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Regular Paper

A Combinatorics Proliferation Model with Threshold for

Malware Countermeasure �1

Kazumasa Omote,†1 Takeshi Shimoyama†2

and Satoru Torii†2

Security software such as anti-virus software and personal firewall are usu-
ally installed in every host within an enterprise network. There are mainly
two kinds of security software: signature-based software and anomaly-based
software. Anomaly-based software generally has a “threshold” that discrimi-
nates between normal traffic and malware communications in network traffic
observation. Such a threshold involves the number of packets used for behav-
ior checking by the anomaly-based software. Also, it indicates the number of
packets sent from an infected host before the infected host is contained. In
this paper, we propose a mathematical model that uses discrete mathematics
known as combinatorics, which is suitable for situations in which there are a
small number of infected hosts. Our model can estimate the threshold at which
the number of infected hosts can be suppressed to a small number. The re-
sult from our model fits very well with the result of computer simulation using
typical existing scanning malware and a typical network.

1. Introduction

We aim to achieve a countermeasure against “malware” within an enterprise
network. In such a network, security software such as anti-virus software and
personal firewall are usually installed in every host. There are mainly two kinds of
security software: signature-based software and anomaly-based software. In this
study we target anomaly-based software without pattern files. This is because
the signature-based scheme might not be able to detect a new malware for a few
hours, because it takes time to make pattern files for each variant. Recently,
there are a lot of variants of malware 2).

Infection damage by malware has been widely reported in the popular press.

†1 Japan Advanced Institute of Science and Technology (JAIST)
†2 Fujitsu Laboratories, Ltd.

�1 The preliminary version of this paper was presented at SECRYPT 2007 1).

One of the most serious threats in an enterprise network is propagation of scan-
ning malware (e.g., scanning worms and bots). A scanning malware scans net-
work to find vulnerable hosts. Some scanning malwares can also select local
addresses. Once a new malware has infected an enterprise network, it propa-
gates rapidly and puts a heavy financial burden on the enterprise. We therefore
consider that it is important not only to prevent the scanning malware from in-
fection but also to prevent the scanning malware from spreading in an enterprise
network. It is especially important to suppress occurrence to less than a few
infected hosts, in order to reduce the financial loss to an enterprise as much as
possible.

Mainly, two kinds of evaluation models for preventing scanning malware from
spreading have been proposed. One is evaluation models of the Internet. These
models estimate the number of infected hosts and the speed of infection. They
can be either a continuous time model (e.g., SIR model 3)) or a discrete time
model (e.g., AAWP model 4)). The other main type is the evaluation model of
an enterprise network, such as the Staniford model 5).

The Staniford model assumes anomaly-based detection, as does our model.
An anomaly-based scheme generally has a threshold that discriminates between
normal traffic and malware communications in network traffic observation. This
model estimates the number of infected hosts by considering the timing of block-
ing the infection packets sent by a victim. Such blocking is done by counter-
measure software, such as a personal firewall. This timing is measured using a
threshold, namely, the number of packets that can be checked by software un-
til blocking and that can be sent out through the countermeasure software (See
Fig. 1). If the threshold is too high, the scheme can hardly detect the scanning
malware (A false-negative is frequently found). On the contrary, if the threshold
is too low, the scheme frequently may mistake normal traffic for communication
of the scanning malware, because the scheme cannot check enough packets (A
false-positive alert is frequently generated). It is therefore important to choose
an appropriate threshold in the case of anomaly-based detection. If a scanning
malware is contained in quick reaction time after minor infection, infection dam-
age can be kept to a minimum 6). We therefore need to derive an appropriate
threshold to suppress the number of infected hosts to less than a few. Note that
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706 A Combinatorics Proliferation Model with Threshold for Malware Countermeasure

Fig. 1 Difficulty to set the timing for blocking.

we do not mention the concrete anomaly-based detection algorithm.
Our contribution. In an enterprise network, it is important not only to pre-

vent the scanning malware from infecting a host but also to prevent the scanning
malware from spreading. It is especially important to suppress the number of
infected hosts as much as possible. The Staniford model can estimate an appro-
priate threshold according to the number of infected hosts. However, it is only
suitable when the number of infected hosts is comparatively large. We therefore
propose a mathematical model that uses discrete mathematics known as combi-
natorics, which is suitable for situations in which there are a small number of
infected hosts. Our model can estimate the threshold at which the number of
infected hosts can be suppressed to a small number.

We evaluated the expected number of infected hosts under a certain probability
of targeting and a certain threshold by using a computer simulation, in which we
developed a simulation program with the same scanning strategy as the Sasser
worm (one of the most strategic scanning malwares). Note that this program
was developed independently of our model. As a result, we confirmed that the
result obtained with our model precisely corresponded to the result of a computer
simulation when the number of infected hosts was able to be suppressed to a small
number (See Section 4).

Moreover, we demonstrated that the derived threshold has a reasonable value,

when we used the strategic malware in a typical network. It is important that
the threshold not be too low, because the threshold also represents the number
of packets that the countermeasure software can check.

2. Related Work

Various Internet evaluation models for preventing a scanning malware from
spreading have been proposed. These models estimate the number of infected
hosts and the rate of infection. Such Internet evaluation models include the con-
tinuous time model and the discrete time model. The SIR (susceptible-infectious-
removed) model 3) is an “epidemic” continuous time model. In this model, mal-
ware can be removed at a certain rate. This model can also be used to study the
effects of software patching and traffic blocking. The AAWP (analytical active
worm propagation) model 4) is a discrete time model of worm propagation. This
model considers the patching rate, that is, the reasonable rate at which a user
can patch the vulnerability on their computer. When an infected or vulnerable
host is patched, it becomes an invulnerable host.

Among the evaluation models for preventing the scanning malware from spread-
ing within an enterprise network, the Staniford model 5) is the most famous. It
can calculate the final infection density under the condition that detection and
containment software is installed in every host, or is deployed in a network de-
vice (e.g., a router or switch) within the enterprise network. We describe the
Staniford model in Section 2.1.

The importance of evaluation in an early stage of infection is described in
Ref. 7). That work presents a non threshold-based worm-early-detection system
that uses the idea of detecting the trend, that is, not the rate, of monitored scan
traffic. However, this scheme cannot evaluate the threshold in the early stage of
infection.

Various scan-detection schemes for observing packets behavior have been pro-
posed. The scheme described in Ref. 8) for rate limiting counts the number of
connections of a new destination address, and restricts that number. And the
DNS-based scheme in Ref. 9) looks for non-DNS-based connections that use nu-
meric IP addresses. The ARP-based scheme in Ref. 10) calculates and checks
the total anomaly score from three kinds of ARP activity in order to detect
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707 A Combinatorics Proliferation Model with Threshold for Malware Countermeasure

the scanning malware. The ICMP-based scheme in Ref. 11) looks for ICMP
destination-unreachable (ICMP-T3) messages. These scan-detection schemes
check the amount and the behavior of multiple packets.

2.1 Staniford Model
We outline the Staniford model and state its limitations. The Staniford model

is composed of either the basic model (non-cell model) or the extended model
(cell model). We treat the non-cell model in the present study. The Staniford
model estimates the number of infected hosts by considering the infection pack-
ets sent unwillingly by a victim. This timing is measured using threshold T . It
is assumed that a containment mechanism is installed in every host. Since the
containment mechanism with threshold T blocks the infection packets after de-
tection, a malware can send only T infection packets from an infected host. The
threshold thus means the number of packets that can be checked until detection
and containment of the malware, and the number that the scanning malware can
send from an infected host. This model can calculate the final infection density
under a certain threshold.

Final infection density α (0 < α < 1) is derived by solving Eq. (1) below of the
Staniford model using threshold T , vulnerable density v, and probability PN of
targeting a host.

α +
1

TvPN
ln(1 − α) = 0 (1)

The value of α is constant if TvPN is fixed because α is determined by TvPN in
Eq. (1).

The value of TvPN , however, is the limitation factor in Eq. (1) for having
solution α. If TvPN ≤ 1, α does not have a solution except α = 0. α has a
solution except α = 0 as long as TvPN > 1. This model can therefore accurately
estimate the value of α as long as TvPN > 1.

In Eq. (1), the value of TvPN means the expected number of hosts infected
by a single victim. If TvPN > 1 then the infection keeps growing rapidly for a
while. On the other hand, if TvPN < 1, then this means that a victim will infect
less than one host as an expected value. The Staniford model can, however,
only estimate the value of α on the condition that the scanning malware spreads
(TvPN > 1).

2.2 Threshold
Two kinds of thresholds are introduced in Ref. 12): an “epidemic threshold”

and a “sustained scanning threshold” (SST). An epidemic threshold is the up-
per bound for preventing the scanning malware from spreading in a network.
Staniford discusses the importance of this epidemic threshold from the viewpoint
of the malware-containment problem. A Staniford’s epidemic threshold is 1/vPN .
In addition to the epidemic threshold, a sustained scanning threshold (SST) such
as the adaptive threshold (Threshold Random Walk) 12)–14) is well known. How-
ever, we do not target SST, because it does not consider preventing a scanning
malware from spreading.

We can obtain Eq. (2) by transforming Eq. (1). Staniford’s threshold is calcu-
lated as follows.

T = − ln(1 − α)
α · vPN

(2)

It is accurately derived under the condition T > 1/vPN (TvPN > 1). The con-
tainment software for scanning malware necessarily allows some infection packets
before the number of these packets exceeds the threshold. Until the number of
infection packets exceeds the threshold, the scanning malware may find one or
more vulnerable hosts, and spread within the network. The more the threshold
increases, the higher the propagation risk becomes.

3. Combinatorics Proliferation Model

In an enterprise network, it is important not only to prevent the scanning
malware from infecting a host, but also to prevent the scanning malware from
spreading. Especially, it is important to reduce the number of infected hosts as
much as possible. It is thus necessary to strictly evaluate the infected hosts in the
early stages of infection. We therefore propose a mathematical model that uses
combinatorics. This model is suitable for the early stages of infection. It can also
derive the appropriate threshold for reducing the number of infected hosts. We
were not able to determine the appropriate threshold for reducing the number of
infected hosts from previous known works. Although the Staniford model 5) can
derive the threshold for preventing a scanning malware from spreading, it cannot
also derive the threshold for suppressing the number of infected hosts.
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Our model derives the threshold for suppressing the number of infected hosts
by using discrete mathematics (i.e., combinatorics). This threshold indicates the
number of infection packets sent out from an infected host before the infected
host is contained. The details about this model are described in the remainder of
this section. Note that we do not mention the concrete anomaly-based detection
algorithm. First we briefly explain the behavior of scanning malware used in our
model.

3.1 Scanning Malware
A scanning malware (e.g., a scanning worm or bot) performs random scanning

in a network, more specifically, it tries to communicate with a lot of other des-
tination addresses (including non-existent addresses) and finds new vulnerable
hosts. The scanning malware chooses a random IP address according to several
scanning rules, and then attempts to infect it. Such scanning rules include binary
search, sequential search, and universal random search.

A personal firewall is usually installed in most hosts within an enterprise net-
work, and shuts down unnecessary ports. Some malwares, however, infect a host
through the port that a firewall does not shut down. For instance, a Sasser worm
tries to infect a host through the 445/TCP port which is usually opened in the
host such as Windows client. We target such a terrible malware which infects a
host through a personal firewall.

3.2 Premise
The premise of the combinatorics proliferation model is as follows.

( 1 ) A single node (host) is already infected within the enterprise network.
( 2 ) Whenever an infection packet reaches a vulnerable node, the node is in-

fected.
( 3 ) Vulnerable nodes are uniformly distributed within the enterprise network.
( 4 ) An infected node sends out infection packets at regular intervals.
( 5 ) Containment software with a threshold T is installed in every node.
( 6 ) Probability p of targeting is constant.
( 7 ) The time unit (1-tick) advances when one infection packet is sent out from

an infected node. It is assumed that all nodes are synchronized.
( 8 ) The processing time from receiving infection to the next infection activity

is disregarded.

In premise ( 2 ), for simplicity, it is assumed that a vulnerable node is infected
by one packet, although several packets (SYN packet, data packets, and so on) are
actually necessary for infection. In short, we regard a data stream as one packet.
Regarding premise ( 4 ), actually, most malwares based on TCP do not always
send out packets at regular intervals, because the malware waits for response
packets. This premise, however, would be valid in the early stages of infection.
For example, we confirmed in our observation that some worms sent out the
first few hundreds of SYN packets at regular intervals. Regarding premise ( 6 ),
in practice, the more nodes that are already infected, the fewer the number of
nodes that can be infected in the future. The probability of targeting gradually
becomes smaller. Therefore, the probability of targeting in our model takes the
upper bound. That is why a constant probability p is acceptable.

3.3 Notations
The notations used in our model are as follows:
• N : The number of vulnerable nodes within the enterprise network.
• p: The probability that a scanning malware picks a vulnerable address. Prob-

ability p is constant in the premise. This value of p corresponds to the value
of vPN in the Staniford model.

• T : The threshold of containment software, namely, the number of infection
packets sent out from an infected node before the infected node is contained.
For example, if T = 5 then each node can send out only 5 infection packets
(see Fig. 2).

• k-tick: A time unit. For example, the time unit of 1-tick advances when one
infection packet is sent out from an infected node.

• nth-generation: The infection distance from the infection source (n < N).
For example, the number in “2nd-generation” means the number of grand-
children (see Fig. 2).

• En(k, p, T ): the expected number of infected nth-generation nodes after k-
tick under both probability p of targeting and threshold T .

• E(k, p, T ): the expected number of all infected nodes after k-tick under prob-
ability p of targeting and threshold T .

• I(p, T ): the total expected number of infected nodes under probability p of
targeting and threshold T after k is close to infinity.
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Fig. 2 An example of generation.

3.4 Probability of Targeting
The probability p of targeting is the probability that a scanning malware picks

a vulnerable address described in Section 3.3. It is very rare that all vulnerable
addresses are used within an enterprise network. The address space in such
a network is usually only partly used. Moreover, since the scanning malware
selects nodes to target probabilistically, an infection packet that is sent out from
an infected node does not always reach a vulnerable node. We therefore get
probability p of targeting by using both the number of vulnerable nodes and the
target-selection algorithm of the scanning malware operating.

For instance, p is calculated in IPv4 network topology as follows. An existing
scanning malware mainly uses two kinds of target-selection algorithms: (1) the
malware selects a target node completely randomly or (2) the malware selects
a target node probabilistically according to the local subnet. The Sasser worm,
which is one of the most strategic malwares, chooses an address from the same
/8 subnet (the number of vulnerable nodes is Na) with probability 1/4, chooses
a random address from the same /16 subnet (the number of vulnerable nodes is
Nb) with probability 1/4, and chooses a random Internet address with probability
2/4. Hence probability p of targeting is calculated as follows.

p =
2
4

(
N − 1
232

)
+

1
4

(
Na − 1

224

)
+

1
4

(
Nb − 1

216

)
(3)

Fig. 3 Number of 1st-generation infected nodes after 4-tick.

3.5 Expected Number of Infected Nodes
Expected number of infected nodes is calculated by the probability p and the

threshold T in our model. We define the number of 0-generation infected nodes
(the infection source) as E0(k, p, T ) = 1 regardless of k, p and T . The 1st-
generation infected node is the target that the infection source will infect directly.
The number of 1st-generation infected nodes after k-tick is the sum of nodes that
the infection source directly infects until k-tick. For example, the number of 1st-
generation infected nodes after 4-tick changes from 0 to 4 under each infection
probability in Fig. 3. The expected number of 1st-generation infected nodes after
4-tick is calculated as follows.

E1(4, p, T ) = 1 · 4C1 · p(1 − p)3

+ 2 · 4C2 · p2(1 − p)2

+ 3 · 4C3 · p3(1 − p)
+ 4 · 4C4 · p4

=
4∑

i=1

i · 4Ci · pi(1 − p)4−i (T > 4)

The expected number of 1st-generation infected nodes after k-tick is therefore
calculated as follows.
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E1(k, p, T ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k∑
i=1

i · kCi · pi(1 − p)k−i (k < T )

T∑
i=1

i · T Ci · pi(1 − p)T−i (k ≥ T )

(4)

Since the infection source sends out only T packets, E1(k, p, T ) satisfies as follows:
E1(k, p, T ) = E1(T, p, T ), if k ≥ T. (5)

The number of 2nd-generation infected nodes after k-tick is as follows using
the number of 1st-generation infected nodes.

E2(k, p, T ) = E1(1, p, T ) · E1(k − 1, p, T )
+ (E1(2, p, T ) − E1(1, p, T )) · E1(k − 2, p, T )
+ (E1(3, p, T ) − E1(2, p, T )) · E1(k − 3, p, T )
+ · · ·
+ (E1(T, p, T ) − E1(T − 1, p, T )) · E1(k − T, p, T ) (6)

The number of 2nd-generation infected nodes does not include the number of
1st-generation infected nodes because the 1st-generation infected nodes can not
be infected twice. The value of (E1(T, p, T )−E1(T − 1, p, T )) means the number
of 1st-generation infected nodes which are infected at T -tick for the first time.
The number of nth-generation infected nodes similarly does not include the sum
from 1st-generation infected nodes to (n − 1)th-generation ones. We have the
following theorem to derive En(k, p, T ).

Theorem 1 Let n be a positive integer. If k � T then the following approx-
imation holds: En(k, p, T ) � E1(T, p, T )n.
Proof. We prove this by complete induction. We find the approximation E1(k −
1, p, T ) � E1(k − 2, p, T ) � · · · � E1(k − T, p, T ) � E1(T, p, T ) from Eq. (5)
because of k � T . The case of n = 1 is trivial. The assertion is true when n = 2
since we get E2(k, p, T ) � E1(T, p, T )2 from Eq. (6). Suppose that En(k, p, T ) �
E1(T, p, T )n (n ≥ 3). We have the number of (n+1)th-generation infected nodes
after k-tick as follows.

En+1(k, p, T ) = En(1, p, T ) · E1(k − 1, p, T )
+ (En(2, p, T ) − En(1, p, T )) · E1(k − 2, p, T )
+ · · ·
+ (En(T, p, T ) − En(T − 1, p, T )) · E1(k − T, p, T )

� En(T, p, T ) · E1(k − T, p, T )
� E1(T, p, T )n+1

The proof is done because En(k, p, T ) � E1(T, p, T )n (n ≥ 1) holds.
The total expected number of infected nodes after k-tick is subsequently the

sum of victims from the infection source (0-generation) to the kth-generation,
calculated as follows.

E(k, p, T ) =
k∑

i=0

Ei(k, p, T )

=
k∑

i=0

E1(T, p, T )i (7)

After k is close to infinity, the total expected number of infected nodes under
probability p of targeting and threshold T is calculated as follows.

I(p, T ) = lim
k→∞

k∑
i=0

E1(T, p, T )i

=
1

1 − E1(T, p, T )
, if E1(T, p, T ) < 1 (8)

The above equation derives the number of infected nodes when each victim sends
out T infection packets with probability p. Fortunately, our model is approxi-
mated to the calculation of the 1st-generation infection. We have the following
theorem about E1(k, p, T ).

Theorem 2 If k � T then E1(k, p, T ) = pT .
Proof. Transform E1(k, p, T ) using Eq. (4) as follows:

E1(k, p, T ) =
T∑

i=1

i · T Ci · pi(1 − p)T−i

= p ·
T∑

i=1

i · T CT−i · pi−1(1 − p)T−i

= p ·
T∑

i=1

T · T−1CT−i · pi−1(1 − p)T−i
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= pT ·
T∑

i=1

T−1Ci−1 · pi−1(1 − p)T−i

= pT · ((1 − p) + p)T−1

= pT.

If k ≥ T then E1(T, p, T ) = pT since E1(k, p, T ) = E1(T, p, T ). If E1(T, p, T ) < 1
then the value of I(p, T ) is finite in Eq. (8). Therefore, the coverage of our
threshold is as follows:

T <
1
p
. (9)

As a result, we have I(p, T ) as follows:

I(p, T ) =
1

1 − pT
, if T <

1
p
. (10)

3.6 Upper Bound of T

We can get the upper bound of T using Eq. (10) in the following steps.
( 1 ) Plural values of I(p, T ) are calculated from increments of T under a prob-

ability p.
( 2 ) The upper bound of T to satisfy the following equation is obtained.

I(p, T ) < u (11)
u is the upper bound of the expected number of infected nodes. We can obtain
the threshold according to the expected number of infected nodes by changing u.
For example, the setting u = 2 in Eq. (11) means that the total expected number
of infected nodes is finally less than two (the expected number of new infected
nodes is less than one only).

4. Computer Simulation with Sasser Worm

Our goal is to evaluate the expected number of infected nodes under probability
p and threshold T by using a computer simulation. We confirmed that the result
from our model precisely corresponds to the result of computer simulation under
the condition T < 1/p. In our evaluation, we assume that an actual scanning
malware has damaged the enterprise network.

We simulate the malware spreading by using a simple Monte Carlo simulator,
under the condition that containment software with the threshold is installed in

each node. We developed a simulation program with the same scanning strategy
as the Sasser worm (one of the most strategic scanning malwares). Note that
this program was developed independently of our model. Every address is mod-
eled to determine whether it is invulnerable, vulnerable or infected. A malware
selects only T addresses for scanning, and then stops its activity. To establish
reliable statistics on malware behavior, the computer simulation is repeatedly
run with different seeds. Since malware spreading is randomized differently on
each run, the result of one simulation will be different from the next. If the
selected address is vulnerable, the node is always infected. Also, if the selected
address is infected or invulnerable, the state of the node will be unchanged even
if it receives an infected packet. The difference between the computer simulation
and our model is that the probability of targeting a node can be changed in the
computer simulation.

Figure 4 shows that three kinds of values of I(p, T ) in our model fit the results
of computer simulation when the expected number of infected nodes is less than
about 10. In the computer simulation, the infection by a Sasser worm in the

Fig. 4 The relation between the result of computer simulation and the result of I(p, T ) in
our model using a Sasser worm in the subnet of class-B ((a) d = 0.1, (b) d = 0.05,
(c) d = 0.02).
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subnet of class-B of an enterprise network is considered. The set of experiments
we did involved the selected parameters: the size of the subnet of class-B: 216,
three kinds of vulnerable-node density (d): 0.1, 0.05 and 0.02, the correspond
number of vulnerable nodes (N = 216 · d): 6,554, 3,277 and 1,311, and the
corresponding probability (p): 0.0251, 0.0125 and 0.00502. The value of p is
calculated from Eq. (3) with N = Na = Nb. We consider the worst case that all
vulnerable nodes are included in Nb. We simulated 10,000 runs by varying T in
increments of 1, and plotted the average values.

In Fig. 4, the value of I(p, T ) in our model becomes larger than the result of
the computer simulation when the number of infected nodes becomes large, be-
cause the probability of targeting in our model is constant for simplicity (see
Section 3.2) and our computer simulation does not have such a premise. There-
fore, the probability of targeting might decrease as the number of infected nodes
increase.

5. Discussion

5.1 Coverage of Threshold
As mentioned in Section 2.2, Staniford’s threshold is derived under the con-

dition T > 1/vPN (T > 1/p). However, our threshold is derived under the
condition T < 1/p in Eq. (9). Note that T = 1/p (1/vPN ) is a singularity in both
models. In this section, we confirm that the coverage of the two above-described
thresholds is different.

We compare the results from both the Staniford model and our model with the
computer-simulation results under the same condition as stated in the previous
section. Figure 5 extends the x-axis of Fig. 4, and also includes the results from
the Staniford model. While Staniford’s result was calculated using Eq. (2), our
threshold is calculated using Eq. (11). For the expected number of infected nodes,
the Staniford model uses α · N but our model uses I(p, T ).

Regarding the range for fitting the computer-simulation results in Fig. 5, our
model is different from the Staniford model. Concretely, while the coverage of
the Staniford model is (a) T > 39.8 (1/0.0251) (b) T > 80.0 (1/0.0125) and
(c) T > 199 (1/0.00502), the coverage of our model is (a) T < 39.8, (b) T < 80.0
and (c) T < 199, respectively. In the Staniford model, threshold T cannot be

Fig. 5 The relation between the result of computer simulation and the results of both αN in
the Staniford model and I(p, T ) in our model using a Sasser worm in the subnet of
class-B ((a) d = 0.1, (b) d = 0.05, (c) d = 0.02).

calculated when (a) T < 39.8 (b) T < 80.0 and (c) T < 199. The boundary
points between the Staniford model and our model are (a) T = 39.8 (b) T = 80.0
and (c) T = 199. The target range of threshold T is clearly divided between
the Staniford model and our model. As shown in Fig. 4, therefore, our model is
suitable for evaluation of the expected number of infected nodes, to reduce the
number of infected nodes to below the threshold.

5.2 Approximation Calculation
We discuss Eq. (8) to explain about the approximation calculation. Since our

model considers generation infection, it must calculate the number of infected
nodes up to the number of kth-generation infections after k-tick. Fortunately,
our model is approximated to the calculation of the 1st-generation infections like
Eq. (7). We can therefore easily calculate the total expected number of infected
nodes from only the number of 1st-generation infections.

5.3 Effective Threshold
Although we can obtain the epidemic threshold (i.e., the boundary point in

Fig. 5) from Staniford model, this threshold is just the upper bound for preventing
the scanning malware from spreading in a network. We want to find the effective
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Table 1 The relation between the vulnerable-node density d in the subnet of class-B and
the upper bound of T to prevent a Sasser worm from spreading when I(p, T ) < 2.

d p #vulnerable nodes upper bound of T
(a) 0.1 0.0251 6,554 19
(b) 0.05 0.0125 3,277 39
(c) 0.02 0.00502 1,311 99

threshold which can estimate the number of infected nodes in the early stages of
infection. However, we did not obtain such a threshold T that satisfies I(p, T ) < u

(u is a small number) from the existing models. In our model, we can find T

such that I(p, T ) < u (i.e., the number of new infected nodes is less than u− 1).
Hence the condition pT < 1−1/u is obtained from Eq. (10). This means that the
expected number of infected nodes from a single victim must become less than
1 − 1/u in order to suppress the number of infected nodes to less than u.

6. Case Study

Intuitively, the higher the vulnerable-node density in the network becomes, the
easier spreading infection becomes. Table 1 gives the relation between the node
distribution of the network and the upper bound of T for a Sasser worm in the
subnet of class-B when I(p, T ) < 2. We use three kinds of density values as
used in Section 4 and 5. If we can lower the vulnerable-node density d, then we
can decrease the probability p. Hence we can reduce the threat of malware by
distributing nodes sparsely. As a result, the upper bound of the threshold can be
set higher. For example, we can set T = 19 when d = 0.1 and we can set T = 99
when d = 0.02, in the subnet of class-B.

From the viewpoint of suppressing the number of infected nodes, it is important
to expand the number of subnets and to lower the density of nodes in each subnet.
If the upper bound of the threshold can be raised, it implies that we can increase
the number of packets used for behavior checking of network communication by
an infected node.

7. Applying Our Model to a Real Network

7.1 Propagation Parameters
There are many propagation parameters on a real network, i.e., installation ra-

tio of security measures (personal firewall, anti-virus software, and patches), node
operation ratio, OS type distribution, and communication speed. The vulnerable-
node density in our model is determined by the non-installation ratio of anti-virus
software and patches, the OS type distribution, and node operation ratio. If a
node installs anti-virus software and patches or its OS type is different from
malware’s target, the node is excluded from vulnerable nodes. A non-operated
node is not also included in vulnerable nodes. However, we assume that the in-
stallation ratio of personal firewall is 100% as a premise. If a node without the
personal firewall is infected in a real network, it will keep propagating malwares
until detected. Our model does not treat such a situation. Furthermore, in our
model, we assume that the communication speed is constant in a network. Our
model does not treat the network with non-uniform communication bandwidth.

7.2 Decreasing of False Detection
There are two kinds of false detection (false positives and false negatives) in the

anomaly detection software. When our model is applied to the anomaly detection
software, we also have to consider how to decrease false detection.

Assume that the countermeasure software counts the destination of communi-
cation and then blocks the communication by the threshold T . The value of T

should be set small in order to suppress the number of infections. However, the
false positive will frequently occur if T is set small, because a legitimate node may
access many other nodes (e.g., HTTP client, SMTP server, and P2P services).
Thus, we consider how to suppress the false positives when our model is applied
to a real network. At first, we obtain the following information.
• p: The estimated probability of targeting. This implies the threat of envi-

sioned malwares.
• V : The maximum number of destination of normal communication by a

legitimate node. This is obtained by observation in a real network.
• d: The estimated vulnerable-node density.
• u: The upper bound of the expected number of infected nodes.

Then, T should be set higher than V in order to suppress the false positives. Of
course, we have to choose T such that I(p, T ) < u. However, if both I(p, T ) < u

and T > V are not satisfied, then we can increase the upper bound of T by
reducing d. For instance, we can increase the upper bound of T from 19 to 99
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by reducing the density d from 0.1 to 0.02 in Table 1. As a result, we would be
able to set the threshold which suppresses the false positives in a real network.

Of course, it is also important to decrease the false negatives. However, it is not
so important to minimize the false negatives from viewpoints of preventing the
malware from spreading. We assume that our model admits several infections.
As long as I(p, T ) < u is satisfied, it can suppress the number of infected nodes
to less than u even if some false negatives occur.

Therefore, we can use the threshold T such that T > V and I(p, T ) < u. Note
that we cannot always find such a threshold T because of a legitimate node access
in a network.

8. Conclusion

We proposed a “combinatorics proliferation model” based on discrete mathe-
matics (combinatorics) and derived the threshold T for satisfying I(p, T ) < u (u
is a small number), where I(p, T ) is the expected number of infected hosts. We
confirmed that the results from this model precisely correspond to the results of
computer simulation of malware spreading when T < 1/p is satisfied.

We demonstrated that the derived threshold has a reasonable value when we
used the strategic malware (Sasser worm) in a typical class-B network. Our model
can appropriately express the number of infected hosts in the early stages of
infection, and can derive the effective threshold to contain the scanning malware
in the enterprise network to a few infections only.
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