
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A New Approach to Graph Recognition and

Applications to Distance-Hereditary Graphs

Author(s) Nakano, Shin-ichi; Uehara, Ryuhei; Uno, Takeaki

Citation
Journal of Computer Science and Technology,

24(3): 517-533

Issue Date 2009

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/9179

Rights

This is the author-created version of Springer,

Shin-ichi Nakano, Ryuhei Uehara and Takeaki Uno,

Journal of Computer Science and Technology,

24(3), 2009, 517-533. The original publication is

available at www.springerlink.com,

http://dx.doi.org/10.1007/s11390-009-9242-3

Description

Month 200X, Vol.21, No.X, pp.XX–XX J. Comput. Sci. & Technol.

A New Approach to Graph Recognition and Applications

to Distance-Hereditary Graphs

Shin-ichi Nakano1, Ryuhei Uehara2, and Takeaki Uno3

1Department of Computer Science, Faculty of Engineering, Gunma University, Gunma 376-8515, Japan.

2School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292,

Japan.

3National Institute of Informatics, Tokyo 101-8430, Japan.

E-mail: nakano@cs.gunma-u.ac.jp, uehara@jaist.ac.jp, uno@nii.jp

Received MONTH DATE, YEAR.

Abstract

Algorithms used in data mining and bioinformatics have to deal with huge amount of data efficiently.

In many applications, the data are supposed to have explicit or implicit structures. To develop efficient

algorithms for such data, we have to propose possible structure models and test if the models are feasi-

ble. Hence, it is important to make a compact model for structured data, and enumerate all instances

efficiently. There are few graph classes besides trees that can be used for a model. In this paper, we in-

vestigate distance-hereditary graphs. This class of graphs consists of isometric graphs and hence contains

trees and cographs. First, a canonical and compact tree representation of the class is proposed. The tree

representation can be constructed in linear time by using prefix trees. Usually, prefix trees are used to

maintain a set of strings. In our algorithm, the prefix trees are used to maintain the neighborhood of

vertices, which is a new approach unlike the lexicographically breadth-first search used in other studies.

Based on the canonical tree representation, efficient algorithms for the distance-hereditary graphs are

proposed, including linear time algorithms for graph recognition and graph isomorphism and an effi-

cient enumeration algorithm. An efficient coding for the tree representation is also presented; it requires

d3.59ne bits for a distance-hereditary graph of n vertices and 3n bits for a cograph. The results of coding

improve previously known upper bounds (both are 2O(n log n)) of the number of distance-hereditary graphs

and cographs to 2d3.59ne and 23n, respectively.

Keywords algorithmic graph theory, cograph, distance-hereditary graph, prefix tree, tree representa-

∗ The extended abstract was presented at the 4th Annual Conference on Theory and Applications of Models

of Computation (TAMC07). This work was partially done while the second and third authors were visiting ETH

Zürich, Switzerland.

2 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

tion.

1 Introduction

Data-driven computations are of interest for

data mining, bioinformatics, etc. Such com-

putations process huge amounts of data; they

find and classify knowledge automatically. For

these purposes, we sometimes assume that the

data is structured, and such structures can be

observed implicitly or explicitly. More precisely,

we assume a possible structure for the data, and

then enumerate them and test if the assump-

tion is feasible. The frequent pattern discovery

problem in data mining is a typical example,

and it has been widely investigated (see, e.g.,

[1, 2, 3, 4]). Once a feasible model is found,

we solve the problem at hand for the structured

data. However, these structures are relatively

primitive from the graph algorithmic point of

view, and there are many unsolved problems for

more complex structures.

We have to attain three efficiencies to deal

with the complex structures: the structure has

to be represented efficiently; essentially differ-

ent instances have to be enumerated efficiently;

and the properties of the structure have to be

checked efficiently. Except for studies on trees

[5, 6, 7, 8, 9], there have been few studies from

the viewpoint of efficiency.

A variety of graph classes have been pro-

posed and studied [10, 11]. Since the early

work by Rose, Tarjan, and Lueker [12], the lex-

icographic breadth first search (LexBFS) has

played an important role as a basic tool to

recognize several graph classes. The LexBFS

gives us a simple ordering of vertices based on

the neighborhood-preferred manner (see [13] for

further details).

We use prefix trees instead of LexBFS. A

prefix tree, which is also known as a trie [14],

represents a set of strings and enable one to

check whether a given string is included in the

set or not. We regard a string as a set of neigh-

bors of a vertex and maintain the strings of all

vertices with a prefix tree. By using two prefix

trees corresponding to two different neighbor-

hoods, we can efficiently find a pair of vertices

having identical (or similar) neighbors. This is

a different approach from the previously known

algorithms based on LexBFS [15, 16].

We apply the above idea to distance-

hereditary graphs. Distance in graphs is one of

the most important topics in algorithmic graph

theory, and there are many applications that

have geometric properties that can be repre-

sented by graphs. Distance-hereditary graphs

were characterized by Howorka [17] as a means

of dealing with the geometric distance property

called isometric, which means that all induced

paths between pairs of vertices have the same

length. More precisely, a distance-hereditary

graph is a graph in which the distance between

any pair of vertices u and v will be the same

on any vertex induced connected subgraph con-

taining u and v. Intuitively, any longer path

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 3

between them has a shortcut on any vertex in-

duced subgraph. (Without loss of generality, we

will assume that the distance-hereditary graph

is connected.)

There has been some research on charac-

terizing distance-hereditary graphs [18, 19, 20].

In particular, Bandelt and Mulder [18] showed

that any distance-hereditary graph can be ob-

tained from K2 by a sequence of extensions

called “adding a pendant vertex” and “split-

ting a vertex.” Many efficient algorithms on

distance-hereditary graphs are based on this

characterization [21, 22, 23, 24, 25, 26]. We

will show that the extensions can be efficiently

found on prefix trees that represent two differ-

ent neighborhoods of vertices.

The class of distance-hereditary graphs con-

tains two well known graph classes: trees and

cographs. Cographs can be obtained by a se-

quence of “splitting a vertex” extensions from

K2 and an efficient tree representation, called

a cotree, is known (see, e.g., [16] for further

details). Recently, distance-hereditary graphs

attract attention again; Oum showed that a

graph is distance-hereditary if and only if it has

rank-width at most 1 in his thesis [27]; Chan-

dler et al. investigate probe versions of distance-

hereditary graphs and cographs [28], and Gioan

and Paul give a characterization by using split

decomposition with a simple recognition algo-

rithm [29].

Our study presented here makes two key

contributions to the topic of distance-hereditary

graphs. First, we propose a compact and canon-

ical tree representation. This is a natural gener-

alization of a cotree, which is the tree represen-

tation of cographs. Secondly, we show a linear

time and space algorithm that constructs the

tree representation for any distance-hereditary

graph. The linear time and space algorithm in-

volves two key ideas. The first idea is using

two prefix trees, one for open and another for

closed neighborhoods. This idea allows us to

efficiently find “twins,” which are obtained by

splitting a vertex. The second idea is introduc-

ing a vertex ordering named “levelwise laminar

ordering,” which allows us to remove pendant

vertices efficiently. The levelwise laminar order-

ing is weaker than the LexBFS ordering. These

results have the following applications.

(1) The graph isomorphism problem can be

solved in linear time and space. This was con-

jectured by Spinrad in [30, p.309], but it was

not explicitly shown.

(2) The recognition problem can be solved in

linear time and space. Our algorithm is much

simpler than the previously known recognition

algorithm for the class (see [15, Chapter 4]); the

original Hammer and Maffray’s algorithm [20]

fails in some cases, and Damiand, Habib, and

Paul show a correct algorithm in [15]. However,

the correct algorithm requires one to build the

cotree of a cograph in linear time as a subrou-

tine. The subroutine can be implemented by

using a classic algorithm due to Corneil, Perl,

4 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

and Stewart [31], or a recent algorithm based on

the multisweep LexBFS approach by Bretscher,

Corneil, Habib, and Paul [16]. (Note that the

recent result by Gioan and Paul also gives an-

other linear time recognition algorithm for the

class [29].)

(3) For given n, all distance-hereditary graphs

with at most n vertices can be enumerated in

O(n) time per graph with O(n2) space.

(4) We propose an efficient encoding of a

distance-hereditary graph. Any distance-

hereditary graph with n vertices can be rep-

resented in at most d3.59ne bits. This encod-

ing gives us an upper bound on the number of

distance-hereditary graphs of n vertices: there

are at most 2d3.59ne non-isomorphic distance-

hereditary graphs with n vertices. Applying the

technique to cographs, each cograph of n ver-

tices can be represented in at most 3n bits, and

hence the number of cographs of n vertices is

at most 23n. These upper bounds are improve-

ments on the previously known upper bounds

of 2O(n log n) [30, p.20,p.98].

2 Preliminaries

The neighborhood of a vertex v in a graph G =

(V,E) is the set N(v) = {u ∈ V | {u, v} ∈ E}.

We denote the closed neighborhood N(v)∪ {v}

by N [v]. For a vertex subset U of V , we de-

note the set {v ∈ V | v ∈ N(u) for some u ∈

U} by N(U), and the set {v ∈ V | v ∈

N [u] for some u ∈ U} by N [U]. A vertex set C

is a clique iff all pairs of vertices in C are joined

by an edge in G. If a graph G = (V,E) itself is a

clique, it is said to be complete and is denoted by

Kn, where n = |V |. Given a graph G = (V,E)

and a subset U of V , the induced subgraph by

U , denoted by G[U], is the graph (U,E ′), where

E ′ = {{u, v} ∈ E | u, v ∈ U}. For a vertex

w, we sometimes denote the graph G[V \ {w}]

by G − w for short. Two vertices u and v are

said to be twins iff N(u) \ {v} = N(v) \ {u}.

For twins u and v, we say that u is a strong

sibling of v iff {u, v} ∈ E, and a weak sibling iff

{u, v} 6∈ E. We also say strong (weak) twins iff

they are strong (weak) siblings. If a vertex v is

a strong or weak twin of another vertex u, we

simply say that they are twins and v has a sib-

ling u. Since twins are transitive, we say that

a vertex set S with |S| > 2 comprises strong

(weak) twins iff each pair in S consists of strong

(weak) twins. In this paper, we will order the

vertices. For an ordered vertex set, let S be a

set of twins. Then, we call v ∈ S a larger sibling

of S if v > v′ for some other v′ ∈ S with respect

to the ordering. That is, every sibling in S is

a larger sibling, except the smallest one, which

will be called the smallest sibling of S. Note

that it is easy to find a larger sibling for given

S; take arbitrary two twins, and pick the larger

one.

For two vertices u and v, the distance be-

tween the vertices, denoted by d(u, v), is the

minimum length of the paths joining u and

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 5

v. We extend the neighborhood recursively

as follows: For a vertex v in G, we define

N0(v) := {v} and N1(v) := N(v). For k > 1,

Nk(v) := N(Nk−1(v)) \ (∪k−1
i=0 Ni(v)). That is,

Nk(v) is the set of vertices of distance k from v.

In this paper, the following graph operations

play an important role; (α) pick a vertex x in G

and add a new vertex x′ with an edge {x, x′},

(β) pick a vertex x in G and add x′ with edges

{x, x′} and {x′, y} for all y ∈ N(x), and (γ) pick

a vertex x in G and add x′ with edges {x′, y} for

all y ∈ N(x). For operation (α), we say that the

new graph is obtained by attaching a pendant

vertex x′ to the neck vertex x. In (β) and (γ), it

is easy to see that x and x′ are strong and weak

twins, respectively. In this case, we say that

the new graph is obtained by splitting the ver-

tex x into strong and weak twins, respectively.

It is known that the class of cographs is charac-

terized by the above operations as follows (see,

e.g., [31] for characterizations of cographs):

Theorem 1 A connected graph G with at least

two vertices is a cograph iff G can be obtained

from K2 by a sequence of operations (β) and

(γ).

These operations are also used by Bandelt and

Mulder to characterize the class of distance-

hereditary graphs [18]:

Theorem 2 A connected graph G with at least

two vertices is distance-hereditary iff G can be

obtained from K2 by a sequence of operations

(α), (β), and (γ).

We add one pendant vertex in (α), and split

a vertex into two siblings in (β) and (γ). In this

paper, we also use the following generalized op-

erations for k > 1; (α′) pick a neck x in G and

add k pendants to x; (β′) pick a vertex x in G

and split it into k + 1 strong siblings; and (γ′)

pick a vertex x in G and split it into k +1 weak

siblings.

For a vertex set S ⊆ V of G = (V,E), the

contraction of S into s ∈ S is obtained as fol-

lows: (1) for each edge {v, u} with v ∈ S \ {s}

and u ∈ V \ S, add an edge {u, s} to E; (2)

replace multiple edges by a single edge; and (3)

remove all vertices in S \ {s} from V and their

associated edges from E.

Let v1, v2, . . . , vn be an ordering of a ver-

tex set V of a connected distance-hereditary

graph G = (V,E). Let Gi denote the graph

G[{vi, vi+1, . . . , vn}] for each i. The ordering is

a pruning sequence iff Gn−1 is K2 and Gi can be

obtained from Gi+1 by either attaching a pen-

dant vertex vi or splitting some vertex v ∈ Gi+1

into twins v and vi for each i < n − 1. (In

other words, Gi+1 is obtained from Gi by ei-

ther pruning a pendant vertex vi or contract-

ing some twins vi and v ∈ Gi+1 into v for each

i < n − 1.) For a connected cograph G, the

pruning sequence of G is defined similarly only

by splitting vertices.

Two graphs G = (V,E) and G′ = (V ′, E ′)

are isomorphic iff there is a one-to-one map-

ping φ : V → V ′ such that {u, v} ∈ E iff

6 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

{φ(u), φ(v)} ∈ E ′ for every pair of vertices

u, v ∈ V . We say that G ∼ G′ if they are iso-

morphic.

2.1 Open and closed prefix trees

and basic operations

Here, we introduce the prefix trees of open and

closed neighbors. These are used for detecting

strong twins, weak twins, pendants, and necks

efficiently. The details of the notion of a prefix

tree, which is also called a trie, can be found in

standard textbooks; see, e.g., [14].

Let V be an ordered set of vertices (here-

after, we assume that the vertices are numbered

from 1 to |V | in some way). A prefix tree for a

family of subsets of V is a rooted tree T sat-

isfying the following conditions (the vertices of

prefix trees are called nodes to distinguish them

from the vertices in V). Except the root, each

node in T is labeled by a vertex in V , and some

nodes are (doubly) pointed to by vertices in V .

The labels of a prefix tree satisfy the following

two conditions; (1) if a node with label v is the

parent of a node of label v′, then v′ > v, and (2)

no two children of a node have the same label.

Note that two or more nodes in T can have the

same label (the name of a vertex of V), but each

vertex in V has exactly one pointer to a node

in T .

We will maintain N(v) and N [v] = N(v) ∪

{v} for all vertices in G by using two prefix trees

as follows. The path of a prefix tree from a node

x to the root gives a set of labels (or vertex set

in G), denoted by set(x). If x is pointed to by

a vertex v, we consider that set(x) is associated

with v. In this manner, we can use the two pre-

fix trees to represent two families of open neigh-

borhoods and closed neighborhoods by consid-

ering the neighbor set as the associated set. We

call these prefix trees the open and closed pre-

fix trees, and denote them by T (G) and T [G],

respectively. Intuitively, sorting N(v) and N [v]

defines a unique sequence L(v) of vertices v for

each v ∈ V (G), and merging common prefixes

of those sequences {L(v) | v ∈ V (G)} generates

the open prefix tree T (G) and the closed prefix

tree T [G], respectively.

The prefix trees T (G) and T [G] for the

distance-hereditary graph G in Figure 2(1) are

depicted in Figure 1. Each square is a node la-

beled by a vertex in G except the root. Each

circle indicates a vertex in G, and the thick ar-

rows are (double) pointers to the corresponding

node. That is, a vertex in a circle has a neighbor

set that appears on the path from the pointed

node to the root, and they are incrementally

ordered from the root to the node.

We can make it so that every leaf of the pre-

fix tree is pointed to by at least one vertex (since

leaves pointed to by no vertices are redundant).

Thus, the size of the prefix tree is O(n + m).

Here, we clarify the data structure for the pre-

fix tree. A prefix tree is represented by the set

of its nodes, and each node has the pointer to its

parent. The children of a node x is maintained

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 7

by a doubly linked list of pointers to the chil-

dren, and the list is in x. Thus, we can get the

parent of a node in constant time, but finding

a specified child (by a label) takes linear time

in the number of children. We assume that the

pointers between a parent and its children are

doubly linked. Hence, when an algorithm deals

with a child v, the algorithm can remove the

pointer to v in O(1) time in the doubly linked

list to the children located in its parent.

Lemma 3 For any given graph G = (V,E),

T [G] and T (G) are constructed in O(n + m)

time and space.

Proof. In general, a prefix tree of a given fam-

ily can be constructed in linear time. To make

the paper self-contained, we describe the con-

struction algorithm for the open prefix tree in

Algorithm 1. Note that while every vertex in G

points to exactly one node in T , some nodes x

in T have a list of vertices in G pointing to x.

Algorithm 1: Construction of the open

prefix tree

Input : Graph G = (V,E) with

V = {1, 2, . . . , n};

Output: T (G);

// In 1-4, sort neighbors of all

vertices by bucket sort

P (v) := ∅ for each v ∈ V ;1

foreach v = 1, 2, . . . , n do2

insert v to P (u) for each u ∈ N(v);3

end4

// Hereafter, construct prefix

tree level-by-level

initialize T as a tree with one root node5

(initially) pointed to by every vertex of G;

foreach k = 0, 1, 2, . . . , maxv∈V |P (v)| do6

foreach node x on the kth depth of T7

(in increasing order) do

foreach vertex v pointing to x (in8

increasing order) do

if |P (v)| > k then let u be9

the (k + 1)th vertex in P (v);

if x has no child with label u10

yet then create the child y of

x with label u;

update so that v points to y;11

end12

end13

end14

return T as T (G).15

The computation time of Algorithm 1 is

O(n + m). The first loop sorts the neighbor-

8 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

hood of each vertex by bucket sort. The second

loop constructs the prefix tree level-by-level. In

the kth loop, we create all the children of the

nodes on the (k − 1)th depth. This is done by

making a child each kth neighbor in P (v) for

each v ∈ V .

Note that step 10 can be done in O(1) time;

we put a “mark” y on vertex u in V when node

y is made. All marks of vertices in V for x are

cleared after step 12.

The closed prefix tree can be constructed in

a similar way. 2

From the definitions, we can immediately

have the following observations.

Observation 4 Let u and v be any vertices in

G. Then, (1) u is the pendant of the neck v iff

a child of the root of T (G) has label v and is

pointed to by u; (2) u and v are strong twins

iff u and v point to the same node in T [G]; and

(3) u and v are weak twins iff u and v point to

the same node in T (G).

We have to update the prefix trees effi-

ciently. Hence, Algorithm 2 for removing a node

from a prefix tree is a key procedure:

Algorithm 2: Delete a vertex from a pre-

fix tree
Input : Open (or closed) prefix tree

T (G) (or T [G]), vertex w in V

to be deleted;

Output: Open (or closed) prefix tree

T (G − w) (or T [G − w]);

let x be the unique node pointed to by w;1

while x is a leaf node and pointed to by2

no vertex except w do delete x and set x

to be its own parent;

foreach node x with label w do3

let y be the parent of node x;4

foreach vertex v pointing to node x5

do update so that v points y;

remove x from the list of children in y;6

let Lx and Ly be the lists of children7

nodes of x and y, respectively;

merge Lx and Ly to obtain the list of8

children of y ;

delete x from T ;9

end10

return T .11

For a graph G = (V,E) and a vertex w,

Algorithm 2 correctly obtains T (G − w) and

T [G − w] from T (G) and T [G], respectively.

We now analyze the complexity of Algorithm

2. The node x pointed to by the vertex w

has an ancestor with label v iff w ∈ N(v) or

w ∈ N [v]. Thus, the number of ancestors of

the node pointed to by w is at most |N [w]|, and

hence steps 1 and 2 can be done in O(|N [w]|)

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 9

time. Moreover, the number of nodes with label

w is bounded by |N [w]|. Hence, the loop from

steps 3 to 10 will be repeated at most |N [w]|

times. Steps 4, 6, 7, 9, and 10 can be done in

O(1) time, and step 5 can be done in O(|N [w]|)

time. Therefore, our main task is to evaluate

step 8, which merges two lists of nodes x and y.

Generally, lists Lx and Ly may contain nodes

having the same label. In such cases, we have

to unify the nodes by merging the two lists Lx

and Ly. We here call this operation unification.

However, we will show in Lemmas 22 and 24

that in our algorithm Lx and Ly never have a

common node; thus, no unification occurs. This

is the key to our linear time algorithm.

3 Canonical trees

In this section, we introduce the notion of the

DH-tree, which is a canonical tree represen-

tation of a distance-hereditary graph. First,

we define the DH-tree derived from a distance-

hereditary graph G. Although it is canonical,

it is still redundant. Hence, we next introduce

the normalized DH-tree, which will be used as

the canonical and compact representation of a

distance-hereditary graph.

Any cograph is a distance-hereditary graph.

The normalized DH-tree for a cograph G co-

incides with the cotree, which is a known tree

representation of a cograph. That is, the nor-

malized DH-tree is a natural generalization of

the cotree.

3.1 DH-tree derived from a

distance-hereditary graph

We will deal with K1 (single vertex) and K2

(two vertices joined by an edge) as special

distance-hereditary graphs. Hence, hereafter,

we assume that G = (V,E) is a connected

distance-hereditary graph that contains at least

three vertices. For given distance-hereditary

graph G = (V,E), we define three families of

vertex sets as follows;

S :={S | x, y ∈ S if N [x] = N [y] and |S| > 2},

W :={W | x, y ∈ W if N(x) = N(y), |W | > 2,

and |N(x)| = |N(y)| > 1},

P :={P | x, y ∈ P if x is a pendant vertex

and y is its neck}.

Note that when y is the neck of two pendant

vertices x1 and x2, P contains the set P with

{x1, x2, y} ⊆ P . Moreover, we have the follow-

ing observation.

Lemma 5 For each P in P, P contains exactly

one neck with associated pendants.

Proof. Since each pendant has degree 1, if P

contains two necks y and y′, y is a pendant of

the neck y′, and vice versa. This implies that G

is K2, which contradicts to the assumption. 2

Now we show that the families give disjoint

sets. More precisely, for any pair of sets S1 and

S2 in S ∪ W ∪ P , S1 ∩ S2 = ∅. (Note that we

have S ∪W ∪P ⊆ V , or some vertices may not

belong to any vertex set.)

10 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

Lemma 6 Let v be any vertex in a distance-

hereditary graph G. Then v belongs to either

(1) exactly one set in S ∪W ∪P, or (2) no set

in the families.

Proof. If v belongs to no set, we have nothing

to do. Hence, we assume that v belongs at least

one set. We now have three cases.

(1) v is in a set P in P . Then we have two

subcases. First, we assume that v is a pendant.

Then there is a unique neck u in P , and by

Lemma 5, it is easy to see that v 6∈ P ′ in P

with P 6= P ′. Here, |N(v)| = |{u}| = 1; hence

v 6∈ W for any W ∈ W . On the other hand,

N [v] = {u, v}; hence there is no other vertex

v′ with N [v′] = N [v] except v′ = u. However,

N [u] = N [v] implies that G ∼ K2, which is a

contradiction. Thus v 6∈ S for any S ∈ S.

Next, we assume that v is a neck in some

P in P . Then there is a pendant u of v. Ac-

cording to a similar argument to the one above,

there is no other set P ′ ∈ P that contains v.

Moreover, the only neighbor of u is v. Hence

there is no other vertex v′ with N(v) = N(v′)

and N [v] = N [v′] (except v′ = u, which implies

G ∼ K2, a contradiction). Thus, P is the only

set containing v.

(2) v is in S for some set S in S. By (1), there is

no set P ∈ P that contains v. We first assume

that there is another set S ′ ∈ S with v ∈ S ′.

Then it is easy to see that for any u ∈ S and

u′ ∈ S ′, N [u] = N [u′](= N [v]). Hence we have

S = S ′, which is a contradiction. Now we as-

sume that there is another set W ∈ W with

v ∈ W . By assumption, N [v] = N [u] for some

u in S, and N(v) = N(w) for some w in W .

Since u, v ∈ S, {u, v} ∈ E. Therefore, we have

N(w) = N(v) ∪ {u} and hence {u,w} ∈ E.

This contradicts the fact that N [v] = N [u] and

{v, w} 6∈ E.

(3) v is in W for some set W in W . By (1) and

(2), there is no set P ∈ P and S ∈ S that con-

tains v. To derive a contradiction, we assume

that another W ′ in W contains v. Then it is

easy to see that W = W ′, which is a contradic-

tion.

Therefore, the family S ∪W ∪P define dis-

joint sets of V . 2

Lemma 7 For any distance-hereditary graph

G, S ∪W ∪ P 6= ∅.

Proof. By Theorem 2, G can be generated by a

sequence of operations. For the last operation

of the sequence, we have a non-empty set. 2

Here, we introduce the notion of the DH-

tree derived from a distance-hereditary graph G,

which is a rooted ordered tree where each in-

ner node has a label (we again use the notation

“node” for a DH-tree (and prefix tree) to dis-

tinguish from a “vertex” in G). The label of

an inner node is one of {s, w, p}, which indicate

strong twin, weak twin, and pendant with neck,

respectively.

For given distance-hereditary graph G =

(V,E), the DH-tree derived from G is defined

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 11

recursively from leaves to the root. We have

three basic cases:

(1) G = K1: The DH-tree derived from K1 is

defined by a single root with no label.

(2) G = Kn: When G ∼ Kn with n > 2, the

DH-tree of G is defined by a single root with la-

bel s and n leaves with no labels. The tree rep-

resents that Kn can be obtained from a single

vertex K1 by splitting it into n strong siblings.

(3) G = Sn, where Sn is a star with n > 2 ver-

tices that consist of a center vertex with n − 1

pendant vertices. In this case, we define the DH-

tree derived from G as a tree with a single root

with label p and n leaves with no labels. Note

that the tree is ordered. The leftmost child of

a node with label p indicates the neck. That

is, the leftmost leaf corresponds to the center of

the star, and the n− 1 leaves correspond to the

n − 1 pendants.

Note that the cases are disjoint. In particu-

lar, K2 is a clique, and not a star. Hence, the

root with label p of a DH-tree has at least three

children. Note also that the number of leaves

of the tree is the number of vertices in G. This

fact is an invariant for the DH-tree.

We now define the DH-tree T derived from

G = (V,E) with |V | = n > 2 in the general

case. We assume that G is neither Kn nor a

star of n vertices. We start with n leaves of T ;

they are initially independent. Since each leaf

in T corresponds to a vertex v in G, we identify

the leaf with v hereafter. Then, by Lemmas 6

and 7, we can group the leaves into three kinds

of families S, W , and P with S ∪ W ∪ P 6= ∅.

Let S be any set in S. We make a common par-

ent with label s of the leaves. We repeat this

process for each S in S. For each set W in W ,

we similarly make a common parent with label

w. Let P be any set in P . Then, by Lemma 5, P

contains exactly one neck v and some pendants

u. We make a common parent with label p for

them, and make the neck v the leftmost child

of the parent. The pendants are placed to the

right of the neck in arbitrary ordering.

Next, we contract each vertex set U in S∪W

into any vertex u ∈ U on G. Each vertex u

corresponds to a parent in the resultant T and

we identify these correspondences. For each

P ∈ P , we also prune all pendant vertices ex-

cept the unique neck in P . The neck corre-

sponds to the parent of the nodes in P .

We repeat the process until the resultant

graph becomes one of the basic cases, and we

obtain the DH-tree T derived from G = (V,E).

An example of a distance-hereditary graph

G and the DH-tree derived from G are depicted

in Figure 2 and Figure 3, respectively. The

twins are contracted by removing all siblings

except the smallest one. Each node in the DH-

tree corresponds to a vertex in the distance-

hereditary graph and is depicted in Figure 3.

Note that the DH-tree itself does not store in-

formation.

12 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

Theorem 8 We can construct the DH-tree T

derived from G iff G is a distance-hereditary

graph.

Proof. Due to Bandelt and Mulder in [18], G

is distance-hereditary iff G has a pruning se-

quence. Hence, we can prove the theorem by

using simple induction for the number of the

vertices of G with Lemmas 6 and 7. 2

Corollary 9 (1) For any distance-hereditary

graph G, the DH-tree derived from G is uniquely

determined.

(2) The DH-tree T derived from a distance-

hereditary graph G = (V,E) requires O(|V |)

space.

Proof. (1) The corollary is true from the fact

that the families S, W and P are uniquely de-

termined.

(2) By definition, the number of leaves of T is

equal to |V |. Moreover, every inner node of T

has at least two children. Thus, the number of

inner nodes is at most |V |, which implies the

corollary. 2

The following characterization will be used

later.

Lemma 10 Let G be a distance-hereditary

graph that contains at least two vertices, and

T be the DH-tree derived from G. Let d be the

diameter of T . Then we have the following;

(a) d > 2,

(b) each inner node has at least two children,

(c) each inner node has a label, either p, s or

w, and each leaf has no label,

(d) the label of the root is p or s, and

(e) any non-leftmost child of a node with label

p is not w.

Proof. The above statements except the last one

immediately come from the definition. State-

ment (e) is true since a weak neighbor of a pen-

dant is always a pendant. 2

3.2 Normalized DH-tree of a

distance-hereditary graph

Section 3.1 introduced the notion of the DH-

tree derived from a distance-hereditary graph

G = (V,E). However, such a graph can be re-

dundant.

As a rule (β) can be replaced by (β′), if a

node x with the label “w” is the parent of the

other nodes y with the label “w,” x and y can

be weak siblings in the same level (in Figure 4,

the case (1) can be replaced by (2)). The same

reduction can be applied to the nodes with the

label “s.”

Hence, we introduce the notion of the nor-

malized DH-tree of a distance-hereditary graph

G, which is obtained from the DH-tree derived

from G by applying the reduction repeatedly as

possible as we can (see the right tree in Figure 4

which is the normalized DH-tree obtained from

the DH-tree in Figure 3). Lemma 10 also holds

for the normalized DH-tree. Below, we prove

two lemmas for a normalized DH-tree.

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 13

Lemma 11 From a given DH-tree derived from

a distance-hereditary graph G = (V,E), the

normalized DH-tree of G can be constructed in

O(|V |) time and space.

Proof. The reduction can be done by using the

standard depth first search. Hence, the nor-

malized DH-tree T of G can be obtained from

the DH-tree T ′ derived from G in O(|T |) =

O(|T ′|) = O(n) time and space. 2

The height of a node on a rooted tree is the

distance from it to the farthest node in its de-

scendants. (Hence the height of a leaf is 0.)

Lemma 12 For any distance-hereditary graph

G = (V,E), let T be the DH-tree derived from

G. Let x be any node in T and y be its parent.

Assume that x and y have the same label and

are reduced in the normalized tree. Then, the

height of y does not change in the normalized

DH-tree of G.

Proof. Without loss of generality, we assume

that x and y have the same label w. If all chil-

dren of y have the same label w, they form a set

of weak twins, which is a contradiction. Hence y

has at least one child z that has a different label.

Among them, we assume that z has the largest

height. We show that the height of y is given

by z, not by x. To derive a contradiction, we

assume that z is lower than x. Recall that the

DH-tree is derived from leaves to root. Hence,

when z is lower than x, z and other lower nodes

are merged by the algorithm and we obtain y

with label w. Then y cannot be the parent of

x, which contradicts the assumption that y is

the parent of x. Hence, the height of y does not

change in the normalized tree. 2

Lemma 12 immediately leads to the following

lemma:

Lemma 13 For any distance-hereditary graph

G, let T and T ′ be the DH-tree derived from G

and the normalized DH-tree of G, respectively.

Then, the roots of T and T ′ have the same

height.

Proof. To prove this lemma, all we need to do

is use Lemma 12 and simple induction on the

height of the roots of trees. 2

In order to characterize the normalized DH-

tree, we begin with some definitions. Let x be

a node of a normalized DH-tree having label p.

The leftmost child of p is called a neck child,

and the other children are called pendant chil-

dren. For any node x in a (normalized) DH-tree

T , let C(x) denote the set of children of x and

L(x) denote the leaves in C(x). Then, a peel

operation at a node x in T is defined as fol-

lows; (1) if L(x) = C(x), remove all children of

x; (2) if L(x) ⊂ C(x) and L(x) ∈ W ∪ S, re-

move all children of x except one leaf; and (3) if

L(x) ⊂ C(x) and L(x) ∈ P , remove all children

of x. The peel operation for T is defined by the

union of peel operations at all inner nodes in

T . Intuitively, a peel operation corresponds to

a contraction of twins in a set U of W ∪ S or

pruning pendants in a set P of P . Hence, we

have the following observation.

14 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

Observation 14 Let G = (V,E) be a distance-

hereditary graph, T be the normalized DH-tree

of G, and S, W, and P be the families of ver-

tex sets defined by twins and pendants on G.

Let G′ be the distance-hereditary graph which is

obtained from G by contracting all twin sets in

S ∪ W and pruning pendants in P. Then, the

normalized DH-tree of G′ is coincides with the

DH-tree obtained from T by performing the peel

operation on T .

Lemma 15 Let G be a distance-hereditary

graph that contains at least two vertices, and T

be a normalized DH-tree. Let d be the diameter

of T . Then the following statements are true.

(a) a parent and its children do not have the

same label if the parent has label s or w,

(b) the root is a center of the tree,

(c) if the root has two children, the label of the

root is s, the labels of the children are both w or

both p, and d is even, and

(d) if the label of the root is p, at least two non-

leftmost children of the root have the maximum

height among the children of the root.

Proof. Statement (a) is immediately by defi-

nition of a normalized DH-tree. With careful

analysis of the construction of the DH-tree de-

rived from G, we can see that any inner node

x has at least two children of the same height

that gives the height of x. Hence the root of the

DH-tree derived from G is a center of the tree.

Thus, we can use Lemmas 12 and 13 to prove

(b).

To prove (c), we suppose that the root has

two children. Then by the same argument for

(a), the two children have the same height that

gives the height of the root. Hence, d is even.

By definition, the root has label s, and the la-

bels of its children are p or w. If the root has

label s and two children have different labels p

and w, this implies that in the last step of the

construction of DH-tree, the last graph would

be a star, which is a contradiction.

The last statement (d) can be obtained from

a similar argument to the one for (a); the height

of the root is given by at least two non-leftmost

children. 2

Now we can state the compact and canonical

representation of a distance-hereditary graph:

Theorem 16 The normalized DH-tree of a

connected distance-hereditary graph is canoni-

cal. That is, the normalized DH-tree T for any

given connected distance-hereditary graph G is

uniquely determined, and the original distance-

hereditary graph G is uniquely constructed from

the normalized DH-tree T up to isomorphism.

Proof. By Corollary 9(1), the DH-tree T ′ de-

rived from a given distance-hereditary graph G

is uniquely determined. Moreover, the normal-

ized DH-tree T does not change with the order

of the normalization process. Hence, the nor-

malized DH-tree T for G is uniquely determined

from G.

Let T be the normalized DH-tree which is

constructed from a distance-hereditary graph

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 15

G. We show that the original G can be recon-

structed from T by induction on the diameter d

of T . Note that when T contains just the root,

we have d = 0. Hereafter, we assume d > 2 from

Lemma 10(a). Next we assume that d = 2. If G

is Kn or a star with n > 1 vertices, it is easy to

see that G can be uniquely reconstructed from

T . Suppose that G is neither Kn nor a star

with n vertices. Then, T has diameter 2 if and

only if V produces exactly one set in S, W , or

P . However, V ∈ S implies G is Kn, V ∈ W

implies G is an independent set of n vertices,

and V ∈ P implies G is a star with n vertices,

which are contradictions. Thus, G is one of the

basic cases when d 6 2.

Let T have diameter d > 2, and assume

that any DH-tree T ′ of diameter less than d can

uniquely generate the corresponding distance-

hereditary graph G′. Let L′ be the set of leaves

in T . Among them, let L be the set of leaves

that give the diameter d of G; that is, for each

v ∈ L, there is another vertex u (in L) with

d(u, v) = d. The set L can be partitioned into

distinct sets L1, L2, . . . , Lk such that Li contains

the leaves with a common parent. Then, each

common parent of a set Li is labeled by w, s, or

p. Recall that, at first, each leaf corresponds to

a vertex in G.

Let T ′′ be the DH-tree obtained by peeling

T . Then, form Observation 14, we have two

cases: either the diameter d′′ < d or d′′ = d. In

either case, as similar discussion to the one in

the proof of Lemma 15 shows that G is uniquely

reconstructed from T . 2

Corollary 17 The normalized DH-tree T for

a distance-hereditary graph G = (V,E) requires

O(|V |) space.

3.3 Cotree for a cograph

By the characterizations in Theorems 1 and 2,

the normalized DH-tree for a cograph only con-

sists of the nodes of labels s and w. This notion

of the tree representation for a cograph is known

as the cotree, and appears in many studies, e.g.,

[16, 31, 15]. We note that only the nodes of label

p require the ordering of children in the normal-

ized DH-tree. Hence the cotree of a cograph is

a labeled rooted non-ordered tree.

4 Levelwise laminar order-

ing

For maintenance of a pendant vertex in a

distance-hereditary graph, we introduce a tech-

nical vertex ordering, called levelwise laminar

ordering. Note that for any distance-hereditary

graph G and r in G, Nk(r) induces a (not nec-

essarily connected) cograph, and this fact plays

an important role in previous papers [18, 15].

The levelwise laminar ordering is weaker than

the fact.

We first define the notations N+
v (u), N−

v (u),

and N0
v (u) as follows. We fix any vertex v in

G = (V,E). Then, for each u ∈ V , N+
v (u) de-

notes the set Nd(u,v)+1(v)∩N(u), N−
v (u) denotes

16 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

the set Nd(u,v)−1(v) ∩ N(u), and N0
v (u) denotes

the set Nd(u,v)(v)∩N(u). We define N−
v (v) := ∅

for any v ∈ V .

Let V be a set of n vertices. Two sets X

and Y are said to be overlapping iff X ∩ Y 6= ∅,

X \ Y 6= ∅, and Y \X 6= ∅. A family F ⊆ 2V is

said to be laminar iff F contains no overlapping

sets; that is, any pair of two distinct sets X and

Y in F satisfies either X ∩ Y = ∅, X ⊆ Y , or

Y ⊆ X. Then any distance-hereditary graph

has the following laminar structure:

Lemma 18 ([18, Theorem 3(4)]) Let G =

(V,E) be a distance-hereditary graph. Let r be

any vertex in V . Then the family {N−
r (v) | v ∈

Nk(r)} is laminar for any k > 1.

Lemma 18 is proven in [18, Theorem 3(4)]; this

lemma is one of five properties that characterize

the class of distance-hereditary graphs. In other

words, Lemma 18 is necessary, but not suffi-

cient condition for distance-hereditary graphs.

For example, C6 also has the laminar property

although it is not distance-hereditary.

Let G = (V,E) be a distance-hereditary

graph, and r be any vertex in V . Hereafter,

we fix r and call it the root of the ordering.

Now, we introduce a new notion of an ordering

(v1 = r, v2, . . . , vn) of vertices in V . We write

vi < vj for two vertices vi and vj if i < j. If

a vertex ordering satisfies the following condi-

tions, we call it a levelwise laminar ordering:

(L1) For any vi ∈ Nk(r) and vj ∈ Nk′(r),

i < j holds if 0 6 k < k′.

(L2) For any vi, vj ∈ Nk(r), k > 1, i < j holds

if N−
r (vj) ⊂ N−

r (vi).

(L3) Let vi, vj be any vertices in Nk(r), k > 1,

i < j such that N−
r (vi) = N−

r (vj).

Then we have N−
r (vi) = N−

r (vj) = N−
r (v)

for all vertices vi < v < vj.

By Lemma 18, any distance hereditary graph

has a levelwise laminar ordering.

Lemma 19 Let u be a pendant of a neck v.

When u is not the root of the levelwise order-

ing, v < u.

Proof. The only neighbor of u is v. Hence u

will not be numbered before v when u is not

the root. 2

Lemma 20 The levelwise laminar ordering of

a distance-hereditary graph G = (V,E) can be

computed in O(|V | + |E|) time and space.

Proof. First, we fix the root r. Then we or-

der the vertices by the standard breadth first

search from r by using a queue as follows; first,

the queue Q is initialized by r, and while Q

is not empty, we pick up the first element v

from Q and number it, and put the unnum-

bered vertices in N(v) \ Q into the last part of

Q. This proves (L1). Next, for (L2), we com-

pute the ordering of the vertices in Nk(r) for

each k = 1, 2, For each k, we have to solve

the following subproblem for X = Nk−1(r) and

Y = Nk(r):

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 17

Input: Bipartite graph G′ = (X∪Y,E ′) with

X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , ym},

and E ′ ⊆ X × Y .

Output: If there are yi, yj in Y such that

N(yi) and N(yj) overlap, output “No,” else

output the ordering over Y such that yi < yj

if N(yj) ⊂ N(yi).

If the problem can be solved in O(|X|+|Y |+

|E ′|) time and space, we have (L2) in linear

time. The vertices in X and Y are maintained

in the usual arrays. To simplify the algorithm,

we add a universal vertex y0 to Y such that

N(y0) = X. We first sort Y ′ := {y0, y1, . . . , ym}

such that |N(y0)| > |N(y1)| > |N(y2)| > · · · >
|N(yn)| by bucket sort. (Ties are broken by the

original ordering.) Then, if Y can be sorted

in a levelwise laminar ordering, the ordering

already satisfies (L2) since N(y) ⊆ N(y′) im-

plies |N(y)| 6 |N(y′)|. Hence, it is sufficient

to check if they do not overlap. To check that,

we define the last(x) for each vertex x in X;

last(x) = yj indicates that the last vertex set

containing x is N(yj). Hence, we can determine

if some N(yj′) overlaps N(yj) with yj < yj′ ,

since N(yj′) contains two vertices x and x′ with

last(x) 6= last(x′). The algorithm is as follows:

Algorithm 3: Laminar ordering in a level

Input : A bipartite graph

G′′ = (X ∪ Y ′, E ′′) with

X = {x1, x2, . . . , xn},

Y ′ = {y0, y1, y2, . . . , ym}, and

E ′′ = E ′∪{{y0, xi} | 1 6 i 6 n};

Output: Y ′ \ {y0};

sort Y ′ such that |N(y0)| > |N(y1)| >1

|N(y2)| > · · · > |N(yn)| by bucket sort;

foreach i = 1, 2, . . . , n do set2

last(xi) := y0;

foreach j = 1, 2, . . . ,m do3

check if all vertices x in N(yj) have4

the same last(x), and output “No” if

not;

update last(x) := yj for all vertices x5

in N(yj);

end6

return Y ′ \ {y0}.7

Showing the correctness of Algorithm 3 is

easy. It is not difficult to see that Algo-

rithm 3 runs in O(|X| + |Y ′| + |E ′′|) time and

space. Moreover, the algorithm is stable for

the breadth first search; ties are broken in the

breadth first search manner, which implies (L3).

Hence, we can compute a levelwise laminar

ordering of a distance-hereditary graph G =

(V,E) in O(|V | + |E|) time and space. 2

Note that the levelwise laminar ordering is a

partial order, and it is weaker than the LexBFS

order.

Levelwise laminar ordering will play an im-

18 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

portant role for the deletion of pendants. To use

the ordering in the deletion algorithm, we have

to show that contraction of twins and deletion

of pendants do not spoil the ordering.

Lemma 21 Let (v1, v2, . . . , vn) be a levelwise

laminar ordering of a distance-hereditary graph

G = (V,E). Then G−vi is a distance-hereditary

graph and (v1, v2, . . . , vi−1, vi+1, . . . , vn) is a lev-

elwise laminar ordering of G − vi if vi is either

(1) a pendant in G, or (2) a larger sibling in G.

Proof. By Theorem 2, G − vi is a distance-

hereditary graph. Hence we show that

(v1, v2, . . . , vi−1, vi+1, . . . , vn) is a levelwise lam-

inar ordering of G − vi in each case. We first

observe that the deletion of vi has some effect

on the vertices only in N(vi).

(1) When vi is a pendant with i > 1, N−
r (v)

does not change for all vertices v in V \ {vi}.

If vi = v1, (v2, v3, . . . , vn) is a levelwise laminar

ordering of G − vi since N(v1) = {v2}.

(2) Let w be a smaller sibling of vi. We have two

cases. First, we assume that w 6= r = v1. Since

w and vi are twins, d(r, w) = d(r, vi). Thus

w and vi are in Nk(r) for some k. Hence, for

any vertex x, N−
r (x) contains both w and vi or

none of them. Therefore, removing vi has no

effect on the inclusion relation between N−
r (x)

and N−
r (x′) for any x and x′. The other case

is that w = r = v1. Then vi ∈ N1(r) and

N [w] = N0(r) ∪ N1(r) if S ∈ S, or vi ∈ N2(r)

and N(vi) = N1(r) if S ∈ W . In any case, re-

moving vi does not violate the properties (L1),

(L2), and (L3). 2

5 Linear time construction

of canonical trees

In this section, we give linear time algorithms

for constructing the cotree of a cograph and the

DH-tree of a distance-hereditary graph. From

Lemma 6 and Observation 4, a set W ∈ W

(resp., S ∈ S) corresponds to a set of vertices

pointing to the same node in T (G) (resp., T [G]).

From Lemma 5, a set P ∈ P contains one neck

v. Then, by Lemmas 5 and 6, and Observation

4, the set P corresponds to a node x of depth 1

in T (G) such that (1) x has label v, (2) at least

one vertex in G points to x, and (3) all vertices

in P \ {v} point to x. The outline of the con-

struction of the canonical tree for a cograph or

a distance-hereditary graph is;

(0. sort the vertices in the levelwise laminar

ordering,)

1. construct the open and closed prefix trees,

2. if G ∼ Kn or G is a star, complete T and

halt,

3. produce nodes of T for vertices in

P ∪ S ∪W,

4. for each set S ∈ S ∪W , contract larger

siblings in S to the unique smallest sibling

with the update of prefix trees T (G) and T [G],

(5. for each set P ∈ P , prune all pendants with

the update of prefix trees T (G) and T [G],)

6. go to step 2.

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 19

Steps 0 and 5 are required only for a distance-

hereditary graph to remove pendant vertices ef-

ficiently. Our algorithm contracts all twins in

S ∪W and prunes all pendants in P , and then

returns to step 2. That is, if contraction of twins

produces a pendant, its pruning is postponed to

the next execution of the loop. Now we fix the

families P, S, and W . Let w be a vertex which

will be removed from G since it is one of twins

or a pendant.

5.1 Cotree for a cograph

Here, we consider the case of a cograph. We

have to consider the case in which w is a larger

sibling. We have another sibling w′ with w′ <

w.

Lemma 22 Let x be any node of a prefix tree

with label w, and y the parent of x. Then x has

the largest label (vertex) among the children of

y.

Proof. To derive a contradiction, suppose that

there is a child x′ of y having a label larger

than w. Then, from the definition of prefix tree,

no descendant of x′ has label w. On the other

hand, any vertex in G is adjacent to both w

and w′, or to neither w nor w′. Thus, there is

a vertex v in G such that there is a descendant

of x pointed to by v, and N(v) contains both

of w and w′. Hence, there is an ancestor z of

x with label w′ since w > w′. Now let x′′ be

any descendant of x′ (including x′) pointed to

by v′. Since x′ is in the prefix tree with no re-

dundancy, such a vertex v′ should exist. Thus

we have w′ ∈ N [v′] and w 6∈ N [v′], which con-

tradicts that w and w′ are twins. 2

By Lemma 22, we can see that no unification

occurs in this case. Thus we have the following

theorem.

Theorem 23 When w is a larger sibling of a

twin, the prefix trees T (G−w) and T [G−w] can

be obtained from T (G) and T [G] in O(|N(w)|)

time.

5.2 DH-tree for a distance-

hereditary graph

Next we consider the case of a distance-

hereditary graph. We employ two tricks to re-

move a pendant w. The first trick is using the

levelwise laminar ordering obtained in step 0.

The second trick is to deal with two special sets

N [r] and N(r) outside the two prefix trees T [G]

and T (G); that is, we remove N [r] and N(r)

from T [G] and T (G), respectively, and main-

tain them in another way. More precisely, the

algorithm performs the following steps:

1. In step 0, sort the vertices in a levelwise

laminar ordering.

2. In step 1, construct the prefix trees T [G]

and T (G) not including N [r] and N(r).

3. In step 5, maintain all neighbor sets N [v]

and N(v) by the prefix trees T [G] and

20 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

T (G) except the root r. Maintain two spe-

cial sets N [r] and N(r) separately.

That is, the prefix trees T [G] and T (G) consist

of all vertices (including r) as a label, but the

root r points to none of their nodes. Two special

sets N [r] and N(r) are maintained by standard

doubly linked lists; they are initialized in step 0

in O(N [r]) time and space, and each element is

pointed to by the neighbor of r.

Now we are going to remove w from G since

it is a twin or pendant. When w is a larger

sibling, we have already done so in the previous

section. We note that we never have w = r since

w is a larger sibling and r has the first index.

Thus Lemma 22 also holds in this case, and we

have nothing to maintain N [r] and N(r).

5.2.1 Pruning a pendant

We assume that w is a pendant vertex with

neck u such that w 6∈ N [r] (or equivalently,

w ∈ Ni(r) with i > 2). Since w 6∈ N [r], we

have u 6= r. We assume that vertices are lev-

elwise laminar ordered (r = v1, v2, . . . , vn) from

the root r in V . Since w 6= r, we have u < w

by Lemma 19.

Lemma 24 Let w be a pendant in Ni(r) with

i > 2, and u the neck of w. Algorithm 2 can

delete w from T (G) and T [G] with no unifica-

tion.

Proof. Let x be any node of label w in T (G)

or T [G]. We first observe that u is the only

neighbor of w. Hence there are three paths con-

taining x of label w in T [G] and T (G), which

correspond to N [w], N [u], and N(u). We con-

sider three cases.

(1) In T [G], x is produced by N [w]. Since

N [w] = {u,w}, u is the only neighbor of w,

and u < w, it is easy to see that x is the leaf

of the path of length 2. Thus, no unification

occurs.

(2) In T [G], x is produced by N [u]. Since the

only neighbor of w is u, each node under x has

exactly one child, and the leaf of the path is

pointed to by u.

If w is the maximum vertex in N [u], x is a

leaf and can be removed in O(1) time. Thus

we assume that N [u] contains w′ > w. Let y

be the unique child of x, and z the parent of

x. Without loss of generality, we assume that

w′ is the label of the unique child y. When w′

is also a pendant, u is the only neighbor of w′.

Then z has no child that has the same label w′

of y. Hence no unification occurs. Thus, we

assume that w′ is not a pendant. Combining

that w is a pendant in Ni(r) and Lemma 18,

we have w′ ∈ Ni(r) and N−
r (w′) = {u}. We

now observe that u 6= v1 since w 6∈ N [r]. Thus

N−
r (u) 6= ∅. Therefore, there is no other ver-

tex (except u) that is adjacent to all vertices in

N−
r (u) ∪ {w′}. This implies that z has no child

of label w; hence, no unification occurs.

(3) In T (G), x is produced by N(u). Taking

care that u ∈ Ni(r) with i > 1, we can see that

all cases are the same as in case (2).

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 21

Thus, in all cases, Algorithm 2 deletes w

from T (G) and T [G] with no unification. 2

5.2.2 Removing Pendant in N [r]

Now we turn to the operations needed in the

case that w is in Ni(r) for i = 0, 1. In other

words, we consider the case that the pendant w

to be removed is in N(r) or w = r. We first

assume that i = 1, or consequently, a pendant

w is in N(r).

Lemma 25 When w is a pendant in N(r), Al-

gorithm 2 deletes w from G in O(1) time.

Proof. We can remove w from N(r) and N [r]

(which are independent from T (G) and T [G])

in O(1) time since w has two pointers to the

corresponding data in the linked lists N(r) and

N [r]. Removing w does not change the root of

the levelwise laminar ordering. Hence we do not

need to update T (G) and T [G]. 2

Note that Lemma 25 is quite simple since

N [r] and N(r) are not in T [G] and T (G). If

N(r) is in T (G) and N [r] is in T [G], a consider-

able case occurs. When the pendant w ∈ N(r)

to be removed is not maximum in N(r), several

unifications will occur. In that case, it is very

hard to make the algorithm run in linear time.

Now we turn to the last case i = 0; w is the

root and it is a pendant.

Lemma 26 Algorithm 2 deletes a pendant w

from G in O(|N [u]|) time when w = r.

Proof. When w is removed, u becomes the next

root of the levelwise laminar ordering. Hence,

the algorithm has two major maintenance costs;

the update of N(r) and N [r] and update of

T (G) and T [G]. The N(r) and N [r] can be

easily updated in O(|N [u]|) time; just replace

them by N(u) and N [u], which can be found in

T [G] and T (G) in O(|N [u]|) time. Regarding

the update of T (G) and T [G], we do not have

to remove the sets N(w) and N [w] from T (G)

and T [G], since the sets are not represented in

the trees. Instead, we have to remove the sets

N(u) and N [u] from T (G) and T [G], respec-

tively. This can be done by removing the leaves

x in T [G] and T (G) which are pointed to by

u, and then removing redundant nodes. The

computation time is O(|N [u]|). 2

5.3 Linear construction

Now we are ready to prove the main theorem of

this section.

Theorem 27 Let G = (V,E) be a graph with

n = |V | and m = |E|. (1) If G = (V,E) is

a cograph, the cotree T derived from G can be

constructed in O(n + m) time and space. (2) If

G is a distance-hereditary graph, the DH-tree T

derived from G can be constructed in O(n + m)

time and space.

Proof. (1) For the cograph, we can straightfor-

wardly use steps 1, 2, 3, 4, and 6 of the outline

given at the beginning of Section 5. We do not

need the levelwise laminar ordering, and from

22 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

Observation 4, Lemma 22, and Theorem 23,

two prefix trees can be maintained in O(|N(w)|)

time for each removal of w in G.

To get the sets S and W , we maintain the

set of nodes in T [G] and T (G) pointed to by

more than one vertex. The vertices pointing

to the same node correspond to a set in S or

W . This does not increase either time or space

complexity.

(2) Now we turn to the distance-hereditary

graph. The correctness of the algorithm fol-

lows from the results in this section. Hence, we

analyze its complexity. The computation of a

levelwise laminar ordering takes O(n + m) time

and space by Lemma 20. The construction of

the prefix trees T (G) and T [G] without N(r)

and N [r] requires O(n + m) time and space by

Lemma 3. From Lemma 24, Lemma 25 and

Lemma 26, the total time to maintain the pre-

fix trees is bounded by O(m + n).

To complete the proof, we need to show that

we can get the sets S, W , and P in linear time

of their sizes, i.e., O(|S|), O(|W|), and O(|P|),

respectively. The computation of P is straight-

forward. We just maintain the set of vertices of

degree one in G, and update it when we remove

a vertex. The vertices of degree one are classi-

fied by their unique neighbors, and each group

classified corresponds to a set P in P .

The computation of S and W can be done

in the same way as (1) in O(|S|) and O(|W|)

time, respectively, except for S∗ ∈ S satisfying

r ∈ S∗, and W ∗ ∈ W satisfying r ∈ W ∗. To

compute them efficiently, we classify the ver-

tices v by |N(v) \ N(r)| − |N(r) ∩ N(v)| and

maintain the value. Only the vertices v satis-

fying |N(v) \ N(r)| − |N(r) ∩ N(v)| = −|N(r)|

are included in W ′ or S ′. Such a vertex v is in

S ′ if v is adjacent to r, and in W ′ otherwise.

When we remove a vertex w from G, the

value changes only for vertices v satisfying

w ∈ N(v), unless w = r. The number of

such vertices v is |N(w)|; thus, the mainte-

nance can be done in O(|N(w)|) time. When

r is removed as a pendant and another ver-

tex becomes the new root, we have to com-

pute |N(v) \ N(r)| − |N(r) ∩ N(v)| for vertices

in N1(r) and N2(r). This takes O(|N [v]|) time

for each vertex v in N1(r) ∪ N2(r). Although

there will be several root vertex removals, a ver-

tex v is in N1(r) ∪ N2(r) at most twice. Thus,

the total computation time for this operation is

bounded by O(m + n).

Therefore, the construction algorithm of

the DH-tree T derived from a given distance-

hereditary graph G runs in O(n + m) time and

space. 2

Corollary 28 Let G = (V,E) be a graph with

n = |V | and m = |E|. (1) If G = (V,E) is

a cograph, the normalized cotree T can be con-

structed in O(n+m) time and space. (2) If G is

a distance-hereditary graph, the normalized DH-

tree T can be constructed in O(n+m) time and

space.

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 23

Proof. By Theorem 27, we can construct the

canonical tree derived from G in linear time.

We can contract the redundant nodes from the

tree in linear time by Lemma 11. 2

6 Applications

In this section, we show the applications of

the previous sections. Hereafter, we assume

that the given graph G = (V,E) is a distance-

hereditary graph with n vertices and m edges.

6.1 Recognition and graph iso-

morphism

Theorem 29 (1) The recognition problem for

distance-hereditary graphs can be solved in

O(n+m) time and space. (2) The graph isomor-

phism problem for distance-hereditary graphs

can be solved in O(n + m) time and space.

Proof. (1) The modification of the algorithm

in Section 5 to determine if the input graph is

a distance-hereditary graph is straightforward.

First, the algorithm checks if the graph has lev-

elwise laminar ordering. If the vertex sets on

some level are not laminar, we reject the graph.

Next, the algorithm constructs the open and

closed prefix trees T (G) and T [G], and finds

the families S, W and P . Then the algorithm

constructs the DH-tree of G step by step. After

removing all pendants in P and contracting all

twins in S ∪ W , the algorithm again finds the

families S, W and P . Then, if S ∪W ∪ P = ∅

while V 6= ∅, the algorithm rejects the graph

since it is not distance-hereditary graph. It is

not difficult to see that this is enough to rec-

ognize distance-hereditary graphs by Theorem

2.

(2) By Theorem 8 and Corollary 9(1), G1 ∼ G2

iff their corresponding DH-trees are isomorphic

as labeled trees. The isomorphism of labeled

trees can be checked in linear time (see, e.g.,

[32, 33]). This together with Corollary 9(2)

completes the proof. 2

The characterizations in [18] leads to the fol-

lowing:

Corollary 30 For cographs and bipartite

distance-hereditary graphs, we get the same re-

sults as in Theorem 29.

A cograph is obtained from K2 by using split-

ting. In other words, we have no pendant ver-

tices, and hence the levelwise laminar ordering

is not required. Hence, our modified algorithm

for a cotree is quite simple.

6.2 Enumeration

Let us consider the enumeration problem of

distance-hereditary graphs with at most n ver-

tices. More precisely, for given n, we efficiently

enumerate every distance-hereditary graph with

at most n vertices exactly once up to isomor-

phism. By Lemmas 10 and 15, we have the nec-

essary conditions that a labeled rooted ordered

24 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

tree is a normalized DH-tree for a distance-

hereditary graph. First we show that the con-

ditions are sufficient.

Lemma 31 Let T be a labeled rooted ordered

tree of diameter d which satisfies all statements

from (a) to (e) in Lemma 10 and statements

from (a) to (e) in Lemma 15. Then T is

the normalized DH-tree of a distance-hereditary

G = (V,E) with |V | > 2.

Proof. We prove the statement for the diame-

ter d by induction. We can see the correctness

of the lemma for d 6 2. Now let us assume

that d > 2, and the lemma holds for diameters

less than d. Let T ′ be the tree obtained from

T by peeling, and L be the set of all ordered

pairs (x, y) such that x is a leaf removed by the

peeling and y is the parent of x which remains

in T ′. The peeling for T does not violate the

statements in the lemmas. Hence, by the induc-

tion hypothesis, T ′ is the normalized DH-tree of

a distance-hereditary graph G′.

Let G be the graph obtained from G′ by

the following operations. To each ordered pair

(x, y) in L, we apply the operation (α), (β) or

(γ) according to the label of y. Then G is a

distance-hereditary graph, by definition. If a

vertex v in G is generated by one of the above

operations, v is in a set in S ∪W ∪P. Thus, by

Observation 14, T is the normalized DH-tree of

G. 2

Recall that the normalized DH-tree is a

canonical form of a distance-hereditary graph

G up to isomorphism. That is, for a normal-

ized DH-tree T , there exists a unique distance-

hereditary graph and vice versa. Hence, by

Lemma 31, it is sufficient to enumerate all la-

beled rooted ordered tree satisfying the state-

ments in Lemmas 10 and 15 in order to enu-

merate all distance-hereditary graphs.

Theorem 32 Distance-hereditary graphs with

at most n vertices can be enumerated in O(n)

time for each, with O(n2) space.

Proof. The enumeration can be done in three

steps: (1) enumerate all trees of n leaves such

that each inner node has at least two children,

with computing center and all isomorphic sib-

lings, (2) for each tree obtained in (1), enumer-

ate all possible assignments of labels to all inner

nodes so that the conditions in the characteri-

zation are satisfied, and (3) for each label as-

signment in (2), enumerate all possible choices

of one child as a neck for each node with label

p.

Note that in (3) we do not distinguish two

isomorphic siblings to avoid duplicating same

normalized DH-trees. By a slight modification

of the tree enumeration algorithm in [34], (1)

can be done so that the computation time for

each output tree is constant with O(n) space. In

a top down depth first manner, both (2) and (3)

can be also done in constant time for each with

O(n) space. Thus, all normalized DH-trees of

distance-hereditary graphs with n vertices can

be enumerated in constant time for each. By do-

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 25

ing (2) and (3) simultaneously, the average size

of the difference between a normalized DH-tree

T and the previously output one T ′ is bounded

by a constant. Operations (α), (β) and (γ) take

O(n) time; thus we can construct the distance-

hereditary graph whose DH-tree is T from that

of T ′ in O(n) time on average. 2

6.3 Compact encoding

In this section, we design a simple efficient en-

coding scheme for distance-hereditary graphs.

Our scheme encodes each distance-hereditary

graph G with n vertices into only (at most) 4n

bits in O(m+n) time. One can also decode the

string into G in O(m + n) time. After that we

design a more efficient encoding scheme which

needs only d3.59ne bits.

Given a distance-hereditary graph with m

edges and n vertices one can construct its nor-

malized DH-tree T in O(m + n) time (see Sec-

tions 3 and 5). The number of leaf nodes in T

is n. Let ni be the number of inner nodes in T .

Since each inner node has two or more children,

ni 6 n − 1 holds.

We first encode T into a string S1 with ignor-

ing labels, then encode the labels into a string

S2. The resulting string S1 + S2 has enough

information to reconstruct T and so does G.

Given a normalized (ordered) DH-trees T we

traverse T starting at the root and proceed in

depth first manner. If we go down an edge of T ,

we code it with 0, and if we go up an edge, we

code it with 1. Thus we need two bits for each

edge in T . The length of the resulting bit string

is 2(n + ni − 1) 6 4n− 4 bits. For instance, the

bit string for the tree in Figure 4 is

00001010110001011011101011

0010100010010101110111

We can save ni bits from the string above as

follows. For each inner node v, after traversing

v’s first child and its descendant in depth first

manner, we return to v again and go “down”

to v’s second child. Note that each inner node

has two or more children. Thus we can omit

this “down” to its second child for each inner

node. Those ni = 10 bits are underlined in the

following bit string.

00001010110001011011101011

0010100010010101110111

Thus, we need only 2(n+ni−1)−ni 6 3n−3

bits. Let S1 be the resulting bit string.

We encode the labels of T as follows. Note

that each inner node has one label among

{s, w, p}, and each leaf node has no label. We

are going to store those labels in preorder with

one bit for each label.

Let v be an inner node of T except for the

root. Let u be the parent node of v. We show

that if the label of u is given, then the label of v

has only two choices. By Lemma 15(a) and (b),

if the label of u is s, then the label of v is not

s. Similarly, if the label of u is w, then the label

of v is not w. If the label of u is p, we have two

subcases. If v is the leftmost child of u, then

26 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

the label of v is not p; otherwise, the label of v

is not w. (Note that two or more neighbors are

needed for weak twins.) Thus in any case, the

label of node v has only two choices.

Also the label of the root is either s or p since

we assume that the graph is connected. Thus,

we can encode the label of each inner node with

only one bit in preorder. The details are as fol-

lows.

If the label of the root is s, then we encode it

with 0; otherwise, the label is p, and we encode

it with 1.

For each inner node v except for the root

we have the following three cases. Let u be the

parent node of v.

Case 1: The label of u is s. If the label of v is

w, we encode it with 0; otherwise, the label is p,

and we encode it with 1.

Case 2: The label of u is w. If the label of v is

p, we encode it with 0; otherwise, the label is s,

and we encode it with 1.

Case 3: The label of u is p. We have two sub-

cases.

Case 3(a): v is the leftmost child of u. If the

label of v is s, we encode it with 0; otherwise,

the label is w, and we encode it with 1.

Case 3(b): v is not the leftmost child of u.

If the label of v is s, we encode it with 0; oth-

erwise, the label is p, and we encode it with 1.

In this way, we can encode the label of each

inner node with only one bit.

By concatenating those bits in preorder, we

can encode the labels of inner nodes into a bit

string of ni 6 n−1 bits. Let S2 be the resulting

string.

Thus, we have encoded a distance-

hereditary graph into a string S1 + S2 with

2(n + ni − 1) 6 4n − 4 bits.

Now we have the following Theorem and

Corollary.

Theorem 33 A distance-hereditary graph G =

(V,E) with |V | = n can be represented in 4n

bits. The number of distance-hereditary graphs

of n vertices is at most 24n.

Using a simpler case analysis, we also have

the following corollary.

Corollary 34 A cograph G = (V,E) with

|V | = n can be represented in 3n bits. The num-

ber of cographs of n vertices is at most 23n.

We can design a more efficient encoding for

distance-hereditary graphs. Given a distance-

hereditary graph G with m edges and n vertices

one can again construct its normalized DH-tree

T . We then replace each inner node v with

k > 3 children by a binary subtree consist-

ing of (k − 1) new inner nodes v1, v2, . . . vk−1,

so that each label of the new inner node is

the same label of the original node v. In the

resulting tree, each inner node again has one

label among {s, w, p}, each leaf node has no

label, and there still is a complete informa-

tion to reconstruct G. However, now each in-

ner node has exactly two children. By using

the level-order binary marked representation in

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 27

[35], we can encode any binary tree having n

leaves into 2n − 1 bits. After that, we encode

the labels of inner nodes in some order using

log2 3n−1 = (n−1) log2 3 bits. Thus, we can en-

code T into (2 + log2 3)n < 3.59n bits in total.

Finally, we have the following theorem.

Theorem 35 The number of distance-

hereditary graphs of n vertices is at most

2d3.59ne.

Acknowledgments

The authors thank Sheng-Lung Peng for en-

lightening discussions, sending his paper [28],

and pointing out the work about rank-width

[27]. The authors also thank Emeric Gioan for

fruitful discussions about his recent result [29]

at ISAAC 2007.

References

[1] L. B. Holder, D. J. Cook, and S. Djoko.

Substructure Discovery in the SUBDUE

System. In AAAI Workshop on Knowl-

edge Discovery in Databases, pages 169–

180, Seattle, Washington, U.S.A., July 31–

August 4, 1994.

[2] A. Inokuchi, T. Washio, and H. Motoda.

An Apriori-Based Algorithm for Min-

ing Frequent Substructures from Graph

Data. In European Conference on Prin-

ciples and Practice of Knowledge Discov-

ery in Databases (PKDD), pages 13–23,

Lyon, France, September 13–16, 2000. Lec-

ture Notes in Computer Science Vol. 1910,

Springer-Verlag, 2000.

[3] M. J. Zaki. Efficiently Mining Frequent

Trees in a Forest. In 8th ACM SIGKDD

international conference on Knowledge dis-

covery and data mining, pages 71–80. Ed-

monton, Alberta, Canada, July 23–26,

2002. ACM, ACM Press, 2002.

[4] T. Asai, H. Arimura, T. Uno, and

S. Nakano. Discovering Frequent Substruc-

tures in Large Unordered Trees. In Discov-

ery Science (DS ’03), pages 47–61, Sap-

poro, Japan, October 17–19, 2003. Lecture

Notes in Artificial Intelligence Vol. 2843,

Springer-Verlag, 2003.

[5] J. I. Munro and V. Raman. Succinct Rep-

resentation of Balanced Parentheses, Static

Trees and Planar graphs. In Proc. 38th

Ann. Symp. on Foundation of Computer

Science, pages 118–126, Miami Beach,

Florida, USA, October 20–22, 1997. ACM,

ACM Press, 1997.

[6] J. I. Munro and V. Raman. Succinct Rep-

resentation of Balanced Parentheses and

Static Trees. SIAM Journal on Comput-

ing, 31(3):762–776, 2001.

[7] S.-I. Nakano. Efficient Generation of Plane

Trees. Information Processing Letters,

84(3):167–172, 2002.

28 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

[8] R. Geary, N. Rahman, R. Raman, and

V. Raman. A Simple Optimal Representa-

tion for Balanced Parentheses. In Sympo-

sium on Combinatorial Pattern Matching

(CPM), pages 159–172, Istanbul, Turkey,

July 5–7, 2004. Lecture Notes in Computer

Science Vol. 3109, Springer-Verlag, 2004.

[9] D. E. Knuth. Generating All Trees, volume

4 of The Art of Computer Programming.

Addison-Wesley, fascicle 4 edition, 2005.

[10] A. Brandstädt, V.B. Le, and J.P. Spinrad.

Graph Classes: A Survey. SIAM, 1999.

[11] M.C. Golumbic. Algorithmic Graph The-

ory and Perfect Graphs. Annals of Dis-

crete Mathematics 57. Elsevier, 2nd edi-

tion, 2004.

[12] D.J. Rose, R.E. Tarjan, and G.S. Lueker.

Algorithmic Aspects of Vertex Elimination

on Graphs. SIAM Journal on Computing,

5(2):266–283, 1976.

[13] D.G. Corneil. Lexicographic Breadth First

Search — A Survey. In Graph-Theoretic

Concepts in Computer Science (WG 2004),

pages 1–19, Bad Honnef, Germany, June

21–23, 2004. Lecture Notes in Computer

Science Vol. 3353, Springer-Verlag, 2005.

[14] D.E. Knuth. Sorting and Searching, vol-

ume 3 of The Art of Computer Program-

ming. Addison-Wesley Publishing Com-

pany, 2nd edition, 1998.

[15] G. Damiand, M. Habib, and C. Paul. A

Simple Paradigm for Graph Recognition:

Application to Cographs and Distance

Hereditary Graphs. Theoretical Computer

Science, 263(1-2):99–111, 2001.

[16] A. Bretscher, D. Corneil, M. Habib,

and C. Paul. A Simple Linear Time

LexBFS Cograph Recognition Algorithm.

In Graph-Theoretic Concepts in Com-

puter Science (WG 2003), pages 119–130,

Elspeet, The Netherlands, June 19–21,

2003. Lecture Notes in Computer Science

Vol. 2880, Springer-Verlag, 2004.

[17] E. Howorka. A Characterization of

Distance-Hereditary Graphs. Quart. J.

Math. Oxford, 28(4):417–420, 1977.

[18] H.-J. Bandelt and H.M. Mulder. Distance-

Hereditary Graphs. Journal of Combinato-

rial Theory, Series B, 41(2):182–208, 1986.

[19] A. D’Atri and M. Moscarini. Distance-

Hereditary Graphs, Steiner Trees, and

Connected Domination. SIAM Journal on

Computing, 17(3):521–538, 1988.

[20] P.L. Hammer and F. Maffray. Completely

Separable Graphs. Discrete Applied Math-

ematics, 27(1-2):85–99, 1990.

[21] M.-S. Chang, S.-Y. Hsieh, and G.-H.

Chen. Dynamic Programming on Distance-

Hereditary Graphs. In Proceedings of

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 29

8th International Symposium on Algo-

rithms and Computation (ISAAC ’97),

pages 344–353, Singapore, December 17–

19, 1997. Lecture Notes in Computer Sci-

ence Vol. 1350, Springer-Verlag, 1997.

[22] A. Brandstädt and F.F. Dragan. A

Linear-Time Algorithm for Connected r-

Domination and Steiner Tree on Distance-

Hereditary Graphs. Networks, 31(3):177–

182, 1998.

[23] H.J. Broersma, E. Dahlhaus, and T. Kloks.

A linear time algorithm for minimum fill-

in and treewidth for distance hereditary

graphs. Discrete Applied Mathematics,

99(1-3):367–400, 2000.

[24] F. Nicolai and T. Szymczak. Homogeneous

Sets and Domination: A Linear Time Al-

gorithm for Distance-Hereditary Graphs.

Networks, 37(3):117–128, 2001.

[25] S.-Y. Hsieh, C.-W. Ho, T.-S. Hsu, and M.-

T. Ko. Efficient Algorithms for the Hamil-

tonian Problem on Distance-Hereditary

Graphs. In COCOON 2002, pages 77–

86, Singapore, August 15–17, 2002. Lec-

ture Notes in Computer Science Vol. 2387,

Springer-Verlag, 2002.

[26] M.-S. Chang, S.-C. Wu, G.J. Chang,

and H.-G. Yeh. Domination in distance-

hereditary graphs. Discrete Applied Math-

ematics, 116(1-2):103–113, 2002.

[27] S. i. Oum. Graphs of Bounded Rank-width.

PhD thesis, Princeton University, 2005.

[28] D. B. Chandler, M.-S. Chang, T. Kloks,

J. Liu, and S.-L. Peng. Recognition of

Probe Cographs and Partitioned Probe

Distance Hereditary Graphs. In Algorith-

mic Aspects in Information and Manage-

ment (AAIM), pages 267–278, Hong Kong,

China, June 20–22, 2006. Lecture Notes

in Computer Science Vol. 4041, Springer-

Verlag, 2006.

[29] E. Gioan and C. Paul. Dynamic Dis-

tance Hereditary Graphs Using Split De-

composition. In Proceedings of 18th In-

ternational Symposium on Algorithms and

Computation (ISAAC 2007), pages 41–51,

Sendai, Japan, December 17–19, 2007. Lec-

ture Notes in Computer Science Vol. 4835,

Springer-Verlag, 2007.

[30] J.P. Spinrad. Efficient Graph Represen-

tations. American Mathematical Society,

2003.

[31] D.G. Corneil, Y. Perl, and L.K. Stew-

art. A Linear Recognition Algorithm for

Cographs. SIAM Journal on Computing,

14(4):926–934, 1985.

[32] G.S. Lueker and K.S. Booth. A Lin-

ear Time Algorithm for Deciding Interval

Graph Isomorphism. Journal of the ACM,

26(2):183–195, 1979.

30 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

[33] C.J. Colbourn and K.S. Booth. Linear

Time Automorphism Algorithms for Trees,

Interval Graphs, and Planar Graphs.

SIAM Journal on Computing, 10(1):203–

225, 1981.

[34] S. Nakano and T. Uno. Constant Time

Generation of Trees with Specified Di-

ameter. In Graph-Theoretic Concepts in

Computer Science (WG 2004), pages 33–

45, Bad Honnef, Germany, June 21–23,

2004. Lecture Notes in Computer Science

Vol. 3353, Springer-Verlag, 2005.

[35] G. Jacobson. Space-efficient Static Trees

and Graphs. In Proc. 30th Symp. on Foun-

dations of Computer Science, pages 549–

554, North Carolina, October 30– Novem-

ber 1, 1989. IEEE, 1989.

S. Nakano, R. Uehara, and T. Uno: New Approach to Distance-Hereditary Graphs 31

54

5

T(G)

1

2

4

5

6

3

9

4

5

6

10 11

13

12

13

14

15

11 1211

12

7

8

9

10

1

23

456

7 8

9

10

11 12

13

14 15

T[G]

7

2

3

4

5

6

10

13

14

15

9

8 9

1011

12

14

1

2 3

4 5 6

7 8

9

10

11 12

13
14 15

1

8

15

10

11

12

2

3

4

5

6

7

4

5

6

11

12

8

9

7

11 12

10

9

13

102

3

7

8

9

10

6

7

8

9

10

6

4

5

6

7

8

9

10

9

10

10

Figure 1: Two prefix trees for G in Figure 2(1)

1

15

14

13

12

11

2

3

10

9

8

7

4

6

5

Strong twins

Weak twins

Pendants
 and
 Neck

1

13

11

10

9

7

4

2

Strong

P & N

13

11

9

7

4

2

11

9

7

4

7

4

4

K2

P & N

P & NWeak Weak

(1) (2)

(3)

(4)(5)(6)

Figure 2: A distance-hereditary graph and its contracting/pruning process

32 J. Comput. Sci. & Technol., Month 200X, Vol.21, No.X

4 5 6

2 3

2
1

4 2

4 11

11 12

4 7

7 9

10 1514

10
9

9

1387

4

pp

p

p

s

s

s

w

ww

w

s

Figure 3: DH-tree T derived from the

graph in Figure 2(1)

Normalized DH-tree of G

a b

c

(1)

(2)

4

11 12

4 7

9

87

4

4 5 6

2 3

2
1

4 2

10 1514

10
9

9
13

s

ww

p p

s

p

s p

s

w

w

a b c

w

Figure 4: Reduction rule and the compact DH-

tree

