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Abstract

Scale free graphs have attracted attention by their non-uniform structure that can be
used as a model for various social and physical networks. In this paper, we propose
a natural and simple random model for generating scale free interval graphs. The
model generates a set of intervals randomly under a certain distribution, which
defines a random interval graph. The main advantage of the model is its simpleness.
The structure/properties of the generated graphs are analyzable by relatively simple
probabilistic and/or combinatorial arguments, which is different from many other
models. Based on such arguments, we show for our random interval graph that its
degree distribution follows the power law, and that it has a large average cluster
coefficient.
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1 Introduction

Since early works by Watts & Strogatz [19] and Barabási & Albert [2], small
world networks and scale free networks are the focus of recent interest because
of their potential as models for interaction networks of complex systems in real
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world [1,18]. Some properties on a graph G have been used as major properties
to characterize graphs that are called complex networks. Among them, the
scale free property introduced by Barabási and Albert [2] is one of the most
investigated property in the last decade. G is called a scale free network (SF)
if the degree distribution of G follows a power law distribution. There are two
other major properties [19] that are often observed in complex networks; one
is to have a relatively large clustering coefficient (CC) and another is to have
a relatively small diameter (SW). Though many models for generating graphs
with the scale free property and/or the other two properties were proposed
and investigated, up to now, aside from few deterministic models, most of
randomized models were based on some dynamic recursive construction of
random graphs [1,18]. Thus it is not so easy to see combinatorial structure
of obtained graphs, and analysis of their properties is rather complicated.
Therefore, although many random graph models have been proposed, we think
that it is yet important to introduce some random graph model that can be
easier to analyze by somewhat standard probabilistic/combinatorial methods.
This is important in particular for designing and analyzing algorithms for scale
free networks.

In this paper, we propose a simple random model for generating scale free
interval graphs. We also give simple and clear mathematical definitions to the
above somewhat vague properties for discussing them in the context of random
graph models. We then show that our interval random graph G satisfies the
scale free property (SF). We also show that it has a large clustering coefficient
(CC), that is, two neighbors of any node of G are likely to have an edge between
them. Unfortunately, our random graph does not satisfies the property (SW),
and this point will be discussed in Concluding Remarks.

Interval graphs have many applications from scheduling to bioinformatics
[10,20]. A graph G = (V, E) is an interval graph if and only if G has an
interval representation I such that each vertex v corresponds to an interval
Iv and two vertices u and v have an edge in G if and only if corresponding
intervals Iu and Iv have an overlap. For defining a random interval graph
model, we introduce a way to randomly generate an interval representation I;
some standard random process is used for generating intervals, and a power
law distribution is used for determining intervals’ lengths. Technically, our
model is regarded as a discrete immigration-death process, where intervals are
generated and terminated at integral time until a given number n of inter-
vals are generated. At each time, some number, which is determined following
an independent Poisson distribution, of intervals are generated, and lengths of
generated intervals are determined independently by a power law distribution.

Our random interval graph model has some natural interpretation. Each in-
terval is regarded as a period of existence, i.e., life, of some object, and we
may consider that relationships between such objects are created if there is

2



an overlap between their lives. The corresponding interval graph represents
these relationships. One example is a graph representing a relationship among
websites in a certain network community. An interval represents a time period
that one website exists, i.e., from its start to the time it becomes inactive. If we
may assume that some relation (e.g., having links or trackbacks) between two
websites exists if and only if they coexist at some time, then the corresponding
interval graph can be used as a model for the relationship among websites in
this network community. Another example is a graph representing a set of
activities sharing or competing for some resource such as a set of processes
on computers connected to some local network. Here a life of each process
can be expressed as an interval; then we may naturally assume that two pro-
cesses share the local network if and only if there is an overlap between the
corresponding intervals. Thus, the corresponding interval graph represents the
network sharing relationship among these processes. Note also that in these
examples a power law distribution of a lifespan is one of the reasonable choices.
A power law distribution is derived from some simple formula (see the next
section) formalizing the following rule: objects that survived long time tend
to survive yet longer. This rule can be observed in several situations, e.g., the
lifespan of weblogs [14], the length of data traffic on the Internet [5].

Clearly our model is too simple to be used as a model for real world networks.
But due to its simplicity it is easy to introduce several modifications to adjust
a model to explain some additional properties observed in the target networks,
and we think that it is a good natural basic model.

Our random interval graph model has some variants, and we think that these
variants are helpful when applying our model (or its modification) to some
real world complex networks. In this paper, we first define a finite model by
giving a random procedure creating a random interval graph of n vertices for
a given n. As a natural variant of this model, we may also consider the pro-
cess of generating intervals during some given time period, e.g., from time 1
to tend. Let N denote the number of intervals generated during this period; it
can be shown that N is a random variable following Poisson (λtend). Then the
probability of each interval representation being generated is the same as the
probability that it is obtained by (i) generating N intervals whose (integral)
lengths are determined independently following a power law distribution, and
(ii) putting them in the interval [1, tend] so that their starting points are cho-
sen from {1, ..., tend} independently and uniformly at random. Though real
networks are all finite, we will use an infinite interval graph model for showing
our main results. This is because statistical properties of complex networks
are analyzed asymptotically by considering the situation when n goes infinity.
In order to discuss such asymptotic analyses clearly and precisely, we follow an
usual framework in the queueing theory and consider an infinite model; that
is, we assume that the process of generating intervals starts from the infinite
past and continues forever, which defines an infinite random interval graph

3



model.

2 Preliminaries

We recall some basic notions and define some notations on interval graphs.
Throughout this paper, we consider only simple undirected graphs without
multiedges and self loops, and we denote a graph as G = (V, E), where V is
a set of vertices and E is a set of unordered pairs e = {u, v} of V denoting
edges. For any vertex v ∈ V , a vertex u is called adjacent to v if there is
an edge {u, v} in E. We sometimes denote by u ∼ v if u is adjacent to v.
The neighborhood of a vertex v is a set NG(v) = {u ∈ V | {u, v} ∈ E}, i.e.,
the set of adjacent vertices of v. The degree of v is |NG(v)|, which is denoted
by dG(v). A sequence of distinct vertices v1, v2, . . . , vt is a path, denoted by
(v1, v2, . . . , vt), if {vj, vj+1} ∈ E for each 1 ≤ j < t. The length of a path is
the number of edges on the path. For two vertices u and v, the distance of
these vertices, denoted by distG(u, v), is the minimum length of paths from u
to v. We define distG(u, v) = ∞ if there is no path from u to v. For a graph
G, we define the diameter of the graph, diam(G) = maxu,v∈V distG(u, v). The
graph G is connected if diam(G) < ∞. The subscript G can be omitted if no
confusion arise.

A graph G = (V, E) is called an interval graph if there is a set of intervals
I = {Iv | v ∈ V } on the real line such that for any u and v in V , {u, v} ∈ E if
and only if Iu∩Iv 6= ∅. We call the set I of intervals an interval representation
of the graph G. We write Iu ∼ Iv if Iu ∩ Iv 6= ∅, which is equivalent to u ∼ v
for an interval graph. For each interval I, we denote by TL(I) and TR(I) (the
location of) the left and right endpoints of the interval respectively, and we
use LI to denote the length of an interval I; hence, we have TL(I) ≤ TR(I),
LI = TR(I)−TL(I), and I = [TL(I), TR(I)]. Throughout this paper, we assume
that endpoints are integers. In the following, we use [i..j] to denote the set of
integers {i, i + 1, . . . , j}.

2.1 Scale Free Network

For characterizing graphs that can be observed as large complex networks, the
property (SF) and (CC) explained in Introduction have been used, and a graph
satisfying (SF) is usually called a scale free network. Since these properties (as
well as some other major properties) are analyzed asymptotically considering
the situation that the graph size n goes infinity, one should be careful when
defining these properties on a finite random graph model. In order to be precise
and yet keep simplicity, we will follow in this paper the standard framework
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from the queueing theory and analyze these properties on an infinite random
graph model. In the following, we prepare some notions and notations for this
analysis. For each property, we begin with basic definitions by considering
finite graphs G = (V, E) and then explain a way to discuss the property on a
random infinite graph G = (V, E).

(SF) Scale Free Property

Roughly speaking, by the scale free property we mean that the degree distri-
bution of a graph follows a power law function, a function proportional to k−γ

for some positive constant γ. Here we make this notion precise.

First consider a finite graph G with n vertices, we define the degree distribution
of G as the following function:

δG(k) =
|{ v ∈ V | dG(v) = k }|

n
.

In the context of random finite/infinite graph, it is natural to consider its
expectation, which is in fact equal to Pr[dG(v) = k] shown as follows if this
probability is the same for all v ∈ V under the assumed random graph model.
(Below [ · · · ] is used as an indicator function; that is, [ · · · ] is 1 if · · · holds
and 0 otherwise.)

E[ δG(k) ] =
E[ |{ v ∈ V | dG(v) = k }| ]

n
=

E[
∑

v∈V [ dG(v) = k ] ]

n

=

∑

v∈V Pr[ dG(v) = k ]

n
= Pr[ dG(v) = k ].

For the infinite random graph model that we will use for our analysis, we
simply use Pr[dG(v) = k] as the definition of the degree distribution of G. In
other words, as we will see, we may assume that Pr[dG(v) = k] is the same for
all vertices in our infinite random graph model. Now the scale free property
(on our infinite graph model) is defined to satisfy the following condition for
some γ > 0 and c > 0 (where v is any fixed vertex).

(SF) lim
k→∞

Pr[ dG(v) = k ]

ck−γ
= 1.

In this paper, instead of writing limx→∞ f(x)/g(x) = 1, we simply write
“f(x) ∼ g(x) as x → ∞.” For example, (SF) is stated as follows.

(SF) Pr[ dG(v) = k ] ∼ ck−γ, as k → ∞.

5



(CC) Large Cluster Coefficient

The second property requires (again roughly speaking) that two neighbors
of any node of G are likely to have an edge between them. More precisely,
for finite graph G = (V, E), the following ratio, which we call the cluster
coefficient of v, is used to discuss this property quantitatively.

CC(v) =
|{ {u, w} ∈ E | u, w ∈ N(v) }|

(

dG(v)

2

)

Recall that dG(v) = |N(v)|. Here we assume that dG(v) ≥ 2. If dG(v) = 0
or 1, i.e., if N(v) is empty or v has only one neighbor, we define CC(v) = 1.
The cluster coefficient of G, CC(G), is its arithmetic mean; that is, we define
CC(G) =

∑

v∈V CC(v)/|V |.

Here again in the context of random finite/infinite graph, we consider the
expectation E[CC(v)] of CC(v), which is defined as follows.

E[ CC(v) ] = E













∑

u,w∈V

[u ∼ v ∧ v ∼ w ∧ u ∼ w]

(

dG(v)

2

)













Then this can be modified to the following.

E[ CC(v) ] =
∑

k



 Pr[dG(v) = k] ×
1
(

k

2

)

∑

u,w∈V

Pr[ u ∼ v ∧ v ∼ w ∧ u ∼ w | dG(v) = k ]



 .

For our random infinite graph model, we can assume that Pr[dG(v) = k] and
∑

u,w∈V Pr[u ∼ v∧v ∼ w∧u ∼ w|dG(v) = k] are the same for all v. Hence from
the above it follows that E[CC(v)] is the same for all vertices v, and we can
simply use E[CC(v)] (for any fixed v) as the definition of cluster coefficient.
Then we define our condition (CC) is to satisfy the following for some constant
η > 0 (where v is any fixed vertex).

(CC) E[CC(v)] ≥ η.

2.2 Probability Distributions

Our random interval graph model is defined based on a random interval gen-
eration model, a way of generating intervals randomly. To determine each
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interval’s starting point, we use some random process studied in the queueing
theory; on the other hand, we use a power law distribution for determining the
length of each interval. Here we recall basic distributions and their important
properties.

We begin by explaining the Poisson distribution that is used to define our
interval generating process. We say that a random variable N follows the
Poisson distribution with parameter λ (which we denote Poisson (λ)) if it
satisfies the following for any k ≥ 0.

Pr[N = k] = e−λ λk

k!
.

We recall below some important properties of the Poisson distribution; see,
e.g., [13] for details.

Fix k ≥ 1 and consider k random variables Ni, i ∈ [1..k], that follow
Poisson (λ) independently. Then the sum N =

∑k
i=1 Ni also follows the Poisson

distribution with parameter kλ.

Consider next the following two processes for any fixed t ≥ 1. The first process
is to generate, for each i ∈ [1..t], a set Xi of Ni i’s, where Ni follows Poisson (λ)
independently. For example, if N1 = 2, N2 = 3, ..., the process generates
X1 = {1, 1}, X2 = {2, 2, 2}, and so on. Let X be the multiset union of X1,
..., Xk. The second process is defined by N following Poisson (tλ) and a die
taking a value from [1..t] uniformly at random. The process is to throw the die
independently for N times, and let Y denote a multiset {U1, ..., UN}, where
Uj , j ∈ [1..N ], is the outcome of the jth throw. It is known that these two
processes define the same distribution on multisets of [1..t]. That is, for any
multiset S ⊂ [1..t], the following holds.

Pr
[

X (= ∪t
i=1Xi) = S

]

= Pr [ Y (= {U1, ..., UN}) = S ] .

This property guarantees the probabilistic interpretation of a variant of our
model explained in Introduction.

The second distribution is one type of power law distributions that is used for
specifying interval lengths. We say that a random variable L on non-negative
integers follows a discrete power law distribution with parameter α (which we
denote P(α)) if it satisfies the following for any k ≥ 0.

Pr[ L = k ] =
1

ζ(α)
(k + 1)−α, (1)

where ζ(α) =
∑∞

i=1 i−α (the Riemann’s zeta function) is used for the nor-
malization. Throughout this paper, we will consider only α > 2. Note that a
random variable L+1 is called as the Zeta distribution or the Zipf distribution.
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We recall some basic properties of this distribution. Let L be a random variable
following P(α).

First note that for any α > 2, we have

E[ L ] =
ζ(α − 1)

ζ(α)
− 1. (2)

Next we note the following relation on Pr[L ≥ k + 1 | L ≥ k], which we will
denote as rk.

rk = Pr[L ≥ k + 1 | L ≥ k] =
ζ(α, k + 2)

ζ(α, k + 1)
, (3)

where ζ(α, m) =
∑∞

i=m i−α. Note also that this probability rk increases as k
increases, and this relation can be regarded as a formalization of a rule that
longer intervals tend to survive yet longer.

For a random variable X, we denote the cumulative distribution function F
as

F (x) = Pr[X ≤ x].

We also denote the tail distribution function as

F (x) = Pr[X > x].

For two given independent random variables X1 and X2 following F1 and F2,
respectively, we denote the convolution of F1 and F2 as

F1 ∗ F2(x) = Pr[X1 + X2 ≤ x].

Note that the tail distribution function of the convolution of F1 and F2 is

F1 ∗ F2(x) = Pr[X1 + X2 > x].

3 Scale Free Interval Graph Model

We here present our random generation model of interval graphs. We first give
a concrete model for generating a graph with n vertices for given parameters
n, α, and λ. Then we define its variant, an infinite interval graph model, which
will be used for the analysis in later sections.

We use an immigration-death process [3], one of queueing models, for gener-
ating intervals, where a Poisson distribution is used to determine the number
of generating intervals and a power law distribution is used to determine the
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length of each generated interval. To be precise and concrete, we state our in-
terval generation procedure as the procedure gen intervals of Figure 1. For
a given number n (and probability parameters α and λ), the procedure gen-
erates n intervals at discrete time t = 1, 2, . . .. Two probability parameters α
and λ are used to determine probability distributions for generating intervals.
The number of intervals generated at each time independently follows a Pois-
son distribution Poisson(λ). On the other hand, the length or the lifespan of
each generated interval independently follows P(α). Note that our algorithm
makes use of (3) for determining each lifespan following P(α). The generation
procedure terminates as soon as n intervals are generated at some time Tend;
note that all intervals terminate at Tend.

Example 1 Let us see the structure of our random graph for some typical
parameters. For scale free networks, graphs satisfying (SF) with 2.1 ≤ γ ≤ 3.0
are usually considered. As we will see in the next section, our random interval
graph satisfies (SF) with γ = α. We will also see that the smaller α gives
the smaller clustering coefficient. Thus, let us consider here α = 2.1. Then
since ζ(1.1) ≃ 10.584 and ζ(2.1) ≃ 1.560, we have ζ(α − 1)/ζ(α) ≃ 6.784.
Thus, the average length of intervals is 5.784. Also it follows from (1) that
Pr[LI = 0] ≃ 0.641 and Pr[LI = 1] ≃ 0.150. As shown later, these bounds are
important for bounding the cluster coefficient, and we in fact can show that
the random interval graph (more precisely, its infinite graph variant) satisfies
(CC) with η = 0.7120. On the other hand, the parameter λ determines the
connectivity of the generated graph. For example, by choosing λ = 3 we can
show (Theorem 4) that the size of connected components of a generated graph is

on average λeλ( ζ(α−1)
ζ(α)

−1), which is about 1.03×108 for our choice of parameters.

Although the procedure gen intervals specifies a model, some discussion is
necessary to clarify an algorithmic efficiency of our procedure. We show below
that for any λ ≥ 1 and α > 2, the algorithm can be implemented to generate
an interval graph representation in time linear w.r.t. n on average.

We first note that for any λ ≥ 1 and α > 2, the procedure
gen intervals(n, α, λ) almost always terminates with Tend = O(n). More
precisely, the following lemma holds for some cend > 0. (The proof, which is a
standard probability analysis, is omitted here.)

Lemma 1 Let Tend be the value of T when gen intervals(n, α, λ) is termi-
nated (let Tend = ∞ if not terminated). Then for any λ ≥ 1 and α > 2, we
have some c > 0 such that

Pr[ Tend > cendn ] ≤ e−cn.

Thus, in the following, we may safely assume that Tend ≤ cendn. We also assume
that for given λ and α, values ek = e−λλk/k! and rk = ζ(α, k + 2)/ζ(α, k + 1)
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are numerically computable with reasonable precision for k, 0 ≤ k ≤ n (for
ek) and 0 ≤ k ≤ cendn (for rk). These values are precomputed and kept in a
table.

The algorithm keeps currently existing intervals (their indices, starting posi-
tions, and lengths) as a doubly linked list. At each time t, 1 ≤ t ≤ Tend, the
algorithm maintains this list by the following computations: (i) compute Nt

and add Nt new intervals, and (ii) determine, for each of the existing intervals
(including those generated at t) whether it remains in the list and then delete
terminated intervals. Let Kt be the number of intervals in this list at time
t, including those newly added Nt intervals. We show that both (i) and (ii)
can be executed in O(Kt) steps. (Precisely speaking, the algorithm needs to
produce an interval representation in a standard form, i.e., as a sequence of
indexed left and right endpoints in the order of their locations in the line. It
is easy to see that this output task can be also done while maintaining the list
in O(Kt) steps at each t.)

Consider the task (i). For computing Nt following Poisson(λ), the following
simple method is sufficient: generate a random number r ∈ [0, 1] and determine
k such that

k−1
∑

i=0

e−λ λi

i!
≤ r <

k
∑

i=0

e−λ λi

i!

holds, where
∑−1

i=0 · = 0 conventionally, and use this k as Nt. Note that Nt

can be set n (and the algorithm is terminated) in the case k ≥ n. With
the precomputed table, we may be able to compute Nt in O(Nt) steps. Next
consider (ii), that is, determining, for each interval of length ℓ ∈ [0..cend · n],
whether the algorithm keeps it to the next time. This can be done in constant
time per interval based on the precomputed value rℓ. Thus, (ii) can be done
in O(Kt) steps, and altogether the task at time t can be done in O(Kt) steps.

Hence the total running time of the algorithm is O(
∑Tend

t=1 Kt). On the other
hand, we have

Tend
∑

t=1

Kt ≤
n
∑

i=1

(Li + 1),

where Li denotes the length of the ith generated interval. Then it follows from
(2) that E[

∑n
i=1 Li+1 ] ≤ cn for some constant c > 0. This proves the following

theorem.

Theorem 1 For any λ ≥ 1 and α > 2, the expected running time of the
procedure gen intervals(n, α, λ) is O(n).

10



procedure gen intervals(n, α, λ);
input: n, α, and λ;
output: set of intervals I;

t = 1, m = 0, I = φ, I ′ = φ;
while(m < n) {

Nt = Poisson(λ);
add min(Nt, n − m) intervals of length 0 to I and I ′;
for( each interval I ∈ I ′ ) {

ℓ = the current length of I;
decide it is alive at least one more step

with probability rℓ = ζ(α, ℓ + 2)/ζ(α, ℓ + 1);
if(alive) let the current length of I = l + 1;
else(not alive) remove I from I ′;

}
m = m + Nt, t = t + 1;

}

Fig. 1. procedure gen intervals(n, α, λ)

3.1 Infinite Interval Graph Model for Our Analysis

The model defined above has a concrete and efficient algorithm for generating
a graph with a given specified number n of vertices. On the other hand, this
model has some technical difficulties for discussing statistical properties, which
can be avoided easily by considering its natural infinite graph variant. Thus,
in the following analysis, we will consider this infinite graph model. Below we
explain some of the technical difficulties, and then we introduce our infinite
random graph model.

First note that under our finite graph model we cannot assume that all vertices
have the same statistical properties. Suppose that vertices of V = {1, ..., n}
are assigned to intervals in the order of their generation time; then the vertex
n always corresponds to a length 0 interval because the generation procedure
terminates as soon as the nth interval is generated. We can avoid this non-
uniformity by simply assigning vertices uniformly at random to generated
intervals. Then clearly, we can assume that the probabilities Pr[dG(v) = k] and
Pr[u ∼ v∧ v ∼ w∧u ∼ w|dG(v) = k] are the same for all u, v, w ∈ V , which is
important for deriving our simple mathematical conditions for (SF) and (CC).
Unfortunately, however, this somewhat superficial solution is not enough for
avoiding all technical difficulties in our analysis. Even though Pr[dG(v) = k]
is the same for all vertices v ∈ V , there is still some difference if we consider
vertices assigned to, e.g., the first (leftmost) interval and the middle interval.
We would like to avoid unnecessary complications due to such irregularity.
Here we follow the standard framework from the queueing theory and consider
a random interval graph model where the interval generation process starts
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from time t = −∞ and continues to time t = +∞. The other points are the
same as the finite random interval graph model. Under this model all vertices
are statistically the same, and for example, probabilities such as Pr[dG(v) = k]
are the same for all vertices v in G (even if we fix some way of assigning vertices
to intervals). Clearly this model is not the same as our original finite graph
model; but then we may argue (separately) that the difference can be ignored
if n is sufficiently large.

4 Scale Free Property

In this section, we show that our model generates a random interval graph
whose degree follows a power law distribution.

Note that our model is one of the discrete immigration-death process, which
has been studied quite in depth in queueing theory, and our following analysis
is derived easily from some of well known facts. Thus we omit some standard
proofs here; but since somewhat a simpler proof is possible for our model, we
give this simpler proof in Appendix.

As mentioned in the previous section, we consider the model where intervals
are generated from time −∞ and to time +∞. We consider a generated inter-
val I and let it be fixed, and we analyze the number of intervals intersecting I,
which is the degree of the vertex corresponding to I. For this analysis we use
some random variables (see Figure 2). First recall that TL(I) and TR(I) denote
its left and right endpoints, in other words, the starting and terminating time
of I. We use LI to denote the length of I, and we use A(I) to denote the
number of intervals generated in [TL(I)..TR(I)] except I itself, precisely, those
with left endpoints in [TL(I)..TR(I)] except I. For time t, we define ξ(t) as the
number of intervals surviving at time t but not including those generated at
time t. We are mainly interested in ξ(TL(I)) because the number of intervals
having an overlap with I is ξ(TL(I))+ A(I). In the following, we simply write
by ξ(I) for ξ(TL(I)). Thus, the target of our analysis is ξ(I) + A(I).

We argue as follows. First we show that ξ(I) follows the Poisson distribution

Poisson
(

λ
(

ζ(α−1)
ζ(α)

− 1
))

. Note that we may assume in our model that ξ(I)

follows a stationary distribution. Then we show that A(I) follows a power
law distribution if it gets large. Finally we conclude our analysis by showing
that A(I) dominates ξ(I) when ξ(I) + A(I) is large. Our interval model has
been studied in the queueing theory as one of the standard customer-service
models. More specifically, it is essentially the same as the following model: (i)
customers’ arrival follows the Poisson(λ), (ii) the number of service gates is
infinite, and (iii) service time of customers follows P(α) independently. We
use known facts on this model from the literature.

12



ξ(I)

TL(I) TR(I)

A(I)

I

Fig. 2. An example of an interval I and other intervals. There are 6 intervals at
time TL(I), 3 of them are generated at time TL(I), and 6 intervals except I start in
[TL(I), TR(I)]. Thus, ξ(I) = 3 and A(I) = 6, and altogether 9 intervals intersects
with I.

In [16], page 160, it is shown that the stationary distribution of the number of
customers existing at time t is the Poisson with parameter λµ if the number
of new customers follows the Poisson(λ) and the average length of the service
is µ < +∞. Although the result in [16] is for a homogeneous Poisson process
on R+, the same argument works to show the same result for our “discrete”
interval model. Recall that µ = ζ(α−1)/ζ(α)−1 from (2) in our model; thus,
we have the following lemma. (An alternate proof of this lemma will be given
in Appendix.)

Lemma 2 [16] ξ(I) follows Poisson
(

λ
(

ζ(α−1)
ζ(α)

− 1
))

.

Next we show that A(I) follows a power law distribution. In fact, A(I) has been
studied well (see, e.g., [4], Section 8.3), and this fact is well known. We restate
its derivation below. In our customer-service model, if the tail distribution of
service time follows a power law distribution, then the number of customers
arriving during the service also follows some power law distribution. More
specifically, the following lemma is known.

Lemma 3 If Pr[LI > ℓ] ∼ cℓ−(α−1) as ℓ → ∞, then Pr[A(I) > k] ∼ c
(

λ
k

)α−1

as k → ∞.

As shown below, it is easy to see that Pr[LI > ℓ] follows a power law distribu-
tion with the exponent α − 1; hence by using this lemma, we can show that
Pr[A(I) > k] also follows a power law distribution with the same exponent.

13



Fact 1

Pr[LI > ℓ] ∼
1

(α − 1)ζ(α)
ℓ−(α−1), as ℓ → ∞.

Proof. Note first that

Pr[LI > ℓ] =
∞
∑

i=ℓ+1

Pr[LI = i] =
1

ζ(α)

∞
∑

j=ℓ+2

j−α.

Then the fact follows from the relation

(ℓ + 2)−(α−1)

α − 1
=

∫ ∞

ℓ+2
t−αdt <

∞
∑

j=ℓ+2

k−α <
∫ ∞

ℓ+2
(t−1)−αdt =

(ℓ + 1)−(α−1)

α − 1

and the fact that the both sides converge to (1/(α − 1))ℓ−(α−1). 2

By Lemma 3 and Fact 1, we have

Pr[A(I) > k] ∼
λα−1

(α − 1)ζ(α)
k1−α. (4)

Next we consider the relation between ξ(I) and A(I). We define cumulative
distribution functions F (x) and G(x) by

F (x) = Pr[ ξ(I) ≤ x ], and G(x) = Pr[ A(I) ≤ x ].

Let F (x) and G(x) be their tail distribution functions.

We would like to show that ξ(I) is negligible in ξ(I)+A(I). For this, we make
use of a known fact on subexponential distributions. First we note that G(x)
is so called subexponential because we have the following relation;

G(x) = Pr[ A(I) > x ] ∼
λα−1

(α − 1)ζ(α)
x1−α,

and λα−1

(α−1)ζ(α)
is a constant, so G(x) is a Pareto-Type distribution function

(see e.g., [15] Section 2.5.2). By this fact and Theorem 2.5.2 of [15], G is a
subexponential distribution.

We next show that F (x) is negligible compared with G(x). More specifically,
the following lemma holds.

Lemma 4

F (x)/G(x) → 0, as x → ∞. (5)

14



Proof. Let us recall that k! ≥
(

k
3

)k
and let us c = λα−1

(α−1)ζ(α)
and µ = ζ(α−1)

ζ(α)
− 1.

Since lim
x→∞

F (x) = 0 and lim
x→∞

G(x) = 0, applying the L’Hôpital’s rule, we

obtain;

lim
x→∞

F (x)

G(x)
= lim

x→∞

∑∞
i=x e−λµ (λµ)i

i!

cx1−α
< lim

x→∞

e−λµ∑∞
i=x

(

3λµ

i

)i

cx1−α

< lim
x→∞

e−λµ
∫∞

x

(

3λµ

t

)t
dt

cx1−α

= lim
x→∞

−e−λµ
(

3λµ

x

)x

c(1 − α)x−α
( L’Hôpital’s rule)

=
e−λµ(3λµ)α

c(α − 1)
lim

x→∞

(

3λµ

x

)x−α

= 0

2

Here we introduce a distribution for ξ(I) + A(I); that is, define H(k) by

H(k) = Pr[ ξ(I) + A(I) ≤ k ].

Note that this is the degree distribution that we want to analyze. We can also
express H(k) as the convolution of F and G as follows.

H(k) = Pr[ ξ(I) + A(I) > k ] = F ∗ G(k).

Now we make use of the following relation, derived as a special case of a well
known fact (see, e.g., [15] Lemma 2.5.2).

Lemma 5 Let Q and R be any cumulative distributions on any reasonable
domain, e.g., the set of nonnegative integers. If R is subexponential and
Q(x)/R(x) → 0 as x → ∞, then we have

Q ∗ R(x)

R(x)
→ 1, as x → ∞.

Since our F and G satisfy the conditions of the lemma, we have
F ∗ G(k)/G(k) → 1 as k → ∞. On the other hand, we have F ∗ G(k) =
H(k) and G(k) follows a power low distribution with exponent α − 1 (from
Equation 4). Precisely, we have

H(k) = Pr[ ξ(I) + A(I) > k ] ∼
λα−1

(α − 1)ζ(α)
k1−α

15



as k → ∞.

Theorem 2 The degree distribution Pr[ dG(v) = k ] satisfies (SF) with γ = α.
That is, the following holds.

Pr[ dG(v) = k ] ∼
λα−1

ζ(α)
k−α, as k → ∞.

Proof. In this proof, we use the L’Hôpital’s rule and consider the following f(x)

for real number x. Let c′ = λα−1

(α−1)ζ(α)
, c = c′(α−1) and f(x) =

c′((x−1)1−α−x1−α)
cx−α .

Since Pr[dG(v) = k] = H(k − 1)−H(k) = c′(k − 1)1−α − c′k1−α, it suffices for
the theorem to show that f(x) → 1 as x → ∞.

Both (1 + 1
x−1

)α−1 − 1 and 1
x

are continuous and converge to 0 for x → ∞,
using the L’Hôpital’s rule, we have

lim
x→∞

f(x) = lim
x→∞

c′ ((x − 1)1−α − x1−α)

cx−α
= lim

x→∞

(x − 1)1−α − x1−α

(α − 1)x−α

= lim
x→∞

1

α − 1

(1 + 1
x−1

)α−1 − 1
1
x

= lim
x→∞

1

α − 1

(α − 1)(1 + 1
x−1

)α−2(x − 1)−2

x−2
(L’Hôpital’s rule)

= lim
x→∞

(

1 +
1

x − 1

)α−2 1

1 − 2
x

+ 1
x2

= 1.

2

5 Clustering Coefficient

We show that our random interval graph has a large cluster coefficient; more
specifically, we show that the condition (CC) holds with a large constant for a
reasonable range of parameter α. (Parameter λ can be any number satisfying
λ ≥ 1.) For example, for the case α = 2.1, from our analysis, we can show
that E[CC(v)] ≥ 0.7120 when we choose λ = 3.

For any vertex v and its corresponding interval I, we first observe the following
two basic facts.

Fact 2

LI = 0 ⇒ CC(v) = 1.

16



Proof. Since LI = 0, all neighbor of v are alive at the time TL(I) = TR(I).
Thus, any two of them are overlapping at the time TL(I). 2

Fact 3 (1) For any even number d ≥ 2, we have

LI = 1 ∧ dG(v) = d ⇒ CC(v) ≥
d − 2

2(d − 1)
.

(2) For any odd number d ≥ 2, we have

LI = 1 ∧ dG(v) = d ⇒ CC(v) ≥
d − 1

2d
.

Note that these lower bounds are positive unless d = 2.

Proof. Let us assume LI = 1 and dG(v) = d. CC(v) becomes the smallest when
following three conditions stand. (See Figure 3.)

• ξ(TL(I)) + NTL(I) − 1 = d
2
.

• No intervals other than I survive at time TL(I).
• NTR(I) = d

2
.

In the above, ξ(TL(I)) denotes the same as in Section 4, NTL(I) and NTR(I)

denotes the number of intervals generated at time TL(I) and TR(I), respec-
tively. If d is odd, those conditions become ξ(TL(I)) + NTL(I) − 1 = d−1

2
and

NTR(I) = d+1
2

, or vise versa.

ξ(TL(I))

I

NTR(I)

NTL(I)

Fig. 3. An example which gives the smallest CC(v) when LI = 1 and dG(v) = 10.

In this case, CC(v) =
2(d/2

2 )
(d
2)

= d−2
2(d−1)

if d is even, and CC(v) =

((d−1)/2
2 )+((d+1)/2

2 )
(d
2)

= d−1
2d

if d is odd. 2
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Since d−1
2d

> d−2
2(d−1)

, we have a lower bound for any d;

LI = 1 ∧ dG(v) = d ⇒ CC(v) ≥
d − 2

2(d − 1)
.

For the sake of simplicity, we use this somewhat loose lower bound in the
following analysis. Using this lower bound, we have

Pr

[

CC(v) ≥
d − 2

2(d − 1)
∧ dG(v) = d ∧ LI = 1

]

= Pr [dG(v) = d ∧ LI = 1] .

(6)

Theorem 3 For any vertex v and its corresponding interval I, we have

E[CC(v)] > Pr[LI = 0] + Pr[LI = 1] × e−Cλ



1 + Cλ +
1

2

∑

d≥2

d − 2

d − 1

Ck
λ

d!





where Cλ = λ
(

ζ(α−1)
ζ(α)

+ 1
)

− 1.

Proof. We show by a case analysis on the length I and the degree of v. If
LI = 0, CC(v) is 1, and if LI = 1, CC(v) has a lower bound given by Fact 3.

E[CC(v)] =
∑

x

x Pr[CC(v) = x]

>
∑

x

x Pr[CC(v) = x ∧ LI = 0] +
∑

x

x Pr[CC(v) = x ∧ LI = 1]

= Pr[CC(v) = 1 ∧ LI = 0] +
∑

x

x Pr[CC(v) = x ∧ LI = 1]

= Pr[LI = 0] +
∑

x

x Pr[CC(v) = x ∧ LI = 1].

In the above, we used Fact 2, which says that CC(v) = 1 if LI = 0.

We now consider the term
∑

x x Pr[CC(v) = x ∧ LI = 1]. By the definition of
CC(v), if the degree of v is 0 or 1, we have CC(v) = 1. Hence we have

18



∑

x

x Pr[CC(v) = x ∧ LI = 1]

=
∑

x

x





∑

d≥0

Pr[CC(v) = x ∧ dG(v) = d ∧ LI = 1]





=
∑

d≥0

(

∑

x

x Pr[CC(v) = x ∧ dG(v) = d ∧ LI = 1]

)

= Pr[dG(v) = 0 or 1 ∧ LI = 1]

+
∑

d≥2

(

∑

x

x Pr[CC(v) = x ∧ dG(v) = d ∧ LI = 1]

)

> Pr[dG(v) = 0 or 1 ∧ LI = 1]

+
∑

d≥2

(

d − 2

2(d − 1)
Pr

[

CC(v) ≥
d − 2

2(d − 1)
∧ dG(v) = d ∧ LI = 1

])

= Pr[dG(v) = 0 or 1 ∧ LI = 1] +
∑

d≥2

(

d − 2

2(d − 1)
Pr[dG(v) = d ∧ LI = 1]

)

.

(7)

We used Equation (6) in the above.

Recall that the degree of a vertex whose corresponding interval, say I, has
length 1 can be represented as the sum of ξ(TL(I)) + NTL(I) − 1 + NTR(I). By
the analysis in Section 4, the degree of a vertex corresponding to I follows
the Poisson distribution with parameter Cλ = λ

(

ζ(α−1)
ζ(α)

− 1
)

+ λ − 1 + λ =

λ
(

ζ(α−1)
ζ(α)

+ 1
)

− 1. That is, we have

Pr[dG(v) = d ∧ LI = 1] = Pr[LI = 1] × Pr[dG(v) = d | LI = 1]

= Pr[LI = 1] × e−Cλ
Cd

λ

d!
.

The last part of equation (7) is:

Pr[dG(v) = 0 or 1 ∧ LI = 1] +
∑

d≥2

(

d − 2

2(d − 1)
Pr[dG(v) = d ∧ LI = 1]

)

= Pr[LI = 1] ×



e−Cλ + e−CλCλ +
∑

d≥2

(

d − 2

2(d − 1)
e−Cλ

Cd
λ

d!

)





= Pr[LI = 1] × e−Cλ



1 + Cλ +
1

2

∑

d≥2

d − 2

d − 1

Ck
λ

d!




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Thus, the clustering coefficient of v has the following lower bound:

E[CC(v)] > Pr[LI = 0] + Pr[LI = 1] × e−Cλ



1 + Cλ +
1

2

∑

d≥2

d − 2

d − 1

Ck
λ

d!



 .

2

Remark 1 We proved this theorem by using only (1) of Fact 3, i.e., CC(v) >
d−2

2(d−2)
, which holds for all d. By using both bounds (1) and (2) (depending

whether d is even or odd), we can obtain the following slightly better bound:

E[CC(v)]

> Pr[LI = 0]+Pr[LI = 1]×e−Cλ

{

1 + Cλ +
∞
∑

i=1

i

2i + 1

C2i+1
λ

(2i + 1)!

(

1 +
Cλ

2i + 2

)

}

.

Example 2 Following Example 1, consider the random interval graph gener-
ation with parameter α = 2.1 and λ = 3. Then for any v ∈ V , since interval
length follows a power law distribution of (1), the probability p0 = Pr[|I| = 0]
is 0.641 and the probability p1 = Pr[|I| = 1] is 0.150. We also have Cλ =
22.352, and by the above theorem with some arithmetic calculations, we have
E[CC(v)] ≥ 0.7120.

6 Concluding Remarks

In this paper, we propose a random interval graph model and show that our
random graph satisfies the scale free property; we also showed that it has a
large cluster coefficient. Though we consider only a discrete time model in this
paper, we can generalize our model and analysis for time-continuous models.
For more details, see [11] and [12].

Unfortunately, another major property, the small world property introduced
by Watts and Strogatz [19], does not seem to hold for our random interval
graph. The Small World Property 2 is on the distance between any pair of
vertices in a graph. In the literature, it is defined as a condition requiring for
G(V, E) that the average distance between pairs of vertices in V is O(log |V |).
However, if the graph is not connected, i.e., there is a pair of vertices with
infinite distance, the average distance would become infinite. In the literature,
two approaches have been usually taken for avoiding this situation. One is to
consider a model that creates almost always connected graphs, and another
is that the average distance is taken among the pairs in a same connected
component.

2 In the literature, e.g., [19], sometimes a small world network refers to a graph
satisfying two of these conditions (CC) and this.
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Our model seems inapproporiate for both approaches. First, the expected size
of a connected component our model is finite even in our infinite random graph
model. In fact, we can bound expected connected component size as follows.

Theorem 4 Let G be a random interval graph generated by
gen intervals(n, α, λ). Then the average size of its connected compo-

nents is λeλ( ζ(α−1)
ζ(α)

−1).

Proof. We state our analysis in terms of ξ(t); recall that ξ(t) is the number
of intervals that surviving at time t not including those generated at time t.
Consider any time t0 such that ξ(t0) = 0, which means that all intervals at
time t0 − 1 are dead on time t0 − 1. Let T1 denote a random variable such
that ξ(t0) = 0, ξ(t′) > 1 for t0 + 1 ≤ t′ < t0 + T1, and ξ(t0 + T1) = 0. That is,
T1 is a time period between t0 and the next time ξ(t) = 0 occurs. Thus, the
size of a connected component can be expressed by

∑t0+T1−1
t=t0

Nt. Using Wald’s
Equation (see, e.g., [13], p.300), we have

E





t0+T1−1
∑

t=t0

Nt



 = E [ T1 ] · E [ Nt ] .

Note that E[Nt] is λ for any t; hence it suffices for the theorem to show that

E[ T1 ] =
1

Pr[ξ(t) = 0]
= eλ( ζ(α−1)

ζ(α)
−1). (8)

For any time τ , let k =
∑τ

t=1[ξ(t) = 0] where [· · · ] is 1 if · · · occurs and 0
if otherwise, and let T0(k) be a k-th time such that ξ(t) = 0. We can easily

observe that T0(k) ≤ τ < T0(k + 1), and hence T0(k)
k

≤ τ
k

< T0(k+1)
k

. Since
Pr[ξ(t) = 0] > 0 for any t, we have k → ∞ as τ → ∞. Thus, by the law

of large numbers, T0(k)
k

→ E[T1] and T0(k+1)
k

→ E[T1] as τ → ∞. So, we have
τ
k
→ E[T1] as τ → ∞. Using the law of large numbers again, we also have

τ

k
=

τ
∑τ

t=1[ξ(t) = 0]
→

1

Pr[ξ(t) = 0]
as τ → ∞.

Hence we obtain equation (8). 2

Hence, as stated in Example 1, for α = 2.1 and λ = 3, the average component
size is at most 1.03 × 108, which is large but still constant independent from
n.

Second, consider any connected component of a given infinite random interval
graph. Let m denote its size. Our computer experiment shows that the avarage
distance on a connected component is quite likely Θ(m).

There may be several ways to modify our model so that an obtained graph
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also satisfies the small world property. But in order for proposing a reasonable
one, further investigation seems necessary, and we leave it for our future work.

Another important subject is the problem of fitting our model to some ob-
served networks. For this purpose, our model should be used as a basic model
and we need to again consider some modifications. Due to the simplicity of
our model, we may be able to consider several ways to modify its probabil-
ity setting to create a model appropriate to observed networks. For example,
instead of introducing an edge between any pair of vertices whose correspond-
ing intervals overlap, we may consider a model where an edge is introduced
with a certain probability between such vertices. Once we fix some appropriate
model, the next and another interesting problem is to develop some algorith-
mic method to measure the closeness of an observed network to the model. For
this one might want to consider some statistical analysis, and in fact, many
statistical techniques have been developed for this purpose, e.g., [6]. Yet it
would be nice if we have some combinatorial/algorithmic ways. For example,
if a given observed network is indeed an interval graph, we can easily (i.e., in
linear time) compute an interval representation of the graph [8]. If that graph
is an “almost” interval graph, we may be able to fit our model to the graph
by adding or deleting some edges. Unfortunately, however, it is well known
fact that minimizing the number of edges added to the given graph to obtain
an interval graph, which is called a minimum interval completion problem, is
NP-hard in the worst case [7]. But this problem is fixed parameter tractable
[17] and some heuristic approach might still work for solving the problem on
average. Designing such heuristics is again our important future work.
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23



Lemma 2 [16] For any t, ξ(t) follows Poisson
(

λ
(

ζ(α−1)
ζ(α)

− 1
))

.

Consider the time t of the generation process of our infinite graph model. Some
intervals exist at time t and each of them has their current length ≥ 0. Recall
that the rℓ (for ℓ ≥ 0) is the probability such that an interval having current
length ℓ at time t will survive at time t + 1. rℓ is derived from equation (3).

Let ρt
ℓ be the number of intervals which are alive and have current length ℓ

at time t. As the time t proceeds, ρt+1
ℓ+1 depends only on ρt

ℓ because some of
intervals of ρt

ℓ will survive at time t + 1 with probability rℓ and others end at
time t. From this observation, we obtain this formula for ℓ ≥ 0:

Pr[ρt+1
ℓ+1 = k] =

∞
∑

m=k

(

m

k

)

rk
ℓ (1 − rℓ)

m−k Pr[ρt
ℓ = m]. (9)

Since ρt
0 is the number of intervals starting at time t, Pr[ρt

0 = k] = e−λ λk

k!
. Let

us consider the stationary distribution πℓ such that πℓ(k) = limt→∞ Pr[ρt
ℓ =

k]. For the stationary distribution πℓ, applying the dominated convergence
theorem since πl(m) ≤ 1, the equation (9) becomes

πℓ+1(k) =
∞
∑

m=k

(

m

k

)

rk
ℓ (1 − rℓ)

m−kπℓ(m) (10)

and π0(k) = e−λ λk

k!
.

We will show the following lemma as the solution of the equation (10).

Lemma A1 Let us denote Pℓ =
∏ℓ−1

j=0 rj for ℓ ≥ 1 and P0 = 1. The stationary
distribution πℓ follows Poisson (λPℓ);

πℓ(k) = e−λPℓ
(λPℓ)

k

k!
.

Proof. The proof is done by induction. For ℓ = 0, π0(k) = e−λP0 (λP0)k

k!
. Assume

it holds for ℓ, i.e., πℓ(k) = e−λPℓ (λPℓ)
k

k!
. The stationary distribution is:

πℓ+1(k) =
∞
∑

m=k

m!

(m − k)!k!
rk
ℓ (1 − rℓ)

m−k e−λPℓ
(λPℓ)

m

m!

= e−λPℓ
(λrℓPℓ)

k

k!

∞
∑

m′=0

{λPℓ(1 − rℓ)}
m′

m′!
= e−λPℓ

(λPℓ+1)
k

k!
eλPℓ(1−rℓ)

= e−λPℓ+1
(λPℓ+1)

k

k!
.

Note that we used rℓPℓ = Pℓ+1 in the above. 2
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We finally obtained the Lemma 2.

Lemma 2 [16] For any t, ξ(t) follows Poisson
(

λ
(

ζ(α−1)
ζ(α)

− 1
))

.

Proof. Since πℓs are independent and follow Poisson (λPℓ), the sum ξ(T ) =
∑∞

ℓ=1 πℓ also follows the Poisson distribution with parameter
∑∞

ℓ=1 λPℓ =

λ
(

ζ(α−1)
ζ(α)

− 1
)

. 2
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