In this case D" is ‘
. DQ
A
. Dl
Case 1.1.1: D' is
4]
Dy
B : D),
A>B A
B
where D; =, D; for i =1,2.
In this case, we take
: DS
A
: 1y
B
as D" by Lemma 4.4.1(4).
Case 1.1.2: D' is ‘
: D),
A
: Dy
B

where D; =, D; for i =1,2.
In this case, we take D" := D',
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Case 1.2: D is of the form

Similar to Case 1.1.

Case 1.3: D is of the form

In this case, D" is

Case 1.3.1: D' is

&

ALV Ay

Dy
ALV Ay C

where D; =, D) for i =1,2,3 and & = & for i = 1,2.

In this case, we take

as D'".

[A1]
Ly
tpr O g

[A2]
",
g o &

&

ALV Ay

Ss] ey

Case 1.3.2: D is of the form

1C [Ad]
A; : Dy
AV Ay c
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and D' is

2 !
Ay
: Dy
& &
B
In this case, we take D" := D',
Case 1.3.3: D is of the form
‘ [D1] (D]
1 Gy : Co :Cs [A] [Ag]
DiVvDy A1 VA, AV A DQ Dg
AV A C C
C & &
B
and D' is
[D1]  [A]  [Ag] [D2]  [Ad]  [Ag]
16 Dy Dy G Dy Dy
Ci A1V Ay C C AV Ay c c
D1V D, o C
C &
B

where C; =, C! for i =1,2,3, D; =, D, for i = 2,3 and &; =, &/ for i =1,2.
In this case, we take

[A1] [As] [A1] [As]
D] D) ) D) LD, -y
e, O & & ¢ & & e, O & & ¢ & &
DO ALV Ay B B Ay V Ay B B
D,V Dy B B
B
as D",

Case 1.3.4: D is of the form

D)
G PG [A] [Ag]
HZ'D([I)) A1 Vv A2 Do Ds
A1V As C C
c &1 &
B
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and D' is
[D(a)] [41] [42]
. 1C 1Dy 1Dy
10 A VA, C C
dzD(x) C
C & &
B

where C; =, C! for i = 1,2, D; =, D, for i = 2,3 and &; =, &/ for i =1,2.
In this case, we take

[Ai] [A2]
[D(@)] Db . D4
ey O g g 0 g g
DOl ALV Ay B B
JzD(x) B

as D'".

Case 1.3.5: D is of the form

[=(A1 V Az)]
1 C [41] [As]

1 : Dy D3
A1V As C o
C & &
B
and D' is
[Ai]  [A9]
D}, D}
[Ay VAl C o
[-C] C
1
—I(Al V Az)
. Cl
L
C & &
B

where C =, C', D; =, D, for i = 2,3 and &; = & for i =1,2.

)
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In this case, we take

[A4] [As]
D), : D}
e S e B
[A1 V Ag] B B
[-B] B
1
—(A; V Ay)
2
i
B
as D'".
Case 1.3.6: D' is of the form
[Ai] [Az]
: Dy : Dy
D, ¢ & & O g g
AV Ay B B
B

In this case, we take D" := D',

Case 1.4: D is of the form

Similar to Case 1.3.
Case 2: The reduction D =4 D" is not proper.

Case 2.1: D is of the form

D,---D,
A
and D' is . .
D, ...D!
A
where D; =, D fori =1,...,n.

For instance, we consider the case where D" is

DI'Dy--- D,
A
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where D; = D{. By induction hypothesis, there exists D}’ such that D] = D}’ and
DY =, D{’. Hence we take
DI'DL. .. D,

A
as D"
Case 2.2: D is of the form
4]
: Dy
B : Dy
ADB A
B
and D' is
D,
A
: Dy
B

where D; =, Dj for i =1,2.
For instance, we consider the case where D" is

[A]
lDl
Booig
ADB A
B

where Dy = DY. By induction hypothesis, there exists DY such that D) =, D}’ and
Dy =, Dy'. Hence we take

. DY
A
: Dy
B
as D'".
Case 2.3: D is of the form
‘ [A1]  [A2]
:Dy 1Dy D3
AiVA, C C
Cc & &
B
and D' is
[A4] [Ao]
: Dy : Dj
D, C & & C & &
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where D; =, D for i =1,2,3 and &; =, & for i =1,2.

Since D" is not obtained by the reduction at A; V Ay by the definition of =, D" is
obtained by replacing D; or &; by its direct reduct. Hence the proof is similar to Case
2.2.

Other cases are treated similarly. a

*

Lemma 4.4.3 (1) If D =, D’ and D = D", then there exists D" such that D' =, D"
and D" =, D".
(2) If D = D' and D = D", then there exists D" such that D' =¢ D" and D" = D"

Proof. (1) By applying Lemma 4.4.2 repeatedly.
(2) By (1), Lemma 4.4.1(2) and (3). O

Suppose that D = € and £ is SN. Let T be the subtree of the reduction tree of D
which consists of all paths containing £. Since £ is SN, the length of each path of T is
finite. Hence, by using Konig’s lemma, there exists the maximum of the lengths of all
paths of Ty. This is denoted by lo(D, ). We remark that in Lemma 4.4.3(2), if D" is
SN and D" = D", then ly(D,D") > lo(D’, D").

Lemma 4.4.4 Suppose that D = D'. If D' is SN, then so is D.

Proof. Suppose that D is not SN. Then there exists an infinite reduction sequence
starting from D as follows:

D(=Dy)=D1=Dy= =Dy, = ---

By Lemma 4.4.3(2), there exists a sequence

*

D'(=Dy) =D =>Dy= - = D)=

where D; = D} for all i € N. By the above remark, there exists no £ € N such that
D, = Dy for all n > k. Therefore we obtain an infinite reduction sequence starting
from D’, which contradicts the fact that D’ is SN. Hence D is SN. O

Lemma 4.4.5 Let D be a proof whose last inference is (RAA) of the form

4]
: Dy
1

A

and let C be an arbitrary E-proof of D. If D is SN and the reduct of C which is obtained
from the proper reduction is valid, then C is also valid (and hence D is valid).
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Proof. Suppose C is of the form

In order to prove that C is valid, it suffices to show that each direct reduct of C is valid.
We show this by induction on {(D) +1(€1) +1(&2). Let C' be an arbitrary direct reduct
of C.

Case 1: C’' is obtained by the proper reduction.
The claim is obvious by the assumption.

Case 2: C’' is obtained by replacing D by its direct reduct D'.

Obviously [(D') < (D). Furthermore let Cy (resp.C}) be the reduct of C (resp.C’) which
is obtained by the proper reduction. Then obviously C; = €] holds. Since C; is valid by
the assumption, C is valid by Lemma 4.3.1. Hence C’ is valid by induction hypothesis.

Case 3: (' is obtained by replacing & or & by its direct reduct.
Similar to Case 2. a

Now, we finally reach the goal.

Proof of Lemma 4.3.12. We only prove (1). (2) is treated similarly. The claim is that
an arbitrary proof C of the form

[A1]  [A9]

D & &

AiVAy, B B
B

is valid, where D is valid and for each ¢ = 1,2, &; satisfies the condition mentioned the
lemma. For this aim, it suffices to show that each direct reduct of C is valid. We show
this by double induction on (I(D) + I(&1) +1(E2), h(D)). Let C' be an arbitrary direct
reduct of C.

Case 1: C’ is obtained by a reduction which is not proper.
The claim is obvious by induction hypothesis.

Case 2: C' is obtained by the proper reduction.

Case 2.1 The last inference of D is (VI).
Easy by the assumption for &;, 1 =1, 2.

Case 2.2 The last inference of D is (VE) or (IE).
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Similar to the proof of Case 2 of Lemma 4.3.8.

Case 2.3 The last inference of D is (RAA).
C is of the form

[=(A1 V Az)]
i Dy A [Ag]
1 & &
A1V Ay B B

B R

Let T be a tree which satisfies the following properties:
1. The root of T is C;

2. For each node T of T, 7' is an immediate successor of T if and only if 7' is an
E-proof of T;

3. If T is a node of T which is neither the root nor the immediate predecessor of a
leaf, then the end-formula of 7 is of the form neither Cy V Cy nor 32:C(z);

4. Each leaf T of T satisfies one of the following conditions:

(a) The end-formula of the immediate predecessor of 7T is of the form Cy VvV Cy
or 3xC(z);

(b) The end-formula of 7 is atomic.
Note that the level of each node of T' is not greater than d(B). Therefore there exists

the maximum N of the levels of all nodes of T'.
Let 7 be an arbitrary node of T. Then 7 is of the form

[=(A1 V Ag)]
: Dy [A1]  [A2]
1 SR
ALV Ay By By
By &l
By bt
By
B gk &k
By,

where By is identical with B. Note that the above expression includes the case where
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k=0,ie., T is C. Now, for i = 1,2, let 7% be a proof of the form

[A;
i
By &
By ot

By & &

By,
and let 7 be a proof of the form
[—(A1 V Ag)]
D, A A
1 cTh T
A1V Ay By, By, ,
B R

where the assumption formulae which are discharged by R’ are the same as the one for
R of C. Then for each i = 1,2, a proof obtained from 7 by substituting an arbitrary
valid proof whose end-formula is A; for open assumptions which are discharged by R’ is
valid (by applying Lemma 4.3.8 repeatedly) and hence SN by Lemma 4.3.2. Therefore
T is SN by the validity of D. Furthermore 7 = T holds. Hence T is SN by Lemma
4.4.4.

Now, for each node T, we define a proof 7° by induction on the level of 7 as follows:

1. If T is the root, i.e., T = C, then T* is (', i.e., a reduct of C obtained by the
proper reduction;

2. If 7 is an immediate successor of 7y of the form

To &F &}
By,

then 7* is the proof obtained from the following proof

w ot o
By,

by the proper reduction.

Note that the last inference of each 7° is (RAA) and hence the clause 2 of the above

definition is meaningful. It is easy to see that 7 = 7. Therefore 7* is SN for each
node 7 since T is SN. In the following, we show that if 7 is a node with the level N —k
which is not a leaf, then 7° is valid by induction on k. In order to prove that 7° is
valid, it suffices to show that each E-proof of 7 is valid since the last inference of 7°
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is (RAA). First, we consider the case where 7 is the immediate predecessor of a leaf.
Let 7* be an arbitrary E-proof of 7°. Then 7* is of the form

T & &
B,
Let 7** be a proof of the form
T & &
B,

Then 7** is a node of T since 7** is an immediate successor of 7. Hence 7** is SN.
Furthermore 7** & T* holds. Therefore 7* is SN, i.e., each E-proof of 7* is SN.
Hence,

e If the end-formula of 7 is of the form C; V Cy or 3xC'(x) then T* is valid by the
definition of validity;

e Otherwise, i.e., if the end-formula of each immediate successor of 7 is atomic,
then each E-proof of 7° is valid by Lemma 4.3.3 and hence T* is valid by the
definition of validity.

Next, we consider the induction step. Let 7* be an arbitrary E-proof of 7. Then
(7*)* is valid by induction hypothesis. Furthermore 7° is SN. Therefore 7 is valid by
Lemma 4.4.5.

Especially, C’ is valid. This completes the proof. O

4.5 A remark on the Church-Rosser property

The Church-Rosser property for = holds, i.e.,

*

Theorem 4.5.1 If D = D' and D = D", then there exists D" such that D' = D"
and D" = D"

By Newman’s Lemma ([20]), it suffices to show the following in order to prove the
Church-Rosser property since we have already established the strong normalization
theorem:

Lemma 4.5.1 If D = D' and D = D", then there exists D" such that D' = D" and

D" :*> D

Note that our reduction steps except the one for (RAA) is the same as the Prawitz’s
ones for the system of the intuitionistic logic in [24], which satisfies the Church-Rosser
property. Hence we may assume that D = D' (or D = D") is the reduction for (RAA).
By this restriction, one can easily verify the lemma by the similar argument of the proof
of Lemma 4.4.2. Therefore we omit the details.
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Chapter 5

Provable well-founded relations
of subsystems of the first-order
arithmetic

To the last chapter, the main topics we have discussed are “cut-elimination theorem”
and “normalization theorem”, which are the most important matters in the proof the-
oretical studies. On the other hand, there exists another main matter in the proof
theory: what is called “consistency problem”. In this chapter, we treat this topic.

What we discuss below is “provable well-founded relations” (which include provable
well-orderings) of subsystems of the first-order arithmetic. “Provable well-orderings” of
the first-order arithmetic (PA) have been studied firstly by Gentzen, and this result was
refined by Takeuti. Furthermore Arai recently extended Takeuti’s result to “provable
well-founded relations”. In this chapter, we discuss Arai’s result for subsystems of PA.
The contents of this chapter are based on [16].

5.1 Introduction

5.1.1 System PA

Through this chapter, we use the system PA for Peano arithmetic which is formalized
in a sequent calculus. In this subsection, we summarize this system.

First, we assume as usual that PA is formalized in a language which includes function
constants for all primitive recursive function. We call this language L.

Next, as initial sequents of PA except of the form A — A (which are called logical
initial sequents), we have the equality axioms and mathematical initial sequents. Math-
ematical initial sequents are the defining equations for all primitive recursive functions
in quantifier-free styles like

—+s+0=s

and
= s+t =(s+1t)
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for 4+, and all sequents — s = ¢, where s and ¢ are closed terms which have same values,
and all sequents s =t —, where s and ¢ are closed terms which have different values.
Finally, we add an inference rule

F(a),T = A, F(a')
F(0),T — A,F(t)

(Ind)

where a is not in F(0), " or A, t is an arbitrary term (which may be contain a). F(a)
is called the induction formula and a is called the eigenvariable of this inference.

Proposition 5.1.1 If A is a closed bounded formula of L then either — A or A — is
PA -provable without an essential cut or induction inference.

Proof. By induction on the complexity of A. O

If — A is provable A is said to be true, otherwise A is said to be false. A sequent
is said to be true if there exists a false formula in the antecedent or there exists a true
formula in the succedent. Otherwise a sequent is said to be false.

5.1.2 History and motivation

In this subsection, we explain history and motivation of the problem treating this chap-
ter. First we define the system PA(e).

Let € be a new predicate constant. L(¢) is the language extending £, formed by
admitting (¢) as an atomic formula for all terms ¢. PA(e) is the system PA in the
language L(g). Hence as mathematical initial sequents we add s = ¢,¢(s) — ¢(¢) for all
terms s and t.

As is well-known (see 1.1.4), Gentzen proved that the transfinite induction up to &
(first e-number) can not be proved in PA ([10]). Takeuti refined this result as follows
(see section 13 of [33]). Let < be a recursive well-ordering. If

Ve(Vy(y < x D e(y)) D e(x)) — e(a)

is provable in PA(g), < is called a provable well-ordering of PA. Takeuti showed that if
< is a provable well-ordering of PA, then there exists a recursive function f such that
a<b<s fla) <* f(b), where <* denotes the standard ordering of type ¢y, and there
exists an ordinal p < £ such that for every a, f(a) <* "pu? (where "i7 denotes the
Godel number of i1). Recently Arai extended the above the case where < is well-founded
relation ([3, Sectionl]).

Now, consider that extending the above results to IX; for each k& € N (which is
a subsystem of PA). Since the proof-theoretical ordinal of IYy is wgi1 (Mints[19]),
we would like to construct f for provable well-founded relation < in I3 such that
a<b< f(a) <* f(b), where <* denotes the standard ordering of type w1, and there
exists an ordinal g < wgyq such that for every a, f(a) <* "u7. However, there exist
two difficulties for this aim. By Gentzen’s method, if < is provable well-ordering, then
there exists an ordinal @ < ¢¢ such that |<|< «. This estimate, however, is a little
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rough. That is to say, while w, < o < wp41 holds for some n in Gentzen’s proof, we
can take o < wy, in Mints’ proof. Takeuti’s refinement is deeply depend on Gentzen’s
proof and hence this is the first difficulty for treating 3.

Secondly, in Takeuti and Arai’s refinements, the above 1 may be greater than |<|.
More precisely, on the construction of f, though |<|< w, for some n, u may be greater
than wy,. Therefore Takeuti and Arai’s methods can not apply directly when we consider
the case where the base system is 3.

We can overcome only the first difficulty. Therefore the result we can obtain is as
follows: If < is a provable well-founded relation of I¥j, then there exists primitive
recursive function f such that a < b < f(a) <* f(b), where <* denotes the standard
ordering of type wgi2, and there exists an ordinal yu < wgyo such that for every a,

fla) <= Tpn.

5.2 Provable well-founded relations

We define X;- and II;-formulae as follows:
1. Yg-formulae=IIj-formulae=bounded formulae,
2. Yjy1-formulae have the form 3z A where A is [I;-formula,
3. Iy q-formulae have the form Vx A where A is ¥;-formula.

1Y is obtained from PA by restricting induction formulae to ¥j-formulae. We define
I3 (e) as similar to PA(e).

Remark. According to the extension of the language, ¥; and Il are extended.
n denotes the n-th numeral. The following proposition is well-known.

Proposition 5.2.1 The following sequents are (IX(g))-provable without cut or induc-
tion inference:

Va(z <n D A(z)) » AQ) AAI) A... AA(R),
AOYANAD) A ... ANA(R) = Va(x < D A(x)),
Az <A Ax)) = A0) VAT V...V A"

Proof. cf. e.g. [11, p.55] O

Let < be a binary primitive recursive relation of the natural numbers which is well-
founded. We use the same symbol < in order to denote the formula expressing the
relation <. If the sequent

Ve(Vy(y < x D e(y)) D e(x)) — e(a)

is provable in X, then < is said to be provable well-founded in 13.
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In the following we assume the standard Godel numbering of the ordinal less than
wgr9. For ordinal o < wgy9, " denotes the Godel number of . <* denotes the order
relation of the natural numbers such that a« < 8 & T <* T4

Then our theorem is the following:

Theorem 5.2.2 Let < is an irreflezive and transitive relation of natural numbers which
is provable well-founded in IY. Then there exists a primitive recursive function f such
that a < b if and only if f(a) <* f(b) and there exists an ordinal p < wkyo such that
fla) <*Tpu? for all a € N.

The proof of this theorem will be carried out in Section 5.4.

5.3 TJ-proofs

In this section, we define the notion of TJ-proofs. In the following we fix £ € N. We
use the terminology in [33].

From now on, let < be a fixed irreflexive and transitive relation of natural numbers
which is provable well-founded in 3.

TJ-proofs are defined as I3 (¢)-proofs with some following modifications:

1. The initial sequents of a TJ-proof are those of I3 (e) and the TJ-initial sequents
of the following form:
Ve(z <t De(z)) — e(t)

for arbitrary terms t.

2. The end-sequent of a TJ-proof must be of the form

— e(n1),e(n2),...,e(n,)
or
e(my),e(me),...,e(my) — (M), e(R2), ..., (),
where mq,ms9,...,my, N1, N9, ...,N, are numerals such that
{my,mg,...,my} N{ny,ng,...,n.} = 0.

If S is an end-sequent of a TJ-proof then § is said to be TJ-provable.

Let A, B be formulae in a TJ-proof. A is called a direct descendant of B if A is a
descendant of B and A is identical with B. A formula A in a TJ-proof is said to be free
if A is neither a direct descendant of any induction formula nor a direct descendant of
a formula which is in mathematical initial sequents or TJ-initial sequents.

A cut is said to be free if both cut formulae are free. Then the following holds as in
(33, p.116]:

Lemma 5.3.1 If a sequent is TJ-provable then it is TJ-provable without free cut.
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The proof is the same as the cut-elimination proof for LK, then we omit it.
By the above lemma all the cut formulae occurring a TJ-proof without free cut are
Yk or bounded formulae (include atomic formulae).

Now we define the ordinal assignment for TJ-proofs as similar to the case for PA
explained in [33, p.116-117] (where PAj is, roughly speaking, obtained from PA by
restricting induction formulae to those which have at most k quantifiers).

We must modify some notions. The grade of a formula A is defined by the number
of unbounded quantifiers in A minus 1. According to this we modify the grade of a cut
and an induction inference and hence the height of a sequent in a proof is also modified.
The end-piece and boundary inferences are modified as a boundary inference introduces
an unbounded quantifier.

We add some extra inference rules as follows:

1. term-replacement for e:

Fl,é‘(s),FQ - A F—)Al,é‘(s),Ag
Fl,e(t),F2—>A, F—>A1,8(t),A2,
where s and t are closed terms which have same values.
2.
(vn) [ — A, A(0) L — AJA(L) ..., I — A, A(n)
’ ' = AVe(x <7D A(z)) ’
(3n) A(0), T - A AL, =A ... A(n),I = A

dz(z <nAA(x)),I - A
for each n € N.
It is easy to see that these rules are redundant in the original system (for (Vn) and
(3n), use Proposition 5.2.1).

The ordinal assigned to a sequent S in a TJ-proof P is denoted by o(S; P) or o(S5).
For given P we define o(S; P) as follows:

1. If S is an initial sequent in P except a TJ-initial sequent, then o(S; P) = 0,
2. If S is a TJ-initial sequent in P, then o(S; P) = 2,

3. If S is the lower sequent of a weak inference or term-replacement for ¢ or a
propositional inference which has one upper sequent or an inference introducing
bounded quantifier, then o(S; P) = o(S’; P), where S’ is the upper sequent,

4. If S is the lower sequent of an inference introducing unbounded quantifier, then
o(S; P) = o(S"; P) +w,

5. If S is the lower sequent of a propositional inference which has two upper se-
quents or cut whose cut formula contains no unbounded quantifier, then o(S; P) =
max{o(S1; P),0(S2; P)}, where S; and S, are the upper sequents,
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6. If S is the lower sequent of (Vn) or (In), then o(S; P) = max{o(Si; P),...,0(Sn; P)},
where S1,...,.5, are the upper sequents,

7. Otherwise o(S; P) is defined precisely as [33, Definition 12.6].

The ordinal of a TJ-proof P, denoted by o(P), is defined by the ordinal of its end-
sequent. Then it is easy to see that the ordinal of a TJ-proof without free cut is less
than wgy;.

Let P be a TJ-proof and T' — £(711),£(72), . ..,(7i,) be the end-sequent of P. P is
said to be proper if there exists k € N such that k£ < n; for all i € {1,2,...,r}.

Now we define a reduction procedure for proper TJ-proofs as a consistency proof for
PA(cf.[33, p.105-114]).

Stepl. Elimination of free variables which are not used as eigenvariables is carried out
as in [33]. But the end-piece may contain an inference introducing a bounded quantifier
as follows (we consider the case of V):

F—>A,a.§t3A(a)
I' 5 A Ve(z <t D A(z))

Let n be the value of t. Suppose m < n. We define the proof Q(m) as follows:
—m<t A(m)— A(m)

I Am<tdAm) m<t>Adm)— A(m)
' — A A(m)

By Lemma 9.6 in [33], Vz(x <7 D A(z)) — Vaz(x <t D A(z)) is provable (with ordinal
0). Then consider the following proof:

Q(0) Q(1) Q(n)
r— A:, A0) T — A:, A1) ... T — A:,A(ﬁ) :
T - AVz(z <n D A(z)) Va(z <7D A(z)) — Va(z < t O Ax))

I' = A Vz(x <t D A(z))

By this transformation free variable « is eliminated in the end-piece. It is easy to
see that the ordinal does not change by this transformation. The case of 3 is similar.
Therefore we can eliminate all free variables which are not used as eigenvariables in the
end-piece.

Step2. Suppose that the end-piece contains at least one induction inference. In this
case the reduction is carried out as in [33] and the ordinal decreases.
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Then we may assume that the end-piece contains no induction inference.

Step3. Before eliminating logical initial sequents from the end-piece, we have to elim-
inate initial sequents of the form s = #,e(s) — &(¢). This is done as same as [10].
After this one can eliminate logical initial sequents only those which have unbounded
quantifiers.

Step4. Eliminating weakening in the end-piece is carried out as in [33]. But after this
reduction the end-sequent may be changed because the end-sequent of a TJ-proof is
not empty. In this case we add weakenings below the end-sequent of the new proof so
that the end-sequent becomes the same as the old one.

Step5. Suppose that there exists a suitable cut in the end-piece. If the grade of the
suitable cut is greater than 0, then the essential reduction is carried out precisely as in
[33]. Now we consider the case where the grade of the suitable cut is 0. (We call this
case essential reduction of grade 0.) Consider the proof as follows:

' 5 AL A(e)  A®),IT — A’
I'"— A" VeA(z) VzeA(z), I — A

r'— A,.VwA(x) VxA(w); II—A
III—= AA

d U

where ® — WU is the end-sequent. Since the grade of VzA(x) is 0, A(¢) is a bounded
formula. Furthermore since there exists no free variable in the end-piece, we may assume
that A(t) is a closed formula. By using Proposition 5.2.1, there exists a quantifier-free
formula A*(t) such that A*(t) = A(t) (A = B is abbreviation for A D BA B D
A). Let e(s1),e(s2),...,e(sp) be all the formulae of the form e(s) which occur in
A*(t). Let mqy,ma,...,my, be the value of s1,s9,...,s, respectively and we set X =
{mi,ma,...,my}. We define a set A C N by

A={m e N |e(m) occurs in U}.
Suppose
XNA= {mil,miz,...,mij},
X\A = {mijJrl,mZ'jJrz,...,min}.

Then it is easy to see that either ® — W' A(t) or A(t), ®" — U’ is (IXk(g)-)provable
without cut or induction inference (and hence with ordinal 0), where @ denotes
e(mi, ), (M), ..., e(mm;;) and ¥’ denotes (my;,, ), e(Mi;,, ), e(M4,). We consider
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the case where ® — W' A(t) is provable. Consider the proof:

O — U A()  A(t),TT — A
&I — 0, N
(some exchanges and a weakening)
VzA(z),IT, & — O, A’

I'— A,‘VmA(a:) VrA(x), I, — ' A
[ILD — A, 0, A
(some exchanges)
T,IL3 — O, A A

3,0 VU
(some exchanges and contractions)
3,0 50

Then it is easy to see that the ordinal decreases. Note that the succedent of the end-
sequent does not change. The case where A(t),®" — U’ is provable can be treated
similarly.

The case where there exists no suitable cut in the end-piece will be treated later as
“critical reduction”.

A proper TJ-proof P is said to be non-critical if one of the following conditions are
satisfied:

1. Step2 can be applied to P after Stepl,
2. Step5 can be applied to P after Stepl, 3 and 4.

Otherwise it is said to be semi-critical.

By the above definition of the reduction procedure, if P is a non-critical TJ-proof,
then there exists another TJ-proof P’ such that the succedent of the end-sequent of P’
is as same as that of P and o(P') < o(P).

P’ is called the non-critical reduct of P.

Now we consider semi-critical TJ-proofs.

Let P be a semi-critical TJ-proof. Then we apply Stepl, 3 and 4 above to P if
necessary, we can obtain another (semi-critical) TJ-proof with same end-sequent of P
such that o(P') < o(P) which satisfies the following conditions:

1. There exists no free variable in the end-piece,
2. There exists no induction inference in the end-piece,

3. There exists no initial sequent of the form s = t,e(s) — £(¢) in the end-piece,
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4. There exists no logical initial sequent which have unbounded quantifiers in the
end-piece,

5. There exists no suitable cut in the end-piece,

6. If there exists a weakening [ in the end-piece, then any inference below [ is a
weakening.

A semi-critical TJ-proof which satisfies the above conditions is said to be critical.

Let A be a closed bounded formula and B(a) be a formula which contains no free
variable except a. Then A({z}B(z)) denotes the formula obtained from A by replacing
all (t) in A by B(t) (if A is a L-formula then A({z}B(z)) is A itself).

Lemma 5.3.2 Let P be a critical TJ-proof. Then P contains at least one boundary
inference or TJ-initial sequent.

Proof. Suppose P contains neither boundary inference nor TJ-initial sequent. Then
P coincides its own end-piece. Hence all initial sequents in P is mathematical initial
sequents or logical initial sequent A — A where A is a closed bounded formula. We
choose arbitrary m € N such that e(/m) appears the antecedent of the end-sequent of
P(If the antecedent is empty, we take arbitrary m such that e(m) does not appear in
the succedent of the end-sequent). If each formula A in P is replaced by A({z}(z = m))
then obviously all initial sequents in P is true. But the end-sequent is false. This is
impossible. a

The formula in the succedent of a TJ-initial sequent is called the principal formula of
the TJ-initial sequent. A formula A in the end-piece of a TJ-proof is called a principal
TJ-descendant if A is a descendant of the principal formula of a TJ-initial sequent in
the end-piece. Similarly a formula A in the end-piece of a TJ-proof is called a principal
descendant if A is a descendant of a principal formula at the boundary.

Lemma 5.3.3 Let P be a critical TJ-proof and let S be a sequent in the end-piece
of P. If S contains a formula with unbounded quantifiers then there exists a formula
A in S or in a sequent above S such that A is a principal descendant or a principal
TJ-descendant.

Proof. As similar to [33, p.151,13.10]. O

If s,t are closed terms which have same values, then £(s) is said to be equivalent to

e(t).

Now we will show the following lemma as similar to [33, p.151,13.11].

Lemma 5.3.4 Let P be a critical TJ-proof. Then the succedent of the end-sequent of P
contains a formula which is equivalent to the principal formula of one of the TJ-initial
sequents in the end-piece.

In order to prove this, we show the following first:
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Lemma 5.3.5 Let P be a critical TJ-proof. If there exist no logical inference in the
end-piece of P, then the end-sequent of P contains a principal TJ-descendant.

Remark. Obviously a principal TJ-descendant appears the succedent of the end-
sequent.

Proof. (cf.[33, p.151,13.11]) For short, ’a sequent is (*)’ means that a sequent contains
a principal descendant or a principal TJ-descendant. In order to prove the assertion, it
suffices to show that the end-sequent of P is (x). Suppose the end-sequent of P is not
(x). Since the end-piece of P contains a sequent which is (*), there exists an inference
such that at least one of its upper sequents is (x) while its lower sequent is not (x) (this
property is denoted by (P)). Such inference must be a cut. Let I be an uppermost cut
with (P) in the end-piece of P as follows:

r—-AA ATl — A
I — AA '

Let Sy and S be I' -+ A, A and A, II — A respectively.
Claim 1 S) is not (x).

Proof. Suppose that S; is (x). Then A is a principal descendant or a principal TJ-
descendant. Suppose that A is a principal descendant. Then S5 contains an unbounded
quantifier. Hence Sy or a sequent above Sy is (%) by Lemma 5.3.3. If Sy is not (x),
then contradicts with the choice of I. Therefore Sy is (). Hence I is a suitable cut,
which contradicts with the assumption that P is critical. Therefore A is a principal
TJ-descendant. By the assumption, A is of the form £().

Claim 2 S5 contains no unbounded quantifier.

Proof. Suppose that S5 contains an unbounded quantifier. Then S5 or a sequent above
Sy is (%) by Lemma 5.3.3. If S is not (x), this contradicts with the choice of I. Hence
Sy is (x). Then the lower sequent of [ is also (), which contradicts with the assumption
of I has (P). (end of Claim 2)

Proof of Claim 1 (continued).

By Claim 2 Sy is not (*). By the choice of I, we obtain that each sequent above S
is not (x), i.e., the proof down to S is included in the end-piece. Hence Sy can not
contain €. This contradicts with A is of the form &(¢). Therefore Sy is not (). (end of
Claim 1)

Claim 3 Sy is not (x).

Proof. Suppose that Sy is (x). Obviously A in Sy can not be a principal TJ-descendant.
Hence A is a principal descendant and therefore S7 contains an unbounded quantifier.
By Lemma 5.3.3, S; or a sequent above S is (x). If Sy is not (%), this contradicts with
the choice of I. Hence S is (). Therefore I is a suitable cut, which contradicts with
the assumption that P is critical. (end of Claim 3)

90



Proof of Lemma 5.3.5 (continued).
By Claim 1 and 3 we have a contradiction. Therefore the end-sequent of P is (). O

Proof of Lemma 5.3.4. If there exists no logical inference, then the assertion holds by
Lemma 5.3.5.

Now we consider the case where the end-piece of a critical TJ-proof contain logical
inferences. Of course these inferences are not the one which introduce unbounded
quantifiers. Since these inferences must be implicit, there exist free cuts in the end-
piece. First we have to eliminate these free cuts. It is easy to see that in each free-
cut-elimination procedure, new TJ-initial sequents, induction inferences, free variables
and suitable cuts do not appear in the end-piece. Let P’ be the TJ-proof obtained
from P by this free-cut-elimination. Then we can apply the elimination of logical initial
sequents and weakenings in the end-piece as the reduction procedure for proper TJ-
proofs defined before (in this case, we can eliminate all logical initial sequents). Let P”
be the TJ-proof obtained from P’ in this way. Then we can apply Lemma 5.3.5 to P”
and hence the end-sequent of P” contains a principal TJ-descendant. If this principal
TJ-descendant is a descendant of a principal formula of a TJ-initial sequent S, then §
is also contained P. This completes the proof. a

Now we define the notion of critical reduction.

Let P be a semi-critical TJ-proof whose end-sequent is I' — &(7i1), £(7i2), . . ., &(fiy)
and let ng be a number such that ng < n; for all i € {1,2,...,r}. Then there exists a
critical TJ-proof P’ with same end-sequent of P such that o(P’) < o(P). By Lemma
5.3.4 for some j € {1,2,...,r} the formula £(n;) in the end-sequent is equivalent to the
principal formula of a TJ-initial sequent Va(z <t D e(x)) — &(t), where ¢ and n; have
the same value. Hence — 7y < t is an initial sequent. Then we replace the TJ-initial
sequent

Ve(z <t De(z)) — e(t)

in P by the following proof:
—ng <t E(ﬁg) — E(ﬁo)
ng <t>D 8(7_10) — 8(7_10)
Va(x <t De(x)) — e(fg)
Ve(rz <t De(x)) — e(ng),e(t)

Since the ordinal of this proofis 1, it is less than the ordinal of a T'J-initial sequent which

is 2. By this transformation and some obvious change, P’ is transformed into a TJ-proof

P" whose end-sequent is I' — £(ng),e(n1),£(n2), . .., e(n,) such that o(P") < o(P").
P" is called the critical reduct of P at ng. Obviously o(P") < o(P).

5.4 Proof of the theorem

In this section, we prove Theorem 5.2.2. First we will show the following lemma.
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Lemma 5.4.1 Let < is an irreflexive and transitive relation of natural numbers which
s provable well-founded in IX. Then there exist an ordinal o < wiyo and a primitive
recursive function h such that for each k, h(k) is (the Gddel number of ) an additive
principal number, i.e., of the form w® for some B and h(k) <* "a™ for all k € N and

Vk(VYn < k(k < n = h(k) <* h(n))).

Proof. Since < is provable well-founded, there exists an 1% (g)-proof of
Ve(Vy(y <z D e(y)) D e(x)) — £(a).

Consider the following TJ-proof:

Vy(y < b D e(y)) = £(b)
— Vy(y <bDe(y)) De(b) :
= Ve(Vy(ly <z De(y)) De(z)) Vae(Vy(y <z Dey)) De(x)) — £(a)
— £(a)

Let P(a) be a TJ-proof obtained from the above by eliminating free cuts. Then for

each k € N, P(k) denotes a TJ-proof of — £(k) obtained from P(a) by substituting
the numeral k for the variable a.

Now we define a TJ-proof Py and a primitive recursive function (k) for all k € N
by induction on k satisfying the following conditions:

1. For alln € N, if £(f1) occurs in the succedent of the end-sequent of Py, then k < n,
2. Vnn <k &k =<n=o0(P)+ k) <ol(P,)+ p(n)).

For TJ-proof P, F(P) denotes the number of formulae which occur in the antecedent
of the end-sequent of P.

Case 1: =3dn < k(k <n).
In this case, we set P, = P(k) and ¢(k) = 0. Obviously the above two conditions hold.

Case 2: In < k(k <n).
There exists ng € N such that ng < k & k < ng and

Vn < k(k <n = o(P,,) + p(no) < o(Py) + p(n)).

Subcase 1: P, is non-critical.

Then Py is defined to be the non-critical reduct of P,,. Obviously, condition 1 is
satisfied. When we obtain Py from F,,, if Step 5 is the essential reduction of grade 0,
then we define (k) = F(Pg). In this case, for all m € N,

o(Pg) +m < o(Py,)

holds. (Recall the definition of o(S; P),4.) Hence o(Py) + F(Px) < o(Py,) + ¢(ng) and
condition 2 holds. Otherwise, we define (k) = p(no).
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Subcase 2: P, is semi-critical.
(1)If e(k) does not occur in the antecedent of the end-sequent of Py, .
Then Py is defined to be the critical reduct of P,, at k and (k) = ¢(no).
(2)If e(k) occurs in the antecedent of the end-sequent of P, .
Then Py is equal to P,, and ¢(k) = ¢(ng) — 1. (Note that in this case p(ng) > 0.)
It is easy to see that the above two conditions are satisfied.
Hence h(k) = "w?P)+2(k)7 is o function as required. Finally, we set v = w?(

Then obviously o < wgy92 and h(k) <* "o for all k£ € N. O

P(a))+w

Proof of Theorem 5.2.2. We define f by
f(n) = niaix{h(no)#---#h(nr) |ng <+ <n,=n&mng,...,n,_1 <n},
where nia;x denotes the maximum with respect to <*. Since < is irreflexive, the set

{(no,...,ny) [np <---<n,=né&nyp,...,nr—1 <n}

is finite and hence the above definition of f is well-defined. This function f is primitive
recursive. Then the claim

n<k= f(n)<* f(k)

is proved as same as in [3, p.102]. The second point of the theorem is easily seen if one
puts p = wo(P@)tw, a
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Chapter 6

Conclusions and further studies

In this chapter, we summarize conclusions of this thesis and survey briefly further
studies.

In Chapter 2, we have introduced sequent calculi LBP for Basic Propositional Logic
(BPL) and LFP for Formal Propositional Logic (FPL), and have proved the cut-
elimination theorems for these by syntactical method. These sequent calculi satisfy the
subformula property and hence we can expect many application of the cut-elimination
theorem. Typical ones among them are, for example, interpolation property, variable
sharing property and variable separation property (For details of these properties, see
[21] and [33]). Recently, by Ardeshir and Ruitenburg, some investigations for BPL are
published ([5][6]). However, there is almost no study for FPL till now. Therefore, es-
pecially for investigation of FPL, our sequent calculi will be expected to be very useful.

In Chapter 4, we have introduced another reduction procedure for the natural de-
duction system for the classical logic NK and have proved the strong normalization
theorem and the Church-Rosser property with respect to this new reduction procedure.
As thinkable directions of further studies of this problem, there are two directions.

One of them is applications to other systems of our technique to prove strong normal-
ization theorem. For example, an application to second-order classical natural deduction
system can be considered. In [22], Parigot present two proofs of strong normalization
theorem for second order classical natural deduction. However, the methods he uses
are considering Ap-calculus by virtue of “Curry-Howard isomorphism” and hence his
system does not have full logical symbols. In the author’s opinion, it is difficult to treat
the system with symbols V and 3 by using term-systems. Therefore, it is an interest-
ing problem to consider whether the technique we use in this thesis can be applied to
second-order classical natural deduction system or not.

Second one is simplification of proof in this thesis. The proof we gave in Chapter
4 is very complicated. Especially, proof of Lemma 4.3.12 is quite long and may be
boring. The reason of this complication may be in the definition of validity. The
definition of validity given in Chapter 4 is not so simple, but Prawitz’s one which is
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used in proof of strong normalization theorem for NJ in [24] is more complicated than
ours in the case where the last inference of a proof is (V E) or (3 E). However, by
this complicated definition, Prawitz’s proof is not so complicated. On the other hand,
because of simplicity of the definition of validity, our proof need to numerous syntactical
argument. Therefore, when one simplifies the proof, one must think of another definition
of validity.

In Chapter 5, we have discussed provable well-founded relations of subsystems of the
first-order arithmetic and have obtained the following partial result: If < is a provable
well-founded relation of I, then there exists primitive recursive function f such that
a<b< f(a) <* f(b), where <* denotes the standard ordering of type wyy9, and there
exists an ordinal p < w9 such that for every a, f(a) <* "u™.

As further studies beyond this, we must overcome second difficulty mentioned in the
introduction of Chapter 5. As one can understand by reviewing proof of Theorem 5.2.2,
the fact that h(k) in Lemma 5.4.1 is an additive principal number is essential. Therefore
one have to take h(k) = "woFR)T#(*)7 and this causes that on the construction of f,
though |<|< w,, for some n, y may be > wy,. In order to overcome this difficulty, there
may be two directions. One of them is that we change the ordinal assignment such
that o(Pg) becomes an additive principal number and the other is that we change the
definition of f in proof of Theorem 5.2.2. Though we do not succeed in either case, this
directions, in the author’s opinion, are hopeful.
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