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Constructing Optimal Highways∗

Hee-Kap Ahn† Helmut Alt‡ Tetsuo Asano§ Sang Won Bae¶ Peter Brass‖

Otfried Cheong¶ Christian Knauer‡ Hyeon-Suk Na∗∗ Chan-Su Shin††

Alexander Wolff‡‡

Abstract

For two points p and q in the plane, a (unbounded)
line h, called a highway, and a real v > 1, we define
the travel time (also known as the city distance) from
p and q to be the time needed to traverse a quick-
est path from p to q, where the distance is measured
with speed v on h and with speed 1 in the underlying
metric elsewhere.

Given a set S of n points in the plane and a high-
way speed v, we consider the problem of finding an
axis-parallel line, the highway, that minimizes the
maximum travel time over all pairs of points in S. We
achieve a linear-time algorithm both for the L1- and
the Euclidean metric as the underlying metric. We
also consider the problem of computing an optimal
pair of highways, one being horizontal, one vertical.

Keywords: geometric facility location, min-max-min
problem, city metric, time metric, optimal highways

1 Introduction

Imagine that there are n cities that are represented
by points on the plane with a metric, such as the
L1 or the Euclidean metric. To increase the cultural
and the commercial interchange among those cities,
they would have decided to build a straight and long
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highway with fixed speed v and with fixed direction
across the cities. Further, they might hope to min-
imize the maximum travel time in moving from one
city to another. How could they locate such an op-
timal highway? This paper gives efficient and simple
solutions to this question and to several variations.

Most previous results considering highways (also
called transportation networks or roads) have focused
on how to compute quickest paths among the cities
and Voronoi diagrams for the cities under metrics in-
duced by given highways.

Abellanas et al. (2001) considered the Voronoi di-
agram for point sets given an isothetic and mono-
tone highway under the L1-metric. Abellanas et al.
(2003) considered the problem also under the Eu-
clidean metric and studied shortest paths. Aichholzer
et al. (2004) introduced the city metric induced by
the L1-metric and an isothetic highway network that
consists of a number of axis-parallel line segments.
They gave an efficient algorithm for constructing the
Voronoi diagram and a quickest-path map for a set of
points given the city metric.

More recently, Görke and Wolff (2005) and Bae
et al. (2005) improved the results of Aichholzer et al.
(2004) in terms of running time of the construction
algorithm. Under the Euclidean metric, Bae and
Chwa (2004) presented algorithms that compute the
Voronoi diagram and shortest paths in more general
highway networks whose segments can have arbitrary
orientation and speed. Bae and Chwa (2005) recently
also proved that their approach naturally extends to
more general metrics including asymmetric convex
distances.

Many well-known facility-location problems are so-
called min-max problems where the task is to place
a facility such that the maximum cost incurred by
the customers is minimized. For example, if the cus-
tomers are points in the plane and the cost is their Eu-
clidean distance to the facility, the center of the small-
est enclosing circle is the point that minimizes the
maximum distance to the customers. Recently, Car-
dinal and Langerman (2006) introduced the subclass
of so-called min-max-min facility location problems,
where the cost caused by a customer is the minimum
between the cost that arises from using the facilty and
the cost from not using the facility. Transport facility
location problems are typical min-max-min problems:
a facility like a railway line or a highway will usually
not be used by a customer if the facility is too far



away. Cardinal and Langerman (2006) consider three
such problems, among them the following. Given a set
P of pairs of points, they compute the highway that
minimizes the maximum travel time over all pairs in
P . The travel time is the minimum between the bee-
line distance in the underlying metric (any Lp-metric
in their case) and the travel-time via the highway.
Assuming infinite speed along the highway and verti-
cal access to the highway, they solve the problem in
expected time linear in the number of pairs.

The problems we consider also fall in the class of
min-max-min facility location problems. We are in-
terested in the case where n points are given, and
we wish to place a highway such that the maximum
travel time over all pairs of points is minimized. For
this case Cardinal and Langerman’s algorithm takes
expected quadratic time. We show how to make use
of the coherence between the pairs of points to get
deterministic near-linear-time algorithms.

In particular, we achieve linear-time algorithms for
finding the optimal vertical highway under the L1-
and the L2-metric, see Sections 4 and 5, respectively.
If we allow arbitrary orientation, we can determine
the optimal highway in O(n log n) time under the L1-
metric, see Section 4.

We also consider placing a highway cross, i.e., a
pair of highways that intersect perpendicularly. Un-
der the L1-metric we can determine the optimal axis-
aligned highway cross with infinite speed in O(n log n)
time, see Section 3. For constant speed the prob-
lem becomes considerably harder—even under the
L1-metric, see Section 6. We give a generic exact
O(n4+ε)-time algorithm based on computing minima
of upper envelopes. We also consider approximative
solutions, see Section 7. All our results are summa-
rized in Table 1.

Throughout the paper we assume that the input
point set S contains at least three points and that not
all points have the same y-coordinate. If |S| < 3, it is
trivial to get an optimal highway. Also, if all points
of S have the same y-coordinate, no vertical highway
reduces the maximum travel time.

2 The optimal highway for infinite speed

As a warm-up exercise, let us consider the problem of
finding the optimal placement of a vertical highway,
assuming the highway speed is infinite.

Theorem 1 Given n points in the plane, the mid-
dle line of the smallest enclosing vertical strip is an
optimal vertical highway of infinite speed. It can be
computed in linear time.

The easy proof is left to the reader. What is inter-
esting is that the optimal highway corresponds to a
smallest enclosing figure—we will see this theme re-
peatedly in the following, see Figure 1.

Note that the result holds in any Lp-metric, as
all travel to and from the highway is parallel to the
x-axis.

The theorem generalizes to highways of arbitrary
orientation in the Euclidean metric (that is, travel to
and from the highway is orthogonal to it):

(a) vertical (b) arbitrary

orientation

(c) axis-aligned

highway cross

Figure 1: Optimal infinite-speed highways (solid
lines) and corresponding enclosing figures (shaded).

Theorem 2 Given n points in the plane, the middle
line of the smallest enclosing strip is an optimal high-
way of infinite speed. It can be computed in O(n log n)
time.

The algorithm used here is the rotating calipers al-
gorithm by Toussaint (1983). After computing the
convex hull of the point set, it runs in linear time.

3 The optimal highway cross for infinite
speed

Now we consider the problem of placing more than
one highway. Observe that multiple parallel highways
with the same speed do not reduce the maximum
travel time because the quickest path using several
highways can be simulated with only one highway.
Instead we investigate highway crosses, i.e., pairs of
highways that intersect perpendicularly. We give al-
gorithms for computing the optimal axis-aligned high-
way cross, see Figure 1c.

Definition 1 An enclosing cross for a point set S is
the union of a horizontal and a vertical strip of equal
width containing S.

Lemma 1 The travel-time diameter of the optimal
axis-aligned highway cross with infinite speed equals
the width of the smallest enclosing cross.

Proof. Let δ be the travel-time diameter, and let δ′

be the width of a smallest enclosing cross C.
We first show that δ′ ≤ δ: Let h1, h2 be a pair of

optimal highways. We assign each point in S to its
closest highway so that S is partitioned into two sub-
sets: one consisting of points closer to the horizontal
highway and the other consisting of points closer to
vertical highway. We put around each highway the
narrowest strip containing all the points assigned to
the highway. Then both strips have width at most
δ, otherwise there are two points in the wider strip
whose travel-time distance is larger than δ. There-
fore we can obtain an enclosing cross of width δ by
widening each strip until its width becomes δ. Since
δ′ was minimal, we have δ′ ≤ δ.

It remains to show δ ≤ δ′: We place highways in
the middle of each strip of C. This results in a pair
of highways with travel-time diameter at most δ′.
Since δ is optimal, we have δ ≤ δ′.



v facility vertical highway highway w/arbitrary orientation axis-aligned highway cross

underlying metric L1 & L2 ortho L2 L1

∞ exact O(n) O(n log n) O(n log n)

exact O(n) O(n log n) open O(n4+ε) for any ε > 0
(1 +

√
2)-approx. O(n log n)

co
ns

t.

(2 + ε)-approx. O(log(1/ε)α(n)n log n)?

(1 + ε)-approx. O(log(1/ε)α(n)n2 log n)?

Table 1: Overview over our results. “Ortho” means orthogonal travel to and from the highway. ?) Yields an
approximation of the maximum travel time, no highway.

Note that once again the optimal facility corre-
sponds to a minimal enclosing shape. This shape can
be computed efficiently.

Theorem 3 Given n points in the plane, the opti-
mal axis-aligned highway cross for infinite speed cor-
responds to the smallest enclosing strip cross. It can
be computed in O(n log n) time.

Proof. The characterization follows from Lemma 1.
The smallest enclosing cross of a set S of n points can
be found as follows.

1. We presort the points by their x- and by their
y-coordinates.

2. For a given width ω > 0, we can decide in linear
time whether an enclosing cross of width ω ex-
ists. If it is the case, the enclosing cross can be
found in the same time. Our decision algorithm
is as follows. We slide a vertical strip V of width
ω across the point set from left to right. We
maintain a horizontal strip H of smallest width
containing all the points not in V . For each point
entering V from the right or leaving V from the
left, we update H accordingly. If the width of
H ever becomes ω or less, we answer “yes” and
report an enclosing cross. Otherwise, we answer
“no”.

3. The width of the smallest enclosing cross is in the
list of numbers L = Lx∪Ly, where Lx = {xj−xi |
1 ≤ i < j ≤ n} and x1 ≤ x2 ≤ · · · ≤ xn is the
sorted sequence of x-coordinates. The list Ly is
defined analogously based on the sorted sequence
of y-coordinates.

4. Consider the matrix A with A[i, j] = xj−xn−i+1.
The rows and columns of A are sorted in ascend-
ing order. Using the technique of Frederickson
and Johnson (1984), we can determine the k-th
element of such a sorted matrix in O(n) time
without constructing A explicitly. This gives us
a way to do binary search on Lx. This search
consists of O(log n) steps, each of which first in-
vokes the algorithm of Frederickson and Johnson
to find the median of the remaining elements in L
and then calls the decision algorithm of stage 2.
Thus, the total runtime is O(n log n). Likewise
we can search for the smallest value in Ly for
which an enclosing cross exists. Finally we re-
turn the minimum of the two values. Notice that

the algorithm in stage 2 computes not only the
width of the smallest enclosing cross but also the
cross itself.

4 The optimal highway in the L1-metric

We say that a v-rhombus is a rhombus of aspect ra-
tio v.

Theorem 4 Given n points in the plane, the verti-
cal axis of symmetry of the smallest enclosing axis-
aligned v-rhombus is an optimal vertical highway for
the L1-metric and highway speed v. It can be com-
puted in O(n) time.

Proof. For a pair of points p, q, let d(p, q) :=
|yp − yq|/v + |xp − xq|. Clearly, d(p, q) is a lower
bound for the diameter of the point set for any ver-
tical highway, and therefore δ := maxp,q∈P d(p, q) is
also a lower bound. We show that in fact this bound
can be obtained, resulting in an optimal highway.

We observe that the point set can be enclosed in
a rhombus with horizontal diagonal δ and vertical di-
agonal δv. For an example with v = 2, see Figure 2a.
If we place a vertical highway along the vertical diag-
onal of this rhombus, then any point in the rhombus
has travel time at most δ/2 to the center of the rhom-
bus. This implies that the travel-time diameter is at
most δ.

The computation boils down to computing mini-
mum and maximum y-axis intercepts among all lines
of slope v and among all lines of slope −v that go
through input points.

Consider now the case where we allow arbitrary
orientation of the highway, but travel to and from
the highway is still orthogonal to it. The characteri-
zation above still applies, and so we can find the opti-
mal highway by finding the smallest v-rhombus that
encloses the point set, see Figure 2b.

Theorem 5 Given n points in the plane, the opti-
mal highway with speed v and orthogonal travel to and
from the highway can be found in O(n log n) time.

Proof. First we compute the convex hull C of
the point set. Then we use the rotating-calipers
algorithm to compute the function w : [0, π) → R+



(a) vertical (b) arbitrary orientation

Figure 2: Optimal constant-speed highways (solid
lines) and corresponding enclosing figures (shaded).

that maps an angle φ to the minimum width of a
strip that contains C and forms an angle of size φ
with the positive x-axis. This function consists of
at most n pieces each of which is a trigonometric
function that can be computed explicitly in constant
time. Let α := 2 arctan v be the size of the larger
two inner angles formed by a v-rhombus. Then the
function w′(φ) = max{w(φ), w(φ + α mod π)} maps
φ to the width of a smallest v-rhombus that contains
C and forms an angle of φ with the positive x-axis.
The minimum over w′(φ) with φ ∈ [0, π) corresponds
to the width of a smallest v-rhombus that contains
C. By our above characterization the highway that
goes through the longer diagonal of such a rhombus
is optimal.

5 The optimal vertical highway in the Eu-
clidean Metric

In this section we consider the Euclidean metric in
the plane, and a vertical highway of speed v > 1.

Theorem 6 Given n points in the plane, an optimal
vertical speed-v highway under the Euclidean metric
can be computed in O(n) time.

Proof. As Abellanas et al. (2003) showed, the quick-
est path (i.e., the one with shortest travel-time) be-
tween two points p and q has one of two forms. The
quickest p–q path is either the segment pq or a path
consisting of three segments pp+, p+q−, q−q, where
p+ and q− are points on the highway, and the lines
pp+ and qq− form an angle of α = arccos 1/v with
the highway, see Figure 3a.

Now let us define a norm η(x, y) on R2 as

η(x, y) = a|x|+(|y|−b|x|)/v = (a−b/v)|x|+(1/v)|y|,
where a = 1/ sin α and b = 1/ tanα. Since a > b > 0
and v > 1, a − b/v > 0, and so η(x, y) > 0 unless
(x, y) = (0, 0), and η is indeed a norm.

Given two points p and q such that the highway
is inbetween p and q and such that the shortest path
between p and q makes use of the highway. Then the
travel time from p to q is η(q−p). When the highway
cannot be used because the line pq forms an angle
larger than α with the highway, then the travel time
is simply the Euclidean distance d(p, q), and η(q− p)
is an underestimate.

We note that η is simply a rescaled version of the
L1-norm, and so we can find the smallest unit circle
of this norm enclosing a given set of n points in linear
time. This means we have the smallest factor δ > 0
such that the entire point set fits in the rhombus R
with corners (0, δv), (0,−δv), (δ/(a − b/v), 0), and
(−δ/(a− b/v), 0) (after translating the point set).

We claim that the y-axis is now an optimal high-
way. We already know that there is a pair of points
whose η-distance is 2δ, so this is a lower bound on the
diameter. We now show that for any pair of points, ei-
ther their travel time (with respect to the highway at
x = 0) is at most 2δ, or they cannot use any vertical
highway.

For any two points p, q in the rhombus R, we have
η(q − p) ≤ 2δ. This means that if the highway lies
inbetween, then we are already done. So assume that
both p and q lie to the left of the highway, and such
that they can use a vertical highway. Let q′ be the
reflection of q around the highway. Since R is sym-
metric with respect to x = 0, q′ is also in R, and if
p, q′ can use a vertical highway, then their travel-time
distance is at most 2δ, implying that the travel time
from p to q is also at most 2δ.

It remains to consider the case that p, q′ cannot use
a vertical highway. This means that the line pq′ forms
an angle larger than α with the y-axis, see Figure 3b.
Note that η(q′ − p) still has a geometric meaning:
There is a path from p to the highway, then backwards
along the highway, then straight to q, see Figure 3c.

The η-distance measures the whole travel time,
but counting the time on the highway negative. Re-
flecting the last segment of this path back around the
highway, we obtain a path from p to q with travel time
η(q′−p), still counting time spent on the highway neg-
ative. But now observe that this path self-intersects
in a point x, see Figure 3d. Let x′ be the reflection
of x. Then η(q′−p) = d(p, x)+η(x′−x)+d(x′, q′) =
d(p, x)+η(x′−x)+d(x, q) ≥ d(p, x)+d(x, q) ≥ d(p, q)
(using η ≥ 0). It follows d(p, q) ≤ η(q′ − p) ≤ 2δ.

Again we found an optimal highway by computing
a minimal enclosing shape. Interestingly, the shape to
be minimized is not the unit circle under the travel-
time metric. If the highway is the y-axis then the unit
circle in the travel-time metric is the convex hull of
the points (0, v) and (0,−v) and the Euclidean unit
circle centered at the origin.

It is remarkable that we can compute a high-
way that realizes the optimal diameter in linear time,
without actually computing the travel-time diameter.
In fact, computing the diameter cannot be done in
linear time in the algebraic decision-tree model.

Lemma 2 In the algebraic decision-tree model the
computation of the travel-time diameter takes
Ω(n log n) time.

Proof. The following problem has a lower bound of
Ω(n log n) in the algebraic decision-tree model: Given
two sets A and B of n real numbers, is A ∩ B = ∅?
We show how to transform this problem in linear time
into a decision instance of the diameter problem.
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Figure 3: Optimal highway under the L2-metric.

Our instance consists of a set A′ of n points
and a set B′ of n points, computed from A and B.
All points lie on the unit circle. We first scale all
numbers in A and B so that they are close to zero
(depending on v). For each a in A, we create the
point (x, a), where x =

√
1− a2. For each b in B,

we create the point (x,−b), where x = −√1− b2.
Note that since the points are close to the x-axis,
no vertical highway can be used to speed up the
connection between A′ and B′, and so the diameter
of the set is simply the Euclidean diameter. It follows
that the diameter of A′ ∪B′ is 2 if and only if A and
B contain a common number.

To summarize we observe that for the Euclidean
metric the smallest enclosing figure characterizes the
optimal highway, but other than in the case of orthog-
onal travel to and from the highway, the size of the
smallest enclosing figure does not give us the travel-
time diameter. Thus we cannot use the rotating-
calipers algorithm as in the proof of Theorem 5 to
find the the optimal orientation of the highway for
the Euclidean metric.

6 The optimal axis-aligned highway cross in
the L1-metric

In this problem we have been unable to characterize
the optimal solution by a smallest enclosing shape.
There is no natural “center” for the problem: some-
times there are critical paths where a point connects
to the highway that is further away.

Theorem 7 The optimal axis-aligned speed-v high-
way cross under the L1-metric can be computed in
O(n4+ε) time, for any ε > 0.

Proof. The optimal solution corresponds to the
lowest point on the upper envelope of the pairwise
distance functions, see Figure 4. Since these func-
tions are of constant description complexity, their
upper envelope can be computed in O(n4+ε) time for
any ε > 0, as Sharir and Agarwal (1995) show.

Suppose we could characterize the travel-time di-
ameter given the optimal highway cross to get a com-
pact list L of candidate values as in the case of the
infinite-speed highway cross. Then we could do bi-
nary search on L using the decision algorithm de-

scribed in the following subsection. Given the travel-
time graph Γpq for each pair of points p and q (see
Figure 4), consider the upper envelope over all these
graphs. It seems plausible that the minimum of the
upper envelope is determined by three graphs, i.e., by
at most six points. However, we do not know whether
the minimum of the upper envelope of these three
graphs is the same as the minimum of the upper en-
velope over all graphs—it could be less. If we could
show that the two minima are equal we could even
apply Chan’s technique (1999), just as Cardinal and
Langerman (2006), in order to get a randomized al-
gorithm for the optimization problem whose expected
running time is asymptotically the same as the run-
ning time of the decision algorithm.

6.1 The decision problem

We now present an algorithm that decides for a given
δ > 0 whether there is an axis-aligned speed-v high-
way cross such that the resulting travel-time diameter
is at most δ. This is used as a subroutine for one of
the approximation algorithms in Section 7.

Theorem 8 Given a set S of n points in the plane, a
speed v > 1, and a parameter δ > 0, we can decide in
O(n2α(n) log n) whether there is an axis-aligned high-
way cross of speed v such that the travel-time diameter
of S is at most δ.

Proof. For points σ, p, q ∈ R2, let dσ(p, q) denote
the travel-time distance between p and q, assuming
an axis-aligned highway cross with speed v has been
placed (with center) at σ. We define the region

R(p, q) := {σ ∈ R2 | dσ(p, q) ≤ δ}.
We observe that the answer to the decision problem
is positive if and only if

⋂
p,q∈S R(p, q) is not empty.

The shape of the region R(p, q) depends on δ.
Let w, h be the horizontal and vertical distance of
points p and q. If δ < (w + h)/v, then R(p, q) is
empty. If (w + h)/v ≤ δ < min{w + h/v, h + w/v},
then R(p, q) consists of two convex quadrilaterals. If
min{w+h/v, h+w/v} ≤ δ < max{w+h/v, h+w/v},
then R(p, q) is infinite in one (axis-parallel) direction.
If max{w + h/v, h + w/v} ≤ δ < w + h, then R(p, q)
is infinite in both axis-parallel directions. Finally, if
w + h ≤ δ, then R(p, q) = R2. See Figure 5.

Let us call a planar region F (a, b)-monotone
if for every point (x, y) ∈ F and any λ ≥ 0 the
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Figure 5: (a) the regions R(p, q) when min{w+h/v, h+w/v} ≤ δ < max{w+h/v, h+w/v} (light gray region)
and when max{w + h/v, h + w/v} ≤ δ < w + h (dark and light gray regions). (b) the dark and light gray
regions can be expressed as the intersection of the four types of regions F1, F2, F3, and F4.
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Figure 4: Travel-time distance between two points p
and q for an axis-aligned highway cross centered at
(x, y). The graph of this function has 31 faces of 15
different orientations. The two points marked × are
the lowest, i.e., those where the corresponding high-
way crosses minimize the travel time from p to q. The
thin dark gray lines are contour lines. If a highway
cross is centered in a V- or H-region, the vertical and
horizontal highway is used by a quickest p–q path. In
the VH- and HV-region both highways are used in the
corresponding order. In the N-regions no highway is
used.

point (x + λa, y + λb) is also in F . We observe that
R(p, q) can be expressed as the intersection of four
regions Fi(p, q), i = 1, 2, 3, 4, where F1(p, q) is (1, 1)-
monotone, F2(p, q) is (−1, 1)-monotone, F3(p, q) is
(−1,−1)-monotone, and F4(p, q) is (1,−1)-monotone.
Figure 5 shows an example of R(p, q), which can
can be expressed as the intersection of F1, F2, F3,
and F4. Each region is bounded by a polygonal
curve of constant complexity, and so we can compute
Fi :=

⋂
p,q∈S Fi(p, q) by a simple plane sweep. It is

the lower envelope of a set of O(n2) line segments,
and hence has complexity O(n2α(n)), as observed by
Sharir and Agarwal (1995). The intersections F1∩F3

and F2 ∩ F4 can again be computed by a plane
sweep in this time. We are left with two regions of
complexity O(n2α(n)), and we need to determine
whether their intersection is empty. While we do not
know how to bound the complexity of this region,
we can test emptiness in O(n2α(n) log n) time, by
a simple plane sweep that stops as soon as a point
in the intersection is found. Since any intersection
between edges of the two regions implies that the
intersection is not empty, this runs in the claimed
time bound.

6.2 Further observations

The optimum axis-aligned highway cross for finite
speed need not be contained in the strip cross for in-
finite speed, see Figure 6: take the points (−2, 1),
(−1, 2), (1, 2), (2, 1), (2,−1), (1,−2), (−1,−2),
(−2,−1)—i.e., an octagon, contained in the strip
cross ([−1, 1]×R)∪(R×[−1, 1]))—plus the two points
(−a, 0) and (a, 1) for a > 3v. Then the coordinate
axes are the optimum highway cross for infinite speed.
It has travel-time diameter 2, so the above two strips
are the optimum cover. But for any finite speed v > 1,
the highway cross x = a and y = 0 yields a diame-
ter of (2a + 1)/v, which is better than the diameter
(2a/v) + 1 caused by the coordinate axes being high-
ways.

The following argument also rules out any simple
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Figure 6: Here the optimum speed-v highway cross
(dashed) is not contained in the optimum speed-∞
strip cross (shaded).

(3, 10)

(0, 9)

(0, 11)

(9, 0) (11, 0)

Figure 7: After adding the point (3, 10) the opti-
mal speed-∞ highway cross changes (from solid to
dashed), but the new point does not occur in any di-
ametral pair.

incremental algorithm. Note that the minimum must
occur at a vertex of the upper envelope. Thus there
are always at least three diametral pairs which simul-
taneously realize that optimum distance. However,
even for infinite speed there are point sets such that
the addition of one point changes the diameter, and
the new point does not occur in any diametral pair.
An example (see Figure 7) for infinite speed is given
by the points (0, 9), (0, 11), (9, 0), (11, 0) since now
the coordinate axes are an optimal highway cross—
with a diameter of 0. If we add the point (3, 10), the
optimal highway cross is centered at (10, 10) and has
a diameter of 2.

7 Fast constant-factor approximations for
the optimal axis-aligned highway cross

Given a set S of n points. Let C be the smallest
enclosing cross for S, and let h1, h2 be the middle
line of each strip of C. We call h1, h2 the median
highways for S.

Lemma 3 The travel-time diameter δmed of the me-
dian highways (with speed v) is at most 2 + 1/v
times the travel-time diameter δopt of an optimal axis-
aligned speed-v highway cross for S. There are point
sets S where for v ≥ √

3 the travel-time diameter of
the median highways is at least 2 − 1/(v + 2) times
the optimum.

Proof. We can scale S such that its L1-diameter
is 2—this does not change the travel-time ratio. Let
w be the width of C after scaling. Observe that
δopt ≥ 2/v, as there are points at L1-distance 2. Fur-
thermore, we have δopt ≥ w, since using the optimal
highways at infinite speed cannot achieve diameter
less than w.

On the other hand, δmed ≤ w+(2+w)/v, since any
point can reach a point on the highways at distance at
most w/2, and the maximum distance of such points
on the highways is at most 2+w. This implies δmed ≤
(1+1/v)w+2/v ≤ (1+1/v)δopt+δopt = (2+1/v)δopt.

For the lower bound example, let speed v > 1 be
given, and set parameter ω = 1/(v + 2). We will con-
struct a point set S such that the smallest enclosing
cross has width 2ω, the median highway has travel-
time diameter 4/v − 2/(v(v + 2)), and the optimal
highway cross has travel-time diameter at most 2/v,
implying the lower bound.

Let ε > 0 be very small. Our point set S consists of
the points (1, 0), (−1, 0), (0, 1), (0,−1), (−2ω, ω + ε),
(−2ω,−ω − ε), (ε,−2ω), as in Figure 8. We claim
that S has a unique smallest enclosing strip of width
2ω, centered around the lines x = −ω and y = −ω.
Indeed, the line x = 0 must be in the vertical strip
(otherwise the horizontal strip would have width at
least 2), while the line y = 0 must be in the horizontal
strip. Similarly, the line x = −2ω must be in the
vertical strip as well, and this now fixes the vertical
strip of width 2ω around the line x = −ω. It follows
that the remaining point (ε,−2ω) is in the horizontal
strip, fixing that strip around y = −ω.

The median highway cross has travel-time diame-
ter 2ω+(2+2ω)/v = 4/v−2/(v(v+2)) if the diameter
is less than or equal to the L1 distance of these points
(note that the diameter is determined by (1, 0) and
(0, 1).) That is, for v ≥ √

3 the median highway cross
has travel-time diameter 4/v − 2/(v(v + 2)). Con-
sider now a highway cross with center at the origin.
The four outer points and the point (ε,−2ω) can be
reached from the origin within travel time 1/v. The
remaining two points can be reached with travel time
ω(1 + 2/v) (ignoring all ε-terms). The travel-time
distance between these two points is 2ω, and so the
travel-time diameter is bounded by

max{2/v, 1/v + ω(1 + 2/v), 2ω} = 2/v.

We can improve the result in Lemma 3 by a simple
observation.

Theorem 9 Given a set S of n points we can com-
pute in O(n log n) time an axis-aligned highway cross
whose travel-time diameter is at most 1+

√
2 times the

travel-time diameter of an optimal axis-aligned speed-
v highway cross for S.

Proof. According to Theorem 3 the median
highways can be computed in O(n log n) time.
According to Lemma 3 they yield a factor-(2 + 1/v)
approximation for the optimal travel-time diameter.
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Figure 8: The median highway for v = 2.

Note that the approximation factor tends to 3
when the speed goes to 1. Clearly not building a
highway cross is a factor-v approximation. Balancing
out the two terms yields min{2+1/v, v} ≤ 1+

√
2.

We can do better if we do are only interested in
the optimal travel-time diameter.

Lemma 4 Let s be any point in S. Let Hs be the
highway cross that minimizes the maximum travel
time to s. The travel-time diameter of Hs is at most
twice the travel-time diameter δopt of an optimal axis-
aligned speed-v highway cross for S.

Proof. Let {p, q} be a pair of points in S
and let s′ ∈ S be a point of maximum travel-
time distance from s given Hs. We denote by
ds the metric induced by Hs and by dopt the
metric induced by the optimal highway cross.
Then ds(s, p) ≤ ds(s, s′) ≤ dopt(s, s′) ≤ δopt

and, by symmetry, ds(s, q) ≤ δopt. This yields
ds(p, q) ≤ ds(p, s) + ds(s, q) ≤ 2δopt.

Note that Hs is usually not centered at s (e.g. con-
sider the set S = {(0, 1), (1, 0)} whose optimal high-
way cross is centered at the origin).

Based on the constant-factor approximation from
Theorem 9 we can use a modification of the decision
procedure described in Section 6.1 combined with bi-
nary search to get the following.

Theorem 10 Given a set S of n points in the plane,
we can compute in O(log(1/ε)α(n)n log n) time a
(2 + ε)-approximation for the travel-time diameter
of S under the optimal axis-aligned speed-v highway
cross.

Proof. Let s be any point in S and Hs be the highway
cross that minimizes the maximum travel time to s.

According to Theorem 4 the travel-time diameter
δs given Hs is at most twice the travel-time diame-
ter δopt given an optimal axis-aligned speed-v high-
way cross for S, i.e., δs ≤ 2δopt, so a (1 + ε/2)-

approximation δε to δs is a (2 + ε)-approximation for
δopt.

We now describe how to compute a (1 + ε)-
approximation for δs by binary search. Recall that
the median highways yield a travel-time diameter of
δmed ≤ (1 +

√
2)δopt ≤ 3δopt ≤ 3δs of δs, see The-

orem 9. The median highways can be computed in
O(n log n) time according to Theorem 3.

Now we conceptually subdivide the interval I =
[0, 2δmed] into at most N = 6/ε pieces of length δmed ·
ε/3, and denote the increasing sequence of interval
endpoints by ∆ = (δ1, . . . , δN ). Since δs ≤ 2δopt ≤
2δmed, we know that δs lies in I. Hence there is an
index i ∈ {1, . . . , N} such that δi < δs ≤ δi+1.

Setting δε = δi+1 we find that δs ≥ δi = δε−δmed ·
ε/3. This yields δε ≤ δs + δmed · ε/3 ≤ δs +3δs · ε/3 ≤
(1 + ε)δs. Thus δε is indeed a (1 + ε)-approximation
of δs.

For a given δ > 0 we can run a modification of
the decision algorithm described in the proof of The-
orem 8. Our modification considers for each point
q ∈ S \ {s} the (n − 1) travel-time distances dδ(s, q)
between s and q in order to decide whether there
is a highway cross such that the maximum travel-
time distance to s is at most δ. Each such test takes
O(α(n)n log n) time.

Using O(log(1/ε)) calls to this decision procedure,
we can determine δε by binary search on ∆.

If we are willing to invest more time, we can even
get a (1+ε)-approximation of the optimal travel-time
diameter δopt.

Theorem 11 Given a set S of n points in the plane,
we can compute in O(log(1/ε)α(n)n2 log n) time a
(1 + ε)-approximation for the travel-time diameter
of S under the optimal axis-aligned speed-v highway
cross.

Proof. We again first compute the median high-
ways to get an upper bound δmed for the optimal
travel-time diameter δopt and then do binary
search. We can now use the interval [0, δmed],
which contains δopt. We stop when the interval
size is sufficiently small, i.e., at most δmed · ε/3.
This time we use the decision algorithm described in
the proof of Theorem 8 without any modifications.

8 Concluding Remarks

There are many ways how this problem can be ex-
tended. First, can we compute an optimal high-
way with arbitrary orientation under the Euclidean
metric in o(n2) (worst-case) time? Second, consider
highways with different speeds, different slopes, or
bounded lengths. Third, suppose an existing network
of (axis-parallel) highways and a real ` > 0 is given.
Where to place a new (axis-parallel) highway segment
of length ` in order to minimize the travel-time diam-
eter of the resulting network?
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