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Abstract

A ladder lottery, known as the “Amidakuji” in Japan, is a common way to
choose a permutation randomly. A ladder lottery L corresponding to a given
permutation π is optimal if L has the minimum number of horizontal-lines
among ladder lotteries corresponding to π. In this paper we show that for
any two optimal ladder lotteries L1 and L2 of a permutation, there exists a
sequence of local modifications which transforms L1 into L2. We also give an
algorithm to enumerate all optimal ladder lotteries of a given permutation.
By setting π = (n, n − 1, . . . , 1), the algorithm enumerates all arrangements
of n pseudolines efficiently. By implementing the algorithm we compute the
number of arrangements of n pseudolines for each n ≤ 11.
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5 1 4 3 2

1 2 3 4 5

Figure 1: An optimal ladder lottery of the permutation (5,1,4,3,2).

1. Introduction

A ladder lottery, known as the “Amidakuji” in Japan, is a common way
to choose a permutation randomly. Formally, a ladder lottery L of a permu-
tation π = (p1, p2, . . . , pn) is a network with n vertical lines (lines for short)
and many horizontal lines (bars for short) each of which connects two con-
secutive vertical lines. The i-th line from the left is called line i. The top
ends of lines correspond to π. The bottom ends of lines correspond to the
identical permutation (1, 2, . . . , n). See Figure 1. Each number pi in π starts
the top end of line i, and goes down along the line, then whenever pi comes
to an end of a bar, pi goes horizontally along the bar to the other end, then
goes down again. Finally pi reaches the bottom end of line pi. We can regard
a bar as a modification of the current permutation, and a sequence of such
modifications in a ladder lottery always results in the identical permutation
(1, 2, . . . , n).

A ladder lottery of a permutation π = (p1, p2, . . . , pn) is optimal if it
consists of the minimum number of bars among ladder lotteries of π. Let L
be an optimal ladder lottery of π and m be the number of bars in L. Then
we can observe that m is equal to the number of “inversions” of π, which is
a pair (pi, pj) in π with pi > pj and i < j. The ladder lottery in Figure 1
has seven bars, and permutation (5,1,4,3,2) has seven inversions: (5,1), (5,4),
(5,3), (5,2), (4,3), (4,2) and (3,2), so the ladder lottery is optimal.

The ladder lotteries are strongly related to primitive sorting networks,
which are deeply investigated by Knuth [4]. A comparator in a primitive
sorting network replaces pi and pi+1 by min (pi, pi+1) and max (pi, pi+1), while
a bar in a ladder lottery always exchanges them.

In this paper we give an efficient algorithm to enumerate all optimal
ladder lotteries of a given permutation π.
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n The number of combinatorial structures
of arrangements of n pseudolines

1 1
2 1
3 2
4 8
5 62
6 908
7 24,698
8 1,232,944
9 112,018,190
10 18,410,581,880
11 5,449,192,389,984

Table 1: The number of arrangements of n ≤ 11 pseudolines

One of our motivations lies in algebraic combinatorics on Coxeter groups
[3]. Let W be a Coxeter group. Given π ∈ W , to compute the number of
commutativity classes [11] of all reduced decompositions of π is one of im-
portant unsolved problems, even for an element of the Coxeter group of type
An−1. By using our algorithm, one can compute the complete list of the com-
mutativity classes of π in the symmetric group Sn of degree n (the Coxeter
group of type An−1). In this case, one can regard the set of commutativity
classes of π as the set of optimal ladder lotteries of π.

By setting π = (n, n − 1, . . . , 1), our algorithm can efficiently enumerate
all arrangements of n pseudolines. A pseudoline is an x-monotone curve in
the plane, and an arrangement is a set of pseudolines in which every pair of
pseudolines intersects exactly once. Arrangements of pseudolines are one of
important and appealing objects in the area of geometry and combinatorics.

By implementing our algorithm we compute the number of arrangements
of n pseudolines for each n ≤ 11 (Table 1). Only the numbers for n ≤ 10
were known [4, 13] and this is the first report for n = 11.

In this paper we show a result similar to the Wagner’s theorem. In 1936
Wagner [12] showed that, for any two maximal planar graphs G1 and G2

having the same number of vertices, there exists a sequence of local modifi-
cations, called diagonal flip, which transforms G1 into G2.

3



(a)

5 2 4 3

5

5

5

2

2

4

4

4

3

3

3

1

1

1

1

1
5

5

3

5

2

2

4

4

4

3

5
3

1

1

1

1 5

1 2 3 4 5

(b)

5 2 4 3 1

1 2 3 4 5

left-swap

right-swap

bu

by
bx

bd

bw
bz

Figure 2: A local swap operation.

Let Sπ be the set of all optimal ladder lotteries of a given permutation π.
A local swap operation, which corresponds the notion of “braid relation” in
the area of algebra, is a local modification of a ladder lottery as shown in Fig-
ure 2. Note that applying a local swap operation to L1 ∈ Sπ results in other
L2 ∈ Sπ, since the local swap operation preserves the local permutation. We
show that, for any two optimal ladder lotteries L1 and L2 of a permutation,
there exists a sequence of local swap operations which transforms L1 into L2.

We also give an algorithm to enumerate all optimal ladder lotteries of a
given permutation. Our algorithm generates all ladder lotteries in O(1) time
for each in worst case. To the best of our knowledge this is the first such
algorithm.

The idea of our enumeration algorithm is as follows. We first define a
tree structure Tπ, called family tree (see Figure 3), among ladder lotteries
in Sπ, in which each vertex of Tπ corresponds to each ladder lottery in Sπ

and each edge of Tπ corresponds to a relation between two ladder lotteries
which can be transformed to the other by one local swap operation. Then we
design an efficient algorithm to generate all child vertices of a given vertex in
Tπ. Applying the algorithm recursively from the root of Tπ, we can generate
all vertices in Tπ, and also corresponding all ladder lotteries in Sπ. Based
on such tree structure and some other ideas a lot of efficient enumeration
algorithms are designed [1, 7, 8, 9, 14].

The rest of the paper is organized as follows. Section 2 gives some def-
initions. Section 3 defines the tree structure among ladder lotteries in Sπ.
Section 4 gives an efficient algorithm to enumerate all ladder lotteries in Sπ.
Finally Section 5 is a conclusion.
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Figure 3: The family tree Tπ, where π = (5, 6, 3, 4, 2, 1).
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2. Preliminary

A ladder lottery L of a permutation π = (p1, p2, . . . , pn) is a network with
n vertical lines (lines for short) and many horizontal lines (bars for short)
each of which connects two consecutive vertical lines. The i-th line from the
left is called line i. The top ends of the n lines correspond to π. The bottom
ends of the n lines correspond to the identical permutation (1, 2, . . . , n). See
Figure 1. Each number pi in π starts the top end of line i, and goes down
along the line, then whenever pi comes to an end of a bar pi goes to the
other end and goes down again, then finally pi reaches the bottom end of
line pi. This path is called the route of number pi. We can regard a bar as a
modification of the current permutation, and a sequence of such modifications
in a ladder lottery always results in the identical permutation (1, 2, . . . , n).

Let π = (p1, p2, . . . , pn) be a permutation. An inversion of π is a pair
(pi, pj) with pi > pj and i < j. Let m be the number of inversions of π. We
can observe that any ladder lottery of π contains at least m bars, since each
bar “cancels” at most one inversion of the “current” permutation (see, e.g.,
[5, 5.3.4 Figure 45]). If a ladder lottery L contains exactly m bars, then we
say that L is optimal.

A local swap operation is a local modification of a ladder lottery as shown
in Figure 2. Note that the dashed circle contains only three bars. Also note
that applying this modification to an optimal ladder lottery of π results in
other optimal ladder lottery of π, since the local swap operation preserves
the local permutation. A local swap operation (a) to (b) in Figure 2 is called
a left swap operation to bar bu and we say bu is left swapped. Note that in
Figure 2 the left swap operation moves bar bu from the (upper) right of the
route of 5 to the (lower) left. We say a bar bu can be left swapped if (i) there
is no endpoint between the right end of bu and the right end of a bar by

locating below bu, and (ii) there is exactly one right end of a bar bx between
the left end of bu and the left end of by (see Figure 2(a)). Similarly, a local
swap operation (b) to (a) in Figure 2 is called a right swap operation to bar
bd and we say bd is right swapped. Note that the operation moves bar bd from
the (lower) left of the route of 5 to the (upper) right. We say a bar bd can be
right swapped if (i) there is no endpoint between the left end of bd and the
left end of a bar bw locating above bd, and (ii) there is exactly one left end of
a bar bz between the right end of bd and the right end of bw (see Figure 2(b)).
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Figure 4: The removal of the n-path.

3. Family Tree

In this section we design a tree structure Tπ among optimal ladder lotter-
ies of a given permutation π. Each vertex of Tπ corresponds to each optimal
ladder lottery of π, and each edge corresponds to each relation between two
ladder lotteries which can be transformed to the other by one local swap
operation. This means that, for any two optimal ladder lotteries L1 and L2

of a permutation π, there exists a sequence of local swap operations which
transforms L1 into L2.

Let Sπ be the set of optimal ladder lotteries of a given permutation π =
(p1, p2, . . . , pn) and L = Ln be a ladder lottery in Sπ. Choose i to be pi = n.
Observe the route of number pi. Since Ln is optimal, every bar in the route
of n cancels exactly one inversion of the “current” permutation. Thus the
route of n contains exactly n− i bars. The intersection of this route and any
line consists of at most one interval. We call such a route monotone. We
note that this property does not necessarily hold for general pi; for example,
in Figure 4, the route of p4 = 2 is not monotone while the ladder lottery is
optimal.

The route of n partitions Ln into the upper part LU
n and the lower part

LL
n . Removing the route of n from Ln then patching LU

n and LL
n , as shown

in Figure 4, results in an optimal ladder lottery Ln−1 of the permutation
(p1, p2, . . . , pi−1, pi+1, . . . , pn) of (1, 2, . . . , n − 1). Note that it is possible to
be pn = n, and in such case LU

n is empty. We say Ln is n-clean if LU
n has

no bar. If Ln is n-clean then the (n − 1)-path of Ln−1 is also monotone and
we can define Ln−2 similarly, and we say Ln−1 is (n− 1)-clean if LU

n−1 has no
bar. We repeat this process until some non-clean ladder lottery appears or
the ladder lottery becomes empty. If Lk is k-clean for each k = 1, 2, . . . , n,
then L is called the root ladder lottery of π, denoted by R. Otherwise we say
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clean level k if L is i-clean for each i with n ≥ i ≥ k and L is not (k−1)-clean.
Especially if LU

n has a bar, then L has the clean level n + 1, and the root R
has the clean level 1.

The following lemma shows the root ladder lottery in Sπ is unique.

Lemma 1. The root ladder lottery R in Sπ is unique.

Proof. Assume we have two root ladder lotteries R, R
′ ∈ Sπ and R �= R

′
.

Since R �= R′, there exists i such that Ri �= R
′
i. We choose the minimum such

i. If the route of i starts from the top end of line k in Ri, then it starts from
the top end of line l �= k in R

′
i. This means the corresponding permutations

are different, which is a contradiction. �

Let L be an optimal ladder lottery having the clean level k. We can ob-
serve that the routes of numbers n, n − 1, . . . , k form so called “brick struc-
ture,” as follows. For pj ≥ k, let (q1, q2, . . . , qnL

) be the decreasing list of
numbers each of which is larger than pj and locating to the left of pj in π. In
L, the route of pj first go left nL times, along the bars sharing with the routes
of q1, q2, . . . , qnL

, corresponding to the patches, then go right pj−j+nL times.
Note that on the right side of the route of pj every bar is on the route of some
number larger than pj. Also L has at least one bar in the region below the
route of number k and above the route of number k − 1. See Figure 5. The
region is called the active region of L. If L has clean level k = n + 1, then
we define the region above the route of n as the active region. Especially,
we define the active region of R is empty for convenience (in the proof of
Lemma 3).

Now we assign a parent ladder lottery in Sπ for each ladder lottery L in
Sπ−{R} as follows. We assume that L has the clean level k. Thus the active
region of L has at least one bar. We say a bar b, where we assume b has ends
on line l and l + 1, is upward visible from k − 1 if the lowest end of a bar on
l above the route of k− 1 is the end of b, and also the lowest end of a bar on
l + 1 above the route of k− 1 is the end of b. Note that if b is upward visible
from k − 1 then no upward visible bar from k − 1 has an end on line l nor
l + 1. Thus the number of the upward visible bars from k − 1 is at most n

2
.

Among the upward visible bars from k − 1, the rightmost bar is called the
active bar of L. In Figure 5, bar b is the active bar. For any L ∈ Sπ − {R},
applying a left swap operation to the active bar results in a ladder lottery,
denoted by P (L), in Sπ. We say P (L) is the parent ladder lottery of L, and
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(Clean level 7) (Clean level 5) (Clean level 5) (Clean level 5) (Clean level 1)

R=P(P(P(P(L))))

Figure 6: A sequence of optimal ladder lotteries L of (4,6,3,2,1,5).

L is a child ladder lottery of P (L). Note that the parent ladder lottery of
L is unique, while P (L) may have many children. Also note that the clean
level of P (L) is smaller or equal to L, and P (L) has less bars in the active
region of L.

We have the following lemma.

Lemma 2. For any L ∈ Sπ − {R}, P (L) ∈ Sπ holds.

Proof. Since the swap operation reserves the local permutation. �

Given a ladder lottery L in Sπ − {R}, by repeatedly finding the parent
ladder lottery of the derived ladder lottery, we can have the unique sequence
L, P (L), P (P (L)), . . . of ladder lotteries in Sπ, as shown below, which even-
tually ends up with the root R in Sπ. See Figure 6. The active bars are
depicted by thick lines.

We have the following lemma.
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Lemma 3. The sequence L, P (L), P (P (L)), . . . of L ∈ Sπ − {R} ends with
R ∈ Sπ.

Proof. For each L ∈ Sπ we define the clean potential C of L as C(L) = (s, t),
where s is the clean level of L and t is the number of bars in the active region
of L. For L1, L2 ∈ Sπ with C(L1) = (s1, t1) and C(L2) = (s2, t2), we say
L1 is cleaner than L2 if (1) s1 < s2 or (2) s1 = s2 and t1 < t2. For any
L ∈ Sπ we can observe P (L) is cleaner than L. R is the cleanest among Sπ,
since C(R) = (1, 0). Thus for any L ∈ Sπ the sequence of clean potentials
C(L), C(P (L)), C(P (P (L))), . . . always ends at C(R). �

By merging all these sequences we can have a family tree of Sπ, denoted
by Tπ, in which the root of Tπ corresponds to R, the vertices of Tπ correspond
to the ladder lotteries in Sπ and each edge corresponds to a relation between
a ladder lottery in Sπ and its parent. See Figure 3. The active bars are
depicted by thick lines.

Thus we have the following theorem.

Theorem 4. For any two ladder lotteries L1 and L2 in Sπ, there exists a
sequence of operations consisting of zero or more left swap operations followed
by zero or more right swap operations which transforms L1 into L2.

4. Enumerating All Optimal Ladder Lotteries

In this section we give an efficient algorithm to enumerate all ladder
lotteries in Sπ.

If we have an algorithm to enumerate all children of a given ladder lottery
in Sπ, then by recursively applying the algorithm starting at the root R of
Sπ, we can enumerate all ladder lotteries in Sπ. Now we design such an
algorithm.

We need some definitions. Let L �= R be an optimal ladder lottery of a
given permutation π = (p1, p2, . . . , pn). Assume L has the clean level k. So
each bar locating on the right of the route of k is contained in some route of
x > k, but in the active region (see Figure 5) there is at least one bar which
is not contained in any route of x ≥ k − 1. Each route of x ≥ k − 1 goes left
along bars, “turns,” and goes right along bars. For each route of x ≥ k− 1 if
b is the first bar to go right after a bar to go left, then b is called the turn bar
of x. Note that only if the route of x contains both at least one bar to left
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and one bar to right, the route of x has the turn bar. Otherwise if the route
of x contains only bars to left (or right) then the route of x is monotone in
L and has no turn bar. Also note that the turn bar is defined only for the
route of x ≥ k − 1 since otherwise it may have many “turns.” In the next
lemma we show that on the route of each x = k − 1, k, . . . , n, only the turn
bar has a chance to be right swapped.

Lemma 5. Assume L be a ladder lottery having the clean level k. Then on
the route of x ≥ k − 1 only the turn bar has a chance to be right swapped.

Proof. Since L has the clean level k, the route of each x ≥ k − 1 first goes
left along bars, turns, and goes right along bars. As shown in Figure 2(b),
a bar bd can be right swapped only if the vertical segment between the left
end of bd and the left end of a bar bw locating above bd has no right end of
other bars. Such condition is satisfied only at the turn bar of some route of
x ≥ k − 1. �

Let L[b] be the ladder lottery which is derived from L by applying a right
swap operation to a bar b. Every child of L is L[b] for some b, but not all
L[b]s were children of L. L[b] is a child of L only if b is the active bar of L[b].
Now we classify whether L[b] is a child ladder lottery of L or not as follows.
Remember the clean level of L is k. Let R(x) be the region on the right side
of the route of x, and L(x) be the region on the left side of the route of x.

Type 1: b is a turn bar and can be right swapped.
Note that such a bar exists only on the routes of k − 1, k, . . . , n. Assume

the local structure of L is as shown in Figure 7(a), the routes of x, y and z
pass through there and b is the turn bar of the route of y. Since b is the turn
bar of the route y, y ≥ k − 1 holds. Since L is optimal x > y > z holds.
Now L[b] is not x-clean since b is not contained in the route of j > x, and b
is contained in the routes of y (y < x) and z (z < x). Then the clean level
of L[b] is increased to x + 1, and b is the only bar in the active region of
L[b], thus b is the active bar of L[b]. Thus L[b] is a child of L. Note that b is
“downward visible” from x ≥ k.

Type 2: b can be right swapped but b is not a turn bar.
Such a bar exists only in L(k) ∩ L(k + 1) ∩ · · · ∩ L(n), and those are

downward visible bars from some x, 1 ≤ x ≤ n.
If the right swap operation moves b to R(j) where j ≥ k for some j,

crossing the route of j, then the clean level of L[b] is j + 1 and b is the only

11
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Figure 7: Illustration for Type 1.

bar in the new active region, so b is the active bar of L[b]. Thus L[b] is a
child of L.

If the right swap operation moves b to R(k − 1), crossing the route of
k − 1, then the clean level of L[b] remains k, and b is appended to the active
region. Assume the active bar of L has the right end on line s. If b in L[b]
has the right end on line t ≥ s− 1, then b is the active bar of L[b], otherwise
b is not. Now L[b] is a child of L if and only if t ≥ s − 1.

Otherwise the right swap operation moves b to R(x) where x < k − 1 for
some x, crossing the route of x. The clean level of L[b] remains k, and b is
not the active bar in L[b]. Thus L[b] is not a child of L.

By the above analysis, we have the algorithm in Figure 8.
By maintaining (i) the clean level k (the clean level of L[b] is always larger

than or equal to the clean level of L) and (ii) the list of downward visible
bars from x, for each x = n, n−1, . . . , k and (iii) the list of downward visible
bars from k − 1 each of which is the active bar in L[b], we can enumerate
all children of L in O(1) time for each. We assume the bars appear in the
list from left to right order in L. Also regarding L as a graph, we maintain
its adjacency list representation with suitable data. We have the following
lemma.

Lemma 6. All children of L can be enumerated in O(1) time for each.

Proof. Let L be the current ladder lottery and k its clean level. Now we
are going to compute each child L[b] of L by applying a right swap operation
to a bar b which is downward visible from the route of x ≥ k − 1.

Given (i)–(iii) of L, we can compute L[b] and update (i)–(iii) for L[b] in
O(1) time as follows.

12



Procedure find-all-children(L, k, a)
// L is the current ladder lottery, k is the clean level

// of L, and a is the active bar of L.
begin

01 Output L // Output the difference from the previous one.

02 for each x ≥ k
03 for each downward visible bar b from x
04 find-all-children(L[b], x + 1, b)
05 for each downward visible bar b from k − 1 which can be the active bar

in L[b]
06 find-all-children(L[b], k, b)

end

Algorithm find-all-ladder-lotteries(π = (p1, p2, . . . , pn))
begin

07 Compute R in Sπ

08 for x = 1 to n
09 if the route of x has the turn bar b
10 then find-all-children(L[b], x + 1, b)

end

Figure 8: Our algorithm.

Case 1: L[b] is a Type 1 child of L.
Now b is the turn bar of the route of, say y ≥ k − 1 in L.
(i) The clean level of L[b] is x + 1. (ii) If b is downward visible from the

route of some z > x in L[b], then we can find such z in O(1) time, and also we
can compute in O(1) time the list of downward visible bars from z in L[b] by
appending b to the corresponding list in L. For each w = x + 1, x + 2, . . . , n,
except for the z above, the list of downward visible bars from w in L[b]
remains as in L. For each w = 1, 2, . . . , x− 1 we do not need the list for L[b],
since the clean level of L[b] is x + 1. (iii) The list of x in L[b] is derived from
the list of downward visible bars from x in L as follows. Replace the sublist
of the bars up to b by at most two bars each of which is downward visible
from x in L[b] but not in L. Thus we can compute (iii) for L[b] in O(1) time.
(Intuitively, each such bar is not downward visible in L since b hides it, but
downward visible in L[b] since b has moved to R(x).)

13
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Figure 9: Computation of the root R in Sπ, where π = (3, 6, 5, 1, 4, 2).

Case 2: L[b] is a Type 2 child of L.
Now b is not a turn bar.
If x ≥ k holds, then similar to Case 1, we can compute L[b] and update

(i)–(iii) in O(1) time.
Now we assume that x = k − 1. (i) The clean level of L[b] remains as k.

(ii) Similar to Case 1. (iii) The list of k − 1 in L[b] is derived from the list
of downward visible bars from k − 1 in L as follows. Replace the bars up to
b by at most two bars each of which is downward visible from k − 1 in L[b]
but not in L. Thus we can compute (iii) for L[b] in O(1) time.

Thus we can compute L[b] from L in O(1) time. By recording the mod-
ification of (i)–(iii) in a stack we can recover (i)–(iii) of L from L[b] in O(1)
time. Thus we can compute all children of L in O(1) time for each. �

From Lemma 6, we obtain the following theorem.

Theorem 7. After generating and outputting the root ladder lottery R in
Sπ in O(n2) time, our enumeration algorithm runs in O(|Sπ|) time. The
algorithm uses O(n2) space.

Proof. We show that the root ladder lottery R in Sπ can be generated in
O(n2) time. We start with n vertical lines. Then we append the route of
each x = n, n − 1, . . . , 1. Each route goes left with some bars, turns, and
goes right with some bars. When we append the route of i the part of route
goes left is already completed, since at those bars the route of i crosses more
larger numbers, so we only need to append the part goes right, consisting
of monotone path. See Figure 9. Thus we can compute R in O(n2) time
and space. Also the data structure of R can be computed in O(n2) time and
space. �

By Theorem 7, our algorithm generates each ladder lottery in Sπ in O(1)
time “on average.” However it may have to return from the deep recursive
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Figure 10: (a) An arrangement of 5 pseudolines, (b) its wiring diagram and (c) the corre-
sponding optimal ladder lottery.

calls without outputting any ladder lottery in Sπ after generating a ladder
lottery corresponding to the rightmost leaf of a large subtree in a family
tree. This takes much time. Therefore the next ladder lottery in Sπ cannot
be generated in O(1) time in worst case.

This delay can be canceled by outputting the ladder lotteries in Sπ in
the “prepostorder” manner in which ladder lotteries in Sπ are outputted
in the preorder (and postorder) manner at the vertices of odd (and even,
respectively) depth of a family tree. See [9] for further details of this method:
in [9] the method was not explicitly named, and the name “prepostorder” is
given by Knuth [6].

Now we have the following theorem.

Theorem 8. After computing and outputting the root ladder lottery R in Sπ

in O(n2) time, the algorithm enumerates every ladder lottery in Sπ in O(1)
time for each. The algorithm uses O(n2) space.

5. Application to Pseudoline Arrangements

In this section we give a simple but efficient algorithm to enumerate all
arrangements of n pseudolines by simplifying the algorithm in Section 4.

We give some definitions. A pseudoline is an x-monotone curve in the
plane. An arrangement of pseudolines is a set of pseudolines in which every
pair intersects exactly once. See Figure 10(a). An arrangement is simple if no
three pseudolines share a common point. From now on, the term arrangement
always denotes a simple arrangement of pseudolines.

A wiring diagram, introduced in [2], of an arrangement of n pseudolines
is a network with n lines and

(
n
2

)
intersections. See Figure 10(b). The left

ends correspond to the reverse permutation (n, n−1, . . . , 1) in bottom to top
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order. The right ends correspond to the identical permutation (1, 2, . . . , n)
in bottom to top order. Each line i starts at the i-th left end from the top,
then goes right, however at every intersection the line goes up or down to
cross other line, then finally line i reaches the i-th right end from the bottom.
Each such path corresponds to a pseudoline. Note that each path has exactly
n − 1 intersections.

The combinatorial structure of each pseudoline arrangement can be mod-
eled as a wiring diagram, and each wiring diagram models the combinatorial
structure of a set of pseudolines arrangements. Note that applying some per-
turbation to a pseudoline arrangement still results in the same corresponding
wiring diagram. We say two pseudoline arrangements are isomorphic if there
is a bijection between their faces of corresponding wiring diagrams preserving
their neighbor relations.

By replacing intersections as bars a wiring diagram can be regarded as
an optimal ladder lottery of a reverse permutation. For instance the wiring
diagram in Figure 10(b) corresponds to the optimal ladder lottery in Fig-
ure 10(c). Then we can observe that there is a one-to-one correspondence
between wiring diagrams and optimal ladder lotteries of a reverse permuta-
tion. Thus the combinatorial structure of a pseudoline arrangement uniquely
corresponds to an optimal ladder lottery. In this section we consider to enu-
merate all optimal ladder lotteries of a reverse permutation.

Let L be a ladder lottery of the reverse permutation (n, n − 1, . . . , 1).
Assume L has clean level k. We can observe that the routes of numbers
n, n− 1, . . . , k− 1 form the following brick structure. The route of x ≥ k− 1
first goes left n− x times, pass through the leftmost line, then go right x− 1
times. If x ≥ k + 1 holds, we can observe that the route of x − 1 go right
along the route of x and immediately below the route of x (see Figure 11).
Then only the turn bar b of the route of x − 1 is downward visible from x
and b can be always right swapped.

Therefore we need not to maintain the list of downward visible from x,
for each x ≥ k + 1. Instead of the lists, we maintain only the list of the turn
bars. By maintaining (i) the clean level k (ii) the list of the turn bars and
(iii) the list of downward visible bars from k or k − 1 (those are candidates
to be right swapped, crossing the route of k or k − 1), we can enumerate all
children of L in O(1) time for each.

We have the following theorem.

Theorem 9. After O(n2) time preprocessing, we can enumerates all combi-
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Figure 11: The two routes of x and x − 1.

natorial structures of arrangements of n pseudolines in O(1) time for each.

By implementing the algorithm we have computed the number of pseu-
doline arrangements for each n ≤ 11, as shown in Table 1. The numbers for
n ≤ 10 match to the reports by Knuth [4] and Widom et al. [13] and the
number for n = 11 is the first report. Our new result for n = 11 is added
into A006245 in the database [10].

6. Conclusion

In this paper, we first showed that, for any two ladder lotteries L1 and
L2 in Sπ, there exists a sequence of operations consisting of zero or more
left swap operations followed by zero or more right swap operations which
transforms L1 into L2. We also gave an algorithm to enumerate all optimal
ladder lotteries of a given permutation. Our algorithm uses O(n2) space
and enumerate all ladder lotteries in Sπ in O(1) time for each in worst case.
The algorithm can be applied to enumerate all combinatorial structures of
pseudoline arrangements.
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