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Abstract

This thesis deals with semantics of relevant modal logics. Originally, modal logics have
been developed over classical logic. Recently, the studies of modal logics based on non-
classical logic have also been developed. These include relevant modal logics, but many
of basic problems on them remain open. In this thesis, we develop a semantical study and
show Kripke completeness for a wide class of relevant modal logics in a systematic way.

In general discussion of relevant modal logics, we assume that modal operators O and
<& are independent. Further, we take regular logics in our sense for basic modal logics.

In this thesis, first we show completeness of our basic relevant logics in terms of both
Routley-Meyer frames, Kripke-style semantics, and relevant modal matrices, algebraic
semantics. Any regular relevant modal logic is complete with respect to a class of relevant
modal matrices, while it is not necessary complete with respect to a class of Routley-
Meyer frames. To make any regular relevant modal logic complete by using Routley-
Meyer frames, we introduce general frames. Also, we investigate the relationship between
general frames and relevant modal matrices as R.Goldblatt developed for classical modal
logic.

Our main result in this thesis is a Sahlqvist theorem for relevant modal logics, that
is, Kripke completeness of relevant modal logics with Sahlqvist formulas. To obtain it,
we show the frame postulate written by a first order sentence corresponding to a given
Sahlqvist formula. Also, it is shown that usual Sahlqvist theorem for classical modal
logics can be obtained as a special case of our Sahlqvist theorem.
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Chapter 1

Introduction

In this thesis, we develop a semantical study of propositional relevant modal logics. Rele-
vant modal logics are modal logics over relevant logics. There are two methods of studying
mathematical logic: the one is semantical method and the other is syntactical method.
In this thesis we develop a systematic study of semantics of relevant modal logics. Com-
pleteness is one of important subjects in the semantical study. In the semantical study,
we have a question which semantics to be used. This thesis adopts Routley-Meyer seman-
tics, a kind of Kripke semantics, and matrix semantics based on algebraic one. Our main
subjects are as follows:

e completeness of relevant modal logics in terms of Routley-Meyer semantics and
matrix semantics,

e correspondence between Routley-Meyer semantics and matrix semantics,
e correspondence between modal formulas and frame postulates.

Before discussing formal systems of relevant modal logics, we will give a short review
of the motivation of relevant logics and modal logics together with their histories. Also,
we will give a short survey of studies of relevant modal logics from the view of semantical
method, and will make clear the position of this thesis in the studies of relevant modal
logics. Further, we will give a survey of contents of this thesis.

1.1 Relevant logics and modal logics

Classical logic is usually regarded as standard logic. However, it is often noticed that there
are several differences between logics in human thinking and classical logic. For bridging
them, many logicians have proposed logics which are different from classical logic, and
investigated logical properties.

The first formulation of classical logic traces to Boole in the middle of the 19th century.
His formulation is known as Boolean algebra now. In early periods of the last century,
several formulations of classical logic were introduced by using formulas. At present, the
classical propositional logic Cl is defined in a Hilbert-style formulation, for instance as
follows.

(a) Axioms



C1
C2

(C1) AD (B> 4)

(C2) (AD(BDC))D(ADB)>(ADC))
(C3) ANBD A

(C4) ANBDB

(C5) (ADB)D((ADC)D(ADBAQ))
(C6) ADAVEB

(CT) BODAVB

(C8) (ADC)D((BDC)D(AVvBDC())
(C9) (ADB)D((AD-B)D-A)
(C10) A> (-AD B)

(C11) Av-A

(b) Rule of inference

ADB A

B (Modus Ponens)

Here, D, A, V and — denote (classical) implication, conjunction, disjunction and (classical)
negation, respectively. In writing formulas we save on parentheses by assuming that —
binds more strongly than A, V, and that in turn A, V bind more strongly than D. Thus,
(C3) is read as (AA B) D A.

Classical logic is often criticized. Let us consider the following statement:
if snow is black then 2 +2 = 7. (1.1)

In classical logic, the statement (1.1) is true. But it is strange that (1.1) is true, because
there is no connection between antecedent and succeedent. So one of criticisms in classi-
cal logic is that there are true implicational statements in which there is no connection
between antecedent and succeedent.

For avoiding this criticism, alternative formulations have been suggested by paying
attention to implication. According to [14], I.LE.Orlov proposed alternative formulation
in 1928. After that, in 1950’s Moh Shaw-Kwei and A.Church also suggested alternative
formulation. They can be regarded as forerunners of relevant logics.

In 1956, W.Ackermann’s paper [1] is regarded as the first study of relevant logic.
In 1960’s A.R.Anderson, N.Belnap and J.M.Dunn etc. introduced formal systems and
studied algebraic methods, which are mentioned in [4], and further indicated a course of
studies of relevant logics. In 1970’s L.L.Maksimova, R.K.Meyer, R.Routley and K.Fine
etc. got semantical results and proposed several relevant logics. After that, A.Urquhart,
S.Giambrone and R.T.Brady etc. showed important logical properties of relevant logics,
for example, decision problem and interpolation problem.

At present, relevant logics are understood as follows. The motivation of relevant logic
is to exclude ‘paradoxes of material implication’. It is known that there are two classes
of these. One is ‘paradox of relevance’ and the other is ‘paradox of consistency’. Typical
formula of the former is

A— (B— A) (1.2)

2



and of the latter is
AN ~ A — B. (1.3)

Roughly, (1.2) is understood that if A is true then B — A is also true. So, let A and
B denote that ‘Beethoven wrote nine symphonies’ and ‘Fishes are plants’, respectively.
Then it follows that B — A is a true sentence, which is strange. To ignore the relevance of
implication causes this strangeness. On the other hand, (1.3) insists that a contradiction
leads to anything. So, it is permitted that if a contradiction follows then we can argue
unrelated topics.

We present typical relevant logics according to [48]. The basic relevant logic B is
defined as follows.

(a) Axioms

B7) (A-C)A(B—=C)— (AVB—=C(C)

)
)
)
B4) (A B)AN(A—C)— (A— BAC)
)
)
)
B8) AN(BVC)— (AAB)VC

(b) Rules of inference
A—-B A A B

B ANB
A—B A— B A—~B
(B—C)—(A—C) (C— A)— (C — B) B —~ A

Here, —, A, V and ~ denote relevant implication, conjunction, disjunction and relevant
negation, respectively. Other typical relevant logics are as follows.

e T called ticket entailment, is obtained from B by adding the axioms

B10
B11

(B10) (A— B) — ((C — A) —» (C — B))
(B11)
(B12)
(B13)
(B14)

(
(A-B)—= ((B—=C)— (A—=(0))
(A—-(A— B)) > (A— B)
B13) (A=~ A) -~ A

B14) (A —~ B) — (B —~ A).
e E, called entailment, is obtained from T by adding the rule of inference

A
(A— B) = B’




e R, called relevant implication, is obtained from T by adding the axiom
(B15) A — ((A— B) — B).

It is known that the logic obtained by adding (1.2) as an axiom to the relevant logic
R is exactly the propositional classical logic Cl, and hence (1.3) is derived in this logic.
However, the logic obtained by adding (1.3) as an axiom to R is not equal to Cl. The
logic obtained in this way is called KR. Also, in relevant logics mentioned above, it is
known that if A — B is a theorem, then A and B have common propositional variables.
Further, we know that A — B is not logically equivalent to ~ A V B in relevant logics
mentioned above. In relevant logics mentioned above, De Morgan laws hold, so it suffices
to define logical connectives —, A (or V) and ~.

There are some logics between the relevant logic R and the classical logic Cl. RM
and KR are typical ones. RM is obtained from R by adding the mingle axiom

A= (A— A),

and KR is defined as above. Further, to consider classical negation and relevant negation
simultaneously, CR is introduced.

Recently, substructural logics have been studied. Substructural logics are logics ob-
tained from Gentzen’s LK or LJ by eliminating some (or all) structural rules. In partic-
ular, substructural logics without weakening are regarded as relevant logics.

Roughly speaking, modal logics can be regarded as logics of ‘necessity’ and ‘possibility’.
Among true propositions we can distinguish between those which merely happen to be true
and those which are bound true. This implies distinction among false propositions. We
call a proposition which is bound to be true a ‘necessarily true’ proposition; a proposition
which is bound to be false an ‘impossible’ proposition; and a non-impossible proposition
a ‘possible’ proposition. For example, let us consider the following proposition.

The sum of interior angles of triangle is 180 degrees. (1.4)
The author is married. (1.5)
Humans can be alive on. (1.6)

Then the sentence (1.4) is a necessarily true proposition, the sentence (1.5) is a possible
proposition, and the sentence (1.6) is an impossible proposition.

We notice that the truths of propositions (1.4) and (1.6) above are always decided
while the truth of (1.5) depends on the times. That is, the proposition (1.5) is false at
the time of submission of this thesis, but may be true in future. Thus, there are cases
in which the truth of the formulas are changeable depending on time and situation etc.
Now let us consider the following proposition instead of (1.5).

It is possible for the author to be married. (1.7)

The proposition (1.7) is true at the time of submission of this thesis, because the author
will be married in future.

In formalization of modal logic, we use symbols O and < as modal operators. OA
means that A is necessary, and <A means that A is possible. In classical modal logic,
OA is defined usually by =0-A. Suppose that B and C' denote the proposition (1.4)
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and (1.5), respectively. Then the proposition (1.7) is denoted by <C'. Further, since B is
considered to be a necessarily true proposition, we can consider that OB is true.

The history of modal logics will be traced back to Aristotle, and it was studied in the
medieval time. Modern modal logics are begun by C.I.Lewis in 1912. He published a se-
ries of articles and books expressing dissatisfaction with the notion of material implication
found in Whitehead and Russel’s “Principia Mathematica”. He suggested ‘strict implica-
tion’ as an alternative implication for eliminating paradoxes of material implication, but
he could not eliminate all paradoxes of material implication. (As concerns eliminating
paradoxes of material implication, we have to wait until the birth of so-called ‘relevant
implication’.) He also introduced connectives which express necessity and possibility, not
appearing classical logic. For Lewis’s argument, see [28]. In this stage, J.Lukasiewicz,
R.Carnap, etc. studied modal logics in terms of syntactical and algebraic method, inde-
pendently.

In 1963, S.Kripke published model-theoretic method, and studies of modal logics have
been developed by his method. Important notions in Kripke’s idea are possible worlds
and accessible relations. These can be dealt with by mathematical way. This idea is
applied widely, including models for intuitionistic logic, relevant logics, etc.. At present,
we have many comprehensive results on modal logics.

Studies of intensional logics, for example, temporal logics, dynamic logics, deontic
logics, provability logics and logics of knowledge, are closely derived from modal logics.
Further, there are several results on connections between modal logics and intermediate
logics.

Below, we give some standard modal logics to which we often refer in this thesis. Every
logic includes the following abbreviation:

OA® _O-4
e K, the least normal modal logic, is obtained from CI by adding the axiom
(K) O(A D> B) D (0A D OB).

and the rule of inference

A
—— (Necessitation).

OA
e KD is obtained from K by adding the axiom

(D) OA D CA.

e KT is obtained from K by adding the axiom
(T) OA D A.

e KTB is obtained from KT by adding the axiom
(B) AD OCA.

e S4 is obtained from KT by adding the axiom
(4) OA D OOA.

e S5 is obtained from KT by adding the axiom
(5) CA D OCA.



1.2 Relevant modal logics

To approximate human’s thinking, several non-classical logics are suggested. There are
two ways to obtain non-classical logics. One is extension of classical logic and the other
is alternative in classical logic. Modal logics have been usually developed over classical
logic. Recently, the studies of modal logics based on various non-classical logic have also
been developed. Since relevant logics are regarded as alternatives in classical logic, we
treat relevant modal logics as extensions of relevant logics. In relevant modal logics, we
can make clear the relationship between relevant implication and modalities.

From the view of mathematical logic, we are interested in whether some properties
in classical modal logics proceed in relevant modal logics. This question comes out the
difference between classical modal logics and relevant modal logics and is also interesting
from the point how some properties of modal logics depends on classical logic. Recently,
we have some results on relevant modal logics, including completeness and incompleteness.
See, for instance, [46], [19], [34], [37], [35], [38], [41], [21] and [36]. On the other hand,
there are not so many comprehensive results on relevant modal logics. This thesis shows
that some basic results on classical modal logic hold for relevant modal logics.

Below, we outline contents of papers on relevant modal logics published so far. In [46],
R.Routley and R.K.Meyer showed completeness and y-admissibility etc. of NR, which
is S4-style relevant modal logic, with respect to reduced model. NR is obtained from R
adding axioms

— 0O(A — B) —» (DA — OB)

- 0A— A

— 0A — 0O0OA

— if A is an axiom of NR then so is OA.
(Note that this logic implies the rule of necessitation.)

In [19], A.Fuhrmann developed the frame postulates of the following rules of inference
and axioms. (Here we follow names in [19]):

A
RN'D—A
Al = (= (A, > A))
I. f >1
RI. for n > "O0A; — (+--— (04, — 04))
OT. OA — A

OD. O~ A 5>~ 0OA
04. OA — 0OOA
OB. A —0O0A
a5. CA — OCA,
where ©A is defined by ~ O ~ A. Moreover, he showed the incompleteness of the logic

weaker than R.KT4, which is just NR, with respect to reduced models. Here note that
reduced models used in [19] are different from those in [46].



In [37], [34], and [38], they showed completeness and y-admissibility of R4 (RK,in
[34]), obtained from NR by adding the axiom

O(AvV B) - AV OB.

(Note that this is derivable in classical modal logic K, but is not in NR.) In [41],
R.K.Meyer and E.D.Mares extended the argument about NR and R4 to them based
on classical relevant logic. Further, E.D.Mares showed completeness and ~y-admissibility
of relevant analogue of KD, KT, KTB, S4 and S5 in [35].

In [10], S.A.Celani showed the representation theorem of classical relevant modal alge-
bras by means of Priestly spaces. Its argument is very close to the completeness argument.
As concerns incompleteness, L.Goble showed that of G obtained from NR by adding the

axiom
0A — (B — B)

n [21], and E.D.Mares showed that of RGL obtained from R.K4 by adding the axiom
O(0A - A) - DA
in [36].

This thesis deals with completeness of of relevant modal logics. This thesis can be
located as in the following figure, where devision of left and right parts means a difference
of semantics.

Fuhrmann (1990)

Mares-Meyer (1993) Mares (1992)

Mares (1993)

This thesis

Our completeness result includes [19], [34] and [35].



1.3 Organization of this thesis

This thesis shows a comprehensive result on completeness of relevant modal logics, that
is, completeness of relevant modal logics with Sahlqvist formulas. Our main result is that
frame postulates for Sahlqvist formulas can be expressed by first-order predicate formulas
and relevant modal logics with Sahlqvist formulas are complete with respect to the class
of the frames satisfying these postulates as well as in classical modal logics.

In Chapter 2, we will summarize semantical results of the relevant logic R and (clas-
sical) normal modal logics. We assume familiarity with basic results on semantics of R.
In order to understand the difference (or similarity) between classical modal logics and
relevant modal logics, we will summarize basic semantical results of (classical) normal
modal logics.

In Chapter 3, we will introduce basic relevant modal logics and prove their complete-
ness in terms of both Routley-Meyer semantics and matrix semantics.
In general discussion of relevant modal logic, several problems arise. First, we have
a question how to define the modalities. In modal logics based on classical logic, < is
defined in the following way:
CA e~ 0O~ A (1.8)

Since (1.3) is not a theorem of R, negation in relevant logics (called relevant negation)
differs from that in classical logic (called classical negation). Because of this difference,
definition (1.8) is problematic. It will be natural to start by assuming that O and < are
independent. Definition (1.8), which is adopted in [19], [34], [37] and [38], is regarded
as a special case. A relevant modal logic containing (1.8) as an axiom will be called a
dependent extension.

Next, which logic should we take for the basic modal logics? It is well-known that the
normal modal logic K is one of the basic classical modal logics. In fact, K is shown to be
complete with respect to the class of all Kripke frames. Turning to relevant modal logic,
we may ask which logic is complete with respect to the class of all relevant modal frames.
Our answer points to a regular logic, which is called a conjunctively regular logic in [19],
as a suitable basic logic. However, this logic cannot be considered a relevant analogue of
K. We will call relevant analogues of K normal, and if an extension of a relevant modal
logic is normal, then it will be called a normal extension.

In Chapter 4, we will introduce general frames of relevant modal logics and investigate
their fundamental properties.

Studies of general frames have been developed for classical modal logics. General
frames can be regarded as combining the merits of both algebras and Kripke frames.
That is, each classical modal logic is characterized by the class of all general frames for
it as well as by the class of all modal algebras for it. In order to discuss completeness
of wider class of relevant modal logics in terms of the idea of Routley-Meyer frames, we
introduce general frames for relevant modal logics. We will get the similar results on
them to those on classical modal logics. Further, we introduce descriptive frames. As
concerning descriptive frames, we define D-persistent logics and D*-elementary logics.

In Chapter 5, we will show a Sahlqvist theorem for relevant modal logics. The Sahlqvist
theorem is one of the most important results on Kripke completeness of classical modal
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logics. Our Sahlqvist theorem says that for a given modal formula A which has the
certain form (called a Sahlqvist formula), we can construct effectively a first order formula
characterizing descriptive frames or Routley-Meyer frames which validates A. Also, it
follows that every D*-elementary logic with any set of Sahlqvist formulas as axioms is
Kripke complete. Further, it is shown that usual Sahlqvist theorem for classical modal
logics can be obtained as a special case of our theorem.

Finally, in Section 6, we will summarize this thesis and state further studies.

The diagram below shows the dependency between sections of this thesis.

2.3

Relevant logics
2.1

2.2

2.4

3.5

Relevant modal logics

__________________

25

2.8

2.9 |

Classical modal logics




Chapter 2

Preliminaries

In this chapter, we survey basic semantical properties of relevant logics and classical
modal logics. Further, we present basic properties in lattice theory. They will be referred
in later chapters. We assume the familiarity with basic results on classical logic and
Boolean algebras.

2.1 Relevant logic R

The language of relevant logics consists of (i) propositional variables p, g, r, - - -, (ii) logical
connectives — (relevant implication), A (and), V (or) and ~ (relevant negation).

Formulas are defined in the usual way, and are denoted by capital letters A, B,C, - - .
We write A <+ B for (A — B) A (B — A). Prop and Wff will denote the set of all
propositional variables and of formulas, respectively. Capital Greek letters X, ", A, - - -
denote sets of formulas. When necessary, we add ' or subscripts to capital letters and
capital Greek letters.

The relevant logic R is defined as follows.

(a) Axioms

(R1) A— A

(R2) A— ((A— B) — B)

(R3) (A=-B)—= ((B—C)— (A—=0C))

(R4) (A—-(A—B)) - (A— B)

(R5) ANB— A

(R6) AAB — B

(RT) (A= B)AN(A—=C)—=(A—=BACQC)
(R8) A— AVB

(R9) B— AV B

(R10) (A= C)AN(B—C)— (AVB —C)
(R11) AN(BVC) = (AANB)VC

(R12) (A -~ B) — (B —~ A)

(R13) ~~ A — A

10



(b) Rules of inference

A—-B A
B

B
(Adjunction)

Modus P
(Modus Ponens) N

It is easy to see the following.

Theorem 2.1 The following formulas are theorems of R.:
1. AN(A—-B)— B
2.(A-(B—-C)—=(B—(A—()

3. (A AANB—-B)—»C)—=C
4. (A= B) = (~ B -~ A)
5. A =~ A

Moreover, RM and KR are well-known logics as extensions of R. RM is the logic
obtained from R by adding the mingle axiom

(RM) A — (A— A).
KR is known as superclassical relevant logic and is obtained from R by adding the axiom
(KR) AN~ A — B.

Further, if we add classical negation — to our language, then we can obtain a classical
relevant logic CR. CR is obtained from R by adding the axiom

(CR) -—A = A
and the rule of inference
ANDB — —C(
ANC — —B
In KR, — is identified with ~.

Note that the logic obtained from R by adding the axiom A — (B — A) is exactly
classical logic CI.

Antilogism).

2.2 Routley-Meyer semantics for R

In this section, we introduce a semantics for R. The semantics introduced in this section is
often called Routley-Meyer semantics (or three-termed relational semantics). Our model
is an unreduced R-model in the sense of [48].

An R-frame is a quadruple (O, W, R,*) where (a) W is a non-empty set of all worlds,
(b) O is a non-empty subset of W, (c¢) R is a ternary relation on W, and (d) * is an unary
operation on W. To simplify the notation, we define a binary relation < on W as follows.
For all a,b € W

a<b A4 there exists ¢ € O such that Rcab.
An R-frame (O, W, R,*) satisfies the following postulates for all a, b, ¢,a’, b’ € W
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pl) a<a
p2) Raaa
p3) if Rabc and Rca’l’ then there exists d € W such that Raa'd and Rdbb’
) if a < b and Rbed then Racd

)

if Rabc then Rac*b*

p4
po
p6) a
Notice that each R-frame (O, W, R,* ) has the following properties for all a, b, c,d € W

(
(
(
(
(
(

(t1) if Rabc then Rbac,
(t2) < is transitive,

(t3) if @ < b then b* < a*,

(t4) if Rabc and ¢ < d then Rabd,

(t5) Raa*a.

We call a quintuple (O, W, R*, V) an R-model on an R-frame F = (O, W, R,*) (we

simply say an R-model), where F is an R-frame and V is a mapping from Prop to 2V,
called a valuation on F, which satisfies the following hereditary condition. For all a,b € W

and all p € Prop:
if a <band a € V(p) then b € V(p).

Given an R-model (O, W, R* V), for a € W and A € WIf, a relation | between W
and WIf is defined inductively as follows:
i. for any p € Prop, a Epiff a € V(p)
ii.aFAANBiffal=Aand a =B
ili. a FAVBiffal=Aora B
iv. a = A— Biff for all b,c € W, if Rabc and b |= A, then ¢ = B
v.afE~Aiffa* E A
where a £ A means that a = A does not hold.

Then by induction on the length of the formula A, we can show the following “hered-
itary lemma”.

Lemma 2.2 Let (O,W,R*,V) be an R-model. For all a,b € W and all A € WS, if
a<bandal=A then b= A.

Let M = (O,W,R*,V) be an R-model on an R-frame F = (O, W, R*), A € WIf,
and C be a class of R-frames. Then we say

a) A holds in M iff a = A for every world a € O,

(a)

(b) A is wvalid in an R-frame F iff A holds in every R-model M on F,

(c) R is sound with respect to C iff A is valid in every F € C for all theorems A of R,
)

(d) R is complete with respect to C iff A is a theorem of R for every formula A valid in
all F € C.
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By induction on the length of proof in R, we can show soundness of R easily.
Theorem 2.3 R is sound with respect to the class of R-frames.

For the converse, the proof basically goes in the same way as in Section 4.6 of [48].
Here, we introduce some notions and study properties of them. (Note that the terminology
is somewhat different from that in [48].)

Key notions are as follows.

e Let X A0 and A # 0. RF X — A iff there exist Ay,---, A, € ¥ (m > 0) and
By, --,B, € A (n>0) such that

RFA A---ANA,— B V-V B,.

(X,A) is an R-pairiff (a) R/ X — A and (b) XU A = Wf.

¥ is an R-theory iff (a) if A,B € ¥ then AANB € ¥, and (b) if RF A — B and
A € ¥ then B € X.

For an R-theory 3,

— X is reqular iff ¥ contains all theorems of R.

— Y is prime iff AV B € ¥ implies either A € ¥ or B € X.

Let Th(R) be the set of all R-theories. Then a ternary relation R on Th(R) is
defined by

RYXT'A iff forany A,Be€ Wff,if A— Bée€ XY and A€l then Be A .

A few comments on the definitions above. It is clear that ¥ N A = () whenever R
/¥ — A. Hence we have that if (X, A) is an R-pair, then for all A € WIf, either A € 2
or A € A but not both. It is clear that the set of all theorems of R is an R-theory.

The following lemmas are essentially proved in [48] (pp.305-318). So, we omit the
proof.

Lemma 2.4
1. If (X, A) is an R-pair, then X is a prime R-theory.
2. If R X — A, then there exist X' DO ¥ and A" O A such that (X', A’) is an R-pair.

3. Suppose that 3 is an R-theory and A is a set of formulas closed under disjunction
such that XNA = (). Then there exists a prime R-theory X' D ¥ such that X'NA = ().

4. If A is not a theorem of R, then there exists a reqular prime R-theory Il such that
A ¢l

5. Suppose that X and T' are R-theories and A is a prime R-theory such that RXTA.
Then there exists a prime R-theory ¥’ O Y such that RY'TA.
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6. Suppose that 2 and I' are R-theories and A is a prime R-theory such that RXTA.
Then there exists a prime R-theory I'" D T such that RXT'A.

7. Suppose that RETA and D ¢ A for a prime R-theory ¥ and R-theories T and A.
Then there exist prime R-theories ' and A" such that T C I, D ¢ A" and RXT'A.

8. If ¥ is a prime R-theory such that C — D ¢ 3, then there exist prime R-theories
I'" and A" such that RET'A',C € TV and D ¢ A'.

Using this lemma, we will be able to prove completeness theorem for R. First, we
define the canonical R-model (O., W,, R., g., V) as follows:

W, is the set of all prime R-theories

O, is the set of all regular prime R-theories

R, is the ternary relation R restricted to W,

ge is the unary operation on W, defined by ¢.(X) ={A| ~ A ¢ X}

V. is defined by

for all p € Propand ¥ € W,, X €V (p) iff p € X.

We call (O, W, R, g.) the canonical R-frame. The relation <. is defined as in the
definition of <. Note that for ¥ € W, ¢.(X) € W..
The following lemma is proved in [48].

Lemma 2.5

1. Let (O.,W,, R, g.) be the canonical R-frame. Then for all ¥,T' € W, ¥ <. T iff
Y CIT.

2. The canonical R-frame (O., W, R, g.) is an R-frame.
3. Let (O., W, R, gc, V) be the canonical R-model. For all A € Wff and ¥ € W,

YEA iff AeX.
Thus, we can state completeness of R.
Theorem 2.6 R is complete with respect to the class of R-frames.

In the following, we present Routley-Meyer semantics for KR. A KR-frame in the
usual sense is an R-frame obtained by assuming that

(pl)’ there exists a € O such that Rabc iff b = ¢
(p6)" a* =a
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instead of (pl) and (p6), respectively. The definition of KR-models (on KR-frames) is
the same as that of R-models. Note that a =~ A iff a = A in any KR-model.

Completeness of KR is shown in the same way as that of R except that KR-theories
are non-empty.

As another semantics for KR, it is necessary here to discuss the adequacy of including
both empty set ) and Wff among prime KR-theories. As a consequence of our Sahlqvist
theorem in Section 5.1, we can show that some of superclassical relevant modal logics,
i.e., relevant modal logics over superclassical relevant logic KR, are complete. To make
this possible, we need to include () and Wff among KR-theories and make explicit use of
them. In fact, in Section 5.5 of [48], the notion of enlarged frames is introduced in order
to treat this problem.

An enlarged KR-frame F = (O, W, R,*) is a KR-frame with elements e, called the
null world, and u, called the universal world, in W which satisfy the following definition
and postulates for all a,b € W:

(du) u¥e*, ueo
(epl) if Ruab, then a =eorb=u
(ep2) e #u
Every enlarged KR-frame satisfies the following postulates:
(1) Reue and (2) e<a<u, forall aeW.
A waluation V on F must satisfy also the following conditions for all p € Prop:
e ¢ V(p) and  we V(p).

Then by induction on the length of A, we see that e £ A and u = A, for all A € WHF.

In the canonical enlarged KR-frame (O., W,, R, g.), prime KR-theories () and Wff
are taken for e, and u., respectively.

Of course, KR is complete with respect to the class of enlarged KR-frames.

2.3 Algebraic preliminaries of distributive lattices

Since algebraic studies mentioned below are based on distributive lattices, we present
results on distributive lattices in this section. Distributive lattices are defined as usual.
A Boolean algebra is one of examples of distributive lattices.

First, we define the notions of filter. Given a lattice (M, N, U), a non-empty subset V
of M is a filter if the following postulates hold for all z,y € M:

(F1) ifz,y € Vthen z Ny €V,
(F2) if e Vand z <y theny eV,

where < denotes the lattice-order, i.e., z < y is defined by x Ny = x.

Moreover, we say that a filter V is prime, if t Uy € V implies v € V or y € V, for
all x,y € M. Further, the smallest filter containing a given non-empty subset M’ of M is
called the filter generated by M’.

Next, we define the notion of ideals. Given a lattice (M, N, U), a non-empty subset A
of M is said to be an ideal if the following postulates hold for all z,y € M:
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(I1) if x,y € A then x Uy € A,

(I2) if x € A and y < x then y € A.
Moreover, we say that an ideal A is prime, if t Ny € A implies x € A or y € A, for
all z,y € M. Further, the smallest ideal containing a given non-empty subset [ of A is

called the ideal generated by I.
Since each result is well-known in lattice theory, we omit the proof.

Lemma 2.7 Let (M,N,U) be a distributive lattice.

1. Suppose that V is a filter and A is an ideal such that VA = (). Then there exists
a prime filter V' DV such that V' N A = ().

2. If V is a filter such that x ¢ V, then there exists a prime filter V' O V such that
z ¢ V.

3. If x,y € M satisfies x £ y, then there exists a prime filter V such that x € V and
y¢v.

4. Suppose that V C M and A C M satisfy VAA =0 and VUA = M. Then V is a
prime filter iff A is a prime ideal.

5. Let My, My C M satisfy

(i) for any yi,---,yn € My and z € Mo, y1 N -+ Ny, £ 2,
(ii) for any z1, 2o € My, there exists z € My such that z; U zy < z.

Then there exists a prime filter V' in M such that M, C V' and My, N V' = (.

We say that (M',N,U) is a sublattice of (M,N,U) if (a) M’ is a non-empty subset of
M, (b) for every z,y € M', x Ny € M and x Uy € M'.

Lemma 2.8 Suppose that (M',N,U) is a sublattice of distributive lattice (M,N,U). Then
for every prime filter V- C M’, there ezists a prime filter V' C M such that V C V' and
v=vV'nM.

Proof.

Let A = M'— V. By 4 of Lemma 2.7, A is a prime ideal. By 5 of Lemma 2.7,
there exists a prime filter V' in M such that V C V' and ANV’ = (. Then we see
that V. C V' N M’ easily, so it suffices to show the converse inclusion. Suppose that
x €V ' NM'. Then x ¢ A, soxz € V. Hence V=V'NM". -

Let M = (M,N,U) and M’ = (M',N,U) be lattices. Then we say that f is a homo-
morphism of M in M' if f: M — M’ satisfies the following equalities: for any =,y € M,
i) fzny) = @) 0 f(y) and (i) flzUy) = f(z)U 1).

Lemma 2.9 Let f be a homomorphism of distributive lattice M in M and V be a prime
filter in M. Then the set f~*(V) = {z | f(z) € V} is a prime filter in M.

16



Proof.

First, suppose that z,y € f~'(V). Then f(x), f(y) € V. Since V is a filter, f(z) N
f(y) € V, and hence f(xﬂy) € V. So, we have z Ny € f~1(V).

Next, suppose that z € f~1(V) and z < y. Then f(x) € V and f(z) < f(y). Since V
is a filter, f(y) € V. Hence, y € f~1(V).

Finally, suppose that t Uy € f~'(V). Then f(zUy) € V. Since V is prime, we have

f(x)eVor fy)e V. So,z € f~HV)orye f7YV).
Therefore, f~'(V) is a prime filter. -

2.4 Matrix semantics for R

In this section we define relevant matrices. First, we will present relevant matrices in
terms of modified form of Font-Rodriguez’s ones (see [18]). A structure (M,N,U, —) is a
De Morgan lattice if it satisfies the following postulates for all x,y € M:

(DML1) (M,N,U) is a distributive lattice,

(DML2) z < —y implies y < —zx,

(DML3) — —z < .

A structure (M,N,U,—, —) is a De Morgan semigroup if it satisfies the following
postulates for all z,y,z € M:

(DMS1) (M,n,U,—) is a De Morgan lattice,
(DMS2) z = (y — 2) <y — (v — 2),
(DMS3) z < (x —y)Nz—y,

(DMS4)

( )

DMS5

r— —x < —ux,

rT—y< —y— —x.
Basic properties of a De Morgan semigroup are shown in [17].
Further, a De Morgan semigroup (M, N, U, —, —) satisfying
(DMS6) (z »x)N(y —y) = 2 <z, forall x,y,z € M,
is called an R-algebra.

We call (M, E) a relevant matriz (R-matriz) if (a) M = (M,N,U,—,—) is a De
Morgan semigroup (R-algebra), and (b) E is the filter generated by {z — = | x € M}.
In particular, an R-matrix has the following postulate.

Lemma 2.10 Let (M, E) be an R-matriz. Then for all z,y € M, x <y iff vt -y € E.

Proof.
The proof is given in [17]. The ‘if’ part is proved as follows. Before proving this, note
that the following fact holds:

ifr; >x;, <zx;fori=1,---,n, thenx;N---Nx, > N---Nx, <z N---NxY.
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Suppose that x — y € E. Then there exist zy, - -, 2, such that (21 — z) N ---N (2, —
zm) < x — y. By (RA6), for each i, (2; — 2;) N (2 = 2z) = (2i = 2i) < 2z = 2z, SO
(zi = 2z) = (2 = 2zi) <z — 2. Let z= (21 = z1) N+~ N (2, — 2zm). By above fact,
z =z <z Since z <z — y, we have z — z < x — y, and hence z < (z = 2) — y.
Since (z = 2) >y = (2 = 2)N (2 = 2) = y, we have z < y by (DMS6).

The ‘only if’ part is proved as follows. Suppose that x < y. Then x — v < x — 3.
Since x — x € E, we have v — y € E. -

Note that the ‘if” part does not hold for relevant matrices.

In the following, we prove that a special R-matrix characterizes R.

For any R-algebra M = (M,N,U, —, —), a mapping v from Prop to M is called a
valuation on M. Further, given a valuation v on M, a mapping I from WIff to M, called
the interpretation associated with v, is defined as follows:

i. for p € Prop, I(p) = v(p)
ii. I(AAB)=1I1(A)NI(B)
iii. 1(AV B) =I(A)UI(B)
iv. I(A— B) =1I(A) — I(B)
v. I(~ A)=—I(A).

I
I

Let (M, E) be an R-matrix, v be a valuation on M and I be the interpretation
associated with v. Then we say that (a) A is valid in v iff I(A) € E, and (b) A is valid in
(M, E) iff A is valid in any v.

By induction on the length of proof in R, we can show soundness of R easily.
Theorem 2.11 If A is a theorem of R, then A is valid in any R-matriz (M, E).

For the converse, we use well-known Lindenbaum’s method. Let [A] = {B | L+ A <
B} and M, = {[A] | A € Wff}. Further, define the operations N, U, —, — on M}, by

[AIN[B] =[ANB], [AJU[B]=[AVB], [A]=[B]=[A—=B], —[A]=[~A4]

Then it is clear that N, U, — and — are well-defined. The Lindenbaum algebra for R is the
algebra My, = (M}, N, U, —, —) defined above. Note that for all [A],[B] € M, [A] < [B]
if RFA— B.

Next, let £, = {[A] | R F A}. Of course, EY, is also well-defined. Then the Lindenbaum
matriz for R is a matrix (M, Er) defined by that M, is the Lindenbaum algebra for R
and that E is as above.

Lemma 2.12 The Lindenbaum matriz (My, Er) for R is an R-matriz.

Proof.

Here, we will show only that Fy, is the filter generated by {[A] — [A] | [4] € M}. Tt
is easy to see that Ej is a filter. It remains to show that Ej, is the least filter containing
{[A] = [A] | [A] € ML}. Let F be any filter containing {[A] — [A] | [4] € ML}. Suppose
that [A] € Er. Then A is a theorem of R, and hence (A — A) — A is also a theorem of
R. Thus [A — A] < [A]. Since [A — A] € Ey,, we have [A] € Ey,. n
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The canonical valuation v, is defined by
for all p € Prop, ve(p) = [p].

Further, let I. be the interpretation associated with v.. By induction on the length of A,
we can show the following easily.

Lemma 2.13 For any A € Wff, I.(A) = [A].
Thus, we have the completeness result.
Theorem 2.14 If A is valid in any R-matriz, then A is a theorem of R.

Proof.

Suppose that A is not a theorem of R. Then in the Lindenbaum matrix (M, Ey,) for
R, [A] ¢ Ep, and hence I.(A) ¢ Er, by Lemma 2.13. This means that A is not valid in
(Mp, Er). By Lemma 2.12, there exists an R-matrix in which A is not valid. n

2.5 Classical normal modal logics

The language of classical modal logics consists of (i) propositional variables p,q,r,- -
(ii) logical connectives D (classical implication), A (and), V (or) and — (classical nega-
tion); (iii) modal operator O (necessity) and (iv) propositional constants T (truth) and
1 (falsehood). Formulas are defined in the usual way, and are denoted by capital letters
A, B,C,---.

A classical modal logic is a set of formulas including the following axioms and rule of
inference.

(a) Axioms
(Cl) All axioms of classical logic Cl.

(b) Rule of inferences
ADB A

B (Modus Ponens).

For short, we often call it a modal logic.
A normal modal logic is a modal logic together with the following.

(a) Abbreviations
A=B2(A>B)A(BD4) ©A® -0-4
(b) Axiom
(K) O(A D> B) D (0A D OB).

(c) Rule of inferences

A L
oA (Necessitation)
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The least normal modal logic is called K.
Any normal modal logic is obtained by adding some axiom schemes to K. Typical
axiom schemes are listed in Table 2.1, where formulas 0" A and ¢"A stand for

O..-0Aand OO A
S—— S——

n n

respectively. (Their names follow from [12] and [11], and they are used throughout this
thesis.)

Table 2.1: Typical axiom schemes

Name Axiom scheme
D OADCA
T OADA
B ADOCA
4 0A D> O0OA
5 CADOCA
G(k,l,m,n) | OFO'A D OmOmA
Dir O(OAAB) D O(KCAV B)
U O(dA D A)
SC O(0AD B)vO(OB D A)
Con OAANOAD B)VO(BAOBD A)
Tra(n) ANOAN---AOA DO A
Alt(n) OA; VO(A; D Ay) V- VOA A---NA, D Apy)

Here we give some examples of normal modal logics. KT is the logic obtained from K
by adding the axiom T. S4 is the logic obtained from KT by adding the axiom 4. S5 is
the logic obtained from KT by adding the axiom 5 (equivalently, the logic obtained from
S4 by adding the axiom B).

2.6 Kripke semantics for normal modal logics

In this section, we introduce a semantics for normal modal logics. This semantics is often
called Kripke semantics, introduced by S.Kripke. A Kripke frame is a pair (W, S) where
(a) W is a set of all worlds, and (b) S is a binary relation on W.

We call a triple (W, S, V) a Kripke model on a Kripke frame F = (W, S), where F
is a Kripke frame and V is a mapping from Prop to 2", called a valuation on F. Given
a Kripke model (W, S, V), for a € W and A € WIf, a relation = between W and WIF is
defined inductively as follows:

i. for any p € Prop, a Epiff a € V(p)
ioalT

fii. a e L

iv.aEF AANBiffalE=Aanda E B
v.aEAVBiffaEAora=B
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viiaEADBiffalEAora=DB
vii. a E-Aiffa A
viii. a = OA iff for any b € W, if Sab then b = A.

Note that
a = <A iff there exists b € W such that Sab and b = A.

Let us consider axioms in Table 2.1. When A is one of axioms in Table 2.1, to make
a = A for all a € W, a Kripke frame must satisfy some condition. Table 2.2 shows the
condition which a Kripke frame should satisfy corresponding to each axiom in Table 2.1,
where A and \/ denote conjunction and disjunction in the metalanguage.

If Ly be the normal logic obtained from K by adding some left-hand side axioms, then
we call the Kripke frame satisfying the corresponding right-side postulates an Ly-frame.
The definition of Ly-model is as above.

Table 2.2: Frame postulates

Axiom Frame postulate
D Ab(Sab)
T Saa
B Sab = Sba
4 Sab & Sbe = Sac
5 Sab & Sac = Sbe

G(k,l,m,n) | Skab & S™ac = 3d(S'bd & S™cd)
Dir Sab & Sac & b # ¢ = 3d(Sbd & Sed)
U Sab = Sbb
SC Sab & Sac = Sbc or Scb
Con Sab & Sac & b # ¢ = Sbc or Scb
Tra(n) S"*tlab = Sab or - -- or S"ab
Alt(n) A Sab; = Vg bi = b;

Here S™ (n > 0) is a binary relation on W and is defined as follows. For all a,b € W:
(i) S%b iff a = b,
(ii) for n >0, S"ab iff there exists ¢ € W such that S" 'ac and Scb.

Suppose that Ly is a normal modal logic. Let M = (W, S, V) be an Ly-model on an
Ly-frame F = (W, S), A € Wff, and C be a class of Ly-frames. Then we say

(a) A holds in M iff a = A for every world a € W,

(b) A is valid in an Ly-frame F iff A holds in every Ly-model M on F,

(c) Ly is sound with respect to C iff A is valid in every F € C for all theorems A of Ly,
)

(d) Ly is complete with respect to C iff A is a theorem of Ly for every formula A valid
inall F €C,

(e) Ly is determined by C iff Ly is both sound and complete with respect to C.
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Then the following results are well-known.

Proposition 2.15
1. K s determined by the class of Kripke frames.

2. Let Ly be the logic obtained from K by adding some of axioms listed in Table 2.2.
Then Ly is determined by the class of Ly-frames.

Next, we present the basic properties of the truth-preserving operations. A frame
F'= (W' 5" is called a subframe of a frame F = (W, S) if (a) W' is a non-empty subset
of W which satisfies the following condition:

if a € W' and S’ab, then b € W',

and (b) S’ is the restriction of S to W"'.
As concerns subframes, the following result is known.

Proposition 2.16 Let F' be a subframe of F. If A is valid in F, then A is valid in F'.

Let F = (W,S) and F' = (W' S’} be frames. We call a surjection f : W — W'
p-morphism from F to F' if f satisfies the following conditions:

(i) for all a,b € W, if Sab then S’ f(a)f(b)

(ii) for all @ € W and & € W', if S"f(a)b" then there exists b € W such that Sab
and f(b) =10'.

As concerns p-morphisms, the following result is known.

Proposition 2.17 Let F and F' be frames. Suppose that there exists a p-morphism from
F to F'. If A is valid in F, then A is valid in F'.

Let {F; = (W;,S;) | i € I} be a family of frames such that W; N W; = 0, for all i # j.
The disjoint union of the family {F; | i € I} is the frame Y,c; Fi = (Uicr Wi, Uier Ri)-

As concerns disjoint unions, the following result is known.

Proposition 2.18 Let Y ;c; F; be the disjoint union of a family {F; | i € I} of frames.
Then A s valid in Y ;c; F; iff A is valid in F; for all i € 1.

2.7 Algebraic semantics for normal modal logics

In this section, we define an algebraic semantics for normal modal logics. An algebra
M= (M,n,u,, T, L, 0O)is called a modal algebra if

(a) (M,N,U,, T, L) is a Boolean algebra,
(b) for all x,y € M, O(zxNy)=0zN Oy,

(c) OT =T.
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For any modal algebra M = (M, N, U,’, T, L, 0O), we define a binary operation — and
an unary operation <& on M as follows. For z,y € M,

x —>yd§f 2’ Uy, O © (Oz")'.

For any modal algebra M = (M,N,U,, T, L, 0), a mapping v from Prop to M is
called a valuation on M. Further, given a valuation v on M, a mapping I from Wff to M,
called the interpretation associated with v, is defined as follows:

i. for p € Prop, I(p) = v(p)

i. I(T)=T
iii. (L) =L
iv. I([ANB)=1(A)NI(B)
v. [(AVB)=I(A)UI(B)
vi. I(AD B)=1I(A) — I(B)
vil. I(=A) = (I(A))
viii. [(OA) = OI(A).

Note that I(CA) = OI

Let M = (M,N,U,, T, L, 0) be a modal algebra, v be a valuation on M and I be the
interpretation associated with v. Then we say (a) A is valid in v iff I(A) = T, and (b) A
is valid in M iff A is valid in any v.

By Lindenbaum’s method, we can show the following algebraic completeness result.
Proposition 2.19 A is a theorem of K iff A is valid in any modal algebra.

In the following, we present the truth-preserving operations on modal algebras.

Let M = (M,n,u,, T, L,0) be a modal algebra. A model algebra M’ =
(M',n,u, T, L,0) is called a subalgebra of M if (a) M" C M and (b) each operation of
M’ is closed.

Then the following result holds.

Proposition 2.20 If A is valid in a modal algebra M, then A is valid in every subalgebra
of M.

If fis a homomorphism of M = (M,N,U,, T, L, 0) in M' = (M',n,U,, T, L, 0),
then the set f(M) is clearly closed under the operations in M’ and hence
(f(M),n,uU,, T, L, 0O)is a subalgebra of M'. We call it the homomorphic image of M.
Then the following result holds.

Proposition 2.21 If A is valid in a modal algebra M, then A is valid in every homo-
morphic tmage of M.

Given a family {M; = (M;,N, U, T, L1,0) | i € I} of modal algebras, the direct
product of {M; | i € I'} is the algebra

H Mz = <H Mia ﬂa Ual ) Ta J—a D>7

iel i€l
where (a) [T;c; M; is the set of all functions f from I into U;c; M; such that f(i) € M;
and (b) for every fi, fo € [I;c; M; and every i € I,
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L (fi0 f2)(@) = f1(d) N f2(4)
ii. (fiU o)) = fi(i) U f2(d)
ii. fi(0) = (f(5)

iv. (Of1)(@) = Bfi(0).
Then the following result holds.

1

<

Proposition 2.22 Suppose that [1;c; M; is the direct product of {M; | i € I}. Then A
is valid in every M, iff A is valid in Tl;e; M.

2.8 General frames for normal modal logics

In this section, we present basic properties of general frames for normal modal logics. For
more details, see Chapter 8 of [11] (except slight differences on notations).

A modal general frame is a triple § = (W, S, P) where (a) (W, S) is a Kripke frame,
written by £, and (b) P, a set of possible values in §, is a subset of 2" containing () and
closed under N,U," and the operation O which is defined as follows. For X C W,

OX ={a €W |Vbe W(Sab=be X)}.

The algebra (P,N,U,, W, (), 0) is called the dual of F, and is denoted by F+.
Then the following fact holds.

Proposition 2.23 The dual of every modal general frame is a modal algebra.

Modal general frames § = (W, S, P) and §' = (W', S’, P') are isomorphic if there is an
isomorphism f of (W, S) onto (W', S") such that for every X C W, X € P iff f(X) € P'.

Let § = (W, S, P) be a modal general frame. A model on § is a pair M = (F,V)
where V| a valuation on §, is a map from Prop in P, i.e., V(p) € P for every p € Prop.
The truth-relation = in 9 is defined in exactly the same way as in Section 2.6 for Kripke
models. We write V(A) ={a € W | a | A}.

The definitions of truth, validity, etc. given in Section 2.6, can be extended to general
frames without any change.

Proposition 2.24 Let § be a modal general frame. Then A is valid in § iff A is valid
in §T.

Next, we present the duality theory. Let M = (M, N, U, T, L, 0) be a modal algebra.
Then

e Wy is the set of all prime filters in M

o SV iV, iff Vz € M(DIL‘ eVi=>zrxe Vg), for VI,VQ € Wm

o Py = {fm(z) | x € M}, where fayr : M — 2™ defined by fp(z) ={V e Wnm |z €
V}

We say that (W, Sm, Pu) is the dual of M and is denoted by M, . Note that prime
filters coincide with maximal filters in Boolean algebras.
Then the following results hold.
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Proposition 2.25 Let M be a modal algebra.
1. The dual M, of M is a modal general frame.
2. A is valid in M iff A is valid in M.
The following “representation theorem” holds.

Proposition 2.26 FEvery modal algebra M is isomorphic to its bidual (M, )" under the
1somorphism fa.

Next, we present descriptive frames. Here the definition of descriptive frames follows
[11].

In general, a modal algebra M is isomorphic to its bidual (M )", but a modal general
frame § is not always isomorphic to its bidual (§7),. We call a modal general frame §
descriptive if § is isomorphic to its bidual (F1),.

Let § = (W, S, P) be a modal general frame. Then we say that

(a) § is differentiated if for any a,b € W,

a=0b iff VX e Plae X &be X),

(b) § is tight if for any a,b € W,

Sab iff VX € Pla € OX = b€ X),
(c) §is compact if, for any families ¥ C Pand Y C P ={W — X | X € P},

N(XUY)#£0
whenever (X' UY’) # () for all finite subfamilies X’ C X and )’ C Y.
Note that § is tight if for any a,b € W,

Sab iff VX € P(be X = a € OX).
Then, descriptive frames are characterized by the following.

Proposition 2.27 A modal general frame § = (W, S, P) is descriptive iff § is differen-
tiated, tight and compact.

Finally, we present truth-preserving operations on general frames.

A modal general frame § = (W', S', P') is a generated subframe of § = (W, S, P) if
(a) k§' is a generated subframe of k§ and (b) P ={X NW'| X € P}.

As concerns generated subframes, the following facts hold.

Proposition 2.28

1. If h is an isomorphism of § = (W', S', P') onto a generated subframe of § =
(W, S, P), then the map h* defined by

hH(X)=h""(X)={a € W' | h(a) € X}, for every X € P,

is a homomorphism of + onto F'T.
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2. Suppose h is a homomorphism of a modal algebra M onto a modal algebra M'. Then
the map h, defined by

hy(V)=hYV), for every prime filter V in M,
is an isomorphism of M!, onto a generated subframe of M.

Given frames § = (W, S, P) and §' = (W', S’ P'), we say a map f from W onto W'
is a p-morphism of § to § if the following three conditions hold:

(pM1) for all a,b € W, Sab implies S’ f(a) f(b)

(pM2) for all a € W and v/ € W' S'f(a)b" implies there exists b € W such that Sab
and f(b) =10

(pM3) for all X € P!, f}(X) € P.
As concerns p-morphisms, the following facts hold.
Proposition 2.29

1. If f is a p-morphism of § = (W, S, P) to §' = (W', S', P'), then the map f defined

by
(X)) =fYX), forevery X e P,

is an isomorphism of FT in §.
2. If f is an isomorphism of a modal algebra M' in M, then the map f, defined by
[ (V) = FUV),  for every ¥ € Way,
is a p-morphism of M to M/, .

The disjoint union of a family {§; = (W;, S;, P;) | i € I} of pairwise disjoint frames
is the frame Y ;c; 8 = (W, S, P) where W = U;c; Wi, S = Uier Siy P = {Uier Xi | X; €
P forall i € T}.

As concerns disjoint unions, the following facts hold.

Proposition 2.30

1. Let {§: | i € I} be a family of modal general frames and Y ;c; & = (W, S, P) be its
disjoint union. Then the map [ defined by

f(X)(@) =XnW, for every X € P and i € I,
is an isomorphism of (X;e; §:)" onto [1er $7 -
2. Suppose that M and M' are modal algebras. Then the map f defined by
fVM)={{z,y) e M xM' |z €V, ,ye M}, foreveryV e Wy
and
f(V)Y={{z,y) e M x M' | x € M,y € V'}, for every V' € W

is an isomorphism of My + M/, onto (M x M'),.
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2.9 Sahlqvist theorem for normal modal logic

In this section, we present Sahlqvist theorem for normal modal logic which are connected
with Chapter 5, without proof.

Before presenting a Sahlqvist theorem for normal modal logics, we introduce the fol-
lowing terminologies.

Let L be any normal modal logic. Below, § = L denotes that § = A for all theorems
A of L. Let D be the class of descriptive L-frames. Then let kD = {k§ | § € D}, and
D* =D U kD. Then we say that

e L is D-complete (kD-complete) if A is a theorem of L whenever it is valid in every
descriptive L-frame (every L-frame).

e L is D-persistent if for any descriptive L-frame §, § = L implies «§ [ L.

e L is D*-elementary if there exists a set ® of first-order sentences in the predicates
S and = such that for every § € D*,

§ is an L-frame iff § is a model for ®.

For these notions, the following facts are known.

Proposition 2.31 Let L be any normal logic.

1. If L is both D-complete and D-persistent, then it is kD-complete.
2. If L is D*-elementary, then it is D-persistent.
3. If L is both D-complete and D*-elementary, then it is kD-complete.

Since L is D-complete, 1 of Proposition 2.31 insists that if L is D-persistent then it is
kD-persistent. Then we consider whether the converses of these propositions hold. It is
known that the converse of 1 does not hold. For example, we may take the logic obtained
from K by adding the Léb’s axiom O(0A D A) D TJA. On the other hand, it is an open
problem whether the converse of 2 holds.

Now we present a Sahlqvist theorem for normal modal logic.

A formula A is positive if A containsonly T, L, A,V,O0and <. A modal formula of the
form O™'p; A -+ A O™k p, with not necessarily distinct propositional variables py, - -+, p
is called a strongly positive formula. A given formula A is negative (in L) if A is built
from the negations of variables with the help of T, L, A, vV, O and <. A modal formula
A is untied (in L) if it can be constructed from negative formulas and strongly positive
formulas using only A and <.

Theorem 2.32 (Sahlqvist) Suppose that A is a formula which is equivalent in K to
a conjunction of formulas of the form OF(B D C), where k > 0, B is untied and C is
positive. Then there ezists a first order formula ¢(a) in the predicates S and = having
a as its only free variable and such that the following holds for every § € D* and every
acW,

(3.0) A iff § satisfies ¢(a),

where (§,a) = A means that a = A under any valuation on §.
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Any formula A of the form described in above theorem is called a Sahlquist formula.
From Theorem 2.32, we have § = A iff § satisfies Va € W (¢(a)).

Theorem 2.33 Let L be a logic obtained from K by adding a set of Sahlquist formulas
as axioms. Then L is D*-elementary, and hence D-persistent. Hence, L is kD-complete.

As concerns these notions, we note some remarks. It is clear that the McKinsey aziom
O0O0A D OOA is not a Sahlqvist formula. But it is known that the logic K4M which
is obtained from K by adding the axioms 4 and the McKinsey axiom is D*-elementary.
Because an K4M-frame (W, S) satisfies the following frame postulates:

e for all a,b,c € W, if Sab and Sbe, then Sac
e for all a € W, there exists b € W such that for all ¢ € W, Sbec implies b = c.

This fact shows that the Sahlqvist theorem does not cover all D*-elementary logics.

2.10 Notes

The relevant logic R was first formulated by N.D.Belnap,Jr. in [6]. In relevant logic,
Routley-Meyer semantics is well-known Kripke-style semantics. This was published first
in [47] for R. The key idea of Routley-Meyer semantics is introducing ternary relation and
Routley’s star operation in order to interpret relevant implication and relevant negation,
respectively. An R-frame which we adopt here is called an unreduced frame. An R-frame
is usually a reduced frame, so we present its definition below following [47].

A reduced R-frame is a quadruple (0, W, R,* ) where W, R and * are as in our definition
of R-frame, and 0 € W. Further, a binary relation < is defined by

a < b iff ROab.

A reduced R-model is a quintuple (0, W, R,*, V) where F = (0, W, R,*) is a reduced
R-frame and V, a valuation on F, is defined as in Section 2.3. As concerns validity, A
holds in a reduced R-model M iff 0 = A. Also, the proof of completeness with respect to
reduced R-models is slightly complicated. That is, we must consider both R-theories and
T-theories. A set of formulas X is called a T-theory if (a) if A,B € ¥, then AN B € ¥,
and (b) if A - B € T and A € ¥, then B € X. Consequently, the canonical model
(0, We, Ry, ge, Ve) is as follows:

e 0. =1, where T is a fixed regular R-theory
e IV, is the set of all prime T-theories
e ., g. and V, are defined as in Section 2.2.

In the same way as this, this semantics is extended to several relevant logics weaker
than R, for example E, T and B, and stronger than R, for example RM, CR, KR and
their modal extensions. For more details, see [48].

For algebraic models for R, De Morgan monoid is a standard one. We call
(M,N,U,—,-,—,e) a De Morgan monoid if it satisfies the following. For all z,y,z € M,

(DMM1) (M,N,U,—) is a De Morgan lattice,
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This can be used also as a semantics for R* which is obtained from R by adding the
axioms

ot

ot — (A — A).

If e and - interpret t and o, which is defined by
AoB¥~ (A -~ B),

respectively. Since RY is a conservative extension of R, De Morgan monoid is regarded
as an algebraic model for R. Here we will present a matrix model for R according to [17]
and [18]. An advantage of matrix model is that we need not consider constant.

For modal logics, we will present normal modal logics and their fundamental properties
on semantics following [11]. Kripke semantics and algebraic semantics are familiar ones.
In Kripke semantics, it is most characteristic to introduce possible worlds and accessible
relations. They give intuitive understanding of validity on modal formulas. An algebraic
semantics is obtained from Boolean algebra by adding modal operators.
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Chapter 3

Basic relevant modal logics and their
completeness

In this chapter, we introduce basic relevant modal logics and show their completeness by
using both Routley-Meyer semantics and matrix semantics. To prove completeness, we
use the method of using canonical models for the former and Lindenbaum’s method for
the latter. Introducing models on frames and matrices, we are interested in the truth-
preserving operations of frames and matrices. In relevant modal logics, as in classical
modal logic, we can consider subframes, relevant p-morphisms and disjoint unions as the
truth-preserving operations of frames, and submatrices, homomorphic images and direct
products as the truth-preserving operations of matrices. Further, using completeness
with respect to Routley-Meyer semantics, we show that our relevant modal logics are
conservative extensions of R.

3.1 Basic relevant modal logics

Our language £ of relevant modal logics consists of (i) propositional variables p, q,r, - -+
(ii) logical connectives — (relevant implication), A (and), V (or) and ~ (relevant negation);
and (iii) modal operators O (necessity) and < (possibility).

Formulas are defined in the usual way, and are denoted by capital letters A, B,C, - - .
We write A <> B for (A — B) A (B — A). Prop and Wff will denote the set of all
propositional variables and of formulas, respectively. Capital Greek letters ¥, I, A, ---
denote non-empty sets of formulas. When necessary, we add ' or subscripts to these
capital letters and capital Greek letters.

The relevant logic R is defined as in Section 2.1. Now we define modal logics based
on R. A set of formulas is called a regular relevant modal logics over R (a regular logic
over R, for short), if it includes the following axioms and rules of inference.

(a) Axioms

(Ax) all axioms of R.
(R14) OAAOB — O(A A B)
(R15) O(AV B) = ©AV OB

(b) Rules of inference
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A—-B A B . :
— 5 x B(AdJunctlon)

A— B = fonicity) A— B
_— -ImMonotonicl e
OA — OB Y CA 5 OB

(Modus Ponens)

(O-monotonicity)

The least regular logic over R is called R.Cne. In [19], A.Fuhrmann calls the logic
obtained from R.Cpge by deleting < ‘conjunctively regular’; here we will call it ‘regular’.
It is known that classical modal logics containing (R14) and (O-monotonicity) are regular
(see [12] (p.236)).

We call a logic, a normal relevant modal logics over R (a normal logics over R, for
short), if it includes the following axioms and rules of inference.

(a) Axioms

(Ax) all axioms of R.Cpe.
(R16) O(A — B) — (0A — OB)
(R17) O(A — B) — (CA — OB)

(b) Rules of inference

A—-B A

A
B (Adjunction) —— (Necessitation)

(Modus Ponens) A

ANB

The least normal logic over R is called R.Kno. As a special case, if R.Cne (R.Kpo)
satisfies

(R18) OA 3~ O~ A,

then we call it R.C (R.K). For R.C, we may omit the axiom (R15) and the (-
monotonicity) rule. For R.K, we may omit both the axioms (R15) and (R17).
Formulas 0" A and ¢"A stand for

O...0Aand O---OA,
S—— S——

n n

respectively.
It is easy to see that every normal logic over R is a regular logic over R. The following
fact is easily shown.

Theorem 3.1
1. The following formulas are theorems of any reqular logic over R, for n > 0:
O"AAO"B — O"(AA B), O"(AV B) — O"AV O"B.
2. The following inferences are admissible in any regular logic over R, form > 0,n > 0:

AN NA, - B A— B/ V---V B,
arA, A---AO"A4, — OB OrA — OBy V-V OB,
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In the following, we assume that Lg denotes always any of R.Cpe, R.Kge, R.C and
R.K, and L denotes any regular logic over R. Further, we write L - A when A is a
theorem of L.

These four basic logics are pairwise distinct. Since there is no theorem of the form OA
in R.Cpg, it follows that R.Cpe and R.Kqge are distinct. We can say the same thing
between R.C and R.K. It is clear that CA —~ O ~ A is not a theorem of R. K¢, so
R.Kns and R.K are distinct. Similarly, we see that R.Cpe and R.C are distinct.

3.2 Models

In this section we present models for our logics and prove soundness. Further, we consider
the truth-preserving operations of frames. Our models are obtained by extending the R-
model introduced by R.Routley and R.K.Meyer ([47]).

An R-frame is defined as in Section 2.2. We define frames for relevant modal logics
introduced in Section 3.1. An R.Cge-frame is a 6-tuple F = (O, W, R, Sg, So,* ), where
(O,W,R,*) is an R-frame, and both S and S, are binary relations on W. An R.Cpe-
frame (O, W, R, Sn, So,* ) satisfies the following postulates for all a,b,c € W:

(p7) if @ < b and Spbe then Spac
(p8) if @ < b and Seac then Sebe.
An R.Kne-frame (O, W, R, Sn, So,* ) is an R.Cpne-frame satisfying the following pos-
tulates for all a,b,c,d € W:
(p9) if @ € O and Spab then b € O
(p10) if Rabd and Sgdc then there exist o', b € W such that Sgaa’, Sgbb’ and Ra't'e
(p11) if Rabc and Sead then there exist b/, ¢ € W such that Rdb' ¢/, Sabb’ and Secc.
An R.C-frame (R.K-frame) (O, W, R, Sq, So,* ) is an R.Cpo-frame (R.Kno-frame) sat-
isfying the following postulates for all a,b € W:
(p12) Seab iff Sqa*b*.

When a frame satisfies postulate (p12), Se can be expressed by using Sn and *.
For a given R.Cpo-frame (O, W, R, Sq, So,* ), define binary relations S% and S% on
W for each n > 0 as follows. For all a,b € W:
(Oi) SQab iff a < b,
(Oii) for n >0, SZab iff there exists ¢ € W such that S& 'ac and Sncb,
(1) S2ab iff b < a,
(<ii) for n >0, SZ%ab iff there exists ¢ € W such that S~ 'ac and Secb.

We call a 7-tuple M = (O, W, R, Sq, So,* , V) an Lg-model on an Lg-frame F =
(O,W, R, Sn, So,* ) (we simply say Lg-model), where F is an Lg-frame and V' is a map-
ping from Prop to 2%, called a waluation on F, which satisfies the following hereditary
condition. For all a,b € W and all p € Prop:

if a <band a € V(p) then b € V(p).
Given an Lg-model (O, W, R, Sp, So,*, V), for « € W and A € WIf, a relation =
between W and WIf is defined inductively as follows:
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i. for any p € Prop, a Epiff a € V(p)
ii.aFAANBiffal=Aand a =B

ili. a FAVBiffal=Aora B

iv. a F A — B iff for all b,c € W, if Rabc and b = A, then ¢ = B
v.apE~Aiffa* A

vi. a = OA iff for any b € W, if Spab, then b = A
vii. a = OA iff there exists b € W such that Scab and b |= A,

where a £ A means that « = A does not hold. Note that in each model on a frame
satisfying (p12) we have a = O A iff there exists b € W such that Spa*b* and b = A. It
is easy to see that for n > 0,

1. a = O"A iff for any b € W, if SZab then b = A
2. a = O"A iff there exists b € W such that SZab and b = A

Then by induction on the length of the formula A, we can show the following “hered-
itary lemma”.

Lemma 3.2 Let (O,W, R, Sp, So,*, V) be an Lg-model. For all a,b € W and all A €
WIf, if a < b and a = A then b = A.

Let M = {(O,W, R, Sn, So,*,V) be an Lg-model on an Lg-frame F =
(O,W,R, S, So,*), A € Wff, and C# be a class of Lg-frames. Then we say

(a) A holds in M iff a = A for every world a € O,
(b) A is valid in an Lp-frame F iff A holds in every Lg-model M on F,

(c) Lg is sound with respect to Cx iff A is valid in every F € Cx for all theorems A of
LB?

(d) Lg is complete with respect to Cx iff A is a theorem of Ly for every formula A valid
in all F € Cr,

(e) Lp is determined by Cx iff Ly is both sound and complete with respect to Cr.

By induction on the length of proof in Lg, we can show soundness of Ly easily.
Theorem 3.3 Lpg is sound with respect to the class of Lg-frames.
An Lg-frame in which all theorems of L are valid is called an L-frame.

Next, we deal with the truth-preserving operations on relevant modal frames: sub-
frames, relevant p-morphisms and disjoint unions. Below, let F = (O, W, R, Sq, So,* )
and F' = (0", W', R', S}, S%,*') be L-frames.

F' is called a subframe of F if (a) W' C W satisfies
1. a e W' & Rabc = b,c € W'
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ce W' & Rabc = a,be W'

a€ W' & Spab=be W'

ac W & Seab=bec W'

aceW =a* €W

for all a,b,c € W, (b) R', S5, Sl and *' are the restrictions of R, S, Se and *, respectively,

to W', and (¢) O' C W’. A subframe F' is a generated subframe of F if W' C W is upward
closed.

Ot W

Theorem 3.4 Let F' be a generated subframe of an L-frame F.

1. Suppose that a valuation V' on F and a valuation V' on F' satisfies a € V(p) iff
a € V'(p), for all p € Prop and a € W'. Then

alE=A iff aE A, for alla € W' and A € WIF.

2. If A is valid in F, then A is valid in F'.

Proof.
1. By induction on the length of A. Take any a € W".

(a) A is of the form p (p € Prop). It is clear.
(b) A is of the form B A C.

aEBANC iff aEB&aEC
iff a ' B & a=' C (induction hypotheses)
iff a = BAC.

(c) Ais of the form BV C. Similar to (b).

(d) A is of the form B — C.

The ‘if” part is proved as follows. Suppose that Rabc and b = B. By the
definition of subframes, b,c € W'. So, we have R'abc and by the hypothesis
of induction, b " B. Thus, ¢ ' C. By the hypothesis of induction again,
¢ |= C, which is the desired result.

The ‘only if’ part is proved as follows. Suppose that R'abc and b ' B. By
the hypothesis of induction, b |= B. It is obvious that Rabc, so ¢ = C. Since
c € W', ¢ = C by the hypothesis of induction. This is the desired result.

(e) A is of the form ~ B.

By the definition of subframes and the hypothesis of induction,
aE~B iff B ff B iff aE'~B.

(f) A is of the form OB.

The ‘if” part is proved as follows. Suppose that Sgab. By the definition of
subframes, b € W', and so SLab. Then we have b = B. By the hypothesis of
induction, b = B, which is the desired result.

The ‘only if’ part is proved as follows. Suppose that Sjab. Then it is clear
that Spab. So we have b = B. Since b € W', b =" B by the hypothesis of
induction. This is the desired result.
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(g) A is of the form OB.

The ‘if” part is proved as follows. From the assumption, there exists b € W'
such that Sh,ab and b =" B. By the hypothesis of induction, b = B. It is clear
that Scab, so a = OB.

The ‘only if” part is proved as follows. From the assumption, there exists b € W
such that Seab and b = B. By the definition of subframes, b € W', and so
Stab. By the hypothesis of induction, b =" B. Thus, a ' ¢B.

2. Suppose that A is not valid in F'. Then there exists a valuation V' on F" and a € O’
such that a [ A. Now define a valuation V on F by b € V(p) iff b € V'(p), for all
p € Prop and b € W', and by b ¢ V (p), for all p € Prop and b ¢ W'. By 1 and the
definition of subframes, we have a € O and a & A. Therefore, A is not valid in F.

Next, we introduce relevant p-morphisms. For non-modal part, we refer to [58]. A
mapping f : W — W'is a relevant p-morphism from F to F' if it is a surjection satisfying
the following conditions. For all a,b,c € W and o', V', € W',

(m1) Rabe = R'f(a)f(b)f(c)

(m2) Rl f(c) = Ja € Wb e W(Rabe & o <' f(a) & b < f(b))
(m3) R'f(a)b'd = b€ Wic € W(Rabe & V' <" f(b) & f(c) <' )
(m4) Sgab:> SLf(a)f(b)

(m5) SLf(a)t) = 3b € W(Szab & f(b) <" V')

(m6) Soab = 56f(a)f(b)

(m7) S, f(a)b = 3b € W(Seab & V' <" f(b))

(m8) f(a*) = (f(a))*

(m9) f~H(0) = 0.

Theorem 3.5 Let [ be a relevant p-morphism from F to F'.

1. Suppose that a valuation V' on F and a valuation V' on F' satisfies a € V(p) iff
f(a) € V'(p), for all p € Prop and a € W. Then

alE=A iff fla) E A, for all A € WIf and a € W.

2. If A is valid in F, then A is valid in F'.
Proof.
1. By induction on the length of A.

(a) A is of the form p (p € Prop). It is clear.
(b) A is of the form B A C.

aEBAC it aEB&aEC
iff f(a) = B & f(a) E' C (induction hypotheses)
ifft f(a) ¥ BAC.
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(c) A is of the form BV C. As in (b).

(d) A is of the form B — C.

The ‘if’ part is proved as follows. Suppose that Rabc and b = B. By (ml),
we have R'f(a)f(b)f(c). Further, f(b) &= B by the hypothesis of induction.
From the assumption, f(c¢) ' C. By the hypothesis of induction again, we
have ¢ = C, which is the desired result.

The ‘only if” part is proved as follows. Suppose that R'f(a)b'c and b' =" B.
By (m3), there exist b,c € W such that Rabe, b' <" f(b) and f(c) <' ¢. By the
hereditariness, f(b) =" B, so b = B by the hypothesis of induction. From the
hypothesis, ¢ = C, so f(¢) ' C by the hypothesis of induction again. Again,
by the hereditariness, we have ¢ =’ C, which is the desired result.

(e) A is of the form ~ B.

a E~ B iff o* £ B
ifft f(a*) & B (induction hypothesis)
it (f(a)" | B (by (m8))
iff f(a) '~ B :

(f) A is of the form OB.
The ‘if” part is proved as follows. Suppose that Spab. Then S[ f(a)f(b) by
(m4). From the assumption, we have f(b) ' B. By the hypothesis of induc-
tion, b = B, which is the desired result.

The ‘only if’ part is proved as follows. Suppose that S} f(a)b'. By (mb), there
exists b € W such that Smab and f(b) <" b'. From the assumption, b = B,
so f(b) E' B by the hypothesis of induction. By the hereditariness, we have
b' =’ B, which is the desired result.

(g) A is of the form ¢B.
The ‘if” part is proved as follows. From the assumption, there exists o' € W'
such that S, f(a)b’ and O ' B. By (m7), there exists b € W such that
Seab and O <" f(b). By the hereditariness, f(b) = B. By the hypothesis of
induction, we have b = B. Hence a = OB.

The ‘only if” part is proved as follows. From the assumption, there exists b € W
such that Seab and b = B. By (m6), S’ f(a)f(b), and by the hypothesis of
induction, f(b) ' B. Hence f(a) = <B.

2. Suppose that A is not valid in F'. Then there exists a valuation V' on 7' and a € O’
such that a £ A. By (m9), there exists b € O such that a = f(b). Now define a
valuation V on F by ¢ € V(p) iff f(¢) € V'(p), for all p € Prop and ¢ € W. Then
by 1, we have b [~ A. Therefore, A is not valid in F. m

The disjoint union of a family {F;, = (O;, Wi, R;, Sni, Soi, i) | ¢ € I} of pairwise
disjoint frames is the frame Y°;.; F; = (O, W, R, S, So,* ) where

O:UOZ', W:UVVZ', R:URZ', SD:USDi, SOZUSOi, *:Ugi-

el i€l el el i€l el

Note that every F; is a generated subframe of > ,.; F;.
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Proposition 3.6 > ,.; F; = (O, W, R, Sq, So,*, P) defined above is a frame.

Proof.
We consider the case of R.Cq. Other cases are proved similarly. The way of proof
is similar, so we prove (p3). Suppose that Rabc and Rca’l/. Then there exist i,j € [

such that R;abc and R;ca’b'. Since each frame is disjoint, ¢ = j, say i. Then there exists
d € W; such that R;aa’d and R;dbb’. Thus there exists d € W such that Raa'd and Rdbl'.

Theorem 3.7 Let Y, F; be the disjoint union of a family {F; | i € I} of L-frames.

1. Suppose that a valuation V; on F; for all i € I and a valuation V on Y ;1 Fi satisfy
a € Vi(p) iff a € V(p), for all p € Prop and a € W;,i € I. Then

abEi A iff alE A, for all A € Wff and a € W;,i € I.

2. A is valid in F; for all i € I iff A us valid in Y ;c; F;.

Proof.
Let Eielﬂ = <O7 VV: R7 Sl:la 507* >

1. By induction on the length of A. Take any a € U;c; Wi.

(a) A is of the form p (p € Prop). It is clear.
(b) A is of the form B A C.

o= BANC iff afEB&al C
iff aEB&alEC (induction hypotheses)
iff a =BAC.

(c) A is of the form BV C. Similar to (b).

(d) A is of the form B — C.

The ‘if’ part is proved as follows. Suppose that R;abc and b =; B. Then it
is clear that Rabc, and we have b = B by the hypothesis of induction. Thus,
we have ¢ = C, so ¢ |&; C by the hypothesis of induction again. This is the
desired result.

The ‘only if’ part is proved as follows. Suppose that Rabc and b = B. Since
each F; is pairwise disjoint, a € W} for some j € I. By the definition of disjoint
unions, we have b, ¢ € W; and Rjabc. By the hypothesis of induction, b |=; B,
so we have ¢ =; C. By the hypothesis of induction again, ¢ = C, which is the
desired result.

(e) A is of the form ~ B.
By the hypothesis of induction,

afEi~B it gi(a) B iff o B ff alE~ B.
(f) A is of the form OB. Similar to (d).
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(g) A is of the form OB.

iff 3b€ W(Seab & b= B)  (induction hypothesis)
iff af= OB.

2. The ‘if” part is proved as follows. Suppose that A is not valid in }_;.; F;. Then there
exists a valuation V on Y ;c; F; and a € U;e; O; such that a = A. Since Yo7 Fi is a
disjoint union, there exists j € I such that a € O; uniquely. Now define a valuation
V; on F; by b € V;(p) iff b € V(p), for all p € Prop and b € W;. Then by 1, we have
a f=; A. Therefore, A is not valid in F;.

The ‘only if” part is proved as follows. Suppose that A is not valid in F; for some
j € I. Then there exists a valuation V; on F; and a € O; such that a f~; A. Now
we define a valuation V on Y_,c; F; by b € V(p) iff b € V;(p), for all p € Prop and
b€ W;,i € I. Then by 1, we have a [~ A. Further, it is clear that a € U;c; O;, so A
is not valid in >, F;. -

3.3 Completeness

In this section we will prove completeness of R.Cps, R.Kpe, R.C and R.K. Basically,
the proof goes in the same way as in section 4.6 of [48]. Here, we introduce some notions
and study properties of them. (Note that the terminology is somewhat different from that
in [48].)

To define the canonical frame for L, we introduce the following key notions.

e Let ¥ # (0 and A # (. L+ X — A iff there exist Ay,---, A, € X (m > 0) and
By,---, B, € A (n>0) such that

LA A---ANA, > B/ V---VB,.

(X,A) is an L-pair iff (a) L/ X — A and (b) ¥ U A = WA,

¥ is an L-theory iff (a) if A,B € ¥ then AANB € ¥, and (b) if L+ A — B and
A€ X then B € X.

For an L-theory X,

— X is reqular iff ¥ contains all theorems of L.

— Y is prime iff AV B € ¥ implies either A € ¥ or B € X..

Let Th(L) be the set of all L-theories. Then a ternary relation R on Th(L), and
binary relations on Sp and Se on Th(L), are defined by

RYXT'A iff forany A,B € Wff,if A— Bé&€ XY and A€l then Be A,
SpXI' iff for any A € Wff, if OA € X then A € T,
SeX iff  for any A € WAf, if A € T then CA € X,
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A few comments on the definitions above. It is clear that ¥ N A = () whenever
L /¥ — A. Hence we have that if (X, A) is an L-pair, then for all A € Wff either A € ¥
or A € A but not both. It is clear that the set of all theorems of L is an L-theory. As for
binary relations S% (n > 0) and S% (n > 0) on L-theories, it is easy to see the following:

SgXl iff for any A € WIf, if O"A € ¥ then A € T,

Se¥l iff for any A € Wff, if A € I" then O"A € ¥.

The following lemmas are essentially proved in [48] (pp.305-318).

Lemma 3.8 Let L be any regular logic over R.
1. If (X, A) is an L-pair, then ¥ is a prime L-theory.
2. If LY — A, then there exist ¥' O ¥ and A" O A such that (X', A") is an L-pair.

3. Suppose that ¥ is an L-theory and A is a set of formulas closed under disjunction
such that XNA = (. Then there exists a prime L-theory ¥' D ¥ such that ¥'NA = ().

4. If A is not a theorem of L, then there exists a reqular prime L-theory Il such that
A ¢l

5. Suppose that X2 and T are L-theories and A is a prime L-theory such that RXTA.
Then there exists a prime L-theory ¥ O ¥ such that RX'TA.

6. Suppose that X2 and I are L-theories and A is a prime L-theory such that RXTA.
Then there exists a prime L-theory I'" D T" such that RXT'A.

7. Suppose that there are a prime Li-theory ¥ and L-theories I and A such that RXTA
and D ¢ A. Then there exist prime L-theories T and A" such that T CT', D ¢ A’
and RYT'A'.

8. If ¥ is a prime L-theory such that C — D ¢ 3, then there exist prime L-theories
I and A" such that RET'A',C € T" and D ¢ A’.

Lemma 3.9 Suppose that So¥T" and C ¢ T for a prime L-theory ¥ and an L-theory T.
Then there ezists a prime L-theory T" such that SpXI" and C ¢ T".

Proof.

Let W be the closure of {C'} under disjunction. Then it is clear that T NW¥ = (). By 3
of Lemma 3.8, there exists a prime L-theory I" D I" such that I MW = (). Then it is easy
to check that SpXI" and C ¢ I". n

Lemma 3.10 If X is a prime L-theory such that OC ¢ X, then there exist prime L-theory
[ such that SpXT" and C ¢ T".
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Proof.

Let ' = {A | OA € ¥}. First we check that I" is an L-theory. Suppose that A, B € T.
Then OA, OB € Y. By the hypothesis, we can see that O(A A B) € ¥. Thus AAB €T.
Next suppose that L A — B and A €. Then L+ 0A4 — OB and OA € ¥. By the
hypothesis, we see that OB € X, so that B € I'. It is obvious that SpXI" and C' ¢ I'. By
Lemma 3.9, there exists a prime L-theory IV such that SoXI" and C' ¢ T". n

Using from Lemmas 3.8 through 3.10, we will be able to prove completeness theorem
for Lp. First, we define the canonical L-model (O., W, R., Sac, Soc, §e, Vz) as follows:

W, is the set of all prime L-theories

O, is the set of all regular prime L-theories

R, is the ternary relation R restricted to W,

Spoe is the binary relation Sg restricted to W,

Soe 1s the binary relation S¢ restricted to W,

ge is the unary operation on W, defined by ¢.(X) ={A| ~ A ¢ X}

V. is defined by

for all p € Propand ¥ € W,, X € V.(p) iff pe X.

As concerns V., =, denotes the relation determined uniquely from V..
We call (O, W,, R., Sac, Soc, gc) the canonical L-frame. The relations <., SE. and SZ,.
are defined as in Section 3.2. Note that if ¥ € W, then g.(X) € W..

Lemma 3.11 Let (O, W, R., Sa¢, Soe, ge) be the canonical Li-frame. Then for all ¥, T €
W, and n >0,

1. X< . Tff uCT,
2. SET iff for all A € WEf, of O"A € ¥ then A €T,
3. SEXU iff for all A € WEf, if A €T then OA € X.

Proof.

1. The ‘only if’ part is proved easily, so we prove the ‘if” part. Let © be the set of all
theorems of L. It is clear that © is an L-theory. Suppose that A — B € O and
A € X. Since ¥ is an L-theory, B € X, and hence B € I' by the hypothesis. So
ROYA. By 5 of Lemma 3.8, there exists a prime L-theory II O © such that RITXA.
It is obvious that II is regular.

2. The proof is by induction on n.

For n = 0, the claim trivially holds by the definition of Sh. and 1. So, we suppose
that n > 0. The ‘if’ part is proved as follows. Let A = {4 | O" 1A € ¥} and
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E={0A| A¢T} Toshow that L I/ A — =, assume the contrary. Then there
exist O" 1A, .- 0" '4A; € ¥ and By,---, B; ¢ T such that

Ll_Al/\"'/\Ak—)DBI\/"'\/DBl.
It follows that
LEO" A Ao A0 A, - OB V-V B).

Since ¥ is an L-theory, O"(B; V ---V B;) € ¥. By the assumption, we see that
BV ---V By € T', which contradicts the primeness of I'. Therefore L t/ A — =. By
2 of Lemma 3.8, there exist A’ D A and Z' D = such that (A’,Z') is an L-pair. By
1 of Lemma 3.8, A’ is a prime L-theory. Further, by the hypothesis of induction,
we see that S27'YA, and thus S2~!, X A’. Also, it is clear that Sy A'T. Therefore
SET by the definition of SE..

The ‘only if’ part is proved as follows. Suppose that SE.XI" and 0"A € ¥. From
the definition of SZ., there exists A € W, such that S%~!.¥A and Sp,Al'. By the
hypothesis of induction, we see that OA € A. Hence A € T

3. Analogous to 2. -

Lemma 3.12 The canonical Lg-frame (O., W,, R., Soe, Soc, gc) is an Lp-frame.

Proof.

1. Case in which Lp is R.Cqo.

To prove this lemma, it is sufficient to show that (O., W, R, So., Soc, g.) satisfies
all the postulates for an R.Cgo-frame. For (pl), (p4), (p7) and (p8), it is obvious
by 1 of Lemma 3.11, so we show other postulates.

(p2) Suppose that A — B € ¥ and A € ¥. Since ¥ is an R.Cge-theory, B € ¥.

(p3) Suppose that R.XT'A and R.AAE. Let ¥ = {B | 3A € A(A — B € X¥)}. First,
suppose that By, By € U. Then there exist A;, Ay € A such that Ay — B; € &
and Ay — B, € Y. Since X is an R.Cpe-theory, A; A Ay — By A By, € X,
Hence we have By A B, € W. Next, suppose that B € ¥ and R.Cpo F B — C.
Then there exists A € A such that A — B € ¥. Since ¥ is an R.Cns-theory,
A — C € X. Hence we have C' € U. Thus, ¥ is an R.Cge-theory.

To see that RYI'=, so suppose that A — B € ¥ and A € I'. Then there
exists C' € A such that C — (A — B) € X. Since ¥ is an R.Cpo-theory,
A— (C—B)eX, soC — BeA. Hence B € =.

By 5 of Lemma 3.8, there exists a prime R.Cge-theory ¥ D W such that
RY'T=. Then it is obvious that R, XAY' and R, V'T=.

(p5) Suppose that R.XTA. To see R.Xg.(A)g.(I'), suppose that A — B € ¥ and
A€ g.(A). Then ~ B -~ A € Y and ~ A ¢ A, so ~ B ¢ I". Hence
B € g.(T'), which is the desired result.
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(p6)

By (R13) and 5 of Theorem 2.1,
A€ gge(X)) iff ~Adg(Y) iff ~~AeX iff AeX.

2. Case in which Lg is R. K.

It is sufficient to show that (O., W, R, Sae, Soc, gc) satisfies all the postulates (p9)
through (p11) for an R.Kgo-frame.

(P9)

Suppose that there exists II € O, such that Sp III'. It is sufficient to show
that I" is regular. Let A be a theorem of R.Kns. Then R.Kqo - OA. Since I1

is regular, OA € II. By the assumption A € ', and thus I' is a regular prime
R.Kgs-theory.

Suppose that R.XT'=E and Sp.ZA. Let A={A|0A e X} and ¥ ={A|TJA €
I'}. First we have to show that A and U are R.Kqo-theories. This is similar
to the proof of Lemma 3.10. Then, it is clear that SpXA and SgI'V. To show
RAWA, suppose that A — B € A and A € . Then O(A — B) € ¥ and
OA € I'. Since ¥ is an R.Kge-theory, O0A — OB € X. By the assumption
OB € =, hence B € A by the assumption again.

By 5 and 6 of Lemma 3.8, there exist prime R.Kgo-theories A’ D A and ¥/ D ¥
such that RA'U’'A. Then it is clear that SpXA" and SoI'VU’. Hence there exist
AN, W' € W, such that Sp.XA’, So ¥ and R, AW'A.

Suppose that R.XTA and S XA, Let ¥ = {A | OA € I'}. Asin Lemma 3.10,
¥ is an R.Kno-theory such that SpI'W.

Next, let = = {B | JA € V(A - B € A)} and =, = {A | CA ¢ A}. As
in 1, = is an R.Kpe-theory such that RAVZ. To see that =; is closed under
disjunction, suppose that A, B € =;. Then CA, OB ¢ A. By the primeness of
A, OAVOB ¢ Al Since A is an R.Kge-theory, O(AVB) ¢ A, so AVB € =;.
This is the desired result.

Moreover, assume that B € ZNZ=;. Then there exists A such that A — B € A,
and OB ¢ A. By the assumption, we see that A € T" and ¢(A — B) € X.
Because R.Kpo F (A — B) — (DA — ©B) and ¥ is an R.Kpe-theory,
OA — OB € Y. We obtain that &B € A, which is a contradiction. Hence
By 3 of Lemma 3.8, there exists a prime R.Kgo-theory = D = such that
Z'NZE; = 0. Tt is clear that RAVZ’, so there exists a prime R.Kgo-theory
¥ D ¥ such that R.AY'Z" by 6 of Lemma 3.8. Then it is clear that Sg W',
Further, if A € =/ then A ¢ =, so CA € A. Hence So.AZ'.

3. Case in which Lz is R.C and R.K.

It is sufficient to show that (O, W, R, Sa¢, Soc, gc) satisfies the postulate (p12) for
an R.C-frame (R.K-frame). First, suppose that So.XI'. Moreover suppose that
OA € ¢g.(X). Then ~ OA ¢ 3, s0 & ~ A ¢ ¥ since ¥ is an R.C-theory (R.K-
theory). From the assumption we see that ~ A ¢ T, so that A € g.(T"). Therefore
Soege(X)ge(l).

Now suppose that Sn.g.(X)g.(T). Further suppose that A € T'. Then ~ A ¢ ¢.(T),
sod~ A ¢ g.(X) from the assumption. We now see that ~ O~ A € ¥, 50 CA € X
since ¥ is an R.C-theory (R.K-theory). Therefore S, XT. -
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Note that the canonical L-frame is not necessary an L-frame.

Lemma 3.13 Let (O., W, R., Sac, Soe, ey Ve) be the canonical L-model. For all A € Wff
and > € W,
YEA iff AeX.

Proof.
We proceed by induction on the length of A.

1. A is of the form p (p € Prop). It is clear by the definition of V..
2. A is of the form B A C.

Y= BAC iff ¥, Band ¥ . C
iff BeX¥ and C €X (induction hypotheses)
ift BANCeX (X is an L-theory).

3. A is of the form BV C.

YE.BVC iff S . BorX E.C
iff BeX or CeX (induction hypotheses)
ifft BvCeX (X is a prime L-theory).

4. Ais of the form B — C.

The ‘if” part is proved as follows. Suppose that B — C € X¥. Moreover we suppose
that R.XTA and ' =, B. By the hypothesis of induction, we see that B € T,
so C' € A. Hence A |=. C by the hypothesis of induction again. It follows that
Y. B—C.

The ‘only if” part is proved as follows. Suppose that B — C' ¢ Y. Then there
exist I, A € W, such that R.XTA, B € T and C' ¢ A by 8 of Lemma 3.8. By the
hypotheses of induction, I' =, B and A . C. Hence ¥ =. B — C.

5. A is of the form ~ B.

SE~B iff g(X) £ B
iff B¢ g.(X) (induction hypothesis)
iff ~BeX.

6. A is of the form OB.

The ‘if” part is proved as follows. Suppose that OB € ¥. In order to show ¥ =, OB,
suppose that Sg.XI'. Then B € I' by the first assumption. By the hypothesis of
induction, T" =, B. This holds for any T" such that Sg.XT". Thus ¥ = OB.

The ‘only if’ part is proved as follows. Suppose that OB ¢ Y. Then there exists a
prime L-theory T" such that Sp.XT" and B ¢ T by Lemma 3.10. By the hypothesis
of induction, I' f=. B. Hence ¥ . OB.
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7. A is of the form ¢B.

The ‘if’ part is proved as follows. Suppose that OB € ¥. Let ' = {A |L+ B — A}
and A = {A | OA ¢ ¥}. First we show that I' is an L-theory. Suppose that
A,A €. Then LB - Ajand LF B — Ay, so L+ B — A; A Ay. Hence
Ay N Ay € T'. Further suppose that Ay € ['and L+ A; — Ay. Then LF B — Aq,
soLFB — A,. Hence Ay € T.

As in Lemma 3.12, we see that A is closed under disjunction. Moreover, assume
that A€ TNA. Then LF B — A and ¢A ¢ X. Because L - OB — A and X is
an L-theory, OB ¢ ¥, which contradicts the assumption. Now, by 3 of Lemma 3.8,
there exists IV D I" such that I'NA = (). Suppose A € I". Then A ¢ A, s0 CA € X.
Hence So.XI". Further it is clear that B € I'. Thus B € [". By the hypothesis of
induction, IV |=. B. Therefore ¥ =, OB.

The ‘only if” part is proved as follows. Suppose that X . ©B. Then there exists
[' € W, such that Se.XT and ' . B. By the hypothesis of induction, B € T'. By
the definition of S¢., OB € X. -

Now we can state completeness of L.
Theorem 3.14 Lpg s complete with respect to the class of Lg-frames.

Proof.

Suppose that A is not a theorem of L g, then there exists a regular prime Lg-theory II
such that A ¢ I by 4 of Lemma 3.8. By Lemmas 3.12 and 3.13, the canonical Lg-model
(O, We, Re, Sticy Socy gey Ve) is an Lg-model. In this model, IT . A for some II € O,
which means that A is not valid in an Lpz-frame. -

3.4 Relevant modal matrices

In this section we define relevant modal matrices and show that they characterize relevant
modal logics. Further, we consider the truth-preserving operations of matrices. First, we
will present relevant matrices in terms of modified form of the ones by Font-Rodriguez
(see [17] and [18]).

Relevant matrices and R-matrices have been defined in Section 2.4. In the following,
we define relevant modal matrices. A structure (M,N,U,—,—,0,<O) is a De Morgan
modal semigroup (R.Cpe-algebra) if the following postulates hold for all z,y € M:

(A1) (M,N,U, —,—) is a De Morgan semigroup (R-algebra),
(A2) O(zx Ny) =0z N Oy,
(A3) Oz Uy) = Or U Oy,

It is clear that any De Morgan modal semigroup has the following postulates.

Proposition 3.15 Let (M,N,U, —, —,0,0) be an R.Cne-algebra. Then the following
properties hold for all x,y € M:

(P1) if x <y then Oz < Oy
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(P2) if <y then Oz < Oy.
Let M = (M,N,U, —, —,0,<). Then we say that

(a) (M, E) is an R.Cne-matriz if M is an R.Cpe-algebra and E is as in the definition
of relevant matrix.

(b) (M, E) is an R.Kne-matriz if M is a De Morgan modal semigroup satisfying the
following. For all z,y € M,

(A4) O(x — y) < Oz — Oy,
(A5) Oz — y) < Oz — Oy;

and if E is as in the definition of relevant matrix and satisfies the following:
(F4) if x € E then Oz € E, forall z € M.

(c) (M, E) is an R.C-matriz (R.K-matriz) if (M, E) is an R.Cpe-matrix (R.Kne-
matrix) satisfying

(A6) Cx=—-0—z, forallzeM

In the following, we consider the matrix characterizing L.

For any De Morgan semigroup (R.Cpe-algebra) M = (M, N, U, —, —, 0, ), a map-
ping v : Prop — M is called a wvaluation on M. Further, given a valuation v on M, a
mapping [ : Wff — M, called the interpretation associated with v, is defined as follows:

i. for p € Prop, I(p) = v(p)

ii. I(AANB)=I1(A)NI(B)
iii. I(AVv B)=I1(A)UI(B)
iv. [(A— B)=1(A) - I(B)
v. [(~ A)=—I(A)

vi. I(OA) = 0OI(A)

vil. T(OA) = OI(A).

Let (M, E) be an Lg-matrix, v be a valuation on M and I be the interpretation
associated with v. Then we say (a) A is valid in v iff I(A) € E, and (b) A is valid in
(M, E) iff A is valid in any v.

An Lg-matrix (M, E) is called an L-matriz if all theorems of L are valid in (M, E).

When Cy, is a class of matrices, we say that

(a) L is sound with respect to Cpq iff all theorems of L are valid in any matrix belonging
to CM,

(b) L is complete with respect to Cpq iff all formulas valid in any matrix belonging to
Cn are theorems of L,

(c¢) L is characterized by Cpq iff L is both sound and complete with respect to Cp.

By the definition of L-matrices, we have the following.
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Theorem 3.16 L is sound with respect to the class of L-matrices.

In considering soundness of Lp, we should note the following. To show that (O-
monotonicity) preserves the validity, for example, we must show that I(A — B) € E
implies I(JA — OB) € E. Suppose that I(A — B) € E. Then I(A) < I(B), so
I(OA) < I(OB) by (P1). By Lemma 2.10, we have that /(OA — OB) € E. When L
is a normal logic, to show that (Necessitation) preserves the validity, we must show that
I(A) € E implies [(OA) € E. This follows from (F4).

For the converse, we use well-known Lindenbaum’s method. Let [A]={B | L+ A <
B} and M, = {[A] | A € Wff}. Further, define the operations N, U, —, —, 0,< on M}, by

[AIN[B] =[ANB], [AJU[B]=[AV B], [A]—[B]=[A— B],

—[Al=[~ 4], BA]=[04], of4]=[oA].

Then it is clear that N, U, —, —, O and <& are well-defined. The Lindenbaum algebra for L
is the algebra My = (Mp,N, U, —, —, 0, <) defined above. Note that for all [A], [B] € M,
[A] <[B]iff L-F A — B.

Next, let Ef, = {[A] | L + A}. Of course, E, is also well-defined. Then the Lindenbaum
matriz for L is the matrix (M, Fp) defined by that Mp, is the Lindenbaum algebra for
L and that Ey, is as above. Then it is easy to see the following.

Lemma 3.17 The Lindenbaum matriz (My, EL) for L is an L-matriz.
The canonical valuation v, is defined by
ve(p) = [p], for all p € Prop.

Further, let I. be the interpretation associated with v.. By induction on the length of A,
we have the following easily.

Lemma 3.18 For any A € Wff, I.(A) = [A].

As in Theorem 2.14, we have the completeness result.

Theorem 3.19 L is complete with respect to the class of L-matrices.

Next, we deal with the truth-preserving operations on relevant modal matrices, in-
cluding submatrices, homomorphic images and subdirect products. Below, let (M, E)
and (M', E') be L-matrices, where M = (M,N,U, —, —, 0,<0) and M’ =
<Mla ﬂ, U7 T Da <>>

We say that (M, E') is a submatriz of (M, E) if (a) M' is closed under each operation
of M, and (b) E' = ENM'.

Theorem 3.20 Let (M', E') be a submatriz of (M, E). If A is valid in (M, E), then A
is valid in (M', E").
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Proof.
Suppose that A is not valid in (M', E’). Then there exists a valuation v' on M’ such
that I'(A) ¢ E’. For this v, define a valuation v on M by

v(p) = v'(p), for all p € Prop.

Then it is clear that I(B) = I'(B) for all B € Wff. So, we have I(A) ¢ E', and hence
I(A) ¢ Eor I(A) ¢ M'. Since I(A) € M', we have I(A) ¢ E. Therefore, A is not valid
in (M, E). u

We say that f is a homomorphism of (M, E) in (M, E') if f: M — M’ satisfies the
following equalities: for any z,y € M,

i fleny) = flz)Nfy)

ii. flxUy)=f(z)u[f(y)
iii. f(r —y)=f(z) = f(y)
iv. f(=2) == f(z)

v. f(Bz) =0f(z)

Note that if f is a homomorphism of (M, E) in (M’, E'), then
(1) f~HE')isafilterin M, and (2) EC fYE").

Since it is easy to see (1), we see only (2). Suppose that z € E. Then (y; — yl) —N(yn —
yn) < x, for yy, -+, y, € M. Since f is a homomorphism, (f(y1) — f(y1))N---N(f(yn) —
f(yn)) < f(z), so we have f(z) € E'. Therefore, z € f~}(E').

In particular, let f is a homomorphism of (M E) in (M', E'). Then it is easy to see
that (f(M), E' N f(M)) is a submatrix of (M', E"). So, (f(M), E' N f(M)) is called the
homomorphic image of (M, E') (under the homomorphlsrn f).

Homomorphic images have the following logical meaning.

Theorem 3.21 Let f be a homomorphism of (M, E) in (M', E"). If A is valid in (M, E),
then A is valid in the homomorphic image of (M, E) under f.

Proof.

Let f be a homomorphism of (M, E) in (M', E'). Then a homomorphic image of
(M, E) under fis (f(M), E'N f(M)). Suppose that A is not valid in (f(M), E'N f(M)).
Then there exists a valuation v' on M’ such that I'(A) ¢ E'N f(M). Since I'(A) € f(M),
we have I'(A) ¢ E'. Now define a valuation v on M by

v(p) € f 1(v'(p)), for all p € Prop.

Since f is a homomorphism, it is easy to see that I(B) € f~'(I'(B)), for all B € Wf.
Then we have f(I(A)) ¢ E', that is, I(A) ¢ f~'(E’). Since f is a homomorphism, we
have I(A) ¢ E. Hence A is not valid in (M, E). n

A homomorphism f of (M, E) in (M’, E') is called an isomorphism (or embedding) of
(M, E) into (M', E') if f is injective. Note that a homomorphism f is an isomorphism iff
f~YE") CE.
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Theorem 3.22 Suppose that there exists an isomorphism of (M, E) into (M',E'). If A
is valid in (M', E"), then A is valid in (M, E).

Proof.

Let f be an isomorphism of (M, E) into (M', E'). Suppose that A is not valid in
(M, E). Then there exists a valuation v on M such that [(4) ¢ E. Since f is an
isomorphism, we have I(A) ¢ f~'(E'), i.e., f(I(A)) ¢ E'. Now define a valuation v’ on
M’ by

v'(p) = f(v(p)), for all p € Prop.
Since f is an isomorphism, it is easy to see that I'(B) = f(I(B)), for all B € Wff. Hence
we have I'(A) ¢ E'. Therefore, A is not valid in (M', E'). n

Further, if an isomorphism f of (M, E) into (M, E'} is surjective, then it is called an
isomorphism of (M, E) onto (M', E"). In this case, we say that (M, E) is isomorphic to
(M', E') (under an isomorphism f). Note that f is bijective.

Lemma 3.23 (M, E) is isomorphic to (M', E") iff the homomorphic image of (M, E)
under the homomorphism [ of (M, E) in (M', E'Y which is injective is exactly (M', E").

Proof.

The ‘if’ part is proved as follows. Let f be a homomorphism of (M, F) in (M', E')
which is injective. First, suppose that z € f~'(E’). Then f(z) € E’, and hence f(z) €
E'N f(M) since E' = E'N f(M). By the assumption M' = f(M), so for yy,---,y, € M,
(F) = F) N1 (Fua) — Fl)) < flx). Since f is injective, wo have (y; —
y1) NN (y, = yn) < x. Hence x € E, which implies f~!(E’') C E. Further, since
M' = f(M), f is surjective. Thus, f is an isomorphism of (M, E) onto (M', E'). Hence,
(M, E) is isomorphic to (M', E').

The ‘only if’ part is proved as follows. Let f be an isomorphism of (M, E) onto
(M', E"). Since f is surjective, we have f(M) = M’ and E’' C f(M). So, E' = E'N f(M).
From above remark, it is clear that f is injective. Therefore, the homomorphic image of
(M, E) under the homomorphism f of (M, F) in (M’, E') which is injective is exactly
(M', E"). -

In the light of Lemma 3.23, by Theorems 3.21 and 3.22 it is easy to see the following.

Theorem 3.24 Suppose that (M, E) is isomorphic to (M',E'). Then A is valid in
(M, E) iff it is valid in (M', E").

Given a family {M; = (M;,N,U, —, —, 0, O) | i € I'} of De Morgan modal semigroups,
the direct product of {M; | i € I'} is the matrix

HMz = <H Mi; U, =, —, 4, <>>7

el el

where (a) [T;c; M; is the set of all functions f from I into U;c; M; such that f(i) € M;
and (b) for every f, f' € [l;c; M; and every i € I,

i (fN @) = feE)n @)
i. (fU)6)=fEu i)
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ii. (f = f)() = @) = f'(0)
iv. (=f)(@) =—f()
v. (B)) = Bf ()
vi. (Of)(1) =<f(9).

Given a family {(M;, E;) | i € I} of L-matrices, the direct product of {(M;, E;) | i € I}

is the matrix
<H Mi’ H El>7
icl iel

Where Hie] MZ = <Hi€[ Mi7 ma U7 _>7 ) Da <>>
Proposition 3.25 [I,c; E; is the filter generated by {f — f | f € [Lier M;}.

Proof.

First, suppose that f, f’ € [I;c; E;. Then we have f(i), f'(i) € E; for each i € I. Since
E; is afilter, f(i) N f'(i) € E;, so (f N f)(i) € E;. Thus, f N f' € [cr Ei-

Next, suppose that f € [I;c; E; and f < f'. Then f(i) € E; and f(i) < f'(i) for each
i € I. Since F; is a filter, f'(i) € E;. Thus, f' € [Lcr Ei.

It remains to show that [];c; E; is the least filter containing {f — f | f € [Tier M;}-
Let F be any filter containing {f — f | f € ILie;r M;}. Suppose that f" € [l;c; E;.
Then f'(i) € E; for each i € I. Since E; is the filter generated by {z — x | © € M,},
we have (z1 — z1)N---N (z, = x,) < f'(¢). Now putting z; = f;(i), we see that
(fi = fon---n(fn = fu) < f'for fi,---, fu € lics M;. So, we have f' € F, which is
the desired result. -

Theorem 3.26 Suppose that ([Tic; My, [Licr Fi) is the direct product of {(M;, E;) | i € I}.
Then A is valid in every (M;, E;) iff A is valid in ([T;er My, [Licr Es)-

Proof.

The ‘only if” part is proved as follows. Suppose that A is not valid in (TT;c; M, [1;cr Ei)-
Then there exists a valuation v on [];c; M; such that I(A) ¢ [I;c; Ei. So, there exists
j € I such that (I(A))(j) ¢ E;. Now we define a valuation v; on M; by v;(p) = (v(p))(4)
for all p € Prop. Then it is clear that [;(B) = (I(B))(j) for all B € Wff. Thus, we have
I;(A) ¢ E;. Therefore, A is not valid in (M, Ej;).

The ‘if’ part is proved as follows. Suppose that there exists j € I such that A is not
valid in (M, E;). Then there exists a valuation v; on M; such that I;(A) ¢ E;. Now we
define a valuation v on [[;c; M;. by v(p) = [Tic; vi(p) for all p € Prop. Then it is clear
that I(B)(i) = I;(B) for all B € Wff and i € I. Thus, we have I(A)(j) ¢ E;, and hence
I(A) ¢ Tl;cr Ei. Therefore, A is not valid in (JT;c; My, [1;er Ei)- -

3.5 Conservative extensions

On closing this chapter, we show that any of our basic relevant modal logic is a conservative
extension of R. We have the following result.

Theorem 3.27 Any of R.Coo, R. Koo, R.C or R.K is a conservative extension of R.
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Proof.

We show that R.Cp is a conservative extension of R as follows. Suppose that a non-
modal formula A is not a theorem of R. Then there exists an R-model (O, W, R* V)
and a € O such that a £ A by Theorem 2.6. We define (O', W' R, S5, S4,*, V') by

o (O, W' R,* V'}isjust (O,W,R*,V).
e fora,b e W', SLabif be O ora<b
o fora,be W', SLabiff b* e Oorb<a

Then it is easy to see that (O, W', R, S§, S%,*, V') is an R.Cge-model, and thus a € O’
and a [£ A. Hence A is not a theorem of R.Cne. For other case, the proof is similar. g

3.6 Notes

For Section 3.1, R.Cpy is the generalization of a conjunctively regular modal logic in [19].
Dependent relevant modal logics over R have been often discussed as in Sections 3.2 and
3.3. However, there is no work on independent relevant modal logics over R. For Section
3.4, our algebraic argument using matrices is modal extensions of [17] and [18]. On the
other hand, relevant modal algebra was dealt in [10].

Also, truth-preserving operations of frames and matrices in relevant modal logics have
not been discussed before. However, the idea of relevant modal p-morphisms essentially
appeared in [58] and [10]. A.Urquhart introduces this notion to (non-modal) relevant
logics in order to show the duality between relevant algebras and relevant spaces, which is
quite similar to frames for relevant logics. After that, it was extended to relevant modal
logics by S.A.Celani ([10]).
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Chapter 4

(General frames

In this chapter, we introduce general frames for relevant modal logics and investigate their
basic properties, including the duality theory, descriptive frames and truth-preserving
operations. This chapter shows that in most cases general frames for relevant modal
logics have the same properties as those of classical modal logics. Further, we introduce
D*-elementary and D-persistent logics, which will be discussed in the next section.

Below, &,=,<,V and 3 are used to denote respectively conjunction, implication,
equivalence, universal and existential quantifiers in the metalanguage. Terminologies and
notations follow those in [11].

4.1 General frames

Before introducing general frames, it is necessary here to discuss the adequacy of including
both empty set () and Wff among prime L-theories. As a consequence of our Sahlqvist
theorem in Section 5.1, we can show that some of superclassical relevant modal logics,
i.e., relevant modal logics over superclassical relevant logic KR, are complete. To make
this possible, we need to include () and Wff among L-theories and make explicit use of
them. In fact, in Section 5.5 of [48], the notion of enlarged frames is introduced in order
to treat this problem.

Following [48], in the rest of the present thesis, we assume that for every L-frame
F = (O,W, R, Sn, So,* ), there exist elements e, called the null world, and u, called the
universal world, in W which satisfy the following definition and postulates for all a,b € W:

def
uw= e, ue

if Ruab, then a =eorb=u
eFu

Spee

if Snua then a = u

if Sgea then a = ¢

epb) Souu.

Every L-frame satisfies the following postulates:

(1) Reue and (2) e<a<u, forall acW.
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A waluation V on F must satisfy also the following conditions: for all p € Prop,
e ¢ Vip) and u e V(p).

Then by induction on the length of A, we see that e = A and u = A, for all A € WIf.
In the canonical L-frame (O., W, R, Sa., Soc, gc), prime L-theories () and WFf are
taken for e, and wu., respectively.

For a given L-frame (O, W, R, S, So,*), let Up(W)t ={X C W | X #0 & X #
W & Va¥b(a € X & a < b= b € X)}. Then note that in the definition of Up(WW)™,
conditions X # () and X # W are equivalent to conditions u € X and e ¢ X, respectively.
A general L-frame is a 7-tuple § = (O, W, R, S, So,*, P) where

(a) (O,W, R, Sn, So,*) is an L-frame, written by kg,

(b) P, called a set of possible values in §, is a non-empty subset of Up(WW)™ closed under
N, U and the operations —, —, O and < defined as follows: for all X,Y C W,

e X Y ={acW |VVc(Rabc & be X = c€Y)}
o X={aecW]|a" ¢X}

e OX ={aeW |Vb(Saab=be X)}

e OX ={aecW |3I(Seab & b e X)}.

Let § = (O,W, R, Sp, So,*, P) be a general L-frame. We call a 8-tuple
(O,W,R, Sa, So,*, P,V) an L-model on §, where (a) § = (O, W, R, Sq, So,*, P) and (b)
V' is a mapping from Prop to P, called a valuation on §, i.e., V(p) € P for all p € Prop.
Further, a relation = between W and WIf is defined as in Section 3.2. Thus, a general
L-frame § with P = Up(W)™ is essentially equal to x§.

Then we write V(A) = {a | a E A} for all A € Wff. Further, we write § = A if for
any valuation V' on a frame § = (O, W, R, S, So,*, P) and for all a € O, a = A. Also,
we write § = L if for all theorems A of L, § = A.

The matrix (P,N,U, —, —, 0,0, 0%) is called the dual of §F, which is denoted by F+,
where (P,N,U, —, —, 0, ) is defined above and Ot ={X € P | O C X}.
Then we have the following.

Theorem 4.1 The dual of a general Lg-frame is an Lg-matriz.

Proof.

1. Case that Lp is R.Co

It is sufficient to see (Al) through (A3), and (F1) through (F3). For (Al), it is
sufficient to see (DMS1) through (DMS6).

(DMS1) We must see (DML1) through (DML3). (DML1) is obvious. To see (DML2),
suppose that X C =Y and a € Y. Then a* ¢ —Y, so a* ¢ X. Hence a € —X.
Therefore, ¥ C —X. Next, to see (DML3), suppose that a € — — X. Then
a* € X,s0a € X by (p6).
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(DMS2) Suppose that a € X — (Y — Z). To see that a € Y — (X — Z), suppose
that Rabc, b € Y, Red'l and o' € X. By (p3), there exists d € W such that
Raa'd and Rdbb'. Then we have b’ € Z, which is the desired result.

(DMS3) Suppose that a € X. To see that a € (X — Y)NZ — Y, suppose that Rabc
and b € (X — Y)NZ. Then we have b € X — Y. Further, Rbac by (t1), so
c € Y, which is the desired result.

(DMS4) Suppose that a ¢ —X. Then o* € X. By (t5), Raa*a, so a ¢ X — —X. This
is the desired result.

(DMS5) Suppose that a € X — Y. To see that a € —Y - — X, suppose that Rabc and
b€ —Y. Then we have b* ¢ Y and Rac*b* by (p5). Thus ¢* ¢ X, so c€ —X.
This is the desired result.

(DMS6) Suppose that a ¢ Z. If b € O, Rbed and ¢ € X, then we have d € X.
So, b € X — X. Similarly, we have b € Y — Y, for any b € O. Hence
be (X - X)n(Y = Y), for any b € O. Since Razxa, we have a ¢ (X —
X)NnYy —=Y)—>Z.

For (A2) and (A3), the proofs are done in the same way, so we prove only (A2).
The proof is as follows:

aceOXNY) iff Vb(Spab=>be XNY)
ifft Vb(Spab = b€ X) & Vb(Spab =z €Y)
iff ac0X &aedY
iff « € 0XNOY.

In the following, we show that O is the filter generated by {X — X | X € P}.

First, suppose that X, Y € P. Then O C X and O C Y, s0 O C X NY. Hence
X NY € Of. Moreover, suppose that X € Ot and X C Y. Then O C X, so
O CY. HenceY € OT.

Finally, let F' be any filter containing {X — X | X € P}. Suppose that Y € O™.
Then O C Y. Further, since Y C (Y - Y) - Y, we have O C (Y - Y) — Y.
Now assume that Y — Y Z Y. Then there exists b € W such that b € Y — Y and
b¢ Y. By (pl), there exists a € O such that Rabb, so a ¢ (Y — Y) — Y. This is
a contradiction, so Y — Y C Y. Since Y — Y € F, we have Y € F. This shows
that O7 is the least filter containing {X — X | X € P}.

2. Case that L is R. K.

It is sufficient to check (A4) and (A5) and (F4). For (A4), suppose that a €
O(X — Y). To show a € OX — OY, suppose that Rabc and b € OX. Moreover
suppose that Sped. By (pl0), there exist a/,0' € W such that Spad’, Spbb’ and
Ra't'd. Then a' € X — Y and V' € X, so d € Y. This is a desired result. Hence
O(X —Y) COX — 0OY. For (A5), we may argue in a similar way.

For (F4), suppose that X € Ot. To show OX € O™, suppose that a € O and Snab.
Then O C X and b € O by (p9), so b € X. Hence a € OX. Therefore, O C OX,
which is the desired result.
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3. Case that L is R.C and R.K.
It is sufficient to check only (A6). The proof is as follows:

a € 0X iff Vb(Spab= b€ X)
iff Vb(Soa'ht = b* ¢ —X)
iff at¢ O — X
iff ae-C—-X.
n

Theorem 4.2 Let § be a general Lig-frame. Then, A is valid in § iff A is valid in F+.

Proof.

Let § = (O,W, R, Sq, So,*, P). The ‘if’ part is proved as follows. Suppose that A
is not valid in §. Take a model on § such that a = A for some a € O. Now define a
valuation v on §* by

vt(p)={a €W | akEp}, for all p € Prop.

By the hereditary condition, v™(p) is upward closed. Further, by induction on the length
of B, we see easily that a € IT(B) iff a = B, for all a € W and B € Wff. Then we see
that a ¢ I (A). So, we have O € I*(A), which means that I*(A) ¢ O". Thus, A is not
valid in 7.

The ‘only if’ part is proved as follows. Suppose that A is not valid in §*. Take a
valuation v on §* such that IT(A) ¢ OT. Then there exists a € O such that a ¢ I (A).
Now define a valuation V' on § by

V(p) =v"(p), for all p € Prop.

Since v (p) is upward closed, V satisfies the hereditary condition. Further, by induction
on the length of B, we see that V' (B) = I'*(B), for all B € Wff. Then we have a £ A, so
A is not valid in §. -

By Theorem 4.2, we have the following.
Theorem 4.3 The dual of a general L-frame is an L-matriz.

General L-frames § = (O, W, R, S, So,*, P) and § = (O',W' R, S, S.,,*', P') are
isomorphic if there is a bijection f from W to W' such that

6 aEOlfff()EO'
7) X e Piff f(X)e P,

1) Rabe iff R'f(a)f(b)f(c)
2) Spab iff S, f(a)f(b)
3) Seab iff S, f(a)f(b)
4) f(a”) = ( (a))”
5) [fle) =
)
)
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for all a,b,c € W, for the null worlds e € W and ¢’ € W', and for all X C W.

Given an L-model M = (O, W, R, S, So,*, V), the general L-frame § =
<O, W, R, Sq, So,*, P> with
P={V(4)| Aec W}

is called the general L-frame associated with M.

The general frame associated with the canonical L-model M, =
(Ocy We, Re, Stic, Socy Gey Ve, is denoted by v§. = (O., W,, R., Soe, Soc, §e, Pe). We will
call v§. the universal L-frame. The canonical L-frame is obtained from the universal
L-frame v§. by omitting P..

Theorem 4.4 The Lindenbaum matriz (My, Er) for L is isomorphic to y§7, where the
map f defined by
f([4]) = V.(4), for every A € WFf

1 an isomorphism.

Proof.

First of all, we will show that f is bijective. It is clear that f is surjective by the
definition of P.. So, we show that f is injective. Suppose that [A] # [B]. Then Lt/ A <
B. By 4 of Lemma 3.8, there exists Il € O, such that A <» B ¢ II. Then Il £, A <> B
by Lemma 3.13. This implies that V,.(A) # V.(B), that is f([A4]) # f([B]).

Next, we will show that f preserves each operations of M. Let ¥ € W..

1.

S e fJAN[B]) iff S eV.(AAB)
iff Y, AAB
if Sk A& B
iff ¥ evV,(A) &Y eV,(B)
ifft ¥ e f([A]) N f([B)).

2. Asin 1, we see that f([A]U[B]) = f([A]) U f([B]).

3. First, suppose that ¥ € f([A] — [B]). To show that ¥ € f([A]) — f([B]), suppose
that R.XTA and I' € f([A]). Then ¥ = A — B and I' = A, so A =, B. This
means that A € f([B]), which is the desired result.

Next, suppose that 3 ¢ f([A] — [B]). Then X (£, A — B, so there exist ', A € W,
such that R.XT'A, T' =, A and A [~. B. Hence we have I' € V.(A) and A ¢ V,(B),
which mean that I' € f([A]) and A ¢ f([B]). Therefore, ¥ ¢ f([A]) — f([B]).

4. ¥ e f(-[A]) Hf e~ A go(3) oo A iff go(X) ¢ Ve(A) iff ¥ € —f([4]).

5. First, suppose that ¥ € f(d[A]). To show that ¥ € Of([A]), suppose that Sp.XT.
Then ¥ =, OA, soI' =, A. This means that I € f([A]), which is the desired result.

Next, suppose that 3 ¢ f(0O[A]). Then X [, OA, so there exists I' € W, such that
SoeXl and ' J£. A. Then we have I' ¢ V,(A), and hence ¥ ¢ Of([4]).
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Y e f(O[A]) iff T 0A
iff I (S6.ST & T = A)
iff I (S6.ST & T € V,(A))
iff ¥ e of([A)).

Applying our arguments on duality to frames, we get the similar results by changing
P to Up(W)™.

4.2 Duality of matrices

In this section, we consider the dual of matrices. For non-modal part with constants,
A.Urquhart have introduced relevant spaces as the dual of relevant algebra in [58]. Fur-
ther, S.A.Celani investigates modal extension in [10]. Here we show the similar result
on relevant modal matrices to Urquhart’s one on relevant algebras. In general, the argu-
ment in dual algebra uses the notion of prime filters, which we follow here. To do so, we
introduce the notion of the relations of filters and investigate their properties.

As concerning the introductions of e and u in Section 4.1, we assume that both () and
M are regarded as prime filters and prime ideals.

Let (M, E) be an L-matrix, where M = (M, N, U, —, —, 0, ). Let Fyp be the set of
all filters in M. Now, we define a ternary relation R on Fy, and binary relations Sg and
So on Fyg, as follows. For all Vi, V,, V3 € Fy:

RV V,V3 iff forallz,ye M,if v -y €V, and x € V, then y € V3

SoV1Vy iff forall z € M, if Oz € V; then z € V,
SeV1Vy iff forall x € M, if x € Vy then Cx € V5.

In the following, we see that relations R, S, S¢ on Fyp are restricted to those on a
class of prime filters.

Lemma 4.5 Suppose that Vi and Vo are filters and V3 is a prime filter such that
RV ,V,V3. Then there exists a prime filter V| 2 V1 such that RV|V,V3.

Proof.

Let A = {x | Jy € Vo3z ¢ Vi(z <y — 2)}. First, suppose that z1,25 € A. Then
there exist yi,yo € Vay and 21,20 ¢ V3 such that 21 < y; — 2z; and xs < yp — 25, It
follows that x1 Uz < y1 Nys — 21 U 25. Since V, is a filter, y; Ny € Va. Since V3 is
prime, z; U 2y ¢ V3. Hence x; Uxy € A. Next, suppose that zo € A and z; < 5. Then
there exist y € Vy and z ¢ V3 such that zo <y — 2. It follows that z; < y — 2, so
1 € A. Therefore, A is an ideal.

Assume that x € Vi N A. Then there exist y € V, and z ¢ V3 such that 2 <y — 2.
By the assumption, y — z ¢ V. Since V; is a filter, x ¢ V;. This is a contradiction.
Hence Vi NA = (.
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By 1 of Lemma 2.7, there exists a prime filter V} O V; such that Vi N A = (. Now
suppose that x — y € V] and x € V,. Then x — y ¢ A, so y € V3. Therefore,
RV&VQV:; |

Lemma 4.6 Suppose that Vi and Vo are filters and V3 is a prime filter such that
RV ,V,V3. Then there exists a prime filter Vi, 2O V4 such that RV, V,V3.

Proof.

Let A ={z | Jy ¢ V3(x — y € V;)}. First, suppose that x1, x5 € A. Then there exist
y1,y2 ¢ V3 such that z; — y1, 22 — y2 € V4. Since V; is a filter, x; Uzy — y; Uys € V.
Since V3 is prime, y; U ys ¢ V3. Hence 27 Uz, € A. Next, suppose that xo < z; and
x1 € A. Then 21 — y < 25 — y, and there exists y ¢ V3 such that z; — y € V;. Since
V. is a filter, zo — y € V. Hence x5 € A. Therefore, A is an ideal.

Assume that z € Vo N A. Then there exists y ¢ V3 such that + — y € V;. By the
assumption, we have z ¢ Vo, which is a contradiction. Hence Vo N A = ().

By 1 of Lemma 2.7, there exists a prime filter V, D V5 such that V, N A = (). Now
suppose that  — y € V; and = € V,. Then = ¢ A, so y € V3. Therefore, RV V,V3. n

Lemma 4.7

1. Suppose that V is a prime filter and V1,V are filters such that RNV Vs and
y & Vy. Then there exist prime filters V' and V', such that RVV',V),, Vi C V)
and y ¢ V.

2. For a prime filter V such that x — y ¢ V, there exist prime filters Vi and Vo such
that RVV1V2, T € Vl and Yy ¢ Vg.

Proof.

1. Let A be the ideal generated by {y}. Assume that z € Vo N A. Then z < y. Since
V, is a filter, y € V,. This is a contradiction. Hence Vo, N A = (). By 1 of Lemma
2.7, there exists a prime filter V), D V; such that VL, N A = (). Since y € A, we
have y ¢ V). It is obvious that RVV,V), so there exists a prime filter V| O V,
such that RVV/| V), by Lemma 4.6.

2. Let V; be the filter generated by {z}, and let Vo, = {y | 32 € Vi (z —» y € V)}. To
show that Vj is a filter, suppose first that y;, y2 € V5. Then there exist 2z, 2o € V;
such that z; — y; € V and 2o — y» € V. Since V and V; are filters, z; N 2, € V;
and 2y N2y — y1 Nys € V. Hence, y; Ny, € V. Secondly, suppose that y; € V,
and y; < yo. Then there exists z € V; such that z — y; € V. Since V is a filter
and z — y; < z — Yo, 2 — yo € V. Hence, y, € V3. Therefore, V, is a filter.
Further, it is clear that V, satisfies RVVV,. Assume that y € V,. Then there
exists z € V; such that z — y € V. So, we have x < 2, and hence z — y <z — y.
Since V is a filter, v — y € V. This contradicts the assumption. Hence y ¢ V.

By 1, there exist prime filters V/{ and V, such that RVV|V),, V, C V| and y ¢ V,,.
Then it is obvious that z € V. n
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Lemma 4.8

1. Suppose that ¥V is a prime filter and V1 is a filter such that SoVV, and © ¢ V.
Then there exists a prime filter V' such that SoVV' and x ¢ V.

2. For a prime filter V such that Ox ¢ V, there exists a prime filter Vi such that
SoVV,i and x ¢ V.

Proof.

1. Let A be the ideal generated by {x}. Assume that y € Vi N A. Then y < x. Since
V, is a filter, x € V;. This contradicts the assumption. Hence Vi N A = (. By 1 of
Lemma 2.7, there exists a prime filter V| O V; such that V{ N A = (. It is obvious
that SoVV/. Further, we have z ¢ V| since z € A.

2. Let V; = {y | Oy € V}. First, suppose that y,z € V;. Then Oy, 0z € V. Since V
is a filter, Oy N0z € V. By (A2), O(yNz) € V. Hence y Nz € V;. Next, suppose
that y € V; and y < 2. Then Oy € V and Oy < Oz. Since V is a filter, we have
Oz € V. Hence z € V. Therefore, V; is a filter. It is obvious that S;VV; and
x ¢ Vi. By 1, there exists a prime filter V} D V; such that SoVV| andz ¢ V| . m

Lemma 4.9 For a prime filter V such that Ox € V, there exists a prime filter Vi such
that SoVVy and x € V.

Proof.

Let V; be the filter generated by {z}, and let A = {y | Oy ¢ V}. First, suppose that
Y,z € A. Then Oy, Oz ¢ V. Since V is prime, Oy U<z ¢ V. By (A3), O(yUz) ¢ V.
Hence y Uz € A. Next, suppose that y € A and z < y. Then Gy ¢ V and &z < Oy
Since V is a filter, Oz ¢ V. Hence z € A. Therefore, A is an ideal.

Assume that y € Vi NA. Then x < y and Oy ¢ V, so Ox < Oy. Since V is a filter,
Oz ¢ V. This contradicts the assumption. Hence Vi N A = ().

By 1 of Lemma 2.7, there exists a prime filter V| D V; such that Vi N A = (). Now
suppose that y € V|. Then y ¢ A, so Oy € V. Therefore, S, VV/. It is obvious that
S V’l ]

For an L-matrix (M, E), where M = (M, N, U, —, —, 0, ),
<M7 E>+ = <OM7 WM7 RM7 51I:IM7 SQM; am, PM>
is, called the dual of (M, E), defined as follows:

(a) W is the set of all prime filters in M,
(b) Om={V eWn | ECV}
(c) R is the restriction of R to Wy
(d) Som is the restriction of Sg to Wiy
)
) 9

e) Sowm 1s the restriction of Se to Wy

(
f) gm(V)={z e M| —x ¢V}, for Ve Wy
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(g) em =0.
(i) Pm = {fm(x) | © € M}, where fyp : M — Up(Wy)* is defined by fy(z) =
{VeWy |zeV}

Of course, <yp is defined by

Vi <MmVy iff  there exists V € Oy such that Ry V'V V.

Lemma 4.10 For each Lg-matriz (M, E), (O, W, Rum, SoMm, Som, 9m) @8 an
Lp-frame.

Proof.
1. Case in which Lp is R.Cqo.

Before we check all postulates, we show that <y is regarded as C. First, suppose
that for any prime filters V; and V,,V; C V5. To show that REV V5, suppose
that + - y € E and x € V. Then x < y. Since V; is a filter, y € V. So, we
have the desired result. By Lemma 4.5, there exists a prime filter V O E such that
RVYV V5. Therefore, there exists V € Oy such that RyyVVi V.

For the converse, suppose that there exists V € Oy such that Ry V'V Vs, Further,
suppose that x € V;. Then £ C V, so v — = € V, and hence © € V,. Therefore,
Vi C V,.

In the following, we will check postulates (pl) through (p8). For (pl), (p4), (p7)
and (p8), it is obvious from above argument.

(p2) Suppose that x — y,z € V. Since (z — y) Nz < y, we have y € V. Therefore,
RMVVV.

(p3) Suppose that RyViVeVy and RyVsVyVs. Let V = {y | 3z € Vy(z —
y € Vi)}. Asin 2 of Lemma 4.7, V is a filter such that RV,;V,V. Now,
suppose that x — y € V and x € V,. Then there exists z € V, such that
z = (r — y) € Vi, and hence © — (2 — y) € V. By the hypothesis,
2z — 1y € V3, 80y € V5. Hence RVV,V5. By Lemma 4.5, there exists a prime
filter V' O V such that RV'V,V5. Therefore, there exists V' € Wy such that
RMV1V4VI and RMVIVQVE).

(p5) Suppose that RypViVeVs. Further, suppose that x — y € V; and = €
gm(V3). Then —y — —z € Vy and —z ¢ V3, s0 —y ¢ Va. Hence y € gm(Va).
Therefore, RpmVigm(Vs)gm(Va).

(p6) Forall z € M, z € gm(gm(V)) iff —z € gm(V) iff — —2 € Viff z € V.

2. Case in which Lg is R. K.
It is sufficient to check postulates (p9) through (p11).

(p9) Suppose that V; € Oy and SamV1Va. Further, suppose that © € E. Then
Oz € E. Since E C V4, Oz € V4. So, we have © € V5, and hence F C V.
Therefore, Vo, € Oy
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(p10) Suppose that RyV1VaVs and SomVisVy. Let Vs = {z | Oz € V;} and
Ve = {z | Oz € V3}. Asin 2 of Lemma 4.8, V5 and Vj are filters such
that SopV V5 and SpVyVg, respectively. Now, suppose that © — y € V5 and
x € Vg. Then O(z — y) € Vy and Oz € V,. By (A4), Or — Oy € Vy, so
Oy € V3, and hence y € V4. Hence RV5VV,. By Lemmas 4.5 and 4.6, there
exist prime filters Vi O V5 and V§ O Vg such that RViV{V,. Therefore,
there exist Vi, Vi € Wy such that SoyViVy, SomVaeVy and Ry VEiVEV,.

(p11) Suppose that RyV1VaVs and SopmViVy. Let Vs = {z | Oz € Vy}, Vg =
{y |z € Vs(xr - ye Vy},and A = {x | Oz ¢ V3}. As in Lemmas 4.8, 4.7
and 4.9, Vj is a filter such that SpV,Vs, Vg is a filter such that RV,V5Vs
and A is an ideal.

Assume that y € VgNA. Then there exists x € V5 such that z — y € V4, and
Oy ¢ V3. Then Oz € Vy and O(x — y) € Vy. Since Oz — y) < Oz — Oy,
Oy € Vs, This is a contradiction. Hence Vg N A = ().

By 1 of Lemma 2.7, there exists a prime filter Vi O Vg such that Vi N A = ().
It is clear that RV,V;5Vyg, so there exists a prime filter Vi O V5 such that
RV ,VLV§. It follows that SpV,Vi. Now suppose that € Vi. Then = ¢ A,
so Oz € V3. Hence S, V3Vy. Therefore, there exist Vi, Vi € Wy such that
RMV4V3V%, SDMVQVg and SQMV3Vg

3. Case in which Lg is R.C and R.K.

It is sufficient to check postulate (p12). First, suppose that SenmViVa. Further,
suppose that Oz € gy (V). Then —Ox ¢ Vi, s0 O — 2z ¢ V. Hence —z ¢ Vs, so
z € gm(Va). Therefore, Somgm(Vi)gm(Va).

For the converse, suppose that Sopgm(Vi)gm(Ve). Further, suppose that = € V.

Then —x ¢ gm(Vsa), so O —x ¢ gm(Vy). Hence —O — x € Vy, so Oz € V.
Therefore, SQMVIVQ. |

Lemma 4.11 Every set X € Py is upward closed in (On, W, Rum, Som, Som, 9Mm), i-€.,
ifVeX andV <MV, then V' € X.

Proof.
Let X € Py. Then X = fy(z) for some x € M. Suppose that V € X and V < V',
Then x € V, so € V'. This is just V' € fy(z), which is the desired result. -

Lemma 4.12 Py is closed under —, —, O and <.

Proof.
Let fm(z), fm(y) € Pum for some z,y € M.

1. First, suppose that V € fy(z — y). To show that V € fy(z) — fm(y), suppose
that R\VVVy and Vi € fp(z). Then 2 — y € V and © € Vi, so y € Va. This
is just Vy € fam(y), which is the desired result.

Next, suppose that V ¢ fy(z — y). Then © — y ¢ V. By 2 of Lemma 4.7, there
exist V1,Vy € W such that RV Vy, 2 €V, and Yy ¢ V3. Then V,; € fM(l‘)
and Vo ¢ fum(y). Hence V ¢ fyv(x) = fv(y).
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2. Ve fu(—x)iff —v e Viff v ¢ gm(V) iff gm(V) ¢ fu(e) if V€ —fu(2).

3. First, suppose that V € fy(Ox). To show that V € Ofy(x), suppose that
SomVVi. Then Oz € V, so x € V;. This means that V; € fy(x), which is
the desired result.

Next, suppose that V ¢ fy(Oz). Then Oz ¢ V, so there exists Vi € Wy such
that SoMVVy and = ¢ Vi by 2 of Lemma 4.8. Hence we have V| ¢ fn(z), so

4. Using Lemma 4.9,

Ve fu(Cx) iff Gz eV
iff AV, € Wn(SomVVy & z € V)
iff IV, € Wm(SomVVi & Vi € ful(z))
iff Veofu().

From Lemmas 4.10 through 4.12, we have the following.

Theorem 4.13 Let (M, E) be an Lg-matriz. Then the dual (M, E), of (M, E) is a
general Lg-frame.

Then we have the representation theorem.

Theorem 4.14 Every L-matriz (M, E) is isomorphic to (M, E) )" under the isomor-
phism fu.

Proof.

First of all, we will show that fyg is bijective. It is clear that fyg is surjective, so we
see that fyp is injective. Suppose that x # y. Then either © £ y or y £ z. Without loss
of generality, we discuss only the case in which x £ y. By 3 of Lemma 2.7, there exists a

prime filter V such that x € V and y ¢ V. So, we have V € fy(x) and V ¢ fum(y), and
hence fam(z) # fm(y).

It remains to show that fyp preserves each operation of M. Since any element of
fm(z) must be a prime filter, it is easy to see that fy(z Ny) = fm(z) N fm(y) and
fm(zUy) = fm(x) U f;m(y). For other operations, we have proved in Lemma 4.12. g

In general, we note that there exists an isomorphism f of (M, E) into
(Up(Wy) T, nyU, —,—, 0,0, (Om) ™). In this case, f is not necessary surjective. So,
when we take general frames for the dual of matrices, a matrix is isomorphic to its bidual.

From Theorems 4.14 and 4.2, we have the following.

Theorem 4.15 Let (M, E) be an L-matriz. Then, A is valid in (M, E) iff A is valid in
<M7 E>+

Proof.

By Theorem 4.13, (M, E), be a general Lp-frame. Further, by Theorem 4.2, A is
valid in (M, E), iff A is valid in ((M, E),)*. From Theorem 4.14, we have the desired
result. [ ]
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Note that for an L-matrix (M, F), if A is valid in (On, W, R, Soms Soms 9um), then
A is valid in (M, E).

From Theorems 4.13 through 4.15, we have the following.

Theorem 4.16 Let (M, E) be an L-matriz. Then the dual (M, E), of (M, E) is a
general L-frame.

There is the relationship between the dual of the Lindenbaum matrices and the uni-
versal frames.

Theorem 4.17 The dual (My, EL). of the Lindenbaum matriz for L is isomorphic to
the universal L-frame v3§..

Proof.
Define a mapping f : Wy, — W, by

F(V) = {A € WFf | [A] € V1.

First, we will show that f is bijective. Taking ¥ € W,, ¥ is a prime L-theory. Let
V ={[A] € M | A € £}. Then it is easy to show that V is a prime filter in My, i.e.,
V € Wy, . Further, we have f(V) = X. Hence, f is surjective. To show that f is injective,
take V, V' € Wy, such that V # V'. Then there exists A € Wff such that [A] € V and
[A] ¢ V'. So, we have A € f(V) and A ¢ f(V'), which imply that f(V) # f(V’).

It remains to show the following 1 through 6.

1. RMLV1V2V3 iff Rcf(vl)f(VQ)f(V;),), for all Vl, VZ, V3 € WML-

The ‘if” part is proved as follows. Suppose that R.f(V1)f(V3)f(V3). To show that
RMLV1V2V3, suppose that [A] — [B] eV, and [A] € V,. Then A — B € f(Vl)
and A € f(Vy), so we have B € f(V3). Hence [B] € V3, which is the desired result.

The ‘only if’ part is proved as follows. Suppose that Ry, V1V,yVs. To show that
R.f(V1)f(V2)f(V3), suppose that A — B € f(V;) and A € f(Vy). Then [A] —
[B] € V; and [A] € V3, so we have [B] € V3. Hence B € f(V3), which is the
desired result.

2. Som, ViV iff Sp.f (V1) f(V3), for all Vi, V, € Wy, . Similar to 1.
3. S()MLVIVQ iff Socf(vl)f(VQ), for all Vl, VQ € WML- Similar to 1.

4. flgm, (V) = g.(f(V)), for all V € Wi, .
Taking A € WFf, we have

A€ flom, (V) it [A] € gnr, (V)
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5. V € Oy, iff f(V) €O, for all V e Wy, .

The ‘if’ part is proved as follows. Suppose that V ¢ On,. Then E;,  V, so there
exists A € WIf such that [A] € F;, and [A] ¢ V. Hence L+ A and A ¢ f(V), which
imply that f(V) is not regular. Therefore, (V) ¢ O..

The ‘only if” part is proved as follows. Suppose that V. € Oy,. Then E; C V.
Since f(V) is a prime L-theory, it is sufficient to see that f(V) is regular. Suppose
that L = A. Then [A] € Ey, so [A] € V. Thus, we have A € f(V), which is the
desired result.

6. X € Py, iff f(X) € P, for all X C Wy, .

The ‘if’ part is proved as follows. By the assumption, there exists A € WIff such
that V,(A) = f(X). Taking first V € Wy, such that V € fum, ([4]), [A] € V, so
we have A € f(V). By Lemma 3.13, f(V) = A, so we have f(V) € V.(A). Thus
f(V) € f(X), which implies that V € X. Hence fu, ([4]) C X. For the converse
inclusion, suppose that V € X. Then f(V) € f(X), so f(V) € V.(A4). We have
f(V) Ec A, and hence A € f(V) by Lemma 3.13. Thus, we have [A] € V, which
implies V € fu, ([A]). This is the desired result. Therefore there exists A € WIf
such that fy, ([A]) = X, and hence X € Py, .

The ‘only if’ part is proved as follows. By the assumption, there exists A € Wif
such that fu, ([4]) = X. Taking first ¥ € W, such that ¥ € f(X), there exists
V € Wn, such that f(V) = X since f is surjective. Suppose that A € f(V). Then
A€ X, s0 % = A Thus, we have ¥ € V,(A). Hence f(X) C V.(A). For the
converse inclusion, suppose that ¥ € V.(A). Then ¥ . A, so A € ¥ by Lemma
3.13. Since f is surjective, there exists V € Wy, such that f(V) =3,s0 A € f(V).
Then [A] € V, so we have V € fyr, ([4]),which is V € X. Hence f(V) € f(X),
which is ¥ € f(X). This is the desired result. Therefore there exists A € Wff such
that V.(A) = f(X), and hence f(X) € P.. n

Further, general frames have the following property.

Corollary 4.18 Any reqular logic L over R is complete with respect to the class of all
general L-frames.

Proof.

Suppose that A is not a theorem of L. Then by Theorem 3.19 there exists an L-matrix
(M, E) in which A is not valid. By Corollary 4.15, A is not valid in (M, E),, which is
a general L-frame by Theorem 4.16. Hence, there exists a general L-frame in which A is
not valid. -

4.3 Descriptive frames

We first introduce some notions for defining descriptive frame. Given a general L-frame
§=(0,W,R, Sn, So,*, P), we say that

(a) § is differentiated if for any a,b € W,

a=0b iff VX e Plae X & be X),
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(b) § is r-tight if for any a,b,c € W,
Rabe iff VX € PYY € Plae X Y & be X = ceY),

(c) § is O-tight if for any a,b € W,
Sgab iff VX € P(a € OX = be X),

(d) §is O-tight if for any a,b € W,
Seab iff VX € Pbe X = a € OX),

(e) §is compact if, for any families ¥ C Pand Y C P={W - X | X € P},
AXUY)={a | VX e XV e Y(eeX &aecY)} #0
whenever (X' U )Y’) # 0 for all finite subfamilies X' C X and )’ C Y.

A general L-frame § is called descriptive if § is differentiated, r-tight, O-tight, $-tight,
compact and
O:ﬂ{X€P|O§X}.

In the following, we will investigate the properties of these notions. For a general
L-frame § = (O, W, R, Sn, So,* , P) and a € W, define

Pa={X€P|ac X}, Pao={X€eP|aecX}.

Proposition 4.19 For every general L-frame § = (O, W, R, Sp, So,* , P) and every a €
W, Pa is a prime filter in .

Proof.

First, suppose that X, Y € Pa. Then we have a € X and a € Y, s0a € XNY. Hence
X NY € Pa. Next, suppose that X € Pa and X C Y. Then we have a € X, s0a € Y.
Hence Y € Pa. Finally, suppose that X,Y ¢ Pa. Thena ¢ X anda ¢ Y,soa ¢ X UY.
Hence X UY ¢ Pa. n

Proposition 4.20 A general L-frame § = (O, W, R, Sn, So,* , P) is differentiated iff, for

any a € W, B
(\(PaU Pa) = {a}.

Proof.

The ‘if’ part is proved as follows. It is clear that if b = ¢, then VX € P(b € X &
c € X), so we see the converse. Suppose that b # c¢. Then ¢ ¢ {b}, so ¢ ¢ N(PbU Pb)
by the assumption. Then there exists X € P or X € P such that b € X and ¢ ¢ X.
For the former, we have the desired result. For the latter, there exists Y € P such that
X =W —Y. Then we have b ¢ Y and ¢ € Y, which imply the desired result.

The ‘only if’ part is proved as follows. First, suppose that b € (Pa U Pa). Then for
all X € P and X € P satisfying a € X, b € X. This means that for all X € P, a € X iff
b € X. By the assumption, we have a = b, which means that b € {a}. Next, suppose that
b€ {a}. Then a =b, so for any X € P, a € X iff b € X by the assumption. To show
that b € N(Pa U Pa), take any X € P and X € P. If X € Pa, then a € X and hence
be X. If X € Pa, then a € X and hence b € X. Thus, we have the desired result. n

For a € W, we write a 1= {b € W | Snab}. Note that a 1C X iff a € OX.
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Proposition 4.21 A general L-frame § = (O, W, R, Sa, So,*, P) is O-tight iff for any
acW,
at=({X €P|artC X}

Proof.

The ‘if” part is proved as follows. First, suppose that Spab. Then b € a 1, so a TC X
implies b € X for any X € P. Here a 1C X means that ¥b € W (Spab = b € X), that
is, a € OX. Therefore, VX € P(a € OX = b € X). Next, suppose that VX € P(a €
OX = b € X). By the assumption, we have b € a 1, which means that Spab.

The ‘only if” part is proved as follows. First, suppose that b € a 1. Taking any X € P
such that a 1C X, we have b € X. Hence b € N{X € P | a 1C X}. For the converse
inclusion, suppose that b € N{X € P | a 1C X}. Then VX € P(a 1C X = b € X), so
VX € P(a € OX = b € X). By the assumption, we see that Snab, which is just b € a 1.

Proposition 4.22 A general L-frame § = (O,W, R, Sq, So,*, P) is compact iff every
prime filter V in F* is of the form Pa for some a € W.

Proof.

The ‘if’ part is proved as follows. Suppose that X C P, Y C P and X U )Y has the
finite intersection property. Let V be the filter in 't generated by X and A be the ideal
generated by {W—-Y | Y € Y}. Assume that Z € VNA. Then there exist Xi,---, X, € X
and Y7, -+, Y, € Y such that X;N---NX,, C Zand Z C (W-Y;)U---U(W —Y,). That
is, there exist finite X’ C X and )’ C Y such that NX' C Z and Z C W — N)Y'. Then
NX'CW-NY,so (NX)N(NY)=NX"UY') = 0. This contradicts the assumption.
Therefore, VN A = (). By 1 of Lemma 2.7, there exists a prime filter V' O V such that
V'nA=0.

By the assumption, we can write V' = Pa for some a € W. Taking any Z € V,
Z € V' soa € Z. Further, taking any Z € A, Z ¢ V', so a ¢ Z. Then for all X € X
andY €Y, ae Xandag¢ W =Y, ie., a €Y. Therefore, N(X UY) # 0.

The ‘only if’ part is proved as follows. Take a prime filter V in §©. Let A = P — V.
Then A is a prime ideal by 4 of Lemma 2.7. Let X =V and Y = {IW — X | X € A}
Consider a set (N X') N (NY'), where X" C X and Y’ C Y are finite. Since X is a filter,
NX' e X. Wehave NY' = N{W-Y; | Y, e A} =W -, Y;with;Y; € A;soNY € V.
Assume that (N(X'UY') = 0. Then it is clear that N X' C W — N Y'. Since X is a filter,
W —NY € X. This is a contradiction. Therefore, X U Y has the finite intersection
property, so there exists a € (X U )Y) by the assumption.

Now we will show that V = Pa, where a is as above. First, suppose that X € V.
Then a € X since X € X. This means that X € Pa. Hence V C Pa. For the converse
inclusion, suppose that X € Pa, that is, a € X for some X € P. Then either X € V or
X € A. Assume that X € A, Then W — X € Y, s0 a ¢ NY. But this contradicts the
way of taking a. Therefore, we must have X € V. m

Theorem 4.23 A general L-frame § = (O, W, R, Su, So,* , P) is descriptive iff it is iso-
morphic to (F1)..
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Proof.
The ‘if” part is proved as follows. Let V,V,, Vs € Wi+, ie., Vy,Vy, V3 be prime
filters in P.

1.

We will show that (§1), is differentiated. It is obvious to see the ‘only if” part, so
we will prove only the ‘if’ part. Suppose that V; # V5. Then there exists X € P
such that X € V; and X ¢ V,. Then we have V; € fz+(X), Vo ¢ f3+(X) and
f3+(X) € Py

. We will show that (§), is r-tight. The ‘if’ part is proved as follows. Suppose that

Rz+V1V,V3 does not hold. Then there exist X,Y € P such that X — Y € Vy,
X € Vyand Y ¢ V3. Then we have f3+(X), f3+(Y) € P+ satisfying V; €
fz+(X) = fz+(Y), Va € fz+(X) and V3 ¢ fz+(Y).

The ‘only if’ part is proved as follows. Suppose that Rz+V1VyVs. Further, take
any fz+(X), fz+(Y) € Ps+ satisfying Vi € fz+(X) — fz+(Y) and Vi € fzr (X).
Then we have X — Y € V; and X € Vy, 50 Y € V3, and hence V3 € fz+ (V).

. We will show that (F*), is O-tight. The ‘if’ part is proved as follows. Suppose

that Soz+ V1 V3 does not hold. Then there exists X € P such that OX € V; and
X ¢ V;. Then we have fz+(X) € Py+ satisfying V; € Ofz+(X) and Va ¢ fz+ (X).

The ‘only if” part is proved as follows. Suppose that Spz+V;Vs. Further, take any
J3+(X) € Py+ satisfying V; € Ofz+(X). Then we have OX € Vy, so X € V, and
hence Vj € fz+(X).

. We will show that (), is <-tight. The ‘if” part is proved as follows. Suppose

that S¢z+V1Vy does not hold. Then there exists X € P such that X € V, and
OX ¢ Vi Then we have fz+(X) € P+ satisfying V, € fz+(X) and V; ¢ O fz+(X).

The ‘only if” part is proved as follows. Suppose that Soz+VVy. Further, take any
fz+(X) € Py+ satisfying Vy € fz+(X). Then we have X € V,, so OX € Vi, and
hence V; € < fz+(X).

. We will show that (F1) is compact. By Theorem 4.14, F* is isomorphic to ((F7) )"

under an isomorphism fz+. Take X, any prime filter in ((§1);)". Since fz+ is
surjective, there exists V € Wi+ such that X = fz+(V). Also, we have fz+(V) =
{f3+(X)| X € V} ={f3+(X) | V € f3+(X)} = P3+V. Therefore, (§) is compact
by Proposition 4.22.

. We will show that

Og+ = ﬂ{f3+(X) € Pg+ | 03+ - fg+(X)}

First, suppose that V € Og+. Take any fz+(X) € P+ such that Ogz+ C far (X).
Then it is clear that V € f3+(X). Therefore, V € N{f3+(X) € Pz+ | Oz+ C
fs+(X)}.

Next, suppose that V ¢ Oz+. Then O Z V, so there exists X € P such that
X € Ot and X ¢ V. Then we have fz+(X) € Py+ and V ¢ fz+(X). Moreover,
suppose that V' € Oz+. Then O C V', so X € V', which implies that V' € fz+(X).
Hence Oz+ C fz+(X). Therefore, V & N{ fz+(X) € P3+ | Oz+ C f3+(X)}.
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Thus, we see that (F1), is descriptive.

The ‘only if” part is proved as follows. By Proposition 4.19, for each a € W, Pa is a
prime filter in §*. We define the mapping fz : W — Wx+ by

fz(a) = Pa, foraeW.

By Proposition 4.22, it is possible to write W3+ = {Pa | a € W}. Then it is clear that
fz is surjective. Further, take a,b € W such that a # b. Since § is differentiated, there
exists X € P such that a € X and b ¢ X. So, we have X € Pa and X ¢ Pb. Hence
fz(a) # fz(b). Therefore, fz is injective.

It remains to show the following claims 1 through 6, where a,b,c € W.

Rabc
iff VXePYWePaeX—->Y &beX=ceY) (§ is r-tight)
iff VXePYWePX—>YecePa&XePb=Y e Pc) (definition of Pa)
iff Rz+PaPbPc (definition of Rg+)
iff Rz+fz(a)fz(b) fz(c) (definition of fz).

2. Spab iff Sug+f3(a)fg(b)

Spab iff VX € P(ae OX = b€ X) (§ is O-tight)
iff VX € P(OX € Pa= X € Pb)

iff  Sag+ f5(a) f5(b).

3. 5’<>ab iff S<>3+fg(a)f3(b)

Seab iff VX e P(be X = a€ OX) (§ is <-tight)
iff VX € P(X € Pb= OX € Pa)

iff Sog+ fz(a)fz(b).

4. f3(a*) = g3+ (f5(a)).
Xe fzla) iff e X iff a¢ —X it —X ¢ fz(a) iff X € gz+(fz(a)).

5. fz(0) = Oz+.
First, suppose that V € fz(O). Then there exists a € O such that V = fz(a). Since

§ is descriptive, a € ({X € P | O C X}. It means that VX € P(X € O, = X €
Pa), that is, O, C Pa. Hence we have V € Ogz+.

For the converse inclusion, suppose that V € Ogz+. Since V is a prime filter in §+,
V = Pa for some a € W by Proposition 4.22. Then VX € P(X € O, = X € Pa),
so VX € P(OC X = a € X). This means that a € N{X € P | O C X}. Since §
is descriptive, a € O. Therefore, V € f3(O).

6. X € Piff f3(X) € Py+.

The ‘if” part is proved as follows. By the assumption, there exists Y € P such that
f3(X) = fz(Y). Since fz is bijective, X =Y. Therefore, we have X € P.

The ‘only if” part is proved as follows. By the assumption, fz(X) = {f3(a) | a €
X} = fz+(a) Since fz+(a) € Pz+, we have fz(X) € Py+.
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Theorem 4.24 L is characterized by the class of descriptive Li-frames.

Proof.

Let § be any descriptive L-frames. By the definition of L-frames, if A is a theorem of
L, then § | A. On the other hand, if A is not a theorem of L, then A is not valid in the
Lindenbaum matrix (M, E;) for L. By Theorem 4.15, A is not valid in (M, E;),. By
Theorem 4.17, A is not valid in the universal L-frame v§.. Further, we see that 7§, is
descriptive by Theorems 4.4, 4.17 and 4.23. Therefore, there exists a descriptive L-frame
in which A is not valid. -

4.4 Truth-preserving operations

In this section, we consider the truth-preserving operations of general frames and the
correspondence between general frames and matrices. Throughout this section, let (M, E)
and (M', E') be L-matrices, where M =
(M,N,U,—,—,0,0) and M' = (M',N,U, =, —,0,<). Further, let § =
(O,W,R, Sq, So,*, Py and § = (O',W' R, S, S.,,*', P') be general L-frames.
A general L-frame § = (O, W' R, SL, S,,*', P') is a generated subframe of § =

(O,W, R, Sn, So,*, P) if (a) W' C W is upward closed, and satisfies

1. a e W' & Rabc = b,c € W'

2. ce W' & Rabc = a,be W'

3. ae W' & Sqab=be W'

4. a e W' & Seab=be W'

5. a e W =a* €W
for all a,b,c € W, (b) R', S5, Sl and *' are the restrictions of R, S, Se and *, respectively,
to W', (¢c) O' CW' and (d) PP ={XNnW'| X € P}.

Theorem 4.25 Let §' = (O', W', R', S5, S, *', P') be a generated subframe of § =
(O,W, R, S, So,*, P). Then the mapping h™ defined by

W (X)=XnNW'  forevery X € P,
is a homomorphism, and §'* is the homomorphic image of §+ under ht.

Proof.
First, we show that A" is a homomorphism. Let X,Y € P.

LAXNnY)=XnY)nW =(XnW)n{¥ nW)=hrt(X)nht(Y).
2. RH(XUY) = (XUY)NW = (X NnW)U (Y NW') =hH(X)UhHY).
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3. First, suppose that a € h*(X — Y). To show that a € h*(X) — h*(Y), suppose
that R'abc and b € h(X). Then a € X — Y and b € X, so ¢ € Y. Further, since
c € W', we have ¢ € h* (YY), which is the desired result.

For the converse inclusion, suppose that a € h*t(X) — A*(Y). Then it is clear
that a € W', so it is sufficient to show that a € X — Y. Suppose that Rabc and
b € X. Since § is a subframe of §, we have b,c € W’. Thus we have b € h*(X), so
¢ € h™(Y). Hence we have x € Y, which is the desired result.

a€eht(—=X) iff ae-X&aecW
iff a*¢ X &a*eW
iff a*¢ht(X)&aecW
iff ae€—-ht(X).

5. First, suppose that a € h™(0OX). To show that a € Oh"(X), suppose that SLab.
Then ¢ € OX, s0 b € X. Since b € W', we have b € h™(X), which is the desired
result.

For the converse inclusion, suppose that ¢ € Ok (X). Then it is clear that a € W',
so it is sufficient to show that @ € OX. Suppose that Spab. Then we have b € h(X),
so b € X, which is the desired result.

6. First, suppose that a € h*(CX). Then we have a € W' and there exists b € X
satisfying Scab. Since §' is a subframe of §, b € W’. Thus we have b € h*(X).
Therefore, a € Oht(X).

For the converse inclusion, suppose that a € Oh™(X). Then there exists b € h*(X)
satisfying Shab. So, we have b € X, and hence a € CX. Since a € W', we have
a € ht(OX).

It remains to show that AT (P) = P’ and O'T Nh*(P) = O'*. For the former, suppose
first that X € h*(P). Then there exists Y € P such that X = A" (Y), ie, X =Y NW"
By the definition of generated subframes, we have Y N W' € P’, which is just X € P’
Next suppose that X € P’. Then there exists Y € P such that X = Y NnW/', i.e.,
X =h"(Y). So we have X € h*(P).

For the latter, it is obvious that O'" N At (P) C O'F. So, we see the converse, which
is easy to see because O't C P = h*(P) by the former. n

Theorem 4.26 Let h be a surjective homomorphism of (M, E) in (M', E'). Then the
map hy defined by

hy(V)=h"YV), for every prime filter V in M/,
is an isomorphism of (M', E'), onto a generated subframe of (M, E) .

Proof.
Let W = {V' € Wy | hY(E') C V'}. Then it is clear that W is upward closed.
Further, let O = {V' € Oy | ™Y (E') C V'}. Let (O, W, R, S, So,*, P) is the subframe
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of (M, E), generated by W. We show that hy is an isomorphism of (M', E'), onto
<Oa W7 Ra SD; S<>7* ) P>
First, we see that h, is bijective. We should see that

reV' iff h(z) e hn(V'), forallz € M and V' € W.

Since the ‘only if’ part is clear, it is sufficient to show the ‘if’ part. Suppose that h(x) €
h(V'). Then there exists y € V' such that h(x) = h(y). So, we have h(y) — h(x) € F',
and hence h(y — x) € E' since h is a homomorphism. Also, we have y — = € h™!(E’),
so y — x € V' by the way of taking W. Since V' is a filter, we have x € V'. Tt follows
that h(V') is a prime filter in M, for each V' € W. Also,

v € ho(h(V') iff h(z) € (V) iff ze V.

Hence h,(h(V)) = V, so h, is surjective. Suppose that V; # Vs, for V;,Vy € Wy
Then there exists © € M’ such that x € V; and = ¢ V,. Since h is surjective, there
exists y € M such that h(y) = z. So, we have y € h (V1) and y ¢ h,(V3), and hence
hy (V1) # hy(Vsa). Thus, hy is injective.

Next, we see that h preserves the relations. Note that for V € Wy, hy (V) is a prime
filter by Lemma 2.9. Let V1, V,, V3 € W

1. Suppose first that RyyV1VeV3. To show that Rh, (Vi)h,(V2)h(V3), suppose
that © — y € hy(Vy) and z € h, (V3). Then h(z) — h(y) € V; and h(x) € V3, so
h(y) € V3. Hence y € hy(V3), which is the desired result.

Suppose next that Rhy(Vi)hy(Va)hi(V3). To show that RyV1VaVs3, suppose
that x — y € Vy and x € V,, for every x,y € M'. Since h is surjective, there
exist z,w € M such that h(z) = = and h(w) = y. Since h is a homomorphism, we
have h(z — w) € V; and h(z) € Va. Then z - w € hy(Vy) and z € hy(Va), so
w € hy(V3). Hence h(w) € V3, which is the desired result.

2. Suppose first that SonyV1Va. To show that Sphy(Vi)hy(Vs), suppose that Oz €
h,(V1). Then Oh(x) € V1, so h(z) € V,. Hence x € h(V3), which is the desired
result.

Suppose next that Sphy(V1)hy(Vz). To show that SpyyV1Vs, suppose that Oz €
V4, for every x € M'. Since h is surjective, there exists y € M such that h(y) = .
Since h is a homomorphism, h(Qy) € Vy. Then Oy € hy(Vy), so y € hy(Vy).
Hence h(y) € Vs, which is the desired result.

3. Suppose first that SonViVy. To show that Sehy(Vi)hy(V2), suppose that z €
hy(Vsy). Then h(x) € V3, so h(Cx) € V. Hence Cx € hy(Vy), which is the desired

result.

Suppose next that Sehy(V1)hy(Vs). To show that Senm Vi Vs, suppose that x €
Va, for x € M'. Since h is surjective, there exists y € M such that h(y) = z. Then
y € hy(Vsy), so Oy € h (Vy). Since h is a homomorphism, Ch(y) € Vi, which is
the desired result.

4. v € hy(V*) iff h(x) € V¥ iff —h(x) ¢ V iff —x ¢ h (V) iff © € gap (R4 (V)).
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5. Suppose first that V € Opp. Then E' C V, so h™'(E’) C h='(V). This means that
hi(V) € O.
Suppose next that V ¢ Opp. Then E'  V, so there exists € M’ such that z € E’
and x ¢ V. Since h is surjective, there exists y € M such that h(y) = . Then we
have y € h™'(E') and y ¢ h~'(V), which imply that h~'(E") € h, (V). This means
that h (V) ¢ O.

6. Suppose first that h(X) € P. Then there exists x € M such that h (X) ={V' €
W | zeV'} Nowaxz e V' iff h(z) € h(V'), for all z € M and all V' € M, so

V'€ hy(X) iff h(z) € (V'), forallz € M and all V' € M.

This means that X = {h(V’') | h(z) € h(V')}. We have seen that h(V') € W,
and hence X € Pyy.

Suppose next that X € Pyy. Then there exists x € M’ such that X = {V €
W | © € V}. Since h is surjective, there exists y € M such that z = h(y). So,

VeX iff yeh '(V), forall Ve Wy

We have seen that h is bijective, so this can be written by hy(X) = {h (V) |y €
h+(V)}, and hy (V) € hy(Wwr) = W. Therefore, h (X) € P.

The category of L-matrices is the category whose objects are the L-matrices and the
maps lattice homomorphisms preserving the operations of the matrix. In the dual category
of L-frames, we can define a relevant p-morphism. This idea comes from relevant maps
defined for relevant spaces in [58].

Let § = (O,W,R,Sq,S0,*,P) and § = (O',W',R',SL,S,,*, P') be general L-
frames. Then a mapping f : W — W' is a relevant p-morphism from § to § if it is
a surjection satisfying the following conditions. For all a,b,c € W, a/,b',¢ € W' and

(m1) Rabe = R'f(a)f(b)f(c)

(m2) R'a'¥ f(c) = Ja € W3b e W(Rabe & o' <' f(a) & ¥ <' f(b))
(m3) R'f(a)b'd = b€ Wdc € W(Rabe & V' <" f(b) & f(c) <" )
(n4) Suab = S5/ (a)f(b)

(m5) SLf(a)t) = 3b € W(Szab & f(b) <" V')

(m6) Soab = 56f(a)f(b)

(m7) S%f(a)l = 3b e W(Soab & V' <' (b))

(m8) f(a*) = (f (a))*'

(m9) f~HO') =

(m10) f~H(X) €
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Theorem 4.27 If f is a relevant p-morphism from § = (O, W, R, Sg, So,*, P) to §' =
(O, W' R, SL, SL,*, P, then f*, defined by

(X)) = fHX), for every X € P,
is an isomorphism of ' into FT.

Proof.

First, we show that f* is injective. Taking X,Y € P’ such that X # Y, there exists
a € W' such that « € X and a ¢ Y. By (m10), we have f~}(X), f~}(Y) € P. Since
f is surjective, there exists b € W such that a = f(b). Hence we have b € f~'(X) and
b¢ f~(Y), which imply that f+(X) # fH(Y).

Next, we show that f* is a homomorphism. Let X,Y € P'.

1.

a€ fHXNY) iff fla)eXNY
iff f(a)e X & f(a) €Y
iff ae fH(X)&ae fH(Y)
iff ae fH(X)nfr(Y).

2. Asin 1, we see that fH(XUY) = fH(X)U fr(Y).

3. First, suppose that a € fH(X — Y). To show that a € fT(X) — f*(Y), suppose
that Rabc and b € f*(X). Then we have f(a) € X — Y and f(b) € X. By (ml),
R'f(a)f(b)f(c), so f(¢) € Y. This means that ¢ € f*(Y), which is the desired

result.

For the converse, suppose that a € f7(X) — f*(Y). To show that a € fT(X — Y),
suppose that R’ f(a)b'd and 0/ € X. By (m3), there exist b,c¢ € W such that Rabc
and 0" <" f(b) and f(c) <' ¢. Since X is upward closed, f(b) € X, so we have
be fT(X). Hence c € fH(Y), so ¢ € Y. This is the desired result.

4. By (m8), a € fH(=X) iff f(a) € =X iff (f(a))* ¢ X iff f(a*) ¢ X iff a* ¢ fT(X)
iff a € —fH(X).

5. First, suppose that ¢ € f7(0X). To show that a € Of"(X), suppose that Snab.
Then f(a) € OX, and S5f(a)f(b) by (m4). So, we have f(b) € X, and hence
b e fT(X). This is the desired result.

For the converse, suppose that ¢ € Of"(X). To show that a € f*(OX), suppose
that S5 f(a)d'. By (mb), there exists b € W; such that Spab and f(b) <’ b'. Then
be fT(X), so we have f(b) € X. Since X is upward closed, we have b’ € X, which
is the desired result.

6. First, suppose that a € fT(CX). Then f(a) € OX, so there exists o' € X such that
St f(a)t'. By (mT7), there exists b € W such that Seab and o' <" f(b). Since X is
upward closed, we have f(b) € X, so b € fT(X). Therefore, we have a € O f*(X).

For the converse, suppose that a € Of*(X). Then there exists b € f7(X) such
that Scab. Then f(b) € X, and S, f(a)f(b) by (m6). So, we have f(a) € ©X, and
hence a € fT(CX). -
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Theorem 4.28 If an L-matriz (M', E') is a submatriz of (M, E), then the map f, de-
fined by
f+(V) =V M, for every Ve Wy,

is a relevant p-morphism from (M, E), to (M', E'), .

Proof.

For every V € Wy, there exists V' € Wy such that V C V' and V = V' 1 M’ by
Lemma 2.8. Hence, f, is surjective.

It remains to show that f, is a relevant p-morphism from (M, E), to (M', E') ;. It is
sufficient to check (m1) through (m10).

(m1) Suppose that RpV1VaVs. To show Ry f1 (Vi) f(V2) f+(V3), suppose that x —
y e f(Vy) and z € f, (V) for z,y € M’'. Then we have x — y € V; and z € V,,
so y € V3. Hence, y € f,(V3), which is the desired result.

(m2) Suppose that Ryy'ViVaf (Vs). Let Vi ={y € M | dz € Vi(z < y)} and V5 =
{y e M | 3z € Vy(x < y)}.

Suppose that yi,y» € V4. Then there exist x;, 2z, € V; such that z; < y; and
Ty < Yo. Since Vy is a ﬁlter, r1Nxy € V7. AISO, T1Nxe <Y1 NYa, SO Y1 NYs € V.
Further, suppose that y € V4 and y < z. Then there exists x € V; such that x < y.
It follows that x < z, so z € V4. Therefore, V4 is a filter. Similarly, we see that Vs
is a filter.

Now suppose that y — 2z € V4 and y € V5. Then there exists z; € V; such that
1 < y — z, and there exists x5 € V5 such that o < y. Since V; and V, are
filters, y — z € V; and y € V5. So, we have z € f,(V3). Thus z € V3. Therefore,
RV ,V5Vs;.

By Lemmas 4.5 and 4.6, there exist prime filters V), O V4 and Vi D V5 such
that RyVyViVs. Now suppose that o € Vi. Since < x, z € V4. So, we have
x € V), and hence = € f,(V}). Therefore, Vi C f, (V). Similarly, we see that
Vs C f4(V5).

(m3) Suppose that Ry f+(V1)VaVs. Let Vy={y € M | 3z € Vy(z < y)}. Asin (m2),
we see that V, is a filter. Further, let Vs ={y € M | 3z € V4(z — y € V;)} and
A={zeM|z¢V;}

As in 2 of Lemma 4.7, we see that Vj is a filter satisfying RV,V,V5. Now we will
show that A is an ideal satisfying that Vs N A = (). First, suppose that z,y € A.
Then x,y ¢ V3. Since Vj is a prime filter, x Uy ¢ V3. Therefore, z Uy € A.
Secondly, suppose that x € A and y < z. Then z ¢ V3. Since V3 is a filter, y ¢ V3,
which implies that y € A. To show the remainder, assume that y € V5N A. Then
there exists x € V4 such that x — y € V; and that y ¢ V3. So, there exists z € V5
such that z < x. Since V; is a filter and * — y < 2z — y, 2z — y € V. Since
zyy € M', 2 — y € M', and hence z — y € (V). Thus we have a contradiction,
so VsNA =0.

By 1 of Lemma 2.7, there exists a prime filter Vi O V5 such that Vi N A = 0.
It follows that RV,V4V%, so that there exists a prime filter V), O V, such that
Ry V1V, Vi by Lemma 4.6. Finally, we show that V, C f, (V}) and f, (V%) C V5.
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For the former, suppose that x € V,. Since v < z, we have x € V4, and hence
x € V). Since x € M', z € f. (V). For the latter, suppose that z € f,(V%). Then
x € Vi, s0 x ¢ A. Hence z € V.

(m4) Suppose that SopmViVs. To show that Soyy f1(V1)fr(Va), suppose that Oz €
f+(Vy) for x € M'. Then Ox € V4, so x € Vo. We have z € f,(Vy), which is the
desired result.

(m5) Suppose that Som f+(V1)Vy. Let Vi3 = {z € M | Ox € V,} and A = {x €
M' | x ¢ Vy}. Asin 2 of Lemma 4.8, we see that V3 is a filter satisfying SqV, V3.
Also, we see that A is an ideal as in (m3).

Now assume that z € V3N A. Then x € M',0z € V; and x ¢ V5, so we have
Oz € f, (V1) and ¢ V,. This contradicts the assumption, so V3 N A = (). By
1 of Lemma 2.7, there exists a prime filter V5 O V3 such that V4 N A = (). Then
it is clear that SoyV1V4. Moreover, suppose that z € f(V}). Then x € V5, so
xz ¢ A. Hence we have x € Vy. Therefore, f, (V%) C V.

(m6) Suppose that SepmViVae. To show that Sem fi(V1)fi(Va), suppose that = €
f+(V2). Then x € V5 and © € M'. By the assumption, we have Ox € V.
Further, Oz € M', so Oz € f,(Vy). This is the desired result.

(m7) Suppose that Sone f1(V1)Va. Let Vs ={y e M | Iz € Va(zx <y)} and A = {x €
M' | Oz ¢ Vi}. Asin (m2), we see that Vj is a filter. Moreover, we will see that
A is an ideal as in Lemma 4.9. Now assume that y € V3N A. Then there exists
x € Vy such that o < y, and that y € M’ and Oy ¢ V. Since V is a filter and
Ox < Oy, Gx ¢ Vi. So, we have Oz ¢ f,(Vy). This contradicts the hypothesis,
and hence V3N A = (.

By 1 of Lemma 2.7, there exists a prime filter V4 O V3 such that V5N A = 0.
Now suppose that z € V4. Then z ¢ A, so Oz € Vy. Hence Sony V1 V5. Finally,
suppose that © € Va. Since x < z, we have z € V3, and hence z € V5. Since
x € M, xe f (V). Therefore, Vo C f,(V5).

(m8)

z € fi(gm(V)) iff z€gu(V)&zeM
iff —2¢V& —zeM
iff —z ¢ fi(V)
iff =€ gw(f+(V)).

(m9)

Ve fiHOw) it f1(V) e Ow
iff E'C f.(V)
ifft EnM CVNnM
ifft FCV

(m10) Taking X € Py, there exists x € M’ such that X = {V € Wyp | # € V}. Then for
all V' € W,

Ve fiNX) iff f(X)eX iff IweV(V=VNM) iff ze€V.
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Thus, f7H(X) ={V' € Wn | z € V'}. Therefore, f7'(X) € Pwm. n

The disjoint union of a family {§; = (O;, W;, R;, Sn;, Soi, gi, P;) | i € I} of pairwise
disjoint frames is the frame > ,c; §; = (O, W, R, S, So,*, P) where O = U;c; O;, W =
Uier Wi, R = Uier R;, So = Uier Sni, So = Uier Soiy = Uier 9i P = {Uiel Xi | X €
P, for all i € T}.

Note that every §; is a generated subframe of > ;c; ;.

Proposition 4.29 ¥ ,.; 5 = (O, W, R, S, So,*, P) defined above is a general frame.

Proof.

We have shown (O, W, R, Sp, S,*) is a frame in Proposition 3.6. It remains to show
that P is closed under N, U, —, —, O and <. Let U;er Xi, User Ys € P, and let denote
U X;, UY;, respectively.

1. First of all, we see that UX; NUY; =U(X; NY;).

acUX,NUY;
iff Imel(aeXy) &Inel(aey,)
iff Inel(ae X, &acy,) (Notethateach frame is disjoint.)
iff Inel(ae X,NY,)
iff a € UX;NY;).

Suppose that U X;,UY; € P. Then for allv € I, X;,Y; € P;, so X;NY; € P;. Thus,
we have J(X; NY;) € P, and hence JX; NUY; € P by above observation.

2. Asin 1, we see that if UX;,UY; € P, then UX; UUY; € P.

3. First of all, we see that UX; — UY; = U(X; — Y;). Suppose that a ¢ U(X; — Y;).
Then for all i € I, a ¢ X; — Y}, i.e., there exists b, ¢ € W; such that R;abc, b € X;
and ¢ ¢ Y. So, there exists b,c € W such that Rabe, b € U X; and ¢ ¢ UY;. Thus,
a ¢ UX; — UY;. Next suppose that a € U(X; — Y;). To see that a € UX; — UY],
suppose that Rabc and b € |J X;. Then there exist [, m,n € [ such that a € X; — Y,
R,,abc and b € X,,. Since each frame is disjoint, [ = m = n, say n. Then we have
ceY,. So,ce Y, which is the desired result.

As in the last sentences of 1, we show that if U X;,UY; € P, then UX; — UY; € P.

4. Suppose first that @ € —J X;. Then a* ¢ U X;, so a* ¢ X; for all i € I. By the
definition of *, there exists n € I such that g,(a) ¢ X,,. So, we have a € U —X;.

Next suppose that a ¢ —J X;. Then a* € U X, so there exists n € I such that
a* € X,,. By the definition of *, g;(a) € X; for all ¢ € I. Thus, a ¢ U(—X;).

As in the last sentences of 1, we show that if JX; € P, then —J X, € P.
5. As in 3, we see that if JX; € P, then O X, € P.

6. As in 4, we see that if UX; € P, then OU X; € P. n

75



Theorem 4.30 Let {§; | i € I} be a family of general Li-frames and Y ;c; i =
(O,W, R, Sn, So,*, P) be its disjoint union. Then the mapping f defined by

F(X)(1) =X NnW, for every X € P and @ € 1,

is an isomorphism of (X;e; §:)" onto [Ter 87 -

Proof.

By the definition, f(X) € [l;c; 8, i-e., f(X) is a function from I into U;c; P with
f(X)(i) € P, for all i € I. Taking any h € [l;e; 87, we can write h = f(X), for
X € P. This means that f is surjective. Suppose that f(X) = f(Y), for X, Y € P. Then
F(X)@) = fY)(@), e, XNW; =Y NW,, for all i € I. Since X and Y are of the forms
User Xi and U,¢; Vi, respectively, we have X; =Y, for all « € 1. Hence X =Y. Thus f is
injective.

It remains to show that f is a homomorphism. Let X,Y € P.

1. For all 7 € I,
ac f(XNY)i) iff ac(XNY)NW,;
iff ae f(X)(@)N V)0
iff ae (f(X)NFYV))(E).
Hence, f(X NY) = f(X) N f(Y).

2. Asin 1, we see that f(XUY) = f(X)U f(Y).

3. First, suppose that a € f(X — Y)(i), for all i« € I. To show that a € (f(X) —
F(Y))(i), for all i € I, suppose that Rabc and b € f(X)(7). Thena € (X — Y)NW;,
R;abc and b € X NW;. So we have ¢ € Y NW; = f(Y)(i), which is the desired
result.

Next, suppose that a € (f(X) — f(Y))(i), for all i € I. To show that a € f(X —
Y)(i), for all i € I, suppose that R;abc and b € X. Then a € f(X)(i) — f(Y)(7),
Rabe and b € f(X)(i). So we have ¢ € f(Y)(i) =Y NW,. Thus, ¢ € Y, which is
the desired result.

Therefore, f(X = Y) = f(X) — f(Y).

4. For all s € I,
ac f(-=X)(i) iff ae-XNnW,
iff  gi(a) ¢ X
iff a*¢XNW,
iff a€—f(X)(3).
Hence, f(—X) = —f(X).

5. First, suppose that a € f(0OX)(i), for all i € I. To show that a € (Of(X))(7),
for all ¢+ € I, suppose that Sgpab. Then ¢ € OX N W, and Sp;ab, so we have
be XNW; = f(X)(i). This is the desired result.

Next, suppose that a € (Of(X))(i), for all i € I. To show that a € f(OX)(i), for
all i € I, suppose that Sm;ab. Then a € Of(X)(4) and Shab, so b € f(X)(7). And
hence b € X, so we have a € OX. Further, a € W;, so a € f(0OX)(i). This is the
desired result.

Therefore, f(OX) = Of(X).
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6.

Forall: € I,

a€ f(OCX)(i) iff aecOXNW,
iff 3be W(Soab& be X) & ac W
i a e Of(X)(3)
i 0 (SF(X))(0).

Hence, f(OX) = O f(X). n

Theorem 4.31 Suppose that (M, E) and (M', E") are L-matrices. Then the mapping f
defined by

and

fM)={{z,y) e M xM' |z €V, ,ye M}, foreveryV e Wy

f(VY={{z,y) e M x M' | x € M,y € V'}, for every V' € W

is an isomorphism of (M, E); + (M', E"); onto (M, E) x (M, E")) ..

Proof.

First, we show that f is bijective. It is easy to show that f is injective, so it suffices
to show that f is surjective. Take any V € Wnywmr. Let Vi = {z € M | (z,y) € V}
and Vo = {y € M' | (x,y) € V}. Then it is easy to see that V, € Wy and Vy € Wy.
Further, we see that V = f(V;) and V = f(V5). Hence, f is surjective.

Next, we show that f preserves each operation, i.e., the following 1 through 6 hold.
Let (M, E), + (M',E"), = {(O,W, R, Sq, So,*, P).

1.

RV1VQV3 iff RMXMIf(Vl)f(Vg)f(Vg), for all Vl, VZ, V3 eWw.

The ‘if” part is proved as follows. Suppose that Ryenmf(V1)f(V2)f(V3). To see
that RV,V,V3, suppose that v — y € V; and = € V,. Without loss of generality,
let Vi,V € Wy Then (z — y,z — w) € f(V1) and (z,2) € f(Va), for all
z,w € M', so we have (y,w) € f(V3). Thus, y € V3, which is the desired result.

The ‘only if’ part is proved as follows. Suppose that RV;V,V3. To see that
Baeomr (V1) f(V2) f(V3), suppose that (7, z) — (y,w) € (V1) and (z, 2) € f(Va).
Then either (i) v - y € Vy and © € Vy, or (ii) 2 - w € V; and z € V,. For
(i), since R(V1VaVs, y € V3, and hence (y,w) € f(V3). For (ii), similarly,
<y7w> € f(v?))

5|:|V1V2 iff SDMfof(Vl)f(Vz), for all Vl, VZ eWw.

The ‘if” part is proved as follows. Suppose that Somxm f(V1)f(V2). To see that
SoV1V,, suppose that Ox € V. Without loss of generality, let V; € Wy;. Then
(Oz,Oy) € f(V,), for all y € M', so we have (z,y) € f(V3). Thus, x € V,, which
is the desired result.

The ‘only if’ part is proved as follows. Suppose that SnV{V,. To see that
Somxmr f (V1) f(Va), suppose that O(x,y) € f(V1). Then either Oz € V; or Oy €
V;. For the former, since SomV1Va, we have © € V,, and hence (x,y) € f(V,).
For the latter, similarly, (z,y) € f(Va2).
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3. 5<>V1V2 iff SQMXM/f(Vl)f(VQ), for all Vl, VQ eWw.

The ‘if” part is proved as follows. Suppose that Senvxm f(V1)f(V2). To see that
SoV1V,, suppose that © € Vi, Without loss of generality, let V, € Wy, Then
(x,y) € f(V3), for all y € M’, so we have O(x,y) € f(V4). Thus, Oz € Vi, which
is the desired result.

The ‘only if’ part is proved as follows. Suppose that SoV V5. To see that
Somxmr f(V1)f(Va), suppose that (z,y) € f(V3). Then either z € V5 or y € V,.
For the former, since SopmV1Va, we have Gz € Vi, and hence O(x,y) € f(Vy).
For the latter, similarly, &(z,y) € f(Vy).

4. V* = ngM/(f(V)), forall Ve W.

First, suppose that (z,y) € V*. Then either x € gp(V) or z € gu (V). Without
loss of generality, we consider the case in which = € gm(V). Then —z ¢ V, and
hence (—xz,—y) ¢ f(V), for all y € M'. Thus, (z,y) € gmxm (f(V)).

Next, suppose that (z,y) € gmxw (f(V)). Then —(z,y) ¢ f(V), so either —z ¢ V
or —y ¢ V. Then either x € gm(V) or y € gmr(V), so we have (z,y) € V*.

5. Ve Oiff f(V) € Opmxmr-

The ‘if’ part is proved as follows. Suppose that V ¢ O. This means that E ¢ V
and E' Z V. Then there exists z € M and y € M’ such that x € E, x ¢ V, y € E’
and y ¢ V. So, we have (x,y) € E x E" and (z,y) ¢ f(V). Thus, f(V) ¢ Omxmr-

The ‘only if” part is proved as follows. Suppose that V € O. Then V € Oy or
V € Om. To see that f(V) € Omumr, suppose that (z,y) € E x E'. For the
former, we have z € V, so (z,y) € f(V). For the latter, similarly, (z,y) € f(V).

6. X € Piff f(X) € Py,

The ‘if” part is proved as follows. By the assumption, there exists (x,y) € M x M’
such that f(X) = {V € Wnmxwr | (z,y) € V}. Since f is bijective, there exists
V' € W such that V = f(V'). If V' € Wy, then z € V', and let Y = {V' €
Wam |z e V' IEV €Wy, theny € V' and let Z = {V' € Wy, | y € V'}. We
have f(X) = f(YUZ),so X =Y U Z since f is bijective.

The ‘only if’ part is proved as follows. By the assumption, there exist Y € Py; and
7 € Pyp such that X =Y U Z. That is, there exist x € M and y € M’ such that
Y ={VeWnu|zeV}and Z ={V' € Wn | y € V'}. We have (z,y) € f(V)
and (z,y) € f(V'), so f(X) = f(Y)U f(Z) ={[(V) € Wmuw | (z,9) € F(V)} U
{f(V') € Wnmewr | (x,y) € f(V')}. Therefore, f(X) € Pysomr- -

4.5 D*-elementary logics and D-persistent logics

Let L be any regular logic over R. Let D be the class of descriptive L-frames. Then let
kD = {kF | § € D}, and D* = DU KD. Then we say that

e L is D-complete (kD-complete) if A is a theorem of L whenever it is valid in every
L-frame in D (in D).

e L is D-persistent if for every § € D, § = L implies k§ = L.
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e L is D*-elementary if there exists a set ® of first-order sentences in the predicates
O, R, Sq, So, * and the constant u such that for every § € D*,

§ is an L-frame iff § satisfies each sentence in ®.

From Theorem 4.24, it follows that L is D-complete.
Proposition 4.32 Let L be any reqular logic over R.
1. If L is both D-complete and D-persistent, then it is kD-complete.

2. If L is D*-elementary, then it is D-persistent.

3. If L is both D-complete and D*-elementary, then it is kD-complete.

Proof.
Since 3 follows from 1 and 2, we will give proofs of 1 and 2.

1. Suppose that A is not a theorem of L. Since L is D-complete, there exists an L-model
on a descriptive L-frame § such that § = L and § £ A. Since L is D-persistent,
k§ = L. Further, it is clear that k§ & A. Thus, there exists an L-model on an
L-frame k§ € kD that falsifies A.

2. Note that § satisfies each sentence in @ iff k§ satisfies each sentence in ®, by
the assumption. Take a descriptive L-frame § such that § = L. Since L is D*-
elementary, § satisfies each sentence in ®, for some set ® of the first-order sentences
in the predicates O, R, So, S, * and the constant u. Since L is D*-elementary
again, we have k§ = L. -

Note that Lpg is D-complete, D*-elementary, and kD-complete. The last fact has been
proved in Theorem 3.14.

4.6 Notes

The notion of general frames was explicitly introduced by D.Makinson ([33]).
S.K.Thomason proved completeness for tense logics with respect to the semantics of gen-
eral frames (which he called first order frames) in [54]. After that, an extensive and
systematical study of the semantics of general frames for classical modal logics was de-
veloped by R.I.Goldblatt ([23] and [24], which are included in [26]). He showed most of
properties of general frames for classical modal logics, which we mentioned in Section 2.8.
But general frames for relevant logics have not discussed so far.

Duality theory is one of the most familiar topics in the semantical study. In this
chapter, we showed the representation theorem for relevant modal logics and the corre-
spondence between frame-theoretic notions and algebraic ones. In classical modal logics,
the usage of general frames makes them refined. In relevant logics, the representation of
non-modal R™-algebra shown by C.Brink ([8]) is a remarkable result, where R™ is the
logic obtained from R by adding the classical negation —, and an R™-algebra is the alge-
braic counter part of R™. This is a Stone-style representation result. On the other hand,
A.Urquhart studies duality theory both of relevant algebras and relevant spaces in [58].
Further, S.A.Celani extends Urquhart’s result to some relevant modal algebras in [10].
These are Priestley-style representation results.
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Chapter 5

Sahlqvist theorem for relevant modal
logics

Kripke-completeness of every classical modal logic with Sahlqvist formulas is one of the
basic general results on completeness of classical modal logics. In this chapter, we con-
sider relevant modal logics with Sahlqvist formulas. Sahlqvist theorem is proved first
by H.Sahlqvist in [49]. Our completeness result covers most of completeness results of
relevant modal logics so far. It is shown that usual Sahlqvist theorem for classical modal
logics can be obtained as a special case of our theorem. Further, we give some comments
on completeness of relevant modal logics with non-Sahlqvist formulas.

5.1 A Sahlqvist theorem

In this section, we consider a Sahlqvist theorem for relevant modal logics. Here we follow
[52], which gives the proof of a Sahlqvist theorem for the modal logic over classical logic.
Our proof follows [11].

Below, A[py,---,ps] denotes a formula A whose variables are listed among py, - - -, py.
Given a formula Alpy,-- -, p,l, a general R.Cgo-frame § = (O, W, R, S, So,*, P) and
Xi,-++, X, € P, wedenote by A[Xy, -+, X,,] the set of points in § at which A is true under
the valuation V on § defined by V(p;) = X;, fori =1,--- n, ie., A[Xy, -+, X,,| = V(A4).
Thus, we have the following.

Proposition 5.1 Let Alpy,---,pn] be a formula and § = (O, W, R, Sq, So,*, P) be a
general R.Cag-frame. For a € W,

(ga a) ): A[pla te 7pn] fo VXl epP-- v)(n € P(Cl € A[Xla te '7Xn])7
where (§,a) = A means that a = A under any valuation on §.

Proof.
It is enough to show that a = Alpy,---,p,) iff a € A[Xy,---, X,,] for V(p;) = X; by
induction on the length of A.

1. Ais of the form p; (i =1,---,n). afEpiiff aeVip)iff a € X;.
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2. Ais of the form B A C.
By the hypotheses of induction,

afE (BAC)pr,--.p i
iff
iff
iff

a = Blpi, - ,pp) & al=Clpr, -+, pn)
a € B[Xl,---,Xn] & a € C'[Xl,---,Xn]
a € B[Xy,---, X, |NnC[Xy,- -, X,]
ae(BAC)Xy, -, X0

3. A is of the form BV C. Similar to 2.

4. A is of the form B — C.
By the hypotheses of induction,

a ): (B - C)[pla"'apn]

ifft Vb e WV¥c e W(Rabe & b= Blpy,--+,pn] = ¢ =Cp1,- -+, pul)
ifft Vbe WV¥ce W(Rabe & b€ B[Xy, -+, X, = ceC[Xy,- -, X,])
iff a€(B— CO)[Xy,- -, X,

5. Ais of the form ~ B.
By the hypothesis of induction,

af= (~ B)pr,---,pa] iff a* = Blpy, -+, 0

iff a* ¢ BIX),- -, X,]
iff a€—(B[X1,- -, X))
iff @€ (~B)[Xy, -, X

6. A is of the form OB. Similar to 4.

7. A is of the form ¢B.
By the hypothesis of induction,

al= (OB)[p1,---,pa) iff Fb€ W(Seab & b = Blpy,---,pul)
iff 3b € W(Seab & b € B[Xy, -+, X,])
iff ae€ (OB)[Xy, -, X,

For a € W, we write a 1= {b € W | SEab}. The following proposition is regarded as

the generalization of Proposition 4.21.

Proposition 5.2 For every O-tight general R.Cpo-frame § = (O, W, R, Sq, So,*, P),
every ay,---,ar € W and every ny,---,ng > 0,

X €P|at™U---Ua 1"™C X} =ar 1" U---Uag 1.
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Proof.

It is clear that a; 7" U---Uap ™ C {X € P|a; ™ U---Ua, ™ C X}, so we see
the converse inclusion. Suppose that b ¢ a; 1" U---Uag 1™. Then b ¢ a; T, for all
i =1,--+,k. Since § is O-tight, there exists X; € P such that a; € 0" X; and b ¢ X,
foralli=1,--- k. Let X = X;U---UX,. Then X € P, q; 1C X and b ¢ X, for all
i=1,---,k. Hence, there exists X € P such that a; " U---Ua, ™ C X and b ¢ X, so
bgéﬂ{XEP|a1T”1U---UakT"k§X}. u

A frame-theoretic term a; 1™ U---Uay 1™ with (not necessarily distinct) aq, - -, ax €
W will be called an So-term for brevity. In the rest of this section, the letter 7" and 7"
with subscripts denote arbitrary Sp-terms.

Lemma 5.3 Suppose that Alpy,---,ps] is a modal formula and Ty, - -+, T, are So-terms.
Then the relation a € A[Ty,---,T,] can be expressed by a first order formula (in the
predicates O, R, Sn, So, * and the constant u) having a as its only free variable.

Proof.
By induction on the length of A. We will show the following two cases. Other cases
are shown similarly.

1. Ais of the form p; (i =1,---,n).

We may consider a € T;. Since T; is a Sp-term, it can be expressed by a; 1™
U---Ua, 1™. We further use induction on k. When k£ = 0, we can write a £ a
since T; = 0. When k > 0, a € T; can be rewritten in S™aa or --- or S%aga, so
it is possible to be expressed by a first order formula in the predicate(s) Sn (and O
and R, in case that n; = 0).

2. A is of the form BAC.

a € A[Ty,---,T,] can be rewritten in a € B[T,---,T,] & a € C[T},---,T,]. By
the hypotheses of induction, both a € B[T},---,T,] and a € C[Ty,---,T,] can be
expressed by a first order formula. Therefore, a € A[T},---,T,] can be expressed
by a first order formula.

3. A is of the form BV C. Similar to 2.

4. A is of the form B — C.

a € ATy,---,T,] can be rewritten in VbVe(Rabe & b € B[Ty,---,T,] = ¢ €
C[Ty,---,T,]). By the hypotheses of induction, both a € B[T},---,T,] and a €
C[T,- -+, T,] can be expressed by a first order formula. Therefore, a € A[Ty,-- -, T,]
can be expressed by a first order formula.

5. A is of the form ~ B.

a € ATy,---,T,] can be rewritten in a* ¢ BI[T},---,T,]. By the hypothesis of
induction, a* ¢ B[T},---,T,] can be expressed by a first order formula. Therefore,
a € A[Ty,---,T,] can be expressed by a first order formula.

6. A is of the form OB.

a € A[Ty,---,T,] can be rewritten in Vb(Spab = b € B[T},---,T,]). By the hy-
pothesis of induction, b € B[Ty,---,T,] can be expressed by a first order formula.
Therefore, a € A[T},---,T,] can be expressed by a first order formula.
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7. A is of the form ¢B.

a € A[Ty,---,T,] can be rewritten in 3b(Seab & b € B[Ty,---,T,]). By the hy-
pothesis of induction, b € B[T},---,T,] can be expressed by a first order formula.
Therefore, a € A[T},---,T,] can be expressed by a first order formula. -

A modal formula of the form O™p; A --- A O™ p, with not necessarily distinct propo-
sitional variables py, - - -, py is called a strongly positive formula.

Lemma 5.4 Suppose that Alpy,---,ps] is a strongly positive formula containing all the
variables py,---,p, and § = (O, W, R, Sn, So,*, P) is a general R.Cno-frame. Then
there exist Sn-terms Ty,---,T, (of one variable a) such that for any a € W and any
Xy, X, €eP,

Proof.
By induction on the number & of conjuncts of A.
(I) When £ =1, A is of the form O"p.

Take a 1™ for T; . Then, suppose first a € O™p;[ Xy, -+, X,], i.e., a € O"X;. To
show that T; C X;, suppose that b € T;. Then STab, so b € X;, which is the desired
result.

Next, suppose that T; C X;. This means that a € O™ X.

(IT) When k£ > 1, Alpy,---,p,| can be written by B A O™p;, where B is a strongly
positive formula which has conjuncts less than k£, and 1 < i < n. By the hypothesis
of induction and (I), there exist Sg-terms T, - - -, T,, such that

CLGA[Xl,,Xn] iff Tngl& &Tnan&angXz
iff "X, & - &T,Ua"CX; & --- &T, CX,.

Of course, T; Ua 1™ is a Sp-term. -
A modal formula A is positive if A contain only A,V,0 and < as connectives. The
following proposition is known as monotonicity, and is easily proved.
Proposition 5.5 Let A[---,p,---| be an arbitrary positive formula and
§=(0,W,R, Sn, So,*, P) be a general R.Cno-frame. For all X, Y C W, X CY implies
Al X, ] CA[--, Y.

Proposition 5.6 For every general R.Cpo-frame § = (O, W, R, S, So,*, P), every pos-
itive A;[---,p,---], i=1,---,n, and every ay,---,a, € W,

VXePYCX=\ageAl X,--))if Vae({Al--,X,--]]YCXeP}

i<n i<n
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Proof.

The ‘if’ part is a logical consequence, so we prove the ‘only if’ part by using the
contraposition. Suppose that A<, a; ¢ N{A;[---,X,---] | Y C X € P}. That is, for
every i (1 < i < n), there exists X; € P such that Y C X; and a; ¢ A;[---, Xy, -],
Taking X = X;N---NX,, we have X € P and Y C X. Further, by Proposition 5.5,
a; ¢ Ai[---,X,--+] for each i (1 <i < n). Thus, we have 3X € P(Y C X & A, a; ¢
Az[aXa]) |

A family X of non-empty subsets of W is called downward directed if for every XY €
X, there is Z € X such that Z C X NY. The following lemma is an analogue of Esakia’s
lemma in [11].

Lemma 5.7 Suppose that § = (O, W, R, Sn, So,*, P) is a descriptive general R.Cne-
frame. Then for every downward directed family X C P,

() X)= () (o).
Xex Xex
Proof.
First, suppose that a € O(Nxex X). Then there exists b € Ny X satisfying Seab.
We have b € X for every X € X, so a € OX for every X € X. Hence a € Nxcr(CX).
Next, suppose that a € Nxecx(CX). Then for every X € X, there exists b € X such
that Scab. Below, let a To= {c € W | Scac}. We have

Seac iff VX € P(ce X = a € OX) (§ is O-tight)
iff VXePla¢ OX =c¢X)
if VXW-XeP&ag¢OX=ceW-X)
iff ceN{W-XeP|a¢OX}
iff ceN{XeP|a¢ X},

soate={X€P|a¢ X} Then ate NX # 0 for every X € X, so {a 1o} UX has
the finite intersection property. Since § is compact, a To N(Nxecx X) # 0. This means
that there exists b € a 1o such that b € Nyecr X, 16, a € O(Nxer X)- n

Using Lemma 5.7, we have the following lemma, called an intersection lemma.

Lemma 5.8 Suppose that Alp,---,q,---,r] is a positive formula and § =
(O,W, R, Sn, So,*, P) is a descriptive R.Cneo-frame or an R.Cneo-frame. Then for every
YCWandalU,---,V €P,

(AU, -+, X, V] |YCXeP}=A[U,---,({X€P|Y CX},---, V]

Proof.

We write simply Al---, X,---] for A[U,---,X,---,V]. If §is an R.Cpe-frame, the
proof is as follows. In this case, we note that P = Up(W)™". First, suppose that
a € N{A[--,X,--] | Y € X € P}. By Proposition 5.6, VX € P(Y¥ C X = a €
Al X, ). Itisclear that Y C{X e P | Y C X} and {X € P|Y C X} € P, s0
we have a € A[--- ,({X € P|Y C X},

For the converse inclusion, suppose that a € A[--- N{X € P |Y C X},--]. Further,
take any X € P satisfying that Y C X. Since a ¢ N{X € P | Y C X} whenever a ¢ X,
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we have {X € P | Y C X} C X. By Proposition 5.5, we have a € A[---, X, -], which
is the desired result.

If § is a descriptive R.Cpe-frame, the proof is by induction on the length of the
positive formula A.

1. Ais of the form p; (i =1,---,n). It is clear.

2. Ais of the form B AC.
By the hypotheses of induction,

iff
iff
iff
iff
iff

ace{(BAO)---,X,---] | Y C X e P}
VXePYCX=ac(BAO)|--,X,-])
VXePYCX=a€B[-,X, ]
&VXePYCX=ael[ X, ]

ae{B[-, X, ]| YCXePt&aen{C]-,X,--]|YCXeP}
aeB[--- ,{XeP|YCX},--|&aelC[--,\{XeP|YCX}, -]
ac€(BANO)---,{XeP|YCX}, -]

3. Ais of the form BV C.
The ‘if” part is proved as follows. Suppose that a € (BV O)[---,N{X € P | Y C

X},o+]. Thenae B[, {XeP|YCX},--JoraceC[l--,({XeP|YC
X}, ---]. By the hypotheses of induction, a« € N{B[---,X,--+-] | Y C X € P} or
aeM{Cl]--,X,--]| Y C X € P}. Taking any X € P such that Y C X, we have
a€Bl---,X,---JoraeC[|--,X,--], which implies that a € (BV C)[---, X, ---].
Hence a e N{(BVC)[---,X,--] | Y C X € P}.

The ‘only if’ part is proved as follows. Suppose that a ¢ (BVC)[---,({X € P|Y C
X},--]. Thena ¢ B[--,\{X €P|Y CX},--]anda¢ C[--,N{XE€P|YC
X},--]. By the hypotheses of induction, a ¢ N{B[---,X,---] | Y C X € P} and
a¢ {C[--,X,---]|Y C X € P}. Then there exist X, Xy € P such that Y C X,
G¢B["',X1,"'],YQX2 anda@éC[---,Xg,---]. SiHCGXlﬂXQQXl anXmﬂ
X, C Xy, wehavea ¢ B[---, X{NXy,---]Jand a ¢ C[- -+, X;NXs, - -] by Proposition
5.5. Further, Y C X;NXyand X;NXy, € Pysoa ¢ N{A[---,X,--] | Y C X € P}.

4. Ais of the form OB.
By the fact that N(OX) = O(N X) and hypothesis of induction,

NM@OB)[---, X, ][V XeP} = OM{B[--,X,-- ][V CXeP})

= (@B)---,N{XeP|Y CX},--]

5. A is of the form ¢B.

If there is some X € P such that Y C X and B[---,X,---] = 0, it is clear. So,
we assume that O ¢ {B[---,X,---] | Y C X € P}. Taking B[---,Z;, -] and
B[---,Zy,---]in{B[---,X,---] | Y C X € P}, we have Y C Z; and Y C Z,. Then
Y CZiNZy, and Z; N Zy € P. Further, by Proposition 5.5, B[---,Z; N Zy,---] C
B[+, Zi, - | N B[-++,Zy,--"]. Thus, we see that {B[---,X,--]|Y C X € P} is
downward directed. Hence, by Lemma 5.7 and the hypothesis of induction,
N(©B)-, X, ]| Y CXeP} = OBl X, ]| Y CX € P})

= (OB)--,{XeP|Y CX},
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A given formula A is negative (in a regular logic L over R) if A is equivalent to ~ B
for a positive formula B in L. When L is either R.C or R.K, we may define negative
formulas in L to be formulas built from the negations of variables with the help of A, V,
O and < (see [11]). In the following, we say simply negative formulas, assuming that a
regular logic L over R is fixed.

A modal formula A is untied (in L) if it can be constructed from negative formulas
(in L) and strongly positive formulas using only A and <.

Lemma 5.9 Let Alpy,---,pn] be an untied formula and § = (O, W, R, Sn, So,*, P) be a
general L-frame. Then for every a € W and all Xy,---,X, € P,

a€ AlX1, -, Xp] off For---T0(D & NT;CX; & A ¢j € Nj[Xy, -, X)),

i<n i<m

where the formula in the right-hand side, effectively constructed from A, has only one free
indiwvidual variable a, D is a conjunction of formulas of the form Sobe, T; are suitable
So-terms and Nj[p1,---,pn] are negative formulas in L.

Proof.
By induction on the length of the untied formula A.

1. When A is a negative formula,

a€ A[Xy,---, X,] iff /\uTUQXi&CLEA[Xl,---,Xn]

i<n
since u € X always holds.
2. When A is a strongly positive formula, it is clear by Lemma 5.4.
3. When A is of the form B A C, by the hypotheses of induction,

ae (BAC)Xy, -, Xn]
iff 3by---30(D; & /\TZ-QXZ-& /\chNj[Xl,---,Xn])

i<n j<s
&3y W(De & NTICXi& N\ ¢ €N[Xy, -+, X,))
i<n s+1<5<m
iff 3by -3 (D1 & Dy & NT,UT] CX; & N ¢j € Nj[Xu,-++, X))
i<n i<m

4. When A is of the form ¢ B, by the hypothesis of induction,

a € (OB)[X1,---, X
iff 3b(Soab & b € B[X), -+, X,])

i<n i<m

Note that up to this points, the elements e and v introduced in Chapter 4 are not used
essentially. Now, we show a Sahlquist theorem, where these elements become necessary.

86



Theorem 5.10 Let L be reqular logic over R. Suppose that A is a formula which is
equivalent in L to a conjunction of formulas of the form OF(B — C), where k > 0,
B is untied in L and C is positive. Then there exists a first order formula ¢(a) in the
predicates O, R, Sn, So,* and the constant u having a as its only free variable and such
that the following holds for every L-frame § € D* and every a € W,

(§,a) E A iff § satisfies ¢(a).

Proof.

The proof goes essentially in the same way as the case of classical modal logics. Since
A« OBy — C)) A--- AOF(B, — C)), it is sufficient to consider O (B; — C;) for
t=1,---,s Below, we fix ¢ and omit the subscripts.

Enumerating all variables appearing in Of(B — C), let qi,---,q be all variables
appearing only in C' and py, - - -, p,, be remaining variables. Let § = (O, W, R, Sn, So,*, P)
be a descriptive L-frame or L-frame. Below, let Xy,---, X,,,Y7,---, Y, € P and b, ¢ W.
Further, X and Y denote Xy,---, X, and Yy, - - -, Y], respectively. By Proposition 5.1,

(§,0) F O%(B = C)

is equivalent to

VXYY (a € 08B — O)[X,T)),

and hence equivalent to
VXYY Vb, WbyVbs (SEab, & Rbybobs & by € B[X] = by € C[X, Y)).
By Lemma 5.9 and the fact that u € Y holds for every Y € P, this is equivalent to

VX VY Vb, Vbyths(Skaby & Rbibobs & Jbs---3b,(D & NT, C X; & N ¢ € Ni[X])

i<n i<m

& /\UGYh:>b3€C[Y7?])7

h<l

where D is a conjunction of formulas of the form Sqbe, T; are suitable Sg-terms,
Nj[p1,---,pn] are negative formulas. For each j (1 < j < m), there exists a positive
formula such that Nj is equivalent to ~ Kj. Since ¢; € Nj iff ¢} ¢ K, this is equivalent
to

Wby - V(D' = VRVY (AT C X & Aut'C V= \ d; € KX, V)),

i<n h<l j<m+1

where D' denotes SEab, & Rbibybs & D, and d; = c; for j (1 <j <m), dmyr = b3 and
K,,.1 is C. By Proposition 5.6, this is equivalent to

Wby - V(D' =\ dj € KX, Y] | T C X, fori <nyut’C Yy, for h <1}).

j<m+1

By Lemma 5.8, this is equivalent to

VbIVbt(D,:} \/ djEKj[X{,"',X;L,le,;"'71/2,])7

j<m+1
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where X! ={X; |T; C X;} for1 <i<nand Y/ =N{V, | ut°CYV,} for 1 <h <I. By
Proposition 5.2, this is equivalent to

vbl Vbt(Dl = \/ d] € Kj[Tla"'aTnauToa"'auTO])‘

j<m+1

Then using Lemma 5.3, each d; € K;[Ty,--+, Ty, u 1% -+, u 1°] can be expressed by a
first order formula (in the predicates O, R, So, S, *, and the constant u) having a as its
only free variable. n

Any formula A of the form described in above theorem is called a Sahlquist formula.
From Theorem 5.10, we have § = A iff § satisfies Va € O(¢(a)).

Theorem 5.11 Let Ly be a D*-elementary reqular logic over R, and L be a logic obtained
from Ly by adding a set of Sahlquist formulas as axioms. Then L is D*-elementary, and
hence D-persistent. Further, L is kD-complete.

Proof.
Since L is a regular logic over R, L is D-complete by Theorem 4.24. By Theorem
5.10, L is also D*-elementary. Thus, L is kD-complete by 3 of Proposition 4.32. n

We can see that Theorem 5.11 covers all completeness results of relevant modal logics
in [19], [34] and [35]. Note that each of R.Kpe, R.C and R.K is D*-elementary extension
of R.Cno (see postulates from (p9) to (p12) in Section 3.2). Thus, we can apply Theorem
29 to any logic obtained from one of these logics by adding a set of Sahlqvist formulas as
axioms.

Moreover, the classical modal logic K is a D*-elementary extension of R.K. In fact,
to obtain frames for K, it suffices to add the following three postulates to those of R.K-
frames
(O, W, R, Sn, So,*) (see Section 5.5 of [48]), which can be represented by first order for-
mulas for all a,b,c € W,

e if b # e and Rabc, then a < ¢
eifa#te, b#uand a<b, thena="0
e cdO.

As long as we neglect elements e and u, frames for K thus obtained are exactly usual
Kripke frames for K since we have the following:

(1) O=WwW, (2) if Rabcthena=b=¢, (3) a*=a, (4 So=375s.
Therefore, Theorem 29 covers Sahlqvist theorem for classical modal logics.

As a consequence of Theorem 5.11, we have the following.
A Lemmon-Scott axiom is of the form

<>m1Dn1p1 A~ A <>m’"‘|:|nkpk — A[pl; T 7pk]7

where A[py,- -+, px| is a positive formula. Since each Lemmon-Scott axiom is a Sahlqvist
formula, we have completeness and D-persistency of relevant modal logics with Lemmon-
Scott axioms from Theorem 5.11.
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Corollary 5.12 Let Ly be a D*-elementary reqular logic over R, and L be a logic obtained
from Ly by adding a set of Lemmon-Scott axioms. Then L is D-persistent and kD-
complete.

Another interesting consequence of Theorem 5.11 is completeness of superclassical
relevant modal logics, i.e., relevant modal logics over KR. KR is obtained from R by
adding an axiom pA ~ p — ¢, which is a Sahlqvist formula in our sense, and is discussed
in Section 5.4 of [48]. Thus, all of KR.Cpo, KR.Kp,, KR.C and KR.K are complete,
where KR.Cno, KR.Kqo, KR.C and KR.K are obtained from R.Cps, R.Kqo, R.C
and R.K, respectively, by adding above axiom.

This result shows the necessity of introducing enlarged frames with the null world e
and the universal world u. In fact, they are incomplete with respect to the frames without
these e and wu, i.e., frames in the usual sense.

We will give here a proof of these incompleteness results. A KR.Cpge-frame in the
usual sense is an R.Cpe-frame obtained by assuming that

(pl)’ there exists a € O such that Rabc iff b = ¢
(p6)’ a* =a

instead of (p1) and (p6), respectively. KR.Kqo-frames, KR.C-frames and KR.K-frames
are defined similarly. Note that a =~ A iff a = A in any model on these frames. We can
easily see that O(AV ~ A) is valid in every KR.Cpo-frame. But it is not a theorem of
KR.Cpo. Because KR.Cpy, is contained in the classically-based (non-normal) classical
modal logic EMC (cf. [12], section 8.2) and O(AV ~ A) is not a theorem of EMC. This
argument can be applied to KR.C.

Also, AV ~ A — O(AV ~ A) is valid in any KR.Kqo-frame. Using the following
truth table with the designated values T and t, we see that AV ~ A — O(AV ~ A) is
not a theorem of KR.Kqs.

A-B|T t f F AvB|T t f F Al~A|0OA
T T F F F T T T T T T| F t
t T t £ F t T t t t t f t
f T F t F f T t £ f f t F
F T T T T F T t f F F| T F

This argument can be applied to KR.K.

Finally, we consider some Sahlqvist formulas from the viewpoint of correspondence.
Let us consider
Dir <(OpAg) — O(OpVag).
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Then using (pl) and (p8), for all x € O,

7 = O(BpAg) = O(OpVg)

iff VXY € PVa,VayVa(Sza; & Rajaza & a; € O(OX NY) = a € O(OCXUY))

iff VX,V € PYa(a e (X NY)=ae O(OXUY))

it VX,V € PYa(3b(Seab & be OX & b€ Y) = a € O(OX UY))

iff VX,V € PYavh(Seab & b1C X & b1°C V) = a € D(OX UY))

iff VX,V € P¥avh(Seab = a € {O(GX UY) [b1C X & b1°C Y))

it Vavb(Soab = VX,Y € Pla € O{OX UY | b1C X & b1°C Y'})

iff Va¥bVe(Soab & Soac = VX,Y € P(c € {OX [ b1C X & b1°C Y1)
or VX, Y € P(ce{Y | bPC X & b1°C Y}))

iff VavbVe(Soab & Snac = VX,Y € Pc € O{X | b1C X & b 19C YV}
orVX,Y € Plce {Y | b1C X & b 1°C Y'}))

iff VaVbVce(Seab & Snac = 3d(Secd & d € b 1) or ¢ € b 19)

ifft VYavbVe(Soab & Snac = Fd(Socd & Snbd) or b < ¢).

Note that Dir is a Sahlqvist formula but not a Lemmon-Scott axiom. Besides,
Tra(n) pAOpA---O"p— O"p
is also an examples of a Sahlqvist formula but not a Lemmon-Scott axiom.

Finally, we present an example using essentially enlarged frames. We notice that
p/A ~ p — ¢ is also a Sahlqvist formula. By Theorem 5.10, we have the following. For all
a€ 0,

(Sesa) EPA~Dp —q
iff VXY € PVa,VayVb(SSaa, & Rajazsb & as € XN—X =beY)
iff VX,Y ePW(be X &b ¢ X &ueY =beY)
iff VX,V € PYb(b1°C X & ut'CY = b € X or beY)
iff Vb(b* €b10 or be utd)
iff Vb(b < b* or b=u)
iff Vb(b#£ u=b<b).

5.2 Non-Sahlqvist formulas and completeness

In this section, we consider completeness of relevant modal logics with non-Sahlqvist
formulas. This result is shown by using the canonical model.
Let us consider the following axioms.

SC O0(0A — B)vO(OB — A)

Con OAANDA - B)VOBAOB — A)

DG (k,l,m,n) ~ OFOMA v OO A

Alt(n) OA; vOA; - A) V- VOAL A ANA, = Apgy)

Theorem 5.13 The logic L obtained from R.Cpo by adding the left-hand side axiom is
determined by a class of R.Cnoo-frames satisfying the right-hand side postulate. For all
x € O and other variables in W :

SC Soza & Rabe & Spxad' & Ra'b'd = Spbd or Spble

Con Soza & Rabe & Spzad' & Ra'b'd = b < ord <c or Sgbd or Spb'c
DG(k,l,m,n) Skz*a & S™ab = Jy € W(Shay & SZby)

Alt(n) Snzcy & A, (Soza; & Rabic;) & ¢, #u = iy Visipi by <,
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where A\ and \/ denotes conjunction and disjunction, respectively, in the metalanguage.

Proof.
It is easy to prove the soundness part. So we will prove only the completeness part.
Let (O., W¢, R., Soe, Soc, gc) be the canonical L-frame.

1. Case that L is obtained by adding SC.

Assume that for IT € O, and X, T, A, X' T, A" € W,, Sg JI¥, R.XTA, Sp 1Y and
R.Y'T'A" hold and that S .I'A’ does not hold. From the last assumption, there
exists B € Wff such that OB € " and B ¢ A.

It is sufficient to show Sp.I”A. Suppose that OA € I'. Then OA — B ¢ X' by
the assumption R.X'T'A’, so we have O(0OA — B) ¢ II by the assumption Sp I1X'.
Since I € O., O(0OA — B)vO(OB — A) € II, and hence we have O(0OB — A) € II.
By the assumption Sg I13, we have OB — A € X, so that A € A by the assumption
R.XT'A. Hence we see that SpIA, which is just Sg.I'A since both I and A are
prime.

Therefore if S5 1Y, R.XT'A, So JI¥Y and R.XT'A' then Sp A’ or Sp I A.

2. Case that L is obtained by adding Con.

Assume that there are IT € O, and ¥, ', A, X', TV, A" € W, such that S 1%, R.XTA,
SpJI¥, RYET'A, T A" and T € A hold and that Sp.I'A” and Sp.I'A do not
hold. Then there exist Ay, Ay, By, By € Wff such that A; € ', Ay ¢ A’, OA, €T,
A2 ¢ AI, B, € FI, By ¢ A, OB,y € [V and Bs ¢ A. Now we put A= Al \/A2 and
B = B; V B,. Since both I and T" are L-theories, AANOA € I' and BA OB € I".
Further we have B ¢ A and A ¢ A’ since both A and A’ are prime. So we get
OAANDOA — B) ¢ 1l and O(BAOB — A) ¢ 1.

Since I € O,, we have (A AN OJA — B)V O(BAOB — A) ¢ II, which is a
contradiction.

3. Case that L is obtained by adding DG(k, [, m,n).

Suppose that So.Fg.(I)E and Su ™IT for 11 € O, and &, T € W,. Let A =
{A|0'A € S} and = = {A | O"A ¢ I'}. Then it is clear that A is an L-theory
satisfying SLYA and that = is closed under disjunction. Assume that there is
A € WIf such that A € ANZ. Then O'4A € ¥ and O"A ¢ T, so ~ OFO'A ¢ 11 and
Omon ¢ 11 by the assumptions. Since II € O, we have ~ OFO'A v OmO"A ¢ 11,
which is a contradiction. Hence ANZE = (). By 3 of Lemma 3.8, there exists a prime
L-theory A’ O A such that A’NZ = (. It is clear that Sg /YA, And if A € A/,
then A ¢ =, so O"A € I'. Hence S ."TA".

4. Case that L is obtained by adding Alt(n).

Assume that there exist II € O, and Ay, X, Ty, A, € W,(1 < p < n) such that
SucdlAg, Ap— (Sa 1Y, & RY,T,A,), A, # WIF and ?;01 Ni=ji1 Uk € Aj. Then
there exist AZ e Wff (1 <i<mn,1<j<n+1-1i)such that AZ € Iy and
Al ¢ N,y

Let A; be A} A -+« A APP170 Since each T, is an L-theory, 4; € T,(1 < i < p).
Moreover since A; i is a prime L-theory, A; ¢ A; ;. Further, there exists 4,11 ¢ A,
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by the assumption A, # Wff. Then OA; ¢ [Tand A} ; O(A;A---AA; — A;pq) ¢ 11
Since IT € O, we have OA; VO(A; — Ay)V---VOA A---NA, = Apyq) ¢ 10,
which is a contradiction. -

5.3 Notes

As mentioned at the beginning of this chapter, Sahlqvist theorem was first shown by
H.Sahlqvist in 1975 ([49]). After that some improved proof of this theorem have been
studied by G.Sambin ([50]), J.A.F.K.van Benthem ([59]), G.Sambin and V.Vaccaro ([52])
and B.J6nsson ([30]). Further, an intuitionistic analog of Sahlqvist theorem was proved
by S.Ghilardi and G.Meloni in [20]. Also, Sahlqvist theorem for intuitionistic modal logic
was proved by C.Grefe in [27].

We showed completeness and D-persistency of relevant modal logics with Lemmon-
Scott axioms in Corollary 5.12. For these results for classical modal logic, R.I.Goldblatt
showed in [22] and [24] without using Sahlqvist theorem.
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Chapter 6

Summary and Further studies

In this chapter, we summarize our results in this thesis and state further studies concerning
relevant modal logics.

6.1 Summary

This thesis deals with semantics of relevant modal logics. Our main subject is complete-
ness of wider class of modal logics over the relevant logic R.

We introduce four basic relevant modal logics R.Cge, R.Kge, R.C and R.K in
Chapter 3. The characteristic point in this thesis is that a modal operator < is not
defined by ~ and O in R.Cpe and R.Kpe, while it is defined as usual in R.C and
R.K. Their semantics are obtained from the semantics of the relevant logic R by adding
some conditions for discussing modalities. The one is the extension based on Routley-
Meyer semantics, and the other is the extension of relevant matrices based on De Morgan
semigroups. Our semantics characterize these relevant modal logics. In particular, this
thesis shows that R.Cpe is the logic characterizing all relevant modal frames.

In Chapter 4, we consider the notion of general frames. Further, we introduce the dual
of general frames and the dual of matrices. Then we see that each relevant modal matrix
is isomorphic to its bidual as in classical modal algebras. We define descriptive frames to
make each general frame become isomorphic to its bidual. We know the correspondences
between general frames and matrices in classical modal logics, and we expect them to
hold for relevant modal logics. We investigate them from the view of the truth-preserving
operations. In relevant modal logics, as well as in classical modal logics, we see that the
following correspondences between matrices and general frames also hold:

1. submatrices — relevant p-morphisms
2. homomorphic images — (generated) subframes

3. direct products — disjoint unions.

As concerns descriptive frames, we introduce D-persistent logics and D*-elementary logics.

In Chapter 5, we give a proof of the completeness of relevant modal logics with
Sahlqvist formulas following the Sambin and Vaccaro’s method. Our results are quite
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similar to classical modal logics. Given a Sahlqvist formula, we can get the frame postu-
late written by a first order sentence. This fact means that D*-elementary relevant modal
logics with Sahlqvist formulas are also D*-elementary. Therefore, this implies Kripke
completeness of relevant modal logics with Sahlqvist formulas. Our result includes a
Sahlqvist theorem for modal logics over classical modal logics. Further, we also consider
completeness of some relevant modal logics with non-Sahlqvist formulas.

6.2 Further studies

This thesis develops basic semantical results on relevant modal logics. The following
research points of relevant modal logics based on the results obtained in this thesis are
considered.

Concerning our Sahlqvist theorem for relevant modal logics, there is a place for its
extension. It seems to apply a Sahlqvist theorem to the formula in which implications
are nested in modalities. We have already a Sahlqvist theorem for (non-modal) relevant
logics, which will be discussed in other occasion.

In the proof of a Sahlqvist theorem, we see that it is possible to get a first order
sentence corresponding to a Sahlqvist formula. On the other hand, M.Kracht developed
the characterization of a class of first order sentences corresponding to Sahlqvist formulas
for classical modal logics in [31]. This result is called the Kracht theorem. So, the Kracht
theorem for relevant modal logics is one of interesting research topics.

In modal logics, concerning the relationship between D-persistent logics and elemen-
tary logics, the Fine-van Benthem theorem is well-known result. The Fine-van Benthem
theorem says that if a logic is characterized by an elementary class of Kripke frames then
it is D-persistent, is one of the most important results. It is interesting to consider the
Fine-van Benthem theorem for relevant modal logics.

In this thesis, we adopt Routley-Meyer semantics, matrix semantics and general frame
semantics. Our frames are unreduced frames. In relevant logics, the conditions for using
reduced models are known. According to [48], reduced models can be constructed in
relevant logics including theorems

e AN(A— B) = B,
e (A-B)—»((B—C)— (A—=0))
e (A=~ B)—= (B —=~A).

Further, J.K.Slaney ([53]) considered reduced models for relevant logics of which AA(A —
B) — B is not a theorem. The problem to be clear is which conditions make it possible
to use reduced models in relevant modal logics. In [19], A.Fuhrmann shows that if < is
defined in our way, then no logic weaker than R.KT4 is complete with respect to some
class of reduced frames, where R.KT4 is the S4-style relevant modal logic. On the other
hand, R.Routley and R.K.Meyer shows that R.KT4 (they called NR) is complete with
respect to the class of reduced frames if < is defined by

a < b 3ce W(Su0c & Reab).
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In the study of relevant logic, v-admissibility is one of important problems. A relevant
logic L is called y-admissible if B is a theorem of L whenever both ~ AV B and A are
theorems of L. [39] and [47] show that R is y-admissible by using an algebra and a frame,
respectively. Further, it is known when ~-admissibility fails ([40]). For relevant modal
logic, [46] and [37] deal with y-admissibility. But we have no comprehensive result on
~v-admissibility.

In algebraic studies, the notion of varieties are often dealt. For a class C of algebras,
HC, SC and PC denote the class of all homomorphic images of algebras in C, the class
of all subalgebras of algebras in C and the class of all possible direct products of C’s
subclasses, respectively. Then a variety is a class closed under H, S and P. But we meet
the problem how to define given equality to be satisfied in a given matrix.

In this thesis, relevant modal logics contain no propositional constant. For this, we
must use matrices as algebraic models. So, we extend our results to relevant modal logics
with propositional constants. It is known that there are four propositional constants t,
f, T and L in relevant logics. If we use them, algebraic models can be defined by alge-
bra. Already, S.A.Celani has studied relevant modal logics with these four propositional
constants from the algebraic view (see [10]). In our impression, it is problematic to con-
sider the dual of algebras as general frames. Further, we wonder whether Ot and OT are
identified with t and T, respectively, in relevant modal logics.

There are some criticisms for Routley-Meyer semantics, so several semantics for rel-
evant logics are suggested. For example, Urquhart’s semilattice semantics (see [55] or
Section 47 of [5]), Fine semantics (see [16] or Section 51 of [5]) and American-plan seman-
tics (see Section 4.7 of [48] and [45]). It may be interesting to extend these semantics for
discussing relevant modal logics.

95



Bibliography

1]

2]

3]

[10]

[11]
[12]

[13]

[14]

W.Ackermann, ‘Begriindung einer strengen Implikation’, The Journal of Symbolic
Logic 21 (1956), 113-128.

A.R.Anderson and N.D.Belnap, Jr., ‘Modalities in Ackermann’s “rigorous implica-
tion”’, The Journal of Symbolic Logic 24 (1959), 107-111.

A.R.Anderson and N.D.Belnap, Jr., ‘The pure calculus of Entailment’, The Journal
of Symbolic Logic 27 (1962), 19-52.

A.R.Anderson and N.D.Belnap, Jr., Entailment: The Logic of Relevance and Neces-
sity, Vol.I, Princeton University Press, 1975.

A.R.Anderson, N.D.Belnap, Jr. and J.M.Dunn, Entailment: The Logic of Relevance
and Necessity, Vol.Il, Princeton University Press, 1992.

N.D.Belnap, Jr., ‘Intensional models for first degree formulas’, The Journal of
Symbolic Logic 32 (1967), 1-22.

P.Blackburn, M.de Rijke and Y.Venema, Modal Logic, Cambridge University Press,
2001.

C.Brink, ‘R™-algebras and R™-model structures as power constructs’, Studia Logica
48, 1989, 85-109.

R.Bull and K.Segerberg, ‘Basic modal logic’, in D.Gabbay and F.Guenthner, editors,
Handbook of Philosophical Logic, Vol. II, pages 1-88, D.Reidel Publishing Company,
1984.

S.A.Celani, ‘A note on classical modal relevant algebras’, Reports on Mathematical
Logic 32, 1998, 35-52.

A.Chagrov and M.Zakharyaschev, Modal Logic, Clarendon Press, Oxford, 1997.
B.F.Chellas, Modal Logic: An Introduction, Cambridge University Press, 1980.

B.A.Davey and H.A.Priestley, Introduction to Lattices and Order, Cambridge Uni-
versity Press, 1990.

K.Dosen, ‘A historical introduction to substructural logics’, in P.Schroeder-Heister
and K.Dosen, editors, Substructural Logics, pages 1-30, Clarendon Press, Oxford,
1993.

96



[15]

[16]

[17]

[18]

[19]
[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

J.M.Dunn, ‘Relevance logic and entailment’, in D.Gabbay and F.Guenthner, edi-
tors, Handbook of Philosophical Logic, Vol. III, pages 117-224, D.Reidel Publishing
Company, 1986.

K.Fine, ‘Models for entailment’, Journal of Philosophical Logic 3 (1974), 347-372.

J.M.Font and G.Rodriguez, ‘Note on algebraic models for relevance logic’, Zeitschrift
fiur mathematische Logik und Grundlagen der Methematik 25, 1990, 535-540.

J.M.Font and G.Rodriguez, ‘Algebraic study of two deductive systems of relevance
logic’, Notre Dame Journal of Formal Logic 35, 1994, 369-397.

A.Fuhrmann, ‘Models for relevant modal logics’, Studia Logica 49 (1990), 501-514.

S.Ghilardi and G.Meloni, ‘Constructive canonicity in non-classical logics’, Annals of
Pure and Applied Logic 86 (1997), 1-32.

L.Goble, ‘An incomplete relevant modal logic’, Journal of Philosophical Logic 29
(2000), 103-119.

R.I.Goldblatt, ‘Solution to a completeness problem of Lemmon and Scott’, Notre
Dame Journal of Formal Logic 16 (1975), 405-408.

R.I.Goldblatt, ‘Metamathematics of modal logic, part I’, Reports on Mathematical
Logic 6 (1976), 41-78.

R.I.Goldblatt, ‘Metamathematics of modal logic, part II’, Reports on Mathematical
Logic 7 (1976), 21-52.

R.Goldblatt, Logics of Time and Computation, 2nd ed., rev. and expanded, Center
for the Study of Language and Information, 1992.

R.Goldblatt, Mathematics of Modality, Center for the Study of Language and Infor-
mation, Stanford, California, 1993.

C.Grefe, Fischer Servi’s Intuitionistic Modal Logic and Its Extensions, PhD thesis,
Free University of Berlin, 1997.

G.E.Hughes and M.J.Cresswell, An Introduction to Modal Logic, Methuen, London,
1968.

G.E.Hughes and M.J.Cresswell, A New Introduction to Modal Logic, Routledge,
London and New York, 1996.

B.Jénsson, ‘On the canonicity of Sahlqvist identities’, Studia Logica 53 (1994),
473-491.

M.Kracht, ‘How completeness and correspondence theory got married’, in M.de
Rijke, editor, Diamonds and Defaults, pages 175-214, Kluwer Academic Publishers,
1993.

M.Kracht, Tools and Techniques in Modal Logic, Elsevier, 1999.

97



33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

D.Makinson, ‘A generalisation of the concept of a relational model for modal logic’,
Theoria 36 (1970), 330-335.

E.D.Mares, ‘The semantic completeness of RK’, Reports on Mathematical Logic 26
(1992), 3-10.

E.D.Mares, ‘Classically complete modal relevant logics’, Mathematical Logic Quar-
terly 39 (1993), 165-177.

E.D.Mares, ‘The incompleteness of RGL’, Studia Logica 65 (2000), 315-322.

E.D.Mares and R.K.Meyer, ‘The admissibility of v in R4’, Notre Dame Journal of
Formal Logic 33 (1992), 197-206.

E.D.Mares and R.K.Meyer, ‘The semantics of R4’, Journal of Philosophical Logic
22 (1993), 95-110.

R.K.Meyer and J.M.Dunn, ‘E, R and 7', Journal of Symbolic Logic 34 (1969),
460-474.

R.K.Meyer, S.Giambrone and R.T.Brady, ‘Where gamma fails’, Studia Logica 43
(1984), 247-256.

R.K.Meyer and E.D.Mares, ‘The semantics of entailment 0’, in P.Schroeder-Heister
and K.Dosen, editors, Substructural Logics, pages 239-258, Clarendon Press, Oxford,
1993.

R.K.Meyer and R.Routley, ‘Algebraic analysis of entailment I', Logique et Analyse
15, 1972, 407-428.

R.K.Meyer and R.Routley, ‘Classical relevant logics I’, Studia Logica 32 (1973),
51-68.

G.Restall, An Introduction to Substructural Logics, Routledge, 2000.

R.Routley, ‘The American plan completed: alternative classical-style semantics,
without stars, for relevant and paraconsistent logics’, Studia Logica 43 (1984), 131-
158.

R.Routley and R.K.Meyer, ‘The semantics of entailment 11", Journal of Philosophical
Logic 1 (1972), 53-73.

R.Routley and R.K.Meyer, ‘The semantics of entailment I’, in H.Leblanc, editors,
Truth, Syntax and Modality, pages 199-243, North-Holland Publishing Company,
1973.

R.Routley, V.Plumwood, R.K.Meyer and R.T.Brady, Relevant Logics and Their
Rivals I, Ridgeview Publishing Company, Atascadero, 1982.

H.Sahlqvist, ‘Completeness and correspondence in the first and second order seman-
tics for modal logic’, in S.Kanger, editor, Proceedings of the third Scandinavian logic
symposium, pages 110-143, North-Holland, Amsterdam, 1975.

98



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

G.Sambin, ‘A simpler proof of Sahlqvist’s theorem on completeness of modal logic’,
Bulletin of the Section of Logic 9 (1980), 50-56.

G.Sambin and V.Vaccaro, ‘Topology and duality in modal logic’, Annals of Pure
and Applied Logic 37 (1988), 249-296.

G.Sambin and V.Vaccaro, ‘A new proof of Sahlqvist’s theorem on modal definability
and completeness’, The Journal of Symbolic Logic 54 (1989), 992-999.

J.K.Slaney, ‘Reduced models for relevant logics without WI’, Notre Dame Journal
of Formal Logic 28 (1987), 395-407.

S.K.Thomason, ‘Semantic analysis of tense logics’, The Journal of Symbolic Logic
37 (1972), 150-158.

A.Urquhart, ‘Semantics for relevant logics’, The Journal of Symbolic Logic 37 (1972),
159-169.

A.Urquhart, ‘The undecidability of entailment and relevant implication’, The Journal
of Symbolic Logic 49 (1984), 1059-1073.

A.Urquhart, ‘Failure of interpolation in relevant logics’, Journal of Philosophical
Logic 22 (1993), 449-479.

A.Urquhart, ‘Duality for algebras of relevant logics’, Studia Logica 56 (1996), 263-
276.

J.A.F.K.van Benthem, Modal Logic and Classical Logic, Bibliopolis, Napoli, 1983.

J.A.F.K.van Benthem, ‘Correspondence theory’, in D.Gabbay and F.Guenthner,
editors, Handbook of Philosophical Logic, Vol II, pages 167-247, D.Reidel Publishing
Company, 1984.

M.Zakharyaschev, F.Wolter and A.Chagrov, ‘Advanced modal logic’, in D.M.Gabbay
and F.Guenthner, editors, Handbook of Philosophical Logic, 2nd Edition, Volume 3.
pages 83-266, Kluwer Academic Publishers, 2001.

99



Publications

Refereed Papers in Journal

[1] T.Seki, ‘Some remarks on Maehara’s method’, Bulletin of the Section of Logic 30
(2001), 147-154.

[2] T.Seki, ‘A Sahlqvist theorem for relevant modal logics’, submitted to Studia Logica
(to be accepted after revision).

Conference Papers

[3] T.Seki, ‘Models for normal modal logics over KR, in Proceedings of the 3/th MLG
meeting at Echigo- Yuzawa, pages 5-9, 2001.

[4] T.Seki, ‘A Sahlqvist theorem for relevant modal logics’, in Proceedings of the 35th
MLG meeting at Echigo-Yuzawa, pages 33-35, 2002.

Technical Reports

[5] T.Seki, ‘Lemmon-Scott axioms for relevant modal logics’, Research Report IS-RR-
2001-009, Japan Advanced Institute of Science and Technology (2001).

[6] T.Seki, ‘On the proof of the interpolation theorem without using constants’, Re-
search Report IS-RR-2001-013, Japan Advanced Institute of Science and Technology
(2001).

[7] T.Seki, ‘Some topics on relevant modal matrices’, Research Report IS-RR-2001-023,
Japan Advanced Institute of Science and Technology (2001).

100



