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PAPER Special Section on Theory of Concurrent Systems and its Applications

MLD-Based Modeling of Hybrid Systems with Parameter
Uncertainty

Koichi KOBAYASHI†a) and Kunihiko HIRAISHI†, Members

SUMMARY In this paper, we propose a new modeling method to ex-
press discrete-time hybrid systems with parameter uncertainty as a mixed
logical dynamical (MLD) model. In analysis and control of hybrid systems,
there are problem formulations in which convex polyhedra are computed,
but for high-dimensional systems, it is difficult to solve these problems
within a practical computation time. The key idea of this paper is to use an
interval method, which is one of the classical methods in verified numerical
computation, and to regard an interval as an over-approximation of a con-
vex polyhedron. By using the obtained MLD model, analysis and synthesis
of robust control systems are formulated.
key words: MLD model, interval method, parameter uncertainty, hybrid
systems

1. Introduction

In many cases of analysis and control of hybrid systems, one
of the technical difficulties is that the computation times to
solve the analysis/control problems become too long. For
example, in some of the verification problems and the con-
trollability problems of hybrid systems, it is necessary to
manipulate convex polyhedra [3]–[5]. However, computing
convex polyhedra is difficult for high-dimensional systems,
and it will be desirable from the practical viewpoint to com-
pute an approximation of convex polyhedra. Furthermore,
as well as linear systems and nonlinear systems, it is impor-
tant to consider hybrid systems with parameter uncertainty.
For example, mechanical systems with friction phenomena
are well-known as one of the typical examples in hybrid sys-
tems, because it is in general difficult to precisely identify
friction phenomena. Although analysis/control of uncertain
hybrid systems have been developed (e.g., see [13]), these
results are complicated, and it will be desirable to consider
a simpler approach.

On the other hand, an interval method [9] is well-
known as one of the classical techniques in verified numeri-
cal computation, and is based on interval arithmetic. Using
the interval method, a convex polyhedron is approximated as
an interval (a box), that is, an over-approximation of a con-
vex polyhedron is obtained. Obviously the approximation
using the interval method will be conservative, but the com-
putation of intervals is relatively easier than that of convex
polyhedra. In applications of the interval method to control
theory and theoretical computer science, the trajectory gen-
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eration problem [12] and the reachability problem [10], [11]
have been considered. However, the control problem has not
been discussed so far.

In this paper, we propose a new modeling method to
express hybrid systems with parameter uncertainty by using
the interval method. More precisely, discrete-time piecewise
affine systems with parameter uncertainty are approximately
expressed as a mixed logical dynamical (MLD) model [6],
which is one of the powerful models of hybrid systems.
Mathematical techniques used in the proposed method are
only basics of interval arithmetic and techniques [6], [8] in
the MLD framework. Furthermore, by using the obtained
MLD model, the analysis/control problems, e.g., the robust
control synthesis satisfying state/input constraints, can be
considered. Finally the contribution of this paper are sum-
marized as follows: (i) modeling of hybrid systems with pa-
rameter uncertainty based on the interval method and the
MLD framework, (ii) analysis and synthesis of robust con-
trol systems based on the obtained model.

This paper is organized as follows. In Sect. 2, some ba-
sics of interval arithmetic are explained. In Sect. 3, discrete-
time linear systems with parameter uncertainty are approxi-
mately transformed into the MLD model. In Sect. 4, the re-
sult on linear systems is extend to piecewise affine systems.
In Sect. 5, some analysis/control problems are formulated
by using the obtained model. In Sect. 6, numerical exam-
ples are shown. In Sect. 7, we conclude this paper.

Notation: Let R denote the set of real numbers. Let
{0, 1}m×n denote the set of m × n matrices, which consists
of elements 0 and 1. Let In, 0m×n and en denote the n × n
identity matrix, the m × n zero matrix and the n × 1 vec-
tor whose elements are all one, respectively. For simplic-
ity of notation, we sometimes use the symbol 0 instead of
0m×n, and the symbol I instead of In. Let the matrix inequal-
ity X ≤ Y denote that Xi j − Yi j is nonpositive, where Xi j,
Yi j is the (i, j)-th element of X, Y , respectively. For a vec-
tor x, let x(i) denote the i-th element of x. For n vectors
x1, x2, . . . , xn, let max(min)(x1, x2, . . . , xn) denote a vector
such that i-th element is given by a maximum(minimum)
value of x(i)

1 , x
(i)
2 , . . . , x

(i)
n . For a matrix/vector M, let the ma-

trix/vector |M| denote a matrix such that each element is
given by an absolute value of each element of M. For a
vector a = [ a(1) · · · a(n) ]T ∈ Rn, we use the notation

diag(a) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a(1) 0

. . .

0 a(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .
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2. Interval Arithmetic

In this section, some basics of interval arithmetic are ex-
plained. See [9] for further details.

First, an interval is defined as the following bounded
set of real numbers

[x, x] := {x ∈ R | x ≤ x ≤ x}
where x ≤ x ∈ R holds, and x, x are the infimum and the
supremum of the interval, respectively. For simplicity of
notation, we may denote [x, x] as [x].

Suppose that two intervals [x] and [y] are given. Then
four operations, addition +, multiplication ×, subtraction −,
and division ÷ of [x] and [y] are given as follows:

[x] +
[
y
]
= [x + y, x + y], (1)

[x] − [y] = [x − y, x − y],
[x] × [y] = [min{xy, xy, xy, xy},

max{xy, xy, xy, xy}
]
, (2)

[x] ÷ [y] = [x] ×
⎡⎢⎢⎢⎢⎢⎣1y ,

1
y

⎤⎥⎥⎥⎥⎥⎦ , 0 � [y].

Next, an interval is extended to an interval matrix (vec-
tor). An interval matrix is defined as

[X] = [X, X] := {X ∈ Rm×n | X ≤ X ≤ X}
where X, X ∈ Rm×n. Also, the center c([X]) and the radius
r([X]) of an interval matrix [X] are defined as

c([X]) := (X + X)/2, r([X]) := (X − X)/2,

respectively. From the definitions of c([X]) and r([X]),

[X, X] = [c([X]) − r([X]), c([X]) + r([X])]

holds. Then we introduce the result on a multiplication of
two interval matrices [X] and [Y] [9].

Lemma 1: Suppose that interval matrices [X] and [Y] are
given. Then the following condition holds:

[X] × [Y] = [c([X]) − r([X]), c([X]) + r([X])]

×[c([Y]) − r([Y]), c([Y]) + r([Y])]

⊆ [c([X])c([Y]) − r([X])|c([Y])|
−|c([X])|r([Y]) − r([X])r([Y]),

c([X])c([Y]) + r([X])|c([Y])|
+|c([X])|r([Y]) + r([X])r([Y])]. (3)

Note here that in Lemma 1, if [X] or [Y] is given as
some point (r([X]) = 0 or r([Y]) = 0), then the equality
in (3) holds. Furthermore, (3) is an over-approximation of
[X]× [Y], but the size of the obtained over-approximation is
less than about 1.5 times of the accurate interval [9].

Hereafter, using interval arithmetic, we consider to ex-
press discrete-time linear systems with parameter uncer-
tainty as a mixed logical dynamical (MLD) model, which
consists of linear state equation and inequality with bi-
nary variables and continuous variables [6]. Then one of
the technical problems is how to express the multiplica-
tion (2) by using the MLD model. As a simple exam-
ple, for the scalar linear system x(k + 1) = αx(k), α ∈
[α, α], x(k) ∈ [x(k), x(k)], consider to express the interval
[x(k + 1), x(k + 1)] of x(k + 1) as a linear form with binary
variables and continuous variables. First, binary variables
δ12(k), δ13(k), δ14(k), δ23(k), δ24(k), δ34(k) are defined as

[δ12(k) = 1]↔
[
αx(k) ≥ αx(k)

]
,

[δ13(k) = 1]↔
[
αx(k) ≥ αx(k)

]
,

[δ14(k) = 1]↔
[
αx(k) ≥ αx(k)

]
,

[δ23(k) = 1]↔
[
αx(k) ≥ αx(k)

]
,

[δ24(k) = 1]↔
[
αx(k) ≥ αx(k)

]
,

[δ34(k) = 1]↔
[
αx(k) ≥ αx(k)

]
where “↔” denotes logical equivalence. Next, binary vari-
ables δ1(k), δ2(k), δ3(k), δ4(k) are defined as

δ1(k) = (1 − δ12(k))(1 − δ13(k))(1 − δ14(k)),

δ2(k) = δ12(k)(1 − δ23(k))(1 − δ24(k)),

δ3(k) = δ13(k)δ23(k)(1 − δ34(k)),

δ4(k) = δ14(k)δ24(k)δ34(k).

In a similar way, binary variables δ1, δ2, δ3, δ4 are defined as

δ1(k) = δ12(k)δ13(k)δ14(k),

δ2(k) = (1 − δ12(k))δ23(k)δ24(k),

δ3(k) = (1 − δ13(k))(1 − δ23(k))δ34(k),

δ4(k) = (1 − δ14(k))(1 − δ24(k))(1 − δ34(k)).

Thus we obtain

x(k + 1) = min(αx(k), αx(k), αx(k), αx(k)) = α̂z(k),

x(k + 1) = max(αx(k), αx(k), αx(k), αx(k)) = α̂z(k)

where α̂ = [ α α α α ],

z(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
δ1(k)x(k)
δ2(k)x(k)
δ3(k)x(k)
δ4(k)x(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , z(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1(k)x(k)
δ2(k)x(k)
δ3(k)x(k)
δ4(k)x(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By using the techniques described in [6], [8] (see also
Lemma 4 and Lemma 5 in Appendix), the above condi-
tions can be transformed into the MLD model with 14 bi-
nary variables and 8 continuous variables. However, even if
a given system is simple such as scalar systems, the obtained
MLD model is complicated. Therefore in this paper, by us-
ing Lemma 1, discrete-time linear systems with parameter
uncertainty is approximately expressed as the MLD model.
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In Sect. 3, this fact will be shown. After that, in Sect. 4,
we will extend discrete-time linear systems to discrete-time
piecewise affine (DT-PWA) systems.

3. Modeling of Discrete-Time Linear Systems with Pa-
rameter Uncertainty

In this section, based on Lemma 1, we consider to express
discrete-time linear systems with parameter uncertainty as
the MLD model.

Consider the following discrete-time linear system
with parameter uncertainty

x(k + 1) = Ax(k) + Bu(k) + a, (4)

A ∈
[
A, A
]
, B ∈

[
B, B
]
, a ∈

[
a, a
]

where x(k) ∈ X ⊆ Rn, u(k) ∈ U ⊆ Rm, X, U are
closed and bounded convex sets, and a is an affine term.
In this paper, a set of initial states is given as an interval,
i.e., x(0) ∈ [x(0), x(0)] = [x0, x0], x0, x0 ∈ X. Further-
more, for simplicity of notation, we denote c([x(k), x(k)])
and r([x(k), x(k)]) as xc(k) and xr(k), respectively. Then the
center xc(k) and the radius xr(k) of [x(k), x(k)] are given by[

xc(k)
xr(k)

]
= Φx̂(k), (5)

Φ :=
1
2

[
In In

−In In

]
, x̂(k) :=

[
x(k)
x(k)

]

respectively. Similarly, the center Ac and the radius Ar of
[A, A], and the center Bc and the radius Br of [B, B] are given
by

Ac = (A + A)/2, Ar = (A − A)/2,

Bc = (B + B)/2, Br = (B − B)/2,

respectively.
Next, consider to compute a set of states at each time.

Although a set of initial states is given as an interval, a set
of states at each time is in general given as a convex polyhe-
dron. However, for high-dimensional systems, computing
a convex polyhedron is difficult. In this paper, instead of
a convex polyhedron, the interval of the state [x(k), x(k)],
x(k), x(k) ∈ X is computed as an over-approximation of
a convex polyhedron. Then by using Lemma 1, we can
approximately compute the interval [x(k + 1), x(k + 1)] of
the state at time k + 1 for a given state interval at time k,
[x(k), x(k)]. The result is shown by the following lemma.

Lemma 2: Suppose that the system (4) is given. Then the
interval [x(k + 1), x(k + 1)] of the state at time k + 1 is ap-
proximately derived by

[x(k + 1), x(k + 1)]

= [Ac − Ar, Ac + Ar][xc(k) − xr(k), xc(k) + xr(k)]

+ [Bc − Br, Bc + Br]u(k) + [a, a]

⊆ [Acxc(k) − Ar |xc(k)| − |Ac|xr(k) − Ar xr(k)

+ Bcu(k) − Br|u(k)| + a,

Acxc(k) + Ar |xc(k)| + |Ac|xr(k) + Ar xr(k)

+ Bcu(k) + Br|u(k)| + a]

=: [x′(k + 1), x′(k + 1)]. (6)

Proof : From Lemma 1 and (1), we can obtain Lemma 2
straightforwardly. �

In this paper, we use [x′(k + 1), x′(k + 1)] of (6) as an
approximate interval of [x(k+ 1), x(k+ 1)], and consider the
relation between [x′(k), x′(k)] and [x′(k + 1), x′(k + 1)] for a
given [x(0), x(0)]. For simplicity of discussion, we omit the
symbol “ ′ ” in [x′(k), x′(k)] hereafter. Then from (6), we
obtain

x(k + 1) = −Ar |xc(k)| − (|Ac| + Ar)xr(k)

−Br|u(k)| + Acxc(k) + Bcu(k) + a, (7)

x(k + 1) = Ar |xc(k)| + (|Ac| + Ar)xr(k)

+Br|u(k)| + Acxc(k) + Bcu(k) + a. (8)

|xc(k)| and |u(k)| can be transformed into a linear form with
continuous variables and binary variables by applying the
following lemma.

Lemma 3: For a given vector w ∈ W ⊆ Rn (W is a closed
and bounded set), |w| is rewritten as

|w| = 2z − w,
z(i) = δ(i)w(i), i = 1, 2, . . . , n, (9)[
δ(i) = 1

]
↔
[
w(i) ≥ 0

]
, i = 1, 2, . . . , n (10)

where z ∈ Rn, δ ∈ {0, 1}n are auxiliary continuous variables
and auxiliary binary variables, respectively.

This lemma can be directly derived from [6], [8], and
is well-used in the MLD model framework. The outline of
the proof is shown as follows. From (9) and (10), if w(i) ≥ 0
then, z(i) = w(i) and 2z(i)−w(i) = w(i) hold, and if w(i) < 0 then,
z(i) = 0 and 2z(i) − w(i) = −w(i) hold. So 2z(i) − w(i) = |w(i)|
holds. Note that (9) and (10) can be expressed as linear
inequalities. See Appendix for further details. Therefore,
|xc(k)| and |u(k)| can be transformed into a linear form with
continuous variables and binary variables.

Thus we obtain the following theorem.

Theorem 1: Suppose that the discrete-time linear system
with parameter uncertainty (4) is given. Then (4) is approx-
imately expressed by the following representation{

x̂(k + 1) = Âx̂(k) + B̂v̂(k) + â,
Ĉ x̂(k) + D̂v̂(k) ≤ Ê

(11)

where v̂(k) = [ uT (k) ẑT (k) δ̂T (k) ]T , and ẑ(k) =
[ zT

x (k) zT
u (k) ]T , zx(k) ∈ Rn, zu(k) ∈ Rm δ̂(k) =

[ δTx (k) δTu (k) ]T , δx(k) ∈ {0, 1}n, δu(k) ∈ {0, 1}m. Â ∈ R2n×2n,
B̂ ∈ R2n×(m+(n+m)+(n+m)) and â ∈ R2n×1 are given as

Â =

[
Ac + Ar −(|Ac| + Ar)
Ac − Ar |Ac| + Ar

]
Φ,

B̂ =

[
Bc + Br −2Ar −2Br 0 0
Ac − Ar 2Ar 2Br 0 0

]
,
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â =

[
a
a

]
.

In addition, Ĉ ∈ R6(n+m)×2n, D̂ ∈ R6(n+m)×(2n+3m) and Ê ∈
R6(n+m)×1 are given as

Ĉ =

[
Cx

0

]
,

D̂ =

[
0 D2

x 0 D3
x 0

D1
u 0 D2

u 0 D3
u

]
,

Ê =

[
Ex

Eu

]

where

Cx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
In 0
−In 0
In 0
−In 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Φ, D2

x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−In

In

−In

In

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D3
x =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

diag(xc)
−diag(xc)
diag(xc)
−diag(xc)
−diag(xc)

−(diag(xc) + εIn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ex =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
xc

−xc−xc−εen

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D1
u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
Im

−Im

−Im

Im

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, D2

u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Im

Im

−Im

Im

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

D3
u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

diag(u)
−diag(u)
diag(u)
−diag(u)
−diag(u)

−(diag(u) + εIm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Eu =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
u
−u
−u
−εem

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and xc = minx∈X x, xc = maxx∈X x, u = minu∈U u, u =
maxu∈U u, and ε is a small tolerance.

Proof : Consider (7) and (8). To apply Lemma 3, we re-
place |xc(k)| and |u(k)| to 2zx(k) − xc(k) and 2zu(k) − u(k),
respectively. Then Â, B̂ and â in (11) are obtained from (5),
(7) and (8). Furthermore, from (9) and (10) in Lemma 3, we
give the following conditions: z(i)

x (k) = δ(i)x (k)x(i)
c (k), [δ(i)x =

1] ↔ [x(i)
c (k) ≥ 0], i = 1, 2, . . . , n and z( j)

u (k) = δ( j)
u (k)u( j)(k),

[δ( j)
u = 1] ↔ [u( j)(k) ≥ 0], j = 1, 2, . . . ,m. These conditions

are rewritten as linear inequalities by using Lemma 4 and
Lemma 5. Thus we obtain Ĉ, D̂ and Ê in (11). �

Since (11) is the MLD model, we see that discrete-
time linear systems with parameter uncertainty can be
approximately expressed as a kind of hybrid systems.
Also, for (11), suppose that x̂(0) and the input sequence
u(0), u(1), . . . , u( f − 1) are given. Then the problem to find

the state sequence x̂(1), x̂(2), . . . , x̂( f ) can be rewritten as a
mixed integer feasibility test (MIFT) problem with contin-
uous variables ẑ(k) and binary variables δ̂(k). The MIFT
problem can be solved by using an appropriate solver, e.g.,
ILOG CPLEX [14].

4. Modeling of Discrete-Time Piecewise Affine Systems
with Parameter Uncertainty

In this section, the result on discrete-time linear systems is
extended to DT-PWA systems, and as well as discrete-time
linear systems, a DT-PWA system with parameter uncer-
tainty is transformed into the MLD model.

Consider the following DT-PWA system with parame-
ter uncertainty

{
x(k + 1) = AI(k)x(k) + BI(k)u(k) + aI(k),
I(k + 1) = I+, if x(k + 1) ∈ SI+

(12)

where

x(k) ∈
[
x(k), x(k)

]
, x(k), x(k) ∈ X ⊆ Rn,

u(k) ∈ U ⊆ Rm,

AI(k) ∈
[
AI(k), AI(k)

]
, BI(k) ∈

[
BI(k), BI(k)

]
,

aI(k) ∈
[
aI(k), aI(k)

]

and I(k) ∈ M := {1, 2, . . . ,M} is the mode of system, M is
the number of modes, X, U are closed and bounded con-
vex sets. Also, SI , I = 1, 2, . . . ,M is a bounded convex
polyhedron satisfying

⋃
I∈M SI = X and SI

⋂SJ = ∅ for
all I � J ∈ M. For simplicity of discussion, the following
assumption is made for X and SI :

Assumption 1: X and SI , I = 1, 2, . . . ,M are expressed by
an interval.

Consider to express the system (12) as the MLD model.
First, we assign a binary variable δ′i (k) ∈ {0, 1}, i =
1, 2, . . . ,M satisfying [δ′i (k) = 1] ↔ [x(k) ∈ Si]. By using
auxiliary binary variables, this condition can be expressed as
a set of linear inequalities [6]. In the standard DT-PWA sys-
tems without parameter uncertainty, δ′i (k) is directly used,
but in the DT-PWA system with parameter uncertainty, δ′i (k)
is not directly used. For example, in bimodal PWA sys-
tems, we can consider three cases: (i) δ′1(k) = 1, δ′2(k) = 0,
(ii) δ′1(k) = 0, δ′2(k) = 1, (iii) δ′1(k) = 1, δ′2(k) = 1 (Two
modes are active simultaneously). Three cases are regarded
as three modes. Then we assign a binary variable δi(k),
i = 1, 2, 3 satisfying δ1(k) = δ′1(k) − δ′1(k)δ′2(k), δ2(k) =
δ′2(k) − δ′1(k)δ′2(k), δ3(k) = δ′1(k)δ′2(k). In general, a binary
variable δi(k), i = 1, 2, . . . ,M,M + 1, . . . ,M + N is given by
a polynomial with respect to δ′j(k), j = 1, 2, . . . ,M, where
δM+1(k), . . . , δM+N(k) correspond to the cases that multiple
modes are active simultaneously.

By using (11) and δi(k), we obtain the following ex-
pression to approximately express (12)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂(k + 1) =
M+N∑
I=1

δI(k)
{
ÂI x̂(k) + B̂I v̂I(k) + âI

}
,

M+N∑
I=1

δI(k)
{
ĈI x̂(k) + D̂I v̂I(k)

}
≤

M+N∑
I=1

δI(k)ÊI

(13)

where v̂1(k) = v̂2(k) = · · · = v̂M(k)(= v̂(k)) and

v̂I(k) =

[
v̂(k)
ŵI(k)

]
, I = M + 1,M + 2, . . . ,M + N,

ŵI(k) is auxiliary continuous and binary variables. In addi-
tion, x̂(k+ 1) = ÂI x̂(k)+ B̂I v̂I(k)+ âI , ĈI x̂(k)+ D̂I v̂I(k) ≤ ÊI ,
I = M + 1,M+ 2, . . . ,N is the state equation in the case that
multiple modes are active simultaneously. These state equa-
tions are derived as follow. Suppose that p modes are active
simultaneously at time k. First, the interval of the state is
decomposed to p intervals. Under Assumption 1, it is easy
to consider this decomposition. xi(k), xi(k), i = 1, 2, . . . , p
expresses the infimum and the supremum of the interval at
mode i, and we define x̂i(k) := [ xT

i (k) xT
i (k) ]T . Then we

obtain x̂i(k + 1) = Âi x̂i(k) + B̂iv̂(k). For simplicity, the in-
equality is omitted. Thus we obtain the state interval at time
k + 1 as follow:

x̂(k + 1) =
[

xT (k + 1) xT (k + 1)
]T
, (14)

x(k + 1) = min(x1(k + 1), x2(k + 1), . . . , xp(k + 1)),

x(k + 1) = max(x1(k + 1), x2(k + 1), . . . , xp(k + 1)).

(14) can be transformed into the MLD model by using the
results in [6], [8]. See Example 1 for further details.

Furthermore, since (13) can be expressed by a lin-
ear state equation and a linear inequality [6], the DT-PWA
system with parameter uncertainty of (12) can be approxi-
mately expressed as the following MLD model{

x(k + 1) = Ax(k) + Bv(k),
Cx(k) + Dv(k) ≤ E

(15)

where x(k) = [xT (k) xT (k)]T ∈ R2n is a vector consisting
the infimum and the supremum of the interval of the state
x(k), and v(k) is given by v(k) = [ uT (k) zT (k) δT (k) ]T ,
u(k) ∈ Rm is the control input, and z(k) ∈ Rm1 , δ(k) ∈ {0, 1}m2

are auxiliary continuous and binary variables, respectively.
A, B, C, D and E are some vector/matrices.

Since DT-PWA systems with parameter uncertainty can
be expressed by the MLD model, the controllability problem
and the optimal control problem can be solved by using the
framework of the MLD model.

Example 1: Consider the following bimodal piecewise lin-
ear (PWL) system

x(k + 1) =

{
A1x(k) + B1u(k), if [ 1 0 ] x(k) < 0,
A2x(k) + B2u(k), if [ 1 0 ] x(k) ≥ 0,

(16)

where x(k) ∈ [x(k), x(k)], x(k), x(k) ∈ R2, u(k) ∈ R1 and
A1 ∈ [A1, A1], A2 ∈ [A2, A2].

First, by Theorem 1 the continuous dynamics for
[ 1 0 ]x(k) < 0 (mode 1) and [ 1 0 ]x(k) ≥ 0 (mode 2)
can be derived as

x̂(k + 1) =

{
Â1 x̂(k) + B̂1v̂(k), if x(1)(k) < 0,
Â2 x̂(k) + B̂2v̂(k), if x(1)(k) ≥ 0,

respectively. For simplicity, the inequalities are omitted.
Next, consider the continuous dynamics in the case

(called here mode 3) that mode 1 and mode 2 are active si-
multaneously. Then x̂(k) is decomposed as follow:

x̂1(k) =

[
x1(k)
x1(k)

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(1)(k)
x(2)(k)

(1 − δ1(k))x(1)(k)
x(2)(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (17)

x̂2(k) =

[
x2(k)
x2(k)

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1 − δ2(k))x(1)(k)
x(2)(k)
x(1)(k)
x(2)(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (18)

x̂1(k + 1) and x̂2(k + 1) are derived as

x̂1(k + 1) =

[
x1(k + 1)
x1(k + 1)

]
= Â1 x̂1(k) + B̂1v̂(k),

x̂2(k + 1) =

[
x2(k + 1)
x2(k + 1)

]
= Â2 x̂2(k) + B̂2v̂(k),

respectively. From x1(k+1), x1(k+1), x2(k+1) and x2(k+1),
we obtain the continuous dynamics for mode 3

x̂(k + 1) =

[
min(x1(k + 1), x2(k + 1))
max(x1(k + 1), x2(k + 1))

]
. (19)

To express (19) as a linear form, the following logical con-
ditions using binary variables δ11, δ12, δ21, δ22 are given:

[δ11(k) = 1] ↔
[
x(1)

1 − x(1)
2 ≥ 0

]
, (20)

[δ12(k) = 1] ↔
[
x(2)

1 − x(2)
2 ≥ 0

]
, (21)

[δ21(k) = 1] ↔
[
x(1)

1 − x(1)
2 ≥ 0

]
, (22)

[δ22(k) = 1] ↔
[
x(2)

1 − x(2)
2 ≥ 0

]
. (23)

Then from (19), we obtain

x̂(k + 1) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ11(k)x(1)
2 (k + 1) + (1 − δ11(k))x(1)

1 (k + 1)

δ12(k)x(2)
2 (k + 1) + (1 − δ12(k))x(2)

1 (k + 1)

δ21(k)x(1)
1 (k + 1) + (1 − δ21(k))x(1)

2 (k + 1)

δ22(k)x(2)
1 (k + 1) + (1 − δ22(k))x(2)

2 (k + 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (24)

The product of a binary variable and a continuous variable
appeared in (17), (18) and (24) can be transformed into lin-
ear inequalities by using Lemma 5. (20)–(23) can also be
transformed into a linear form by using Lemma 4. Thus the
continuous dynamics for mode 3 can be expressed as the
MLD model.

Finally, we illustrate the above procedure in Fig. 1. In
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Fig. 1 Derivation of the interval x̂(k + 1).

Fig. 1, after the interval [x(k), x(k)] is decomposed to two
intervals [x1(k), x1(k)] and [x2(k), x2(k)], [x1(k+1), x1(k+1)]
and [x2(k + 1), x2(k + 1)] are computed. Thus we obtain
x(k+1) = min(x1(k+1), x2(k+1)) = x2(k+1) and x(k+1) =
max(x1(k + 1), x2(k + 1)) = x1(k + 1).

Remark 1: In [12], continuous-time piecewise affine sys-
tems with parameter uncertainty are discretized with respect
to time, using mode transitions in each interval between
sampling points. In this paper, we consider the DT-PWA
system (12) at first. It is one of future works to consider a
behavior between sampling points.

5. Application to Analysis and Control

In this section, using the obtained model (15), the trajectory
generation problem, the controllability problem, and the op-
timal control problem are discussed.

5.1 Preliminaries

As a preparation, some matrices/vectors are defined. Sup-
pose that the MLD model (15) and the finite time f are
given. First, a state sequence and an input sequence are de-
noted by

x := [ xT (0) xT (1) · · · xT ( f ) ]T ,

v := [ vT (0) vT (1) · · · vT ( f − 1) ]T .

Then from the state equation of (15), we obtain

x = Ax(0) + Bv (25)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I
A
A2

...
Af

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0
B 0 · · · 0

AB
. . .

. . .
...

...
. . .

. . . 0
Af−1B · · · AB B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Also B̃ :=
[

Af−1B Af−2 · · · B
]

are defined. Next, from
the linear inequality of (15), we obtain

Cx + Dv ≤ E

where

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
C 0
. . .

0 C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 0
. . .

0 D
0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E =
[

ET · · · ET
]T
.

5.2 Trajectory Generation Problem

Consider the following trajectory generation problem.

Problem 1: Consider the DT-PWA system with parameter
uncertainty (12). Suppose that the terminal time f , the in-
terval of the initial state X0 = [x0, x0] ⊆ X, and the input
sequence u(0), u(1), . . . , u( f − 1) are given. Then find an
over-approximation of the interval of the state at each time
[x(k), x(k)], k = 1, 2, . . . , f .

This problem can be solved by using the MLD model
(15), i.e., this problem can be transformed into the following
MIFT problem

given x0, u(0), u(1), . . . , u( f − 1)

find v

subject to (D + CB)v ≤ E − CAx0

where x0 := [ xT
0 xT

0 ]T . By solving this MIFT problem,
z(k), δ(k), k = 0, 1, . . . , f − 1 are obtained. Thus we obtain x
of (25) as an over-approximation of the interval of the state.

5.3 Controllability Problem

Based on [5], [7], we give the definition of controllability.

Definition 1: Suppose that for the system (12), the termi-
nal time f , the interval of the initial state X0 = [x0, x0] ⊆ X,
and the interval of the terminal state X f = [x f , x f ] ⊆ X
are given. Then the system (12) is said to be ( f ,X0,X f )-
controllable, if for every x(0) ∈ X0, there exists an input
sequence u(0), u(1), . . . , u( f − 1) such that [x( f ), x( f )] ⊆
[x f , x f ].

In general, X0,X f are given as convex polyhedra, but
in this paper, for simplicity of discussion, X0,X f are given
as intervals.

By using the MLD model (15), we can derive a suf-
ficient condition for the system (12) to be ( f ,X0,X f )-
controllable. The result is shown as the following theorem.

Theorem 2: Suppose that the MLD model (15), which
approximately expresses the system (12), is given. Then
the system (12) is ( f ,X0,X f )-controllable, if the following
MIFT problem

find v

subject to (D + CB)v ≤ E − CAx0[ −I 0
0 I

]
B̃v ≤

[ −x f

x f

]
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−
[ −I 0

0 I

]
Af x0

has a solution, where x0 := [ xT
0 xT

0 ]T .

Proof : In Definition 1, the condition [x( f ), x( f )] ⊆
[x f , x f ] is equivalent to x f ≤ x( f ) and x( f ) ≤ x f . Since

x( f ) =

[
x( f )
x( f )

]
= Af x(0) + B̃v

holds, the second inequality condition of the MIFT prob-
lem is obtained. The first inequality condition corresponds
to the inequality of the MLD model (15). Thus we obtain
the MIFT problem. If the MIFT problem is infeasible, then
there does not exist an input sequence u(0), u(1), . . . , u( f−1)
satisfying [x( f ), x( f )] ⊆ [x f , x f ], i.e., the system (12) is not
( f ,X0,X f )-controllable. This completes the proof. �

By solving the MIFT problem in Theorem 2, we can
check the controllability of the system (12).

5.4 Optimal Control Problem

Since the DT-PWA system with parameter uncertainty (12)
can be expressed as the MLD model (15), we can consider
control problems. For example, we can derive a controller
satisfying a kind of temporal logic constraints, e.g., time-
varying state/input constraints. Such constraints can be em-
bedded in the MLD model (15). The obtained MLD model
is also time-varying, but this complexity does not produce
any difficulty. In this paper, for simplicity of discussion, we
consider the standard optimal control problem.

Consider the following problem.

Problem 2: Consider the MLD model (15), which approx-
imately expresses the DT-PWA system with parameter un-
certainty (12). Suppose that the initial state x(0) = x0 is
given. Then find v∗(k), k = 0, 1, . . . , f − 1, minimizing the
cost function

J =
f−1∑
i=0

{
xT (i)Qx(i) + vT (i)Rv(i)

}
+ xT ( f )Qf x( f )

where Q,Qf are semi-positive matrices, and R is a positive
matrix.

In Problem 2, as one of methods to give weight matri-
ces Q, Qf and R, we can consider to minimize a weighted
sum of xc(k) and xr(k), which are the center and the radius
of the interval of the state (see (5)). Then the cost function
is given by

J =
f−1∑
i=0

{
xT

c (i)Qcxc(i) + xT
r (i)Qr xr(i) + v

T (i)Rv(i)
}

+xT
c ( f )Qc f xc( f ) + xT

r ( f )Qr f xr( f ) (26)

=

f−1∑
i=0

{
xT (i)

[
(Qc + Qr)/4 (Qc − Qr)/4
(Qc − Qr)/4 (Qc + Qr)/4

]
x(i)

+vT (i)Rv(i)
}

+ xT ( f )

[
(Qc f + Qr f )/4 (Qc f − Qr f )/4
(Qc f − Qr f )/4 (Qc f + Qr f )/4

]
x( f )

where Qc, Qc f , Qr, and Qr f are semi-positive matrices, re-
spectively.

Problem 2 can be transformed into the following mixed
integer quadratic programming (MIQP) problem

min
v̄∈V

v̄T M1v̄ + v̄
T M2x0

subject to L1v̄ ≤ L2x0 + L3

where the input setV is a set of (Rm × Rm1 × {0, 1}m2 ) f , and
M1, M2, L1, L2, L3 are some matrices/vectors.

Remark 2: Depending on given plant and initial state,
there exist cases such that the state interval at each time be-
comes seriously conservative. Then, to decrease conserva-
tiveness, it will be considered to decompose the state inter-
val at each time to some intervals. In Sect. 6.4, a simple
example will be shown.

Remark 3: The MIFT problem and the MIQP problem can
be solved by using an appropriate solver, e.g. ILOG CPLEX.
Unfortunately, solving the MIFT problem and the MIQP
problem for large f becomes prohibitive. So it is one of
significant works to decrease the computation time to solve
these problems.

6. Numerical Example

6.1 Plant

As a numerical example, consider the PWL system (16)
where A1, A2 and B1, B2 are given as

A1 = α

[
cos(−π/3) − sin(−π/3)
sin(−π/3) cos(−π/3)

]
, B1 =

[
0
1

]
,

A2 = α

[
cos(+π/3) − sin(+π/3)
sin(+π/3) cos(+π/3)

]
, B2 =

[
0
1

]
,

and α is a uncertain parameter given by α ∈ [0.5, 0.6]. In
addition, state and input constraints are given by

x(k), x(k) ∈
[[ −10
−10

]
,

[
+10
+10

]]
, u(k) ∈ [−1,+1].

Using the result of Sect. 4, this PWL system is transformed
into the MLD model (15) where n = 2, m = 1, m1 = 25,
m2 = 10. For the obtained MLD model, we will consider
the trajectory generation problem and the optimal control
problem.

6.2 Example of Trajectory Generation Problem

First, consider a trajectory generation problem. Suppose
that the terminal time, the interval of the initial state and
the input sequence are given by f = 5,
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Fig. 2 State trajectory for u(k) = 0.

x0 =

[
x0
x0

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−1.05
+0.95
−0.95
+1.05

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (27)

and u(0) = u(1) = · · · = u( f−1) = 0, respectively. Note here
that the initial state is given as an interval, not a point. The
obtained state trajectory is given by Fig. 2, where we used
ILOG CPLEX 11.0 on the computer with the Intel Core 2
Duo 3.0 GHz processor and the 4 GB memory. In Fig. 2,
x(i) denotes the i-th element of x. Also, the computation
time to solve this trajectory generation problem was 0.02
[sec]. From Fig. 2, we see that the state trajectory converges
to a neighborhood of the origin. On the other hand, in the
proposed method, an over-approximation of an interval is
computed by using Lemma 1. Here, comparing between the
obtained approximate trajectory and the accurate trajectory,
the error of the infimum and the supremum of the state at
each time is less than 10−4. So we see that in this example,
the obtained over-approximation is very tight.

6.3 Example of Optimal Control Problem

Next, consider an optimal control problem. In this example,
we use the cost function (26), and consider the following
two cases, i.e.,

Case 1: Qc = Qc f = 100I2, Qr = Qr f = 02×2,
Case 2: Qc = Qc f = 02×2, Qr = Qr f = 100I2.

In both cases, suppose that the terminal time, the initial state
and the input weighting matrix are given by f = 5, (27) and
R = block-diag(1, 035×35), respectively.

Figure 3 shows the state trajectory in Case 1. The com-
putation time to solve the optimal control problem was 2.36
[sec]. From Fig. 3, we see that the state trajectory converges
to a neighborhood of the origin faster than that in the case
of u(0) = u(1) = · · · = u( f − 1) = 0.

Figure 4 shows the state trajectory in Case 2. The
computation time to solve the optimal control problem was
20.01 [sec]. Comparing between Fig. 3 and Fig. 4, it seems
that the difference is small. Note that the cost function of

Fig. 3 State trajectory in Case 1.

Fig. 4 State trajectory in Case 2.

Case 2 is given for minimizing the radius of an interval of
the state at each time. Here, a sum of the size of the state
interval at each time is derived as

κ =

f∑
k=0

n∏
i=1

2x(i)
r (k), xr(k) =

1
2

(−x(k) + x(k)).

Then for each case, κ is calculated as follows:
Case of u(k) = 0: κ = 0.1789,
Case 1: κ = 0.1226,
Case 2: κ = 0.0799.

Therefore, we see that in Case 2, the expansion of the size
at each time is restrained.

6.4 Extension of the Proposed Method

From the above examples, we see that the proposed method
is effective for solving trajectory generation and optimal
control problems of hybrid systems with parameter uncer-
tainty. However, as is described in Remark 2, the case such
that the state interval at each time becomes seriously conser-
vative is considered. For example, instead of (27), suppose
that the initial state is given by
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Fig. 5 State trajectory for u(k) = 0.

Fig. 6 State trajectory for u(k) = 0.

x0 =

[
x0
x0

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.05
+0.95
+0.05
+1.05

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (28)

Then the state trajectory for u(k) = 0 is obtained as Fig. 5.
Comparing Fig. 2 and Fig. 5, we see that the size of the rect-
angle at each time in Fig. 5 is larger than that in Fig. 2. This
is because in the case of the initial state (28), mode 1 and
mode 2 are active simultaneously at time k = 0.

In such a case, it is desirable to decompose the state in-
terval at each time. The initial state (28) can be decomposed
to the following two intervals:

x1
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.05
+0.95

0
+1.05

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , x2
0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
+0.95
+0.05
+1.05

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ .

The state trajectories (u(k) = 0) from x1
0 and x2

0 are obtained
as Fig. 6. Comparing Fig. 5 and Fig. 6, we see that the state
trajectory in Fig. 6 is tighter than that in Fig. 5. In particular,
the state interval at time k = 1 is significantly different.

Next, consider the optimal control problem. Then con-

Fig. 7 Controlled State trajectory.

sider two same MLD models. For two MLD models, the
different initial states x1

0, x2
0 are given. However, the con-

trol input must be same in two MLD models. By regarding
two MLD models as one MLD model, the optimal control
problem can be solved. The cost function is given by Case
1 in Sect. 6.3. Figure 7 shows the obtained state trajectory.
Comparing Fig. 6 and Fig. 7, we see that the state trajectory
is improved.

Remark 4: The proposed method is effective for systems
such that the state trajectory asymptotically converges to a
some point. So the effectiveness of the proposed method de-
pends on stability or stabilizability. It will be easy to derive a
sufficient condition for the system to be asymptotically sta-
ble. Then it is important to evaluate conservativeness in our
framework, and it is one of the significant topics to clarify
the effectiveness and the limitation of the proposed method.

7. Conclusion

In this paper, we have proposed a new modeling method to
express discrete-time piecewise affine systems with param-
eter uncertainty as the MLD model. The obtained model is
useful for analysis and synthesis of robust control systems.
Furthermore, this paper will provide a new viewpoint for the
MLD framework.

Some of future works have been already explained (see
Remarks 1, 3 and 4). As is described in Remark 2 and
Sect. 6.4, it is useful and important to decompose the state
interval, but it is necessary to study details. Furthermore,
it is interesting to clarify the relation between the proposed
method, the concept of box invariance [1], [2], and the pred-
icate abstraction technique [4], which are one of discrete
abstraction techniques of hybrid systems [3].

This work was supported by Grant-in-Aid for Scientific
Research (C) 21500009 and Young Scientists (B) 20760278.
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[4] R. Alur, T. Dang, and F. Ivančić, “Predicate abstraction for reacha-
bility analysis of hybrid systems,” ACM Trans. Embedded Comput-
ing Systems, vol.5, no.1, pp.152–199, 2006.

[5] S. Azuma and J. Imura, “Polynomial-time probabilistic controllabil-
ity analysis of discrete-time piecewise affine systems,” IEEE Trans.
Autom. Control, vol.52, no.11, pp.2029–2046, 2007.

[6] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatics, vol.35, pp.407–427, 1999.

[7] A. Bemporad, G. Ferrari-Trecate, and M. Morari, “Observability and
controllability of piecewise affine and hybrid systems,” IEEE Trans.
Autom. Control, vol.45, no.10, pp.1864–1876, 2000.

[8] T.M. Cavalier, P.M. Pardalos, and A.L. Soyster, “Modeling and in-
teger programming techniques applied to propositional calculus,”
Computer & Operations Research, vol.17, no.6, pp.561–570, 1990.

[9] S. Oishi, Verified Numerical Computation, Corona Publishing Co.,
Ltd., 2000.

[10] N. Ramdani, N. Meslem, and Y. Candau, “Reachability of uncertain
nonlinear systems using a nonlinear hybridization,” Proc. 11th Int’l
Conf. on Hybrid Systems: Computation and Control, LNCS 4981,
2008.

[11] S. Ratschan and Z. She, “Safety verification of hybrid systems by
constraint propagation-based abstraction refinement,” ACM Trans.
Embedded Computing Systems, vol.6, no.1, 2007.

[12] A. Rauh, M. Kletting, H. Ashemann, and E.P. Hofer, “Interval Meth-
ods for Simulation of Dynamical Systems with State-Dependent
Switching Characteristics,” Proc. 2006 IEEE Int’l Conf. on Control
Applications, pp.355–360, 2006.

[13] A.R. Teel and R.G. Sanfelice Eds., Proc. 45th IEEE Conf. on Deci-
sion and Control/Workshop on Robust Hybrid Systems: theory and
applications, 2006.

[14] http://www.ilog.com/products/cplex/

Appendix: Linear Inequality Expressions of Logical
Conditions

In this appendix, we introduce two lemmas on linear in-
equality expressions of logical conditions. See [6] for fur-
ther details.

Consider x ∈ X ⊆ Rn (X is a closed and bounded set),
and two functions h : Rn → R, g : Rn → Rm. Then the
following two lemmas hold.

Lemma 4: The logical condition [δ = 1] ↔ [h(x) ≥ 0] is
equivalent to

hmin(1 − δ) ≤ h(x) ≤ hmaxδ + (δ − 1)ε

where hmin = minx∈X h(x), hmax = maxx∈X h(x), and ε is a
small tolerance.

Lemma 5: z = δg(x) is equivalent to

gminδ ≤ z ≤ gmaxδ,

g(x) − gmax(1 − δ) ≤ z ≤ g(x) − gmin(1 − δ)
where gmin = minx∈X g(x), gmax = maxx∈X g(x).
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