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Online Uniformity of Integer Points on a

Line *

Tetsuo Asano

School of Information Science, JAIST,
1-1 Asahidai, Nomi, 923-1292 Japan.

Abstract

This letter presents algorithms for computing a uniform sequence of n integer points
in a given interval [0,m] where m and n are integers such that m > n > 0. The
uniformity of a point set is measured by the ratio of the minimum gap over the
maximum gap. We prove that we can insert n integral points one by one into the
interval [0, m] while keeping the uniformity of the point set at least 1/2. If we require
uniformity strictly greater than 1/2, such a sequence does not always exist, but we
can prove a tight upper bound on the length of the sequence for given values of n
and m.
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1 Introduction

A number of applications need uniformly distributed points over a specific domain. It
is commonly known that randomly generated points are not always good enough. In a
mesh generation, for example, we have to distribute points uniformly over a region of
interest to form good meshes. But, first of all, how can we measure the uniformity of
points? In the theory of Discrepancy (3; 4) the uniformity of points is measured by how
the number of points in a small region such as an axis-parallel rectangle changes while
moving around the domain, more formally by the difference (or discrepancy) between
the largest and smallest numbers of points in the moving region. For normalization we
usually divide the difference by the area of the moving region. Then, the discrepancy
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is given as the supremum of the ratios for all possible scales of the region. One of
difficulties here is hardness of such evaluation since we have to prepare all possible
scales and all possible locations.

We consider a special case of such a problem, that is, how to insert n integer points in
a given interval [0,m] so that points are uniformly distributed, or in other words, the
ratio of the minimum gap over the maximum gap is not so low. We present a simple
algorithm for achieving the ratio 1/2 for all integers m and n with m > n > 0. It is
not trivial at all to achieve the ratio strictly greater than 1/2. In addition, if we require
uniformity strictly greater than 1/2, such a sequence does not always exist, but we can
prove a tight upper bound on the length of the sequence for given values of n and m.

The problem considered in this letter may open a new direction of discrepancy theory.
The first extension from the current discrepancy theory is from uniformity measure for
a static set of points to one for a sequence of points. The second extension is from
continuous coordinates to discrete ones. This extension is important since now we have
a discrete combinatorial optimization problem, which may lead to good approximation
algorithms.

2 Problem

Let mm > n > 0 be arbitrary integers. An (n,m)-sequence is a sequence of integers
(or points of integral coordinates) o = (0,m,py,...,p,) in the closed interval [0, m)].
The uniformity of the sequence is measured by the ratio of the minimum gap over
the maximum gap where a gap is difference between two consecutive integer points
when they are arranged on a line in a sorted order. It may be natural and reasonable to
measure the uniformity of a point set {0, m, py, ..., p,} by the ratio of the minimum gap
Omin(0,m, p1, ..., pn) over the maximum gap dyax(0,m, p1,...,ps), that is, the (static)
uniformity pus(0,m,py, ..., p,) of the set is defined by

Omin(0, m, 1, - . ., pn) (1)

50; 1 Ply--9Pn) — ‘
M( m, p1 p) 6max(0>m7p17""pn)

In this letter we are interested in uniformity achieved by a sequence of points. That
is, points are inserted one by one. Every time when a point is inserted, we measure
the uniformity of the point set. The worst uniformity we obtain before inserting all the
points according to a given point sequence is defined as the online uniformity of the
point sequence. Formally, we define the online uniformity (0, m,py,...,p,) for a point
sequence (0,m,p1,...,p,) of length n (neglecting the first two points 0 and m) in the
interval [0, m] by

M(Oa m,pi, .- >pn) = min {/Ls(oa m,pi, .- - 7pk)} (2)

k=1,...,n

We call an (n, m)-sequence uniform if its online uniformity is strictly greater than 1/2.



3 Greedy Algorithm

A natural and naive idea to design a uniform sequence of points in a given interval [0, m|
is to repeat inserting a point to break the longest interval (of the maximum gap). It is
rather straightforward to generalize this idea to higher dimensions. In higher dimensions
we construct a Voronoi diagram for a current set of points and choose one of Voronoi
vertices that is farthest from the closest point as the next point to insert. Thus, we call
the algorithm Voronoi Insertion.

The performance of this greedy algorithm is not so bad. In fact, it achieves the unifor-
mity 1/2 in one dimension (1; 2). However, it is not the case when points are limited to
integer points. As a simple example consider a sequence of length 2 for an interval [0, 6].
The greedy algorithm chooses 3 as the first point, which is the midpoint of the inter-
val. Then, we have two subintervals of length 3. Since we have to choose only integral
points, one of the subintervals is divided into two subintervals of lengths 1 and 2. So,
after choosing the two points the minimum gap is 1 while the maximum gap remains
3. So, the uniformity is 1/3 < 1/2.
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Fig. 1. Behavior of Voronoi Insertion on integer points.

As another example consider a case of (m,n) = (10,4). For simplicity of arguments
we just maintain interval lengths instead of intervals. Initially we have {10}. By the
first point we must have {5,5} or {4, 6} since otherwise the uniformity would be worse
(smaller) than 1/2. The even partition {5,5} does not lead to uniformity 1/2 because
in the next division we have {2,3,5}, whose uniformity is 2/5 < 1/2. So, {4,6} is the
only choice and then we obtain the set {4,2,4} by dividing the interval of length 6.
Now, we can divide 4 into {2,2}. Thus, the resulting set of interval lengths is {4, 2,2, 2}
with uniformity 2/4 = 1/2. On the other hand, if we divide 6 into {3,3}, we have
{4,3,3}. Now there is only one way of dividing the largest gap 4: 4 — {2,2}. Then, we
have {2,2,3,3}. We have to divide 3, but there is only one way: 3 — {1,2}. Thus, the
resulting set is {2,2,1,2,3} with uniformity 1/3 < 1/2. See Figure 2 for illustration.
This example implies that choosing the midpoint of the longest interval may not be
so good even if there is a unique midpoint (note that there are two midpoints in an
interval of odd length).

Now, a natural question is whether there is an algorithm for finding a sequence of points
with uniformity at least 1/2 for any pair of integers m and n with m > n. The following
lemma answers the question in an affirmative way.

Lemma 1 There is an algorithm for finding an (n,m)-sequence of n points in an in-
terval [0, m] with uniformity at least 1/2 for any pair of integers m and n if m > n > 0.
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Fig. 2. Partition of an interval of length 10 in two different ways. If we divide 10 into 5,5 as
in the left figure, it is impossible to keep the uniformity > 1/2. The division 10 — (4,6) leads
to a sequence with uniformity > 1/2.

Proof: We prove the lemma in a constructive manner. The algorithm iteratively

partitions the longest interval (maximum gap). An important thing is to divide an

interval of length m into ones of lengths 2F and the rest r = m — 2F where k is an

integer satisfying 3 x 2F=1 < m < 3 x 2%, If m happens to be a power of 2, say 2¢, then

2¢ is partitioned into {2¢7!, 2¢7! since in this case we have k = ¢ — 1. In fact, we have
3x 27 <ax 22 =2 =2 x 2 < 3 x 2

Thus, an interval of length 2% is exactly halved in a way: 28 — 281 — . 2 — 1.

On the other hand, if we have any other integer, then it is partitioned into a power of 2
and the rest in the manner described above. Because of the definition of the partition,
the uniformity is at least 1/2. In fact, if 7 = m — 2F is greater than 2%, then the
uniformity is given by

2k /(m —2%) > 2% /(3 x 2F — 2%) = 1/2,

and if 7 is at most 2¥ then it is given by

(m —2F)/2F > (3 x 2kt — 2F) 2k = 1/2.

Thus, dividing the interval of length r is safe in the sense that it keeps the uniformity
> 1/2. Dividing the interval of length 2% is also safe since it is divided evenly. a

4 Known Results

Some results are known for the problem defined on real numbers instead of integers. In
one dimension, an exact bound on the uniformity is known (1).

Theorem 2 In one dimension, for any integer n > 0 there is a sequence of n points
(real numbers) with uniformity (%)L”/ZJ/(L”/QHU and also any sequence of n points has



uniformity at most (3)"/2/ (/2170 - Such an optimal sequence can be computed in O(n)
time.

Theorem 3 For any integer n > 0, the greedy algorithm (Voronoi insertion) has uni-
formity 1/2 in one dimension and \/2/2 in two dimensions.

5 Uniform Point Sequence

Lemma 1 guarantees that for any pair of integers m and n there is a sequence of n integer
points in the interval of length m such that its uniformity is at least 1/2 if m > n > 0.
What happens if we want to achieve uniformity strictly greater than 1/27 Recall that
we have defined a uniform sequence to be one with uniformity strictly greater than 1/2.

First of all, we cannot expect the same property as we have seen in Lemma 1 any
more. Suppose we are given an interval [0,9]. Can we find a uniform sequence of 2
points achieving the uniformity strictly greater than 1/27 The first division is uniquely
determined as {9} — {4,5} since none of the other partitions {9} — {3,6}, {9} —
{2,7}, and {9} — {1,8} has uniformity strictly greater than 1/2. Now, we have to
divide the larger gap, 5, into {2, 3} since {1, 4} is worse. Then, after the second division
we have {4, 2,3} whose uniformity is exactly 1/2. This simple example shows difficulty
of this extension. Now we have the following three problems.

Problem 1: Given two integers m and n with m > n > 0, determine whether there
exists a uniform (n, m)-sequence.

Problem 2: Given an integer n > 0, find the smallest integer m such that there is a
uniform (n, m)-sequence.

Problem 3: Given an integer m > 1, find the largest integer n such that there is a
uniform (n, m)-sequence.
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Fig. 3. A tree describing behavior of the algorithm in the proof. A node for an interval of

length ay is divided into two nodes for agg and agx41 With ap = agg + aggr1. If ag is the last
node having children, then the first leaf node is agy1 and the last one aggy1.

Let us consider Problem 2. In this problem we look for a sequence (0, m,py,...,p,) in
an interval [0, m] such that its uniformity is strictly greater than 1/2. When we insert
points py,...,p, in this order into the interval, then we can characterize behavior of
the algorithm by how the set of interval lengths changes. We start with the set {a;},
where a; = m. Then, it is partitioned into {as, a3} (we assume as > a3), and then ay
is partitioned into {a4,as} with ay > as. The first important observation here is that



we have to partition the longest interval to keep the uniformity > 1/2. For dividing an
interval that is not longest into two generates an interval of length shorter than half of
the longest one, which results in uniformity < 1/2. If we always partition the longest in-
terval, then the k-th partition results in the set of interval lengths {ax1, . . ., as, @21}
Therefore, it is well described by a tree like a heap (see Figure 3).
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Fig. 4. Two trees for odd and even integers. The node for agy1 is a left or right child of its
parent node depending on whether £ is odd or even, respectively.

In the algorithm we divide the intervals of lengths aq,as,... in this order. When we
divide ag, a set of interval lengths is {ax, axy1, - .., Gog_2, aog_1}. Dividing a; produces
two new interval lengths ag, and aggyq. Since we assume agy 1 < agy in our convention,
ar+1 and agy,1 are the maximum and minimum gaps after the division. Thus, we have

agpq1 _ 1
ax = Aok + Aog+1, and >—, for k=1,2,...,n
Ak+1

When we are about to divide the longest interval of length ay, those interval lengths
Gky Qi1 - - - Qop_2, Qok—1 appear at leaves of the corresponding tree. They are ordered
in a way that ar > agp1 > -+ > ag—9 > agp_1.

Because of the uniformity condition, ag; 1/ar > 1/2 must hold. Since the sum of those
values, ay + axyr1 + -+ asp_o + aox_1, is equal to ay, the length of the original interval,
we must minimize the sum to minimize the length of the original interval. What is the
smallest value of ag,_17 It depends on whether £ is odd or even. See Figure 4.

Case 1: k 1s odd.

When ag,; is to be divided, the set of interval lengths is {agi1, ..., ask, aggs1}. If we
go back to the past divisions, ay, ax_1,... have been divided. When a; was divided,
we must have had ag,_1/ap > 1/2, that is, agx 1 > ax/2. Since ap = ag, + a9y and
we assumed aor > Aggyy, it Means ag, 1 > ageyy. Lherefore, agr; may be equal to
ask, but it must be strictly smaller than ag; ;. Repeating this argument, we observe
that the sum agyq + -+ + aggs1 is minimized when a1 = a9, agp + 1 = a9k =
a9k—2, - - -, Agt3 + 1 = agi1o = agy1. Here note that the node of ax; is a right child since



k is odd. Taking the constraint agy1/ax+1 > 1/2 into accounts, we can conclude that
agk+1 > (k —1)/2, that is, aggy; must be at least (k+1)/2.

For the pattern we have

a1 = Qg4+1 + - -+ Qg + Q2p41
= (3k* +4k +1)/4.

Case 2: k 1s even.

The proof proceeds similarly as above, but this time a, is not paired. Considering the
fact, we have

a1 = Qg4 + -+ + Qo + A2g41
= (3k* + 6k + 4) /4.

The results are summarized in the following theorem:.

Theorem 4 The length of the shortest interval that accepts a uniform point sequence
of length n is (3n® + 4n + 1)/4 if n is odd and (3n* + 6n + 4)/4 otherwise.

In a similar manner we can characterize uniform sequences. Using the characterization,
it is not so hard to solve the remaining problems. Due to space limit, we omit the detail.

6 Conclusions and Future Works

In this letter we have presented algorithms for generating uniform sequences of points
in a given interval. One big difference from the existing study is that points must
have integer coordinates. Due to this integrality the problem is now a combinatorial
optimization problem. One important extension of our result is to higher dimensions,
especially points sets in the plane. Although the problem has a complete solution in
one dimension, no optimal solution has been known for point sets in the plane or space.
The discrete version of the problem is expected to provide a combinatorial approach to
the two-dimensional online discrepancy problem.
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