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PAPER Special Section on Discrete Mathematics and Its Applications

New Analysis Based on Correlations of RC4 PRGA with
Nonzero-Bit Differences∗∗

Atsuko MIYAJI†∗a), Member and Masahiro SUKEGAWA††, Nonmember

SUMMARY RC4 is the stream cipher proposed by Rivest in 1987,
which is widely used in a number of commercial products because of
its simplicity and substantial security. RC4 exploits shuffle-exchange
paradigm, which uses a permutation S . Many attacks have been reported so
far. No study, however, has focused on correlations in the Pseudo-Random
Generation (PRGA) between two permutations S and S ′ with some differ-
ences, nevertheless such correlations are related to an inherent weakness of
shuffle-exchange-type PRGA. In this paper, we investigate the correlations
between S and S ′ with some differences in the initial round. We show that
correlations between S and S ′ remain before “i” is in the position where
the nonzero-bit difference exists in the initial round, and that the correla-
tions remain with non negligible probability even after “i” passed by the
position. This means that the same correlations between S and S ′ will
be observed after the 255-th round. This reveals an inherent weakness of
shuffle-exchange-type PRGA.
key words: RC4, correlation, shuffle-exchange structure, pseudo key colli-
sion

1. Introduction

RC4 is the stream cipher proposed by Rivest in 1987, which
is widely used in a number of commercial products because
of its simplicity and substantial security. Though many
cryptanalysis of RC4 have been proposed so far [3]–[5],
[7]–[9], [11], [12], [15]–[17], it has remained secure under
proper use. As a result, RC4 is widely used in many applica-
tions such as Secure Sockets Layer (SSL), Wired Equivalent
Privacy (WEP), etc.

RC4 exploits shuffle-exchange paradigm, which uses
a permutation S = (S [0], · · · , S [N − 1]) given in the ini-
tial, and outputs 8-bit data in each round by updating the
permutation S , where typically each S [i] (i ∈ [0,N − 1])
is 8 bits and N = 256. In more detail, RC4 consists of
two algorithms, the Key Scheduling Algorithm (KSA) and
the Pseudo Random Generation Algorithm (PRGA). KSA
is given a secret key with � bytes (typically, 5 ≤ � ≤ 16)
and generates the initial permutation S 0, which is an input
of PRGA. PRGA is given the initial permutation S 0, uses
two indices i and j, (where i is a public counter but j is one
element of secret state information), updates S and j, and
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outputs Z = S [S [i] + S [ j]] as a key stream at the end of
each round.

There are mainly two approaches to the cryptanalysis
of RC4, analysis of the weaknesses of the KSA [1], [2], [13],
and analysis of the weaknesses of the PRGA [5], [7], [11],
[14]. In [5], the first state recovery attack was proposed,
whose computational complexity is 2779. In [7], [11], [14],
non-uniform distribution of the initial permutation S 0 was
shown. Recently, the state key recovery attack is improved
by [6], whose computational complexity is 2241.

Many works, however, focus on the bias between a se-
cret key and the initial permutation, which is an input of
PRGA. Some analysis of the weaknesses of the PRGA also
focus on the correlation between the first keystream output
of PRGA and the secret key. We have not seen any research
on correlations in PRGA between two permutations with
some differences. However, such correlations should be in-
vestigated, since it is reported that sets of two keys which
output either the same initial permutations or initial permu-
tations with differences of just a few bits can be intentionally
induced [10]. Furthermore, correlations between outputs of
two consecutive rounds is an inherent weakness of shuffle-
exchange-type PRGA.

In this paper, we focus on a shuffle-exchange structure
of PRGA, where 1 swap is executed in each round. We in-
vestigate how the structure mixes the permutation S , by ob-
serving correlations between two permutations, S and S ′,
with some differences in the initial round. The set of in-
dices where differences exist in the initial round is repre-
sented by Diff0. The correlations are measured over (a) the
difference value of two permutations ΔS = S ⊕ S ′, (b) the
difference value of two outputs of PRGA, ΔZ = Z ⊕ Z′, and
(c) the difference value of two indices Δ j = j ⊕ j′. We start
with Diff0 = {df0[1], df0[2]}. Our results, however, are easily
applicable to other cases where there exist differences Diff0
with #Diff0 > 2 in the initial round.

We show theoretically that correlations between two
permutations S and S ′, such as ΔZ = 0, Δ j = 0, and the
hamming weight of ΔS , remain when i < df0[1]. Further-
more, we show that such correlations between two permuta-
tions S and S ′ remain with non negligible probability when
i ≥ df0[1], thus, the same correlations between permuta-
tions will be observed when i < df0[2]. For example, the
probability that such correlations remain when i > df0[1] is
greater than 30% in the cases of df0[1] ≥ 93. We give the
theoretical formulae of the probability of both outputs be-
ing equal when i = df0[1]. All theoretical results have been
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confirmed experimentally.
This paper is organized as follows. Section 2 summa-

rizes the known facts on RC4 together with notation. Sec-
tion 3 investigates correlations in each round between two
permutations S and S ′ with some differences in the initial
round. Section 4 investigates correlations in each round
between outputs of two permutations S and S ′. Section 5
shows the experimental results which confirm all theories in
Sects. 3 and 4. Section 6 investigates how to predict inner
states.

2. Preliminary

This section presents the KSA and the PRGA of RC4, after
explaining the notations used in this paper.

• S , S ′: permutations
• S 0, S ′0: the initial permutations of PRGA
• Diff0: the set of indices where differences between S

and S ′ exist in the initial round
• r: number of rounds (r = 0 means the initial round)
• df0[1], df0[2]: the positions where differences exist in

the initial round
• ir, jr ( j′r): i and j ( j′) of S (S ′) after r rounds
• S r (S ′r): the permutation S (S ′) after r rounds
• S r[i] (S ′r[i]): the value of S r (S ′r) in the position i after

r rounds
• ΔS r: S r ⊕ S ′r
• ΔS r[i]: S r[i] ⊕ S ′r[i]
• |ΔS r |: the number of indices with ΔS r[i] � 0
• Zr (Z′r): the output under S (S ′) at the r-th round
• ΔZr: Zr ⊕ Z′r
• Δ jr: jr ⊕ j′r
• ΔState[0],ΔState[1], · · · : the state differences be-

tween S and S ′ ( j and j′) in a round r. (The state dif-
ferences of i are omitted since the same i is used each
other.)

RC4 has a secret internal state which is a permutation
of all the N = 2n possible n-bit words and index j. RC4
generates a pseudo-random stream of bits (a keystream)
which, for encryption, is combined with the plaintext using
XOR; decryption is performed in the same way. To gen-
erate the keystream, the cipher makes use of a secret inter-
nal state which consists of two parts (shown in Fig. 1): A
key scheduling algorithm, KSA, which turns a random key
(whose typical size is 40–256 bits) into an initial permuta-
tion S 0 of {0, . . . ,N − 1}, and an output generation algo-
rithm, PRGA, which uses the initial permutation to generate
a pseudo-random output sequence.

The algorithm KSA consists of N loops. It initializes S
to be the identity permutation, and both i and j to 0, and then
repeats three simple operations: increment i, which acts as
a counter, set j by using S and a secret key K with � bytes
where each word contains n bits, and swap two values of S
in positions i and j. Finally, it outputs a random permutation
S = S 0.

The algorithm PRGA is similar to KSA. It repeats four

Fig. 1 The key scheduling algorithm and the pseudo-random generation
algorithm.

simple operations: increment i, which act as a counter, set j
by using S and the previous j, swap two values of S in posi-
tions i and j, and output the value of S in position S [i]+S [ j].
Each value of S is swapped at least once (possibly with it-
self) within any N consecutive rounds. All additions used
in both KSA and PRGA are in general additions modulo N
unless specified otherwise.

3. State Analysis of Permutations with Some Differ-
ences

This section analyzes correlations between two permuta-
tions, S and S ′, with some differences in the initial round.
The set of indices where differences exist in the initial round
is represented by Diff0 = {df0[1], df0[2], · · · }. The indices
with nonzero bit differences are arranged in order of posi-
tions that i will reach after the next round. Therefore, if
nonzero bit differences exist in positions 0 and N − 1 in the
initial round, then Diff0 = {df0[1], df0[2]} = {N − 1, 0} since
i will be incremented to 1 in the first round.

3.1 Overview of Analysis

Assume that two permutations S and S ′ with Diff0 = {df0[1],
df0[2]} in the initial round are given, where (S 0[df0[1]],
S 0[df0[2]]) = (a, b) and (S ′0[df0[1]], S ′0[df0[2]]) = (b, a) (See
Fig. 2). The initial state of differences between S 0 and S ′0 is:

ΔState[0] : (ΔS [x] � 0⇐⇒ x ∈ Diff0) ∧ (Δ j = 0).

We analyze the conditions in each round in which the initial
state changes from the current state to another, or remains
the same.

The transitions of state are different according to the
position of i, that is, i < df0[1]; i = df0[1] and the nonzero
bit difference still exists in the position df0[1]; i = df0[1]
but the nonzero bit difference does not exist in the position
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Fig. 2 ΔState[0].

Fig. 3 Event[1].

Fig. 4 Event[2].

Fig. 5 Event[3].

Fig. 6 State Diagram of PRGA in Event[1].

df0[1], which are formalized as follows.

Event[1] : ir<df0[1] (Fig. 3),
Event[2] : [ir=df0[1]]∧[ΔS r−1[df0[1]] � 0] (Fig. 4),
Event[3] : [ir=df0[1]]∧[ΔS r−1[df0[1]] = 0] (Fig. 5).

Figures 3, 4, and 5 show each event, where (x, x′) = (b, a) or
x = x′. We will see the reason for this in the following sub-
sections. The following subsections describe each transition
and the probability of its occurrence in each event. We will
see that the state of differences between two permutations S
and S ′ has the Markov property, that is, given the state in a
certain round (the present state), the state in a future round
(future states) is independent of past rounds.

3.2 Transitions of ΔState[0] before the Nonzero Bit Dif-
ference

This subsection shows the transitions from the initial state

in Event[1] and their associated probabilities. The state di-
agram is given in Fig. 6.

Theorem 1: Assume that two initial permutations S and
S ′ are in the state of differences ΔState[0] in the (r − 1)-th
round, and that Event[1] occurs in the r-th round.
(1) The state changes to the state ΔState[0] (resp.
ΔState[1], resp. ΔState[2]) if jr � Diff0 (resp. jr = df0[2],
resp. jr = df0[1]), where

ΔState[0] : [ΔS r[x] � 0⇐⇒ x ∈ Diff0] ∧ [Δ jr = 0],
ΔState[1] : [ΔS r[x] � 0⇐⇒ x ∈ Diff1] ∧ [Δ jr = 0],
ΔState[2] : [ΔS r[x] � 0⇐⇒ x ∈ Diff2] ∧ [Δ jr = 0].

and where Diff1 = {df1[1], df1[2]} = {df0[1], ir} and Diff2 =
{df2[1], df2[2]} = {df0[2], ir}.
(2) Each transition occurs with the following probabilities if
j is distributed randomly:

Prob [ΔState[0]] =
N − 2

N
,

Prob [ΔState[1]] =
1
N
, and

Prob [ΔState[2]] =
1
N
,

where each probability is taken over choices of S and S ′ in
state ΔState[0] in the initial round.

proof: (1) It is clear that jr = j′r holds in any case, since jr =
jr−1 + S r−1[ir], Δ jr−1 = 0, and ir � Diff0. In the case of jr �
Diff0, ΔS r−1[ir] = ΔS r−1[ jr] = 0 holds and, thus, positions
of non-zero-bit differences remain the same as those in (r −
1)-round. Therefore, ΔState[0] occurs. In the case of jr =
df0[2],

(S r[ir], S r[ jr]) = (S r−1[ jr], S r−1[ir]) = (b, S r−1[ir]);

(S ′r[ir], S
′
r[ j′r]) = (S ′r−1[ j′r], S ′r−1[ir]) = (a, S ′r−1[ir]);

and, thus, the non-zero-bit difference in the position df0[2]
moves to the current ir. Therefore, ΔState[1] occurs. In the
case of jr = df0[1],

(S r[ir], S r[ jr]) = (S r−1[ jr], S r−1[ir]) = (a, S r−1[ir]);

(S ′r[ir], S
′
r[ j′r]) = (S ′r−1[ j′r], S ′r−1[ir]) = (b, S ′r−1[ir]);

and, thus, the non-zero-bit difference in the position df0[1]
moves to the current ir. Therefore, ΔState[2] occurs.

(2) The probability that each state will occur follows
from the above discussion.

Theorem 1 implies that

• |ΔS r | = 2 and Δ jr = 0 hold as long as ir is not equal
to the position that a nonzero bit difference exits in the
initial round.
• If jr = df0[1] at least once in the r-th round during ir <
df0[1], then the nonzero bit difference in the position
df0[1] moves to the current ir. As a result, the nonzero-
bit difference that was originally in the position df0[1]
affects neither |ΔS | nor Δ j until the (r+N−1)-th round.
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This is the case in which Event[3] occurs.

The following corollary describes the detailed cases in
which i is not equal to any position that a nonzero bit dif-
ference existed originally before the N-th round.

Corollary 1: Assume that two initial permutations S and
S ′ in the state of differences ΔState[0] are given. Then,
if either of the following events occurs, then i is not equal
to any position that a nonzero bit difference exits; and both
|ΔS r | = 2 and Δ jr = 0 hold until the N-th round.

Event[4] :
[
jr1 = df0[1] ∧ 1 ≤ ∃ir1 < df0[1]

]
∧ [

jr2 = df0[2] ∧ ir1 < ∃ir2 < df0[2]
]

Event[5] :
[
jr3 = df0[2] ∧ 1 ≤ ∃ir3 < df0[1] − 1

]
∧ [

jr4 = df0[1] ∧ ir3 < ∃ir4 < df0[1]
]
.

Note that ir3 is less than df0[1] − 1 since ir3 < ir4 < df0[1].

proof: Assume that Event[4] has occurred in ( jr1 , jr2 ), that
is, first jr1 = df0[1] for 1 ≤ ir1 < df0[1] has occurred. This
means that ΔState[2] has occurred in the index of ir1 and,
thus, ΔS r1 [x] � 0 ⇐⇒ x ∈ Diff2. Therefore, the nonzero-
bit difference in the position df0[1] moves to the position ir1 .
Next, it is assumed that jr2 = df0[2](ir1 < ir2 < df0[2]) has
occurred. Then, ΔS r2 [x] � 0 ⇐⇒ x ∈ {ir1 , ir2 } by applying
Theorem 1 to Diff2. Thus, i is not equal to any position that
a nonzero bit difference exits until the N-th round.

Assume that Event[5] has occurred in ( jr3 , jr4 ), that is,
first jr3 = df0[2] for 1 ≤ ir3 < df0[1] − 1 has occurred.
This means that ΔState[1] has occurred in the index of ir3

and, thus, ΔS r3 [x] � 0 ⇐⇒ x ∈ Diff1. Then, the index
df0[2] no longer indicates a nonzero bit difference. Next, it
is assumed that jr4 = df0[1](ir3 < ir4 < df0[1]) has occurred.
Then, ΔS r4 [x] � 0 ⇐⇒ x ∈ {ir3 , ir4} by applying Theorem 1
to Diff1. Thus, i is not equal to any position that a nonzero
bit difference exits until the N-th round.

Event[3] occurs if and only if jr = df0[1] for 1 ≤
∃r < df0[1]. The probability that Event[3] occurs,
Prob [Event[3]], is computed by the next theorems.

Theorem 2: Assume that two initial permutations S and
S ′ in the state of differences ΔState[0] with df0[1] ≥ 5
are given. Then, the probability that Event[3] will occur
in df0[1] ≥ 5 is given as follows if each j is distributed ran-
domly for any given S and S ′:

Prob [Event[3] | df0[1] ≥ 5] = 1 −
(

N − 1
N

)df0[1]−1

,

where the probability is taken over choices of S and S ′ with
differences in Diff0 in the initial round.

proof: Event[2], the complement of Event[3], occurs if
and only if j � df0[1] during i < df0[1]. Therefore,

Prob [Event[3] | df0[1] ≥ 5] = 1 −
(

N−1
N

)df0[1]−1
if j is dis-

tributed randomly.

In the case of df0[1] < 5, we can describe Prob [Event[3]]
by the conditions of S 0 as follows:

Theorem 3: Assume that two initial permutations S and
S ′ in the state of differences ΔState[0] with df0[1] < 5 are
given. Then, Event[3] will occur in the following probabil-
ity if S 0[1], S 0[2], and S 0[3] are distributed randomly:
(1) In the case of df0[1] = 2, Prob [Event[3] | df0[1] = 2] =
Prob

[
S 0[1] = j1 = 2

]
= 1

N ,

(2) In the case of df0[1] = 3,

Prob [Event[3] | df0[1] = 3]
= Prob [S 0[1] = 3 | df0[1] = 3]+

Prob [S 0[1] � 2, 3 ∧ S 0[1] + S 0[2] = 3]

= 2N − 3
N(N − 1) ,

(3) In the case of df0[1] = 4,

Prob [Event[3] | df0[1] = 4]
= Prob [S 0[1] = 2] + Prob [S 0[1] = 4]+
Prob [S 0[1] = 3 ∧ S 0[2] = N − 2]+
Prob [S 0[1] � 2, 3, 4]
∧S 0[3] � 0, 1 ∧ S 0[1] + S 0[2] + S 0[3] = 4

=
2(2N − 3)
N(N − 1) ,

where the probability is taken over choices of S and S ′ with
differences in Diff0 in the initial round.

proof: (1) Let df0[1] = 2. Then, Event[3] occurs if and only
if j1 = df0[1] = 2, where j1 = j0+S 0[1] = S 0[1]. Therefore,
Prob [Event[3] | df0[1] = 2] = Prob [S 0[1] = 2] = 1

N .
(2) Let df0[1] = 3. Then, Event[3] occurs if and only if
j1 = df0[1] = 3 or j2 = df0[1] = 3. If S 0[1] = 3,
then we get j1 = j0 + S 0[1] = S 0[1] = 3 = df0[1]. If
S 0[1] � 2, then S 0[1] = j1 � 2, which means that S 0[1] is
not swapped with S 0[2] in the first round. This implies that
S 1[2] = S 0[2]. Thus, if [S 0[1] � 2, 3]∧ [S 0[1]+S 0[2] = 3],
we get j2 = j1 + S 1[2] = S 0[1]+ S 0[2] = 3 = df0[1]. There-
fore, Prob [Event[3] | df0[1] = 3] = 1

N +
N−2

N(N−1) =
2N−3

N(N−1) .
(3) Let df0[1] = 4. Then, Event[3] occurs if and only if
j1 = df0[1] = 4, j2 = df0[1] = 4, or j3 = df0[1] = 4. If
S 0[1] = 4, then we get j1 = j0+S 0[1] = S 0[1] = 4 = df0[1].
If S 0[1] = 2, then j1 = j0 + S 0[1] = 2; S 0[1] is swapped
with S 0[2]; and, we get j2 = j1 + S 1[2] = j1 + S 0[1] = 4 =
df0[1]. Note that S 0[1] is swapped with S 0[2] if and only if
S 0[1] = 2. If S 0[1] � 2, 4 and S 0[1] + S 0[2] = 4, then we
get j2 = j1 + S 1[2] = S 0[1] + S 0[2] = 4 = df0[1].

If S 0[1] = 3 and S 0[2] = N − 2, then j1 = S 0[1] =
3; and S 0[1] is swapped with S 0[3], which implies that
(S 1[1], S 1[3]) = (S 0[3], S 0[1]). Then, in the 2nd round,
j2 = j1 + S 1[2] = 3 + S 0[2] = 1; and S 1[2] is swapped
with S 1[1], which implies that S 2[3] = S 1[3] = 3. Thus, in
the 3rd round, we get j3 = j2 + S 2[3] = 4. Note that S 0[1]
is swapped with S 0[3] if and only if S 0[1] = 3.

If S 0[1] � 2, 3, 4; S 0[3] � 0, 1; and S 0[1] + S 0[2] +
S 0[3] = 4, then S 1[2] = S 0[2]; S 1[3] = S 0[3]; and S 0[1] +
S 0[2] � 3. This implies that S 1[3] is not swapped with
S 1[2] and that S 2[3] = S 1[3]. Thus, we get j3 = S 0[1] +
S 0[2] + S 0[3] = 4. To sum up all conditions, which are
independent of each other, Prob [Event[3]] = 2

N +
N−2

N(N−1) +
1

N(N−1) +
N−3

N(N−1) =
2(2N−3)
N(N−1) .
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Fig. 7 State diagram of PRGA in Event[2].

3.3 Transitions of ΔState[0] on the Nonzero Bit Differ-
ence

This subsection shows each transition of the initial state
ΔState[0] and the probability of its occurrence when
Event[2] occurs. The state diagram is given in Fig. 7.

Theorem 4: Assume that two permutations S and S ′ are
in the state of differences ΔState[0] in the (r − 1)-th round.
(1) The state changes to ΔState[3] (resp. ΔState[3′],
resp. ΔState[4], resp. ΔState[4′], resp. ΔState[5], resp.
ΔState[6]), if [ jr = df0[2]] ∧ [ j′r � Diff0] (resp. [ j′r =
df0[2]] ∧ [ jr � Diff0], resp. [ jr = df0[1]] ∧ [ j′r � Diff0],
resp. [ j′r = df0[1]] ∧ [ jr � Diff0], resp. j′r, jr � Diff0, resp.
j′r, jr ∈ Diff0), where

ΔState[3] : [ΔS r[x] � 0⇐⇒ x ∈ Diff3] ∧ [Δ jr � 0],
ΔState[3′] : [ΔS r[x] � 0⇐⇒ x ∈ Diff3′ ] ∧ [Δ jr � 0],
ΔState[4] : [ΔS r[x] � 0⇐⇒ x ∈ Diff4] ∧ [Δ jr � 0],
ΔState[4′] : [ΔS r[x] � 0⇐⇒ x ∈ Diff4′ ] ∧ [Δ jr � 0],
ΔState[5] : [ΔS r[x] � 0⇐⇒ x ∈ Diff5] ∧ [Δ jr � 0],
ΔState[6] : [|ΔS r | = 0] ∧ [Δ jr � 0],

where

Diff3 = {df3[1], df3[2]}
= {df0[1], j′r} = {ir, j′r},

Diff3′ = {df3′ [1], df3′ [2]}
= {df0[1], jr} = {ir, jr},

Diff4 = {df4[1], df4[2], df4[3]}
= {df0[1], df0[2], j′r} = {ir, df0[2], j′r},

Diff4′ = {df4′ [1], df4′ [2], df4′ [3]}
= {df0[1], df0[2], jr} = {ir, df0[2], jr},

Diff5 = {df5[1], df5[2], df5[3], df5[4]}
= {df0[1], df0[2], jr, j′r} = {ir, df0[2], jr, j′r}.

(2) Each transition occurs with the following probability, if
j is distributed randomly:

Prob [ΔState[3] ∨ ΔState[3′]]=Prob [Event[2]]· 2(N−2)
N(N−1) ,

Prob [ΔState[4] ∨ ΔState[4′]]=Prob [Event[2]]· 2(N−2)
N(N−1) ,

Prob [ΔState[5]] =Prob [Event[2]]· (N−2)(N−3)
N(N−1) ,

Prob [ΔState[6]] =Prob [Event[2]]· 2
N(N−1) .

proof: (1) It is clear that jr � j′r in each case, since Δ jr =
Δ jr−1 +ΔS r−1[ir] = ΔS r−1[ir] � 0. In the case of jr = df0[2]
and j′r � Diff0, S r−1[ir] = S r−1[df0[1]] = a is swapped with
S r−1[ jr] = b; S ′r−1[ir] = S ′r−1[df0[1]] = b is swapped with
S ′r−1[ jr], which implies that S ′r−1[df0[2]] = a remains the
same. Thus, we get ΔS r[x] � 0 ⇐⇒ x ∈ Diff3 after the r-th
round. In the case of j′r = df0[2] and jr � Diff0, the same
also holds.

In the case of jr = df0[1] and j′r � Diff0, ir = jr =
df0[1] occurs; S r−1[ir] = S r−1[ jr] = a remains the same;
and S ′r−1[ir] = b is swapped with S ′r−1[ jr], Thus, we get
ΔS r[x] � 0 ⇐⇒ x ∈ Diff4 after the r-th round. In the case
of j′r = df0[1] and jr � Diff0, the same also holds.

In the case of j′r, jr � Diff0, S r−1[ir] = a (resp.
S ′r−1[ir] = b) is swapped with S r−1[ jr] (resp. S ′r−1[ j′r]),
where nonzero-bit difference did not exist; and both
S r−1[df0[2]] = b and S ′r−1[df0[2]] = a still remain the same.
Thus, we get ΔS r[x] � 0⇐⇒ x ∈ Diff5 after the r-th round.

In the case of ( jr, j′r) = (df0[1], df0[2]), S ′r−1[ir] =
S ′r−1[df0[1]] = b is swapped with S ′r−1[ j′r] = S ′r−1[df0[2]] =
a while both S r−1[ir] = S r−1[ jr] = a and S r−1[ jr] = b re-
main the same. Thus, all nonzero-bit differences disappear
after swapping in the r-th round. The same also holds in the
case of ( jr, j′r) = (df0[2], df0[1]).
(2) The probability that each state will occur follows from
the above discussion.

4. Correlation between Outputs and State Transitions

This section analyzes the differences between outputs of
two permutations S and S ′ in each transition described in
Sect. 3, where two initial permutations S and S ′ are in the
state of differences ΔState[0].

4.1 Outputs before the Nonzero-Bit Difference

This subsection investigates the correlation between out-
puts of two permutations in each transition before the first
nonzero-bit difference (i.e. i < df0[1]). The states of dif-
ferences of two permutations in any round r < df0[1]
are ΔState[0], ΔState[1], or ΔState[2] from Theorem 1.
The probability that both outputs of permutations are equal,
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Prob [ΔZ = 0], is given in the next theorem.

Proposition 1: Assume that two initial permutations S and
S ′ are in the state of differences ΔState[0] in the (r − 1)-th
round, and that Event[1] occurs in the r-th round. Then,
Prob [ΔZ = 0] in each state is as follows:

Prob [ΔZ = 0] =
N − 2

N
,

2
N(N − 1)

, or
2

N(N − 1)

if ΔState[0], ΔState[1], or ΔState[2] occurs, respectively.

proof: Theorem 1 has shown that

• Δ jr = 0 and jr, ir � Diff0 if ΔState[0],
• Δ jr = 0, ir ∈ Diff1 and jr � Diff1 if ΔState[1],
• Δ jr = 0, ir ∈ Diff1 and jr � Diff2 if ΔState[2].

Then, the necessary and sufficient conditions for ΔZ = 0 in
each state are as follows.

In ΔState[0] : ΔZ = 0
⇐⇒ [Δ(S r[ir] + S r[ jr]) = 0] ∧ [S r[ir] + S r[ jr] � Diff0]
⇐⇒ S r[ir] + S r[ jr] � Diff0

Thus, Prob [ΔZ = 0] = N−2
N .

In ΔState[1] : ΔZ = 0
⇐⇒ [Δ(S r[ir] + S r[ jr]) � 0]

∧[S r[ir] + S r[ jr], S ′r[ir] + S ′r[ jr] ∈ Diff1]
⇐⇒ S r[ir] + S r[ jr], S ′r[ir] + S ′r[ jr] ∈ Diff1

Thus, Prob [ΔZ = 0] = 2
N(N−1) since #Diff1 = 2 and

S r[ir] + S r[ jr] � S ′r[ir] + S ′r[ jr].

In ΔState[2] : ΔZ = 0
⇐⇒ [Δ(S r[ir] + S r[ jr]) � 0]

∧[S r[ir] + S r[ jr], S ′r[ir] + S ′r[ jr] ∈ Diff2]
⇐⇒ S r[ir] + S r[ jr], S ′r[ir] + S ′r[ jr] ∈ Diff2

Thus, Prob [ΔZ = 0] = 2
N(N−1) since #Diff2 = 2 and

S r[ir] + S r[ jr] � S ′r[ir] + S ′r[ jr].

From the above, Proposition 1 follows.

From Theorem 1 and Proposition 1, the probability of
Prob [ΔZ = 0] if r < df0[1] (i.e. i < df0[1]) can be computed
as follows.

Corollary 2: Assume that two initial permutations S
and S ′ with Diff0 = {df0[1], df0[2]} are given. Then,

Prob [ΔZ = 0] =
(

N−2
N

)2
+ 4

N2(N−1) , if r < df0[1].

4.2 Outputs on the Nonzero-Bit Difference

This subsection investigates the correlation between outputs
of two permutations in each transition when r = df0[1] (i.e.
i = df0[1]). The probability that both outputs are equal,
Prob [ΔZ = 0], is given in the next theorem.

Proposition 2: Assume that two initial permutations S and
S ′ are in the state of differences ΔState[0] in the (r − 1)-th
round, and that Event[2] occurs in the r-th round. Then,
Prob [ΔZ = 0] in each state is as follows:

Prob [ΔZ = 0] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
N(N−1) if ΔState[3] ∨ ΔState[3′]

N−3
N(N−2) +

3
N(N−1) if ΔState[4] ∨ ΔState[4′]

N−4
N(N−3) +

4
N(N−1) if ΔState[5]

0 if ΔState[6]

proof: Let c and c′ ∈ [0,N − 1] be values in positions
of jr and j′r before swapping in the r-th round, that is,
(c, c′) = (S r−1[ jr], S ′r−1[ j′r]). On the other hand, (a, b) =
(S r−1[df0[1]], S r−1[df0[2]]) = (S ′r−1[df0[2]], S ′r−1[df0[1]]).
(See Fig. 2). Theorem 4 has shown that:

ΔState[3] : (S r[ir], S r[ jr]) = (b, a) ∧ (S ′r[ir], S ′r[ j′r]) = (c′, b)
(i.e. c = b and c′ � a, b);

ΔState[4] : (S r[ir], S r[ jr]) = (a, a) ∧ (S ′r[ir], S ′r[ j′r]) = (c′, b)
(i.e. a = c and c′ � a, b);

ΔState[5] : (S r[ir], S r[ jr]) = (c, a) ∧ (S ′r[ir], S ′r[ j′r]) = (c′, b)
(i.e. c′ � c and c′, c � a, b);

ΔState[6] : ΔS r = 0,
(S r[ir], S r[ jr]) = (a, a) ∧ (S ′r[ir], S ′r[ j′r]) = (a, b)
(i.e. ir = jr);

or ΔS r = 0,
(S r[ir], S r[ jr]) = (b, a) ∧ (S ′r[ir], S ′r[ j′r]) = (b, b)
(i.e. ir = j′r).

Therefore, the necessary and sufficient conditions of ΔZ = 0
in each state are as follows.

In ΔState[3] : ΔZ = 0
⇐⇒[S r[ir] + S r[ jr], S ′r[ir] + S ′r[ j′r] ∈ Diff3]
∧[Δ(S r[ir] + S r[ jr]) � 0]

⇐⇒[(a + b, c′ + b) = (df0[1], j′r), ( j′r, df0[1])].
Thus, Prob [ΔZ = 0] = 2

N(N−1) since a + b � c′ + b.
The same reasoning holds in the case of ΔState[3′].
In ΔState[4] : ΔZ = 0
⇐⇒[[Δ(S r[ir] + S r[ jr]) = 0] ∧ [S r[ir] + S r[ jr] � Diff4]]∨

[[Δ(S r[ir] + S r[ jr]) � 0]∧
[S r[ir] + S r[ jr], S ′r[ir] + S ′r[ j′r] ∈ Diff4]
∧S r[S r[ir] + S r[ jr]] = S ′r[S ′r[ir] + S ′r[ j′r]]]

⇐⇒[2a = c′ + b ∧ 2a � Diff4]
∨

[(2a, c′ + b) = (ir, df0[2]), ( j′r, ir), (df0[2], ir)],
where the former condition of S r corresponds to
[2a = c′ + b ∧ 2a � Diff4] and the latter corresponds to
[(2a, c′ + b) = (ir, df0[2]), ( j′r, ir), (df0[2], ir)]. Thus,
Prob [ΔZ = 0] = N−3

N(N−2) +
3

N(N−1) . The same reasoning
holds in the case of ΔState[4′].
In ΔState[5] : ΔZ = 0
⇐⇒[[Δ(S r[ir] + S r[ jr]) = 0] ∧ [S r[ir] + S r[ jr] � Diff5]]∨

[[Δ(S r[ir] + S r[ jr]) � 0]∧
[S r[ir] + S r[ jr], S ′r[ir] + S ′r[ j′r] ∈ Diff5]∧
S r[S r[ir] + S r[ jr]] = S ′r[S ′r[ir] + S ′r[ j′r]]]

⇐⇒[c + a = c′ + b ∧ c + a � Diff5]
∨

[(a + c, b + c′) = (df0[1], jr), ( jr, df0[2]),
(df0[2], j′r), ( j′r, df0[1])],

where the former condition of S r corresponds to
[c + a = c′ + b ∧ c + a � Diff5] and the latter corresponds to
[(a + c, b + c′) =
(df0[1], jr), ( jr, df0[2]), (df0[2], j′r), ( j′r, df0[1])]. Thus,
Prob [ΔZ = 0] = N−4

N(N−3) +
4

N(N−1) .



1072
IEICE TRANS. FUNDAMENTALS, VOL.E93–A, NO.6 JUNE 2010

In ΔState[6] : Prob [ΔZ = 0] = 0.
Because Δ(S r[ir] + S r[ jr]) � 0 and ΔS r = 0.

From the above, the proposition follows.

The probability Prob [ΔZ = 0] when i = df0[1] follows im-
mediately from Theorem 4 and Proposition 2.

Corollary 3: Assume that two permutations S and S ′ in
the (r − 1)-th round are in ΔState[0] and Event[2] occurs in
the r-th round. Then, the probability that both outputs are
equal in the r-th round, Prob [ΔZ = 0], is given as follows:

Prob [ΔZ = 0]
= Prob [Event[2]] ·

(
N2−4N+2
N2(N−1) +

2(2N−1)(N−2)
N2(N−1)2

)
By using Corollaries 2 and 3 and Prob [Event[3]], the prob-
ability Prob [ΔZ = 0] in the round r = df0[1] is computed as
follows.

Theorem 5: Assume that two initial permutations S and
S ′ with
Diff0 = {df0[1], df0[2]} are given. Then, the probability P1 =

Prob [ΔZ = 0] in the round r = df0[1] is given as

P1=P2 ·
(
( N−2

N )2 + 4
N2(N−1)

)
+(1 − P2) ·

(
N2−4N+2
N2(N−1) +

2(2N−1)(N−2)
N2(N−1)2

)
,

=P2 ·
(
( N−2

N )2 − N2−4N−2
N2(N−1) − 2(2N−1)(N−2)

N2(N−1)2

)
+ N2−4N+2

N2(N−1) +
2(2N−1)(N−2)

N2(N−1)2 ,

where P2 = Prob [Event[3]].

proof: The state of differences between two permuta-
tions has the Markov property. Therefore, the probability
Prob [ΔZ = 0] in r = df0[1] is determined only by the state
in the r-th round, where either Event[2] or Event[3] occurs.
Theorem 5 follows from this fact.

Remarks 1: 1. The second term of(
N2 − 4N + 2
N2(N − 1)

+
2(2N − 1)(N − 2)

N2(N − 1)2

)

Fig. 8 Experimental results and ε of Event[3].

can be dealt with as an error term if df0[1] is large, which
will be discussed in Sect. 5.
2. P2 = Prob [Event[3]] can be computed explicitly by The-
orems 2 and 3. Thus, P1 = Prob [ΔZ = 0] in the round
r = df0[1] can be explicitly estimated for each df0[1].

5. Experimental Results and New Bias

This section shows experimental results of Theorems 2, 3,
and 5, and Corollary 2 in Sects. 3 and 4. All experiments
were conducted under the following conditions: execute
KSA of RC4 with N = 256 for 108 randomly chosen keys
of 16 bytes, generate the initial permutation S 0, and set an-
other initial permutation S ′0 with Diff0. Experiments are ex-
ecuted over the following sets of Diff0: df0[1] = 2, · · · , 255†
for Theorems 2 and 3; and Diff0 = {df0[1], df0[2]} = {2 −
254, 255}, {2, 3 − 255}, and {3, 4 − 255} for Theorem 5 and
Corollary 2. The percentage absolute error ε of experimen-
tal results compared with theoretical results is computed by

ε=
| experimental value−theoretical value |

experimental value
× 100(%),

which is also used in [14].

5.1 Experimental Results of Event[3]

Figure 8 shows experimental results of Prob [Event[3]] and
its associated percentage absolute error, where the theoreti-
cal value is computed by Theorems 2 and 3. The horizontal
axis represents df0[1] = 2, · · · , 255. The left side of verti-
cal axis represents Prob [Event[3]], and the right side repre-
sents the percentage absolute error. Table 1 shows the cases
of df0[1] ≤ 6 in detail.

Only the cases of 2 ≤ df0[1] ≤ 6 give the percentage
absolute error ε ≥ 5, and, thus, our theoretical formulae
closely match the experimental results if df0[1] > 6. The

†Event[3] does not depend on df0[2]. See Theorems 2 and 3.
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initial permutation S 0, that is the output of KSA, has a great
influence on Event[3] when df0[1] is small. Our results in-
dicate that the bias in S 0 is propagated to Prob [Event[3]] as
the bias in S 0 has been reported in [7], [11], [14].

Figure 8 also indicates that the nonzero bit difference in
the position df0[1] moves to another position until i = df0[1]
with Prob [Event[3]] > 30% when df0[1] ≥ 93. In this
case, the correlations between S and S ′ such as Δ j = 0 and
|ΔS | = 2 remain the same until i = df0[2].

5.2 Experimental Results of Outputs

Figure 9 shows experimental results of Prob [ΔZ = 0] in
r = df0[1] − 1, df0[1], and df0[1] + 1, and percentage ab-
solute error in r = df0[1] (i.e. i = df0[1]), where the the-
oretical value is computed by Theorem 5. The horizontal
axis represents df0[1] = 2, · · · , 253. The left side of vertical
axis represents Prob [ΔZ = 0], and the right side represents
the percentage absolute error. By using the experimental re-
sults, we investigate each case of outputs before or on the
nonzero-bit difference.

Outputs before the nonzero-bit difference:
Let us discuss Prob [ΔZ = 0] in r = df0[1] − 1 (i.e. i =
df0[1] − 1) for df0[1] = 2, · · · , 254. The probability is the-
oretically estimated in Corollary 2. Our theoretical and ex-
perimental results indicate that both outputs of two permuta-
tions are coincident with a high probability Prob [ΔZ = 0] >
0.98 during i < df0[1]†.

Let us discuss†† Prob [ΔZ = 0] in r = df0[1] + 1 for

Table 1 Experimental results with ε ≥ 5 of Event[3].

df0[1] Theoretical value Experimental value ε(%)
2 0.003906 0.005350 26.991
3 0.007797 0.009069 14.027
4 0.015548 0.018221 14.667
5 0.015534 0.016751 7.265
6 0.019379 0.020501 5.472

Fig. 9 Prob [ΔZ = 0] (df0[2] = 255).

df0[1] = 2, · · · , 253, where df0[1]+1 = i < df0[2]. Actually,
it corresponds to the case in which i is before the nonzero bit
difference df0[2] since df0[1] + 1 is an index of nonzero bit
difference when i = df0[1] + 1 from the fact of df0[1] + 1 <
df0[2].

Our experimental results show that Prob [ΔZ = 0] in
the round df0[1]+1 is almost the same as in the round df0[1],
which reflects the results in Theorem 1. To sum up, we see
that it is highly probable that both outputs of permutations
are coincident as long as i does not indicate the index of
nonzero bit difference in the current round.

Outputs on the nonzero-bit difference:
Let us discuss Prob [ΔZ = 0] in r = df0[1], where there ex-
ists originally††† a nonzero-bit difference. Prob [ΔZ = 0] is
estimated theoretically in Theorem 5. From the fact that the
percentage absolute error ε < 1 holds in 2 ≤ ∀df0[1] ≤ 254,
we see that our theoretical formulae closely match the ex-
perimental results in any Diff0.

Let us discuss the relation between two events of ΔZ =
0 and Event[3] in r = df0[1]. Figures 8 and 9 show that
df0[1] satisfying Prob [ΔZ = 0] > 30% is almost the same
as df0[1] satisfying Prob [Event[3]] > 30%. Theorem 5 also
indicates that P1 = Prob [ΔZ = 0] in the round df0[1] deeply
affects P2 = Prob [Event[3]]. Here, we compare the estima-
tion of P2 by using P1 with that of P2 by using the theoretical
probability of P2 in Theorems 2 and 3. Figure 10 shows the
comparison between P1 and P2 for 2 ≤ df0[1] ≤ 255, where
two percentage absolute errors are listed, ε1 =

|P2−P1 |
P2

and

ε2 =
|P2−(theoretical)Prob[Event[3]]|

P2
for experimental values P1

and P2. The horizontal axis represents df0[1] = 2, · · · , 254.
The left side of vertical axis represents Prob [ΔZ = 0], and

†Similar experimental results to i = df0[1] − 1 hold during i <
df0[1] − 1.
††The case of df0[1] = 254 is omitted since i indicates the sec-

ond nonzero bit difference df0[2] = 255.
†††If Event[3] has occurred in the round r < df0[1], then df0[1]

is not an index of nonzero bit difference.
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Fig. 10 Comparison of Prob [Event[3]] and Prob [ΔZ = 0].

Fig. 11 Prob [ΔZ = 0] (df0[1] = 3).

the right side represents the percentage absolute error. Ex-
perimental results show that ε1 < 5 (resp. 10) if df0[1] > 15
(resp. df0[1] > 9). From these theoretical and experimental
results, we see that the observable event ΔZ = 0 can indicate
that the internal event Event[3] occurs with extremely high
probability.

Figure 11 shows experimental results of Prob [ΔZ = 0]
in the round df0[1] = 3 in each case of 4 ≤ df0[2] ≤ 255
(df0[1] = 3), and percentage absolute error. The horizon-
tal axis represents df0[2]. The left side of vertical axis
represents Prob [ΔZ = 0], and the right side represents the
percentage absolute error. The percentage absolute error
ε < 0.8 holds in 4 ≤ ∀df0[2] ≤ 255. We see that our
theoretical formulae closely match the experimental results
independent of another nonzero-bit difference df0[2].

5.3 Experimental Results of Biases in S 0[1] and S 0[2]

Let us discuss Event[3] when df0[1] = 3 in detail, where the
error ε > 10 (Table 1). Theorem 3 says that both S 0[1] and
S 0[2] determine Event[3], that is, Event[3] ⇐⇒ [S 0[1] =
3]

∨
[S 0[1] � 2, 3 ∧ S 0[1] + S 0[2] = 3]. Here we investi-

gate the bias in S 0[1] and S 0[2] from the point of view of
Event[3].

Figure 12 shows experimental results concerning the
occurrence of S 0[1] with 0 ≤ S 0[1] ≤ 255, and the percent-
age absolute error, where the theoretical value (a random as-
sociation) of occurrence of each S 0[1] is 1

N = 3.906 × 10−3.
Figure 13 shows experimental results concerning the occur-
rence of S 0[2] when S 0[1] = 3, and the percentage abso-
lute error, where the theoretical value (a random associa-
tion) of occurrence of each (S 0[1] = 3, S 0[2]) is 1

N(N−1) =

1.532× 10−5. The horizontal axis represents S 0[1] or S 0[2].
The left side of vertical axis represents each probability, and
the right side represents each percentage absolute error.

These experimental results indicate a non-uniform dis-
tribution of S 0[1] and S 0[2] when S 0[1] = 3. Tables 2 and
3 show some cases that indicate a non-uniform distribution
as follows:

Prob [S 0[1] = 3] = 5.303 × 10−3 > 3.906 × 10−3,

Prob [S 0[1] = 3 ∧ S 0[2] = x] > 2.0 × 10−5

> 1.532 × 10−5 for ∀x ≤ 135,

Prob [S 0[1] = 3 ∧ 0 ≤ S 0[2] ≤ 128] = 3.05299 × 10−3
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Fig. 12 Occurrence of S 0[1].

Fig. 13 Occurrence of S 0[2] when S 0[1] = 3.

Table 2 Probability of occurrence S 0[1].

S 0[1] Probability of occurrence S 0[1]

0–9 0.0039 0.0039 0.0054 0.0053 0.0053 0.0053 0.0053 0.0052 0.0052 0.0052
10–19 0.0052 0.0052 0.0052 0.0052 0.0052 0.0051 0.0051 0.0051 0.0051 0.0051
20–29 0.0051 0.0050 0.0050 0.0050 0.0050 0.0050 0.0050 0.0049 0.0050 0.0049
30–39 0.0049 0.0047 0.0049 0.0049 0.0048 0.0049 0.0048 0.0048 0.0048 0.0048

Table 3 Probability of occurrence S 0[2] in S 0[1] = 3.

S 0[2] Probability of occurrence S 0[2] in S 0[1] = 3

0–6 0.0000211 0.0000227 0.0000207 – 0.0000286 0.0000280 0.0000281
7–13 0.0000280 0.0000278 0.0000286 0.0000277 0.0000278 0.0000270 0.0000274
14–20 0.0000273 0.0000270 0.0000271 0.0000270 0.0000270 0.0000269 0.0000269

108–114 0.0000216 0.0000213 0.0000213 0.0000206 0.0000216 0.0000207 0.0000219
115–121 0.0000212 0.0000216 0.0000204 0.0000207 0.0000210 0.0000202 0.0000218
122–128 0.0000210 0.0000211 0.0000206 0.0000206 0.0000205 0.0000208 0.0000206

> 1.9531 × 10−3.

These non-uniform distribution will be used for a new crypt-
analytic analysis in Sect. 6.

6. A New Cryptanalytic Analysis

Here we investigate how to analyze the internal state of S
or j. Assume that two permutations S and S ′ with Diff0 =
{df0[1], df0[2]} in the initial round are given, and that both
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outputs of PRGA are observable.
Then, by observing both outputs Z and Z′ of PRGA, we

can recognize the index of the first nonzero-bit difference
from the first round in which both outputs are not equal.
This is investigated in Sect. 5.2. Therefore, if neither df0[1]
nor df0[2] are known, the first nonzero-bit difference is prob-
abilistically predictable.

Consider the case of df0[1] = 2. By checking whether
ΔZ = 0 in the 2nd round, we can recognize whether
Event[3] has occurred. If Event[3] has occurred, then
S 0[1] = 2 holds from Theorem 3. The experimental re-
sult shows Prob [Event[3] | df0[1] = 2] = 0.005350 (see Ta-
ble 1). However, if we try to predict S 0[1] from a random as-
sociation, then the probability is 1/256 = 0.003906. There-
fore, one can guess S 0[1] with an additional advantage of
0.005350−0.003906

0.003906 × 100 = 36.9 %.
Consider the case of df0[1] = 3. By checking whether

ΔZ = 0 in the 3rd round, we can recognize whetherEvent[3]
has occurred. Let us discuss how to predict both S 0[1]
and S 0[2]. If Event[3] has occurred, then [S 0[1] = 3] ∨
[S 0[1] � 2, 3 ∧ S 0[1] + S 0[2] = 3] holds, from Theo-
rem 3. In the case of S 0[1] = 3, the experimental results
show that Prob [Event[3] | df0[1] = 3] = 0.009069 (see Ta-
ble 1) and Prob [S 0[1] = 3] = 0.0053 (see Table 2). On
the other hand, we predict S 0[2] with the probability 1/255.
Therefore, we can predict (S 0[1], S 0[2]) with the proba-
bility 0.0053 × 1/255 = 2.078431 × 10−5. In the case
of [S 0[1] � 2, 3 ∧ S 0[1] + S 0[2] = 3], if S 0[1] is pre-
dicted, then S 0[2] can be predicted promptly. We find that
Prob [Event[3] ∧ [S 0[1] � 2, 3] ∧ [S 0[1] + S 0[2] = 3]] =

(0.009069 − 0.0053) × 1/254 = 1.483858 × 10−5. There-
fore, we can predict (S 0[1], S 0[2]) with the probability
1.483858 × 10−5. Taking both together, the probability to
predict (S 0[1], S 0[2]) is 2.078431×10−5+1.483858×10−5 =

3.562289 × 10−5. On the other hand, if we try to predict
(S 0[1], S 0[2]) from a random association, then the proba-
bility is 1/256 × 1/255 = 1.531863 × 10−5. Therefore,
one can guess (S 0[1], S 0[2]) with an additional advantage
of 3.562289−1.531863

1.531863 × 100 = 132.54 %.

Further Discussion
Here we discuss how we generalize our analysis to RC4. In
this paper, we start with Diff0 = {df0[1], df0[2]}. However,
our results can be generalized to cases where there exist dif-
ferences Diff0 with #Diff0 > 2 in the initial round. Then, we
could apply our analysis to any given two S and S ′ as follow.
Set the first index, whose values of both S and S ′ differ each
other, to df0[1]. That is, the following holds: S 0[i] = S ′0[i]
for (0 ≤ i < df0[1]) and S 0[df0[1]] � S ′0[df0[1]]. Then, by
applying our discussion to the above case, we could com-
pute the probability that both outputs are equal to each other
in r < df0[1] theoretically. Furthermore, by observing two
outputs, we could predict inner states whether Event[3] has
occurred or not. Then, in the special case of a small df0[1],
we could guess inner states such as S and j.

7. Conclusion

In this paper, we have investigated, for the first time, cor-
relations between two permutations, S and S ′, with some
differences in the initial round. We have shown that correla-
tions between two permutations S and S ′ remain before “i”
is in the position where the nonzero-bit difference exists in
the initial round, and that the correlations remain with non
negligible probability even after “i” passed by the position.
All theoretical results have been confirmed experimentally.

Our results imply that the same correlations between
two permutations will be observed with non negligible prob-
ability after the 255-th round. This reveals a new inherent
weakness of shuffle-exchange-type PRGA. We have also in-
vestigated how to predict inner states such as S and j by
using observable two outputs Z and shown its additional ad-
vantage compared with prediction from a random associa-
tion.
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