
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
コンポーネントソフトウェア開発用軽量フォーマルメ

ソッドの研究

Author(s) 松本, 充広

Citation

Issue Date 2002-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/920

Rights

Description Supervisor:二木 厚吉, 情報科学研究科, 博士

Lightweight Formal Methods for Component-based

Software Development

by

Michihiro MATSUMOTO

submitted to
Japan Advanced Institute of Science and Technology

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Supervisor: Professor Kokichi FUTATSUGI

School of Information Science
Japan Advanced Institute of Science and Technology

March 22, 2002
Copyright c© 2002 by Michihiro Matsumoto

Abstract

In the thesis, we discuss (1) lightweight formal methods for component-based software
called LFMB and LFME, (2) the component-based software development using LFMB
or LFME called CBDL, and (3) the support tools of CBDL. Recently, component-based
software development has gained in popularity. In the development, firstly we prepare
a component library whose components produce basic functionalities. Then, by select-
ing components from the component library and by combining them using connectors,
component-based software is developed. We call the parts of the software combining the
components connectors. The reason for the popularity is that it can increase software
productivity. To increase software productivity, components must be reused. The obsta-
cles of component reuse are (a) a lack of a consensus about component usage between
component developers and software developers, i.e. component users and (b) an archi-
tectural mismatch. We developed CBDL to eliminate the obstacles. CBDL is based on
the Catalysis approach. The former obstacle is eliminated by specifying business models
and component specifications by using UML diagrams with OCL descriptions and verify-
ing consistency in the UML diagrams. The former technique is an idea of the Catalysis
approach. The latter technique, i.e. LFMB and LFME, is a contribution of the thesis.
Lightweight formal methods are formal methods such that they have target problems and
they use simple logic that the verification of the problems can be executed automatically.
The consistency verification in the UML diagrams are the target problems of LFMB and
LFME. Behavioral logic and equational logic are the simple logic of LFMB and LFME,
respectively. So, LFMB and LFME are lightweight formal methods. Because LFMB and
LFME include automated verification methods of the consistency, component developers
and software developers who are not familiar with formal methods can get the benefit of
the verification by using the support tools of CBDL. The latter obstacle is eliminated by
selecting tree architecture that we developed. We can regard the UML diagrams as specifi-
cations specified by a language for programming-in-the-large. So, in CBDL, moreover, we
generate component-based software from the UML diagrams by combining the connectors
specified in the UML diagrams and components of a component library. Note that the
above consistency verification guarantees the correctness of the connectors. Because the
support tools of CBDL are designed as client-server type software, component developers
and software developers can access to the tools through Internet at any place at any time.
To summarize, by using the support tools of CBDL, we can increase component reuse and
correctness of component-based software.

i

Acknowledgements

First of all, I am grateful to my main supervisor Professor Kokichi Futatsugi who has
not only provided valuable suggestions but also shown me the right direction of my study.

In addition, I thank LDL members, especially previous Associate Professor Takuo
Watanabe, previous Associate Kazuhiko Ogata, previous Associate Răzvan Diaconescu,
previous Associate Akira Mori, Associate Noriki Amano, and Dr. Shusaku Iida for helpful
discussions about my study.

A part of my study was carried out as the projects that were supported by grant
Support program for young software researchers 99-004 and Support program for young
software researchers 01-006 from Information-technology Promotion Agency (IPA) and
Research Institute of Software Engineering (RISE). So, I thank Information-technology
Promotion Agency and Research Institute of Software Engineering. Also, I thank the
project members, Mr. Yoshihito Katayama, Mr. Takanori Nakama, and Mr. Yoshiharu
Hashimoto.

Finally, I thank my employer PFU Limited, which supports my life at JAIST.

ii

Contents

Abstract i

Acknowledgements ii

1 Component-based Software Development and Formal Methods 1
1.1 Component-based Software Development 1
1.2 Formal Methods . 2
1.3 Applications of Formal Methods to Component-based Software Development 3
1.4 CBDL . 3

2 Preliminaries 7
2.1 The Catalysis Approach . 7
2.2 Algebraic Specification . 9

2.2.1 Signature, algebra, and term . 9
2.2.2 Homomorphism, equation, and satisfaction 11
2.2.3 Specification and model . 12
2.2.4 A complete deduction system of equational specification 13
2.2.5 Algebraic behavioral specification 14

2.3 Abstract Reduction System . 15
2.3.1 Abstract reduction system . 15
2.3.2 Term rewriting system . 16

2.4 CafeOBJ . 16
2.5 JavaBeans and Servlets . 17

2.5.1 JavaBeans . 17
2.5.2 Servlets . 17

3 An Overview of CBDL 18
3.1 CBDL . 19
3.2 The Applications of Formal Methods in CBDL 21
3.3 Tree Architecture . 22

3.3.1 Tree architecture . 22
3.3.2 Evolution of a component library 23

3.4 AA-trees Model of Objects and Actions . 23
3.5 An Overview of LFMB . 24
3.6 An Overview of LFME . 24
3.7 An Overview of Connector Generation in CBDL 24

iii

4 Tree Architecture 26
4.1 Tree Architecture . 26

4.1.1 Event models . 26
4.1.2 Static structures . 27
4.1.3 Dynamic structures . 28

5 AA-trees Model of Objects and Actions 30
5.1 AA-trees Model . 30

5.1.1 Objects, associations, and attributes 30
5.1.2 Actions . 31
5.1.3 Agents and data . 31
5.1.4 Agent decomposition . 32
5.1.5 Action decomposition . 33
5.1.6 Classes . 34
5.1.7 Business models . 35
5.1.8 Component specifications . 35
5.1.9 Static constraints . 36

5.2 The Guideline How To Specify AA-trees Models by using UML Diagrams
with OCL Descriptions . 36
5.2.1 Classes, associations, and attributes 37
5.2.2 Data class diagrams . 37
5.2.3 Basic class diagrams . 39
5.2.4 Action usecase diagrams . 41
5.2.5 Decomposition class diagrams . 43
5.2.6 Decomposition sequence diagrams 45
5.2.7 Decomposition statechart diagrams 45

6 A Verification Method of Equational Specification with �= 46
6.1 Equational Specification with �= . 46
6.2 A Deduction System of Equational and Inequational Specification 48
6.3 Double Term Rewriting System with Condition 53

7 LFMB 62
7.1 A Formalization of Tree Architecture by using Projection-style Behavioral

Specification . 62
7.1.1 Data structures . 62
7.1.2 Event model of component . 63
7.1.3 Composite component . 64
7.1.4 Conditional component specification 66

7.2 A Formalization of AA-trees Model of Component Specifications by using
Projection-style Behavioral Specifications 69
7.2.1 A formalization of AA-trees model of component specifications by

using projection-style behavioral specifications 69
7.3 Translation from UML diagrams into Projection-style Behavioral Specifi-

cations . 70
7.3.1 Data class diagrams . 70
7.3.2 Basic class diagrams . 71
7.3.3 Action usecase diagrams . 71

iv

7.3.4 Decomposition class diagrams . 73
7.3.5 Decomposition sequence diagrams 74
7.3.6 Decomposition statechart diagrams 74
7.3.7 Data specifications . 75
7.3.8 Primitive component specifications 75
7.3.9 Component specifications . 75

7.4 Consistency Verification of UML diagrams 75
7.4.1 Refinement verification . 75

8 LFME 77
8.1 A Formalization of AA-trees Model by using Equational Specifications . . . 77

8.1.1 Static structure . 77
8.1.2 Dynamic structure . 83
8.1.3 Conditional static specification and conditional dynamic specification 86
8.1.4 Business models . 87
8.1.5 Component specifications . 87

8.2 Translation from UML diagrams into Equational Specifications 89
8.2.1 Data class diagrams . 90
8.2.2 Basic class diagrams . 90
8.2.3 Action usecase diagrams . 92
8.2.4 Decomposition class diagrams . 94
8.2.5 Static specifications . 96
8.2.6 Dynamic specifications . 96
8.2.7 Static invariants . 96

8.3 Consistency Verification of UML diagrams 96
8.3.1 Refinement verification . 96
8.3.2 Verification of satisfaction of static invariants 97

9 A Comparison between LFMB and LFME 98
9.1 Refinement Verification . 98
9.2 Logic of Projection-style Behavioral Specification 100

10 Connector Generation 101
10.1 JavaBeans Implementation of Tree Architecture 101
10.2 Automated Connector Generation . 102
10.3 Servlets with JavaBeans Implementation of Tree Architecture 104

11 Support Tools 105
11.1 A Support Tool of CBDL using LFMB . 105

11.1.1 The structure of the support tool 106
11.1.2 The functions of the support tool 106

11.2 Support Tools of CBDL using LFMB and LFME 107
11.2.1 The structure of the support tools 107
11.2.2 The functions of the support tools 108

12 Case Studies 112
12.1 The Domain of File Transfer Programs . 112
12.2 The Domain of Online Bookstores . 113

v

13 Conclusion 114

Bibliography 116

Publications 119

Projects 121

vi

Chapter 1

Component-based Software
Development and Formal Methods

In the thesis, we discuss:

1. lightweight formal methods for component-based software called LFMB (a Lightweight
Formal Method using Behavioral specification) and LFME (a Lightweight Formal
Method using Equational specification),

2. the component-based software development using LFMB or LFME called CBDL (a
Component-Based software Development approach using LFMB or LFME), and

3. the support tools of CBDL.

In Chapter 1, firstly, we discuss:

1. what component-based software development (abb. CBD) is,

2. what formal method is, and

3. what kinds of applications of formal methods to CBD have been studied.

Then, we discuss CBDL.

1.1 Component-based Software Development

Component-based software development has gained in popularity. Many developers use
component technologies, for example, JavaBeans, COM, EJB, and CORBA[35].

In the development, firstly we prepare a component library whose components produce
basic functionalities. Then, by selecting components from the component library and by
combining them using connectors, component-based software is developed. We call the
parts of the software combining the components connectors.

The reason for the popularity is that it can increase software productivity. To increase
software productivity, components must be reused. The obstacles of component reuse are:

1. a lack of a consensus about component usage between component developers and
software developers, i.e. component users and

2. an architectural mismatch.

1

Because component developers and software developers usually do not know one an-
other, it is difficult to get the consensus about component usage without a support means.
The software developers can not use the components without the knowledge about com-
ponent usage. So, it is difficult to reuse components without the support means.

The Catalysis approach[12] is one of the support means. It uses UML diagrams with
OCL descriptions[6] to help to get the consensus. The business concepts of the target
domain are specified by using UML diagrams with OCL descriptions. The behavior of
components are specified by using the business concepts. So, ambiguities about compo-
nent usage are eliminated by the UML diagrams. We call the specifications specifying
the business concepts business models and the specifications specifying behavior of the
components component specifications.

The architectural mismatch problem[13] is the problem that components cannot be
combined with components which have different software architectures. For example,
user interface components which use X library cannot be combined with user interface
components which do not use X library. So, it is difficult to reuse components without a
common software architecture.

There are many researches about software architectures[2]. In CBD, we deal not with
software but a software family. Product line architecture [3, 8, 30, 33] whose idea at least
dates back to [31] is a software architecture for a software family. In the CBD whose
software architecture is product line architecture, firstly, we fix a software family, i.e. a
target domain and prepare a component library of the target domain. By selecting com-
ponents from the component library and by combining them, component-based software
of the target domain is developed.

We use architectural description languages (abb. ADLs) to specify software architec-
tures. The idea of ADLs dates back to “programming in the large versus programming in
the small”[9]. Programming in the small is programming for making modules. Program-
ming in the large is programming for combining modules. The idea of programming in
the large led to module interconnection languages (abb. MILs)[32] and ADLs.

From ADL specifications, we sometimes generates connectors that combine modules.
Generative programming[8] is one of the generation techniques.

1.2 Formal Methods

Formal methods are approaches of software engineering that use mathematics. The
main instruments of the formal methods are specification languages. There are many
specification languages, for example, Z[34], B[24], VDL[4], RAISE[18], OBJ3[17], and
CafeOBJ[10]. Because specifications specified by using the specification languages are
mathematical notations, we can verify properties of the specifications by using mathe-
matical logic. Some specification languages, for example, B, VDL, RAISE, OBJ3, and
CafeOBJ have verification systems for their languages.

The benefits of formal methods are as follows:

1. we can get clear understanding of a target software in the process of specifying the
target software and

2. we can verify properties of the target software using the verification systems.

2

Unfortunately, the verification usually needs human help. So, it is difficult for non-
specialists of the verification to get the benefit of 2. Lightweight formal methods are
formal methods such that:

1. they have target problems and

2. they use simple logic that the verification of the problems can be executed auto-
matically.

Because support tools that use the simple logic execute the verification automatically, the
non-specialists can get the benefit of 2 by using the support tools.

The formal method using Alloy [22] is a lightweight formal methods. The purpose of
Alloy is to propose the smallest modeling notation that is easy to read and write and can
be analyzed automatically.

1.3 Applications of Formal Methods to Component-

based Software Development

As we discussed in Section 1.1, the solutions of eliminating the obstacles of component
reuse are as follows:

1. support means for getting the consensus about component usage and

2. selection of a common software architecture.

As we discussed in Section 1.2, formal methods can be the support means. By spec-
ifying component usage by using specification languages, we can get the consensus. In
fact, we can regard UML with OCL in the Catalysis approach as a specification language.
Note that the solution of the Catalysis approach is nothing other than an application of
formal methods to CBD.

We can verify properties of the specifications by using the verification systems. The
verification helps to get the consensus, too.

To specify the common software architecture, we can use specification languages. Note
that we can regard ADLs as specification languages.

Because ADLs are specification languages, we can verify properties of ADL specifica-
tions. Consider generation of connectors from the ADL specifications. By the verification,
we guarantee the correctness of the connectors.

1.4 CBDL

We developed lightweight formal methods called LFMB (a Lightweight Formal Method
using Behavioral specification) and LFME (a Lightweight Formal Method using Equational
specification). CBDL is a Component-Based software Development approach using LFMB
or LFME.

CBDL is based on the Catalysis approach. By using the Catalysis approach, we get
the benefit of 1 of formal methods. But, because the verification is out of the scope of the
Catalysis approach, we can not get the benefit of 2 by only using the Catalysis approach.

3

In the Catalysis approach, UML diagrams are specified by a number of software en-
gineers. So, there may be inconsistencies in the UML diagrams. To eliminate the in-
consistencies, consistency verification is useful. Because most of software engineers are
non-specialists of the verification, the verification should be executed automatically as far
as possible. So, we developed lightweight formal methods complimenting the Catalysis
approach called LFMB and LFME.

One of the main idea of the Catalysis approach is that behavior of an action is specified
by using changes of attributes’ values. Behavioral specification has a similar idea. When
we specify a behavioral specification, we regard target software as the following black box:

1. it has a state,

2. it has operators called actions that changes the state, and

3. it has operators called observations that is used for observing the state.

So, when we specify components, the actions and the attributes of the Catalysis approach
correspond to the actions and the observations of the behavioral specification, respectively.
Moreover, we have studied behavioral specification[25, 26, 27, 28, 29]. Therefore, we
developed a lightweight formal method using behavioral specifications called LFMB.

In the Catalysis approach, we can regard most of OCL descriptions as equations.
Therefore, we developed a lightweight formal method using equational specifications called
LFME.

The consistency verification is the target problems of LFMB and LFME. As we will
discuss in Chapter 7 and Chapter 8, we can automatically execute the consistency verifi-
cation. So, behavioral logic and equational logic are the simple logic of LFMB and LFME,
respectively. So, LFMB and LFME are lightweight formal methods.

In LFMB and LFME, we use AA-trees model as a model of objects and actions.
Because the Catalysis approach is not conscious of the verification, its model may not
have sufficient information about the verification. AA-trees model is a refinement of the
model that the specifiers are forced to specify the information.

Moreover, in CBDL, we generate connectors from the UML diagrams. Note that the
correctness of the connectors is guaranteed by the verification. In CBDL, by combining
the connectors and components of a component library, we generate component-based
software. The common software architecture of components is tree architecture. There is
a correspondence between AA-trees model of component specifications and tree architec-
ture. Based on the correspondence, we generate the connectors. Because requirements
of the target domain continue to change, the component library must continue to evolve.
We developed tree architecture to simplify the evolution of the component library.

The main ideas of CBDL using LFMB or LFME are as follows:

1. a formal definition of AA-trees model by using behavioral specifications or equational
specifications,

2. the consistency verification methods,

3. a formal definition of tree architecture by using behavioral specifications, and

4. the connector generation methods, respectively.

4

The thesis is organized as follows.
In Chapter 2, we discuss preliminaries. Firstly, we discuss the Catalysis approach

that is the base of CBDL. Secondly, we discuss algebraic specification. Projection-style
behavioral specification used in LFMB and equational specification used in LFME are
categories of algebraic specification. Then, we discuss abstract reduction system. Abstract
reduction system, especially, term rewriting system is used for the verification of LFMB
and LFME. After that, we discuss a specification language CafeOBJ . We use CafeOBJ to
specify projection-style behavioral specification and equational specification. Finally, we
discuss JavaBeans and Servlets. The support tools of CBDL generate component-based
software that is constructed from (1) JavaBeans or (2) JavaBeans and Servlets.

In Chapter 3, we discuss an overview of CBDL. CBDL is the component-based soft-
ware development discussed in the thesis. Firstly, we discuss the process of CBDL and
where formal methods apply to. Secondly, we discuss an overview of AA-trees model.
AA-trees model is a refinement of the model of objects and actions of the Catalysis ap-
proach. In CBDL, we model business processes and behavior of components by using
AA-trees model. Then, we discuss an overview of tree architecture. Tree architecture
is the common software architecture of components in CBDL, which is used for avoiding
architecture mismatch. After that, we discuss overviews of LFMB and LFME. LFMB and
LFME are lightweight formal methods. In CBDL, we use LFMB and LFME for eliminat-
ing inconsistencies in the UML diagrams. Finally, we discuss an overview of connector
generation. Based on the correspondence between AA-trees model of components and
tree architecture, the support tools of CBDL generate the connectors.

In Chapter 4, we discuss tree architecture. Firstly, we discuss what tree architecture
is. Then, we discuss the correspondence between AA-trees model of components and tree
architecture.

In Chapter 5, we discuss AA-trees model. Firstly, we discuss what AA-trees model
is. Then, we discuss how to specify AA-trees model by using UML diagrams with OCL
descriptions.

In Chapter 6, we discuss a verification method of equational specification with �=.
Firstly, we discuss a complete deduction system of equational specification with �=. Then,
we discuss double term rewriting system with condition that is an implementation of the
deduction system that uses term rewriting system.

In Chapter 7, we discuss LFMB. Firstly, we discuss projection-style behavioral specifi-
cation. In LFMB, we use projection-style behavioral specification for formalizing AA-trees
model. Secondly, we discuss how to formalize AA-trees model by using projection-style
behavioral specification. Because AA-trees model is specified by using UML diagrams,
then, we discuss how to translate UML diagrams into projection-style behavioral specifi-
cation. Finally, we discuss how to verify consistency in the UML diagrams.

In Chapter 8, we discuss LFME. In LFME, we use equational specification for for-
malizing AA-trees model. Firstly, we discuss how to formalize AA-trees model by using
equational specification. Because AA-trees model is specified by using UML diagrams,
then, we discuss how to translate UML diagrams into equational specification. Finally,
we discuss how to verify consistency in the UML diagrams.

In Chapter 9, we discuss comparisons between LFMB and LFME. Because we formalize
the same AA-trees model in LFMB and LFME, for the same verification about the model,
the results of LFMB and LFME must be the same. The common verification of LFMB

5

and LFME is refinement verification. So, firstly, we discuss a correspondence between
refinement verification in LFMB and that in LFME. Because the verification results of
LFMB and LFME are the same, we predicted that the logic of projection-style behavioral
specification was equational logic. The prediction is true. Then, we discuss that the logic
of projection-style behavioral specification.

In Chapter 10, we discuss connector generation. Based on the correspondence between
AA-trees model of components and tree architecture, the support tools of CBDL generate
the connectors. Because tree architecture is a software architecture of an abstract level,
to generate the connectors, there must be a correspondence between tree architecture
and a software architecture of an implementation level. Firstly, we discuss a software
architecture of an implementation level that uses JavaBeans. We call the software archi-
tecture JavaBeans implementation of tree architecture. Then, we discuss how to generate
the connectors of JavaBeans implementation of tree architecture. Finally, we discuss a
software architecture of an implementation level that uses Servlets with JavaBeans. We
call the software architecture Servlets with JavaBeans implementation of tree architecture.

In Chapter 11, we discuss the support tools of CBDL. We developed two groups of
support tools of CBDL. One is the group of the support tool of CBDL using LFMB. The
other is the group of the support tools of CBDL using LFMB and LFME. Firstly, we
discuss the support tool of the former group. Then, we discuss the support tools of the
latter group.

In Chapter 12, we discuss case studies. We did case studies by using the support tools.
We did a case study of the domain of file transfer programs by using the support tool of
CBDL using LFMB. Firstly, we discuss the case study. We did a case study of the domain
of online bookstores by using the support tool of CBDL using LFMB and LFME. Then,
we discuss the case study.

Finally, In Chapter 13, we discuss some conclusions.

6

Chapter 2

Preliminaries

2.1 The Catalysis Approach

The Catalysis approach[12] deals with all phases of CBD, which are modeling phase, design
phase, and implementation phase. LFMB and LFME deal with only the modeling phase
and the design phase. So, in this section, we summarize only those phases of the Catalysis
approach.

In the modeling phase, we specify a business model of a target domain. In the design
phase, we specify specifications of software that implements some parts of the business
model.

An action of the Catalysis approach corresponds to a UML use case. An attribute is
a function returning an object or a function returning a set of objects if its multiplicity is
“1” or “0 . . . n”, respectively. Attributes are drawn by using two ways. One way is that
an attribute is drawn in the middle part of a class box of a class diagram. Another way
is that an attribute is drawn as a role of an association, which is a line drawn between
class boxes. In the former case, multiplicity of the attribute is “1”. In the latter case,
multiplicity is drawn near the attribute’s name. The effects of an action is described by
changes between attributes’ values immediately before and after the action has happened.
Usually, the effects are specified by using OCL (the Catalysis extension). The most typical
assertion for describing the effects is an equation whose form is

[object].[attribute] = F([object].[attribute]@pre)

where [object].[attribute]@pre and [object].[attribute] are the attribute values
immediately before and after the action has happened, respectively, and F is a function.

Example 1 Fig. 2.1 shows a usecase diagram. buy is an action. Purchaser and Vendor
are objects, which participate in buy action. The effects of buy action are described by
changes of values of those objects’ attributes. Fig. 2.2 shows a class diagram that spec-
ifies attributes of the objects (classes). Attributes of a Purchaser object are p-balance,
p-possess, and vendor. Attributes of a Vendor object are v-balance, v-possess, and pur-
chaser. The multiplicity of p-balance, p-possess, v-balance, and v-possess is “1”. The
multiplicity of vendor and purchaser is “0 . . . n”. p-balance and v-balance are functions
returning the balances of Purchaser and Vendor objects, respectively. p-possess and v-
possess are functions returning the boolean values showing whether Purchaser and Vendor
objects have a Thing object, respectively. price is a function returning the price of Thing.

7

Figure 2.1: An action and objects
Figure 2.2: Classes and their attributes

Figure 2.3: Decomposition of an object

buy action is an action that a Purchaser object buy a Thing object from a Vendor object.
buy action happens when the Purchaser object does not have the Thing object but the
Vendor object has it. buy action cause payment for the Thing object and transportation
of it. So, the precondition and the effects of buy action are specified by using OCL (the
Catalysis extension) as follows:

action (P : Purchaser, V : Vendor)::buy(T : Thing)

pre: (P.vendor(V) = true) and

(P.p-possess(T) = false) and

(V.v-possess(T) = true)

post: (P.p-balance = P.p-balance@pre - T.price) and

(P.p-possess(T) = true) and

(V.v-balance = V.v-balance@pre + T.price) and

(V.v-possess(T) = false)

The “pre:” description is the description of the precondition. The “post:” description is
the description of the effects. �

There may be constraints on attributes’ values. We call such constraints static invari-
ants.

Example 2 Consider a Purchaser object and a Vendor object in Figure 2.2. There is a
constraint that those objects can not have the same Thing object at the same time. The
constraint is specified by using OCL (the Catalysis extension) as follows:

context (P : Purchaser, V : Vendor, T : Thing)

inv: (P.vendor(V) = true) and (P.p-possess(T) = true)

8

&

buy

makeorder/start buy

notifyorder

paydeliver

/complete buy

Figure 2.4: Decomposition of an action

:Purch
aser

:Vendor

:Purch
aser :Sales

:Distri
bution

:Acco
unts

makeorder
notifyorder

deliver
pay

buy

Zooming in Zooming out

Figure 2.5: Zooming in and out

=> (V.v-possess(T) = false)

inv: (V.purchaser(P) = true) and (V.v-possess(T) = true)

=> (P.p-possess(T) = false)

�

Objects and actions may be decomposed. For example, a Vendor object and buy
action (Fig.2.1) are decomposed (Fig.2.3 and Fig.2.4). We call the process that actions
and objects are decomposed Zooming in and the process that actions and objects are
composed Zooming out (Fig.2.5).

There are the following differences between the modeling phase and the design phase.

• In the modeling phase, actions represent something that happens between a set of
objects, but in the design phase, actions represent messages or methods and

• in the modeling phase, there is no system boundary, but in the design phase, there
are system boundaries.

2.2 Algebraic Specification

For algebraic specification, we introduce the notations used later and refer to [14, 36] for
a more detailed presentation. Algebraic behavioral specification has many formalisms, for
example [5, 11, 15, 20, 27]. In this section, we discuss our formalism of algebraic behavioral
specification, which is used for defining projection-style behavioral specification in Chapter
7.

2.2.1 Signature, algebra, and term

Signature

Definition 1 We let S∗ denote the set of all lists of elements from a set S, including the
empty list which we denote []. �

Definition 2 Given a set S of sorts, an S-sorted (or S-indexed) set A is a family {As |
s ∈ S} of sets, one for each s ∈ S. We let |A| = ∪s∈SAs and we let a ∈ A mean that
a ∈ |A|. �

9

Definition 3 Given a sort set S, then S-sorted signature Σ is an indexed family {Σw,s |
w ∈ S∗, s ∈ S} of sets, whose elements are called operators, operation symbols, or
function symbols. A symbol σ ∈ Σw,s is said to have arity w, sort s, and rank 〈w, s〉. In
particular, any σ ∈ Σ[],s is called a constant symbol. We let |Σ| = ∪w,sΣw,s and we let
Σ′ ⊆ Σ mean that Σ′

w,s ⊆ Σw,s for each w ∈ S∗ and s ∈ S. �

Algebra

Definition 4 A Σ-algebra M consists of an S-sorted set also denoted M , i.e., a set Ms

for each s ∈ S, plus

1. an element σM ∈ Ms for each σ ∈ Σ[],s, interpreting the constant symbol σ as an
actual element, and

2. a function σM : Ms1 × · · · ×Msl
→ Ms for each σ ∈ Σw,s where w = s1 · · · sl for

l > 0, interpreting each operation symbol as an actual operation.

Together, these provide an interpretation of Σ in M . We may sometimes write Mσ instead
of σM , and also Mw instead of Ms1 × · · · ×Msl

. The set Ms is called the carrier of M of
sort s. �

Using the above notation we can write:
Mσ : Mw →Ms.

Term

Definition 5 Given an S-sorted signature Σ, then the S-sorted set TΣ of all Σ-terms is
the smallest set of lists over the set |Σ| ∪ {(,)} (where (and) are special symbols disjoint
from Σ) such that

1. Σ[],s ⊆ (TΣ)s for all s ∈ S, and

2. given σ ∈ Σs1···sl,s and ti ∈ (TΣ)si
for i = [1, . . . , l] then σ(t1 · · · tl) ∈ TΣ,s. �

Definition 6 Given a Σ-term t, subterms of t are defined as follows:

1. t is a subterm of t, and

2. if t = σ(t1 · · · tl) then subterms of ti are also subterms of t.

In particular, any subterm of t except t is called a proper subterm of t. �

Term Algebra

Definition 7 We can view TΣ as a Σ-algebra as follows:

1. interpret σ ∈ Σ[],s in TΣ as the singleton list σ, and

2. interpret σ ∈ Σs1···sl,s in TΣ as the operation which sends t1, . . . , tl to the list
σ(t1 · · · tl), where ti ∈ TΣ,si

for i = [1, . . . , l].

Thus, TΣ is called the term algebra (over Σ). �

10

2.2.2 Homomorphism, equation, and satisfaction

Homomorphism

Definition 8 An S-sorted arrow f : A → A′ between S-sorted sets A and B is an S-
sorted family {fs | s ∈ S} of arrows fs : As → A′

s. Given S-sorted arrows f : A → A′

and g : A′ → A′′, their composition g f is the S-sorted family {gs fs | s ∈ S} of arrows.
Each S-sorted set A has an identity arrow, 1A = {1As | s ∈ S}. �

Definition 9 Given an S-sorted signature Σ and Σ-algebras M and M ′, a Σ-homomorphism
hm : M → M ′ is an S-sorted arrow hm : M →M ′ such that:

1. hms(σM) = σM ′ for each constant symbol σ ∈ Σ[],s and

2. hms(σM (e1, . . . , el)) = σM ′(hms1(e1), . . . , hmsl
(el)) whenever l > 0, σ ∈ Σs1···sl,s,

and ei ∈Msi
for i = [1, . . . , l].

The composition hm2 hm1 : M → M ′′ of Σ-homomorphisms hm1 : M → M ′ and hm2 :
M ′ →M ′′ is their composition as S-sorted arrows. �

Equation

Definition 10 Σ is a ground signature iff Σ[],s∩Σ[],s′ = ∅ whenever s �= s′, and Σw,s = ∅
unless w = [], i.e., iff it consists only of distinct constant symbols. �

Definition 11 The union of two signatures is defined by:
(Σ ∪ Σ′)w,s = Σw,s ∪ Σ′

w,s.
A special case is union with a ground signature X. For this, we will use the notation:

Σ(X) = Σ ∪X,
but only in the case |Σ| and |X | are disjoint. So, the above equation may be rewritten as:

Σ(X)[],s = Σ[],s ∪Xs and
Σ(X)w,s = Σw,s when w �= []. �

Definition 12 A Σ-equation consists of a ground signature X of variable symbols (dis-
joint from Σ) plus two Σ(X)-terms of the sort s ∈ S; we write such an equation in the
form:

(∀X)t = t′. �

Definition 13 A conditional Σ-equation consists of a ground signature X disjoint from
Σ, a set of pairs (ui, u

′
i) (i = [1, . . . , k]) of Σ(X)-terms, and a pair (t, t′) of Σ(X)-terms;

we write such a conditional equation in the form:
(∀X)t = t′ if ((u1 = u′

1) and · · · and (uk = u′
k)).

We call the part ((u1 = u′
1) and · · · and (uk = u′

k)) the condition part of the conditional
Σ-equation and use C to denote the condition part. �

11

Satisfaction

Lemma 1 Given a signature Σ, a ground signature X disjoint from Σ, a Σ-algebra M ,
and a map as : X → M , there is a unique Σ-homomorphism as : TΣ(X) → M which
extends as, in the sense that ass(x) = ass(x) for each s ∈ S and x ∈ Xs. We call as an
assignment from X to M . �

We generally write as instead of as when there is no confusion.

Definition 14 A substitution of Σ-terms with variables in Y for variables in X is an
assignment sb : X → TΣ(Y); we may use the notation sb : X → Y . The application of sb
to t ∈ TΣ(X) is sb(t). Given substituting sb1 : X → TΣ(Y) and sb2 : Y → TΣ(Z), their
composition sb2 sb1 (as substitutions) is the S-sorted arrow sb2 sb1 : X → TΣ(Z). �

Definition 15 A Σ-algebra M satisfies a Σ-equation (∀X)t = t′ iff for any assignment
as : X →M we have as(t) = as(t′) in M . In this case we write:

M |=Σ (∀X)t = t′. �

Definition 16 A Σ-algebra M satisfies a conditional Σ-equation (∀X)t = t′ if C iff for
any assignment as : X →M , if as(ui) = as(u′

i) for each (ui = u′
i) ∈ C, then as(t) = as(t′)

in M . In this case we write:
M |=Σ (∀X)t = t′ if C.

A Σ-algebra M satisfies a set E of conditional Σ-equations iff it satisfies each ceq ∈ E,
and in this case we write:

M |=Σ E. �

Lemma 2 Given a Σ-equation eq = (∀X)t = t′, let ceq = (∀X)t = t′ if ∅. Then for each
Σ-algebra M , M |=Σ eq iff M |=Σ ceq. �

Consequently, we can regard any ordinary equation as a conditional equation with the
empty condition, and we will feel free to do so hereafter. We generally omit the subscript
Σ when there is no confusion.

2.2.3 Specification and model

Specification

Definition 17 An equational specification is a pair (Σ, E), consisting of a signature Σ
and a set E of conditional Σ-equations. �

Model

Definition 18 Given an equational specification (Σ, E), a (Σ, E)-model M is a Σ-algebra
such that:

M |=Σ E. �

Definition 19 Given an equational specification (Σ, E), a conditional Σ equation ceq. If
for each (Σ, E)-model M ,

M |=Σ ceq,
in this case, we write:

E |=Σ ceq. �

12

Term Model

Definition 20 Given a Σ-algebra M , a Σ-congruence relation on M is an S-sorted equiv-
alence relation ≡= {≡s| s ∈ S} on M , where each ≡s is an equivalence relation on Ms

such that for each σ ∈ Σs1···sl,s:
ei ≡si

e′i for i ∈ [1, . . . , l] implies σ(e1, . . . , el) ≡s σ(e′1, . . . , e
′
l)

for ei, e
′
i ∈Msi

. �

Lemma 3 Given a Σ-algebra M and a Σ-congruence ≡ on M , then the quotient of M
by ≡, denoted M/ ≡, is also a Σ-algebra, in which σ ∈ Σ[],s is interpreted as [σ], and
σ ∈ Σs1···sl,s with l > 0 is interpreted as the map sending [e1], . . . , [el] to [σ(e1, . . . , el)], for
ei ∈Msi

. �

Corollary 4 Given an equational specification (Σ, E), the equivalence classes of Σ-terms
modulo E form a (Σ, E)-model, hereafter denoted TΣ,E. We call this (Σ, E)-model the
term model (over (Σ, E)). �

2.2.4 A complete deduction system of equational specification

Definition 21 Given an equational specification (Σ, E), the following rules of deduction
define the Σ-equations that are deducible (from E):

1. (Assumption) Each Σ-equation in E is deducible.

2. (Reflexivity) Each equation of the form

(∀X)t = t

is deducible.

3. (Symmetry) If

(∀X)t = t′

is deducible, then so is

(∀X)t′ = t.

4. (Transitivity) If the equations

(∀X)t = t′, (∀X)t′ = t′′

are deducible, then so is

(∀X)t = t′′.

5. (Congruence) If θ, θ′ : X → TΣ(Y) are substitutions such that for each x ∈ X, the
equation

(∀Y)θ(x) = θ′(x)

is deducible then given t ∈ TΣ(X), the equation

(∀Y)θ(t) = θ′(t)

is also deducible.

13

6. (Substitutivity) If

(∀X)t = t′ if C

is in E, and if θ : X → TΣ(Y) is a substitution such that for each ui = u′
i ∈ C, the

equation

(∀X)θ(ui) = θ(u′
i)

is deducible, then so is

(∀X)θ(t) = θ(t′).

When an Σ-equation eq is deducible from E, we write:
E
Σ eq. �

Lemma 5 Given an equational specification (Σ, E) and a Σ-equation eq, then
E |=Σ eq iff E
Σ eq. �

Lemma 6 Given an equational specification (Σ, E) and a conditional Σ-equation
(∀X)t = t′ if C,

then
E |=Σ (∀X)t = t′ if C iff E ∪ C |=Σ(X) (∀∅)t = t′. �

2.2.5 Algebraic behavioral specification

Behavioral equation

Definition 22 A Σ-behavioral equation consists of a ground signature X of variable
symbols (disjoint from Σ) plus two Σ(X)-terms of the sort s ∈ S; we write such an
equation in the form:

(∀X)t ∼ t′. �

Algebraic behavioral specification

Definition 23 Let V and H be sets of sorts such that V ∩H = ∅. Let Ψ be a V -sorted
signature and Σ be a (V ∪ H)-sorted signature such that Ψ ⊂ Σ. Let EΨ be a set of
Ψ-equations and E be a set of Σ-equations and Σ-behavioral equations such that EΨ ⊂ E.

We call a 4-tuple (V, Ψ, H, Σ) a hidden signature iff it satisfies the following condition:
for each σ ∈ Σw,s\Ψw,s, exactly one sort in H occurs in w.

We call a 6-tuple (V, Ψ, EΨ, H, Σ, E) an algebraic behavioral specification iff it satisfies
the following conditions: (1) (V, Ψ, H, Σ) is a hidden signature and (2) for each eq ∈
E\EΨ, at least one operator in Σ\Ψ occurs in eq.

For the algebraic behavioral specification (V, Ψ, EΨ, H, Σ, E), we call sorts in V visible
sorts, sorts in H hidden sorts, and (Ψ, EΨ) a data specification. �

A visible sort and a hidden sort correspond to a data type and the set of states of a black
box, respectively.

States of the black box are only observed by using the following observable contexts.
Note that observations are for observing states of the black box and actions are for chang-
ing states of it.

14

Definition 24 Let (V, Ψ, H, Σ) be a hidden signature. We call σ ∈ Σw,s\Ψw,s an obser-
vation if s ∈ V . We call σ ∈ Σw,s\Ψw,s an action if s ∈ H and s coincides with the hidden
sort occurring in w. �

Definition 25 Let (V, Ψ, EΨ, H, Σ, E) be an algebraic behavioral specification. Let h be
a hidden sort. Let v and vi be visible sorts. Let xi be a variable of sort vi such that
xi �= xj if i �= j. Let � be a special h-sorted variable called hole. The set AllOch of
observable contexts of sort h is inductively defined as follows: (1) for each observation
obs : v1 · · · vk h → v and for each variable xis, obs(x1, . . . , xk, �) ∈ AllOch and (2)
for each action act : v1 · · · vk h → h, for each element oc of AllOch, and for each xis,
oc[act(x1, . . . , xk, �)] ∈ AllOch where oc[t] denotes the term obtained by substituting the
term t for �. �

Satisfaction

Definition 26 Let (V, Ψ, EΨ, H, Σ, E) be an algebraic behavioral specification and M be
a Σ-algebra. M satisfies a Σ-behavioral equation (∀X)t ∼ t′ iff for any assignment as :
X → M , for any observable context oc, we have as(oc[t]) = as(oc[t′]) in M . In this case
we write:

M |=Σ (∀X)t ∼ t′. �

Definition 27 Let (V, Ψ, EΨ, H, Σ, E) be an algebraic behavioral specification and M be
a Σ-algebra. M satisfies E iff it satisfies each eq ∈ E and in this case we write:

M |=Σ E. �

Definition 28 Let (V, Ψ, EΨ, H, Σ, E) be an algebraic behavioral specification and M be
a Σ-algebra. We call M a hidden (V, Ψ, EΨ, H, Σ, E)-algebra iff M |=Σ E. �

Definition 29 Let (V, Ψ, EΨ, H, Σ, E) be an algebraic behavioral specification and eq be
an Σ-equation or Σ-behavioral equation. When M |=Σ eq holds for each hidden (V, Ψ, EΨ,
H, Σ, E)-algebra M, we write:

E |=Σ eq. �

2.3 Abstract Reduction System

We introduce the notations used later and refer to [1] for a more detailed presentation.

2.3.1 Abstract reduction system

Definition 30 An abstract reduction system (ARS) is a structure A = (A, (→α)α∈I)
consisting a set A and a sequence of binary relations →α on A, also called reduction or
rewrite relations. In the case of just one reduction relation, we also use → without more.
If for a, b ∈ A we have (a, b) ∈→α, we write a→α b and call b a one-step (α-) reduct of
a. �

Definition 31 The transitive reflective closure of →α is written as →∗
α. So a →∗

α b if
there is a possible empty, finite sequence of reduction steps a = a0 →α a1 →α · · · →α an =
b. The element b is called an (α-) reduct of a. The transitive closure of →α is →+

α . The
converse relation of →α is ←α. The union →α ∪ →β is denoted by →αβ. �

15

Definition 32 Let A = (A, (→)) be an ARS, → is confluent if ∀a, b, c ∈ A . ∃d ∈ A .
(c←∗ a→∗ b⇒ c→∗ d←∗ b). �

Definition 33 Let A = (A, (→)) be an ARS, → is terminating if every reduction se-
quence a0 → a1 → · · · eventually must terminate. �

Definition 34 We say that a ∈ A is a normal form if there is no b ∈ A such that a→ b.
Further, b ∈ A has a normal form if b →∗ a for some normal form a ∈ A. We call a a
normal form of b. �

2.3.2 Term rewriting system

Definition 35 Given t ∈ TΣ(X), the set of variables in t, denoted var(t) it the least
ground signature Y ⊆ X such that t ∈ TΣ(Y). �

Notice that t is a ground term iff var(t) = 0. From now on, we will often just say “Σ-term”
for what we were previously careful to call a “Σ-term with variables”.

Definition 36 Given a signature Σ, a conditional Σ-rewrite rule is a conditional Σ-
equation (∀X)t1 = t2 if C such that var(t2) ⊆ var(t1) = X, and var(u) ⊆ var(t1)
and var(v) ⊆ var(t1) for each pair 〈u, v〉 ∈ C. It follows that we can use the notation
t1 → t2 if C, which is unambiguous because X is determined by t1. A Σ-term rewriting
system (Σ-TRS) is a set of conditional Σ-rewrite rules; we may omit the prefix Σ when it
is not needed, and we may denote such a system by (Σ, E). �

Definition 37 Given a Σ-term rewriting system (Σ, E), the one-step rewriting relation
is defined for Σ-terms t, t′ as follows:

t⇒ t′ iff there exists: a rule (∀X)t1 → t2 if C in E; a Σ-term t0 ∈ TΣ({z}∪Y) having
exactly one occurrence of the variable z; and a substitution sb : X → TΣ(Y) such that:

sb(u) = sb(v) for each pair 〈u, v〉 ∈ C,
t = t0(z ← sb(t1)) and t′ = t0(z ← sb(t2)).

In the case, the pair 〈t0, sb〉 is called a match to t by the rule t1 → t2 if C. The term
rewriting relation is the transitive reflexive closure of one-step rewriting relation, for which
we write t⇒∗ t′ and say that t rewrites to t′ (under (Σ, E)). �

2.4 CafeOBJ

In the thesis, we use a specification language CafeOBJ [10] because it supports behavioral
specifications. The specification of natural numbers with successor and plus by CafeOBJ
is as follows:

mod! NAT { [Nat]

op 0 : -> Nat op s_ : Nat -> Nat

op _+_ : Nat Nat -> Nat

vars N1 N2 : Nat

eq N1 + 0 = N1 .

eq N1 + s N2 = s(N1 + N2) . }

16

In CafeOBJ , specifications are divided into modules which are declared by mod! or mod*.
Nat which is surrounded by [and] is a (visible) sort which denotes a data type. op, eq,
and var declare an operator, an equation, and a variable, respectively. For op, we call a
list of sorts which occur between : and -> an arity and a sort which occurs in the right of
-> a sort (of the operator). For example, consider 0 operator. Its arity is ∅ and its sort is
Nat. A signature Σ and a set of axioms E are the parts which are constructed from op and
eq of a specification, respectively. We use (Σ, E) to denote an equational specification.
We call a set with functions which correspond to operators of Σ an Σ-algebra. We call a
symbol sequence of operators, “,”, “(” and “)”, like “0”, “s(0)”, and “0+s(s(x))” a term.
We call terms which do not have variables closed terms. We call the Σ-algebra whose
set is constructed from closed terms the term Σ-algebra. We use TΣ to denote this term
Σ-algebra. We call the quotient of the term Σ-algebra by E the quotient term Σ-algebra.
We use TΣ,E to denote this Σ-algebra. ! of mod! declares that the model of this module
is its quotient term Σ-algebra. On the other hand, * of mod* declares that the models of
this module are all Σ-algebras which satisfy the equations of E.

2.5 JavaBeans and Servlets

2.5.1 JavaBeans

JavaBeans 1 are components programmed by using Java, which have the following inter-
faces:

1. events used for reporting change of the states of JavaBeans,

2. properties used for observing the states, and

3. methods used for calling inner functions of JavaBeans.

2.5.2 Servlets

Servlets are components programmed by using Java, which are used on Web servers.

1Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Mi-
crosystems, Inc. in the United States and other countries.

17

Chapter 3

An Overview of CBDL

We developed lightweight formal methods called LFMB (a Lightweight Formal Method
using Behavioral specification) and LFME (a Lightweight Formal Method using Equational
specification). CBDL is a Component-Based software Development approach using LFMB
or LFME.

CBDL is based on the Catalysis approach[12]. In the Catalysis approach, the software
development process is divided into modeling phase, design phase, and implementation
phase. For modeling phase and design phase, CBDL is a refinement of the Catalysis
approach. But, for implementation phase, CBDL is an original approach.

By using the Catalysis approach, we get the benefit of formal methods that we can get
clear understanding of a target software in the process of specifying the target software.
But, because the verification is out of the scope of the Catalysis approach, we can not
get the benefit that we can verify properties of the target software using the verification
systems by only using the Catalysis approach.

In modeling phase and design phase of the Catalysis approach, UML diagrams are
specified by a number of software engineers. So, there may be inconsistencies in the UML
diagrams. To eliminate the inconsistencies, consistency verification is useful. Because
most of software engineers are non-specialists of the verification, the verification should
be executed automatically as far as possible. So, we developed lightweight formal methods
complimenting the Catalysis approach called LFMB and LFME.

In LFMB and LFME, we use AA-trees model as a model of objects and actions.
Because the Catalysis approach is not conscious of the verification, its model may not
have sufficient information about the verification. AA-trees model is a refinement of the
model that the specifiers are forced to specify the information.

We developed a software architecture for component-based software tree architecture.
We developed it to simplify the evolution of the component library. In implementation
phase of CBDL, we use tree architecture as the common software architecture of compo-
nents.

In design phase of CBDL, we model components whose architecture is tree architecture
by using AA-trees model.

Moreover, in CBDL, we generate connectors from the UML diagrams. Note that the
correctness of the connectors is guaranteed by the verification. In CBDL, by combining
the connectors and components of a component library, we generate component-based
software. The common software architecture of components is tree architecture. There is
a correspondence between AA-trees model of component specifications and tree architec-

18

ture. Based on the correspondence, we generate the connectors. Because requirements of
the target domain continue to change, the component library must continue to evolve.

The main ideas of CBDL using LFMB or LFME are as follows:

1. a formal definition of tree architecture by using behavioral specifications,

2. a formal definition of AA-trees model by using behavioral specifications or equational
specifications,

3. the consistency verification methods, and

4. the connector generation method, respectively.

Based on 2, UML diagrams with OCL descriptions are translated into behavioral specifica-
tions or equational specifications, respectively. In 3, by using the behavioral specifications
or the equational specifications, the consistency is verified, respectively. In 4, based on the
correspondence between AA-trees model of component specifications and tree architecture
caused by 1 and 2, the connectors are generated.

In Chapter 3, firstly, we discuss:

1. what CBDL is,

2. what parts of CBDL formal methods apply to,

3. what tree architecture is, and

4. what AA-trees model is.

Then, we discuss overviews of LFMB, LFME, and connector generation.

3.1 CBDL

The process of CBDL is as follows:

1. fix a target domain,

2. analyze the target domain, specify the business process of the target domain, i.e.
the business model, and verify properties of the business model,

3. find reusable components by analyzing the business model and specify behavior of
the components,

4. develop the component library,

5. specify behavior of software, specify how to combine components to construct the
software, and verify whether the combination of the components satisfies the be-
havior of the software, and

6. generate connectors based on the specification about how to combine components
to construct the software and generate the software by combining components of
the component library and the connectors.

19

An abstract business model

A B C

A1

B C

A2

A1’

B C

A3’

A2’

Refined business model1 Refined business model2

Zooming in Zooming out Zooming outZooming in

Figure 3.1: A hierarchical structure of a business model of a target domain

User Bookstore

Orderer

Receiver

OrderSystem

Management
System

Delivery
Centor

buy

order

deliver

*

*

zooming in

zooming out

Figure 3.2: A component specification in a business model

Because requirements of the target domain continue to change, the part from 2 to 6 is
iterated. The part from 2 to 4 is the development of the component library. The part
from 5 to 6 is development of component-based software. 2 is the modeling phase. 3 and
5 are the design phase. 4 and 6 are the implementation phase.

The business model is a hierarchical model whose lower ranks are caused by zooming in
and out (Fig. 3.1). An abstract level business process is specified in an abstract business
model. More concrete level business processes are specified in refined business models.
Because objects and actions may be decomposed in different ways, there may be different
concrete level business models obtained from the abstract business model by zooming in.
For example, in Fig. 3.1, A is decomposed into A1 and A2 in refined business model1
and A is decomposed into A1’, A2’, and A3’ in refined business model2. Note that the
behavior of the parts surrounded by dotted lines in Fig. 3.1 at the abstract level is the
same.

20

Existing software

The lapper

A component

Figure 3.3: A component developed by using existing software

In a business model, not only the processes executed by software but also the processes
executed by people are specified. For example, in Fig. 3.2, buy is decomposed into order,
deliver, and so on. Bookstore is decomposed into OrderSystem, ManagementSystem, and
DeliveryCentor. OrderSystem and ManagementSystem are software. But, DeliveryCentor
are people. So, order is executed by software, but deliver is executed by people. Note that
the parts surrounded by dotted lines in Fig. 3.1 corresponds to software and the user.

We specify the business model, behavior of the components, behavior of software,
and how to combine components to construct the software by using UML diagrams with
OCL descriptions. We translate the UML diagrams with OCL descriptions into algebraic
specifications. Then, we verify consistency in the UML diagrams by using the algebraic
specifications. Concretely, we verify properties of the business model and whether the
combination of the components satisfies the behavior of the software by using the algebraic
specifications.

The developers of the components of the component library do not need to develop the
components from scratch. The components can be developed by using existing software,
like free software or commercial software. At this time, firstly, we develop “the lapper”
of the software and then we combine the software and the lapper (Fig. 3.3).

3.2 The Applications of Formal Methods in CBDL

In CBDL, formal methods apply to the following parts:

1. specifications of the business model, behavior of the components, behavior of soft-
ware, and how to combine components to construct the software by using formal
notations, i.e. UML diagrams with OCL descriptions,

2. verification of consistency in the UML diagrams, concretely, verification of properties
of the business model and of whether the combination of the components satisfies
the behavior of the software, and

3. generations of correct connectors.

1 helps to clarify requirements of business processes and behavior of components. 2
increases the correctness of the software. 3 guarantees correctness of the connectors.

We use simple logic in the verification that the verification can be executed automat-
ically. So, the formal methods are lightweight formal methods. Because support tools
that use the simple logic execute the verification automatically, non-specialists of the
verification can get the benefit of the verification by using the support tools.

21

Components

observation action

Figure 3.4: An event model of a component

projection

observation action Connector

Figure 3.5: A composite component

3.3 Tree Architecture

Tree architecture is a software architecture of component-based software. There is a cor-
respondence between AA-trees model of component specifications and tree architecture.
Based on the correspondence, we generate connectors. Because requirements of the target
domain continue to change, the component library must continue to evolve. We developed
tree architecture to simplify the evolution of the component library.

3.3.1 Tree architecture

In tree architecture, we model components as event models, which are obtained by ab-
stracting behavior of the components from the view point of event sequences.

An event model (Fig.3.4) is an object such that:

1. it has a state,

2. it has two kinds of events observations used for observing the state and actions used
for changing the state,

3. information about the state is only obtained by using observations, and

4. the state is only changed by using actions.

From now on, we may call event models components.
We can regard an object obtained by combining components and the connector that

combines the components as a component, too. We call an object satisfying the following
conditions a composite component (Fig. 3.5):

1. for each observation of it, there exists a constructing component and a corresponding
observation of the constructing component,

2. for each action of it, for each constructing component, there exists a corresponding
action of the constructing component or the action does not influence the state of
the constructing component, and

3. for each constructing component, there exists a projection from the state of it to
the state of the constructing component.

Note that the structure of components is a tree whose nodes are components and whose
branches are projections.

22

3.3.2 Evolution of a component library

Consider a composite component A whose constructing components stored in a component
library are B and C. The main causes of the evolution is as follows:

1. a condition that combining B with C increases the performance of A and

2. a condition that a part B1 of B can be reusable but the other part B2 can not be
reusable.

In the former condition, the evolution is that the specification of A and optimized com-
ponents whose specifications are A are stored in the component library. In the latter
condition, the evolution is that (1) the specification of B and components whose specifi-
cations are B are eliminated from the component library and (2) the specifications of B1
and B2 and components whose specifications are B1 or B2 are stored in the component
library. Consider a composite component Ā that includes A. Note that the evolution does
not influence to Ā outside A.

3.4 AA-trees Model of Objects and Actions

AA-trees model is a refinement of the model of objects and actions of the Catalysis
approach. We model (1) the business process of a target domain and (2) behavior of
components by using AA-trees model. The model of (1) is the business model and the
model of (2) is the component specifications.

An object represents a cluster of information and functionality. There may be connec-
tions between objects. We call the connections associations. An attribute is a side of an
association such that it has a name. An action represents anything that changes values
of attributes of objects. We call the objects the participants of the action. Behavior of
the action is specified by changes of the attributes of the participants.

From the viewpoint of the way how to relate to actions, objects can be divided into
two groups. One group is a set of objects that participate in actions. Another group is
the set of remained objects. We use the latter group to describe data structures. The
most important difference between the two groups is that attributes’ values of the objects
corresponding to the former group may be changed by occurrences of actions, but those
of the objects corresponding to the latter group are not changed by the occurrences. We
call objects of the former group agents and objects of the latter group data objects.

Agents may be decomposed. We call an agent that is decomposed a parent agent and
an agent that is a part of the parent agent a child agent of the parent agent. Agent decom-
position means that all functionality of the parent agent are provided by the combination
of the child agents. To describe the parent-child relations, we use associations between
parent agents and child agents. We call the associations projection-lift associations. By
iterating agent decomposition, we get an agent tree whose nodes are agents and whose
branches are projection-lift associations.

Actions may be decomposed. We call an action that is decomposed a parent action.
We call a sequence of actions obtained by action decomposition of the parent action a
child action sequence of the parent action and elements of the sequence child actions
of the parent action. Note that a parent action may have some child action sequences.
When a parent action is decomposed, a participant of the action is decomposed, too. Each

23

participant of each child action is a participant of the parent action without the participant
that is decomposed or a child agent of the participant. Action decomposition means that
changes of all the attributes of all the participants immediately before and after the parent
action has happened are the same as changes of those immediately before and after the
sequence of the child actions has happened. By iterating action decomposition, we get an
action tree whose nodes are actions and whose branches are parent-child relations.

AA-trees of AA-trees model are abbreviations of agent trees and action trees.
In component specifications, an action has exactly two participants. One is a partici-

pant that calls the action and the other is a participant that executes the action. We call
the former participant an interface of the action and the latter participant a component of
the action. Because actions are assigned to components, we may call the actions methods
of the components.

3.5 An Overview of LFMB

In LFMB, we formalize AA-trees model of component specifications by using projection-
style behavioral specifications. Projection-style behavioral specification is a kind of be-
havioral specification.

We specify behavior of components, behavior of software, and how to combine com-
ponents to construct the software by using projection-style behavioral specifications. As
consistency verification, we verify whether the combination of the components satisfies
the behavior of the software by using the projection-style behavioral specifications. So,
LFMB supports 3 and 5 of CBDL.

The target problem of LFMB is the above verification and the simple logic of LFMB
is behavioral logic.

3.6 An Overview of LFME

In LFME, we formalize AA-trees model by using equational specifications.
We specify a business model, behavior of components, behavior of software, and how

to combine components to construct the software by using equational specifications. As
consistency verification, we verify properties of the business model and whether the com-
bination of the components satisfies the behavior of the software by using the equational
specifications. So, LFME supports 2, 3, and 5 of CBDL.

The target problem of LFME is the above verification and the simple logic of LFME
is equational logic.

3.7 An Overview of Connector Generation in CBDL

We assign a component of tree architecture:

1. to a function bean and an interface bean that are JavaBeans or

2. to a function bean and an interface servlet that are a JavaBean and a Servlet.

Based on the correspondences, we generate connectors, i.e. (1) JavaBeans or (2) Jav-
aBeans and Servlets.

24

Note that by the verification using the AA-trees model, we guarantee the correctness
of the connectors.

25

Chapter 4

Tree Architecture

Tree architecture is a software architecture of component-based software. There is a cor-
respondence between AA-trees model of component specifications and tree architecture.
As we will discuss in Chapter 10, based on the correspondence, we generate connectors.
Because requirements of the target domain continue to change, the component library
must continue to evolve. We developed tree architecture to simplify the evolution of the
component library.

4.1 Tree Architecture

Tree architecture is one kind of product line architecture [3, 8, 30, 33]. We fix a domain
of a software family and make a component library for the domain. Software is developed
by combining components selected from the component library and connectors.

We model components by using event models.
Objects obtained by combining components and connectors are components, too. So,

tree architecture has a hierarchical structure of components (“static structure”).
The software family may evolve to adapt to feedback and newly added requirements.

In this adaptation, firstly a component is divided into smaller components and then some
of the smaller components are replaced by suitable components(“dynamic structure”).
Note that the evolution of the software family causes the evolution of the component
library.

4.1.1 Event models

Event models of components are obtained by abstracting behavior of the components
from the view point of event sequences.

An event model (Fig.4.1) is an object such that:

1. it has a state,

2. it has two kinds of events observations used for observing the state and actions used
for changing the state,

3. information about the state is only obtained by using observations, and

4. the state is only changed by using actions.

26

Components

observation action

Figure 4.1: An event model of a com-
ponent

projection

observation action Connector

Figure 4.2: A composite component

Example 3 Consider the component PUT-A that transfers A’s files on the local machine
to a remote machine. PUT-A has three observations getremote, isinlocal, and isinre-
mote used for getting the current target remote machine’s name, observing whether the
specified file is in the local machine, and observing the specified file is in the specified
remote machine, respectively. PUT-A has two actions setremote and put used for setting
target remote machine and transferring the specified file to the target remote machine,
respectively. �

4.1.2 Static structures

We fix a domain of a software family and make a component library for the domain.
The component library is divided by component specifications that specify the behavior
of components.

We can regard an object obtained by combining components and connectors as a com-
ponent, too. We call an object satisfying the following conditions a composite component
(Fig. 4.2):

1. for each observation of it, there exists a constructing component and a corresponding
observation of the constructing component,

2. for each action of it, for each constructing component, there exists a corresponding
action of the constructing component or the action does not influence the state of
the constructing component, and

3. for each constructing component, there exists a projection from the state of it to
the state of the constructing component.

We call the part of a composite component that combines constructing components con-
nector.

The static structure of tree architecture is that:

1. there is a fixed domain of a software family,

2. there is a component library for the domain,

3. the component library is divided by component specifications,

4. components are modeled by using event models, and

5. software of the domain is developed by combining components selected from the
component library and connectors that combine components.

27

Connector

Component library

Connector

Connector

Figure 4.3: The structure of the software

Connector of PUT

Connector of GET

FTPftp INFO-A

FTPftp INFO-B

PUT-A

GET-B

Component library

Group Component

FTP

INFO

FTPftp,FTPcopy

INFO-A,INFO-B

Figure 4.4: A software family and a component library

Software may have a hierarchical structure (Fig.4.3), like the ATM system [26].

Example 4 Consider a software family of file transfer programs (Fig. 4.4). The soft-
ware family includes PUT-A that transfers A’s files on the local machine to a remote
machine and GET-B that transfers B’s files on a remote machine to the local machine.
The component library is divided into FTP group that transfers files and INFO group
that manages personal information, like user names and passwords. FTPftp and FTP-
copy provide file transfer functions using FTP protocol and using copy command of OS,
respectively. FTPftp and FTPcopy belong to FTP group. INFO-A and INFO-B provide
management functions of A’s personal information and B’s personal information, respec-
tively. INFO-A and INFO-B belong to INFO group. PUT-A is constructed from FTPftp,
INFO-A, and the connector of PUT. GET-B is constructed from FTPftp, INFO-B, and
the connector of GET. �

4.1.3 Dynamic structures

A software family may evolve to adapt to feedback and newly added requirements. In
this adaptation, firstly a component is divided into smaller components and then some of
the smaller components are replaced by suitable components.

The dynamic structure of tree architecture is that:

1. the fixed domain of the software family evolves by adding pairs of new components
and corresponding component specifications to the component library,

2. the new components are (1) parts of the replaced components or (2) components
that provide new basic functionality, and

28

Component library

Group Component

FTP

INFO

FTPftp,FTPcopy

INFO-A,INFO-B

Component library

Group Component

PUT

GET GET-A

PUT-A

Figure 4.5: Evolution of a component library

3. pairs of component specifications of the replaced components in (1) and these com-
ponents are eliminated from the component library.

Example 5 Consider the software family constructed from PUT-A and GET-A. At this
time, the library was divided by PUT and GET specifying behavior of PUT-A and GET-A,
respectively, because the user was only A. Here, the new requirement that we wanted to
support B occurred. To extend from this software family to the software family in Example
4, we replaced PUT and GET with FTP and INFODB (Fig. 4.5). By this replacement,
the static structure of tree architecture evolved. �

29

Chapter 5

AA-trees Model of Objects and
Actions

AA-trees model is a refinement of the model of objects and actions of the Catalysis
approach.

Because the Catalysis approach is not conscious of the verification, its model may not
have sufficient information about the verification. AA-trees model is a refinement of the
model that the specifiers are forced to specify the information.

We model (1) the business process of a target domain and (2) behavior of components
by using AA-trees model. The model of (1) is a business model and the model of (2) is
component specifications.

5.1 AA-trees Model

5.1.1 Objects, associations, and attributes

Objects

An object represents a cluster of information and functionality.

Associations

An association represents a connection between objects.
Fig. 5.1 shows objects and an association. The squares are objects and the line is an

association.

Parameterized associations

A parameterized association is one whose each instance is an association such that its
parameters are sets of objects.

Attributes and reverse attributes

An attribute is a side of an association such that it has a name. We regard the object
connecting to the other side as the owner of the attribute. So, we call the attribute an
attribute of the object. We regard the object connecting to the side as the value of the
attribute. So, we call this object the value of the attribute.

30

Object1 Object2

Figure 5.1: Objects and associations

Object1 Object2attr
reva

Figure 5.2: An attribute and the reverse at-
tribute

Example 6 Consider attr and reva in Fig. 5.2. attr is an attribute of Object1 and reva
is an attribute of Object2. The value of attr is Object2 and the value of reva is Object1.
�

From now on, we only call associations whose both sides have names associations.
Consider an association and a side, i.e. an attribute. We call the other side the reverse

attribute of the attribute.

Example 7 Consider attr and reva in Fig. 5.2. reva is the reverse attribute of attr and
attr is the reverse attribute of reva. �

Parameterized attributes

A parameterized attribute is a side of a parameterized association such that it has a
name. We regard the parameter of the parameterized association as the parameter of the
parameterized attribute. We may call parameterized attributes attributes.

5.1.2 Actions

Actions

An action represents anything that changes values of attributes of objects. We call the
objects the participants of the action.

5.1.3 Agents and data

Agents and data objects

From the viewpoint of the way how to relate to actions, objects can be divided into
two groups. One group is a set of objects that participate in actions. Another group is
the set of remained objects. We use the latter group to describe data structures. The
most important difference between the two groups is that attributes’ values of the objects
corresponding to the former group may be changed by occurrences of actions, but those
of the objects corresponding to the latter group are not changed by the occurrences. We
call objects of the former group agents and objects of the latter group data objects.

For each set of agents, we can define the set of the indexes. Note that the indexes are
data objects. From now on, we assume parameters of parameterized associations are sets
of data objects. To satisfy the assumption, the specifier may need to define the sets of
the indexes.

Data operators, data attributes, and agent attributes

Because we use data objects to describe data structures, we assume that values of at-
tributes of data objects are data objects. Then, we regard attributes of data objects as

31

Class

decomposition

Figure 5.3: Agent decomposition

proj

7

attrc"attrc'
revac

revap attrp

attrclift

3

6

5 4

Figure 5.4: Equations added by agent decomposition

operators on the data. From now on, we call attributes of data objects data operators
and we only call attributes of agents attributes.

From the above assumption,

1. there is no association between an agent and a data object and

2. attributes whose values are data objects do not have reverse attributes.

We call attributes whose values are data objects data attributes and attributes whose
values are agents agent attributes.

5.1.4 Agent decomposition

Agent decomposition

Agents may be decomposed. We call an agent that is decomposed a parent agent and an
agent that is a part of the parent agent a child agent of the parent agent.

Agent decomposition is refinement of a static structure (Figure 5.3). Agent decompo-
sition means that all functionality of the parent agent are provided by the combination
of the child agents. So, there should be a relation of each attribute of the parent agent to
a combination of attributes of the child agents.

To describe the parent-child relations, we use the following projection-lift associations.

Projection-lift associations

We assume that there is exactly one association between a parent agent and a child agent.
We call the association a projection-lift association, the attribute of the parent agent a
projection, and the attribute of the child agent a lift.

To implement all functionality of the parent agent, the child agents must satisfy the
following data attribute constraint, agent attribute constraint, and reverse attribute con-
straint.

Relations between a data attribute of a parent agent and data attributes of
child agents

Each data attribute of a parent agent is implemented by using data attributes of child
agents. So, for each data attribute of the parent agent, there should be a set of data
attributes of child agents and a function on data F such that pdatt = F (cdatt1, . . . , cdattn)
where pdatt is the value of the data attribute of the parent agent and cdatti(i ∈ I) are

32

the values of the data attributes of the child agents. We call the constraint data attribute
constraint.

Relations between an agent attribute of a parent agent and an agent attribute
of a child agent

Each agent attribute of a parent agent is implemented by using an agent attribute of a
child agent. So, for each agent attribute of the parent agent, there should be an agent
attribute of a child agent such that paatt = caatt where paatt is the value of the agent
attribute of the parent agent and caatt is the value of the agent attribute of the child
agent. We call the constraint agent attribute constraint.

Relations between a reverse attribute of a parent agent and a reverse attribute
of a child agent

If there is an association agent decomposition should preserve the association. Let PA
and PA’ be agents such that PA is decomposed. Consider an association between PA and
PA’. Let attrp and revap be attributes of PA and PA’, respectively, such that those are the
both sides of the association. Let CA be a child agent of PA and attrc be an attribute of
CA such that paatt = caatt where paatt is the value of attrp and caatt is the value of attrc
(Figure 5.4). The preservation means that for attrp-revap association, there is attrc-revac
association where revac is an attribute of PA’.

In other words, each reverse attribute of a parent agent is implemented by using a
reverse attribute of a child agent. So, for each reverse attribute of the parent agent revap,
there should be a reverse attribute of a child agent revac such that the owner of the
former reverse attribute is the same as the owner of the latter reverse attribute. We call
the constraint reverse attribute constraint.

Agent trees

By iterating agent decomposition, we get an agent tree whose nodes are agents and whose
branches are projection-lift associations.

5.1.5 Action decomposition

Action decomposition

Actions may be decomposed. We call an action that is decomposed a parent action. We
call a sequence of actions obtained by action decomposition of the parent action a child
action sequence of the parent action and elements of the sequence child actions of the
parent action. Note that a parent action may have some child action sequences.

When a parent action is decomposed, a participant of the action is decomposed, too.
Each participant of each child action is a participant of the parent action without the
participant that is decomposed or a child agent of the participant. Action decomposition
means that changes of all the attributes of all the participants immediately before and
after the parent action has happened are the same as changes of those immediately before
and after the sequence of child actions has happened.

33

Consider a parent action. Then, consider two child action sequences of the action.
Note that because we only compare changes of all the attributes of all the participants in
action decomposition, changes of some attributes of some child agents may be different.

Parallel executions of child actions

Some of child actions can happen in parallel. Consider two actions act1 and act2. Let
CPS be the set of all the common participants of act1 and act2. We deal with parallel
executions of act1 and act2 as the interleave model that changes of all the attributes of all
the elements of CPS immediately before and after the sequence act1,act2 has happened
is the same as those immediately before and after the sequence act2,act1 has happened.

Action trees

By iterating action decomposition, we get an action tree whose nodes are actions and
whose branches are parent-child relations. Note that because a parent action may have
some child action sequences, a parent actions may have some action trees.

5.1.6 Classes

Classes

Classes are frameworks of objects. There are associations between classes and classes
have attributes. We say that an object is an instance of a class if for each attribute of
the class, the object has some attributes whose names are the same as the name of the
attribute of the class.

Consider an attribute of a class. If each object of the class has only one attribute whose
name is the same as the name of the attribute of the class, we say that the multiplicity
of the attribute is “1”. If not, we say that the multiplicity of the attribute is “0 . . . n”.
Consider an association between classes. Let attr and reva be the names of the both
sides of the association. If the multiplicities of attr and reva defined in the above are
“1” and “0 . . . n”, respectively, we say that the multiplicity of attr is “0 . . . n”. This is an
exception of the above definition. Note that multiplicity of an association is the same as
multiplicities of the attributes that are the both sides of the association.

Consider an attribute whose multiplicity is “0 . . . n”. We regard the attribute as a
parameterized attribute whose parameters include the class corresponding to the set of
values of the attribute and whose values are boolean values such that:

1. if a value of the attribute is assigned to the parameter corresponding to the class,
the value of the parameterized attribute is true and

2. if not, the value of the parameterized attribute is false,

i.e. a characteristic function.
We call classes whose instances are data objects data classes and classes whose in-

stances are agents agent classes. We call classes whose instances are participants of an
action participant classes of the action. We deal with parameters of a parameterized
attribute as data classes.

34

5.1.7 Business models

AA-trees model of business models is AA-trees model discussed in Section 5.1 before this
one.

5.1.8 Component specifications

AA-trees model of component specifications is a special case of AA-trees model discussed
in Section 5.1 before Section 5.1.7.

Interfaces and components

We model “a component” by using two agents. “The component” has “methods”. We
model “the methods” by using actions. The participants of the actions are the agents.
The agents are an agent that calls the actions and the other is an agent that executes the
actions. We call the former agent an interface and the latter agent a component.

Interface-component associations

Because “a component” is modeled by using an interface and a component, there is a
relation between the interface and the component. We model the relation by using an
association between the interface and the component of the action. We call the associ-
ation an interface-component association, the side being the attribute of the interface a
component, and the side being the attribute of the component an interface.

Attributes

Because “components” deal with data, we specify behavior of “the components” by using
changes of data attributes of the components.

Because an interface is the interface of the corresponding component, for each data
attribute of the interface, there should be a data attribute of the component such that
idatt = cdatt where idatt is the value of the data attribute of the interface and cdatt is
the value of the data attribute of the component and vice versa. We call the constraint
interface attribute constraint.

Actions

Because actions are assigned to components, we may call the actions methods of the
components.

Component decomposition and interface decomposition

A component may be decomposed. When a component is decomposed, the interface
should be decomposed, too. We assume that firstly a component is decomposed, then the
interface is decomposed. From the reverse attribute constraint, the former agent decom-
position adds an association between the interface and a child component to the AA-trees
model and the latter agent decomposition adds an association between an child interfece
and the child component to the AA-trees model. We regard the latter association as the
interface-component association between the child interfece and the child component.

35

Method decomposition

A method may be decomposed. When a method is decomposed, the component is decom-
posed. Because each child method only changes the values of the data attributes of the
component that has the child method, child methods of different components can happen
in parallel if there is no synchronization constraint. So, if there is no synchronization
constraint, on each child component, we can regard execution of the parent method as
execution of the sequence of the child methods belonging to the parent methods.

Note that correspondences between parent methods and sequences of child methods on
child components are the same as correspondences between parent actions and sequences
of child actions on child components of tree architecture.

Classes

We call classes whose instances are interfaces of an action interface classes of the action
and classes whose instances are components of the action component classes of the action.

5.1.9 Static constraints

There may be relations between attributes. To describe the relations, we use the following
static constraints.

Static constraints

Consider a set of attributes, the set of owners of the attributes, and the set of actions
in which some of owners participate AOS. A static constraint is a constraint on the set
of attributes that are satisfied at immediately before and after each action of AOS has
happened.

Note that because an action is decomposed, there may be an intermediate state at
which the set of attributes do not satisfy the static constraint.

5.2 The Guideline How To Specify AA-trees Models

by using UML Diagrams with OCL Descriptions

We specify data structures in class diagrams. We specify static structures, i.e. classes,
associations, and attributes in class diagrams. We specify dynamic structures, i.e. actions
and those effects in usecase diagrams. We call the former class diagrams data class
diagrams, the latter class diagrams basic class diagrams, and the usecase diagrams action
usecase diagrams.

Agents and actions may be decomposed. We specify agent decomposition in class
diagrams. We call the class diagrams decomposition class diagrams. We specify action
decomposition in sequence diagrams or statechart diagrams. We call the sequence dia-
grams and the statechart diagrams decomposition sequence diagrams and decomposition
statechart diagrams, respectively.

36

5.2.1 Classes, associations, and attributes

Classes

We use squares to denote classes and call the squares class boxes. We assign data classes
data stereotype and agent classes agent stereotype.

Example 8 Consider the classes in Figure 2.2. Purchaser and Vendor are agent classes
and Thing, Int, and Bool are data classes. �

Associations

We use lines between class boxes to denote associations and we call the lines association
lines.

Attributes and data operators

We use:

1. operator declarations drawn in the middle parts of class boxes or

2. sides of association lines

in data class diagrams to denote attributes.
We use:

1. operator declarations drawn in the middle parts of class boxes

in basic class diagrams to denote data operators.

5.2.2 Data class diagrams

In data class diagrams and complementing OCL descriptions, we specify data structres.

Data class diagrams

We specify data classes as class boxes. We specify data operators as operator declarations
drawn in the middle parts of the class boxes. We use the following language “language
for data operator declarations”. to denote the operator declarations.

Language 1 Let DTNM be a set of names of data classes and DTV be a set of vari-
ables assinged to the names. Let DTOP be a set of names of data operators. We call
the language defined by the following context-free grammar G = (VDO, TDO, PDO,LDOD)
language for data operator declarations:

• VDO = {LDOD,DTOPWV, DDLIST,DTDCL}
• TDO = {(, , , :,)} ∪ DTV ∪DTNM ∪DTOP

• PDO = {
1. LDOD→ DTOPWV : dtnm

2. DTOPWV→ dtop

37

3. DTOPWV→ dtop(DDLIST)

4. DDLIST→ DTDCL

5. DDLIST→ DDLIST,DTDCL

6. DTDCL→ dtv : dtnm

where dtv, dtnm, and dtop are elements of DTV, DTNM, and DTOP, respectively. �

OCL descriptions complementing data class diagrams

We use the following extension of OCL “OCL for data” to specify data structures.

Language 2 Let DTNM be a set of names of data classes and DTV be a set of variables
assinged to the names. Let DTOP be a set of names of data operators. We call the
language defined by the following context-free grammar G = (VD, TD, PD,OCLD) OCL for
data:

• VD = {OCLD,HEADD,DDLIST,DTDCL, INVDLIST, INVD,EQD,DTERM,
DTLIST}
• TD = {context, (, , , :,), inv:, =} ∪ DTNM ∪DTV ∪ DTOP

• PD = {
1. OCLD→ HEADD INVDLIST

2. HEADD→ context (DDLIST)

3. DDLIST→ DTDCL

4. DDLIST→ DDLIST,DTDCL

5. DTDCL→ dtv : dtnm

6. INVDLIST→ INVD

7. INVDLIST→ INVDLIST INVD

8. INVD→ inv: EQD

9. EQD→ DTERM = DTERM

10. DTERM→ dtv

11. DTERM→ dtop

12. DTERM→ dtop(DTLIST)

13. DTLIST→ DTERM

14. DTLIST→ DTLIST,DTERM

}
where dtv, dtnm, and dtop are elements of DTV, DTNM, and DTOP, respectively. �

38

5.2.3 Basic class diagrams

In basic class diagrams and complementing OCL descriptions, we specify:

1. static structures, i.e. classes, associations, and attributes and

2. static invariants.

Basic class diagram

We specify agent classes as class boxes. We specify associations as association lines. We
specify attributes as operator declarations drawn in the middle parts of the class boxes
or sides of association lines.

Example 9 The class diagram in Figure 2.2 is a basic class diagram. �

We use the following language “language for attribute declarations”. to denote the oper-
ator declarations.

Language 3 Let DTNM be a set of names of data classes and DTV be a set of variables
assigned to the names. Let AGTNM be a set of names of agent classes, AGTV be a set of
variables assigned to the names. Let DATT be a set of names of data attributes and AATT
be a set of names of agent attributes. We call the language defined by the following context-
free grammar G = (VATTR, TATTR, PATTR,LAD) language for data operator declarations:

• VATTR = {LAD,DATTWVD,AATTWVD, ARGLIST,DDLIST,DTDCL,AGTDCL}
• TATTR = {(, , , :,)} ∪DTV ∪ DTNM ∪ AGTV ∪ AGTNM ∪DATT ∪AATT

• PATTR = {
1. LAD→ DATTWVD : dtnm

2. LAD→ AATTWVD : agtnm

3. DATTWVD→ datt

4. DATTWVD→ datt(ARGLIST)

5. AATTWVD→ aatt

6. AATTWVD→ aatt(DDLIST)

7. ARGLIST→ DDLIST

8. ARGLIST→ DDLIST,AGTDCL

9. DDLIST→ DTDCL

10. DDLIST→ DDLIST,DTDCL

11. DTDCL→ dtv : dtnm

12. AGTDCL→ agtv : agtnm

}
where dtv, dtnm, agtv, agtnm, datt, and aatt are elements of DTV, DTNM, AGTV,
AGTNM, DATT, and AATT, respectively. �

39

OCL descriptions complementing basic class diagrams

We specify static invariants in OCL descriptions complementing basic static diagrams.
Static invariants are invariants on static structures. We use the following extension of
OCL “OCL for static invariants” to specify the static invariants.

Language 4 Let DTNM be a set of names of data classes, DTV be a set of variables
assigned to the names. Let AGTNM be a set of names of agent classes, AGTV be a set of
variables assigned to the names. Let DTOP be a set of names of data operators, DATT
be a set of names of data attributes, and AATT be a set of names of agent attributes. We
call the language defined by the following context-free grammar G = (VSI , TSI , PSI ,OCLSI)
OCL for static invariants:

• VSI = {OCLSI,HEADSI, ADLIST,AGTDCL,VARLIST, CDLIST,DDLIST,DTDCL,
INVSILIST, INVSI,LFSI,LLFSI,EQSILIST,EQSI,EDTERM,EDTLIST,EATERM,
AATTWT, DATTWT,EDARGLIST}
• TSI = {context, (, , , :,), ε, var:, inv:, and, =, .}∪DTV∪DTNM∪AGTV∪AGTNM∪

DTOP ∪ DATT ∪ AATT

• PSI = {
1. OCLSI→ HEADSI VARLIST INVSILIST

2. HEADSI→ context (ADLIST)

3. ADLIST→ AGTDCL

4. ADLIST→ ADLIST,AGTDCL

5. AGTDCL→ agtv : agtnm

6. VARLIST→ ε

7. VARLIST→ var: CDLIST

8. CDLIST→ DDLIST

9. CDLIST→ ADLIST

10. CDLIST→ DDLIST ADLIST

11. DDLIST→ DTDCL

12. DDLIST→ DDLIST,DTDCL

13. DTDCL→ dtv : dtnm

14. INVSILIST→ INVSI

15. INVSILIST→ INVSILIST INVSI

16. INVSI→ inv: LFSI

17. LFSI→ LLFSI⇒ EQSI

18. LLFSI→ ε

19. LLFSI→ EQSILIST

20. EQSILIST→ EQSI

21. EQSILIST→ EQSILIST and EQSI

40

22. EQSI→ EDTERM = EDTERM

23. EQSI→ EATERM = EATERM

24. EDTERM→ dtv

25. EDTERM→ dtop

26. EDTERM→ dtop(EDTLIST)

27. EDTERM→ EATERM . DATTWT

28. EDTLIST→ EDTERM

29. EDTLIST→ EDTLIST,EDTERM

30. EATERM→ agtv

31. EATERM→ EATERM . AATTWT

32. AATTWT→ aatt(EDTLIST)

33. DATTWT→ datt(EDARGLIST)

34. EDARGLIST→ EDTLIST

35. EDARGLIST→ EDTLIST,EATERM

}
where dtv, dtnm, agtv, agtnm, dtop, datt, and aatt are elements of DTV, DTNM, AGTV,
AGTNM, DTOP, DATT, and AATT, respectively. �

Example 10 The OCL description in Example 2 is an OCL description specifying static
invariants. �

5.2.4 Action usecase diagrams

In action usecase diagrams and complementing OCL descriptions, we specify dynamic
structures, i.e. actions and those effects.

Action usecase diagrams

We specify an action as an usecase and the participants of the action as actors.

Example 11 The usecase diagram in Figure 2.1 is an action usecase diagram. �

OCL descriptions complementing action usecase diagrams

We specify behavior of the action in the OCL descriptions complementing the action
usecase diagram.

For each attribute of participant classes whose value is changed by the action, we
specify the effect of the action on its value as an OCL description. We use the following
extension of OCL “OCL for actions” to specify the effects.

Language 5 Let DTNM be a set of names of data classes, DTV be a set of variables
assigned to the names. Let AGTNM be a set of names of agent classes, AGTV be a set of
variables assigned to the names. Let DTOP be a set of names of data operators, DATT
be a set of names of data attributes, and AATT be a set of names of agent attributes.
Let ACTNM be a set of names of actions. We call the language defined by the following
context-free grammar G = (VA, TA, PA,OCLA) OCL for actions:

41

• VA = {OCLA, HEADA,ADLIST,AGTDCL,DDLIST,DTDCL,PREDCL, PRELIST,
EQPRE,DATTWA,DATTWV,DARGLIST,DTLIST,DTERM,AATTWA,AATTWV,
POSTDCL,POSTLIST,EQPOST,DLTPOST,EDTERMPOST,EDTLISTPOST,
ALTPOST,ARTPOST}
• TA = {action, (, , , :,), ε, pre:, post:, and, =, .,@pre}∪DTV∪DTNM∪AGTV∪AGTNM∪

DTOP ∪ DATT ∪ AATT ∪ACTNM

• PA = {
1. OCLA→ HEADA PREDCL POSTDCL

2. HEADA→ action (ADLIST) :: actnm (DDLIST)

3. ADLIST→ AGTDCL

4. ADLIST→ ADLIST,AGTDCL

5. AGTDCL→ agtv : agtnm

6. DDLIST→ DTDCL

7. DDLIST→ DDLIST,DTDCL

8. DTDCL→ dtv : dtnm

9. PREDCL→ ε

10. PREDCL→ pre: PRELIST

11. PRELIST→ EQPRE

12. PRELIST→ PRELIST and EQPRE

13. EQPRE→ DATTWA = DTERM

14. EQPRE→ AATTWA = agtv

15. DATTWA→ agtv . DATTWV

16. DATTWV→ datt(DARGLIST)

17. DARGLIST→ DTLIST

18. DARGLIST→ DTLIST, agtv

19. DTLIST→ DTERM

20. DTLIST→ DTLIST,DTERM

21. DTERM→ dtv

22. DTERM→ dtop

23. DTERM→ dtop(DTLIST)

24. AATTWA→ agtv . AATTWV

25. AATTWV→ aatt(DTLIST)

26. POSTDCL→ post: POSTLIST

27. POSTLIST→ EQPOST

28. POSTLIST→ POSTLIST and EQPOST

29. EQPOST→ DLTPOST = EDTERMPOST

42

30. EQPOST→ ALTPOST = ARTPOST

31. DLTPOST→ agtv . DATTWV

32. EDTERMPOST→ dtv

33. EDTERMPOST→ dtop

34. EDTERMPOST→ agtv . DATTWV@pre

35. EDTERMPOST→ dtop(EDTLISTPOST)

36. EDTLISTPOST→ EDTERMPOST

37. EDTLISTPOST→ EDTLISTPOST,EDTERMPOST

38. ALTPOST→ agtv . AATTWV

39. ARTPOST→ agtv

40. ARTPOST→ agtv . AATTWV@pre

}
where dtv, dtnm, agtv, agtnm, dtop, datt, aatt, and actnm are elements of DTV, DTNM,
AGTV, AGTNM, DTOP, DATT, AATT, and ACTNM, respectively. �

5.2.5 Decomposition class diagrams

In decomposition class diagrams and complementing OCL descriptions, we specify agent
decomposition.

Decomposition class diagrams

We specify projection-lift associations as lines with diamonds that are connected to parent
agents.

Example 12 The class diagram in Figure 2.3 is a decomposition class diagram. �

OCL descriptions complementing decomposition class diagrams

In OCL descriptions complementing the decomposition class diagrams, we specify data
attribute constraint and agent attribute constraint. We use the following extension of
OCL “OCL for constraints” to specify those constraints.

Language 6 Let DTNM be a set of names of data classes, DTV be a set of variables
assigned to the names. Let AGTNM be a set of names of agent classes, AGTV be a set of
variables assigned to the names. Let DTOP be a set of names of data operators, DATT
be a set of names of data attributes, and AATT be a set of names of agent attributes.
Let PROJ be a set of names of projections. We call the language defined by the following
context-free grammar G = (VC , TC , PC ,OCLC) OCL for constraints:

• VC = {OCLC,HEADC,ADLIST,AGTDCL,VARLIST, CDLIST,DDLIST,DTDCL,
INVCLIST, INVC,DATTC,DATTWA,DATTWV,EDTERMC, EDTLISTC,AATTC,
AATTWA,AATTWV,DARGLIST,DTLIST,DTERM,CAATTWA}

43

• TC = {context, (, , , :,), ε, var:, inv:, =, .}∪DTV∪DTNM∪AGTV∪AGTNM∪DTOP∪
DATT ∪AATT ∪ PROJ

• PC = {
1. OCLC→ HEADC VARLIST INVCLIST

2. HEADC→ context (ADLIST)

3. ADLIST→ AGTDCL

4. ADLIST→ ADLIST,AGTDCL

5. AGTDCL→ agtv : agtnm

6. VARLIST→ ε

7. VARLIST→ var: CDLIST

8. CDLIST→ DDLIST

9. CDLIST→ ADLIST

10. CDLIST→ DDLIST ADLIST

11. DDLIST→ DTDCL

12. DDLIST→ DDLIST,DTDCL

13. DTDCL→ dtv : dtnm

14. INVCLIST→ INVC

15. INVCLIST→ INVCLIST INVC

16. INVC→ inv: DATTC

17. INVC→ inv: AATTC

18. DATTC→ DATTWA = EDTERMC

19. DATTWA→ agtv . DATTWV

20. DATTWV→ datt(DARGLIST)

21. EDTERMC→ dtv

22. EDTERMC→ dtop

23. EDTERMC→ agtv . proj . DATTWV

24. EDTERMC→ dtop(EDTLISTC)

25. EDTLISTC→ EDTERMC

26. EDTLISTC→ EDTLISTC,EDTERMC

27. AATTC→ AATTWA = CAATTWA

28. AATTWA→ agtv . AATTWV

29. AATTWV→ aatt(DTLIST)

30. DARGLIST→ DTLIST

31. DARGLIST→ DTLIST, agtv

32. DTLIST→ DTERM

44

33. DTLIST→ DTLIST,DTERM

34. DTERM→ dtv

35. DTERM→ dtop

36. DTERM→ dtop(DTLIST)

37. CAATTWA→ agtv . proj . AATTWV

}
where dtv, dtnm, agtv, agtnm, dtop, datt, aatt, and proj are elements of DTV, DTNM,
AGTV, AGTNM, DTOP, DATT, AATT, and PROJ, respectively. �

5.2.6 Decomposition sequence diagrams

In decomposition sequence diagrams or decomposition statechart diagrams, we specify
action decomposition.

Decomposition sequence diagrams

In decomposition sequence diagrams or decomposition statechart diagrams, we specify
sequences of child actions whose effects are the same as effect of a parent action.

Example 13 The sequence diagram in the bottom of Figure 2.5 is a decomposition se-
quence diagram. �

5.2.7 Decomposition statechart diagrams

In decomposition sequence diagrams or decomposition statechart diagrams, we specify
action decomposition.

Decomposition statechart diagrams

In decomposition sequence diagrams or decomposition statechart diagrams, we specify
sequences of child actions whose effects are the same as effect of a parent action.

Example 14 The statechart diagram in Figure 2.4 is a decomposition statechart diagram.
�

45

Chapter 6

A Verification Method of Equational
Specification with �=

There are some studies about verification of equational specification that has conditional
equations, for example [16, 23, 37]. The conditions of those studies have the forms:

(u1 = u′
1) and · · · and (uk = u′

k).
When we specify behavior of software, we usually want to use the conditions whose forms
are:

(u1 = u′
1) and · · · and (uk = u′

k) and (v1 �= v′
1) and · · · and (vl �= v′

l).
In fact, CafeOBJ [10] supports =/= that returns the result whether normal forms of both
sides are the same. =/= is similar to �=, but, because a term may have many normal forms,
=/= sometimes return an unexpected result.

We call equational specification that has conditional equations whose conditions are
(u1 = u′

1) and · · · and (uk = u′
k) and (v1 �= v′

1) and · · · and (vl �= v′
l)

equational specification with �=. In this chapter, we discuss a complete deduction system of
equational specification with �= and an implementation of it called double term rewriting
system with condition.

6.1 Equational Specification with �=
Firstly, we define a conditional Σ-equation with �=.

Definition 38 A conditional Σ-equation with �= consists of a ground signature X disjoint
from Σ, a set of pairs (ui, u

′
i) (i = [1, . . . , k]) of Σ(X)-terms, a set of pairs (vi, v

′
i) (i =

[1, . . . , l]) of Σ(X)-terms, and a pair (t, t′) of Σ(X)-terms; we write such a conditional
equation in the form:

(∀X)t = t′ if ((u1 = u′
1) and · · · and (uk = u′

k) and (v1 �= v′
1) and · · · and (vl �= v′

l)).
We call the part ((u1 = u′

1) and · · · and (uk = u′
k)) the equality condition part of the

conditional Σ-equation and use C= to denote the equality condition part. We call the
part ((v1 �= v′

1) and · · · and (vl �= v′
l)) the inequality condition part of the conditional

Σ-equation and use C �= to denote the inequality condition part. �

Definition 39 A Σ-algebra M satisfies a conditional Σ-equation with �=:
(∀X)t = t′ if (C= and C �=)

iff for any assignment as : X → M , if as(ui) = as(u′
i) for each (ui = u′

i) ∈ C= and
as(vi) �= as(v′

i) for each (vi = v′
i) ∈ C �=, then as(t) = as(t′) in M . In this case we write:

46

M |=Σ (∀X)t = t′ if (C= and C �=).
A Σ-algebra M satisfies a set E of conditional Σ-equations with �= iff it satisfies each
ceq ∈ E, and in this case we write:

M |=Σ E. �

Then, we define an equational specification with �=.

Definition 40 An equational specification with �= is a pair (Σ, E), consisting of a sig-
nature Σ and a set E of conditional Σ-equations with �=. �

The model of the equational specification with �= (Σ, E) is the following (Σ, E)-models.

Definition 41 Given an equational specification with �= (Σ, E), a (Σ, E)-model M is a
Σ-algebra such that:

M |=Σ E. �

We deal with conditional equations with �= as equations by using the technique introduced
in Lemma 6. To do so, we introduce the following Σ-inequation and extend equational
specification with �= to the following equational and inequational specification.

Definition 42 A Σ-inequation consists of a ground signature X disjoint from Σ and a
pair (t, t′) of Σ(X)-terms; we write such an inequation in the form:

(∀X)t �= t′ �

Definition 43 A Σ-algebra M satisfies a Σ-inequation:
(∀X)t �= t′

iff for any assignment as : X → M , as(t) �= as(t′) in M . In this case we write:
M |=Σ (∀X)t �= t′.

A Σ-algebra M satisfies a set I of Σ-inequations iff it satisfies each ieq ∈ I, and in this
case we write:

M |=Σ I. �

The definition of an equational and inequational specification is as follows.

Definition 44 An equational and inequational specification is a 3-tuple (Σ, E, I), con-
sisting of a signature Σ, a set E of conditional Σ-equations with �=, and a set I of Σ-
inequations. �

The model of the equational and inequational specification (Σ, E, I) is the following
(Σ, E, I)-models.

Definition 45 Given an equational and inequational specification (Σ, E, I), a (Σ, E, I)-
model M is a Σ-algebra such that:

M |=Σ E and M |=Σ I. �

The properties eq of the equational and inequational specification (Σ, E, I) is specified by
using E ∪ I |=Σ eq.

Definition 46 Given an equational and inequational specification (Σ, E, I) and a condi-
tional Σ-equation with �= or a Σ-inequation eq. If for each (Σ, E, I)-model M ,

M |=Σ eq,
in this case, we write:

E ∪ I |=Σ eq. �

47

C1 C2 C3C’1 C’2 C’3

C

Figure 6.1: The comparison between cases

Because E may contradict I, there may be no (Σ, E, I)-model. The following proposition
provides the condition whether there is a (Σ, E, I)-model.

Proposition 7 Given an equational and inequational specification (Σ, E, I).
There is a (Σ, E, I)-model iff E |=Σ I.

Proof : (⇒) Consider a Σ-inequation ieq ∈ I. We assume that E �|=Σ ieq. By the
assumption, for each (Σ, E)-model M , M �|=Σ ieq. So, M is not a (Σ, E, I)-model, i.e.,
there is no (Σ, E, I)-model. By contraposition, (⇒) is showed.
(⇐) Because E |=Σ I, each (Σ, E)-model is a (Σ, E, I)-model. So, (⇐) is showed. �

Corollary 8 Given an equational and inequational specification (Σ, E, I).
There is a (Σ, E, I)-model iff any (Σ, E)-model is a (Σ, E, I)-model. �

6.2 A Deduction System of Equational and Inequa-

tional Specification

The conditional equation with �= version of Lemma 6 is as follows.

Proposition 9 Given an equational and inequational specification (Σ, E, I) and a condi-
tional Σ-equation with �=

(∀X)t = t′ if (C= and C �=),
then

E ∪ I |=Σ (∀X)t = t′ if (C= and C �=) iff E ∪ I ∪ C= ∪ C �= |=Σ(X) (∀∅)t = t′. �

Proof : Each condition is equivalent to the condition:
for each (Σ, E, I)-model M and for each assignment as : X → M , if

1. for each (ui = u′
i) ∈ C=, as(ui) = as(u′

i) and

2. for each (vi �= v′
i) ∈ C �=, as(vi) �= as(v′

i), then

as(t) = as(t′) �

The characteristics of equational specification with �= are as follows:

1. a case can be decomposed, for example, “a(x) = 0” is decomposed into “(a(x) =
0) and (b(x) = 0)” and “(a(x) = 0) and (b(x) �= 0)”, and

2. the case that can not happen exists, for example, “(a(x) = 0) and (a(x) �= 0)”.

48

So, case composition rule and no model rule in Definition 50 are necessary. To deal with
case composition rule, we need the procedure that decides whether the case corresponds
to C can be decomposed into the cases correspond to Cj (j ∈ J). Note that the fact that
the case corresponding to C includes the case corresponding to Cj is equivalent of the
fact that:

for each (Σ, E ∪ C=,j, I ∪ C �=,j)-model M , M |=Σ C.
Note that the fact that the case corresponding to C and the case corresponding to C ′

k are
mutually exclusive is equivalent of the fact that there is no (Σ, E∪C=∪C ′

=,k, I∪C �=∪C ′
�=,k)-

model, i.e.,
E ∪ C= ∪ C ′

=,k �|=Σ I ∪ C �= ∪ C ′
�=,k (by Proposition 7).

So, if the case without the case corresponds to C is the same as the sum of the cases
correspond to C ′

k (k ∈ K), we can decide whether the case corresponds to C can be
decomposed into the cases correspond to Cj (j ∈ J) by using the above facts (Fig. 6.1).

Definition 47 Let (Σ, E, I) be an equational and inequational specification and DRules be
a set of deduction rules that defines the conditional Σ-equations with �= that are deducible
from E ∪ I. We say that (Σ, E, I) is splitable on DRules iff

for each set of conditional Σ-equations with �= ceqj (j ∈ J)
(∀X)t = t′ if Cj

that are deducible by using DRules, there is the set of conditions {C ′
k}k∈K such that:

1. for each j ∈ J , for each k ∈ K, for each (Σ, E, I)-model M and for each assignment
as : X →M ,

as(Cj ∪ C ′
k) = false.

2. for each (Σ, E, I)-model M and for each assignment as : X → M , there is j ∈ J
or k ∈ K such that:

as(Cj) = true or as(C ′
k) = true.

We call {C ′
k}k∈K the complement set of {Cj}j∈J . �

If the deduction system using DRules is complete,

1. for each (Σ, E ∪ C=,j, I ∪ C �=,j)-model M , M |=Σ C and

2. E ∪ C= ∪ C ′
=,k �|=Σ I ∪ C �= ∪ C ′

�=,k

are the same as

1. E ∪ C=,j
 C or E ∪ C=,j �
 I ∪ C �=,j and

2. E ∪ C= ∪ C ′
=,k �
 I ∪ C �= ∪ C ′

�=,k , respectively.

Note that (1) if there is a (Σ, E ∪C=,j, I ∪C �=,j)-model, by Corollary 8, the set of all the
(Σ, E ∪ C=,j, I ∪ C �=,j)-models coincides with the set of all the (Σ, E ∪ C=,j)-models and
(2) if there is no (Σ, E ∪ C=,j, I ∪ C �=,j)-model, for any C, E ∪ I ∪ Cj |=Σ C holds.

Definition 48 Let (Σ, E, I) be an equational and inequational specification and DRules be
a set of deduction rules that defines the conditional Σ-equations with �= that are deducible
from E ∪ I such that (Σ, E, I) is splitable on DRules. Let ceqj (j ∈ J) be conditional
Σ-equations with �=

49

(∀X)t = t′ if Cj

that are deducible by using DRules and {C ′
k}k∈K be the complement set of {Cj}j∈J . Let

ceq be a conditional Σ-equation with �=
(∀X)t = t′ if C.

We call {Cj}j∈J a complement condition set and C a combined condition of {Cj}j∈J if

1. for each j ∈ J , E ∪ C=,j
 C or E ∪ C=,j �
 I ∪ C �=,j and

2. for each k ∈ K, E ∪ C= ∪ C ′
=,k �
 I ∪ C �= ∪ C ′

�=,k

where A
 B means that each element of B is deducible from A and A �
 B means that
there is an element of B that is not deducible from A. �

A deduction system may not terminate. So, to deal with inequations, the following
undeducibility decision problem must be decidable.

Definition 49 Let (Σ, E, I) be an equational and inequational specification and DRules be
a set of deduction rules that defines the conditional Σ-equations with �= that are deducible
from E∪I. We call the problem that for a given conditional Σ-equation with �=, we decide
whether it is not deducible from E ∪ I by using DRules undeducibility decision problem.
�

A complete deduction system of equational and inequational specification is as follows.

Definition 50 Let (Σ, E, I) be an equational and inequational specification such that:

1. (Σ, E, I) is splitable on the set of the following deduction rules and

2. undeducibility decision problem is decidable on (Σ, E, I) and specifications occurring
in the following deduction.

The following rules of deduction define the conditional Σ-equations with �= and the Σ-
inequations that are deducible (from E ∪ I):

1. (Assumption) Each conditional Σ-equation with �= in E is deducible.

2. (Reflexivity) Each Σ-equation of the form

(∀X)t = t

is deducible.

3. (Symmetry) If

(∀X)t = t′

is deducible, then so is

(∀X)t′ = t.

4. (Transitivity) If the Σ-equations

(∀X)t = t′, (∀X)t′ = t′′

are deducible, then so is

(∀X)t = t′′.

50

5. (Congruence) If θ, θ′ : X → TΣ(Y) are substitutions such that for each x ∈ X, the
Σ-equation

(∀Y)θ(x) = θ′(x)

is deducible then given t ∈ TΣ(X), the Σ-equation

(∀Y)θ(t) = θ′(t)

is also deducible.

6. (Substitutivity) If

(∀X)t = t′ if (C= and C �=)

is in E, and if θ : X → TΣ(Y) is a substitution such that for each (ui = u′
i) ∈ C=,

the Σ-equation

(∀X)θ(ui) = θ(u′
i)

is deducible and for each (vi �= v′
i) ∈ C �=, the Σ-equation

(∀X)θ(vi) �= θ(v′
i)

is deducible, then

(∀X)θ(t) = θ(t′)

is deducible.

7. (Condition) Consider the Σ-equation

(∀X)t = t′ if C.

If

(∀X)t = t′

is deducible from E ∪ I ∪ C, then

(∀X)t = t′ if C

is deducible.

8. (Case composition) If the conditional Σ-equations with �=
(∀X)t = t′ if Cj (j ∈ [1, . . . , k])

are deducible and {Cj}j∈[1,...,k] is a complement condition set, then

(∀X)t = t′ if C

is deducible where C is a combined condition of {Cj}j∈[1,...,k].

9. (No model) Consider the conditional Σ-equation with �=
(∀X)t = t′ if (C= and C �=).

Let {ieqj}j∈J = I∪C �=. If there is j ∈ J such that ieqj is not deducible from E∪C=,
then

(∀X)t = t′ if (C= and C �=)

is deducible.

51

10. (Inequality) If

(∀X)t = t′

is not deducible, then

(∀X)t �= t′

is deducible.

When a conditional Σ-equation with �= ceq is deducible from E ∪ I, we write:
E ∪ I
Σ ceq. �

The completeness theorem of the deduction system is as follows.

Theorem 10 Let (Σ, E, I) be an equational and inequational specification such that:

1. (Σ, E, I) is splitable on
Σ and

2. undeducibility decision problem is decidable on (Σ, E, I) and specifications occurring
in the deduction of Definition 50.

Given a conditional Σ-equation with �= or a Σ-inequation eq, then
E ∪ I
Σ eq iff E ∪ I |=Σ eq.

Proof : If we show the case that eq is a Σ-equation, by Proposition 9, the theorem is
showed. So, from now on, we show the case that eq is a Σ-equation.
(1) The case that there is no (Σ, E, I)-model.
Consider a Σ-equation eq. By the assumption of the case, E ∪ I |=Σ eq. By Proposition
7, E �|=Σ I. So, by Rule 9, E ∪ I
Σ eq. Therefore, the theorem is showed.
(2) The case that there is a (Σ, E, I)-model.
(⇒) It is straightforward from Definition 50.
(⇐) We show the case by following the proof of completeness theorem of equational
specification in [16]. The structure of this proof is as follows: we construct a Σ-algebra
M such that if M satisfies eq then eq is deducible from E ∪ I; then we show that M is a
(Σ, E, I)-model.

First, we show that the following property of terms t, t′ ∈ TΣ(X) defines a Σ-congruence
on TΣ(X):

(D) E ∪ I
Σ (∀X)t = t′.
Let us denote this relation ∼E(X). Then Rules 2-4 say that ∼E(X) is an equivalence
relation on TΣ(X). By applying Rule 5 to terms t of the form σ(x1, . . . , xk) for σ ∈ Σ, we
see that ∼E(X) is a congruence.

Now we can form the quotient of TΣ(X) by ∼E(X), which we denote by M . Then by
the construction of M , for each t, t′ ∈ TΣ(X) we have

(∗) [t] = [t′] in M iff (D) holds,
where [t] denotes the ∼E(X)-equivalence class of t.

We next show the key property of M , that
(∗∗) M |=Σ (∀X)t = t′ implies that (D) holds.

Because M |=Σ (∀X)t = t′, we can use the inclusion iX : X →M sending x to [x] as an
assignment to get that [t] = [t′] in M ; then (D) holds by (∗).

We now show that M is a (Σ, E)-model. Let (∀Y)t = t′ if C be a conditional Σ-
equation with �= and θ : Y → M be an assignment such that θ(ui) = θ(u′

i) for each

52

(ui = u′
i) in C= and θ(vj) �= θ(v′

j) for each (vj �= v′
j) in C �=. Then for each y ∈ Y we can

choose a representative ty ∈ TΣ(X) such that θ(y) = [ty] in M . Now let φ : Y → TΣ(X)
be the substitution sending y to ty. Then θ(y) = [φ(y)] for each y ∈ Y , and therefore
θ(t) = [φ(t)] in M for any t ∈ TΣ(Y). Therefore, [φ(ui)] = [φ(u′

i)] and [φ(vj)] �= [φ(v′
j)]

holds in M , and by the property (∗), E∪I |=Σ φ(ui) = φ(u′
i) and E∪I |=Σ φ(vj) �= φ(v′

j).
Therefore by Rule 6, E ∪ I |=Σ φ(t) = φ(t′), and hence by (∗), θ(t) = θ(t′) holds in M ,
and thus the conditional Σ-equation with �= (∀Y)t = t′ if C holds in M . So, M is a
(Σ, E)-model.

Finally, we show that M is a (Σ, E, I)-model. By the assumption of the case, there is
a (Σ, E, I)-model, and hence by Corollary 8, the (Σ, E)-model M is a (Σ, E, I)-model. �

6.3 Double Term Rewriting System with Condition

The condition that we can deal with equational and inequational specifications as term
rewriting systems is the following rewritable.

Definition 51 Let (Σ, E, I) be an equational and inequational specification and > be a
reduction ordering. Let {eqlt,i}i∈Ilt

be all the elements of E whose left hand sides are lt.
Let Clt,i be the condition of eqlt,i. We say that the equational and inequational specification
(Σ, E, I) is rewritable if it satisfies the following conditions:

1. for each (Σ, E)-model M , for each assignment as : X → M , for each lt, there is
exactly one i that as(Clt,i) is true,

2. for each Σ-equation in E

(∀X)lt = rt if (u1 = u′
1 and uk = u′

k) and (v1 �= v′
1 and vl �= v′

l)

for each i ∈ [1, . . . , k] and for each j ∈ [1, . . . , l],

(a) var(lt) ⊃ var(rt),

(b) var(lt) ⊃ var(ui) and var(lt) ⊃ var(u′
i),

(c) var(lt) ⊃ var(vj) and var(lt) ⊃ var(v′
j),

(d) lt > rt, and

(e) ui > u′
i and vi > v′

i, and

3. for each Σ-inequation in I

(∀X)lt �= rt

var(lt) ⊃ var(rt). �

The definition of double term rewriting system with condition that is an implementation
of the complete deduction system of equational and inequational specification is as follows.

Definition 52 Let (Σ, E, I) be an equational and inequational specification and > be a
reduction ordering such that (Σ, E, I) is rewritable. We call a 3-tuple (t, t′, C) where t, t′

are Σ(X)-terms and C be a set of pairs of Σ(X)-terms a term pair with condition. The
one-step rewriting relation →Σ,E,I is defined for sets of term pairs with condition TPS,
TPS’ as follows: TPS→Σ,E,I TPS’ iff

53

1. there is a term pair with condition (t, t′, C) in TPS and we use {(t, t′, C)}∪TPSothers

to denote TPS,

2. there exists: a set of conditional Σ-equations with �= {eqlt,i}i∈Ilt
whose forms are

(∀X)lt = rti if Ci; ct ∈ TΣ({z}∪Y) having exactly one occurrence of the varialbe z;
and a substitution sb : X → TΣ(Y) such that:

t = ct(z ← sb(lt)) or
t′ = ct(z ← sb(lt)), and

3. TPS’ is

{(ti, t′, C ∪ sb(Ci))}i∈I′
lt
∪ TPSothers or

{(t, ti, C ∪ sb(Ci))}i∈I′
lt
∪ TPSothers

where

(a) I ′
lt is the subset of Ilt that for each j ∈ Ilt\I ′

lt,

(t, tj , C ∪ sb(Cj)) is an invalid term pair with condition in Definition 53.

(b) ti = ct(z ← sb(rti)), respectively.

The term rewriting relation is the transitive reflexive closure of the one-step rewriting
relation →∗

Σ,E,I, for which we write TPS →∗
Σ,E,I TPS’. Let TPSS be the set of sets of

term pairs with condition such that each elenemt is

1. TPS1 that {(t, t′, ∅)} →∗
Σ,E,I TPS1 or

2. TPS2 that {tp} →∗
Σ,E,I TPS2

where tp is an element of TPS1. We call the abstract reduction system (TPSS,→∗
Σ,E,I)

the double term rewriting system with condition of (Σ, E, I).

Let ∼ be the maximum equivalence relation on TPSS that
{(t, t′, Cm)}m∈M ∪ TPSothers ∼ {(t, t′, Cn)}n∈N ∪ TPSothers if

for each (Σ, E)-model M , for each assignment as : X →M ,
as(∪m∈MCm) = as(∪n∈NCn).

The one-step rewriting relation ⇒Σ,E,I is defined for QTP, QTP’ ∈ QTPS as follows:
QTP⇒Σ,E,I QTP’ if TPS→Σ,E,I TPS’

where TPS and TPS’ are representatives of QTP and QTP’, respectively. The term rewrit-
ing relation is the transitive reflexive closure of the one-step rewriting relation ⇒Σ,E,I, for
which we write QTP⇒∗

Σ,E,I QTP’ and say that QTP rewrites to QTP’ (under (Σ, E, I)).
We call the abstract reduction system (QTPS,⇒∗

Σ,E,I) the quotient double term rewriting
system with condition of (Σ, E, I). �

Definition 53 Let (Σ, E, I) be an equational and inequational specification and > be a
reduction ordering such that (Σ, E, I) and the following (Σ, E ∪ E=, I) are rewritable.
Let (TPSS,→∗

Σ,E,I) be the double term rewriting system with condition of (Σ, E, I) and
TPS be in TPSS. Let (t, t′, C) be a term pair with condition in TPS where C is ((u1 =
u′

1) and (uk = u′
k)) and ((v1 �= v′

1) and (vl �= v′
l)). Let {(um,n, u

′
m,n, Cm,n)}n∈Nm be a

normal form of {(um, u′
m, ∅)} on (TPSS,→∗

Σ,E,I). Let E= = {ceqm,n}m∈[1,...,k],n∈Nm be the
set of conditional equation with �= that each ceqm,n is

54

1. ε if um,n = u′
m,n,

2. (∀X)um,n = u′
m,n if Cm,n if um,n > u′

m,n, or

3. (∀X)u′
m,n = um,n if Cm,n if u′

m,n > um,n.

We call the equational and inequational specification (Σ, E ∪ E=, I) the decision specifi-
cation of (t, t′, C), the double term rewriting system with condition of (Σ, E ∪ E=, I) the
decision term rewriting system of (t, t′, C), and the quotient double term rewriting system
with condition of (Σ, E ∪ E=, I) the quotient decision term rewriting system of (t, t′, C).
We say that (t, t′, C) is an invalid term pair with condition if for each m ∈ [1, . . . , l],
{(vp, v

′
p, ∅)} →∗

Σ,E∪E=,I {(vp,q, vp,q, Cp,q)}q∈Qp

where {(vp,q, vp,q, Cp,q)}q∈Qp is a normal form of {(vp, v
′
p, ∅)} on (TPSS’,→∗

Σ,E∪E=,I). We
call the problem that for a given term pair with condition (t, t′, C) where (t, t′, C) ∈ TPS
and TPS ∈ TPSS, we decide whether (t, t′, C) is an invalid term pair with condition the
invalidity decision problem of (t, t′, C). �

Definition 54 Let (Σ, E, I) be an equational and inequational specification and > be a
reduction ordering such that (Σ, E, I) and all the decision specifications are rewritable.
Let (TPSS,→∗

Σ,E,I) be the double term rewriting system with condition of (Σ, E, I). Let
∼ be the maximum equivalence relation on TPSS that
{(t, t′, Cm)}m∈M ∪ {(vk, v

′
k, Ĉk)}k∈K ∼ {(t, t′, C̄n)}n∈N ∪ {(vk, v

′
k, Ĉk)}k∈K if

1. for each m ∈M , for each k ∈ K, for each h ∈ H,

there is {(nl, n
′
l, C̃l)}l∈L such that

[{(th, t′h, ∅)}]⇒∗
Σ(X),E∪Cm,=∪Ĉk,=,∅ [{(nl, n

′
l, C̃l)}l∈L],

2. for each m ∈M , for each k ∈ K, for each j ∈ Jm,

there is {(nl, n
′
l, C̃l)}l∈L such that

[{(um,j, u
′
m,j, ∅)}]⇒∗

Σ(X),E∪Cm,=∪Ĉk,=,∅ [{(nl, n
′
l, C̃l)}l∈L],

3. for each m ∈M , for each k ∈ K, for each j ∈ Jk,

there is {(nl, n
′
l, C̃l)}l∈L such that

[{(ūk,j, ū
′
k,j, ∅)}]⇒∗

Σ(X),E∪Cm,=∪Ĉk,=,∅ [{(nl, n
′
l, C̃l)}l∈L],

4. for each n ∈ N , for each k ∈ K, for each h ∈ H,

there is {(nl, n
′
l, C̃l)}l∈L such that

[{(th, t′h, ∅)}]⇒∗
Σ(X),E∪Cn,=∪Ĉk,=,∅ [{(nl, n

′
l, C̃l)}l∈L],

5. for each n ∈ N , for each k ∈ K, for each j ∈ Jn,

there is {(nl, n
′
l, C̃l)}l∈L such that

[{(un,j, u
′
n,j, ∅)}]⇒∗

Σ(X),E∪Cn,=∪Ĉk,=,∅ [{(nl, n
′
l, C̃l)}l∈L], and

55

6. for each n ∈ N , for each k ∈ K, for each j ∈ Jk,

there is {(nl, n
′
l, C̃l)}l∈L such that

[{(ūk,j, ū
′
k,j, ∅)}]⇒∗

Σ(X),E∪Cn,=∪Ĉk,=,∅ [{(nl, n
′
l, C̃l)}l∈L]

where

1. I is {(∀X)th �= t′h}h∈H ,

2. Cm is (∪i∈Im(um,i = u′
m,i)) ∪ (∪j∈Jm(vm,j �= v′

m,j)),

3. C̄n is (∪i∈In(ūn,i = ū′
n,i)) ∪ (∪j∈Jn(v̄n,j �= v̄′

n,j)), and

4. Ĉk is (∪i∈Ik
(ûk,i = û′

k,i)) ∪ (∪j∈Jk
(v̂k,j �= v̂′

k,j)). �

The condition that double term rewriting system with condition is an implementation of
the complete deduction system is defined by using the following decreasing and complete.

Definition 55 Let (Σ, E, I) be an equational and inequational specification and > be
a reduction ordering such that (Σ, E, I) is rewritable. We say that the equational and
inequational specification (Σ, E, I) is decreasing if it satisfies the following conditions:

for each Σ-equation in E
(∀X)lt = rt if (u1 = u′

1 and uk = u′
k) and (v1 �= v′

1 and vl �= v′
l)

for each i ∈ [1, . . . , k] and for each j ∈ [1, . . . , l],
lt > ui and lt > vj. �

Definition 56 Let (Σ, E, I) be an equational and inequational specification and > be a
reduction ordering such that (Σ, E, I) is rewritable. We say that (Σ, E, I) is complete if
it satisfies the following conditions:

1. (Σ, E, I) is decreasing and

2. the quotient double term rewriting system with condition (QTPS,⇒∗
Σ,E,I) is conflu-

ent. �

Proposition 11 Given an equational and inequational specification (Σ, E, I) and a re-
duction ordering > such that:

1. (Σ, E, I) is rewritable and

2. the quotient double term rewriting system with condition (QTPS,⇒∗
Σ,E,I) is conflu-

ent,

then
(QTPS,⇒∗

Σ,E,I) is complete.

Proof : Because (Σ, E, I) is rewritable, (TPSS,→∗
Σ,E,I) is terminating. Therefore, (QTPS,

⇒∗
Σ,E,I) is terminating. From the assumption, (QTPS,⇒∗

Σ,E,I) is confluent. Therefore,
(QTPS,⇒∗

Σ,E,I) is complete. �

Proposition 12 Given an equational and inequational specification (Σ, E, I), a reduction
ordering >, and a term pair with condition (t, t′, C) such that:

56

1. (t, t′, C) is in TPS where

(a) TPS ∈ TPSS and

(b) (TPSS,→∗
Σ,E,I) is the double term rewriting system with condition of (Σ, E, I),

2. (Σ, E, I) is rewritable and decreasing, and

3. the decision specifications occurring in the invalidity decision problem are rewritable,

then
to solve the invalidity decision problem, at most finite invalidity decision problems must
be solved.

Proof : Let (ti, t
′
i,∪j∈[1,...,i]Cj) be the term pairs with condition such that:

1. {(t0, t′0, C0)} →∗
Σ,E,I {(ti, t′i, Ci)} ∪ TPSothers,i →∗

Σ,E,I {(t, t′, C)} ∪ TPSothers,

2. C0 is ∅, and

3. for each i, there exists a conditional Σ-equation with �=
(∀X)lt = rt if Caxm ∈ E such that:

(a) ti = cti(z ← sb(lt)), ti+1 = cti(z ← sb(rt)), and Ci+1 = sb(Caxm) or

(b) t′i = cti(z ← sb(lt)), t′i+1 = cti(z ← sb(rt)), and Ci+1 = sb(Caxm).

Let ((u1 = u′
1 and uk = u′

k) and (v1 �= v′
1 and vl �= v′

l)) be C. Because (Σ, E, I) is
rewritable and decreasing,

(C1) t0 > ctum [um] and t0 > ctvp[vp].

Consider an invalidity decision problem of (t̂, t̂′, Ĉ) that occurs in the invalidity deci-
sion problem. We assume that the problem is caused by the construction of a decision
specification (Σ, E ∪ Ē=, I). Now let (Σ, E ∪ Ē= ∪ Ê=, I) be the decision specification of
(t̂, t̂′, Ĉ) and let ((û1 = û′

1 and ûk = û′
k) and (v̂1 �= v̂′

1 and v̂l �= v̂′
l)) be Ĉ. New invalidity

decision problems may have to be solved in the rewriting process of

1. (ûm, û′
m, ∅) and

2. (v̂p, v̂
′
p, ∅).

Consider the rewriting process of (ûm, û′
m, ∅). Let {(ûm,n, û

′
m,n, Ĉm,n)}n∈Nm be a set

of term pairs with condition that {(ûm, û′
m, ∅)} →∗

Σ,E∪Ē=,I {(ûm,n, û
′
m,n, Ĉm,n)}n∈Nm. Note

that the invalidity decision problem of (ûm,n, û
′
m,n, Ĉm,n) is a new invalidity decision prob-

lem that must be solved. Because (Σ, E, I) is rewritable and decreasing and (Σ, E∪Ē=, I)
is rewritable,

(C2) ûm > ctûm,n [ûm,n].

Consider the rewriting process of (v̂p, v̂
′
p, ∅). Let {(v̂p,q, v̂

′
p,q, Ĉp,q)}n∈Np be a set of term

pairs with condition that {(v̂p, v̂
′
p, ∅)} →∗

Σ,E∪Ē=∪Ê=,I
{(v̂p,q, v̂

′
p,q, Ĉp,q)}n∈Np. Note that the

invalidity decision problem of (v̂p,q, v̂
′
p,q, Ĉp,q) is a new invalidity decision problem that

must be solved. Because (Σ, E, I) is rewritable and decreasing and (Σ, E ∪ Ē= ∪ Ê=, I) is
rewritable,

(C3) v̂p > ctv̂p,q [v̂p,q].
By (C1), (C2), (C3), and induction,

57

1. t0 > ctum [um] > · · · > ctum [· · · [ûm] · · ·] > ctum [· · · [ctûm,n [ûm,n]] · · ·] and

2. t0 > ctvp [vp] > · · · > ctvp[· · · [v̂p] · · ·] > ctvp[· · · [ctv̂p,q [v̂p,q]] · · ·].
Because > is Noetherian, to solve the invalidity decision problem, finite layers of invalidity
decision problems must be solved. Moreover, because > is Noetherian, for each layer, there
are at most finite invalidity decision problems that must be solved. Therefore, to solve
the invalidity decision problem, at most finite invalidity decision problems must be solved.
�

Proposition 13 Given an equational and inequational specification (Σ, E, I) and a re-
duction ordering > such that:

1. (Σ, E, I) is rewritable and complete and

2. all the decision specifications are rewritable,

then
all the quotient decision term rewriting systems are complete.

Proof : Because > is Noetherian, all the quotient decision term rewriting systems are
terminating. From Definition 53, the addition of E= in the definition does not destroy
confluent property. And (Σ, E, I) is complete, therefore, all the quotient decision term
rewriting systems are confluent. Therefore, all the quotient decision term rewriting sys-
tems are complete. �

Corollary 14 Given an equational and inequational specification (Σ, E, I), a reduction
ordering >, and a term pair with condition (t, t′, C) such that:

1. (t, t′, C) is in TPS where

(a) TPS ∈ TPSS and

(b) (TPSS,→∗
Σ,E,I) is the double term rewriting system with condition of (Σ, E, I),

2. (Σ, E, I) is rewritable and decreasing, and

3. the decision specifications occurring in the invalidity decision problem are rewritable,

then
the invalidity decision problem of (t, t′, C) is decidable. �

From now on, we show that double term rewriting system with condition is an implemen-
tation of the complete deduction system.

Proposition 15 Given an equational and inequational specification (Σ, E, I) and a re-
duction ordering > such that:

1. (Σ, E, I) is rewritable and

2. all the decision specifications are rewritable,

then
(Σ, E, I) is splitable on
Σ.

58

Proof : Consider conditional Σ-equations with �= ceqj (j ∈ J)
(∀X)t = t′ if Cj that E ∪ I
Σ ceqj .

Because (Σ, E, I) and all the decision specifications are rewritable, there is a set of con-
ditions ∪k∈KĈk such that:

1. J ⊂ K,

2. Ĉj is Cj for each j ∈ J , and

3. for each (Σ, E, I)-model M , for each assignment as : X → M , there is exactly one
i that as(Ĉi) is true.

From 3 of the properties of Ĉk, the following relations hold:

1. for each j ∈ J , for each k ∈ K\J , for each (Σ, E, I)-model M and for each assign-
ment as : X →M ,

as(Ĉj ∪ Ĉk) = false.

2. for each (Σ, E, I)-model M and for each assignment as : X →M , there is j ∈ J or
k ∈ K\J such that:

as(Ĉj) = true or as(Ĉk) = true.

Therefore, {Ĉk}k∈K\J is the complement set of {Cj}j∈J . Therefore, (Σ, E, I) is splitable
on
Σ. �

Proposition 16 Let (Σ, E, I) be an equational and inequational specification (Σ, E, I)
and > be a reduction ordering such that:

1. (Σ, E, I) is rewritable and complete and

2. all the decision specifications are rewritable.

Let {(t, t′, C)} and {(nj , n
′
j, Cj)}j∈J be sets of term pairs with condition on (Σ, E, I) or

the decision specifications such that [{(nj , n
′
j, Cj)}j∈J] is the normal form of [{(t, t′, C)}]

on the quotient double term rewriting system with condition. Then,
E ∪ I
Σ (∀X)t = t′ if C if
∀j ∈ J . nj = n′

j and
E ∪ I
Σ (∀X)t �= t′ if

C = ∅ and ∃i ∈ J . ni �= n′
i.

Proof : Each single step of rewriting and the decisions is an application of the deduction
rules in Definition 50. Induction now extends the result from ⇒Σ,E,I to the relation
⇒∗

Σ,E,I . So, the proposition holds. �

Corollary 17 Let (Σ, E, I) be an equational and inequational specification (Σ, E, I) and
> be a reduction ordering such that:

1. (Σ, E, I) is rewritable and complete and

2. all the decision specifications are rewritable.

59

undeducibility decision problem is decidable on (Σ, E, I) and specifications occurring in
the deduction of Definition 50. �

Proposition 18 Given an equational and inequational specification (Σ, E, I), a reduction
ordering >, a Σ-term t, and a set of term pairs with condition {(nj, n

′
j , Cj)}j∈J such that:

1. (Σ, E, I) is rewritable and complete,

2. all the decision specifications are rewritable, and

3. [{(nj, n
′
j , Cj)}j∈J] is the normal form of [{(t, t, ∅)}] on the quotient double term

rewriting system with condition

then

1. for each j ∈ J , nj = n′
j,

2. the normal form of [{(t, nj, Cj)}j∈J] is [{(nj , nj, Cj)}j∈J], and

3. the normal form of [{(nj, t, Cj)}j∈J] is [{(nj , nj, Cj)}j∈J].

Proof : From Definition 52, the first terms and the second terms of the term pairs with
condition are rewritten independently. So, the proposition holds. �

Corollary 19 Given an equational and inequational specification (Σ, E, I), a reduction
ordering >, a Σ-term t, and a set of term pairs with condition {(nj, n

′
j , Cj)}j∈J such that:

1. (Σ, E, I) is rewritable and complete,

2. all the decision specifications are rewritable, and

3. [{(nj, n
′
j , Cj)}j∈J] is the normal form of [{(t, t, ∅)}] on the quotient double term

rewriting system with condition

then

1. E ∪ I
Σ (∀X)t = nj if Cj for each j ∈ J and

2. E ∪ I
Σ (∀X)nj = t if Cj for each j ∈ J . �

Proposition 20 Given an equational and inequational specification (Σ, E, I) and a re-
duction ordering > such that:

1. (Σ, E, I) is rewritable and complete and

2. all the decision specifications are rewritable

then
the normal form of [{(t, t′, ∅)}] on the quotient double term rewriting system has the
form [{ni, ni, Ci}i∈I] iff E ∪ I
Σ (∀X)t = t′

Proof : ⇒ It is proved in Proposition 16.
⇐ By Corollary 19,

60

1. E ∪ I
Σ (∀X)n̄j = t if C̄j (j ∈ J) and

2. E ∪ I
Σ (∀X)t′ = n̂k if Ĉk.

Therefore E ∪ I
Σ (∀X)n̄j = n̂k if C̄j ∪ Ĉk. Therefore, [{(t, t′, ∅)}]⇒Σ,E,I [{(n̄j, n̄j , C̄j ∪
Ĉk}j∈J,k∈K]. So, the proposition is showed. �

Theorem 21 Given an equational and inequational specification (Σ, E, I) and a reduction
ordering > such that:

1. (Σ, E, I) is rewritable and complete and

2. all the decision specifications are rewritable

then
the normal form of [{(t, t′, ∅)}] on the quotient double term rewriting system has the
form [{ni, ni, Ci}i∈I] iff E ∪ I |=Σ (∀X)t = t′

Proof : By Corollary 17, undeducibility decision problem is decidable on (Σ, E, I) and all
the decision specifications. So, by Theorem 10 and Proposition 20, the theorem is proved.
�

61

Chapter 7

LFMB

In LFMB, we formalize AA-trees model of component specifications by using projection-
style behavioral specifications. Projection-style behavioral specification is a kind of be-
havioral specification.

We specify behavior of components, behavior of software, and how to combine com-
ponents to construct the software by using projection-style behavioral specifications. As
consistency verification, we verify whether the combination of the components satisfies
the behavior of the software by using the projection-style behavioral specifications.

The target problem of LFMB is the above verification and the simple logic of LFMB
is behavioral logic.

In Chapter 7, firstly, we discuss projection-style behavioral specification. Secondly,
we formalize AA-trees model of component specifications by using projection-style be-
havioral specifications. As we discussed in Chapter 5, an AA-trees model is specified
by using UML with OCL. Then, we discuss a translation method from UML diagrams
with OCL descriptions into projection-style behavioral specifications. Finally, we dis-
cuss consistency verification methods of the UML diagrams by using the projection-style
behavioral specifications.

7.1 A Formalization of Tree Architecture by using

Projection-style Behavioral Specification

Projection-style behavioral specification is a special class of algebraic behavioral specifica-
tion [5, 10, 15]. We developed projection-style behavioral specification to formalize event
model of tree architecture. We use projection-style behavioral specification for formalizing
AA-trees model of component specifications. The idea of it dates back to [21, 26, 27].

Projection-style behavioral specification is component specification. As we discussed
in Definition 23, we call the data part of a projection-style behavioral specification a data
specification.

7.1.1 Data structures

In data specification, we specify data structures.

62

7.1.2 Event model of component

We specify an event model of a component by using a component specification, which is
an algebraic behavioral specification.

Observations and actions

We assign observations and actions of the event model to observations and actions of the
algebraic behavioral specification.

Effect axioms

We specify effects of an action as changes between observations’ values immediately before
and after the action has happened.

Definition 57 Let (V, Ψ, {h}, Σ) be a hidden signature, Σobs be a set of observations,
and Σact be a set of actions such that Σ = Ψ ∪ Σobs ∪ Σact. Consider an action acti and
an observation obse. We call a Σ-equation an effect axiom of acti by obse if it has the
following form:

1. (∀X)obse(DS, acti(DS’, S)) = F [obse(DS, S)].

We use effaxmobse,acti to denote the effect axiom. �

Event model of component

We specify an event model of a component by using the following primitive component
specification.

Definition 58 Let (V, Ψ, {h}, Σ) be a hidden signature, Σobs be a set of observations, and
Σact be a set of actions such that Σ = Ψ∪Σobs∪Σact. Let Eeffaxm be {effaxmobse,acti | ∀obse ∈
Σobs, ∀acti ∈ Σact}. We call the algebraic behavioral specification (V, Ψ, EΨ, {h}, Σ, Eeffaxm)
a primitive component specification.

For the primitive component specification, we call h the root sort of the primitive
component specification. �

Note that the root sort is the set of states of the component.

Example 15 Consider PUT-A of Example 3. The primitive component specification of
PUT group component, like PUT-A is as follows:

mod* PUT { pr(BOOL+MACHINE+FILE) *[Put]*

bop getremote : Put -> Machine

bop isinlocal : File Put -> Bool

bop isinremote : File Machine Put -> Bool

bop setremote : Machine Put -> Put

bop put : File Put -> Put

var P : Put vars I J : File

var M : Machine

eq isinlocal(I, put(J,P))=isinlocal(I, P) .

ceq isinremote(I, M, put(J, P)) = t

if (I == J) and (getremote(P) == M) .

63

[The remaining codes are omitted.]

In CafeOBJ , bop, var(s), and (c)eq declare observations and actions, variables, and
(conditional) equations, respectively. Put surrounded by *[and]* is a hidden sort (type),
that is the set of PUT group component’s states. getremote, isinlocal, and isinremote
are observations. setremote and put are actions. The first equation specifies the effect of
put on states through isinlocal, i.e. put does not add or does not delete files on the local
machine. The second equation specifies the effect of put on states through isinremote, i.e.
put transfers the specified file to the target remote machine. �

7.1.3 Composite component

A composite component is constructed from components and a connector. The connector
delegates observations and actions of the composite component to those of the construct-
ing components. We use the following projections to denote the delegation.

Definition 59 Let (Vi, Ψi, EΨ,i, Hi, Σi, Ei) (i ∈ I) be an algebraic behavioral specification
such that Hi∩Hj = ∅ if i �= j. Let hi be in Hi. Let Σobs,i and Σact,i be sets of observations
and actions in Σi, respectively. Let (V, Ψ, {h}, Σ) be a hidden signature such that h �∈ Hi

for each i. Let (Ψ, EΨ) be a data specification. We call the operator whose rank is (h, hi)
a projection from h to hi. We use projh,hi

to denote the projection.

Let Σ̂ be Σ∪ (∪i∈IΣi). Let Σobs and Σact be the sets of all the observations and all the
actions of Σ, respectively. Consider an observation obse in Σobs. We call a Σ̂-equation a
projection axiom of obse if it has the following form:

1. (∀X)obse(DS, S) = F [obsec1(DS1, projh,hc1
(S)), . . . , obseck(DSk, projh,hck

(S))]

where c1, . . . , ck ∈ I and obsec1, . . . , obseck are observations in Σck, respectively. We use
obspjobse to denote the projection axiom. Consider an action acti in Σact. We call a
Σ̂-equation a projection axiom of acti to hi if it has the following form:

1. (∀X)projh,hi
(acti(DS, S)) = actik(DSk, · · · acti1(DS1, projh,hi

(S)) · · ·)
where acti1, . . . , actik are actions in Σi. We use actpjacti,hi

to denote the projection axiom.
Let Σproj be {projh,hi

| ∀i ∈ I}. Let obspjobse be a projection axiom of obse for each
obse in Σobs. Let actpjacti,hi

be a projection axiom of acti to hi for each acti in Σact and
for each i in I. Let Eobspj be {obspjobse | ∀obse ∈ Σobs} and Eactpj be {actpjacti,hi

| ∀acti ∈
Σact, ∀i ∈ I}. We call a 8-tuple (V, Ψ, EΨ, h, Σ, {hi}i∈I , Σproj, Eobspj ∪ Eactpj) a connector
of (Vi, Ψi, EΨ,i, Hi, Σi, Ei) (i ∈ I). �

Consider an action of a composite component. To get the effects of the action, se-
quential execution of actions of the constructing components may be necessary. We use
the following sequentializing operators to denote the sequential execution.

Definition 60 Let (V, Ψ, {h}, Σ) be a hidden signature and Σact be the set of all the
actions of Σ. Consider an action acti whose rank is (dseq s, s). Let seqopi (i ∈ I)
be operators whose ranks are (dseq s, s) and Σ̂ be Σ ∪ (∪i∈I{seqopacti,i}). We call each
seqopacti,i a sequentializing operator of acti and call acti a sequentialized action if there is

a Σ̂-equation that has the following form:

64

1. (∀X)acti(DS, S) = seqopacti,k(DS, · · · seqopacti,1(DS, S) · · ·).

We call the Σ̂-equation a sequentializing axiom of acti and use seqaxmacti to denote it.
We use Σseqop,acti to denote the set of all the sequentializing operators {seqopi}i∈I . �

We extend the definition of connectors (Definition 59) for dealing with sequential execution
of actions of the constructing components.

Definition 61 Let (Vi, Ψi, EΨ,i, Hi, Σi, Ei) and so on be those in Definition 59. Let Σsact

be a set of sequentialized actions in Σact and Σseqop be ∪acti∈ΣsactΣseqop,acti. Let Eseqaxm

be {seqaxmacti}acti∈Σsact . Let Σ̃act be (Σact\Σsact) ∪ Σseqop and Ẽactpj be Eactpj defined by

using Σ̃act instead of Σact. Let Σ̃ be ((Σ\Σact) ∪ Σ̃act) ∪ (∪i∈IΣi). We call a 8-tuple
(V, Ψ, EΨ, h, Σ̃, {hi}i∈I , Σproj, Eobspj∪Ẽactpj∪Eseqaxm) a connector of (Vi, Ψi, EΨ,i, Hi, Σi, Ei)
(i ∈ I). �

To specify composite components, we use the following combinations.

Definition 62 Let (Vi, Ψi, EΨ,i, Hi, Σi, Ei) (i ∈ I) be an algebraic behavioral specifica-
tion such that Hi ∩ Hj = ∅ if i �= j. Let (V, Ψ, EΨ, h, Σ, {hi}i∈I , Σproj, E) be a con-

nector of (Vi, Ψi, EΨ,i, Hi, Σi, Ei) (i ∈ I). Let V̂ be V ∪ (∪i∈IVi), Ψ̂ be Ψ ∪ (∪i∈IΨi),

ÊΨ be EΨ ∪ (∪i∈IEΨ,i), Ĥ be {h} ∪ (∪i∈IHi), and Σ̂ be Σ ∪ Σproj ∪ (∪i∈IΣi), Ê be

E ∪ (∪i∈IEi). We call the algebraic behavioral specification (V̂ , Ψ̂, ÊΨ, Ĥ, Σ̂, Ê) a com-
bination of (Vi, Ψi, EΨ,i, Hi, Σi, Ei) (i ∈ I) by (V, Ψ, EΨ, h, Σ, {hi}i∈I , Σproj, E). For the
combination, we call h the root sort of the combination. �

We specify composite components by using the following component specifications.

Definition 63 Component specifications are inductively defined as follows:

1. let (Vi, Ψi, EΨ,i, {hi}, Σi, Ei) (i ∈ I) be primitive component specifications such that
hi �= hj if i �= j and let (V, Ψ, EΨ, h, Σ, {hi}i∈I , Σproj, E) be a connector of (Vi, Ψi, EΨ,i,

{hi}, Σi, Ei) (i ∈ I), then the combination (V̂ , Ψ̂, ÊΨ, Ĥ, Σ̂, Ê) is a component spec-
ification and

2. let (Vi, Ψi, EΨ,i, Hi, Σi, Ei) (i ∈ I) be component specifications such that Hi∩Hj = ∅
if i �= j and let (V, Ψ, EΨ, h, Σ, {hi}i∈I , Σproj, E) be a connector of (Vi, Ψi, EΨ,i, Hi, Σi,

Ei) (i ∈ I), then the combination (V̂ , Ψ̂, ÊΨ, Ĥ, Σ̂, Ê) is a component specification.
�

Note that each hi is the set of states of a constructing component and h is the set of states
of a composite component.

Example 16 Consider PUT of Example 4. The primitive component specification of
PUT group component that specifies how to combine FTP group component and INFO
group component is as follows:

mod* PUT { pr(BOOL+MACHINE+FILE)

pr(FTP+INFO) *[Put]*

bop getremote : Put -> Machine

bop isinlocal : File Put -> Bool

bop isinremote : File Machine Put -> Bool

65

bop setremote : Machine Put -> Put

bop put : File Put -> Put

op ftp : Put -> Ftp

op info : Put -> Info

eq getremote(P) = getmachine(info(P)) .

eq ftp(put(I, P))

= put(I, getmachine(info(P)),

name(getmachine(info(P))),

passwd(getmachine(info(P))),

ftp(P)) .

eq info(put(I, P)) = info(P) .

[The remaining codes are omitted.]

pr(FTP+INFO) declares that primitive component specifications of FTP group component
and INFO group component are imported. ftp and info are projections to the states of FTP
group component and of INFO group component, respectively. The first equation specifies
that an observation getremote corresponds to an observation getmachine of INFO group
component. The second and the third equations specify that an action put corresponds to
an action put on FTP group component and it does not influence the state of INFO group
component. �

Definition 64 We call component specifications projection-style behavioral specifica-
tions. �

7.1.4 Conditional component specification

A component specification can have conditional equations. By replacing equations (∀X)lt =
rt in Definition 63 with the set of conditional equations (∀X)lt = rti if Ci that each pair
(lt, rti) satisfies the constraint of the pair (lt, rt), we construct a conditional component
specification.

Definition 65 Consider an action acti and an observation obse. We call the following
set of conditional Σ-equation with �= {ceqi}i∈I the effect axiom set of acti by obse:

1. each ceqi has the form:

(∀X)obse(DS, acti(DS’, S)) = Fi[obse(DS, S)] if Ci

where Fi is Σ̄(X)-term and Σ̄ is Σ\Σact,

2. each Ci has the form:

(ui,1 = u′
i,1) and · · · and (ui,k = u′

i,k) and (ui,k+1 �= u′
i,k+1) and · · · and

(ui,l �= u′
i,l),

3. each ui,j is Σ̄(X)-term and each u′
i,j is Ψ(X)-term, and

4. for each Σ-algebra M , for each assignment as : X →M , there is exactly one i that
as(Ci) is true. �

66

Definition 66 Consider an observation obse whose sort is h and the set of projections
{projh,hi

}i∈I . We call the following set of conditional Σ-equation with �= the projection
axiom set of obse:

1. each ceqi has the form:

(∀X)obse(DS, S) = Fi[· · · , obsei,j(DSi,j, projh,hci,j
(S)), · · ·] if Ci

where Fi[· · ·] is Σ̃(X)-term and Σ̃ is (∪i∈IΣobs,hi
) ∪ Σproj ∪Ψ,

2. each Ci has the form:

(ui,1 = u′
i,1) and · · · and (ui,k = u′

i,k) and (ui,k+1 �= u′
i,k+1) and · · · and

(ui,l �= u′
i,l),

3. each ui,j is Σ̃(X)-term and each u′
i,j is Ψ(X)-term, and

4. for each Σ-algebra M , for each assignment as : X →M , there is exactly one i that
as(Ci) is true. �

Definition 67 Consider an action acti whose sort is h and a projection projh,h′. We call
the following set of conditional Σ-equation with �= the projection axiom set of acti to h′:

1. each ceqi has the form:

projh,h′(acti(DS, S)) > actii,ki
(DSi,ki

, · · · actii,1(DSi,1, projh,h′(S)) · · ·),
2. each Ci has the form:

(ui,1 = u′
i,1) and · · · and (ui,k = u′

i,k) and (ui,k+1 �= u′
i,k+1) and · · · and

(ui,l �= u′
i,l),

3. each ui,j is Σ̃(X)-term and each u′
i,j is Ψ(X)-term, and

4. for each Σ-algebra M , for each assignment as : X →M , there is exactly one i that
as(Ci) is true. �

In the verification about component specifications that include conditional equations with
�=, the following descent ordering is useful.

Definition 68 Let (V, Ψ, H, Σ) be a hidden signature and >data be a reduction ordering
on Ψ(X). We call the following ordering > the descent ordering of Σ (with >data)

1. for each observation obse and for each action acti,

for each Σ̄(X)-term F ,

obse(DS, acti(DS’, S)) > F [obse(DS, S)].

where Σ̄ is Σ\Σact,

2. for each observation obse,

for each set of projections {projh,hi
}i∈I , for each set of observations {obshi

}i∈I

that the sorts of obshi
are hi, and for each Σ̃(X)-term F ,

obse(DS, S) > F [· · · , obsej(DSj, projh,hcj
(S)), · · ·]

where h is the sort of obse and Σ̃ is (∪i∈IΣobs,hi
) ∪ Σproj ∪Ψ,

67

3. for each action acti and for each projection projh,h′,

for each finite action sequence of sort h′,

projh,h′(acti(DS, S)) > actik(DSk, · · · acti1(DS1, projh,h′(S)) · · ·)
where h is the sort of acti,

4. for each sequentializing operator seqop and for each projection projh,h′,

for each finite action sequence of sort h′,

projh,h′(seqop(DS, S)) > actik(DSk, · · ·acti1(DS1, projh,h′(S)) · · ·)
where h is the sort of seqop,

5. for each sequentialized action acti,

acti(DS, S) > seqopacti,k(DS, · · · seqopacti,1(DS, S) · · ·),
6. for each action acti and for each projection projh,h′,

for each set of projections {projh,hi
}i∈I , for each set of observations {obshi

}i∈I

that the sorts of obshi
are hi, and for each Σ̃(X)-term F ,

projh,h′(acti(DS, S)) > F [· · · , obsei(DSi, projh,hi
(S)), · · ·]

where h is the sort of acti,

7. for each sequentializing operator seqop and for each projection projh,h′,

for each set of projections {projh,hi
}i∈I , for each set of observations {obshi

}i∈I

that the sorts of obshi
are hi, and for each Σ̃(X)-term F ,

projh,h′(seqop(DS, S)) > F [· · · , obsei(DSi, projh,hi
(S)), · · ·]

where h is the sort of seqop,

8. for each observation obse,

for each Ψ(X)-term d,

obse(DS, S) > d.

9. for each pair of Ψ(X)-terms (d, d′),

d > d′ if d >data d′,

10. for each pair of Σ(X)-terms (t, t′),

for each Σ(X)-term F ,

F [t] > F [t′] if t > t′, and

11. for each pair of Σ(X)-terms (t, t′),

for each substitution sb,

sb(t) > sb(t′) if t > t′. �

Proposition 22 Let (V, Ψ, H, Σ) be a hidden signature and >data be a reduction ordering
on Ψ(X). The descent ordering of Σ (with >data) is a reduction ordering. �

68

Theorem 23 Consider a component specification that includes conditional Σ-equations
with �= (Σ, E) and a descent ordering of Σ >, then

1. (Σ, E) is rewritable and complete and

2. all the decision specifications are rewritable. �

7.2 A Formalization of AA-trees Model of Compo-

nent Specifications by using Projection-style Be-

havioral Specifications

7.2.1 A formalization of AA-trees model of component specifi-

cations by using projection-style behavioral specifications

Data classes

A data class is a set of data objects. A visible sort of a projection-style behavioral
specification corresponds to a set of data. So, we assign a data class to a visible sort. We
call the sort a data sort.

Data operators

Because data operators are functions on data classes, we assign data operators operators
of data sorts.

Component classes and states

A hidden sort of a projection-style behavioral specification corresponds to a set of states
of a component. So, we assign the set of states of the component to a hidden sort.

Attributes

An attribute of an component is used for observing the state of the component. So, we
assign the attribute to an observation.

Methods

A method of an component is used for changing the state of the component. So, we assign
the method to an action.

Projection-lift associations

A projection-lift association is used for describing a parent-child relation. So, we assign
the projection-lift association to a projection.

69

7.3 Translation from UML diagrams into Projection-

style Behavioral Specifications

We translate data class diagrams into a data specification, translate basic class diagrams
and action usecse diagrams into a primitive component specification, and translate (a)
basic class diagrams, (b) decomposition class diagrams, and (c) decomposition sequence
diagrams or decomposition statechart diagrams into a component specification.

7.3.1 Data class diagrams

We translate data class diagrams into a data specification (Ψ, EΨ).

Data class diagrams

We translate operator declarations drawn in the middle parts of class boxes into Ψ.

Translation 1
Input: An operator declaration drawn in the middle part of a class box, i.e. a word of
language for data operator declarations discussed in Section 5.2
Output: An operator declaration of a data specification

The translation function F is defined as follows:

1. F (LDOD) = op F (DTOPWV) -> dtnm (Production rule (1))

2. F (DTOPWV) = dtop : (Production rule (2))

3. F (DTOPWV) = dtop : F (DDLIST) (Production rule (3))

4. F (DDLIST) = F (DTDCL) (Production rule (4))

5. F (DDLIST) = F (DDLIST) F (DTDCL) (Production rule (5))

6. F (DTDCL) = dtnm (Production rule (6)) �

OCL descriptions complementing data class diagrams

We translate invariant declarations of OCL descriptions complementing data class dia-
grams into EΨ.

Translation 2
Input: An invariant declaration, i.e. a word of EQD of OCL for data discussed in Section
5.2
Output: An equation declaration of a data specification

The translation function F is defined as follows:

1. F (EQD) = eq F (DTERM) = F (DTERM) . (Production rule (9))

2. F (DTERM) = dtv (Production rule (10))

70

3. F (DTERM) = dtop (Production rule (11))

4. F (DTERM) = dtop(F (DTLIST)) (Production rule (12))

5. F (DTLIST) = F (DTERM) (Production rule (13))

6. F (DTLIST) = F (DTLIST),F (DTERM) (Production rule (14)) �

7.3.2 Basic class diagrams

We translate basic class diagrams into a part of a primitive component specification
(V, Ψ, EΨ, {h}, Σ, E) and a part of a component specification (V, Ψ, EΨ, H, Σ, E).

Basic class diagram

We translate operator declarations drawn in the middle parts of class boxes into Σ\Ψ.

Translation 3
Input: An operator declaration drawn in the middle part of a class box, i.e. a word of
language for attribute declarations discussed in Section 5.2
Output: An operator declaration of a primitive component specification

The translation function F is defined as follows:

1. F (LAD) = bop F (DATTWVD) -> dtnm (Production rule (1))

2. F (DATTWVD) = datt : State (Production rule (3))

3. F (DATTWVD) = datt : F (ARGLIST) State (Production rule (4))

4. F (ARGLIST) = F (DDLIST) (Production rule (7))

5. F (DDLIST) = F (DTDCL) (Production rule (9))

6. F (DDLIST) = F (DDLIST) F (DTDCL) (Production rule (10))

7. F (DTDCL) = dtnm (Production rule (11)) �

7.3.3 Action usecase diagrams

We translate action usecase diagrams into a part of a primitive component specification
(V, Ψ, EΨ, {h}, Σ, E).

OCL descriptions complementing action usecase diagrams

We translate pre declarations and post declarations of OCL descriptions complementing
action usecase diagrams into E\EΨ.

71

Translation 4
Input: A pre declaration about data classes, i.e. a word of EQPRE of OCL for actions
that produces “DATTWA = DTERM” discussed in Section 5.2
Output: A conditional part of an equation declaration of a primitive component specifi-
cation

Let fspre be the translation function from AGTV into the set of variables corresponding
to the pre states of the agents. The translation function F is defined as follows:

1. F (EQPRE) = F (DATTWA) == F (DTERM) (Production rule (13))

2. F (DATTWA) = F (DATTWV), fspre(agtv)) (Production rule (15))

3. F (DATTWV) = datt(F (DARGLIST) (Production rule (16))

4. F (DARGLIST) = F (DTLIST) (Production rule (17))

5. F (DTLIST) = F (DTERM) (Production rule (19))

6. F (DTLIST) = F (DTLIST), F (DTERM) (Production rule (20))

7. F (DTERM) = dtv (Production rule (21))

8. F (DTERM) = dtop (Production rule (22))

9. F (DTERM) = dtop(F (DTLIST)) (Production rule (23)) �

Translation 5
Input: A post declaration about data classes, i.e. a word of EQPOST of OCL for actions
that produces “DLTPOST = EDTERMPOST” discussed in Section 5.2
Output: A conditional part of an equation declaration of a primitive component specifi-
cation

Let fspre and fspost be the translation functions from AGTV into the set of variables
corresponding to the pre states of the agents and the set of terms corresponding to the post
states of the agents, respectively. The translation function F ′ is defined as follows:

1. F ′(EQPOST) = F ′(DLTPOST) = F ′(EDTERMPOST) (Production rule (29))

2. F ′(DLTPOST) = F ′(DATTWV), fspost(agtv)) (Production rule (31))

3. F ′(DATTWV) = datt(F ′(DARGLIST) (Production rule (16))

4. F ′(DARGLIST) = F ′(DTLIST) (Production rule (17))

5. F ′(DTLIST) = F ′(DTERM) (Production rule (19))

6. F ′(DTLIST) = F ′(DTLIST), F ′(DTERM) (Production rule (20))

7. F ′(DTERM) = dtv (Production rule (21))

8. F ′(DTERM) = dtop (Production rule (22))

72

9. F ′(DTERM) = dtop(F ′(DTLIST)) (Production rule (23))

10. F ′(EDTERMPOST) = dtv (Production rule (32))

11. F ′(EDTERMPOST) = dtop (Production rule (33))

12. F ′(EDTERMPOST) = F ′(DATTWV), fspre(agtv)) (Production rule (34))

13. F ′(EDTERMPOST) = dtop(F ′(EDTLISTPOST)) (Production rule (35))

14. F ′(EDTLISTPOST) = F ′(EDTERMPOST) (Production rule (36))

15. F ′(EDTLISTPOST) = F ′(EDTLISTPOST), F ′(EDTERMPOST) (Production rule (37))

�

Translation 6
Input: OCL descriptions complementing an action usecase diagram
Output: Equation declarations of a primitive component specification

Let F and F ′ be the translation functions discussed in Translation 4 and Translation 5,
respectively. Let {EQPREi}i∈[1,...,k] and {EQPOSTj}j∈[1,...,l] be the sets of EQPRE words
and EQPOST words occurring in the OCL descriptions, respectively.

The output is as follows:
for each j ∈ [1, . . . , l],

1. eq F ′(EQPOSTj) . if k = 0 or

2. ceq F ′(EQPOSTj) if F (EQPOST1) and . . . and F (EQPOSTk) . if k > 0. �

7.3.4 Decomposition class diagrams

We translate decomposition class diagrams into a part of a component specification
(V, Ψ, EΨ, H, Σ, E).

OCL descriptions complementing decomposition class diagrams

We translate invariant declarations of OCL descriptions complementing decomposition
class diagrams into a part of E\EΨ.

Translation 7
Input: An invariant declaration about data classes, i.e. a word of DATTC of OCL for
constraints discussed in Section 5.2
Output: An equation declaration of a component specification

Let fspost be the translation function from AGTV into the set of terms corresponding
to the post states of the agents. The translation function F is defined as follows:

1. F (DATTC) = eq F (DATTWA) = F (EDTERMC) . (Production rule (18))

2. F (DATTWA) = F (DATTWV), fspost(agtv)) (Production rule (19))

73

3. F (DATTWV) = datt(F (DARGLIST) (Production rule (20))

4. F (EDTERMC) = dtv (Production rule (21))

5. F (EDTERMC) = dtop (Production rule (22))

6. F (EDTERMC) = F (DATTWV), proj(fspost(agtv))) (Production rule (23))

7. F (EDTERMC) = dtop(F (EDTLISTC)) (Production rule (24))

8. F (EDTLISTC) = F (EDTERMC) (Production rule (25))

9. F (EDTLISTC) = F (EDTLISTC), F (EDTERMC) (Production rule (26))

10. F (DARGLIST) = F (DTLIST) (Production rule (30))

11. F (DTLIST) = F (DTERM) (Production rule (32))

12. F (DTLIST) = F (DTLIST), F (DTERM) (Production rule (33))

13. F (DTERM) = dtv (Production rule (34))

14. F (DTERM) = dtop (Production rule (35))

15. F (DTERM) = dtop(F (DTLIST)) (Production rule (36)) �

7.3.5 Decomposition sequence diagrams

We translate decomposition sequence diagrams into a part of a component specification
(V, Ψ, EΨ, H, Σ, E).

Decomposition sequence diagrams

We translate decomposition sequence diagrams into a part of E\EΨ.

Translation 8
Input: A decomposition sequence diagram
Output: Equation declarations of a component specification

Let pmth be the parent method, ccmp be an child component, proj be the projection
from the parent component to ccmp, and cmths be the sequence of the child methods of
ccmp belonging to pmth. The result of the translation is defined as follows:

1. For each component, the result is eq proj(pmth(S)) = cmths(proj(S)) . �

7.3.6 Decomposition statechart diagrams

We translate decomposition statechart diagrams into a part of a component specification
(V, Ψ, EΨ, H, Σ, E).

74

Decomposition statechart diagrams

We translate decomposition statechart diagrams into a part of E\EΨ.

Translation 9
Input: A decomposition sequence diagram
Output: Equation declarations of a component specification

Let pmth be the parent method, ccmp be an child component, proj be the projection
from the parent component to ccmp, and cmths be the sequence of the child methods of
ccmp belonging to pmth. The result of the translation is defined as follows:

1. For each component, the result is eq proj(pmth(S)) = cmths(proj(S)) . �

7.3.7 Data specifications

Consider a data specification (Ψ, EΨ). As we discussed in Section 7.3.1, we get Ψ by
translating from data class diagrams and EΨ by translating from OCL descriptions com-
plementing data class diagrams.

7.3.8 Primitive component specifications

Consider a primitive component specification (V, Ψ, EΨ, {h}, Σ, E). As we discussed in
Section 7.3.2. we get Σ\Ψ by translating from basic class diagrams and as we discussed in
Section 7.3.3, we get E\EΨ by translating from OCL descriptions complementing action
usecase diagrams.

7.3.9 Component specifications

Consider a component specification (V, Ψ, EΨ, H, Σ, E). As we discussed in Section 7.3.2.
we get Σ\Ψ by translating from decomposition class diagrams and as we discussed in
Section 7.3.4, Section 7.3.5, and Section 7.3.6, we get E\EΨ by translating from (1)
OCL descriptions complementing decomposition class diagrams and (2) decomposition
sequence diagrams or decomposition statechart diagrams.

7.4 Consistency Verification of UML diagrams

As consistency verification, we verify whether the combination of the components satisfies
the behavior of the software by using the projection-style behavioral specifications. We
call the verification refinement verification.

7.4.1 Refinement verification

For algebraic behavioral specification [5, 10, 15], there is no deduction system that can
verify whether any equations satisfy any algebraic behavioral specifications [7]. But, for
projection-style behavioral specification, term rewriting based reducers can deduce those
(Theorem 24).

The formal definition of refinement is as follows:

75

Definition 69 Let (V, Ψ, EΨ, {h}, Σ, E) be a primitive component specification and
(V ′, Ψ′, EΨ′, H ′, Σ′, E ′) be a component specification such that (1) h ∈ H ′ and (2) Σ = Σ′|h
where Σ′|h is the set of Σ′-operators whose arities include h without projections. We
call (V ′, Ψ′, EΨ′ , H ′, Σ′, E ′) is a refinement of (V, Ψ, EΨ, {h}, Σ, E) if for each eq ∈ E,
E ′ |=Σ′ eq holds. �

Note that Σ′|h is the set of observations and actions of the composite component.

Theorem 24 Let (V, Ψ, EΨ, {h}, Σ, E) be a primitive component specification such that
(Ψ, EΨ) is a complete TRS and (V ′, Ψ′, EΨ′, H ′, Σ′, E ′) be a component specification such
that (1)V ⊂ V ′, Ψ ⊂ Ψ′, and EΨ ⊂ EΨ′, (2) h ∈ H ′, and (3) Σ = Σ′|h where Σ′|h is the
set of Σ′-operators whose arities include h without projections. (V ′, Ψ′, EΨ′, H ′, Σ′, E ′) is a
refinement of (V, Ψ, EΨ, {h}, Σ, E) iff for each (∀X)v = v′ ∈ E, normE′(v) = normE′(v′)
�

In data specifications (Ψ, EΨ), we specify data structures. Usually, data structures are
simple, for example the set of machine names. So, we can usually write (Ψ, EΨ) as a
complete TRS.

Term rewriting based reducers can automatically check whether normE′(v) = normE′(v′)
holds. So, refinement verification can be automatically executed.

Example 17 For CafeOBJ , there is a term rewriting based reducer the CafeOBJ verifica-
tion system. It supports red command that compares the normal forms of the both sides.
The CafeOBJ verification system executes verification scripts like the following:

open .

red isinlocal(I,put(J,P)) == isinlocal(I,P) .

close

Then, it returns the verification result, i.e. true or false. open command reads a specifi-
cation, on which term rewriting is executed.

Consider refinement verification that each axiom of the component specification in Ex-
ample 15 holds on the component specification in Example 16. For the script corresponding
to each axiom, it returns true. So, refinement verification succeeds. �

76

Chapter 8

LFME

In LFME, we formalize AA-trees model by using equational specifications.
We specify a business model, behavior of components, behavior of software, and how

to combine components to construct the software by using equational specifications. As
consistency verification, we verify properties of the business model and whether the com-
bination of the components satisfies the behavior of the software by using the equational
specifications.

The target problem of LFME is the above verification and the simple logic of LFME
is equational logic.

Firstly, we formalize AA-trees model by using equational specifications. As we dis-
cussed in Chapter 5, an AA-trees model is specified by using UML with OCL. Then, we
discuss a translation method from UML diagrams with OCL descriptions into equational
specifications. Finally, we discuss consistency verification methods of the UML diagrams
by using the equational specifications.

8.1 A Formalization of AA-trees Model by using Equa-

tional Specifications

8.1.1 Static structure

Classes

A class is a set of objects. A sort of an equational specification corresponds to a set of
something. So, we assign a class to a sort. We call the sorts assigned to agent classes
agent sorts and the sorts assigned to data classes data sorts.

The set of states

We assign the set of states to a sort. We call the sort the state sort.

Attributes

An attribute is a function of a class. So, we assign an attribute to an operator whose
arities include the sort corresponding to the class. Because attribute’s values are changed
by actions, the operator assigned to the attribute must have the state sort in its arities.

77

Figure 8.1: Decomposition of an association
Figure 8.2: Decomposition of an associa-
tion

Data operators

Because data operators are functions on data classes, we assign data operators operators
of data sorts.

Definition 70 Let AG and DT be sets of sorts such that AG ∩ DT = ∅ and s be a
sort. Let ΣAG and ΣDT be sets of operators whose ranks are (1) (d1 · · · dn c s, b) or
(d1 · · ·dn c′ c s, b) and (2) (d1 · · · dn, d) where di, d ∈ DT, b ∈ DT ∪ AG, n ≥ 0, and
c, c′ ∈ AG, respectively. We call the (AG ∪ DT ∪ {s})-sorted signature (ΣAG ∪ ΣDT) a
static signature. We call elements of AG agent sorts, elements of DT data sorts, and s
the state sort. We call elements of ΣAG attributes and elements of ΣDT data operators.
Especially, we call attributes attributes of c. �

Associations

For the case that those attributes’ multiplicity is “1”, we specify the association between
attr and attr’ as equations whose meanings are that attr and attr’ are the reverse of
attr’ and attr, respectively. For the case that those attributes’ multiplicity is “0 . . . n”, we
specify the association as an equation whose meaning is that both characteristic functions
corresponding to those attributes return the same value.

Definition 71 Let attr and attr’ be attributes. We call a set of Σ-equations whose forms
are one of the following forms the association axiom set of attr-attr’ association:

1. (∀X)attr’(DSn, attr(DSn, C, S), S) = C and
(∀X)attr(DSn, attr’(DSn, C ′, S), S) = C ′ or

2. (∀X)attr’(DSn, C, C ′, S) = attr(DSn, C ′, C, S)

where DSn is a sequence of variables of data sorts whose length is n(≥ 0), C and C ′

are variables of agent sorts, and S is a variable of the state sort and we call the pair
(attr, attr’) attr-attr’ association. We call attr and attr’ the reverse attributes of attr’ and
attr, respectively. �

Example 18 Consider c-purchaser - c-vendor association in Figure 8.1 whose multiplic-
ity is “1”. The association is specified as follows:

var V : Vendor var P : Purchaser var S : State

eq c-vendor(c-purchaser(V, S), S) = V .

eq c-purchaser(c-vendor(P, S), S) = P .

78

�

Example 19 Consider purchaser-vendor association in Figure 8.2 whose multiplicity is
“0 . . . n”. The association is specified as follows:

var V : Vendor var P : Purchaser var S : State

eq vendor(V, P, S) = purchaser(P, V, S) .

�

Data Structures

We specify data structures as equations of data sorts.

Definition 72 Let (ΣDT ∪ ΣAG) be a static signature. We call a set of ΣDT-equations a
data axiom set. �

Basic Static Structures

A basic static structure is a static structure constructed from classes, attributes, asso-
ciations, and data structures. We specify the basic static structure as an equational
specification. We call the equational specification a basic static specification.

Definition 73 Let Σ be a static signature and Edata be a data axiom set. Let ASS be a
set of associations whose attributes are in Σ and Eass be the sum of the association axiom
set of all the elements of ASS. We call (Σ, Eass ∪ Edata) a basic static specification. �

A basic static specification has the following property.

Proposition 25 Let (Σ, E) be a basic static specification. If 〈TΣDT
,→Edata

〉 is complete,
〈TΣ,→E〉 is complete, too.

Proof : Firstly, we prove that 〈TΣ,→E〉 is Noetherian. Consider a reduction sequence
a0 →E a1 →E · · ·. Let n be the occurrence number of the attributes having associations
in a0. From Definition 71, the sequence has at most n reductions by rewrite rules of
Eass. Note that the sequence is divided into (1) at most n reduction sequences by using
rewrite rules of Eass and (2) at most n+1 reduction sequences on 〈TΣDT

,→Edata
〉. Because

〈TΣDT
,→Edata

〉 is Noetherian, any reduction sequences on 〈TΣDT
,→Edata

〉 are finite. So, the
sequence is finite. Therefore, 〈TΣ,→E〉 is Noetherian. Secondly, we prove that 〈TΣ,→E〉
is local confluent. Consider a critical pair [P, Q] caused by rewrite rules of Edata. Because
〈TΣDT

,→Edata
〉 is complete and Edata ⊂ E, normE(P) = normE(Q). Consider a critical

pair [P, Q] caused by rewrite rules of Eass. Because these rewrite rules are 1 of Definition
71, P = attr’(DSn, C ′, S), Q = C(= attr’(DSn, C ′, S)) where the minimal unifier is {C ←
attr’(DSn, C ′, S)}, i.e. P = Q. From Definition 71, there is no critical pair caused by
a rewrite rule of Edata and that of Eass. By Knuth-Bendix lemma, 〈TΣ,→E〉 is local
confluent. Finally, by Newman lemma, 〈TΣ,→E〉 is confluent. So, 〈TΣ,→E〉 is complete.

79

Projection-lift associations

Definition 74 Let Σ be a static signature and p ∈ AG. Let AG’ = {ci}i∈I be sets of sorts
such that AG∩AG’ = ∅ and DT∩ (AG∪AG’) = ∅. Let proji and lifti be attributes whose
ranks are (p s, ci) and (ci s, p), respectively. Let Epjlt be the sum of all the association
axiom sets of proji-lifti associations. We call 3-tuple (AG’, {proji, lifti}i∈I , Epjlt) the sort
decomposition of p, each proji a projection, each lifti a lift, and each proji-lifti association
a projection-lift association. �

Example 20 Consider the sort decomposition of Vendor in Figure 2.3. AG’ is the set
of sales, accounts, and distribution. There are three projection-lift associations that those
projections are sales, accounts, and distribution and those lifts are vendors. The operator
declarations corresponding to the projections are as follows:

op sales : Vendor State -> Sales

op accounts : Vendor State -> Accounts

op distribution : Vendor State -> Distribution

The operator declarations corresponding to the lifts are as follows:

op vendor : Sales State -> Vendor

op vendor : Accounts State -> Vendor

op vendor : Distribution State -> Vendor

Especially, consider the association whose projection is sales. The association is specified
as follows:

var V : Vendor var SA : Sales var S : State

eq vendor(sales(V, S), S) = V .

eq sales(vendor(SA, S), S) = SA .

�

Definition 75 Let Σ be a static signature, p ∈ AG, and (AG’, {proji, lifti}i∈I , Epjlt) be
the sort decomposition of p. Let LC be the selection of AG that each lc ∈ LC does not
have projections. We call an element of LC a leaf sort. �

Data attribute constraint and agent attribute constraint

Definition 76 Let Σ be a static signature, p ∈ AG, and (AG’, {proji, lifti}i∈I , Epjlt) be
the sort decomposition of p. Let attrp be an attribute of p. We call a Σ-equation whose
form is one of the following forms a projection axiom of attrp:

1. (∀X)attrp(DS, P, S) = F (attrc1(DS1, proj1(P, S), S), . . . , attrck(DSk, projk(P, S), S))
if the sort of attrp is a data sort,

2. (∀X)attrp(DS, P, S) = attrc(DSc, proj(P, S), S) if the sort of attrp is an agent sort,
and

3. (∀X)attrp(DS, P ′, P, S) = attrc(DSc, P
′, proj(P, S), S)

where F is a term. We use pjaxmattrp
to denote a projection axiom of attrp. �

80

Note that 1 and 2 are the cases that multiplicity of attrp is “1” and 3 is the case that
multiplicity of attrp is “0 . . . n”.

Example 21 Consider the relation between c-purchaser and c-s-purchaser in Figure 8.1.
The relation is specified as follows:

eq c-purchaser(V,S) = c-s-purchaser(sales(V,S),S) .

�

Example 22 Consider the relation between purchaser and s-purchaser in Figure 8.2. The
relation is specified as follows:

eq purchaser(P,V,S) = s-purchaser(P,sales(V,S),S) .

�

Reverse attribute constraint

Definition 77 Let Σ be a static signature, p ∈ AG, and (AG’, {proji, lifti}i∈I , Epjlt) be
the sort decomposition of p. Let revap be a reverse attribute of p. We call a Σ-equation
whose form is one of the following forms a projection axiom of revap:

1. (∀X)revap(DS, P ′, S) = lift(revac(DSc, P
′, S), S) and

2. (∀X)revap(DS, P ′, P, S) = revac(DSc, P
′, proj(P, S), S).

We use pjaxmrevap
to denote a projection axiom of revap. �

Note that 1 is the case that multiplicity of revap is “1” and 2 is the case that multiplicity
of attrp is “0 . . . n”.

Example 23 Consider the relation between c-vendor and c-sales. The relation is specified
as follows:

eq c-vendor(P,S) = vendor(c-sales(P,S),S) .

Note that vendor is a lift. �

Example 24 Consider the relation between vendor and sales. The relation is specified
as follows:

eq vendor(V,P,S) = sales(sales(V,S),P,S) .

Note that the second sales is a projection. �

81

Agent decomposition

We deal with agent decomposition as an extension of an equational specification. Consider
attrp-revap association in Figure 5.4. Agent decomposition causes projection axioms of
attrp and revap. The projection axioms causes attrc-revac association. Reversely, the
association axiom set of attrp-revap association is deduced from the projection axioms
and the association axiom set of attrc-revac association. Briefly speaking, we model agent
decomposition as the addition of projection axioms and the association axioms of attrc-
revac associations.

Definition 78 Let Σ be a static signature and E be a set of Σ-equations. Let p be in
AG and (AG’,Σpjlt, Epjlt) be the sort decomposition of p. Let DT’ be a set of sorts such
that DT ∩ DT’ = ∅ and (DT ∪ DT’) ∩ (AG ∪ AG’) = ∅. Let Σp = {attrp,i}i∈I be the
selection of Σ that (1) each attrp,i is an attribute of p and (2) the sort of each attrp,i is a
data sort or a leaf sort. Let Σ̄p = {revap,j}j∈J be in Σ such that (1) J is the selection of
i ∈ I that each attrp,i has a reverse attribute and (2) each revap,j is the reverse attribute of

attrp,j. Let Σ̂AG’ = {attrc,i}i∈I be sets of attributes where each attrc,i is attrc in Definition
76 obtained by using attrp,i instead of attrp. Let ΣAG’ be sets of attributes of sorts in AG’

such that Σ̂AG’ ⊂ ΣAG’. Let ΣDT’ be a set of operators on DT ∪ DT’. Let EDT’ be a
set of ΣDT∪DT’-equations. Let Epjaxm = {pjaxmattrp,i

}i∈I and Ēpjaxm = {pjaxmrevap,j
}j∈J .

Let Σ̃AG’ = {revac,j}j∈J be sets of attributes where each revac,j is revac in Definition 77
obtained by using revap,j instead of revap. Let Σ̄AG’ be sets of reverse attributes of sorts
in AG’ such that Σ̃AG’ ⊂ Σ̄AG’. Let CHASS be a set of associations such that (1) at least
one element of each association in CHASS is an attribute of a sort in AG’ and (2) for
each j ∈ J , (attrc,j, revac,j) ∈ CHASS. Let Echass be the sum of the association axiom sets
of all the elements of CHASS. We call the addition of ΣDT’ ∪ Σpjlt ∪ ΣAG’ ∪ Σ̄AG’ and
EDT’ ∪Epjlt ∪Epjaxm ∪ Ēpjaxm ∪Echass to Σ and E agent decomposition of p on (Σ, E). �

From Definition 78, the following proposition holds.

Proposition 26 Let Epaass be the sum of the association axiom sets of attrp,j-revap,j

associations for j ∈ J .
(Epjlt ∪Epjaxm ∪ Ēpjaxm ∪ Echass)
Σp∪Σ̄p∪Σpjlt∪ΣAG’∪Σ̄AG’

Epaass

Proof : Consider an axiom in Epaass whose form is
(∀X)revap,j(DSp,j , attrp,j(DSp,j , P, S), S) = P .

From Definition 78, there are:

1. (∀X)attrp,j(DSp,j , P, S) = attrc,j(DSc,j, projj(P, S), S) in Epjaxm,

2. (∀X)revap,j(DSp,j , P
′, S) = liftj(revac,j(DSc,j , P

′, S), S) in Ēpjaxm,

3. (∀X)revac,j(DSc,j , attrc,j(DSc,j , C, S), S) = C in Echass, and

4. (∀X)liftj(projj(P, S), S) in Epjlt.

By using these equations as rewrite rules,
revap,j(DSp,j , attrp,j(DSp,j , P, S), S)
→ revap,j(DSp,j , attrc,j(DSc,j , projj(P, S), S))
→ liftj(revac,j(DSc,j, attrc,j(DSc,j, projj(P, S), S), S)

82

→ liftj(projj(P, S), S)
→ P
So, (Epjlt ∪Epjaxm ∪ Ēpjaxm ∪Echass)
 (∀X)revap,j(DSp,j, attrp,j(DSp,j, P, S), S) = P .

For axioms having the other forms, a similar discussion holds.

Static Structures

Definition 79 A static specification is inductively defined as follows:

1. a basic static specification is a static specification and

2. let (Σ, E) be a static specification, then (Σ ∪ΣDT’ ∪Σpjlt ∪ΣAG’ ∪ Σ̄AG’, E ∪EDT’ ∪
Epjlt ∪Epjaxm ∪ Ēpjaxm ∪Echass) obtained by agent decomposition of p on (Σ, E) is a
static specification. �

Theorem 27 Let (Σ, E) be a static specification. If 〈TΣDT
,→Edata

〉 is complete, 〈TΣ,→E〉
is complete, too.

Proof : It is proved by using the technique used in the proof of Proposition 25.

8.1.2 Dynamic structure

An action

An action is a function on the state sort, data sorts corresponding to the arguments, and
agent sorts corresponding to the participants.

Definition 80 Let (Σ, E) be a static specification. Let Σact be a set of operators whose
ranks are (d1 · · · dm p1 · · ·pn s, s) where pi ∈ AG, m ≥ 0, and n ≥ 1. We call (Σ ∪ Σact)
a dynamic structure on Σ, elements of Σact actions. Consider an action. We call each pi

a participant sort of the action and the set of pi(i ∈ [1, . . . , n]) the participant sort set of
the action. Let LC be the set of all the leaf sorts. We call an action that each pi is in LC
a leaf action. �

Example 25 Consider buy action in Example 1. The operator corresponding to buy
action is as follows:
op buy : Thing Purchaser Vendor State -> State �

Definition 81 Let act be an action and p be a participant sort of the action. Let attr
be an attribute of p such that (1) it is not a projection and (2) it has a reverse attribute.
Let p′ be the sort of attr. We call p′ a co-participant sort of the action if p′ is a leaf sort
and the set of all the co-participant sorts of the action the co-participant sort set of the
action. �

Example 26 Consider the static structure specified by the class diagrams of Figure 2.2,
Figure 2.3, and Figure 8.2. Let notifyorder is an action whose form is:
notifyorder : Order Sales Distribution Accounts State -> State

where Order is a data sort. Sales, Distribution, and Accounts are participant sorts.
Because there is s-purchaser-sales association, Purchaser is a co-participant sort. �

83

Effect axioms

We specify the effects of an action as changes between attributes’ values immediately
before and after the action has happened.

Definition 82 Let (Σ, E) be a static specification. Let s be the state sort. Let p and d
be agent sorts. If there is a set of projections {proji}i∈[1,...,k] such that:

d = projk(· · · proj1(p, s) · · · , s),
we call d a decendant sort of p. �

Definition 83 Let (Σ, E) be a static specification and Σ′ = Σ∪Σact be a dynamic struc-
ture on Σ. Let act be an action and attr be an attribute. Consider a Σ′-equation whose
form is the following form:

1. (∀X)attr(DS, C, act(DS’,CS, S)) = F [attr(DS, C, S)].

We call the Σ′-equation an effect axiom of act by attr if F satisfies the following constraint:

1. F is ◦ if:

(a) attr is a projection or a lift or

(b) C is a leaf sort without a participant sort, a descendant sort of a participant
sort, and a co-participant sort and

2. F is F ′ if:

(a) attr has a reverse attribute reva where
(∀X)reva(DS, C ′, act(DS’,CS, S)) = F ′[reva(DS, C ′, S)]

is the effect axiom of act by reva,

(b) attr is revac in 1 of Definition 77 where
F ′[◦] = proj(F ′′[lift(◦, S)], S) where
(∀X)revap(DS, C ′, act(DS’,CS, S)) = F ′′[revap(DS, C ′, S)]

is the effect axiom of act by revap, or

(c) attr is revac in 2 of Definition 77 where
(∀X)revap(DS, C ′, C, act(DS’,CS, S)) = F ′[revap(DS, C ′, C, S)]

is the effect axiom of act by revap.

Let acti and attr be an action and an attribute, respectively. We use effaxmacti,attr to
denote an effect axiom of acti by attr. �

Example 27 Consider the static structure in Example 26. The effect axioms of notify-
order by s-purchaser and sales are as follows:
eq s-purchaser(P,SA,notifyorder(O,SA,D,A,S)) = s-purchaser(P,SA,S) .

eq sales(SA,P,notifyorder(O,SA,D,A,S)) = sales(SA,P,S) . �

Definition 84 Let Σ be a static structure and Σ′ = Σ∪Σact be a dynamic structure on Σ.
Let acti be an action and attr be an attribute. We call attr a nondeterministic attribute
of acti if attr is an attribute of a decendant sort of a participant sort of acti. We use
NDAacti to denote the set of all the nondeterministic attributes of acti. �

84

Definition 85 Let (Σi, Ei) (i ≥ 0) be a static specification and pi be sorts such that
(Σ0, E0) is a basic static specification and each (Σk+1, Ek+1) is obtained from (Σk, Ek) by
agent decomposition of pi. Let Σpjlt,i, ΣAG’,i, and Σ̄AG’,i be Σpjlt, ΣAG’, and Σ̄AG’ of agent
decomposition of pi, respectively. Let Σact,i be a dynamic structure on Σi such that Σact,0

is a set of leaf actions on Σ0 and each Σact,k+1\Σact,k is a set of leaf actions on Σk+1. Let
Epjlt,i be {effaxmacti,pjlt | ∀acti ∈ Σact,i, ∀pjlt ∈ Σpjlt,i}, EAG’,i be {effaxmacti,catt | ∀acti ∈
Σact,i . ∀catt ∈ ΣAG’,i\NDAacti}, and ĒAG’,i be {effaxmacti,crev | ∀acti ∈ Σact,i . ∀crev ∈
Σ̄AG’,i\NDAacti}. Let Eact,i be {effaxmacti,attr | ∀acti ∈ Σact,0, ∀attr ∈ Σ0} if i = 0 and
Eact,k ∪ Epjlt,k+1 ∪ EAG’,k+1 ∪ ĒAG’,k+1 if i = k + 1. We call (Σi ∪ Σact,i, E ∪ Eact,i) a
dynamic specification on (Σ, E). We call the sequence (Σ0 ∪ Σact,0, E0 ∪ Eact,0) → · · · →
(Σi ∪ Σact,i, Ei ∪Eact,i)→ · · · a pseudo-zooming-in sequence. �

Theorem 28 Let (Σ̂, Ê) be a dynamic specification on (Σ, E). If 〈TΣDT
,→Edata

〉 is com-
plete, 〈TΣ̂,→Ê〉 is complete, too.

Proof : It is proved by using the technique used in the proof of Proposition 25.

Action decomposition

Definition 86 Let (Σ̂, Ê) = (Σ∪Σact, E∪Eact) be a dynamic specification on (Σ, E). Let
act and acti(i ∈ [0, . . . , n]) be in Σact. Let acts(S) be the sequence of actis with variables
act0(DS0,CS0, · · ·actn(DSn,CSn, S) · · ·). If for each effect axiom:

(∀X)attr(DS, C, act(DS’,CS, S)) = F (attr(DS, C, S)) of Eact,
(∀X)attr(DS, C, acts(S)) = F (attr(DS, C, S)) holds,

we call acts an action decomposition sequence of act. �

Let acts1 and acts2 be action decomposition sequences of act. Let (Σ′, E ′) be a static
specification obtained by agent decomposition on (Σ, E). Note that the behavior of acts1
and acts2 are the same at the level of (Σ, E), but the behavior of those may not be the
same at the level of (Σ′, E ′).

Definition 87 Let (Σ0 ∪ Σact,0, E0 ∪ Eact,0) → · · · → (Σi ∪ Σact,i, Ei ∪ Eact,i) → · · ·
be a pseudo-zooming-in sequence. We call ADDi = {act, {actsact,j}j∈Jact}act∈Σact,i

where
actsact,i are sequences of actions in Σact,i+1 and Iact �= ∅ an action decomposition definition
of Σact,i. �

Definition 88 Let (Σ0 ∪ Σact,0, E0 ∪ Eact,0) → · · · → (Σi ∪ Σact,i, Ei ∪ Eact,i) → · · · be a
pseudo-zooming-in sequence and ADDi be action decomposition definitions of Σact,i. We
call the pseudo-zooming-in sequence a zooming-in sequence satisfying {ADDi} if for each
i, for each act ∈ Σact,i, for each j ∈ Jact, actsact,j is an action decomposition sequence of
act. �

Parallel executions of child actions

Some of child actions can happen in parallel. We deal with parallel executions of act1 and
act2 by using the interleave model that the effects of the sequence act1,act2 is the same
as the effects of the sequence act2,act1 (Figure 8.3).

85

act1

act2

A state chart diagram

act2act1

act1act2

Transformation

A part of the dynamic stracture

Figure 8.3: The interleave model

Definition 89 Let act1 and act2 be actions. Let PCact1 and PCact2 be the participant
sort sets of act1 and act2, respectively. Let PAact1 and PAact2 be the set of attributes of
elements of PCact1 and PCact2 without projections and lifts, respectively. Let actsa(S)
and actsb(S) be the sequences of actis with variables act0(DS0,CS0, act1(DS1,CS1, S)) and
act1(DS1,CS1, act0(DS0,CS0, S)), respectively. If for each element attr of PAact1 ∪ PAact2

(∀X)attr(DS, actsa(S)) = attr(DS, actsb(S)) holds, we call the pair (act1, act2) a parallel
execution pair. �

Static invariants

Definition 90 Let (Σ̂, Ê) = (Σ∪Σact, E ∪ (∪act∈ΣactEact)) be a dynamic specification on

(Σ, E). Let eqi(i ∈ [1, . . . , k], k ≥ 0) and eq be Σ-equations. If (1) there exists i that Ê �
Σ̂

eqi or (2) for all i, Ê
Σ̂ eqi and Ê
Σ̂ eq, we call the logical formula “eq1∧· · ·∧eqk ⇒ eq”

a static invariant on (Σ̂, Ê). �

8.1.3 Conditional static specification and conditional dynamic

specification

A static specification can have conditional equations. By replacing equations in Definition
79 whose forms are (∀X)lt = rt with the following branch conditional equation set of lt
that each pair (lt, rti) satisfies the constraint of the pair (lt, rt), we construct a conditional
static specification.

Definition 91 Let (ΣDT, Edata) be a specification and Σ be a signature such that ΣDT ⊂
Σ. Let lt be a Σ(X)-term. We call the following set of conditional equations {ceqi}i∈I the
branch conditional equation set of lt:

1. each ceqi has the form:

(∀X)lt = rti if Ci

where Ci is

(ui,1 = u′
i,1) and · · · and (ui,k = u′

i,k) and (ui,k+1 �= u′
i,k+1) and · · · and

(ui,l �= u′
i,l),

2. each ui,j and each u′
i,j are a Σ(X)-term and a ΣDT(X)-term, respectively,

3. for each (Σ, {ceqi}i∈I)-model M , for each assignment as : X →M , there is exactly
one i that as(Ci) is true. �

86

A dynamic specification can have conditional equations. By replacing equations in Def-
inition 85 whose forms are (∀X)lt = rt with the following branch conditional equation
set of lt that each pair (lt, rti) satisfies the constraint of the pair (lt, rt), we construct a
conditional dynamic specification.

Definition 92 Let (ΣDT, Edata) be a specification and (Σ, E) be a static signature such
that ΣDT ⊂ Σ and Edata ⊂ E. Let Σact be a set of actions and Σ̂ be Σ ∪ Σact. Let lt
be a Σ̂(X)-term. We call the following set of conditional equations {ceqi}i∈I the branch
conditional equation set of lt:

1. each ceqi has the form:

(∀X)lt = rti if Ci

where Ci is

(ui,1 = u′
i,1) and · · · and (ui,k = u′

i,k) and (ui,k+1 �= u′
i,k+1) and · · · and

(ui,l �= u′
i,l),

2. each ui,j and each u′
i,j are a Σ(X)-term and a ΣDT(X)-term, respectively,

3. for each (Σ, {ceqi}i∈I)-model M , for each assignment as : X →M , there is exactly
one i that as(Ci) is true. �

8.1.4 Business models

The formalization of AA-trees model of business models is the formalization of AA-trees
model discussed in Section 8.1 before this one.

8.1.5 Component specifications

The formalization of AA-trees model of component specifications is a special case of the
formalization of AA-trees model discussed in Section 8.1 before Section 8.1.4.

Interfaces, components, and interface-component associations

In component specifications, an action has exactly two participants, i.e. the interface of
the action and the component of the action. There is exactly one association between the
interface and the component of the action. We call the association an interface-component
association. Because an interface is an interface of the corresponding component, for each
data attribute of the interface, there should be a data attribute of the component such
that idatt = cdatt where idatt is the value of the data attribute of the interface and cdatt
is the value of the data attribute of the component and vice versa. We call the constraint
interface attribute constraint. Because actions are assigned to components, we may call
the actions methods of the components.

Definition 93 Let DT be a set of sorts and s be a sort. Let itf and cmp be sorts such that
itf �∈ DT and cmp �∈ DT. Let AG be {itf, cmp}. Let cmpatr and itfatr be operators whose
ranks are (itf s, cmp) and (cmp s, itf), respectively. Let dtatritf,i and dtatrcmp,i (i ∈ I) be
operators whose ranks are (di,1 · · ·di,ni

itf s, di,0) and (di,1 · · · di,ni
cmp s, di,0) where di,j

are in DT, respectively. Let ΣAG,itf and ΣAG,cmp be {cmpatr}∪{dtatritf,i}i∈I and {itfatr}∪

87

{dtatrcmp,i}i∈I , respectively. Let ΣDT be a set of operators whose ranks are (d1 · · · dn, d0)
where di is in DT. We call the (AG∪DT∪{s})-sorted signature (ΣAG,itf∪ΣAG,cmp∪ΣDT) a
primitive component static signature. We call itf an interface sort, cmp a component sort,
cmpatr − itfatr association an interface-component association, cmpatr the component
attribute of the interface sort, and itfatr the interface attribute of the component sort.
We call each pair (dtatritf,i, dtatrcmp,i) an attribute pair. �

Note that primitive component static signatures are static signatures.

Definition 94 Let (ΣAG,itf ∪ ΣAG,cmp ∪ ΣDT) be a primitive component static signature
and EDT be a data axiom set. Let Eass,itfcmp be the association axiom set of cmpatr− itfatr
association. We call (ΣAG,itf ∪ ΣAG,cmp ∪ ΣDT, Eass,itfcmp ∪ EDT) a primitive component
static specification. �

Note that primitive component static specifications are basic static specifications.

Component decomposition and interface decomposition

A component may be decomposed. When a component is decomposed, the interface
should be decomposed, too. We assume that firstly a component is decomposed, then the
interface is decomposed.

Definition 95 Let itfp, cmpp, itfci
, and cmpci

(i ∈ I) be sorts. Let AGp and AGci

be {itfp, cmpp} and {itfci
, cmpci

}, respectively. Let (Σp, Ep) = (ΣAGp,itf ∪ ΣAGp,cmp ∪
ΣDTp , Eass,itfcmpp

∪EDTp) and (Σci
, Eci

) = (ΣAGci ,itf
∪ΣAGci ,cmp∪ΣDTci

, Eass,itfcmpci
∪EDTci

)

be primitive component static specifications. Let (Σ, E) be a static specification such that
Σp ⊂ Σ, Ep ⊂ E, and (∪i∈IΣci

) ∩ Σ = ∅. Let cmpatrp and itfatrp be the component
attribute and the interface attribute of (ΣAGp,itf ∪ ΣAGp,cmp ∪ ΣDTp , Eass,itfcmpp

∪ EDTp).
Let ({cmpci

}i∈I , {projcmpci
, liftcmpci

}i∈I , Epjlt,cmp) be the sort decomposition of cmpp. Let

k ∈ I, main be ck, and cmain be cmpck
. Let ccmpatrp and citfatrmain be operators whose

ranks are (itfp s, cmain) and (cmain s, itfp), respectively. Let pjaxmcmpatrp
and pjaxmitfatrp

be projection axioms of cmpatrp and itfatrp whose forms are:
(∀X)cmpatrp(I, S) = liftcmain(ccmpatrp(I, S), S) and
(∀X)itfatrp(C, S) = citfatrmain(projcmain(C, S), S), respectively.

Let Epjaxm,dtatr,cmpp
be the set of all the data attributes of cmpp. Let Echass,itfcmpp

be the as-
sociation axiom set of ccmpatrp-citfatrmain association. Let Σcmpdecp

be (∪i∈IΣDTci
\ΣDTp)∪

{projcmpci
, liftcmpci

}i∈I∪((∪i∈I(ΣAGci
,cmp\{itfatrci

})∪{citfatrmain})∪{ccmpatrp} and Ecmpdecp

be (∪i∈IEDTci
\EDTp)∪Epjlt,cmp∪({pjaxmitfatrp

}∪Epjaxm,dtatr,cmpp
)∪{pjaxmcmpatrp

}∪Echass,itfcmpp
.

We call the addition of Σcmpdecp
and Ecmpdecp

to Σ and E component decomposition of
cmpp.

Let ({itfci
}i∈I , {projitfci

, liftitfci
}i∈I , Epjlt,itf) be the sort decomposition of itfp. Let imain

be itfck
. Let pjaxmccmpatrp

and pjaxmcitfatrmain
be projection axioms of ccmpatrp and citfatrmain

whose forms are:
(∀X)ccmpatrp(I, S) = cmpatrmain(projimain(I, S), S) and
(∀X)citfatrmain(C

′, S) = liftimain(itfatrmain(C
′, S), S), respectively.

Let Epjaxm,dtatr,itfp be the set of all the data attributes of itfp. Let Σitfdecp be {projitfci
, liftitfci

}i∈I∪
(∪i∈IΣAGci ,itf

) ∪ {itfatrci
}i∈I and Eitfdecp be Epjlt,itf ∪ ({pjaxmcitfatrmain

} ∪ Epjaxm,dtatr,itfp) ∪
{pjaxmccmpatrp

} ∪Echass,itfcmpp
. We call the addition of Σitfdecp and Eitfdecp to Σ∪Σcmpdecp

and E ∪ Ecmpdecp
interface decomposition of itfp. �

88

Definition 96 A component static specification is inductively defined as follows:

1. a primitive component static specification is a component static specification and

2. let (Σ, E) be a component static specification, itfp and cmpp be leaf sorts such that

there is the cmpatrp-itfatrp association, (Σ̂, Ê) be the static specification obtained

from (Σ, E) by component decomposition of cmpp, and (Σ̃, Ẽ) be the static spec-

ification obtained from (Σ̂, Ê) by interface decomposition of itfp, then (Σ̃, Ẽ) is a
component static specification. �

Note that component static specifications are static specifications.

Definition 97 Let (Σ, E) be a component static specification. We call Σ a component
static signature. �

Methods and interface attribute constraint

Definition 98 Let Σ be a component static signature. Let Σmtd be a set of operators
whose ranks are (d1 · · ·dm itfi cmpi s, s) where (1) m ≥ 0 and (2) itfi and cmpi are
an interface sort and a component sort, respectively, such that there is the interface-
component association between itfi and cmpi. We call (Σ ∪ Σmtd) a component dynamic
structure on Σ and each element of Σmtd a method of cmpi. �

Note that component dynamic structures are dynamic structures and methods are actions.

Definition 99 We call methods that are leaf actions leaf methods. �

We define interface attribute constraint as follows:

Definition 100 Let (Σ, E) be a component static specification, Σ∪Σmtd be a component
dynamic structure on Σ, and (Σ̂, Ê) be a dynamic specification on (Σ, E). We call the
following constraint on Ê interface attribute constraint:

1. for each action act and for each attribute pair (dtatritf, dtatrcmp), Fitf = Fcmp where

(a) (∀X)dtatritf(DS, I, act(DS’, I, C, S)) = Fitf[dtatritf(DS, I, S)] is the effect axiom
of act by dtatritf and

(b) (∀X)dtatrcmp(DS, C, act(DS’, I, C, S)) = Fcmp[dtatrcmp(DS, C, S)] is the effect
axiom of act by dtatrcmp.

We call (Σ̂, Ê) a component dynamic specification on (Σ, E) if Ê satisfies interface at-
tribute constraint. �

8.2 Translation from UML diagrams into Equational

Specifications

We translate data class diagrams, basic class diagrams, and decomposition class diagrams
into a static specification and translate (1) action usecase diagrams and (2) decomposition
sequence diagrams or decomposition statechart diagrams into a dynamic specification.

We translate OCL descriptions complementing basic class diagrams into static invari-
ants.

89

8.2.1 Data class diagrams

We translate data class diagrams into a data part of a static specification.

Data class diagrams

We translate operator declarations drawn in the middle parts of class boxes into ΣDT.

Translation 10
Input: An operator declaration drawn in the middle part of a class box, i.e. a word of
language for data operator declarations discussed in Section 5.2
Output: An operator declaration of a data specification

The translation function F is defined as follows:

1. F (LDOD) = op F (DTOPWV) -> dtnm (Production rule (1))

2. F (DTOPWV) = dtop : (Production rule (2))

3. F (DTOPWV) = dtop : F (DDLIST) (Production rule (3))

4. F (DDLIST) = F (DTDCL) (Production rule (4))

5. F (DDLIST) = F (DDLIST) F (DTDCL) (Production rule (5))

6. F (DTDCL) = dtnm (Production rule (6)) �

OCL descriptions complementing data class diagrams

We translate invariant declarations of OCL descriptions complementing data class dia-
grams into the data axiom set Edata of the static specification.

Translation 11
Input: An invariant declaration, i.e. a word of EQD of OCL for data discussed in Section
5.2
Output: An equation declaration of a data specification

The translation function F is defined as follows:

1. F (EQD) = eq F (DTERM) = F (DTERM) . (Production rule (9))

2. F (DTERM) = dtv (Production rule (10))

3. F (DTERM) = dtop (Production rule (11))

4. F (DTERM) = dtop(F (DTLIST)) (Production rule (12))

5. F (DTLIST) = F (DTERM) (Production rule (13))

6. F (DTLIST) = F (DTLIST),F (DTERM) (Production rule (14)) �

8.2.2 Basic class diagrams

We translate basic class diagrams into a part of a static specification.

90

Basic class diagram

We translate operator declarations drawn in the middle parts of class boxes and association
lines into ΣAG.

Translation 12
Input: An operator declaration drawn in the middle part of a class box, i.e. a word of
language for attribute declarations discussed in Section 5.2
Output: An operator declaration of a component specification

Let agt be the name of the class. Let state be the state sort. The translation function
F is defined as follows:

1. F (LAD) = op F (DATTWVD) -> dtnm (Production rule (1))

2. F (LAD) = op F (AATTWVD) -> agtnm (Production rule (2))

3. F (DATTWVD) = datt : agt state (Production rule (3))

4. F (DATTWVD) = datt : F (ARGLIST) agt state (Production rule (4))

5. F (AATTWVD) = aatt : agt state (Production rule (5))

6. F (AATTWVD) = aatt : F (DDLIST) agt state (Production rule (6))

7. F (ARGLIST) = F (DDLIST) (Production rule (7))

8. F (ARGLIST) = F (DDLIST) F (AGTDCL) (Production rule (8))

9. F (DDLIST) = F (DTDCL) (Production rule (9))

10. F (DDLIST) = F (DDLIST) F (DTDCL) (Production rule (10))

11. F (DTDCL) = dtnm (Production rule (11))

12. F (AGTDCL) = agtnm (Production rule (12)) �

Translation 13
Input: A side of an association
Output: An operator declaration of a component specification

Let attr be the name of the side, mul be the multiplicity of the association, and agt be
the agent connecting to the side. Let state be the state sort. The result of translation F
is defined as follows:

1. If mul = 1, F = op attr : state -> agt

2. If mul = 0 . . . n, F = op attr : agt state -> Bool �

91

OCL descriptions complementing basic class diagrams

We translate invariant declarations of OCL descriptions complementing basic class di-
agrams into static invariants. We translate invariant declarations of OCL descriptions
complementing action usecase diagrams into static invariants.

Translation 14
Input: A invariant declaration, i.e. a word of LSFI of OCL for static invariants discussed
in Section 5.2
Output: A static invariant

Let statePre be the variable corresponding to the pre state. The translation function
F is defined as follows:

1. F (LFSI) = F (LLFSI)⇒ F (EQSI) (Production rule (17))

2. F (LLFSI) = ε (Production rule (18))

3. F (LLFSI) = F (EQSILIST) (Production rule (19))

4. F (EQSILIST) = F (EQSI) (Production rule (20))

5. F (EQSILIST) = F (EQSILIST) and F (EQSI) (Production rule (21))

6. F (EQSI) = eq F (EDTERM) = F (EDTERM) . (Production rule (22))

7. F (EQSI) = eq F (EATERM) = F (EATERM) . (Production rule (23))

8. F (EDTERM) = dtv (Production rule (24))

9. F (EDTERM) = dtop (Production rule (25))

10. F (EDTERM) = dtop(F (EDTLIST)) (Production rule (26))

11. F (EDTERM) = F (DATTWT), F (EATERM), preState) (Production rule (28))

12. F (EDTLIST) = F (EDTERM) (Production rule (28))

13. F (EDTLIST) = F (EDTLIST), F (EDTERM) (Production rule (29))

14. F (EATERM) = agtv (Production rule (30))

15. F (EATERM) = F (AATTWT), F (EATERM), preState) (Production rule (31))

16. F (AATTWT) = aatt(F (EDTLIST) (Production rule (32))

17. F (DATTWT) = datt(F (EDARGLIST) (Production rule (33))

18. F (EDARGLIST) = F (EDTLIST) (Production rule (34))

19. F (EDARGLIST) = F (EDTLIST), F (EATERM) (Production rule (35)) �

8.2.3 Action usecase diagrams

We translate action usecase diagrams into a part of a dynamic specification.

92

OCL descriptions complementing action usecase diagrams

We translate pre declarations and post declarations of OCL descriptions complementing
action usecase diagrams into Eact.

Translation 15
Input: A pre declaration, i.e. a word of EQPRE of OCL for actions discussed in Section
5.2
Output: A conditional part of an equation declaration of a component specification

Let statePre be the variable corresponding to the pre state. The translation function
F is defined as follows:

1. F (EQPRE) = F (DATTWA) == F (DTERM) (Production rule (13))

2. F (EQPRE) = F (AATTWA) == agtv (Production rule (14))

3. F (DATTWA) = F (DATTWV),agtv,statePre) (Production rule (15))

4. F (DATTWV) = datt(F (DARGLIST) (Production rule (16))

5. F (DARGLIST) = F (DTLIST) (Production rule (17))

6. F (DARGLIST) = F (DTLIST), agtv (Production rule (18))

7. F (DTLIST) = F (DTERM) (Production rule (19))

8. F (DTLIST) = F (DTLIST), F (DTERM) (Production rule (20))

9. F (DTERM) = dtv (Production rule (21))

10. F (DTERM) = dtop (Production rule (22))

11. F (DTERM) = dtop(F (DTLIST)) (Production rule (23))

12. F (AATTWA) = F (AATTWV),agtv,statePre) (Production rule (24))

13. F (AATTWV) = aatt(F (DTLIST) (Production rule (25)) �

Translation 16
Input: A post declaration, i.e. a word of EQPOST of OCL for actions discussed in Sec-
tion 5.2
Output: A conditional part of an equation declaration of a component specification

Let statePre be the variable corresponding to the pre state and statePost be the term
corresponding to the post state. The translation function F ′ is defined as follows:

1. F ′(EQPOST) = F ′(DLTPOST) = F ′(EDTERMPOST) (Production rule (29))

2. F ′(EQPOST) = F ′(ALTPOST) = F ′(ARTPOST) (Production rule (30))

3. F ′(DLTPOST) = F ′(DATTWV), agtv, statePost) (Production rule (31))

4. F ′(DATTWV) = datt(F ′(DARGLIST) (Production rule (16))

93

5. F ′(DARGLIST) = F ′(DTLIST) (Production rule (17))

6. F ′(DARGLIST) = F ′(DTLIST), agtv (Production rule (18))

7. F ′(DTLIST) = F ′(DTERM) (Production rule (19))

8. F ′(DTLIST) = F ′(DTLIST), F ′(DTERM) (Production rule (20))

9. F ′(DTERM) = dtv (Production rule (21))

10. F ′(DTERM) = dtop (Production rule (22))

11. F ′(DTERM) = dtop(F ′(DTLIST)) (Production rule (23))

12. F ′(EDTERMPOST) = dtv (Production rule (32))

13. F ′(EDTERMPOST) = dtop (Production rule (33))

14. F ′(EDTERMPOST) = F ′(DATTWV), agtv, statePre) (Production rule (34))

15. F ′(EDTERMPOST) = dtop(F ′(EDTLISTPOST)) (Production rule (35))

16. F ′(EDTLISTPOST) = F ′(EDTERMPOST) (Production rule (36))

17. F ′(EDTLISTPOST) = F ′(EDTLISTPOST), F ′(EDTERMPOST) (Production rule (37))

18. F ′(ALTPOST) = F ′(AATTWV), agtv, statePost) (Production rule (38))

19. F ′(AATTWV) = aatt(F ′(DTLIST) (Production rule (25))

20. F ′(ARTPOST) = agtv (Production rule (39))

21. F ′(ARTPOST) = F ′(AATTWV), agtv, statePre) (Production rule (40)) �

Translation 17
Input: OCL descriptions complementing an action usecase diagram
Output: Equation declarations of a component specification

Let F and F ′ be the translation functions discussed in Translation 15 and Translation
16, respectively. Let {EQPREi}i∈[1,...,k] and {EQPOSTj}j∈[1,...,l] be the sets of EQPRE
words and EQPOST words occurring in the OCL descriptions, respectively.

The output is as follows:
for each j ∈ [1, . . . , l],

1. eq F ′(EQPOSTj) . if k = 0 or

2. ceq F ′(EQPOSTj) if F (EQPOST1) and . . . and F (EQPOSTk) . if k > 0. �

8.2.4 Decomposition class diagrams

We translate decomposition class diagrams into a part of a static specification.

94

OCL descriptions complementing decomposition class diagrams

We translate invariant declarations of OCL descriptions complementing decomposition
class diagrams into Epjaxm ∪ Ēpjaxm.

Translation 18
Input: An invariant declaration, i.e. a word of DATTC or AATTC of OCL for con-
straints discussed in Section 5.2
Output: An equation declaration of a connector specification

Let statePre be the variable corresponding to the pre state. The translation function
F is defined as follows:

1. F (DATTC) = eq F (DATTWA) = F (EDTERMC) . (Production rule (18))

2. F (DATTWA) = F (DATTWV), agtv, statePre) (Production rule (19))

3. F (DATTWV) = datt(F (DARGLIST) (Production rule (20))

4. F (EDTERMC) = dtv (Production rule (21))

5. F (EDTERMC) = dtop (Production rule (22))

6. F (EDTERMC) = F (DATTWV), proj(agtv, statePre), statePre) (Production rule (23))

7. F (EDTERMC) = dtop(F (EDTLISTC)) (Production rule (24))

8. F (EDTLISTC) = F (EDTERMC) (Production rule (25))

9. F (EDTLISTC) = F (EDTLISTC), F (EDTERMC) (Production rule (26))

10. F (AATTC) = eq F (AATTWA) = F (CAATTWA) . (Production rule (27))

11. F (AATTWA) = F (AATTWV), agtv, statePre) (Production rule (28))

12. F (AATTWV) = aatt(F (DTLIST) (Production rule (29))

13. F (DARGLIST) = F (DTLIST) (Production rule (30))

14. F (DARGLIST) = F (DTLIST), argv (Production rule (31))

15. F (DTLIST) = F (DTERM) (Production rule (32))

16. F (DTLIST) = F (DTLIST), F (DTERM) (Production rule (33))

17. F (DTERM) = dtv (Production rule (34))

18. F (DTERM) = dtop (Production rule (35))

19. F (DTERM) = dtop(F (DTLIST)) (Production rule (36))

20. F (CAATTWA) = F (AATTWV), proj(agtv, statePre), statePre) (Production rule (37))

�

95

8.2.5 Static specifications

As we discussed in Section 8.2.1, Section 8.2.2, and Section 8.2.4, we get a static specifi-
cation by translating from data class diagrams, basic class diagrams, and decomposition
class diagrams.

8.2.6 Dynamic specifications

As we discussed in Section 8.2.3, we get a dynamic specification by translating from action
usecase diagrams.

8.2.7 Static invariants

As we discussed in Section 8.2.2, we get static invariants by translating from OCL de-
scriptions complementing basic class diagrams.

8.3 Consistency Verification of UML diagrams

The UML diagrams are specified by a number of software engineers. So, there may
be inconsistencies in the UML diagrams. The main causes of the inconsistencies are
descriptions of action decomposition and static invariants.

8.3.1 Refinement verification

Action decomposition is specified in decomposition sequence diagrams and decomposition
statechart diagrams. The effects of actions are specified in action usecase diagrams. To
check the consistency, i.e. refinement, we verify whether effects of a parent action is
deduced from effects of the child actions. We use the following property in the verification.

Theorem 29 Let (Σ̂, Ê) = (Σ ∪ Σact, E ∪ (∪act∈ΣactEact)) be a dynamic specification on
(Σ, E). Let act and acti(i ∈ [0, . . . , n]) be in Σact. Let acts(S) be the sequence of actis
with variables act0(DS0,CS0, · · · actn(DSn,CSn, S) · · ·). If for each effect axiom of Eact

(∀X)attr(DS, C, act(DS’,CS, S)) = F (attr(DS, C, S)),
the normal forms of attr(DS, C, acts(S)) and F (attr(DS, C, S)) on 〈TΣ̂,→Ê〉 are the same,
acts is an action decomposition sequence of act.

Proof : It is straightforward from Definition 86 and Theorem 28. Note that this verifi-
cation process can be executed by using term rewriting based reducers like the CafeOBJ
verification system.

Example 28 Consider a dynamic specification specified by the action usecase diagram
in Example 1 and so on. Consider action decomposition specified by the decomposition
sequence diagram in the bottom of Figure 2.5. Let buy-seq be the sequence of makeorder,
notifyorder, deliver, and pay. Consider the first effect axiom of buy action in Example 1.
Corresponding comparison of the normal forms are executed on the CafeOBJ verification
system as follows:

red p-balance(p,buy-seq(t,p,v,s)) = p-balance(p,s) - price(t) .

96

The comparison returns true. So, a part of the verification succeeds. �

If some child actions are executed in parallel, we must verify whether we can deal with
the child actions as the interleave model. The verification is that for each attribute attr
we verify whether:

1. attr(BS, act2(DS2, CS2, act1(DS1, CS1, S)))
= attr(BS, act1(DS1, CS1, act2(DS2, CS2, S)))

The verification is executed by comparing normal forms of both sides of the equations, too.
Note that if CS1 ∩ CS2 = ∅, the equation holds. In a low level of software specification,
we assign actions to methods of components. We assume that methods of a component
can not execute in parallel. So, many of the case CS1 ∩ CS2 = ∅.
Example 29 Consider a software specification corresponding to the business model in
Figure 2.4. We assume that deliver is assigned to a method of Distribution component
and pay is assigned to a method of Accounts component. So, CS of deliver (CS1) is
{Distribution} and CS of pay (CS2) is {Accounts}, i.e. CS1 ∩ CS2 = ∅. So, we do not
need to verify whether the equation holds. �

8.3.2 Verification of satisfaction of static invariants

A static invariant “eq1 ∧ · · · ∧ eqk ⇒ eq” is specified in basic class diagrams.
From Theorem 28, the following property holds.

Theorem 30 Let (Σ̂, Ê) = (Σ ∪ Σact, E ∪ (∪act∈ΣactEact)) be a dynamic specification on
(Σ, E). Let eqi(i ∈ [1, . . . , k], k ≥ 0) and eq be Σ-equations. If the following property hold,
“eq1 ∧ · · · ∧ eqk ⇒ eq” is a static invariant on (Σ̂, Ê):

1. the normal forms of both sides of each eqi and eq on 〈TΣ̂,→Ê〉 are the same or

2. there is i such that the normal forms of both sides of eqi on 〈TΣ̂,→Ê〉 are different.
�

By using Theorem 30, we verify satisfaction of static invariants. Note that the verification
process can be executed by using term rewriting based reducers.

Example 30 Consider the static invariant and buy action. The verification of the logical
formula at the state immediately before buy action has happened is as follows:

red vendor(v,p,bs) = true .

red p-possess(t,p,bs) = true .

red v-possess(t,v,bs) = false .

The second comparison returns false. So, the logical formula holds at the state. By iter-
ating the same comparisons for each state for each preserving action, the static invariant
is verified. �

97

Chapter 9

A Comparison between LFMB and
LFME

Because we formalize the same AA-trees model in LFMB and LFME, for the same verifi-
cation about the model, the results of LFMB and LFME must be the same. The common
verification of LFMB and LFME is refinement verification. So, firstly, we discuss a corre-
spondence between refinement verification in LFMB and that in LFME.

Because the verification results of LFMB and LFME are the same, we predicted that
the logic of projection-style behavioral specification was equational logic. The prediction
is true. Then, we discuss that the logic of projection-style behavioral specification.

9.1 Refinement Verification

The correspondences between the formalizations of AA-trees model in LFMB and LFME
are as follows.

A primitive component specification corresponds to a component static specification.

Definition 101 Let (V, Ψ, EΨ, {p}, Σ, E) be a primitive component specification. Let
{obsej}j∈J be the set of all the observations in Σ such that the rank of each obsej is
(d1,j · · ·dnj ,j p, d0,j). Let cmpp, itfp, and s be sorts. Let itfatr and cmpatr be operators
whose ranks are (cmpp s, itfp) and (itfp s, cmpp), respectively. Let {obsecmp,j}j∈J and
{obseitf,j}j∈J be sets of operators such that the ranks of each obsecmp,j and each obseitf,i

are (d1,j · · · dnj ,j cmpp s, d0,j) and (d1,j · · · dnj ,j itfp s, d0,j), respectively. Let ΣAG,cmp and
ΣAG,itf be {itfatr}∪{obsecmp,j}j∈J and {cmpatr}∪{obseitf,j}j∈J , respectively. Let Eass,itfcmp

be the association axiom set of cmpatr-itfatr association. We call (ΣAG,cmp ∪ ΣAG,itf ∪
Ψ, Eass,itfcmp ∪ EΨ) the primitive component static specification of (V, Ψ, EΨ, {p}, Σ, E).
�

A connector corresponds to a component decomposition and an interface decomposition.

Definition 102 Let (V, Ψ, EΨ, {p}, Σ, E) and (Vi, Ψi, EΨ,i, {ci}, Σi, Ei) (i ∈ I) be primi-
tive component specifications such that ci �= cj if i �= j and p �= ci, (V, Ψ, EΨ, p, Σ, {ci}i∈I , Σproj, E)

be a connector of (Vi, Ψi, EΨ,i, {ci}, Σi, Ei) (i ∈ I), and (V̂ , Ψ̂, ÊΨ, Ĥ, Σ̂, Ê) be a compo-

nent specification such that (1) (V̂ , Ψ̂, ÊΨ, Ĥ, Σ̂, Ê) is a refinement of (V, Ψ, EΨ, {p}, Σ, E)
and (2) (V̂ , Ψ̂, ÊΨ, Ĥ, Σ̂, Ê) is the combination of (Vi, Ψi, EΨ,i, {ci}, Σi, Ei) (i ∈ I). Let

98

{obsej}j∈J be the set of all the observation in Σ and obspjobsej
be the projection axiom of

obsej in E whose forms are:
(∀X)obsej(DS, S) = F [obsec1,jc1(DS1, projh,cc1

(S)), . . . , obseck,jck
(DSk, projh,cck

(S))].
Let (ΣAGp,itf∪ΣAGp,cmp∪Ψ, Eass,itfcmpp

∪EΨ) and (ΣAGci ,itf
∪ΣAGci ,cmp∪Ψi, Eass,itfcmpci

∪EΨ,i)

be the primitive component static specifications of (V, Ψ, EΨ, {p}, Σ, E) and (Vi, Ψi, EΨ,i, {ci}, Σi, Ei),
respectively. Let ({cmpci

}i∈I , {projcmpci
, liftcmpci

}i∈I , Epjlt,cmp) be the sort decomposition of

cmpp. Let pjaxmobsecmpp,j
be the projection axiom of obsecmpp,j whose forms are:

(∀X)obsecmpp,j(DS, C, S)
= F [obsecmpc1,jc1(DS1, projcmpcc1

(C, S)), . . . , obsecmpck,jck
(DSk, projcmpcc1

(C, S))]

where F is F of obspjobsej
. Let main be an element of {ci}i∈I . Let Σcmpdecp

be that in
Definition 95 where ΣDTci

and ΣDTp are Ψi and Ψ, respectively. Let Ecmpdecp
be that in

Definition 95 where EDTci
and EDTp are EΨ,i and EΨ, respectively and Epjaxm,dtatr,cmpp

is
{pjaxmobsecmpp,j

}j∈J .

Let ({itfci
}i∈I , {projitfci

, liftitfci
}i∈I , Epjlt,itf) be the sort decomposition of itfp. Let pjaxmobseitfp,j

be the projection axiom of obseitfp,j whose forms are:
(∀X)obseitfp,j(DS, C, S)
= F [obseitfc1,jc1(DS1, projitfcc1

(C, S)), . . . , obseitfck,jck
(DSk, projitfcc1

(C, S))]
where F is F of obspjobsej

. Let Σitfdecp be that in Definition 95. Let Eitfdecp be that in
Definition 95 where Epjaxm,dtatr,itfp is {pjaxmobseitfp,j

}j∈J .

We call the 6-tuple (cmpp, Σcmpdecp
, Ecmpdecp

, itfp, Σitfdecp, Eitfdecp) component-interface
decomposition caused by the connector (V, Ψ, EΨ, p, Σ, {ci}i∈I , Σproj, E) with main. �

By combining primitive component static specifications in Definition 101 and connectors
in Definition 102, we can get a component static specification.

Effect axioms in a component specification correspond to effect axioms in a dynamic
specification.

Definition 103 Let (V, Ψ, EΨ, {h}, Σ, Eeffect) be a component specification. Let {obsei}i∈I

be the set of all the observations in Σ such that the rank of each obsei is (d1,i · · ·dni,i h, d0,i).
Let {actij}j∈J be the set of all the actions in Σ such that the rank of each actij is
(d′

1,j · · ·d′
nj ,j h, h). Let {eqi,j}i∈I,j∈J be Eeffect such that the form of eqi,j is:

(∀X)obsei(DS, actij(DS’, H)) = Fi,j[obsei(DS, H)].
Let cmph, ifh, and s be sorts. Let {obsecmp,i}i∈I and {obseif,i}i∈I be the set of opera-
tors that the ranks of each obsecmp,i and each obseif,i are (d1,i · · · dni,i cmph s, d0,i) and
(d1,i · · · dni,i ifh s, d0,i), respectively. Let {actimeth,j}j∈J be the set of operators that the
rank of each actimeth,j is (d′

1,j · · · d′
nj ,j ifh cmph s, s). Let eqcmp,i,j and eqif,i,j (i ∈ I, j ∈ J)

be equations whose forms are:
(∀X)obsecmp,i(DS, cmph, actimeth,j(DS’, ifh, cmph, S)) = Fi,j[obsecmp,i(DS, cmph, S)] and
(∀X)obseif,i(DS, ifh, actimeth,j(DS’, ifh, cmph, S)) = Fi,j[obseif,i(DS, ifh, S)], respectively.

We call {eqcmp,i,j}i∈I ∪ {eqif,i,j}i∈I the basic effect axiom set of actimeth,j. �

The dynamic specification is obtained from the component static specification and the
basic effect axiom sets by adding effect axioms by observations without obsecmp and obseif

whose forms are (∀X)attr(DS, C, act(DS’,CS, S)) = attr(DS, C, S).
Because there are correspondences between reduction sequences used in refinement

verification of LFMB and those of LFME, the results of LFMB and LFME are the same.

99

9.2 Logic of Projection-style Behavioral Specification

The logic of behavioral specification is behavioral logic and the logic of equational speci-
fication is equational logic. The verification using behavioral logic is more complex than
the verification using equational logic. The latter only needs equational deduction. But,
the former may need context induction [19], coinduction[5, 15], test set coinduction[25],
and so on.

As we discussed in Section 7.4.1, refinement verification in LFMB only needs equa-
tional deduction. So, we predicted that the logic of projection-style behavioral specifica-
tion was equational logic. The prediction is true. Firstly, we discuss that the semantic of
projection-style behavioral specification (V, Ψ, EΨ, H, Σ, E) is the same as the semantics of
equational specifications (Σ, E), i.e. the set of all the hidden (V, Ψ, EΨ, H, Σ, E)-algebras
are the same as the set of all the (Σ, E)-models.

Theorem 31 Let (V, Ψ, EΨ, H, Σ, E) be a projection-style behavioral specification. A hid-
den (V, Ψ, EΨ, H, Σ, E)-algebra is a (Σ, E)-model and vice versa.

Proof : From Definition 64, all axioms of E are equations. So, (Σ, E) is an equational
specification. From Definition 18 and Definition 28, a hidden (V, Ψ, EΨ, H, Σ, E)-algebra
is a (Σ, E)-model and vice versa. The verification about projection-style behavioral
specifications is iterations of the satisfaction verification of Σ-equations and Σ-behavioral
equations.

The satisfaction relation of behavioral logic is an extension of that of equational logic.
In behavioral logic, the satisfaction relation about Σ-behavioral equations is added (Def-
inition 26). Because the satisfaction relation about Σ-equations in behavioral logic is the
same as that in equational logic, the satisfaction verification of Σ-equations is executed
by using equational deduction.

Then, we discuss the satisfaction verification of Σ-behavioral equations on projection-
style behavioral specifications.

Theorem 32 Let (V, Ψ, EΨ, H, Σ, E) be a projection-style behavioral specification and
Obs be the set of observations in Σ.

M |=Σ (∀X)t ∼ t′ iff for each obs ∈ Obs, M |=Σ (∀X)obs[t] = obs[t′].

Proof : It is straightforward by using the technique of test set coinduction [25]. Because
the number of Obs is finite, from Theorem 32, the satisfaction verification of Σ-behavioral
equations on projection-style behavioral specifications is executed by using equational
deduction.

So, we conclude that the logic of projection-style behavioral specification is equational
logic.

100

Chapter 10

Connector Generation

10.1 JavaBeans Implementation of Tree Architecture

JavaBeans has the following interfaces:

1. events used for reporting change of the states of JavaBeans,

2. properties used for observing the states, and

3. methods used for calling inner functions of JavaBeans.

We implement a component of tree architecture by using the following two kinds of Jav-
aBeans, a function bean and an interface bean (Fig. 10.1):

1. for each observation or action of the component, the interface bean has a correspond-
ing input and output interface, like comboboxes for selecting values of arguments,
an execution button, and a label for displaying an observational result (Fig. 10.2),

2. for each observation or action, the function bean has a corresponding press event,

3. for each observation, the interface bean has a corresponding obs event,

4. for each observation, the function bean has a corresponding obs property that returns
the observational result,

5. for each observation or action, (1) the interface bean has a corresponding press
event occurring routine that occurs the press event when the execution button is
pressed and (2) the function bean has a corresponding press event process routine
that executes the procedure corresponding to the press event, and

6. for each observation, (1) the function bean has a corresponding obs event occurring
routine that is called from the press event process routine when the observational
result is generated and occurs the obs event and (2) the interface bean has a cor-
responding obs event process routine that displays the observational result on the
output interface.

101

Function
component

Interface
component

press event

obs event

obs property

Figure 10.1: A function bean and an
interface bean

Figure 10.2: Input and output inter-
faces of an interface bean

Press
getremote
execution
Button

(1)getremote PEOR

(2)getremote PEPR

(3)getremote OEOR

(4)getremote OEPR

getremote PE

call

getremote OE

Press
setremote
execution
Button

(1)setremote PEOR

(2)setremote PEPR

setremote PE

Function beans

Interface beans

Figure 10.3: Process flows of getremote and setremote of PUT group component

Example 31 Fig. 10.2 shows input and output interfaces of the interface bean of PUT
group component. Comboboxes displaying file1 or syphon are used for selecting arguments.
getremote button, isinlocal button, isinremote button, setremote button, and put button
are execution buttons. Labels displaying syphon or false are used for displaying the ob-
servational results when the corresponding execution buttons are pressed. Fig. 10.3 shows
process flows of getremote and setremote of PUT group component. PEOR, PE, PEPR,
OEOR, OE, and OEPR are abbreviations of a press event occurring routine, a press event,
a press event process routine, an obs event occurring routine, an obs event, and an obs
event process routine, respectively.

Because a composite component is a component, a composite component is implemented
by using a function bean and an interface bean. The function bean of the composite
component is implemented as follows:

1. for each observation, the obs property returns the value of the corresponding obs
property of the constructing component,

2. for each observation, the obs event occurring routine occurs the obs event with the
value of the corresponding obs property of the constructing component, and

3. for each action, for each constructing component, the press event occurring routine
occurs the corresponding press event if it exists and as the result of the occurrence,
the corresponding press event process routine is started.

Note that these correspondences are described in the connector specification.

Example 32 Fig. 10.4 shows process flows of getremote and put of PUT composite
component in Example 16.

10.2 Automated Connector Generation

As we discussed in Section 10.1, a component of tree architecture is implemented by
using two kinds of JavaBeans, a function bean and an interface bean. The function bean

102

Press
getremote
execution
Button

(1)getremote PEOR

(2)getremote PEPR

(3)getremote OEOR

(5)getremote OEPR

getremote PE

call

getremote OE

Press
put
execution
Button

(1)put PEOR

(2)put PEPR

put PE

PUT group component

(4)getmachine
 property

call

result

PUT group component

INFO group component

(3)put PEPR

FTP group component

put PE

INFO group component

Figure 10.4: Process flows of getremote and put of PUT composite component

Connector

action
(press
event)

observation
(obs property)

Function beans of
Constructing components

Figure 10.5: The structure of the connector implementation

of the composite component is implemented by using only information described in the
connector specification.

But to implement the interface bean, some information is necessary. The input and
output interface needs information about what input interfaces for setting arguments are
necessary and what an output interface for displaying the observational result is necessary.
Moreover, the obs event process routine needs information about how to display the
observational result.

The support tool of CBDL using LFMB prepares default interfaces and a default obs
event process routine. For setting arguments, textfields are used. For displaying the
observational result, a label is used. The default obs event process routine display the
observational result on the label.

The connector is the function bean and the interface bean of the composite component
(Fig. 10.5). The support tool automatically generates the connector, i.e. these beans by
using information described in the connector specification, default interfaces, and a default
routine.

As an optional function, the support tool supports a function that changes an input
and output interface and an obs event process routine. In fact, the input interfaces of
Fig. 10.2 are comboboxes changed by using this function.

103

10.3 Servlets with JavaBeans Implementation of Tree

Architecture

Consider a component of tree architecture and its JavaBeans implementation, i.e. the
interface bean and the function bean for the component. As we discussed in Section 10.1,
the roles of the interface bean are:

1. the user interface of the component,

2. the sender of press events, and

3. the receiver of obs events.

We can implement the roles by using a Servlet. We call the Servlet interface servlet.
By replacing the interface bean with the interface servlet, we get another implementation
of the component.

104

Chapter 11

Support Tools

We developed support tools of CBDL.
Firstly, we developed a support tool of CBDL using LFMB1. The input of the tool

is projection-style behavioral specifications written by using CafeOBJ and components
that are JavaBeans. The tool stores components in the inner component library, verifies
refinement, generates connectors whose correctness is guaranteed by the refinement ver-
ification and which are JavaBeans, and generates component-software by combining the
connectors and components of the component library.

Then, we developed support tools of CBDL using LFMB and LFME2. Based on the
research of the above tool, we design the tool. The tools are a support tool for stand-alone
type component-based software (abb. the tool for SA) and a support tool for client-server
type component-based software (abb. the tool for CS). In the tool for SA, components and
connectors are JavaBeans. In the tool for CS, components and connectors are Servlets
and JavaBeans. The input of the tools are (1) UML diagrams with OCL descriptions
whose forms are XML files and (2) components. The tools store components in the
inner component library, verify consistency of the UML diagrams, generate connectors
whose correctness is guaranteed by the verification, and generate component-software by
combining the connectors and components of the component library.

11.1 A Support Tool of CBDL using LFMB

The input of the tool is (a) a requirement specification of target software, (b) a refined
specification specifying how to combine components, and (c) components (Fig. 11.1). (a)
and (b) are projection-style behavioral specifications written by using CafeOBJ . (c) is
JavaBeans. The output of the tool is JavaBeans that is obtained by combining (c) and
generated connectors (Fig. 11.1). The tool guarantees high reliability of the output by
verifying refinement and generating the connectors.

1The tool was developed in the project “A Highly Reliable Java Code Generator Using Component
Specifications”.

2The tool was developed in the project “A Management System of Component-based Software Using
Internet”.

105

A requirement
specification

A refined
specification

Components

The
support
tool

Target
software

Figure 11.1: Input and output of the
support tool

Refinement
verifier

Connector
generator

Interface
generator

Software
generator

Figure 11.2: The structure of the sup-
port tool

Figure 11.3: An outlook of the support tool

11.1.1 The structure of the support tool

The tool is constructed from refinement verifier, connector generator, interface generator,
and software generator (Fig. 11.2).

Refinement verifier generates verification scripts and then, sends those scripts to
CafeOBJ verification system and gets the results.

Connector generator generates the function bean of the composite component by using
the method discussed in Section 10.2.

Interface generator generates the interface bean of the composite component by using
the method discussed in Section 10.2.

Software generator generates the target software by combining (1) the function bean
and the interface bean of the composite component and (2) the function beans of the
constructing components.

11.1.2 The functions of the support tool

Fig. 11.3 is an outlook of the support tool. When the tool starts, the textarea shows
parameters of the tool, like TmpDir and SpecDir (Fig. 11.3).

TmpDir directory is the directory in which JavaBeans are stored. So, in TmpDir
directory, components of the component library are stored. Moreover, the output of the
tool is stored in TmpDir directory.

SpecDir directory is the directory in which CafeOBJ specifications are stored. So,
component specifications and connector specifications are selected from these CafeOBJ
specifications.

When Add Spec button is pressed, a dialog is displayed. By using this dialog, compo-
nent specifications and connector specifications are selected. At the first time, a compo-
nent specification is selected as a requirement specification. At the second time and after,
a connector specification is selected as a refined specification and refinement verification
is executed. If refinement verification fails, the textarea shows unsatisfied equations.

106

When the textarea shows unsatisfied equations, Add Spec button is changed to Eq
Verify button. When Eq Verify button is pressed, the tool enters manual verification
mode for an unsatisfied equation. After writing a verification script for the unsatisfied
equation on the textarea and then pressing Verify button, refinement verifier executes
verification whether this script succeeds. By iterating this process for all the unsatisfied
equations, the tool executes refinement verification. When all the unsatisfied equations
are verified, Eq Verify button is changed to Add Spec button. By using manual verification
mode, we found the idea of the automated refinement verification.

Constructing components of composite components may be composite components.
This means composite components may have hierarchical structures. The tool supports
stepwise refinement to deal with the hierarchical structures. A component specification
imported to a connector specification may have a corresponding connector specification.
The process of stepwise refinement is as follows: In a stage, the former connector specifi-
cation is input and refinement verification is executed by using Add Spec button. In the
next stage, the latter connector specification is input and refinement verification between
the component specification and the latter connector specification is executed by using
Add Spec button.

When Add Comp button is pressed, a dialog is displayed. By using this dialog, the
correspondences between (1) the component specifications input by using the dialog of
Add Spec button and (2) components in the component library are input. The software
generator uses these correspondences.

When Gene Comp button is pressed, the connector generator and the interface gen-
erator generate the function beans and the interface beans, respectively.

When Gene App button is pressed, the software generator generates the target soft-
ware.

If Chg Data Comp button is pressed before Gene Comp button is pressed, a dialog
is displayed. By using this dialog, input and output interfaces and obs event process
routines are changed as we discussed in Section 10.2.

11.2 Support Tools of CBDL using LFMB and LFME

The tools are a support tool for stand-alone type component-based software (abb. the tool
for SA) and a support tool for client-server type component-based software (abb. the tool
for CS). In the tool for SA, components and connectors are JavaBeans. In the tool for CS,
components and connectors are Servlets and JavaBeans. The input of the tools are (1)
UML diagrams with OCL descriptions whose forms are XML files and (2) components.
The tools store components in the inner component library, verify consistency of the
UML diagrams, generate connectors whose correctness is guaranteed by the verification,
and generate component-software by combining the connectors and components of the
component library.

We developed the tools as client-server type component-based software. So, component
developers and component users can access to the tools through Internet at any place at
any time.

11.2.1 The structure of the support tools

The tools are constructed from

107

UML diagram
manegment CMP

Consistency
verifier CMP

Connector
generator CMP

Cmp Library
manegement CMP

Software
generator CMP

Exclusion
control CMP

User interface
CMP

Control flow Data flow

Figure 11.4: The structure of the support tools

1. UML diagram management component,

2. consistency verifier component,

3. connector generator component,

4. component library management component,

5. software generator component,

6. exclusion control component, and

7. user interface component (Figure. 11.4).

The tool for SA and the tool for CS are the same without connector generator component
and software generator component.

11.2.2 The functions of the support tools

The functions of the support tools are as follows.

UML diagram management component

UML diagram management component manages UML diagrams of the target domain. It
provides the following functions:

1. the function for storing a UML diagram,

2. the function for deleting a stored UML diagram,

3. the function for searching a selected UML diagram,

4. the function for making the list of the stored UML diagrams,

108

5. the function for making the list of the component names occurring in the stored
UML diagrams,

6. the function for generating the information about unverified properties,

7. the function for changing the information about verified properties,

8. the function for generating the information about ungenerated connectors, and

9. the function for changing the information about generated connectors.

Consistency verifier component

Consistency verifier component verifies the consistency of the stored UML diagrams. To
verify the consistency, firstly, it translates UML diagrams into CafeOBJ specifications.
Then, it generates verification scripts for the consistency verification. Finally, by sending
the CafeOBJ specifications and the verification scripts to the CafeOBJ verification system,
it verifies the consistency. It provides the following functions:

1. the function for translating the stored UML diagrams into CafeOBJ specifications,

2. the function for generating the verification scripts of refinement verification about
business model,

3. the function for generating the verification scripts of refinement verification about
component specification,

4. the function for generating the verification scripts of verification of satisfaction of
static invariants,

5. the function for manipulating the CafeOBJ verification system, and

6. the function for supporting the verification that uses the verification scripts written
by users.

Connector generator component

Connector generator component for the tool for SA generates function beans and interface
beans corresponding to connectors from the verified CafeOBJ verification. It provides the
following functions:

1. the function for generating function beans and

2. the function for generating interface beans.

Connector generator component for the tool for CS generates function beans and in-
terface servlets corresponding to connectors from the verified CafeOBJ verification. It
provides the following functions:

1. the function for generating function beans and

2. the function for generating interface servlets.

109

Component library management component

Component library management component manages

1. components that provides basic functionalities of the target domain and

2. connectors that are generated by connector generator component.

It provides the following functions:

1. the function for storing a component,

2. the function for deleting a stored component,

3. the function for searching a selected component,

4. the function for making the list of the stored components’ names,

5. the function for storing a connector,

6. the function for deleting a stored connector,

7. the function for searching a selected connector, and

8. the function for making the list of the stored connectors’ names.

Software generator component

Software generator component, firstly, generates the target software by combining compo-
nents and connectors that are stored in component library management component, then,
collect the binary files of the software as the archive, finally, send the archive to users. It
provides the following functions:

1. the function for generating the target software,

2. the function for collecting the binary files of the software as the archive, and

3. the function for sending the archive.

Exclusion control component

Exclusion control component controls concurrent accesses to stored UML diagrams from
some users. It provides the following functions:

1. the function for checking whether the selected UML diagrams can be changeable
and

2. the function for changing the management information of the UML diagrams.

It decides whether the selected UML diagrams can be changeable based on the manage-
ment information.

110

User interface component

User interface component mediates between users and the other components. It provides
the following functions:

1. the function for selecting an user interface screen depending on a situation and

2. the function for controlling the other components to execute a user request.

111

Chapter 12

Case Studies

We did case studies:

1. of the domain of file transfer programs and

2. of the domain of online bookstores.

12.1 The Domain of File Transfer Programs

We did a case study of the domain of file transfer programs by using the support tool of
CBDL using LFMB.

The software family of the domain includes PUT-A that transfers A’s files on the local
machine to a remote machine and GET-B that transfers B’s files on a remote machine
to the local machine. The component library is divided into FTP group that transfers
files and INFO group that manages personal information, like user names and passwords
(Fig. 12.1). FTPftp and FTPcopy provide file transfer functions using FTP protocol and
using copy command of OS, respectively. FTPftp and FTPcopy belong to FTP group.
INFO-A and INFO-B provide management functions of A’s personal information and B’s
personal information, respectively. INFO-A and INFO-B belong to INFO group. PUT-A
is constructed from FTPftp, INFO-A, and the connector of PUT. GET-B is constructed
from FTPftp, INFO-B, and the connector of GET.

We developed INFO-A and INFO-B from scratch. But, we developed FTPftp and
FTPcopy by using the free software providing functions about FTP protocol and copy
command of OS, respectively. By developing “the lappers” and by combining them with
the existing software, we developed FTPftp and FTPcopy.

We developed PUT-A as follows. Firstly, we prepared the component library with
CafeOBJ specifications. Secondly, we input

1. the primitive component specification that specifies behavior of PUT group and

2. the component specification that specifies how to combine FTP group and INFO
group to develop the PUT group

into the tool. Then, we selected FTPftp and INFO-A on the tool. Finally, the tool
verified refinement and generated PUT-A whose correctness is assured by the refinement
verification (Fig. 12.2).

Through this case study, we show that:

112

Connector of PUT

Connector of GET

FTPftp INFO-A

FTPftp INFO-B

PUT-A

GET-B

Component library

Group Component

FTP

INFO

FTPftp,FTPcopy

INFO-A,INFO-B

Figure 12.1: The software family and the component library

Figure 12.2: The outlook of PUT-A component

1. for the small domain, the support tool is useful for generating components whose
correctness is assured and

2. we can develop components of the component library by using existing software.

12.2 The Domain of Online Bookstores

We are doing a case study of the domain of online bookstores by using the tool for CS,
i.e. a support tool of CBDL using LFMB and LFME.

Firstly we analyzed the behavior of the existing online bookstores. Secondly, we
specified the extracted business processes in UML diagrams. Then, we decided primitive
components and specified behavior of the component in UML diagrams. Note that the
components are contents of the component library. Finally, we specified behavior of an
online bookstore system in UML diagrams. In the process, we noticed that the technique
for dealing with large quantities of UML diagrams is necessary and the technique of
frameworks is a good candidate of the solution. Because the frameworks correspond to
parameterized specifications of algebraic specifications, the consistency verification in the
UML diagrams can be executed efficiently by using the frameworks.

113

Chapter 13

Conclusion

In the thesis, we discussed:

1. lightweight formal methods for component-based software LFMB and LFME,

2. the component-based software development CBDL using LFMB or LFME, and

3. the support tools of CBDL.

By using CBDL, the obstacles of component reuse that are:

1. a lack of a consensus about component usage between component developers and
software developers, i.e. component users and

2. an architectural mismatch

are eliminated. In CBDL, the former obstacle is eliminated by specifying business models
and component specifications by using UML diagrams with OCL descriptions and veri-
fying consistency in the UML diagrams. Because LFMB and LFME include automated
verification methods of the consistency, component developers and software developers
who are not familiar with formal methods can get the benefit of the verification by using
the support tools of CBDL. In CBDL, the latter obstacle is eliminated by selecting tree
architecture that we developed.

We can regard the UML diagrams as specifications specified by a language for programming-
in-the-large. So, in CBDL, moreover, we generate component-based software from the
UML diagrams by combining the connectors specified in the UML diagrams and compo-
nents of a component library. Note that the above consistency verification guarantees the
correctness of the connectors.

The support tools of CBDL are designed as client-server type software. So, component
developers and software developers can access to the tools through Internet at any place
at any time.

To summarize, by using the support tools of CBDL, we can increase component reuse
and correctness of component-based software.

We compare refinement verification of LFMB and LFME. Because the verification
results are the same, we predicted that the logic of LFMB was equational logic. The
prediction is true. So, we conclude that consistency verification in the UML diagrams is
a problem that only needs equational logic.

114

Through case studies, we noticed that the technique for dealing with large quantities
of UML diagrams is necessary and the technique of frameworks is a good candidate of the
solution. Because the frameworks correspond to parameterized specifications of algebraic
specifications, the consistency verification in the UML diagrams can be executed efficiently
by using the frameworks. So, our future work is:

1. the study for getting knowhow for using the frameworks and

2. improvements on the support tool for supporting techniques related to the frame-
works.

115

Bibliography

[1] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge Uni-
versity Press, 1999.

[2] Leonor Barroca, Jon Hall, and Patrick Hall, editors. Software architectures : advances
and applications. Springer-Verlag, 1999.

[3] Don Batory and Sean O’Malley. The design and implementation of hierarchical soft-
ware systems with reusable components. ACM Transaction on Software Engineering
and Methodology, 1(4):355–398, 1992.

[4] Juan C. Bicarregui, John S. Fitzgerald, Pater A. Lindsay, Richard Moore, and Brian
Ritchie. Proof in VDM: A Practitioner’s Guide. Springer-Verlag, 1994.

[5] Michel Bidoit and Rolf Hennicker. Behavioural theories and the proof of behavioural
properties. Theoretical Computer Science, 165:3–55, 1996.

[6] Grady Booch, James Rumbaugh, and Ivar Jacobson. The unified modeling language
user guide. Addison-Wesley, 1999.

[7] Samuel Buss and Grigore Roşu. Incompleteness of behavioral logics. In Proceedings
of CMCS’2000, volume 33 of ENTCS. Elsevier Science, 2000.

[8] Krzysztof Czarnecki and Ulrich W. Eisenecker. Components and generative program-
ming (in ESEC/FSE’99). Software Engineering Notes, 24(6):2–19, 1999.

[9] Frank DeRemer and Hans H. Kron. Programming-in-the-large versus programming-
in-the-small. IEEE Transactions on software engineering, 2(2):80–86, 1976.

[10] Răzvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report. AMAST Series in
Computing 6. World Scientific, 1998.

[11] Răzvan Diaconescu and Kokichi Futatsugi. Behavioural coherence in object-oriented
algebraic specification. Journal of Universal Computer Science, 6(1):74–96, 2000.

[12] Desmond D’Souza and Alan Wills. Objects, Components and Frameworks in UML.
Addison-Wesley, 1998.

[13] David Garlan, Robert Allen, and John Ockerbloom. Architectural mismatch: Why
reuse is so hard. IEEE Software, 12(6):17–26, 1994.

[14] Joseph Goguen. Theorem Proving and Algebra. MIT Press, to appear.

116

[15] Joseph Goguen and Grant Malcolm. A hidden agenda. Theoretical Computer Science,
245:55–101, 2000.

[16] Joseph Goguen and José Meseguer. Order-sorted algebra I: Equational deduction
for multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science, 105(2):217–273, 1992.

[17] Joseph Goguen, Timothy Winkler, José Mesegure, Kokichi Futatsugi, and Jean-
Pierre Jouannaud. Introducing OBJ. Technical report, SRI International, Computer
Science Laboratory, 1993.

[18] The RAISE Method Group. The RAISE Development Method. Prentice Hall, 1995.

[19] Rolf Hennicker. Context induction: a proof principle for behavioural abstractions. In
Design and Implementation of Symbolic Computation Systems. International Sym-
posium DISCO 1990, number 429 in LNCS, pages 101–110. Springer-Verlag, 1990.

[20] Rolf Hennicker and Michel Bidoit. Observational logic. In Algebraic Methodology and
Software Technology (AMAST’98), number 1548 in LNCS, pages 263–277. Springer-
Verlag, 1999.

[21] Shusaku Iida, Michihiro Matsumoto, Răzvan Diaconescu, Kokichi Futatsugi, and
Dorel Lucanu. Concurrent object composition in CafeOBJ. Technical Report IS-RR-
98-0009S, JAIST, 1998.

[22] Daniel Jackson. Alloy: A lightweight object modelling notation. Technical Report
797, MIT Laboratory for Computer Science, 2000.

[23] Stéphane Kaplan. Conditional rewrite rules. Theoretical Computer Science, 33:175–
193, 1984.

[24] K. Lano. The B Language and Method: A Guide to Practical Formal Development.
Springer-Verlag, 1996.

[25] Michihiro Matsumoto and Kokichi Futatsugi. Test set coinduction — toward auto-
mated verification of behavioural properties —. In Proceedings of Second Interna-
tional Workshop on Rewriting Logic and It’s applications, volume 15 of Electronic
Notes in Theoretical Computer Science. Elsevier Science, 1998.

[26] Michihiro Matsumoto and Kokichi Futatsugi. Object composition and refinement
by using non-observable projection operators: A case study of the automated teller
machine system. In OBJ/CafeOBJ/Maude at Formal Methods ’99, pages 133–157.
THETA, 1999.

[27] Michihiro Matsumoto and Kokichi Futatsugi. Simply observable behavioral speci-
fication. In Proceedings of Asia-Pacific Software Engineering Conference’99, pages
460–467. IEEE, 1999.

[28] Michihiro Matsumoto and Kokichi Futatsugi. Highly reliable component-based soft-
ware development by using algebraic behavioral specification. In Proceedings of Third
IEEE International Conference on Formal Engineering Methods, pages 35–43. IEEE,
2000.

117

[29] Michihiro Matsumoto and Kokichi Futatsugi. The support tool for highly reliable
component-based software development. In Proceedings of Asia-Pacific Software En-
gineering Conference’2000, pages 172–179. IEEE, 2000.

[30] Mira Mezini and Karl Lieberherr. Adaptive plug-and-play components for evolution-
ary software development (in OOPSLA’98). ACM SIGPLAN Notices, 33(10):97–116,
1998.

[31] David L. Parnas. On the design and development of program families. IEEE Trans-
actions on software engineering, 2(1):1–9, 1976.

[32] Ruben Prieto-Diaz and James M. Neighbors. Module interconnection languages.
Journal of Systems and Software, 6:307–334, 1986.

[33] Yannis Smaragdakis and Don Batory. Implementing layered designs with mixin
layers. In European Conference on Object-Oriented Programming’98, number 1445
in LNCS, pages 550–570. Springer-Verlag, 1998.

[34] J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992.

[35] Clemens Szyperski. Component software. Addison-Wesley, 1997.

[36] Martin Wirsing. Algebraic specification. In J. van Leeuwen, editor, Formal Models
and Semantics, volume B of Handbook of Theoretical Computer Science, chapter 13,
pages 676–788. Elsevier Science, 1990.

[37] Toshiyuki Yamada, Jurgen Avenhaus, Carlos Loŕia-Sáenz, and Aart Middeldorp.
Logicality of conditional rewrite systems. Theoretical Computer Science, 236:209–
232, 2000.

118

Publications

[1] Takashi Nagaya, Michihiro Matsumoto, Kazuhiro Ogata and Kokichi Futatsugi:
“How to Give Local Strategies to Function Symbols for Equality of Two Implemen-
tations of the E-strategy with and without Evaluated Flags”, Proceedings of Asian
Symposium on Computer Mathematics (ASCM’98), p71-81, Lanzhou University
Press, 1998.

[2] Michihiro Matsumoto and Kokichi Futatsugi: “Test Set Coinduction - Toward Auto-
mated Verification of Behavioural Properties -”, Proceedings of Second International
Workshop on Rewriting Logic and It’s applications (WRLA’98), Electronic Notes
in Theoretical Computer Science, Vol. 15, Elsevier Science, 1998.

[3] Michihiro Matsumoto and Kokichi Futatsugi: “Object-Oriented Algebraic Specifi-
cation in Hidden Sorted Algebra”, Proceedings of Foundation of Software Engineer-
ing’98 (FOSE’98), p157-162, Kindaikagakusya, 1998 (In Japanese).

[4] Michihiro Matsumoto and Kokichi Futatsugi: “Verification Methods Based on Be-
havioral Semantics”, Computer Software, Vol.16, No.2, p47-50, 1999 (In Japanese).

[5] Michihiro Matsumoto and Kokichi Futatsugi: “Object Composition and Refinement
by using Non-Observable Projection Operators: A Case Study of the Automated
Teller Machine system”, OBJ/CafeOBJ/Maude at Formal Methods’99, p133-157,
THETA, 1999.

[6] Michihiro Matsumoto and Kokichi Futatsugi: “Specifications of Object Hierarchical
Structures and Refinement by using Behavioral Semantics”, Proceedings of Foun-
dation of Software Engineering’99 (FOSE’99), p132-139, Kindaikagakusya, 1999 (In
Japanese).

[7] Michihiro Matsumoto and Kokichi Futatsugi: “Simply Observable Behavioral Speci-
fication”, Proceedings of 6th Asia-Pacific Software Engineering Conference (APSEC’99),
p460-467, IEEE, 1999.

[8] Michihiro Matsumoto and Kokichi Futatsugi: “Highly Reliable Component-Based
Software Development by using Algebraic Behavioral Specification”, Proceedings of
3rd IEEE International Conference on Formal Engineering Methods (ICFEM’2000),
p35-43, IEEE, 2000.

[9] Michihiro Matsumoto and Kokichi Futatsugi: “Highly Reliable Component-based
Software Development by using Projection-style Behavioral Specification”, Proceed-
ings of Foundation of Software Engineering’2000 (FOSE’2000), p229-236, Kindaik-
agakusya, 2000 (In Japanese).

119

[10] Michihiro Matsumoto and Kokichi Futatsugi: “The Support Tool for Highly Reliable
Component-Based Software Development”, Proceedings of 7th Asia-Pacific Software
Engineering Conference (APSEC’2000), p172-179, IEEE, 2000.

[11] Michihiro Matsumoto and Kokichi Futatsugi: “The Tool that Supports Highly Re-
liable Component-Based Software Development”, The Transactions of the IEICE
D-I, Vol.J84-D-I, No.6, p736-744, 2001 (In Japanese).

[12] Michihiro Matsumoto, Yoshihito Katayama, Takanori Nakama, Yoshiharu Hashimoto,
and Kokichi Futatsugi: “A Lightweight Formal Method for the Catalysis Approach”,
Proceedings of Foundation of Software Engineering’2001 (FOSE’2001), p159-162,
Kindaikagakusya, 2001 (In Japanese).

[13] Michihiro Matsumoto and Kokichi Futatsugi: “Verification of behavioral equations
by using Test Set Coinduction”, Computer Software, Vol.19, No.1, p10-21, 2002 (In
Japanese).

120

Projects

The projects that the author was the project leader are as follows:

1. Michihiro Matsumoto, Shusaku Iida, and Kokichi Futatsugi, “A Tool That Supports
Code Generation of Highly Reliable Java Codes using Component Specifications”,
Support program for young software researchers 99-004, Information-technology
Promotion Agency (IPA) and Research Institute of Software Engineering (RISE).

2. Michihiro Matsumoto, Yoshihito Katayama, Takanori Nakama, Yoshiharu Hashimoto,
and Kokichi Futatsugi, “A Management System of Component-based Software Us-
ing Internet”, Support program for young software researchers 01-006, Information-
technology Promotion Agency (IPA) and Research Institute of Software Engineering
(RISE).

121

