<table>
<thead>
<tr>
<th>Title</th>
<th>Logics without the contraction rule and residuated lattices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ono, Hiroakira</td>
</tr>
<tr>
<td>Citation</td>
<td>Australasian Journal of Logic, 8(1): 50-81</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-09-22</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Text version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10119/9217</td>
</tr>
<tr>
<td>Description</td>
<td></td>
</tr>
</tbody>
</table>

Logics without the contraction rule
and residuated lattices

Hiroakira Ono
Japan Advanced Institute of Science and Technology
Nomi, Ishikawa, Japan
ono@jaist.ac.jp

Received by Greg Restall
Published September 22, 2010
© 2010 Hiroakira Ono

To the memory of R. K. Meyer

Abstract: In this paper, we will develop an algebraic study of substructural propositional logics over FLew, i.e. the logic which is obtained from the intuitionistic logics by eliminating the contraction rule. Our main technical tool is to use residuated lattices as the algebraic semantics for them. This enables us to study different kinds of nonclassical logics, including intermediate logics, BCK-logics, Łukasiewicz’s many-valued logics and fuzzy logics, within a uniform framework.

Foreword (2009): The draft of the present paper was originally completed in 1999 and then revised slightly in 2001, which I intended to dedicate to R. K. Meyer on the occasion of his 65th birthday. From the middle of 90s, I had been trying to develop an algebraic study of substructural logics over the logic without the contraction rule FLew, and had announced results in several conferences, e.g. the 6th Asian Logic Conference in 1996, Dagstuhl Seminar on Multiple-Valued Logic in 1997 and S. Jaśkowski Memorial Symposium on Paraconsistent Logic, Logical Philosophy, Mathematics & Informatics in 1998. So I planned to make the present paper a comprehensive survey of the state of affairs of the study.

While the paper has not been published for many years, the draft has been referred in considerably many papers of substructural logics published in the last decade.

On the occasion of the publication of the paper, I have been wondering in which way I should publish the paper and how much I should revise it. For, there have been a remarkable progress in the direction of this research within these 10 years, and moreover my joint book [25] on substructural logics was already published. It would be no use to make an entire update of it.
My decision is to minimize changes, keeping the original form, and to add only necessary information on recent progress. (I put the mark (†) to footnotes which are essentially added in the present revision.) I hope that the paper will be still of interest and also informative, especially in its references, beyond its historical meaning.

1 Introduction

A lot of works have been done in recent years for substructural logics, logics lacking some or all of structural rules when they are formalized in sequent calculi (see e.g. [21]). They include various kinds of nonclassical logics like Lambek calculus for categorial grammar, linear logic, BCK-logic and relevant logics, which have been introduced by different motivations with their own interests and aims and have been studied separately. The study of substructural logics, if successful, will enable us to develop the study of various nonclassical logics in a uniform viewpoint, and to discuss common features among them within this framework.

Though proof-theoretic methods have showed their effectiveness for particular substructural logics, e.g. logics formalized in cut-free sequent systems (see e.g. [54]), it will be quite necessary to introduce semantical methods when we want to develop a general study of substructural logics to the similar extent to that of modal logics.

In this paper, we will develop an algebraic study of substructural logics over FL$_{ew}$. The sequent calculus FL$_{ew}$ is obtained from the intuitionistic logic by deleting the contraction rule. Sometimes we call substructural logics over FL$_{ew}$, or logics without contraction rule, although the contraction rule holds in some of them. The class of logics without the contraction rule contains intermediate logics, BCK-logics, Łukasiewicz’s many-valued logics and fuzzy logics (in the sense of [30]). Our main technical tool here is algebraic one which is based on closer connections between logics over FL$_{ew}$ and classes of residuated lattices.

Our main aims of the present paper are first to view known results on various logics without contraction in our framework, to keep the situation in perspective and to try to find out proper directions of further study of substructural logics over FL$_{ew}$. We give here some basic references of various classes of logics without contraction discussed in the present paper: [13] for intermediate logics (or superintuitionistic logics), [16] for many-valued logics, [30] for fuzzy logics, [25] for residuated lattices, [8, 9] for BCK-algebras and [21, 25] for substructural logics.

The paper is organized as follows. In Section 2, the logic FL$_{ew}$ and its extensions are introduced. Results on residuated lattices and FL$_{ew}$-algebras are surveyed in Section 3. Basic results on subdirectly irreducible FL$_{ew}$-algebras are shown in Section 4. Some of important extensions of FL$_{ew}$ are introduced in Section 5 as axiomatic systems. In Section 6, simple and semisimple FL$_{ew}$-algebras are discussed. A classification of logics over FL$_{ew}$ is also introduced.

Hiroakira Ono, “Logics without the contraction rule”, Australasian Journal of Logic (© 2010, 50–81)
at the end of the section. Section 7 is devoted to the study of immediate pre-
decessors of the classical logic \(\mathbf{Cl} \). It is known that there is a single immediate
predecessor of \(\mathbf{Cl} \) over the intuitionistic logic, and that there are countably
many of them over Łukasiewicz’s infinitely many-valued logic. It will be shown
there that there are many immediate predecessors of \(\mathbf{Cl} \) other than them among
logics over \(\mathbf{FL}_{\text{ew}} \).

The author owed much to Bob Meyer and Josep M. Font in completing the
initial draft of the paper. The author would like to express his special thanks to
them for constant encouragement and suggestions. The author is also indebted
much to A. Avron, G. Bezhanishvili, W. Blok, M. Bunder, H. Ida, T. Kowalski,
K. Swirydowicz and F. Wolter for their advices and helps in various forms.

2 Logics without the contraction rule

We will introduce first a sequent calculus \(\mathbf{FL}_{\text{ew}} \), which is our basic logic with-
out the contraction rule. Roughly speaking, \(\mathbf{FL}_{\text{ew}} \) is the system obtained from
Gentzen’s sequent calculus \(\mathbf{LJ} \) for the intuitionistic logic by deleting the con-
traction rule. The language of \(\mathbf{FL}_{\text{ew}} \) consists of a logical constant \(\bot \), logical
connectives \(\rightarrow, \land, \lor \) and \(\cdot \) (called multiplication conjunction or fusion). The nega-
tion \(\neg A \) of a formula \(A \) is defined as an abbreviation of \(A \rightarrow \bot \). Sometimes,
we will abbreviate the formula \((A \rightarrow B) \land (B \rightarrow A) \) to \(A \equiv B \). A sequent is
of the form \(A_1, \ldots, A_m \Rightarrow B \) where \(m \geq 0 \). In the following, capital Greek
letters denote finite (possibly empty) sequences of formulas. The system \(\mathbf{FL}_{\text{ew}} \)
consists of the following initial sequents

1. \(A \Rightarrow A \)

2. \(\bot, \Gamma \Rightarrow C \)

and the following rules of inference;

Cut rule:

\[
\frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow C}{\Gamma, A, \Delta \Rightarrow C}
\]

Exchange rule and weakening rule:

\[
\frac{\Gamma, A, B, \Delta \Rightarrow C}{\Gamma, B, A, \Delta \Rightarrow C} \quad (\text{ex}) \quad \frac{\Gamma \Rightarrow C}{A, \Gamma \Rightarrow C} \quad (\text{weak})
\]

Rules for logical connectives:

\[
\frac{A, \Gamma \Rightarrow B}{\Gamma \Rightarrow A \rightarrow B} \quad (\Rightarrow) \quad \frac{\Gamma \Rightarrow A \quad B, \Delta \Rightarrow C}{A \rightarrow B, \Gamma, \Delta \Rightarrow C} \quad (\Rightarrow \Rightarrow)
\]

\[
\frac{\Gamma \Rightarrow A}{\Gamma \Rightarrow A \lor B} \quad (\lor 1) \quad \frac{\Gamma \Rightarrow B}{\Gamma \Rightarrow A \lor B} \quad (\lor 2)
\]

Hirokira Ono, "Logics without the contraction rule", *Australasian Journal of Logic* (© 2010, 50–81)
\[
\begin{align*}
\frac{A, \Gamma \Rightarrow C}{A \lor B, \Gamma \Rightarrow C} & \quad (\lor \Rightarrow) \\
\frac{\Gamma \Rightarrow A \quad \Gamma \Rightarrow B}{\Gamma \Rightarrow A \land B} & \quad (\Rightarrow \land) \\
\frac{A, \Gamma \Rightarrow C}{A \land B, \Gamma \Rightarrow C} & \quad (\land1 \Rightarrow) \\
\frac{B, \Gamma \Rightarrow C}{A \land B, \Gamma \Rightarrow C} & \quad (\land2 \Rightarrow) \\
\frac{\Gamma \Rightarrow A \quad \Delta \Rightarrow B}{\Gamma, \Delta \Rightarrow A \cdot B} & \quad (\Rightarrow \cdot) \\
\frac{A, \cdot, \Gamma \Rightarrow C}{A \cdot B, \Gamma \Rightarrow C} & \quad (\cdot \Rightarrow).
\end{align*}
\]

The provability of a given sequent is defined in the usual way. In particular, we say that a formula \(A\) is provable in \(\text{FL}_{ew}\) when the sequent \(\Rightarrow A\) is provable in it.

In our joint paper [55] with Y. Komori, both syntactic and semantic properties of \(\text{FL}_{ew}\) are studied. The cut elimination theorem for \(\text{FL}_{ew}\) is shown, from which both the decidability and Craig's interpolation theorem of \(\text{FL}_{ew}\) are derived. Also, a Hilbert-style formulation of \(\text{FL}_{ew}\) is introduced and the separation theorem is proved. Then, a Kripke-type semantics for \(\text{FL}_{ew}\) and related systems is introduced and their completeness with respect to the semantics is proved in it. (For additional information on \(\text{FL}_{ew}\) and related systems (up to the middle of 90s), see also [22, 23, 52, 53].) It should be also noticed that monoidal propositional logic in [33] discussed in the context of fuzzy logic is equivalent to the logic \(\text{FL}_{ew}\).

Let \(\text{FL}_e\) be the sequent system obtained from \(\text{FL}_{ew}\) by deleting the weakening rule, and \(\text{FL}_{ec}\) be the sequent system obtained from \(\text{FL}_e\) by adding the following contraction rule:

\[
\begin{align*}
\frac{A, A, \Gamma \Rightarrow C}{A, \Gamma \Rightarrow C} & \quad (\text{con})
\end{align*}
\]

The system \(\text{FL}_e\) gives a sequent calculus for the intuitionistic linear logic. It is clear that the sequent calculus obtained from \(\text{FL}_{ew}\) by adding the contraction rule gives a (cut-free) sequent calculus for the intuitionistic logic \(\text{Int}\). We can see that any sequent of the form \(A \cdot B \Rightarrow A \land B\) (and of the form \(A \land B \Rightarrow A \cdot B\)) is provable in \(\text{FL}_{ew}\) (and \(\text{FL}_{ec}\), respectively). Thus in \(\text{Int}\), the fusion \(\cdot\) becomes equivalent to \(\land\).

In the present paper, we will concentrate on the study of substructural propositional logics over \(\text{FL}_{ew}\). Here, by a substructural logic over \(\text{FL}_{ew}\) (or a substructural logic without the contraction rule), we mean any set of formulas which includes all formulas provable in \(\text{FL}_{ew}\) and is closed under substitution and modus ponens, i.e. if both \(A\) and \(A \rightarrow B\) belong to the set then \(B\) belongs also to it. Sometimes, we omit the word "substructural", or even call it simply a logic.\(^1\) Also, we identify a formal system with the set of all formulas which are

\(^1\) As for the definition of substructural logic in general, see [55].
provable in it, when no confusions will occur. Thus, FL_{ew} denotes not only the sequent calculus introduced in the above, but also the set of all formulas provable in it. In the following, Cl and Int denote classical logic and intuitionistic logic, respectively. Intermediate logics (or, superintuitionistic logics), which are logics over intuitionistic logic, Łukasiewicz’s many-valued logics, and fuzzy logics are important examples of logics over FL_{ew}, which have been already studied extensively.

The class of logics over FL_{ew} is ordered by the set inclusion \subseteq. (It is in fact a set, since each logic is a subset of the set of all formulas.) Of course, FL_{ew} is the smallest logic among them, and the set of all formulas is the greatest one, which is the inconsistent logic. We are concerned only with consistent logics, among which the classical logic Cl is the greatest.

Suppose that $\{L_i\}_{i \in I}$ is a set of logics, where I is a (possibly infinite) nonempty set of indices. Then, clearly the set intersection $\bigcap_{i \in I} L_i$ of them is also a logic. Thus, the set of all logics over FL_{ew} forms a complete lattice, in which the join $\bigvee_{i \in I} L_i$ of L_is is represented as follows:

$$\bigvee_{i \in I} L_i = \{ \text{A: there exist } i_1, \ldots, i_k \in I \text{ and formulas } B_{i_t} \in L_{i_t} \text{ for } 1 \leq t \leq k \text{ such that the formula } (B_{i_1} \cdot \ldots \cdot B_{i_k}) \rightarrow A \text{ is provable in } \text{FL}_{\text{ew}} \}. $$

Theorem 2.1 The set of all logics over FL_{ew} forms a complete lattice, in which the following distributive law holds:

$$L \cap \bigvee_{i} L_i = \bigvee_{i} (L \cap L_i).$$

The distributivity in the above theorem can be easily shown by using the above representation of joins. We can derive it also from the fact that the **variety of FL_{ew}-algebras is congruence-distributive** (see Proposition 3.5), by using the result by Jónsson [39] (see also [5]).

Let L_0 and L be logics such that $L_0 \subseteq L$. Then, L is said to be **finitely axiomatized over L_0 by the axioms A_1, \ldots, A_m**, if L is the smallest logic which contains both L_0 and the set $\{A_1, \ldots, A_m\}$. It holds that for any formula C it is in L if and only if there exist formulas B_1, \ldots, B_n (for some $n \geq 0$), each of which is a substitution instance of some A_k, such that the formula $(B_1 \cdot \ldots \cdot B_n) \rightarrow C$ belongs to L_0. The logic L is denoted by $L_0 |\{A_1, \ldots, A_m\}$ in this case. A logic L is said to be **finitely axiomatizable over L_0** when there exist some axioms by which it is finitely axiomatized over L_0. We will omit the word “over L_0” when L_0 is FL_{ew}. It is easy to see that $L[A_1, \ldots, A_m] = L[\{A_1 \cdot \ldots \cdot A_m\}]$, by the help of the weakening rule of FL_{ew}, i.e. by using the fact that formulas of the form $(C \cdot D) \rightarrow C$ is always provable in FL_{ew}. It is easy to see the following.
Suppose that logics L and L' are finitely axiomatized over L_0 by the axioms A and B, respectively. Then, logics $L \land L'$ and $L \lor L'$ are finitely axiomatized over L_0 by axioms $A \lor B$ and $A \cdot B$, respectively. (Here, A and B are supposed to have no propositional variables in common, by renaming them if necessary.)

3 Residuated lattices and FL_{ew}-algebras

In this section, we will introduce FL_{ew}-algebras as the algebraic counterparts of logics without contraction rules. FL_{ew}-algebras are sometimes called commutative integral residuated lattices. Residuated lattices are already introduced and discussed in 30s and has been studied by many people, e.g. Krull [47], Balbes-Dwinger [4], Dilworth [20], Ward-Dilworth [63], Ward [62] and Pavelka [58].

In our original draft of the present paper in 2001, residuated lattices are defined in a slightly different way. In fact, they should have been called commutative integral residuated lattices, or more precisely FL_{ew}-algebras (see [53]). To avoid confusion, here we start to give a definition of commutative residuated lattices and then give a definition of FL_{ew}-algebras. As for a definition of residuated lattices in general, including noncommutative case, see [25].

Definition 3.1 An algebra $M = \langle M, \wedge, \lor, \cdot, \rightarrow, 1 \rangle$ is a commutative residuated lattice if

- $\langle M, \wedge, \lor \rangle$ is a lattice,
- $\langle M, \cdot, 1 \rangle$ is a commutative monoid with the unit element 1,
- for $x, y \in M$, $x \cdot y \leq z$ if and only if $x \leq y \rightarrow z$ (the law of residuation).

Definition 3.2 An algebra $M = \langle M, \wedge, \lor, \cdot, \rightarrow, 0, 1 \rangle$ is a FL_{ew}-algebra if

- $\langle M, \wedge, \lor, \cdot, \rightarrow, 1 \rangle$ is a commutative residuated lattice,
- 1 is the greatest element and 0 is the least element.

FL_{ew}-algebras are called also BCK-lattices [34], full BCK-algebras [55], and integral, residuated, commutative l-monoids [33]. An extensive study of FL_{ew}-algebras can be seen in [33]. The (dual of the) implicational reduct of an FL_{ew}-algebra is sometimes called a BCK-algebra. A BCK-algebra with the fusion satisfying the law of residuation is called a BCK-algebra with condition (S), in [35]. See also [65], [9] and [10].

1 In [67], Zlatos discussed residuated lattices and claimed that the class of residuated lattices forms a variety which is arithmetical. Unfortunately, his definition of residuated lattices is insufficient. In fact, from his definition we cannot deduce the law of residuation in Definition 3.2 of residuated lattices. Thus, Proposition 1.2 of [67] is incorrect. The present author owes this fact to J. M. Font.

2 By the abuse of symbols, we use the same symbols both for logical connectives and for algebraic operations corresponding to these connectives.

Hirokira Ono, "Logics without the contraction rule", *Australasian Journal of Logic* (c) 2010, 50–81
Now we will give a brief survey of basic properties of FLew-algebras and of relations between logics over FLew and FLew-algebras. In the following, we assume that FLew-algebras are always non-degenerate, i.e., they satisfy $0 \neq 1$. We define $\neg x$ by $\neg x = x \rightarrow 0$. It is easy to see that the following hold in any FLew-algebra (in fact, the first three hold in any commutative residuated lattice):

(i) $x \leq y$ implies $x \cdot z \leq y \cdot z,$

(ii) $(x \lor y) \cdot z = (x \cdot z) \lor (y \cdot z),$

(iii) $1 \rightarrow x = x,$

(iv) $x \cdot y \leq x$ and hence $x \cdot y \leq x \land y$ (integrality),

(v) $x \leq y$ if and only if $x \rightarrow y = 1.$

Note that the above (ii) expresses the distributivity of \cdot over join, which follows from (i) with the law of residuation. Conversely, suppose that the distributivity (ii) holds in a finite algebra M satisfying Conditions 1 and 2 in the definition of commutative residuated lattices. Then, M becomes a commutative residuated lattice if we define $y \rightarrow z$ by $\max\{x : x \cdot y \leq z\}$. In fact, it exists always for all y, z, and \rightarrow satisfies the law of residuation.

In the previous section, we mentioned briefly a relationship between logics over FLew and fuzzy logic. We will discuss it here in more detail. In fuzzy set theory, the set of truth values is the unit interval $[0, 1]$, which is linearly ordered by the natural order. A binary function T from $[0, 1] \times [0, 1]$ to $[0, 1]$ is called a triangular norm (simply, a t-norm) in the theory of probabilistic metric spaces (see e.g. [60]), if the following holds for x, y, z;

1. $T(x, T(y, z)) = T(T(x, y), z),$
2. $T(x, y) = T(y, x),$
3. $T(x, 1) = x,$
4. $x \leq y$ implies $T(x, z) \leq T(y, z).$

Thus, $\langle [0, 1], \cdot, 1 \rangle$ forms a commutative monoid in which (i) holds, if we define \cdot by $x \cdot y = T(x, y)$. Now we suppose moreover that T is a continuous t-norm, i.e., a t-norm which is a continuous function over the interval $[0, 1]$. For any y, z, define a subset $I_{y, z}$ of $[0, 1]$ by $I_{y, z} = \{x : T(x, y) \leq z\}$ and let $u = \sup I_{y, z}$. By using the continuity of T, we have that $T(u, y) = \sup\{T(x, y) : x \in I_{y, z}\} \leq z$. Hence, u is in fact equal to $\max I_{y, z}$. Thus, the law of residuation holds also, if we define $y \rightarrow z$ by $\max I_{y, z}$. Therefore, the unit interval with any continuous

Hinokura Ono, "Logics without the contraction rule", *Australian Journal of Logic* (© 2010, 50–81)
t-norm forms an FL_{ew}-algebra. This gives us a reason why fuzzy logics (in the narrow sense) can be regarded as logics over FL_{ew} (see also [39]).

Note that in the above only the left-continuity of T, i.e. $T(\bigvee \xi_i, y) = \bigvee_i T(\xi_i, y)$, is used for showing the existence of residuation \rightarrow. It is easily seen that when \cdot is defined by $x \cdot y = T(x, y)$ for all x, y with a left-continuous t-norm T, the structure $([0, 1], \cdot, 1)$ is nothing but an integral, unital commutative quantale with the universe $[0, 1]$. (See [59] for more information on quantales.)

As we will show later (see Proposition 3.3), the class of all FL_{ew}-algebras determines the logic FL_{ew}. An FL_{ew}-algebra M is said to be involutive if

$$DN : \sim x \sim y$$

holds always in it. Grišin discussed properties of involutive FL_{ew}-algebras in [27, 28, 29], where they are called latticed Ł-algebras (see also [51], in which they are called Grišin algebras). Also, involutive FL_{ew}-algebras have been studied by E. Casari and P. Minari as algebras for a comparative logic, and they are called Abelian lattice-ordered zeroids. (See a survey of comparative logic in Casari [12].)

We can show the following.

Lemma 3.1 In any involutive FL_{ew}-algebra, the following holds.

1. $\sim (x \lor y) = \sim x \land \sim y$,
2. $x \cdot y = \lnot (x \rightarrow \lnot y)$.

FL_c-algebras are defined similarly to FL_{ew}-algebras, but by deleting the second condition of Definition 3.2, which says that 1 is the greatest element and 0 is the least element. (Thus, 0 is an arbitrary element.) It is well-known that the class of involutive FL_c-algebras determines the linear logic (without exponentials) MALL introduced by Girard [26]. Complete involutive FL_c-algebras (i.e. complete as lattices) are called unital, commutative quantales (see e.g. [59]).

The algebraic condition which corresponds to the contraction rule is $z \leq z \cdot z$ (square-increasingness). From this, the inequality $x \land y \leq x \cdot y$ follows. Thus, for each FL_{ew}-algebra M, the monoid operation \cdot of M is square-increasing, if and only if the monoid operation \cdot of M is square-increasing, if and only if M is a Heyting algebra. Another interesting class of algebras related to FL_{ew}-algebras arose from Łukasiewicz’s many-valued logics. Algebras in the class are called by various names, e.g. MV-algebras in [14], Wajsberg algebras in [24], CN-algebras in [41] and (bounded) commutative BCK-algebras in [66, 36] etc.. (As for the exact relation between MV-algebras and Wajsberg algebras, see e.g. [24].) We will give here a short sketch of them and their connection with FL_{ew}-algebras.

⁵See [2] and [17] for important results on the logic of continuous t-norms up to 2001.

⁶(?) See also [25].

Hirokura Uno, “Logics without the contraction rule”, *Australian Journal of Logic* (© 2010, 50–81)
Definition 3.3 An algebra $W = (W, \to, \sim, 1)$ is a Wajsberg algebra if

- $1 \to x = x$,
- $(x \to y) \to ((y \to z) \to (x \to z)) = 1$,
- $(x \to y) \to y = (y \to x) \to x$,
- $(\sim x \to y) \to (y \to x) = 1$.

In a Wajsberg algebra W, let us define the binary relation \leq on W by $x \leq y$ if and only if $x \to y = 1$. Then (W, \leq) is a partially ordered set with the greatest element 1, and the least element 0 if we define 0 by ~ 1. Moreover, if we define $x \lor y = (x \to y) \to y$ and $x \land y = (\sim x \lor \sim y)$ then $x \lor y$ and $x \land y$ are equal to the supremum and the infimum of (x, y), respectively, with respect to the order \leq. Hence W forms a lattice. Also, it can be shown that $x \to 0 = \sim x$, $\sim \sim x = x$ and moreover that $(x \to y) \lor (y \to x) = 1$ (prelinearity). The following equation (i), which is the third condition in Definition 3.3, plays an important role as shown below:

$$(x \to y) \to y = (y \to x) \to x. \tag{1}$$

It is easy to see that any FL$_{ew}$-algebra satisfying (i) is involutive. (As for the details of the above discussions, see e.g. [24]. See also [8] for related topics.)

The following proposition is proved in [24] and [49].

Proposition 3.1 Let $W = (W, \to, \sim, 1)$ be a Wajsberg algebra. Define a binary relation \leq on W as above, and a binary operation \cdot by $x \cdot y = \sim (x \to \sim y)$. Then, $W = (W, \land, \lor, \cdot, \to, 0, 1)$ forms a (involutive) FL$_{ew}$-algebra. Conversely, each FL$_{ew}$-algebra satisfying $(x \to y) \to y = (y \to x) \to x$ naturally determines a Wajsberg algebra.

The above proposition assures us that Wajsberg algebras can be regarded as FL$_{ew}$-algebras. Wajsberg algebras are originally introduced as models of Łukasiewicz’s many-valued logics. Let us define the following operations either on the set $\{0, 1/n, 2/n, \ldots, (n - 1)/n, 1\}$ for a positive integer n or on the unit interval $[0, 1]$.

- $x \to y = \min\{1, 1 - x + y\}$,
- $\sim x = x \to 0 = 1 - x$,
- $x \cdot y = (x \sim y) = \max\{0, x + y - 1\}$.

Then in either case, it forms a Wajsberg algebra. They are denoted as \mathbb{L}_{n+1} and \mathbb{L}, respectively, in the present paper. We have also the following (see also Lemmas 2.14 and 2.5 of [33]).

Proposition 3.2 For any FL$_{ew}$-algebra M, M satisfies the equation (i) if and only if it is involutive and satisfies $x \land y = x \cdot (x \to y)$.

Hirokira Ono, "Logics without the contraction rule", *Australian Journal of Logic* (© 2010, 50–81)
Proof: The only-if part can be obtained by using equations in Lemma 3.1. The if-part holds, since \(x \lor y = (\neg x \land \neg y) = (\neg x \cdot (\neg x \to \neg y)) \to 0 = ((y \to x) \cdot \neg x) \to 0 = (y \to x) \to (\neg x \to 0) = (y \to x) \to x \). Similarly, \(x \lor y = y \lor x = (x \to y) \to y \). Thus, equation (i) holds.

Any \(\text{FL}_{ew} \)-algebra satisfying the equation \((x \to y) \lor (y \to x) = 1\) is called an MLT-algebra. An MLT-algebra satisfying the equation \(x \land y = x \cdot (x \to y)\) is called a BL-algebra (see [30]). By Proposition 3.2, Wajsberg algebras are (essentially) equal to involutive BL-algebras.

In the usual way, we will define the validity of formulas (of \(\text{FL}_{ew} \)) in a given \(\text{FL}_{ew} \)-algebra \(M \) as follows. Any mapping \(v \) from the set of all propositional variables to the set \(M \) is called a valuation on \(M \). A given valuation \(v \) can be extended to a mapping from the set of all formulas to \(M \), inductively as follows.

1. \(v(\bot) = 0, \)
2. \(v(A \land B) = v(A) \land v(B), \)
3. \(v(A \lor B) = v(A) \lor v(B), \)
4. \(v(A \cdot B) = v(A) \cdot v(B), \)
5. \(v(A \to B) = v(A) \to v(B). \)

A formula \(A \) is valid in \(M \) if \(v(A) = 1 \) holds for any valuation on \(M \). The set of formulas which are valid in \(M \) is denoted by \(L(M) \). Next, a given sequent \(A_1, \ldots, A_m \Rightarrow B \) is said to be valid in \(M \) if the formula \((A_1 \cdot \ldots \cdot A_m) \to B\) is valid in it. Then, the following completeness theorem of \(\text{FL}_{ew} \) can be shown in a standard way.

Proposition 3.3 A sequent \(S \) is provable in \(\text{FL}_{ew} \) if and only if it is valid in all \(\text{FL}_{ew} \)-algebras.

It is easy to see that \(L(M) \) is a logic over \(\text{FL}_{ew} \) for any \(\text{FL}_{ew} \)-algebra \(M \), which is called the logic determined by \(M \). (In general, for any class \(\mathcal{K} \) of \(\text{FL}_{ew} \)-algebras, the logic \(\bigcap_{M \in \mathcal{K}} L(M) \) is a logic over \(\text{FL}_{ew} \), called the logic determined by \(\mathcal{K} \).) Conversely, for any logic \(L \) over \(\text{FL}_{ew} \) there exists an \(\text{FL}_{ew} \)-algebra \(M \) such that \(L = L(M) \). In fact, it is enough to take the Lindenbaum algebra of \(L \) for \(M \).

Blok and Ferreirim have developed the study of algebras called hoops, in [6, 7]. Each hoop satisfies the equation \(x \cdot (x \to y) = y \cdot (y \to x) \). When a hoop satisfies moreover the equation (i), it is called a Wajsberg hoop. Any \(\text{FL}_{ew} \)-algebra with the equation (i) is an example of a Wajsberg hoop. As for the details, see [6, 7].

In [64], Wroński proved that the class of all BCK-algebras does not form a variety.\(^7\) (See also Higgs [32].) On the other hand, Idziak [34] proved the following.

\(^7\) For basic notions and results on universal algebra, see [11].

Hirohisa Ono, "Logics without the contraction rule", *Australian Journal of Logic* (© 2010, 50–81)
Proposition 3.4 The class of all FL$_{ew}$-algebras forms a variety.

A variety X is congruence-distributive when the lattice of all congruence relations of any algebra in X is distributive, and is congruence permutable when every two congruences of any algebra in X permute. Moreover, if X is both congruence-distributive and congruence permutable, it is said to be arithmetical. Then the following holds (see [34]).

Proposition 3.5 The variety of FL$_{ew}$-algebras is arithmetical.

Next, we will give the definition of filters of FL$_{ew}$-algebras.

Definition 3.4 A nonempty subset F of an FL$_{ew}$-algebra M is an implicative filter (or simply a filter) if for $x, y \in M$ it satisfies

- $x \leq y$ and $x \in F$ imply $y \in F$,
- $x, y \in F$ implies $x \cdot y \in F$.

Note that any filter F of an FL$_{ew}$-algebra satisfies that $x, y \in F$ implies $x \wedge y \in F$. It is easy to see that a nonempty subset F of a residuated lattice is a filter if and only if it satisfies that

1. $1 \in F$ and
2. $x, x \rightarrow y \in F$ implies $y \in F$ (see e.g. [24]).

Let S be a nonempty subset of an FL$_{ew}$-algebra M. Then the set $\{x : a_1 \ldots a_k \leq x \text{ for some } a_1, \ldots, a_k \in S\}$ is shown to be a filter, called the filter generated by S. In particular, the filter generated by a singleton set $\{a\}$ for an element $a \in M$ will be expressed as $\{x : a^k \leq x \text{ for some positive integer } k\}$, where a^k denotes $a \cdot \ldots \cdot a$ with k times a. The following can be shown easily (see e.g. [33]).

Proposition 3.6 Let M be any FL$_{ew}$-algebra. Then, there exists a lattice isomorphism between the set of all filters of M and the set of all congruences of M.

In fact, for a given filter F the binary relation \sim_F defined by

$$x \sim_F y \text{ if and only if } x \rightarrow y, y \rightarrow x \in F$$

is a congruence and the map θ defined by $\theta(F) = \sim_F$ is the required map. The converse map is defined by taking the filter $\{x : x \sim 1\}$ for a given congruence \sim.

4 Subdirectly irreducible FL$_{ew}$-algebras

Let M and N_i for each $i \in I$ be residuated lattices. By a subdirect representation of M with factors N_i we mean an embedding f from M to the product $\prod_{i \in I} N_i$ such that each f_i defined by $f_i = p_i \circ f$ is onto N_i for each $i \in I$. Here, p_i denotes the i-th projection. An FL$_{ew}$-algebra M is subdirectly irreducible if it is non-degenerate and for any subdirect representation $f : M \rightarrow \prod_{i \in I} N_i$, there exists a j such that f_j is an isomorphism of M onto N_j (see [48] for the details).
From Birkhoff’s *subdirect representation theorem* it follows that every FL_{ew}-algebra has a subdirect representation with subdirectly irreducible FL_{ew}-algebras. By using Proposition 3.6, we can see that an FL_{ew}-algebra M is subdirectly irreducible if and only if it has the second smallest filter, i.e. the smallest filter among all filters except \{1\}. Note that when an FL_{ew}-algebra M is subdirectly represented by the set \{N_j\}_{j \in J} of FL_{ew}-algebras, the logic L(M) determined by M can be expressed as \(\bigcap_{j \in J} L(N_j)\).

We can easily show the following lemma which gives a necessary and sufficient condition for an FL_{ew}-algebra to be subdirectly irreducible.

Lemma 4.1 An FL_{ew}-algebra M is subdirectly irreducible if and only if there exists an element \(a(\prec 1)\) such that for any \(x < 1\) there exists a positive integer \(m\) for which \(x^m \leq a\) holds.

Using this lemma, we can show the following.

Theorem 4.1 In any subdirectly irreducible FL_{ew}-algebra, if \(x \lor y = 1\) then either \(x = 1\) or \(y = 1\) holds.

Proof: By taking the contraposition, it suffices to show that \(x, y < 1\) implies \(x \lor y < 1\) in a given subdirectly irreducible FL_{ew}-algebra M. Since M is subdirectly irreducible, there exists \(a < 1\) such that for any \(z < 1\) there exists a number \(k\) satisfying \(z^k \leq a\). In particular, both \(x^m \leq a\) and \(y^n \leq a\) hold for some positive integers \(m\) and \(n\). Define \(s = \max\{m, n\}\) and \(t = 2s - 1\). Then, clearly \(x^s \leq a\) and \(y^s \leq a\) hold. Now, by the distributivity of \(\cdot\) with \(\lor\),

\[
(x \lor y)^t = \bigvee_{i=1}^{t} x^i \cdot y^{t-i}.
\]

It is easy to see that either \(i \geq s\) or \(t - i \geq s\). Hence, in the former case,

\[
x^i \cdot y^{t-i} \leq x^s \leq a
\]

and in the latter case,

\[
x^i \cdot y^{t-i} \leq y^{t-i} \leq y^s \leq a.
\]

Thus, in either case, \((x \lor y)^t \leq a\). Therefore, \(x \lor y\) cannot be equal to 1.

An element \(a\) in an FL_{ew}-algebra M is a *coatom* if it is maximal among elements in \(M - \{1\}\). Then we have the following immediately from the above theorem.

Corollary 4.1 Every subdirectly irreducible FL_{ew}-algebra has either the single coatom or no coatoms.

The following result is essentially due to Kowalski [42], which makes an interesting contrast with Lemma 4.1.

Lemma 4.2 An FL_{ew}-algebra M has the unique coatom if and only if there exists an element \(a(\prec 1)\) and a positive integer \(m\) such that \(x^m \leq a\) holds for any \(x < 1\).
Proof: To show the only-if part, it is enough to take the coatom for \(a \) and \(1 \) for \(m \). Conversely, suppose that there exists \(a (< 1) \) and \(m \geq 1 \) such that \(x^m \leq a \) for any \(x < 1 \). By Lemma 4.1, it is clear that \(M \) is subdirectly irreducible. Now, take any such \(a \) and take also the smallest number \(k \) among such \(m \)s for this \(a \). If \(k = 1 \) then it is obvious that \(a \) is the single coatom of \(M \). So, suppose that \(k > 1 \). By our assumption, there exists an element \(b \) such that \(b^{k-1} \not\leq a \) but \(b^k \leq a \). Define \(d \) by \(d = b^{k-1} \rightarrow a \). Clearly, \(d < 1 \). We will show that \(d \) is the single coatom of \(M \). Take any such \(y \) such that \(y < 1 \) and let \(z = d \lor y \). Then, \(d, y \leq z \) and moreover \(z < 1 \) by Theorem 4.1. Since \(b^k \leq a \), \(b \leq b^{k-1} \rightarrow a = d \leq z \). As \(z < 1 \), we have \(z^k \leq a \) by our assumption. Thus, \(y \leq z \leq z^{k-1} \rightarrow a \leq b^{k-1} \rightarrow a = d \). Therefore, \(y \leq d \). Hence, \(d \) is the coatom of \(M \).

Let us consider the following condition on FLew-algebras for a given positive integer \(k \):

$$ E_k : x^{k+1} = x^k \text{ for any } x. $$

The condition \(E_k \) is equivalent to the condition that \(x^{k+1} \rightarrow y = x^k \rightarrow y \) for all \(x, y \) (see e.g. [7]). It is introduced and discussed by Cornish [18]. Sometimes, \(M \) is said to be \(k \)-potent when it satisfies \(E_k \). It is obvious that every finite FLew-algebra is \(k \)-potent for some \(k \).

Corollary 4.2 If a subdirectly irreducible FLew-algebra \(M \) satisfies \(E_k \) for some \(k \), then it has the unique coatom.

Proof: Suppose that \(M \) satisfies \(E_k \). Since \(M \) is subdirectly irreducible, there exists an element \(a (< 1) \) such that for each \(x < 1 \) there exists a positive integer \(m \) such that \(x^m \leq a \) holds. Then \(x^k \leq a \) must hold also for each \(x < 1 \). Thus, by Lemma 4.2 \(M \) has the unique coatom.

A related result for BCK-algebras was shown in [57]. From the above lemma, it follows immediately that every finite subdirectly irreducible FLew-algebra has a single coatom. It is easy to see that a subdirectly irreducible FLew-algebras with the unique coatom does not always satisfy \(E_k \) for some \(k \). In the following, we will give an interesting example of a subdirectly irreducible FLew-algebra with no coatoms. This special FLew-algebra has been discussed by Pavelka [58], Hájek, Godo and Esteva [31] etc. in connection with fuzzy logic.

Let \(M \) be the interval \([0, 1]\), i.e. the set of all real numbers between 0 and 1. Then \(M \) forms a bounded lattice with the natural order \(\leq \). Moreover, \(\langle M, \times, 1 \rangle \) is a commutative monoid satisfying \(x \times y \leq x \), where \(\times \) denotes the usual multiplication. Since \(M \) is linearly ordered, the distributivity of \(\times \) with \(\lor \) follows from the above inequality. Now, define a binary operation \(\rightarrow \) on \(M \) by

$$ y \rightarrow z = \begin{cases} z/y & \text{if } y > z, \\ 1 & \text{otherwise.} \end{cases} $$

Hirokazu Ono, "Logics without the contraction rule", *Australasian Journal of Logic* (© 2010, 50–81)
Then, we can show that \(x \times y \leq z \) if and only if \(x \leq y \rightarrow z \). Thus, \(M \) forms an \(\text{FL}_{\text{ew}} \)-algebra. Clearly, \(M \) has no coatoms. Now, let \(a \) be an arbitrary real number such that \(0 < a < 1 \). Then, we can show that for each \(r < 1 \) there exists a positive number \(m \) such that \(r^m \leq a \). This means that \(M \) is subdirectly irreducible.

The logic determined by the above \(\text{FL}_{\text{ew}} \)-algebra is called product logic, whose axiomatization is given in [31]. A class of \(\text{FL}_{\text{ew}} \)-algebras related to product logic, called product algebras, is discussed in [1, 30, 31] etc.\(^{9}\(\)

The following fact, remarked in [3], should be pointed out here. Suppose that \(a \) is a real number such that \(0 < a < 1 \). Define an operation \(\circ \) on the interval \([a, 1] \) by

\[
x \circ y = \max(a, x \times y).
\]

Then, this with the operation \(\rightarrow \) satisfying

\[
y \rightarrow z = z/y \text{ if } y > z, \text{ and } 1 \text{ otherwise.}
\]

determines an \(\text{FL}_{\text{ew}} \)-algebra, which we call \(I_a \). Obviously, this is also a subdirectly irreducible \(\text{FL}_{\text{ew}} \)-algebra without coatoms. The logic determined by this \(\text{FL}_{\text{ew}} \)-algebra is equal to Lukasiewicz’s infinitely many-valued logic. In fact, the mapping \(\phi \) from \([0, 1]\) to \([a, 1]\) defined by \(\phi(x) = a^{1-x} \) is a monotone increasing map satisfying \(\phi(0) = a, \phi(1) = 1 \) and \(\phi(\max(0, x + y - 1)) = \phi(x) \circ \phi(y) \), and hence it is an isomorphism (see also [30]).

In the dual form, this fact can be restated as follows. Let \(R \) be the set of all real numbers as an additive ordered Abelian group. Then the mapping \(\psi \) from the MV-algebra \(R[i] \) (see Chang [15] for the definition) to \(I_a \) by \(\psi(x) = a^x \) is an isomorphism.

Let \(\mathsf{Lin} \) be the formula \((p \rightarrow q) \lor (q \rightarrow p)\), which is sometimes called the axiom of prelinearity. It is called also the (algebraic) strong de Morgan law in [38] and [59]. Using Theorem 4.1 we can show the following (see also [33] Theorem 4.8).

Lemma 4.3 For any subdirectly irreducible \(\text{FL}_{\text{ew}} \)-algebra \(M \), the formula \(\mathsf{Lin} \) is valid in \(M \) if and only if \(M \) is linearly ordered.

Proof: The if-part is trivial. Suppose that \(\mathsf{Lin} \) is valid in \(M \). This implies that \((a \rightarrow b) \lor (b \rightarrow a) = 1 \) for all \(a, b \in M \). By Theorem 4.1, either \(a \rightarrow b = 1 \) or \(b \rightarrow a = 1 \) holds. Thus, either \(a \leq b \) or \(b \leq a \). Hence, \(M \) is linearly ordered.

Corollary 4.3 If the formula \(\mathsf{Lin} \) is valid in an \(\text{FL}_{\text{ew}} \)-algebra \(M \) then \(M \) is a distributive lattice.

Proof: Suppose that \(M \) is subdirectly represented by the set of subdirectly irreducible \(\text{FL}_{\text{ew}} \)-algebras \(N_j \) for \(j \in J \). Then, \(\mathsf{Lin} \) is valid in any \(N_j \). Therefore,

\(^{9}(i)\) There are considerable developments in the study of product logic after 2001.

Hironaka Ono, “Logics without the contraction rule”, Australasian Journal of Logic (© 2010, 50–81)
by Lemma 4.3 each \(N_i \) is linearly ordered and hence is distributive. In other words, the formula \(\text{Dis} : (p \land (q \lor r)) \rightarrow (p \land q) \lor (p \land r) \) is valid in each of them. Thus, \(\text{Dis} \) is valid in \(M \) and hence \(M \) is distributive.

As for a direct proof of the above corollary, see Corollary 1 of Proposition 4.3.4 in [59], or Lemma 2.4 (3) in [33].

Suppose that \(M \) and \(N \) are finite subdirectly irreducible \(\text{FL}_{\text{ew}} \)-algebras. It is interesting to see when they determine the same logics. For this purpose, we will show a theorem in the following which is obtained by modifying the proof of Jankov’s theorem for Heyting algebras (see [37]).

Let \(M \) be an arbitrary finite, subdirectly irreducible \(\text{FL}_{\text{ew}} \)-algebra and \(\omega \) be the coatom of \(M \). For each element \(x \in M \), take a propositional variable \(p_x \) in such a way that \(p_y \) and \(p_z \) are distinct whenever \(y \neq z \). Define a set of formulas \(\Delta_M \) by

\[
\Delta_M = \{ (p_x \land p_y) \equiv p_x \land p_y, (p_x \lor p_y) \equiv p_x \lor p_y, (p_x \cdot p_y) \equiv p_x \cdot p_y, \\
(p_x \rightarrow p_y) \equiv p_x \rightarrow p_y, (\neg p_x) \equiv p_{\neg x} : x, y \in M \}
\]

Let \((\Delta_M)^{\downarrow} \) be the conjunction of all formulas in \(\Delta_M \). For each positive integer \(k \), define the formula \(X_M(k) \), called the Jankov formula of order \(k \) for \(M \), by \(X_M(k) = (\Delta_M)^{\downarrow} \rightarrow p_{\omega} \).\(^{10}\) Then, we have the following Jankov’s theorem for \(\text{FL}_{\text{ew}} \)-algebras.

Theorem 4.2 Let \(M \) be a finite, subdirectly irreducible \(\text{FL}_{\text{ew}} \)-algebra, and let \(N \) be any \(\text{FL}_{\text{ew}} \)-algebra satisfying \(E_k \). Then, \(X_M(k) \) is not valid in \(N \) if and only if \(M \) is embeddable into a quotient algebra of \(N \).

Proof: Suppose that \(h \) is an embedding of \(M \) into a quotient algebra \(N/F \) of \(N \). Define a valuation \(v \) on \(N/F \) by \(v(p_x) = h(x) \) for each \(x \in M \). Then, it is clear that \(v(X_M(k)) = 1 \rightarrow h(\omega) = h(\omega) < 1 \). Thus, \(X_M(k) \) is not valid in \(N/F \), and nor is it in \(N \). Conversely, suppose that the formula \(X_M(k) \) becomes false under a valuation \(w \) on \(N \). Let \(w(\Delta_M)^{\downarrow} \) = \(d \) and \(w(p_{\omega}) = e \). By our assumption, \(d^k \not\leq e \). Since \(N \) satisfies \(E_k \), the set \(G \) defined by \(G = \{ x : d^k \leq x \} \) forms a filter such that \(e \not\in G \). Now, consider the quotient algebra \(N/G \) of \(N \) and its valuation \(w^* \) defined by \(w^*(q) = ||w(q)|| \) for every propositional variable \(q \). Here \(||u|| \) denotes the equivalence class induced by \(G \), to which \(u \) belongs. Then \(w^*((\Delta_M)^{\downarrow}) = 1 \) and \(w^*(p_{\omega}) = ||e|| < 1 \). From this, it follows that the mapping \(g : M \rightarrow N/G \), defined by \(g(x) = w^*(p_x) \) for each \(x \in M \), is an embedding.

By assuming moreover that \(M \) satisfies also \(E_k \), we can give another condition which is equivalent to either of the conditions in the above theorem.

\(^{10}\)In [45], these Jankov formulas are used in the study of splittings in the variety of \(\text{FL}_{\text{ew}} \)-algebras.
Suppose that M is a finite, subdirectly irreducible Fl_{ew}-algebra and N is an arbitrary Fl_{ew}-algebra. When both satisfy E_k, M is embeddable into a quotient algebra of N if and only if $L(N) \subseteq L(M)$.

Proof: The only-if part is trivial. Suppose that $L(N) \subseteq L(M)$. Since M satisfies E_k, $X_M(k)$ is not valid in M. Hence it is not valid in N, either. Then, by Theorem 4.2, there is an embedding of M into a quotient algebra of N. □

A Heyting algebra is an Fl_{ew}-algebra satisfying E_1, i.e. $x^2 = x$. Theorem 4.2 with Corollary 4.4 gives us the original form of Jankov’s theorem for Heyting algebras.

Let E_k be the formula $p^k \rightarrow p^{k+1}$ for any $k > 0$, where A^j denotes the formula $A \cdot \ldots \cdot A$ with j times A. Obviously, the formula E_k is a syntactic expression of E_k.

Corollary 4.5 Suppose that both M and N are finite subdirectly irreducible Fl_{ew}-algebras. If the logic $L(M)$ is equal to $L(N)$ then M is isomorphic to N.

Proof: Suppose that $L(M)$ is equal to $L(N)$. Since M is finite, we can assume that E_k is in $L(M)$ (and hence in $L(N)$) for some k. By Corollary 4.4, there is an embedding h of M into a quotient algebra of N. Hence, $|M| \leq |N|$, where $|S|$ denotes the cardinality of a set S, and M and N are universes of algebras M and N, respectively. Similarly, since there is an embedding of N into a quotient algebra of M, $|N| \leq |M|$, and hence $|M| = |N|$. Thus h must be an isomorphism of M onto N.

5 Some axiomatizable extensions of Fl_{ew}

To give an overview of the structure of all logics over Fl_{ew}, we will introduce some basic logics among them, which are finitely axiomatizable. Let us consider the following axioms:

- **EM:** $p \lor \neg p$ (excluded middle)
- **DN:** $\neg \neg p \rightarrow p$ (double negation)
- **Con:** $(p \rightarrow (p \rightarrow q)) \rightarrow (p \rightarrow q)$ (contraction)
- **WCon:** $(p \rightarrow \neg p) \rightarrow \neg p$ (weak contraction)
- **P:** $(p \rightarrow (q \rightarrow p)) \rightarrow p$ (Peirce’s law)
- **WP:** $(\neg p \rightarrow p) \rightarrow p$ (weak Peirce’s law)
- **Lin:** $(p \rightarrow q) \lor (q \rightarrow p)$ (prelinearity)
- **Dis:** $(p \land (q \lor r)) \rightarrow ((p \land q) \lor (p \land r))$ (distributive law)
Note that WCon and WP are obtained from Con and P, respectively, by replacing \(q\) by \(\bot\). The axiom Con will play essentially the same role as the contraction rule (and also as the formula \(E_1\) introduced in the previous section). Therefore \(\text{FL}_{\text{ew}}[\text{Con}]\) is equal to the intuitionistic logic \(\text{Int}\), which is equal also to \(\text{FL}_{\text{ew}}\) with the axiom \(p \rightarrow p^2\). On the other hand, WCon is equivalent to \(\neg p^2 \rightarrow \neg p\), which is the contrapositive of \(p \rightarrow p^2\), and \(\text{FL}_{\text{ew}}[\text{WCon}]\) is equal to \(\text{FL}_{\text{ew}}\) with the axiom \(\neg (p \land \neg p)\). It is clear that \(\text{FL}_{\text{ew}}[\text{DN}]\) is equal to the logic without the contraction rule studied by Grišin.

Lemma 5.1 Each of the logics \(\text{FL}_{\text{ew}}[\text{WP}], \text{FL}_{\text{ew}}[\text{P}], \text{FL}_{\text{ew}}[\text{EM}]\) and \(\text{FL}_{\text{ew}}[\text{WCon}, \text{DN}]\) is equal to classical logic \(\text{Cl}\).

Proof: As mentioned above, any instance of WP is provable in \(\text{FL}_{\text{ew}}[\text{P}]\). It is obvious that any instance of P is provable in Cl. To show that each formula \(\text{A}\) provable in Cl is also provable in \(\text{FL}_{\text{ew}}[\text{EM}]\), it is enough to show that Con is provable in \(\text{FL}_{\text{ew}}[\text{EM}]\), since \(\text{FL}_{\text{ew}}[\text{Con}]\) is equal to \(\text{Int}\) and \(\text{Int}[\text{EM}]\) is equal to Cl. We note that the formula \((\neg r \lor s) \equiv (r \rightarrow s)\) is provable in \(\text{FL}_{\text{ew}}[\text{EM}]\), using the fact that

\[
(r \lor \neg r) \rightarrow ((r \rightarrow s) \rightarrow (\neg r \lor s))
\]

is provable in \(\text{FL}_{\text{ew}}\). Thus,

\[
((p \rightarrow (p \rightarrow q))) \rightarrow (p \rightarrow q) \equiv ((\neg p \lor \neg p \lor q) \rightarrow (\neg p \lor q))
\]

is provable. But, the righthand side of the above equivalence is always provable. Hence, Con is provable in \(\text{FL}_{\text{ew}}[\text{EM}]\). To show that EM is provable in \(\text{FL}_{\text{ew}}[\text{WP}]\), let \(Q\) be \(p \lor \neg p\). Now, since \(\neg Q \rightarrow Q\) is provable in \(\text{FL}_{\text{ew}}\) and \((\neg Q \rightarrow Q) \rightarrow Q\) is an instance of WP, we have that \(Q\), i.e. \(p \lor \neg p\), is provable in \(\text{FL}_{\text{ew}}[\text{WP}]\).

Lastly, we will show that \(\text{FL}_{\text{ew}}[\text{WCon,DN}]\) is equal to Cl. Since \(\text{FL}_{\text{ew}}[\text{Con}]\) is equal to \(\text{Int}\), it is enough to show that \(p \rightarrow p^2\) is provable in \(\text{FL}_{\text{ew}}[\text{WCon,DN}]\). By WCon, \(\neg p^2 \rightarrow \neg p\) is provable. By taking the contraposition and using DN, \(p \rightarrow p^2\) follows. This completes our proof. \(\Box\)

Note that \(\text{FL}_{\text{e}}[\text{P}]\) is in fact equal to Cl as the weakening rule is derivable in it. (This is due to K. Fujita.) A part of the above lemma is essentially obtained in Theorem 7.31 of [63], which says that complemented \(\text{FL}_{\text{ew}}\)-algebras are exactly same as Boolean algebras. It can be shown (by using e.g. the cut elimination theorem) that Grišin’s logic \(\text{FL}_{\text{ew}}[\text{DN}]\) is strictly weaker than the classical logic, and hence EM is not provable in \(\text{FL}_{\text{ew}}[\text{DN}]\). Also, we can show that EM is provable in \(\text{FL}_{\text{e}}[\text{WCon,DN}]\). (On the other hand, probably DN will not be provable in \(\text{FL}_{\text{e}}[\text{EM}]\).)

Figure 5.1 shows the inclusion relationship between logics mentioned in the above. In the following, we will show that all of the inclusions described in the figure are proper.
(1) The logic $\text{FL}_{\text{ew}}[\text{Con, Lin}]$, i.e. $\text{Int}[\text{Lin}]$, is Gödel logic, which is strictly weaker than Cl. Thus, $\text{FL}_{\text{ew}}[\text{Lin}]$, $\text{FL}_{\text{ew}}[\text{Dis}]$, and FL_{ew} are strictly weaker than $\text{FL}_{\text{ew}}[\text{DN, Lin}]$, $\text{FL}_{\text{ew}}[\text{DN, Dis}]$ and $\text{FL}_{\text{ew}}[\text{DN}]$, respectively.

(2) Gödel logic $\text{Int}[\text{Lin}]$ is strictly stronger than Int. Thus, logics $\text{FL}_{\text{ew}}[\text{WCon, Lin}]$ and $\text{FL}_{\text{ew}}[\text{Lin}]$ are strictly stronger than $\text{FL}_{\text{ew}}[\text{WCon, Dis}]$ and $\text{FL}_{\text{ew}}[\text{Dis}]$, respectively.

We will show that Lin is not provable in $\text{FL}_{\text{ew}}[\text{DN, Dis}]$. Let U_1 be the FL_{ew}-algebra with the universe $\{0, d, c, b, a, 1\}$ such that $0 < d < b < a < 1$, $0 < d < c < a < 1$ but b is incomparable with c. Moreover, assume that $a^2 = a$, $b^2 = b$, $c^2 = c$, $a \cdot b = b$, $a \cdot c = c$, $a \cdot d = 0$ (thus, $x \cdot d = 0$ if $x < a$) and $b \cdot c = 0$. Then, it can be seen that U_1 is in fact a subdirectly irreducible, distributive FL_{ew}-algebra satisfying $\sim \sim x = x$ for any x. Clearly, it is not linearly ordered. Thus, Lin is not valid in it.

(3) To see that $\text{FL}_{\text{ew}}[\text{DN, Lin}]$ is strictly weaker than Cl, consider the FL_{ew}-algebra U_2 with the universe $\{0, a, 1\}$ such that $0 < a < 1$ and $a^2 = 0$. Since $\sim a$ holds, DN is valid but EM is not.

From this it follows that $\text{FL}_{\text{ew}}[\text{Lin}]$ is strictly weaker than $\text{FL}_{\text{ew}}[\text{WCon, Lin}]$. For, if WCon were provable in $\text{FL}_{\text{ew}}[\text{Lin}]$ then it would be provable in $\text{FL}_{\text{ew}}[\text{DN, Lin}]$. Then, EM should be derived in $\text{FL}_{\text{ew}}[\text{DN, Lin}]$, since by Lemma 5.1 it is provable in $\text{FL}_{\text{ew}}[\text{WCon, DN}]$. This is a contradiction. Similarly, we can show that $\text{FL}_{\text{ew}}[\text{Dis}]$ and FL_{ew} are strictly weaker than $\text{FL}_{\text{ew}}[\text{WCon, Dis}]$ and $\text{FL}_{\text{ew}}[\text{WCon}]$, respectively.

(4) We will show next that Con is not provable in $\text{FL}_{\text{ew}}[\text{WCon, Lin}]$. Let U_3 be the FL_{ew}-algebra with the universe $\{0, b, a, 1\}$ such that $0 < b < a < 1$ and...
b = a^2 = a^3. It is easy to see that a → b = a and ¬a = ¬b = 0. It is clear that WCon is valid in a given FL_{ew}-algebra if and only if ¬x^2 = ¬x for any x in it. So, WCon is valid in U_3. On the other hand, Con is not valid in it, as a → a^2 = a < 1. As a consequence, Con is not provable in FL_{ew}[WCon], either.

(5) In [29], Grishin introduced a cut-free system for FL_{ew}[DN]. Using this system, we can easily show that Dis is not provable in FL_{ew}[DN], and a fortiori is not provable in FL_{ew}. Now we show that Dis is not provable in FL_{ew}[WCon]. Let U_4 be the FL_{ew}-algebra with the universe \{0, d, c, b, a, 1\} such that 0 < b < a < 1, 0 < d < c < a < 1 and both c and d are incomparable with b. (Thus, U_4 can be obtained from the nonmodular (and hence nondistributive) lattice N_5, called the pentagon, by adding the new greatest element 1. See e.g. [19] Chapter 6.) Define also that \(a^2 = a\), \(a \cdot b = b = a \cdot c = c = a \cdot d = c^2 = c \cdot d = d^2 = d\) and \(b \cdot c = b \cdot d = 0\). Then, it can be seen that U_4 is a subdirectly irreducible, nondistributive FL_{ew}-algebra. On the other hand, we can show that \(¬a = 0\), \(¬b = c\) and \(¬c = ¬d = b\). Using this, we can show that WCon is valid in U_4. Thus, Dis is not provable in FL_{ew}[WCon].

6 Simple and semisimple FL_{ew}-algebras

In this section, we will discuss simple and semisimple FL_{ew}-algebras. As usual, a simple FL_{ew}-algebra M is defined to be a non-degenerate FL_{ew}-algebra which has only two filters \(\{1\}\) and M itself. It is easy to see that for any filter F of a given FL_{ew}-algebra M^* the quotient algebra M^*/F is simple if and only if F is a maximal filter. Similarly to the case of Wajsberg algebras, the following holds. (See [14] Theorem 4.7 and [24] Corollary 1 of Theorem 17.)

Lemma 6.1 An FL_{ew}-algebra M is simple if and only if for any x(< 1) in M there exists a positive integer m such that \(x^m = 0\).

Clearly, any simple FL_{ew}-algebra is subdirectly irreducible. It is well-known that for a Heyting algebra M, if it is simple then it is just the two-valued Boolean algebra B_2 and therefore satisfies that \(¬¬¬x = x\) for any x. On the other hand, this equation does not hold always in simple FL_{ew}-algebras. Also, we know that any simple Wajsberg algebra is linearly ordered (see e.g. [14, 41, 24]). But, this does not hold either for FL_{ew}-algebras, in general. In fact, we can give an example of a simple FL_{ew}-algebra N which is not distributive (as a lattice) and hence is not linearly ordered. Let M_3 be a nondistributive lattice, called the diamond (see e.g. [19]). Let \(ω\) and \(0\) be the greatest element and the least element of M_3. Then N is obtained from M_3 by adding a new element \(1\) and requiring that \(ω < 1\). Define operations \(\cdot\) and \(→\) on N as follows; \(x \cdot y = 0\) for \(x, y \in M_3\) and \(x \cdot 1 = 1 \cdot x = x\) for any \(x ∈ N\), and \(x → y = 1\) if \(x ≤ y\), \(y = y\) if \(x = 1 > y\) and \(= ω\) otherwise. Then, it is easily checked that N is a nondistributive, simple FL_{ew}-algebra. □
Any \mathbf{F}_{ew}-algebra I_a for $0 < a < 1$ introduced in Section 4 is simple but does not have any coatom. Each Łukasiewicz’s $n + 1$-valued model I_{n+1} is a simple \mathbf{F}_{ew}-algebra, which is isomorphically represented as the \mathbf{F}_{ew}-algebra with the set \{1, a, a^2, \ldots, a^n\} such that $a^i > a^i+1$ for each $i = 1, \ldots, n - 1$ and $a^n = 0$. For the simplicity’s sake, let us denote 1 by a^0. Then the operation \cdot on this \mathbf{F}_{ew}-algebra can be defined by $a^k \cdot a^m = a^{k+m}$.

This representation might be convenient when we compare Łukasiewicz’s models with other MV-algebras. For example, let us take the MV-algebra C discussed by Chang in [14], which is call S_1^ω in Komori [41]. Then, C can be isomorphically represented as the residuated lattice with the set \{1, a, a^2, \ldots, a^n, \ldots, a^n, \ldots, a^2, \ldots, a, 0\} such that $a^{i-1} > a^i, a^i > a^j$ and $\sim a^j > \sim a^{j-1}$ for each positive integer i, j. The operations \cdot and \rightarrow are defined as follows:

- $a^k \cdot a^m = a^{k+m}$,
- $a^k \cdot (\sim a^m) = a^{\max\{m-k,0\}}$,
- $(\sim a^k) \cdot (\sim a^m) = 0$,
- $a^k \rightarrow a^m = a^{\max\{0,m-k\}}$,
- $(\sim a^k) \rightarrow a^m = 1$,
- $a^k \rightarrow (\sim a^m) = a^{k+m}$,
- $(\sim a^k) \rightarrow (\sim a^m) = a^{\max\{k-m,0\}}$.

It is clear that C is not simple and has only two proper filters \{1\} and \{a^n : n \in \mathbb{N}\}.

For an \mathbf{F}_{ew}-algebra M, let Φ_M be the set of all maximal filters of M. We note here that a filter F is maximal if and only if for any $u \in M$ either $u \in F$ or $\sim u \in F$ for some $k \geq 1$. Define the radical Rad_M of M by $\text{Rad}_M = \bigcap_{F \in \Phi_M} F$. An \mathbf{F}_{ew}-algebra M is semisimple if Rad_M can be represented by a subdirect product of simple \mathbf{F}_{ew}-algebras, or equivalently if $\text{Rad}_M = \{1\}$ (see e.g. [48]). The proof of the following theorem is essentially due to Grišin [28]. In [29] he used the result to show that every free involutive \mathbf{F}_{ew}-algebra is semisimple. From this, it follows that the logic $\mathbf{F}_{\text{ew}}[\text{DN}]$ can be characterized by the class of simple involutive \mathbf{F}_{ew}-algebras. Now, for any x, y in a given \mathbf{F}_{ew}-algebra, define $x + y$ by $x + y = \sim (\sim x \cdot \sim y)$. We can show easily that the operation $+$ is associative and moreover that $(x + y) + z = \sim (\sim x \cdot \sim y \cdot \sim z)$. For an element x and a positive integer m, $m \cdot x$ denotes $\sim (\sim x)^m$. Then $1 \cdot x = x$ and $m \cdot x = x + \cdots + x$ with m times x when $m > 1$.

Theorem 6.1 For any x in a given \mathbf{F}_{ew}-algebra M, $x \in \text{Rad}_M$ if and only if for any $n \geq 1$ there exists $m \geq 1$ such that $m \cdot (x^n) = 1$.

Hitoshi Ono, "Logics without the contraction rule", *Australasian Journal of Logic* (© 2010, 30–89)
Proof: Suppose first that for any $n \geq 1$ there exists $m \geq 1$ such that $\bar{m}(x^n) = 1$. Suppose that $x \not\in \text{Rad}_M$. Then there exists a maximal filter F such that $x \not\in F$. Since F is maximal, there exists an $k \geq 1$ such that $\sim x_k \in F$. there exists $m \geq 1$ such that $\bar{m}(x^k) = 1$, i.e., $(\sim x^k)^m = 0$. Thus, $0 \in F$, which contradicts the fact that F is proper.

Conversely, suppose that there exists $n(\geq 1)$ such that $\bar{m}(x^n) \neq 1$ for any m. If $(\sim x^n)^m = 0$ then $\bar{m}(x^n) = (\sim x^n)^m = 1$, which is a contradiction. Thus, $(\sim x^n)^m > 0$ for any m. Let $z = (\sim x^n)$ and H be the filter generated by z. Clearly, H is proper as $z^m > 0$ for any m. By Zorn's lemma, there exists a maximal filter G such that $H \subseteq G$. Now, suppose that $x \notin G$. Then x^n must also be in G. But this is a contradiction, since $z = (\sim x^n) \in G$. Hence, $x \notin G$ and therefore it does not belong to Rad_M. \hfill \qed

This result was also shown in Höhle [33]. As a corollary of Theorem 6.1, we have the following result on Wajsberg algebras, which was shown by Font, Rodriguez and Torrens in [24]. (See also [33].)

Corollary 6.1 For any x in a given Wajsberg algebra M, $x \in \text{Rad}_M$ if and only if for any $n \geq 1$, $(\sim x^n) \leq x$.

Proof: By Theorem 6.1, it suffices to show that in any Wajsberg algebra M, $(\sim x^n) \leq x$ for any $n \geq 1$ if and only if for any $n \geq 1$ there exists $m \geq 1$ such that $\bar{m}(x^n) = 1$.

Suppose first that $(\sim x^n) \leq x$. We will show that $\bar{n} + 1(\sim x^n) = 1$. From the assumption, we have $(\sim x^n)^n \leq x^n$. Thus, $\sim x^n \leq (\sim x^n)^n = \bar{n}(x^n)$ and hence $1 = (\sim x^n) \rightarrow \bar{n}(x^n) = x^n + \bar{n}(x^n) = n + 1(\sim x^n)$. Conversely, suppose that $(\sim x^n) \not\leq x$ for some $n \geq 1$. Take any subdirect representation $\bar{f} : M \rightarrow \prod M_i$ with subdirectly irreducible factors M_i. Note that each M_i is linearly ordered by Lemma 4.3. Let p_j be the j-th projection function of the direct product $\prod M_i$, and let $z_i = (p_j \circ \bar{f})(x)$. By our assumption, $(\sim z_i)^n \not\leq z_i$ for some j. Since M_i is linearly ordered, $z_i \not\leq (\sim z_i)^n$ holds. Therefore $(\sim z_i)^n + 1 = 0$. Then, $\bar{m}(x^{n+1}) = 1$ never hold for any m. This completes the proof of our lemma. \hfill \qed

The next theorem gives us a sufficient condition for a FL_{ew}-algebra to be semisimple. Here, we will introduce the following condition on FL_{ew}-algebras:

$EM_k : x \vee (\sim x^k) = 1$ for any x.

Note that EM_1 corresponds to an algebraic form of the excluded middle EM.

Theorem 6.2 The following three conditions are mutually equivalent for any subdirectly irreducible FL_{ew}-algebra M.

1. M is simple and satisfies E_k,

2. for each $x \in M$, if $x < 1$ then $x^k = 0$,

Hirokazu Ono, "Logics without the contraction rule", *Australian Journal of Logic* (© 2010, 50–81)
3. \(M \) satisfies \(EM_k \).

Proof: Assume that \(M \) is simple and satisfies \(EM_k \). If \(x < 1 \) then \(1 > x \geq x^2 \geq \ldots \geq x^k = x^{k+1} \). The filter \(F \) generated by \(x \) is expressed as \(\{ z \in M : x^k \leq z \} \). If \(x^k > 0 \) then \(F \) is neither equal to \(\{ 1 \} \) nor equal to \(M \). But this contradicts our assumption that \(M \) is simple.

Next, suppose that \(x < 1 \) implies \(x^k = 0 \) for any \(x \in M \). Take any \(y \in M \). If \(y = 1 \) then clearly \(y \lor (-y^k) = 1 \). If \(y < 1 \), \(y^k = 0 \) by our assumption. Then, \(-y^k = 1 \) and hence \(y \lor (-y^k) = 1 \) holds also in this case.

Finally, suppose that \(M \) satisfies \(EM_k \). Suppose that \(x < 1 \). Since \(x \lor (-x^k) = 1 \), \(-x^k = 1 \) by Theorem 4.1. Then, \(x^k = x^k \cdot 1 = x^k \cdot -x^k = 0 \). Thus, \(M \) is simple.

Next, it is easy to see that for each \(y \), \(y^k \cdot y \leq y^{k+1} \) and \(y^k \cdot -y^k = 0 \leq y^{k+1} \). Therefore, \(y^k \cdot (y \lor -y^k) = (y^k \cdot y) \lor (y^k \cdot -y^k) \leq y^{k+1} \). But, \(y \lor -y^k = 1 \) by our assumption. Thus, \(y^k \leq y^{k+1} \). Since the converse inequality holds always, we have that \(y^k = y^{k+1} \) for any \(y \). \(\square \)

Let us take \(i \) for \(k \) in the above theorem. Then, we have the following well-known result: For any subdirectly irreducible \(FL_{ew} \)-algebra \(M \), the following three conditions are mutually equivalent (cf. Lemma 5.1).

1. \(M \) is simple and satisfies \(x^2 = x \) for any \(x \), i.e., \(M \) is a simple Heyting algebra,
2. \(M \) is isomorphic to the two-valued Boolean algebra \(B_2 \),
3. \(M \) satisfies \(x \lor -x = 1 \) for any \(x \).

A characterization of the variety defined by the condition \(EM_k \) and of the variety defined by \(EM_k \) from universal algebra is given in [43]. Following Chang [14] and Komori [41], for any \(FL_{ew} \)-algebra \(M \), define the order \(o(M) \) of \(M \) as follows: if \(k \) is the smallest number \(j \) such that \(M \) satisfies \(EM_j \), let \(o(M) = k \), and if there exists no such \(k \), let \(o(M) = \omega \). For each \(k \), let \(EM_k \) be the formula \(p \lor -p^k \), which corresponds to the identity \(EM_k \). It is obvious that for any \(FL_{ew} \)-algebra \(M \), \(o(M) = k \) for a finite \(k \) if and only if \(k \) is the smallest number \(j \) such that \(FL_{ew}[EM_j] \subseteq L(M) \).

Corollary 6.2 Any \(FL_{ew} \)-algebra with a finite order is semisimple.

Theorem 6.3 The intersection of \(FL_{ew}[E_n] \) for \(n < \omega \) is equal to \(FL_{ew} \).

Proof: Our theorem follows from the finite model property of \(FL_{ew} \) proved by Okada and Terui in [50]. Suppose that a formula \(A \) is not provable in \(FL_{ew} \). Then by the finite model property of \(FL_{ew} \), \(A \) is not valid in a finite \(FL_{ew} \)-algebra \(M \). Suppose that \(M \) satisfies \(E_k \). Then, \(L(M) \) is a logic over \(FL_{ew}[E_k] \) and thus, \(A \) is not provable in \(FL_{ew}[E_k] \). \(\square \)

In Kowalski and Ono [44], it is proved that the logic \(FL_{ew} \) is determined by the class of finite, simple residuated lattices. This improves the result by Okada and Terui on the finite model property, and moreover implies immediately the following, using Theorem 6.2.

Hirokazu Ono, "Logics without the contraction rule", *Australasian Journal of Logic* (© 2010, 50–81)
Theorem 6.4. \(\text{The intersection of } \mathcal{L}_{\text{ew}} | EM_n | \text{ for } n < \omega \text{ is equal to } \mathcal{L}_{\text{ew}}. \)

Using the sequence \(\{E_k\}_k \), we introduce a classification \(\{W_k\}_k \) of logics over \(\mathcal{L}_{\text{ew}} \) in the following way.

\[W_1 = \{ L : \mathcal{L}_{\text{ew}} | E_1 \} \subseteq L \subseteq \mathcal{L}, \]
\[W_{n+1} = \{ L : \mathcal{L}_{\text{ew}} | E_{n+1} \} \subseteq L \subseteq \mathcal{L} \} \setminus W_n, \]
\[W_\omega = \{ L : \mathcal{L}_{\text{ew}} \subseteq L \subseteq \mathcal{L} \} \setminus \bigcup_{n<\omega} W_n. \]

Clearly, the class \(W_1 \) is exactly the class of all intermediate logics. This classification is orthogonal to the class of Łukasiewicz’s many-valued logics in the sense that for each \(n > 0 \) only the logic \(L | E_{n+1} \) belongs to \(W_n \) and that \(L | L \) belongs to \(W_\omega \). By the definition of the classification, each \(W_n \) has the smallest element \(\mathcal{L}_{\text{ew}} | E_n \) for each \(0 < n \leq \omega \), where \(\mathcal{L}_{\text{ew}} | E_\omega \) means \(\mathcal{L}_{\text{ew}} \). On the other hand, \(W_n \) has no greatest element in general, as shown in the next section.

7 Neighbors of Classical Logic

A logic \(L \) over \(\mathcal{L}_{\text{ew}} \) is an immediate predecessor of classical logic \(\mathcal{L} \) if (1) \(L \) \(\subseteq \mathcal{L} \) and (2) \(L \subseteq L' \subseteq \mathcal{L} \) implies \(L' = L \) for any logic \(L' \). In this section, we will study immediate predecessors of \(\mathcal{L} \). This, we hope, will be the first step in studying the whole structure of the lattice consisting of logics over \(\mathcal{L}_{\text{ew}} \). The set of all immediate predecessors of \(\mathcal{L} \) is denoted by \(\text{IP} | \mathcal{L} \) in the following.

Suppose that \(L \in \text{IP} | \mathcal{L} \) and that \(L \) is characterized by an \(\mathcal{L}_{\text{ew}} \)-algebra \(M \). Let us assume moreover that \(M \) is subdirectly represented by \(\{N_j\}_{j \in J} \). Then, \(L(M) \subseteq L(N_j) \subseteq \mathcal{L} \) for each \(j \in J \). Since \(L(M) \) is an immediate predecessor of \(\mathcal{L} \), some \(L(N_j) \) must be equal to \(L(M) \). Thus, we can assume that \(L \) is characterized by a subdirectly irreducible \(\mathcal{L}_{\text{ew}} \)-algebra \(M \) from the beginning.

We have already seen some of immediate predecessors of \(\mathcal{L} \). If we restrict our attention to logics over the intuitionistic logic Int, i.e., intermediate logics, then there exists the single immediate predecessor of \(\mathcal{L} \), which is determined by the three valued Heyting algebra \(H_3 \). In other words, the class \(W_1 \) has the single immediate predecessor \(H_3 \) of \(\mathcal{L} \). On the other hand, Komori [41] discussed the lattice structure of logics over \(L(L) \) and proved that in this class \(L \) is an immediate predecessor of \(\mathcal{L} \) if and only if either \(L = L(L_{\omega+1}) \) with a prime number \(n \) or \(L = L(C) \), where \(C \) is the MV-algebra of Chang (see the previous section). For each \(n \) such that \(0 < n \leq \omega \), let \(W_n^* \) be the class of maximal elements in \(W_n \), and \(W_n^{IP} \) be the set \(W_n \cap \text{IP} | \mathcal{L} \), i.e., the set of all immediate predecessors of \(\mathcal{L} \) in \(W_n \). Clearly, \(W_n^{IP} \) is a subset of \(W_n^* \) when \(n > 1 \).

Footnote: For recent developments of the study in this direction, see Chapter 9 of [25].
Theorem 7.1 For each \(n < \omega \), \(L(\mathcal{L}_{n+1}) \) belongs to \(W_n^* \). Also, \(L(\mathcal{C}) \) belongs to \(W_{\omega}^* \).

Proof: Suppose that \(L(\mathcal{L}_{n+1}) \subseteq L \) and \(L \in W_n \). Clearly, \(L \) is a logic over \(L(\mathcal{L}) \). Using results in Komori [41], there exists a finite set \(I \) of natural numbers such that \(L = \bigcap_{i \in I} L(\mathcal{L}_{i+1}) \). Then, by Lindenbaum’s result, each \(i \in I \) must be a divisor of \(n \). If \(i < n \) for all \(i \in I \), then \(L \) must be in \(W_j \) where \(j = \max\{i : i \in I\} < n \). This is a contradiction. Thus, \(i = n \) for some \(i \in I \). Then, \(L \subseteq L(\mathcal{L}_{n+1}) \) and hence \(L = L(\mathcal{L}_{n+1}) \). Therefore, \(L(\mathcal{L}_{n+1}) \) is maximal in \(W_n \). Since \(L(\mathcal{C}) \) belongs to \(W_{\omega}^* \), the second part is obvious.

We will show in the rest of this section that there are many other immediate predecessors of \(Cl \). Note that each \(\mathcal{L}_{n+1} \) is simple, but neither \(H_2 \) nor \(C \) is so. It is clear that every \(FL_{ew} \)-algebra \(M \) contains \(M \) itself and \(\{0,1\} \) as its subalgebras. The latter is obviously isomorphic to the two-valued Boolean algebra \(B_2 \). A subalgebra \(K \) of an \(FL_{ew} \)-algebra \(M \) is trivial if \(K \) is either \(M \) or \(\{0,1\} \). The following theorem gives us a condition for a finite subdirectly irreducible \(FL_{ew} \)-algebra to determine an immediate predecessor of \(Cl \).

Theorem 7.2 Suppose that \(M \) is a finite, subdirectly irreducible (non-degenerate) \(FL_{ew} \)-algebra. Then, \(L(M) \) is either equal to classical logic \(Cl \) or an immediate predecessor of \(Cl \) if and only if

1. every subalgebra of \(M \) is trivial,

2. for any proper filter \(F \) of \(M \), either \(F = \{1\} \) or the quotient algebra \(M/F \) is isomorphic to \(B_2 \).

To show Theorem 7.2, we use Jónsson’s lemma [39] on congruence-distributive variety (see also [5]). Recall that the class of \(FL_{ew} \)-algebras forms a congruence-distributive variety by Propositions 3.4 and 3.5. In the following, \(V(\mathcal{K}) \) and \(V(\mathcal{K})_{SI} \) mean the variety generated by a class \(\mathcal{K} \) of algebras and the class of subdirectly irreducible algebras in \(V(\mathcal{K}) \), respectively. Also, \(H(\mathcal{K}), S(\mathcal{K}) \) and \(P_U(\mathcal{K}) \) denote the class of homomorphic images of members of \(\mathcal{K} \), the class of subalgebras of members of \(\mathcal{K} \), and the class of ultraproducts of nonempty families of members of \(\mathcal{K} \), respectively. We can state Jónsson’s lemma applied to the present case as follows.

Proposition 7.1 Let \(\mathcal{K} \) be a class of \(FL_{ew} \)-algebras. Then, \(V(\mathcal{K})_{SI} \subseteq HSP_U(\mathcal{K}) \). In particular, if \(M_1, \ldots, M_n \) are finite \(FL_{ew} \)-algebras, then \(V([M_1, \ldots, M_n])_{SI} \subseteq HS([M_1, \ldots, M_n]) \).

Proof of Theorem 7.2. Only-if part is trivial. We assume that a finite subdirectly irreducible \(M \) satisfies both conditions 1 and 2. Moreover, suppose that \(L(M) \subseteq L \subseteq Cl \) for a logic \(L \). The logic \(L \) can be represented as \(\bigcap_{i \in I} L(N_i) \) for some non-degenerate, subdirectly irreducible \(FL_{ew} \)-algebras \(N_i \) for \(i \in I \). Since \(L(M) \subseteq L(N_i) \), \(N_i \in V([M])_{SI} \subseteq HS([M]) \), by using Proposition 7.1. By

Harukazu Ono, “Logics without the contraction rule”, Australian Journal of Logic (© 2010, 80-81)
condition 1, \(S([M]) = \{M, B_2\}\). Thus, each \(N_i\) must be the homomorphic image of some \(K \in \{M, B_2\}\) by a homomorphism \(h\). Hence, the kernel \(\text{Ker}(h)\) of \(h\) is a proper filter of \(K\), and \(N_i \cong K/\text{Ker}(h)\), by the homomorphism theorem. By condition 2, either \(\text{Ker}(h) = \{1\}\) or the quotient algebra \(N_i\) is isomorphic to \(B_2\). In other words, \(N_i\) is isomorphic either to \(K \in \{M, B_2\}\) or to \(B_2\). Since \(L = \bigcap_{i \in I} L(N_i) \subseteq \text{Cl}\), \(N_i\) must be isomorphic to \(M\) for some \(j \in I\). Therefore, \(L = L(M)\) as \(L(M) \subseteq L(B_2)\). Thus, \(L(M)\) is an immediate predecessor of \(\text{Cl}\). □

Corollary 7.1 If \(M\) is a finite, simple (non-degenerate) \(\text{FL}_{ew}\)-algebra without nontrivial subalgebras, then \(L(M)\) is equal either to classical logic \(\text{Cl}\) or to an immediate predecessor of \(\text{Cl}\).

Proof: If \(M\) is simple, it has only \(\{1\}\) as its proper filter. Thus, condition 2 in Theorem 7.2 is satisfied. □

This corollary gives us a proof of a well-known result which says that \(L(\mathcal{L}_{n+1})\) is an immediate predecessor of \(\text{Cl}\) when \(n\) is prime. Note that in [61] K. Swirydowicz showed the existence of infinitely many immediate predecessors of \(\text{Cl}\) over the classical linear logic, i.e. \(\text{FL}_e[DN]\), by using the similar criterion as Corollary 7.1.

By Theorem 6.2 and Corollary 6.2, we have the following.

Corollary 7.2 Suppose that an immediate predecessor \(L\) of \(\text{Cl}\) is determined by an \(\text{FL}_{ew}\)-algebra \(M\). Then, \(M\) is simple and \(k\)-potent if and only if \(L\) is a logic over \(\text{FL}_{ew}[EM]_k\).

By using Corollary 7.1, we will give here an example of simple, linearly ordered \(\text{FL}_{ew}\)-algebra \(K\) which determines an immediate predecessor of \(\text{Cl}\), but which is not isomorphic to any of Łukasiewicz’s models. The universe of \(K\) consists of 6 elements, which are ordered as \(1 > a > b > a^2 > a^3 > a^4 = 0\). We assume that \(a \cdot b = b^2 = a^3\). Then, from this it follows that \(a^2 \cdot b = b^3 = 0\). Moreover, (nontrivial) implications are determined as follows. \(a \rightarrow b = b \rightarrow a^2 = b \rightarrow a^3 = a, \sim b = a^2\), and for \(1 \leq m < n \leq 4, a^m \rightarrow a^n = a^{n-m}\) if \(n - m \neq 2\), and \(= b\) otherwise. It is easy to see that \(K\) has no nontrivial subalgebras. Thus, it determines an immediate predecessor of \(\text{Cl}\) which belongs to \(\text{W}_4\).

It will be interesting to see whether there is an immediate predecessor of \(\text{Cl}\) or not, which is determined by a simple nonlinear \(\text{FL}_{ew}\)-algebra, or by a simple infinite \(\text{FL}_{ew}\)-algebra.

In the rest of this section, we will discuss such subdirectly irreducible, nonsimple \(\text{FL}_{ew}\)-algebras that determine immediate predecessors of \(\text{Cl}\). First, as an application of Theorem 7.2, we will give a series \(\{J_n\}_n\) of nonsimple and nonlinear \(\text{FL}_{ew}\)-algebras such that any of them determines an immediate predecessor of \(\text{Cl}\). (The same result is obtained independently by T. Kowalski.) For each \(n > 1\), the universe of \(J_n\) consists of \(n + 3\) elements \(\{1, a, a^2, \ldots, a^n(= a^{n+1}), b, 0\}\). The element \(b\) satisfies \(a^{n-1} > b > 0\) and is incomparable with...
a^n. We assume moreover that a \cdot b = 0, and thus x \cdot b = 0 for any element x \leq a. Then, the following holds:

1. \(a^k \rightarrow a \land m = a \lor k - m\) if \(k < m\),
2. \(a^k \rightarrow b = \neg a^k = b\) for \(1 \leq k \leq n\),
3. \(b \rightarrow a^n = \neg b = a\).

Clearly, the element a generates \(J_n\) since \(a = b\). Also, b generates it as \(\neg b = a\). Finally, each \(a^k\) for \(1 < k \leq n\) generates it, since \(\neg a^k = b\). Thus, \(J_n\) has no nontrivial subalgebras. The algebra \(J_n\) has the single proper filter \(F = \{1, a, a^2, \ldots, a^n\}\) except \{1\}. It is obvious that the quotient algebra \(J_n/F\) is isomorphic to \(B_2\). Thus, by Theorem 7.2, each \(J_n\) determines an immediate predecessor of \(C_l\) in \(W_n\). Hence, we have the following.\(^{13}\)

Theorem 7.3 For each \(n > 1\), \(W_n\) contains an immediate predecessor of \(C_l\), which is determined by the nonsimple and nonlinear \(FL_{ew}\)-algebra \(J_n\).

In the following, we will assume that \(M\) is a subdirectly irreducible, nonsimple \(FL_{ew}\)-algebra satisfying \(E_n\) for some \(n > 1\), which moreover determines an immediate predecessor of \(C_l\). From Corollary 4.2 it follows that \(M\) has the unique coatom \(a\). When \(a = 0\), \(M\) becomes the 2-valued Boolean algebra, and therefore it is simple, which is a contradiction. Hence, we have that \(a > 0\) and \(a^n = a^{n+1} > 0\). Let \(b = a^n\). Then, the filter \(F\) generated by \(a\) can be represented as \(\{x: b \leq x\}\), which is a proper filter, not equal to \{1\}. Therefore, by Theorem 7.2, the quotient algebra \(M/F\) must be isomorphic to \(B_2\). In particular, \(||b|| = ||1|| \text{ and } \neg ||b|| = ||0||\) hold, where \(||x||\) denotes the equivalence class to which an element \(x\) belongs. Thus, \(b \not\leq \neg b\). Hence, either \(b < \neg b\) or \(b\) is incomparable with \(\neg b\). We assume that the former holds, and consider moreover two special cases; (1) \(\neg b = 0\), and (2) \(\neg b > 0\) and \(\neg b = b\).

1. Case where \(\neg b = 0\) holds: Since \(b^2 = b\), the set \(\{0, b, 1\}\) forms a subalgebra of \(M\), which is isomorphic to the three valued Heyting algebra \(H_3\). (Note that when \(M\) is a Heyting algebra, both \(b = a\) and \(0 = \neg b < b\) hold always.)

Thus, \(M\) itself must be isomorphic to \(H_3\), as it does not contain nontrivial subalgebras.

\(^{13}\)After the original draft of the present paper is completed, in his master thesis M. Ueda obtained a far stronger result than our Theorem 7.3, which says that for each \(n > 1\), \(W_n\) contains \(countably many\) immediate predecessors of \(C_l\), each of which is determined by a nonsimple and nonlinear \(FL_{ew}\)-algebra, and that for each \(n > 2\), \(W_n\) contains also \(countably many\) immediate predecessors of \(C_l\), each of which is determined by a nonsimple and linear \(FL_{ew}\)-algebra. Then, T. Kowalski improved them and showed that “countably many” can be replaced by “uncountably many” in them. As Ueda and Kowalski have obtained other stronger results, we have now a much clearer picture of immediate predecessors of \(C_l\) and the rest of the present paper should be revised. But, as we mentioned at the beginning, we decided not to make much revisions. For more information on Ueda and Kowalski’s results, see [50] and [40].
2. Case where both \(b > \neg b > 0 \) and \(\neg \neg b = b \) hold: It is easily seen that
\((\neg b)^2 = 0 \) and \(b \rightarrow \neg b = \neg b \) hold. Thus, the set \(\{0, \neg b, b, 1\} \) forms a
subalgebra of \(M \), which we call \(I_1 \). Hence, \(M \) must be isomorphic to \(I_1 \).

From these observations, the following result follows.

Theorem 7.4 Suppose that \(M \) is a subdirectly irreducible, nonsimple \(\text{FL}_{ew} \)-algebra satisfying \(E_n \) for some \(n > 1 \) and moreover that \(L(M) \) is an immediate predecessor of \(\text{Cl} \).

1. If \(M \) satisfies the axiom \(\neg p \lor \neg \neg p \) then \(M \) is isomorphic to \(H_3 \).

2. If \(M \) satisfies both \(DN \) and the axiom \((p \rightarrow \neg p) \lor (\neg p \rightarrow p) \) then \(M \) is isomorphic to \(I_1 \).

Proof: Take elements \(a \) and \(b \) just in the same way as in the above.

1. Since \(\neg b \lor \neg \neg b = 1 \), either \(\neg b = 1 \) or \(\neg \neg b = 1 \) holds. If the former is the case, then \(a^n = b = 0 \). This contradicts our assumption that \(M \) is not simple. Thus, \(\neg \neg b = 1 \) holds and hence \(\neg b = 0 \) holds. Then, by the above (i) \(M \) is isomorphic to \(H_3 \).

2. In this case, either \(b \leq \neg b \) or \(\neg b < b \) holds. But the former does not hold as shown in the above. Since \(\neg \neg b = b < 1 \) must hold, \(\neg b \neq 0 \). Thus, \(M \) is isomorphic to \(I_1 \) by (2).

Note that the formula \((\neg p \lor \neg \neg p) \rightarrow ((p \rightarrow \neg p) \lor (\neg p \rightarrow p)) \) is provable in \(\text{FL}_{ew} \). At present, we do not have any clear view of immediate predecessors of \(\text{Cl} \) yet, even if we restrict attention only to \(W_2^{1p} \). It is easy to see that \(L(\mathbb{L}_3) \) is the single member of \(W_2^{1p} \) which is determined by a simple \(\text{FL}_{ew} \)-algebra. The class \(W_2^{1p} \) contains \(L(I_1) \), \(L(J_2) \) and more. In fact, in 2000 T. Kowalski and M. Ueda proved that \(W_n^{1p} \) contains uncountably many logics (see [40] for the details).

References

Hirokira Ono, "Logics without the contraction rule", *Australasian Journal of Logic* (© 2010, 50–81)
[20] Dilworth, R.P., Non-commutative residuated lattices, Transactions of

[21] Došen, K. and P. Schroeder-Heister eds., Substructural logics,

[22] Došen, K., Sequent systems and groupoid models. I, Studia Logica 47,

[23] Došen, K., Sequent systems and groupoid models. II, Studia Logica 48,

Algebraic Glimpse at Substructural Logics, Studies in Logic and the

[27] Grišin, V.N., On a nonstandard logic and its application to the set theory
(in Russian), Issledovaniya po formalizovannym jazykam i neklassicheskim
logikam, Moskva, 1974, pp. 135–171.

[28] Grišin, V.N., On algebraic semantics for logic without the contraction
rule (in Russian), Issledovaniya po formalizovannym jazykam i neklassicheskim

[29] Grišin, V.N., Predicate and set-theoretical calculi based on logic
without the contraction rule (in Russian), Izvestia Akademii Nauk SSSR 45,
(1981) pp. 47–68 (also the English translation in Math. USSR Izvestiya 18,

[31] Hájek, P., L. Godo and F. Esteva, A complete many-valued logic with

[32] Higgs, D., Residuated commutative monoids with identity element as
least element do not form an equational class, Mathematika Japonica 29,

[33] Höhle, U., Commutative residuated monoids, Non-classical Logics and
Their Applications to Fuzzy Subsets eds. by U. Höhle and P. Klement, Dordrecht,

[61] SWIRYDOWICZ, K., There exist infinitely many Post-complete extensions of the classical linear logic, manuscript, 1996.

Hiroakira Ono, "Logics without the contraction rule", *Australian Journal of Logic* (C) 2010, 50–81

The Australasian Journal of Logic (ISSN 1448-5052) disseminates articles that significantly advance the study of logic, in its mathematical, philosophical or computational guises. The scope of the journal includes all areas of logic, both pure and applied to topics in philosophy, mathematics, computation, linguistics and the other sciences.

Articles appearing in the journal have been carefully and critically refereed under the responsibility of members of the Editorial Board. Only papers judged to be both significant and excellent are accepted for publication.

The journal is freely available at the journal website at http://www.philosophy.unimelb.edu.au/ajl/.

All issues of the journal are archived electronically at the journal website.

Subscriptions Individuals may subscribe to the journal by sending an email, including a full name, an institutional affiliation and an email address to the managing editor at ajl-editors@unimelb.edu.au. Subscribers will receive email abstracts of accepted papers to an address of their choice. For institutional subscription, please email the managing editor at ajl-editors@unimelb.edu.au.

Complete published papers may be downloaded at the journal's website at http://www.philosophy.unimelb.edu.au/ajl/. The journal currently publishes in pdf format.

Submission The journal accepts submissions of papers electronically. To submit an article for publication, send the LaTeX source of a submission to a member of the editorial board. For a current list of the editorial board, consult the website.

The copyright of each article remains with the author or authors of that article.