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Clause Splitting with Conditional Random Fields

Vinh Van Nguyen†, Minh Le Nguyen† and Akira Shimazu†

In this paper, we present a Conditional Random Fields (CRFs) framework for the
Clause Splitting problem. We adapt the CRFs model to this problem in order to
use very large sets of arbitrary, overlapping and non-independent features. We also
extend N-best list by using the Joint-CRFs (Shi and Wang 2007). In addition, we
propose the use of rich linguistic information along with a new bottom-up dynamic
algorithm for decoding to split a sentence into clauses. The experiments show that
our results are competitive with the state-of-the art results.

Key Words: Computational Linguistics, Partial Parsing, Clause Splitting

1 Introduction

Clause Splitting (CS) is the task of splitting a complex sentence into several clauses. This task

is important for various tasks such as machine translation, aligning parallel texts, text to speech

systems and transformation by natural language sentences into logical forms and it became the

shared-task problem in CoNLL 2001 (Tjong Kim Sang and Dejean 2001). CS is a deeper level of

partial parsing, which is the task of recovering only a limited amount of syntactic information.

Machine learning techniques in the last decade have permeated most areas of natural language

processing. The reason is that a vast number of machine learning algorithms have proved to be

able to learn from natural language data given a relatively small correctly annotated corpus.

Therefore, machine learning algorithms make it possible to within a short period of time develop

language resources (data analyzed on various linguistic levels) that are necessary for numerous

applications in natural language processing. For partial parsing such as CS, there is a lot of

interest in the design of learning systems which perform only a partial analysis of a sentence

(Abney 1991; Hammerton et al. 2002).

Recently, many machine learning methods have been successfully applied to partial parsing

tasks. Most learning models used for partial parsing tasks are discriminative models. These

approaches have reached the-state-of-the-art of partial parsing (Kudo and Matsumoto 2001; Car-

reras and Marquez 2005; Ando and Zhang 2005).

(Carreras and Marquez 2005) proposes the discriminative model, so-called FR-Perceptron

(Collins 2002) for recognizing structures of clauses. They used a global online learning algorithm
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to train a discriminative model for CS. However, FR-Perceptron updates the learning functions,

depending on the predictions on that example and computation time for the training and coding

process are time-consuming in large training sets as described below. This can be inefficient when

we apply CS to other applications.

This paper builds on the previous works described by (Nguyen et al. 2007) with a novel

and efficient method for CS as an alternative training method to FR-Perceptron. The CRFs

model (Lafferty, McCallum, and Pereira 2001) defines a conditional distribution over labeling

given an observation and it allows for the use of very large sets of arbitrary, overlapping and non-

independent features and has efficient training and decoding processes which both find globally

optimal solution. (Roark, Saraclar, Collins and Johnson 2004) claimed that “the CRFs method

does a better job of parameter estimation for the same feature set, and is parallelizable, so

that each pass over the training set can require just a fraction of the computation time of the

perceptron method”. Recently, there are many successful applications of CRFs including Shallow

Parsing (Sha and Pereira 2003) and Named Entity Recognition (McCallum and Li 2003).

However, using CRFs for CS is not completely simple because there are three weaknesses for

applying CRFs:

• The long distance dependence between a start position (S) and an end position (E) of a

clause. It is difficult for the conventional CRFs to deal with the problem of long distance

dependence between S and E. We see the example in Section 3, which shows that the

distance from the start position to the end position of the clause is long.

• Balancing between a number of start word positions and those of end word positions of

clauses in a sentence.

• The clauses can be embedded in the outer clauses.

To overcome the drawbacks mentioned above, we use N-best list by adapting the Joint-CRFs (Shi

and Wang 2007), and simultaneously we use rich linguistic information and propose a new bottom-

up dynamic algorithm for decoding. The experiments show that our results are competitive

with the previous results. Especially, the precision of our results performs better than that

of the previous methods. Additionally, with decoding process, our system is also more than

approximately 50 times faster than that of (Carreras and Marquez 2005) written in Perl.

The rest of this paper is structured as follows. Section 2 reviews related work. Section 3

formulates the Clause splitting problem. Section 4 briefly introduces linear chain CRFs and

Joint-CRFs and how to apply them to Clause Splitting. Section 5 describes and discusses the

experimental results. Finally, conclusions are given in Section 6.
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2 Related Work

Many supervised methods have been developed for Clause Splitting. (Carreras and Marquez

2005) used a discriminative model approach for it. They applied a global learning algorithm,

FR-Perceptron (Collins 2002) to recognize structure of clauses. They divided the problem into

two layers of local subproblems: a filtering layer, which reduces the search space by identifying

plausible clause candidates; and a ranking layer, which builds the optimal clause structure by

discriminating among competing clauses. A recognition-based feedback rule is presented, which

reflects to each local function its committed error from a global point of view, and follow to train

them together online as perceptrons. As a result, the learned function automatically behaves as

a filter and ranker, rather than as a binary classifier. The FR-Perceptron method shows the best

result for Clause Splitting now.

(Carreras, Marquez, Punyakanok, and Roth 2002) applied the Adaboost algorithm (Carreras

and Marquez 2001). They improved Clause Identification by using global inference on the top of

the outcome clauses hierarchically learned by local classifiers. Other approaches such as Maximum

Entropy, and Winnow are applied for CS too (Hachey 2002).

A number of different methods for the supervised learning approach were used for the CoNLL-

2001 shared task (Sang and Dejean 2001). These methods include boosting decision trees and

decision graphs, neural networks, memory-based learning, statistical, and symbolic learning (Car-

reras and Marquez 2001; Hammerton 2001; Tjong Kim Sang 2001).

3 Clause Splitting Problem

At a deeper level of partial parsing is clause splitting. A clause is a sequence of words in a

sentence and is a grammatical unit that includes, at minimum, a predicate and an explicit or

implied subject, and expresses a proposition. For example: given an input sentence:

Coach them in handling complaints so that they can resolve problems

immediately

The problem is to split a sentence into clauses as follows:

(Coach them in (handling complaints) (so that (they can resolve problems

immediately)))

The problem is more difficult than simply detecting non-recursive phrases in sentences. Clause

Splitting is divided into three parts: identifying clause starts, identifying clause ends, and finding

complete clauses (Sang and Dejean 2001).



Information and Media Technologies 4(1): 57-75 (2009)
reprinted from: Journal of Natural Language Processing 16(1): 47-65 (2009)
© The Association for Natural Language Processing

60

Formulation

Let X be a sentence space, and Y be a clause space. We can consider a model for finding

clauses as a function R : X �→ Y which, given a sentence x, identifies the set of clauses y ⊂ Y of

x ∈ X. First, we assume a filter function F which, given a sentence x consisting of a sequence

of n words (x1, x2, . . . , xn), identifies a set of candidate clauses, F (x) ⊆ P where P is the set of

all possible clauses. A candidate clause is represented as (s, e) for the sentence x where (s, e) is

the sequence of consecutive words from word xs to word xe, Second, we assume a score function

which, given a clause, produces a real-value prediction of the clause. We identify a set of clauses

for a sentence according to the following optimality criterion:

C(x) = argmaxy⊆F (x)

∑
(s,e)k∈y

score((s, e)k, x, y) (1)

in which C(x) is a set of clauses for a sentence x, and (s, e)k is a k-th clause in y.

We will identify the clause starts (Task 1) and the clause ends (Task 2) to predict a set of

candidate clauses for finding complete clauses (Task 3).

4 Applying CRFs to Clause Splitting

In this section, we show how to overcome the drawbacks of applying CRFs and Joint-CRFs to

CS as mentioned in the introduction. First, we present an overview of the CRFs and Joint-CRFs

models, we then propose a decoding algorithm as well as exploiting rich linguistic information to

deal with the problem when applying CRFs and Joint-CRFs to CS.

4.1 Conditional Random Fields

Conditional Random Fields (CRFs) (Lafferty et al. 2001) are undirected graphical models

used to calculate the conditional probability of values on designated output nodes, given values

assigned to other designated input nodes for data sequences. CRFs make a first-order Markov

independence assumption among output nodes, and thus correspond to finite state machine

(FSMs).

Let o = (o1, o2, . . . , oT ) be some observed input data sequence, such as a sequence of words

in a text (values on T input nodes of the graphical model). Let S be a finite set of FSM states,

each is associated with a label l such as a clause start position. Let s = (s1, s2, . . . , sT ) be some

sequences of states (values on T output nodes). CRFs define the conditional probability of a

state sequence given an input sequence to be



Information and Media Technologies 4(1): 57-75 (2009)
reprinted from: Journal of Natural Language Processing 16(1): 47-65 (2009)
© The Association for Natural Language Processing

61

PΛ(s|o) =
1
Zo

exp

(
T∑

t=1

F (s, o, t)

)
(2)

where Zo =
∑

s exp
(∑T

t=1 F (s, o, t)
)

is a normalization factor over all state sequences. We

denote δ to be the Kronecker-δ. Let F (s, o, t) be the sum of CRFs features at time position t:

∑
i

λifi(st−1, st, t) +
∑

j

λjgj(o, st, t) (3)

where fi(st−1, st, t) = δ(st−1, l
′
)δ(st, l) is a transition feature function which represents sequential

dependencies by combining the label l
′

of the previous state st−1 and the label l of the current

state st, such as the previous label l
′

= AV (adverb) and the current label l = JJ (adjective).

gj(o, st, t) = δ(st, l)xk(o, t) is a per-state feature function which combines the label l of current

state st and a context predicate, i.e., the binary function xk(o, t) that captures a particular

property of the observation sequence o at time position t. For instance, the current label is JJ

and the current word is “conditional“.

Training CRFs

Let Λ = {λi, λj} be the set of weights in a CRFs model. Λ is set to maximize the conditional

log-likelihood of state sequences in some training set, D = {〈o, s〉(1), . . . , 〈o, s〉(N)}:

LΛ =
N∑

j=1

log
(
pΛ(s(j)|o(j))

)
−

∑
k

λ2
k

2σ2
(4)

where the second sum is a Gaussian prior over parameters (with variance σ2) which provides

smoothing to avoid overfitting in the training data.

When the training labels make the state sequence unambiguous, the likelihood function in

exponential models such as CRFs is convex, and finding the global optimum is guaranteed. Pa-

rameter estimation of a CRFs model requires an iterative procedure. Currently, various methods

can be used to optimize LΛ, including Iterative Scaling algorithms such as GIS and IIS (Lafferty

et al. 2001), and quasi-Newton methods such as L-BFGS (Sha and Pereira 2003). Among these

methods, L-BFGS is the most efficient (Malouf 2002; Sha and Pereira 2003).

L-BFGS requires only that one provides the first-derivative of the function to be optimized.

Let s(j) denote the state path of training sequence j, and then the first-derivative of the log-

likelihood is

δLΛ

δλk
=

⎛
⎝ N∑

j=1

Ck(s(j), o(j))

⎞
⎠ −

⎛
⎝ N∑

j=1

∑
s

pΛ(s|o(j))Ck(s, o(j))

⎞
⎠ − λk

σ2
(5)
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in which Ck(s, o) is the count of feature fk, given s and o. The first two terms correspond to the

difference between the empirical and the model expected values of feature fk. The last term is

the first-derivative of the Gaussian prior.

Inference in CRFs

Given the conditional probability of the state sequence defined in (2) and set of the parameters

Λ = {λ, . . . }, inference in CRFs is to find the most likely state sequence s∗ subject to:

s∗ = argmaxspΛ(s|o) = argmaxsexp

(
T∑

t=1

F (s, o, t)

)

We can efficiently calculate s∗ with the Viterbi algorithm (Rabiner 1989). For Viterbi algo-

rithm, we use the table for storing the probability of the most likely path up to time t, which

accounts for the first t observations and ends in state si. We define this probability to be ϕt(si)

(0 ≤ t ≤ T − 1), (si ∈ S), where ϕ0(si) is the probability of starting in each state si. We are

given a recursive formulation as follows:

ϕt+1(si) = maxsj{ϕt(sj)exp(F (s, o, t))} (6)

where sj ∈ S. The formula (6) terminates in the most likely state si
∗ where si

∗ = argmaxsi
[ϕT (si)].

From si
∗, we can backtrack through the dynamic programming table to recover s∗.

4.2 Joint Conditional Random Fields

There is the limitation of applying CRFs to three sub problems: If we process Task 1, Task

2, and Task 3 separately then errors in processing nearly always cascade through chain, causing

errors in the final output. To tackle this limitation, we introduce the use of Joint-CRFs of

Task 1, Task 2, and Task 3. Our Joint-CRFs models is based on the Dual-layer Conditional

Random Fields developed by (Shi and Wang 2007) for segmentation and tagger. We combine

three subproblems: Task 1, Task 2, and Task 3 using the joint probability model with Joint-CRFs.

Let W = {W1,W2, . . . ,Wn} denote the observed sentence where Wi is the i-th word in the

sentence, S = {S1, S2, . . . , Sk} denotes a label of Task 1 where Si ∈{a start position word (S),

or a word which is not a start position word (*)}, E = {E1, E2, . . . , Em} denotes a label of

Task 2 where Ei ∈{an end position word (E), or a word which is not an end position word (*)},
C = {C1, C2, . . . , Cm} denote a label of a clause where Ci ∈ {the named clause labels for Task

3} (we can see the example in Section 5 in more detail). Our goal is to identify a start word of

clause, an end word of clause and a boundary label of a clause that maximize the joint probability

P (S,E,C|W ). We can formulate the joint problem as follows:
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〈(S,E)∗, C∗〉 = arg max
S,E,C

P (S,E,C|W )

= arg max
S,E,C

P (C|(S,E),W )P (S,E|W ) (7)

≈ arg max
S,E,C

P (C|S1, S2, . . . , Sn, E1, E2, . . . , Em)P (S,E|W )

= arg max
S,E,C

P (C|Identify(S,E,W ))P (S,E|W ) (8)

≈ arg max
S,E,C

P (C|Identify(S,E,W ))P (S|W )P (E|W ) (9)

where (S,E)∗ and C∗ is the most likely (boundary label at the start word, boundary label at the

end word) and a boundary label of a clause, respectively, Identify(S,E,W ) = {S1, S2, . . . , Sn,

E1, E2, . . . , Em} is a set of the result of Task 1 and Task 2.

Applying Bayes’s theorem, the above joint probability P (S,E,C|W ) is factorized into two

terms, P (C|(S,E),W ) and P (S,E|W ). The first term represents the conditional probability of

Task 3, given the result of Task 1 and Task 2 (Identify(S,E,W )), the second term represents

the conditional probability of Task 1 and Task 2 given W . Note P (S,E|W ) ≈ P (S|W )P (E|W ),

assuming that identifying a start word of clause (S) and identifying an end of word (E) of clause

is independent together, in which P (S|W ) and P (E|W ) are the conditional probability of Task

1 given W and the conditional probability of Task 2 given W , respectively.

In training, the probability P (S,E,C|W ) can be rewritten (according to formula 2) as:

P (S,E,C|W ) ≈ P (C|Identify(S,E,W ))P (S|W )P (E|W )

=
1

Zo(C)
1

Zo(S)
1

Zo(E)

exp

(
T∑

t=1

F1(s1, o1, t)

)
exp

(
T∑

t=1

F2(s2, o2, t)

)
exp

(
T∑

t=1

F3(s3, o3, t)

)
(10)

where F1, F2 and F3 are the sum of CRFs features of Task 1, Task 2 and Task 3, respectively and

Zo(C), Zo(S) and Zo(E) are the normalizing term of the probability P (C|Identify(S,E,W )),

P (S|W ) and P (E|W ), respectively. Their properties and functions are the same as common

CRFs described in 4.1.

We can consider the learning process into two steps: one for learning the first layer of Task 1

(S) and Task 2 (E), and one for learning the second layer of Task 3.

N-best List Approximation for Decoding

Adopting (Shi and Wang 2007), we also use a N-best list approximation method. We

limit our reranking targets to the N-best list Ψ = {S1, E1, S2, E2, . . . , SN , EN}, in which Ψ =
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{S1, E1, S2, E2, . . . , SN , EN} is ranked by the probability P (S|W ) and P (E|W ). Therefore, max-

imum of the joint probability P (S,E,C|W ) can be defined approximately:

〈(S,E)∗, C∗〉 = arg max
S,E,C

P (S,E,C|W )

≈ arg max
(S,E)∈Ψ,C

P (S,E,C|W ) (11)

≈ arg max
(S,E)∈Ψ,C

P (C|Identify(S,E,W ))P (S|W )P (E|W ) (12)

We obtain the N-best list of Task 1 (S) and Task 2 (E) and their corresponding probabil-

ities P (S|W ) and P (E|W ) (S,E ∈ Ψ) by using a combination of forward Viterbi and back-

ward A* search. Given a particular S and E, the most clause boundaries and its probability

P (C|identify(S,E,W )) can be calculated by the Viterbi algorithm in section 4.1.

4.3 Features

The set of features we use is the same as that of features reported in (Carreras and Marquez

2005). The set of features includes features at word level and features at sentence level.

Features at word level

The features are used with a window representation of size 2. For a window centered at the

the word xt, we use the following features extracted from (xt−2, xt−1, xt, xt+1, xt+2). Where x

can be:

• Word form (w) and POS tag (p).

• Chunking tag (c).

• Count: the number of a particular linguistic element which appear in a sentence fragment.

We consider two fragments of a sentence, with separate features for each: from the be-

ginning of the sentence to wi (CountBegin), and from wi to the end (CountEnd). The

linguistic elements are enumerated as follows:

– Relative pronouns (e.g “that”, “where”, “who”, “which”, “whom”, “whose”)

– Punctuation marks (. , ; :)

– Quotes

– Verb phrase chunks

– Relative phrase chunks

The feature templates at word level is described in Table 1.

Features at sentence level

These features are used for capturing long-distance dependencies and identifying the clause
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boundaries of a clause candidate (s, e):

• Top-most structure: A pattern representing the relevant elements of the top-most structure

forming the candidate from s to e. The following elements are used to form the pattern:

– Punctuation marks

– Coordinate conjunctions (e.g., “and”, “or”)

– The word “that”

– Relative pronouns (e.g., “that”, “which”, “who”, “whom”, “whose”)

– Verb phrase chunks

– The top clause within the [xs, . . . , xe]

where the pattern only considers the top-most structure.1 We will ignore a clause which

appears in the pattern. For example, the pattern for the clause “((to raise)VP rates on

containers (carrying U.S. exports to Asia)S about 10%)“ is VP-%-S-%.

• The number of clauses found inside the candidate [xs, . . . , xe].

4.4 Decoder for Clause Splitting

As mention in section 1 with three weakness, we do not apply CRFs to Task 3 directly.

In this section, we will describe an algorithm for decoding Clause Splitting in a segment of a

sentence from l to r. It is a dynamic algorithm presented in Figure 1 as a recursive function.

We use results of Task 1 and Task 2 as input of Task 3. Array mstart[] = [s1, s2, . . . , sh] and

mend[] = [e1, e2, . . . , em] store results of Task 1 (si where i ∈ 1, . . . , h is i-th start word position

of a clause) and Task 2 (ej where j ∈ 1, . . . ,m is j-th end word position of clause) respectively

Table 1 Feature templates at word level

Transition feature templates

Current state: st Previous state: st−1

l l
′

Per-state feature templates

Current state: st Context predicate: x(o, t)

l wt−2; wt−1; wt; wt+1; wt+2

pt−2; pt−1; pt; pt+1; pt+2

ct−2; ct−1; ct; ct+1; ct+2

CountBegin(wn)

CountEnd(wn)

where n ∈ {t − 2, t − 1, t, t + 1, t + 2}

1 we use the term “top-most structure” according to (Carreras and Marquez 2005)
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Fig. 1 Dynamic Algorithm for Clause Splitting

in a segment (0, n); mstart.size() = h and mend.size() = m are the number of mstart array

elements and mend array elements respectively. Set Γ = {s1, s2, . . . , sh, e1, e2, . . . , em−1}. Bidi-

mensional array BestClause[l, r] stores clauses with an optimal split found in (l, r). Bidimensional

array score[l, r] stores the score of the clause candidate (l, r). Recursive function FindClause in

Figure 1 includes 4 parameters l, r, i, j, in which i and j are indexes of mstart[] and mend[]

respectively. FindClause(l, r, i, j) finds an optimal clause split for the segment (l, r) and stores

it in BestClause[l, r]. The call to the function FindClause(0, n, 0,mend.size()) scans the whole

sentence and the optimal clause split for the sentence is stored in BestClause[0, n], in which n is

the length of the sentence. What the algorithm does is roughly interpreted as follows:

Let l be a start position of a candidate clause and r be an end position of it. Such positions

are based on Task 1 and Task 2. The algorithm picks up all candidate clauses and find the

optimal split position k between l and r. The optimal split position is calculated using the score

function described below. All candidate clauses (l, r) are checked using the recursive function

FindClause(l, r, i, j), where i represents information about possible right positions to l and j

possible left position to r. The algorithm starts from the longest segment (an input sentence) (0,

n), and narrow down the segment using the parameter i and j.

In the Figure 1, beginning from line 4 to line 9 of the function uses two recursive calls on

the sentence segment to enumerate all clause candidates (si, ej) (si ∈ mstart[], ej ∈ mend[]) of

segment (l, r). Line 10 of the function finds the optimal split k∗ for the current sentence segment.

The line 11 will assign the union of two disjoint splits BestClause[l, k∗] and BestClause[k∗+1, r]

which covers the segment (l, r) to BestClause[l,r] of (l, r) segment. The line 12 and 13 treat the
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case that a clause (l, r) is added to BestClause[l, r].

A sentence requires a function call for each clause candidate and there is a quadratic number

of clause candidates over a number of start words and end words in the sentence. The function

consumes a linear time for selecting the optimal split plus the cost of the scoring function. Con-

sequently, computation time of identifying a clause split in a sentence is O(n2(n + cost(score)))

where n is a number of start words and end words in a sentence. Because n is so small, compu-

tation time of CS is consumed essentially by computation time of Viterbi algorithm calculating

cost(score).

Scoring

It is essential that we identify the score of a candidate clause. We use the Viterbi algorithm

in the decoding process for Task 3. Denote Ω as a set of boundary labels of clauses in the outputs

which Viterbi algorithm produces to predict labels of clauses in (l, r) segment. The score of a

candidate clause (l, r) is defined as follows:

score(l, r) =
∑

sk∈Ω

ϕT (sk) (13)

in which ϕT (sk) is that of (6).

We can smooth the score(l, r) of a candidate clause (l, r) using some linguistic elements of

clause candidate (l, r):

• verb phrase chunks: n1

• Punctuation marks: n2

• Coordinate conjunctions (e.g “or”, “and”): n3

• Relative pronouns (e.g “that”, “which”, “whose”, “who”, “whom”): n4

Finally, we define score(l, r) below:

score(l, r) =
∑

sk∈Ω

ϕT (sk) +
4∑

i=1

count(ni) (14)

in which count(ni) is the number of ni in clause candidate (l, r).

5 Experiments

We conducted the experiments and evaluated the results with our CRFs framework. We

used the Penn Treebank which is used in the CoNLL 2001 shared task2 (Sang and Dejean 2001)

2 Data sets are available at http://www.cnts.ua.ac.be/conll2001/clauses/
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as data for training and testing the clause splitting. WSJ sections from 15 to 18 were used as

training data (8,936 sentences), section 20 as development data (2,012 sentences), and section

21 as test data (1,671 sentences). The data of the CoNLL 2001 shared task includes sentences

with words, the clause split solutions, POS labels and chunks labels. The data files contain four

column separated by a blank space. Each token (a word or a punctuation mark) is put on a

separate line and there is an empty line after each sentence. The first item on each line is a

token, the second is the part-of-speech tag of the token, the third is a chunking tag of the token,

and the fourth is the named clause label. For Task 1, the label of each token defines whether

the token is not a start position word of a clause (*), or a start position word of a clause (S).

For Task 2, the label of each token defines whether the token is not an end position word of a

clause (*), or an end position word of a clause (E). For Task 3, the label of each token defines

whether the token is not a boundary label of a clause (*), or a boundary label of a clause {(S*,

*S), *S)S)S), . . . }. The clause labels of the example in section 3 is described in Table 2. In our

system, we used CRF++ (V0.44)3 to implement the CRFs framework.

We evaluated clause splitting based on the standard measures which are widely used in Infor-

mation Retrieve (Rijsbergen 1986): precision (p) - the proportion of correctly recognized clauses

in output, recall (r) - the proportion of correctly recognized clauses in correct clauses and their

harmonic mean F1. Let | . | be the number of elements in a set. The computation of the

evaluation in a test set including k elements {(xi, yi)}k
1 can be formulated below:

Table 2 Labels of Task 1, Task 2 and Task 3. The first and second columns show labels of Task 1 and

labels of Task 2, respectively. The third columns shows labels of Task 3

Word Start(Task 1) End(Task 2) Task 3

Coach S * (S*

them * * *

in * * *

handling S * (S*

complaints * E *S)

so S * (S*

that * * *

they S * (S*

can * * *

resolve * * *

problem * * *

immediately * E *S)S)S)

3 CRF++ is available at http://chasen.org/∼taku/software/CRF++/
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p =
∑k

i=1 |yi ∩ R(xi)|∑k
i=1 |R(xi)|

r =
∑k

i=1 |yi ∩ R(xi)|∑k
i=1 |yi|

F1 =
2pr

p + r

where R(xi) is a set of clauses that are identified for a sentence xi.

For Task 1 and Task 2, we used the framework CRFs with the set of features in section 4.3 as

unigram feature templates. We also used some constraints for Viterbi algorithm in the formula

(6) as follows:

• Start position of a clause must be the boundary of a chunk.

• End position of a clause must be the boundary of a chunk.

We combined outputs of Task 1 and Task 2 with chunking tag respectively to enrich the depen-

dence of its linguistic information. This combining is described in Table 3. The results of Task

1 and Task 2 are shown in Table 4.

We experimented on Task 1 and Task 2 with a set of features as bigram feature templates.

The results of Task 1 and Task 2 are shown in Table 5. They show that F1 value of Task 1 for

the test set improves 0.61% and F1 value of Task 2 for the test set improves 0.94%.

We also experimented Task 1, Task 2 and Task 3 using Joint-CRFs with a set of features as

Table 3 Integrating Output tag of Task 1 and Task 2 with chunking tag. The first and second columns

show words and POS tags, respectively. The Chunking tag are shows in the third column, in

BIO notation. The forth and fifth columns show the outputs of Task 1 and Task 2, respectively.

The sixth and seventh columns annotate combining outputs of Task 1 and Task 2 with chunking

tag, respectively

Word Tagger Chunking tag Start

(Task 1)

End

(Task 2)

Start (Task 1)-

Chunk

End (Task 2)-

Chunk

Interactive JJ B-NP S * S-B-NP *-B-NP

Telephone NN IN-P * * *-I-NP *-I-NP

Technology NN I-NP * * *-I-NP *-I-NP

. . . . . . . . . . . . . . . . . . . . .

Possibilities NNS I-NP * E *-I-NP E-I-NP

. . O * E *-O E-O

Table 4 Task 1 and Task 2 results (unigram)

Category Precision Recall F1

Testa1 (Dev) 96.14% 92.63% 94.35%

Testb1 94.87% 91.56% 93.19%

Testa2 (Dev) 91.31% 88.09% 89.67%

Testb2 90.29% 87.93% 89.09%
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bigram feature templates. We chose N = 10 for using in the N-best list. Our results are shown

on Table 5. The Joint-CRFs method shows 0.22 %and 0.21 % improvement in F1 of Task 1 and

Task 2, respectively.

5.1 Using CRFs and Joint-CRFs to predict score

We used CRFs and Joint-CRFs (joint with Task 1, and Task 2) with the bigram feature

templates for Task 3 presented in Section 4.3. Then we used the formula (6) for Viterbi algorithm

to count score(l, r) of clause candidate (l, r) segment using the score function (13). The result

of Task 3 (identifying the clauses) is shown in Table 6. The F1 performance of Task 3 using

Joint-CRFs improves by 0.31% compared with that of Task 3 using CRFs.

5.2 Combining linguistic information

We improved F1 value of Task 3 by using linguistic information for smoothing the score

function presented in Section 4.4 and the score function is defined as the formula (14). The

result is showed in Table 7. The F1 performances are 84.09% and 84.66%, which are improved

by 1.25% and 1.51% compared with the case of using the formula (13), respectively. The Table

Table 5 Task 1 and Task 2 results (unigram + bigram)

Category
CRFs Joint-CRFs

Precision Recall F1 Precision Recall F1

Testa1 (Dev) 96.67% 92.85% 94.72% 96.83% 92.97% 94.86%

Testb1 95.23% 92.42% 93.80% 95.51 % 92.58% 94.02%

Testa2 (Dev) 92.54% 88.95% 90.71% 92.80% 89.16 % 90.94%

Testb2 91.55% 88.56% 90.03% 91.69% 88.02% 90.23%

Table 6 Task 3 results (unigram + bigram)

Category
CRFs Joint-CRFs

Precision Recall F1 Precision Recall F1

Testa3 (Dev) 87.62% 80.04% 83.66% 88.28% 80.16% 84.03%

Testb3 87.97% 78.45% 82.84% 88.35% 78.53% 83.15%

Table 7 Task 3 results (bigram + adding linguistic information)

Category
CRFs Joint-CRFs

Precision Recall F1 Precision Recall F1

Testa3 (Dev) 89.07% 80.30% 84.46% 90.01% 80.47% 84.97%

Testb3 90.01% 78.98% 84.09% 91.03% 79.13% 84.66%
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7 also shows that the F1 performance using Joint-CRFs outperforms 0.57 % higher than using

CRFs.

Table 8 shows a comparison of our methods with the previous works on the same training

and testing data. The results also show that our method is comparable to that of (Carreras

and Marquez 2005), which is the state-of-the art result, and outperformed other methods. We

see that the result of (Carreras and Marquez 2005) outperforms slightly our result because they

combine the three tasks of CS together with end to end while we combine the three task with

an intermediary role. With the error-driven method, they feedback errors on training process.

However, our method shows precision improves that of other methods. This is very useful when

we apply CS for other applications such as machine translation because the clauses need to be

identified correctly.

We carried out statistical significance tests using the t-test. Pairwise t-test showed that the

precision of our results is significantly better than that of the result of (Carreras and Marquez

2005) under the significant level 4.98 × 10−6(p-value).

5.3 Evaluating decoding speed

Table 9 shows the average decoding time of a test set and that per a sentence by two methods

our method and Carreras et al. 05 on Intel(R) Xeon(TM) CPU 3.06GHz, 4G RAM machine

with Fedora Core 5. The result shows that the computation time of our system improves that of

Carreras et al. 05, by the approximate factor of 50, though the experiment of our method was

implemented in C++, and that of Carreras et al. 05 in Perl4.

Table 8 Comparison of our result and previous results

Reference Technique Precision Recall F1

Carreras et al. 05 FR-Perceptron 88.17% 82.10% 85.03%

Our method Joint-CRFs 91.03% 79.13% 84.66%

Carreras et al. 02 AdaBoost class 90.18% 78.11% 83.71%

Carreras et al. 01 AdaBoost class 84.82% 78.85% 81.73%

Monila and Pla 01 HMM 70.85% 70.51% 70.68%

4 We also measured the simple task such as QuickSort algorithm for C++ and Perl with 10 random test sets
of 1 millions real numbers. The result showed that the computation time of QuickSort algorithm in C++ is
faster than that in Perl, by the average factor of 25.
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Table 9 Comparison of the decoding time

Reference Decoding time of the test set Decoding time per sentence

Our system 336 sec 0.20 sec

Carreras et al. 05 16503 sec 9.8 sec

Table 10 Task 3 results (with gold standard result Task 1 & Task 2)

Category Precision Recall F1

Testa3 (Dev) (bigram) 90.34% 80.52% 85.15%

Testa3 (Dev) (bigram + adding linguistic information) 92.96% 80.97% 86.55%

Testb3 (bigram) 90.37% 78.97% 84.28%

Testb3 (bigram + adding linguistic information) 92.19% 80.58% 85.99%

5.4 Relation between performance of Task 3 and results of Task 1 and

Task 2

In order to test how the results of Task 1 and Task 2 effect on the performance of Task 3, we

conducted an experiment by performing Task 3 using the gold standard data of Task 1 and Task

2. Table 10 shows that F1 values of the Task 3 are 84.28% and 85.99% with adding linguistic

information, respectively. We see that the results of using the gold standard data of Task 1 and

Task 2 (85.99%) could improve our results (84.09%). This explains that the performance of Task

1 and Task 2 are important to the result of splitting clause. However, the main errors of the Task

3 are the miss-corresponding of the starting point (the result of Task 1) and the ending point

(the result of Task 2). These errors are caused by the inappropriate scores in decoding algorithm.

Our future work is focused on how to find a better scoring method for the decoding algorithm.

6 Conclusion

In this paper, we have presented the CRFs-based framework approach for clause splitting.

We have proposed a new bottom-up dynamic algorithm for decoding and some effective linguis-

tic information for clause splitting. We compared the results of exploiting our framework to

the previous works in the CONLL 2001 shared task. The experiments show that our result is

competitive with the state-of-the-art results of clause splitting.
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