Title	自己反映的構文解析系とコンパイルタイムリフレクシ ヨンに関する研究
Author（s）	加藤，大志朗

IAPAN
ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY

A Research on Reflective Parsing System and Compile-time Reflection

by

Daijiro KATO

Submitted to
Japan Advanced Institute of Science and Technology
In partial fulfillment of the requirements
For the degree of
Doctor of Philosophy

Supervisor: Professor Takuya Katayama

School of Information Science
Japan Advanced Institute of Science and Technology

June 2002

Abstract

The purpose of this paper is to construct a frame work of compiler-compiler for compiletime extensible language systems. This paper consists of three parts. Firstly, a selfextensible formal language system, named Reflective Context-Free Grammar (RCFG), is proposed. Secondly, an incremental construction method for LALR(1) parser is proposed. And additionally, we discuss on a frame work of descriptions of semantics for production rules which are newly introduced and embedded in program texts by users of compilers.

RCFG is one of self-extensible formal language systems, and an extension of ContextFree Grammar (CFG). The extensibility is obtained so as to embed new production rules which are desired to be used in the text following of the embedment. Typical point of RCFG is self-extensibility. To formalize the self-extensibility on the framework of CFG, we introduce a notion, named Augmented Forms (AF), and define derivation relation on AF sequences. In this paper, we establish some properties on RCFG, including the language class which is middle between Context-Free Language and Context-Sensitive Language, and the property that each word derived by given RCFG is also derived by a CFG which production rule set is identical to initial rule set of RCFG augmented with embedded production rules in the word. Especially, the latter property designates the characteristic of RCFG. Additionally, general parsing algorithm for RCFG, which is an extension of Earley's parsing algorithm for CFG, is given. Soundness and completeness of the algorithm are established, and also, the complexity of the algorithm and some restriction methods in order to accelerate parsing process are discussed.

In the second part of the paper, an incremental construction method for $\operatorname{LALR}(1)$ paser is discussed. In the method, both of $\operatorname{LR}(0)$ graphs and Look Ahead Symbol Sets are calculated in fully incremental manner, without use of any item set informations. Algorithms for the method are presented, and the worst case complexity is discussed. Adding to these, applications of the method for RCFG are discussed. To realize them, we introduce some notions. Firstly, we rearrange a method for incremental construction of $\operatorname{LR}(0)$ graphs so as not to use item set information. In conventional method for $\operatorname{LR}(0)$ parse table construction, some kind of subsets of items, called core or kernel, are used to identify states. Secondly, we introduce a notion for identification of states, named MaxInc which does not contain any information on item sets, instead of kernels. For incremental calculation of Look Ahead Symbol Set (LA), we introduce notions, named Dependency Domain, $E \Delta$ for ε-productivity judgment, and some other functions for calculation of (LA) with ε-productivity conditions. These notions essentially contribute to the incremental method proposed in this paper. We establish the equivalence between results obtained by conventional method and by our method.

In the additional part of the paper, we introduce a variation of Syntax Directed Translation (SDT) as a frame work for descriptions of semantics of new production rules which are introduced by users of compilers. As appendent arguments, we discuss on two kinds of implementation model of extended SDT from the point of view of development stages of programming language systems.

Acknowledgements

The author wishes to thank his principal advisor Professor Takuya Katayama of Japan Advanced Institute of Science and Technology, who has pointed out instructive suggestions on this paper. The author has sincere gratitude to him for granting the author this invaluable and irreplaceable oppotunity. The author wishes to thank his advisor Assosicate Professor Katsuhiko Gondow and his advisor Associate Professor Hajime Ishihara of Japan Advanced Institute of Science and Technology for their helpful discussions and suggestions. The author wishes to thank Professor Atsushi Ohori of Japan Advanced Institute of Science and Technology and Professor Takehiro Tokuda of Tokyo Institute of Technology for thier helpful discussions and accurate comments. The author wishes to thank Assistant Toshiaki Aoki of Japan Advanced Institute of Science and Technology for his helpful discussions and suggestions, and for his obliging advices. The author is also thankfull with Mr. Yasser Kotb who helped the author to detect insufficiency on the early works, with all members of Katayama-lab. in JAIST, and with all people at Kagawa University who have presented me passive but enough appreciation on my activities.

Contents

1 Introduction and Related Works 1
2 Preliminaries 4
2.1 Basic Notations 4
2.2 Graph 5
2.3 String and Language 6
2.4 Finite Automata and Regular Expression 6
2.5 Context-Free Grammar 8
2.6 Parsing Algorithms for CFG 9
3 Reflective Context-Free Grammar 13
3.1 Definition of Reflective Context-Free Grammar 14
3.1.1 Formalization of RCFG 14
3.1.2 Notations and Terminologies for RCFG 15
3.1.3 Derivation and Language of RCFG 16
3.2 Examples 21
3.3 Properties on RCFG 23
3.4 General Parsing Algorithm for RCFG 26
3.4.1 Algorithm 27
3.4.2 Soundness and Completeness 28
3.4.3 Discussion on Complexity 31
4 Incremental Construction of LALR Parser and its Applications for RCFG 33
4.1 Introduction 33
4.2 Discussions on Finite Automata 34
4.2.1 Definition of Fusion of FAs and Some Properties 34
4.3 Discussions on LR(0) Parsing Table (State Transition Graph) 42
4.3.1 Mono-Graph 42
4.3.2 MaxInc: a descriptor for state identification of $\operatorname{LR}(0)$ 44
4.4 Discussions on Look Ahead Symbol Set 53
4.4.1 Dependency Domain 54
4.4.2 Ind Δ : an index for LA 57
4.4.3 Space Reduction Method on DD and $\operatorname{Ind} \Delta$ 64
4.4.4 A Supplement of the Section 65
4.5 Algorithms 65
4.6 Examples 76
4.7 Discussions on Efficiency of the Algorithms 80
4.7.1 Worst case Analysis of $E \Delta$ 80
4.7.2 About implementations and complexities of $E \Delta, T o p \Delta, D e p \Delta$ 80
4.7.3 Worst case analysis of fusion 81
4.7.4 About implementation of MaxInc and its Time/Space complexity 82
4.8 About LR Parsing on RCFG 82
5 Conclusion and Future Works 85
A Discussions on Semantic Descriptions for Augmented Rules 86
A. 1 Motivation on Semantic Description for Augmented Rules 86
A. 2 An example of description by SDT 89
A. 3 An Implementation of SDT 91
A.3.1 Attributted Grammars 91
A.3.2 An implementation of SDT using AG 92
A.3.3 Discussion on the Choice of Implementation; Interpretation or Em- bedment 96
Publications 100

Chapter 1

Introduction and Related Works

Since Fortran, i.e., earliest high level programming language, was developed, various programming languages have been developed under various concepts. Some of them are still used for developments of actual systems, and also, some are objects of improvements. Besides them, significantly many programming languages have been proposed. However, it is obvious that there is a common problem among all of them, the problem how to give them their syntax and semantics, which is one of essences on development of programming language.

Most of syntaxes of programming languages are static. In other words, after a syntax of such a programming language is fixed, the language which is accepted by the system is also fixed. On the other hands, there are several programming languages which have dynamic syntaxes. For example, languages such as C are provided with apparent diversity of syntax, using pre-processor. Languages such as Algol68, Dec10-Prolog and SML/NJ enable for programmer to define new operators in program texts, which have some restrictions on definition. Languages such as C++ enable for programmer to define new semantics only on existing operators (over-loading), and so on. It is possible to regard all of them to have dynamic syntaxes, which means that their systems have syntaxes extensible on run-time without reconstructions of systems themselves. On languages described above, excepting C and C++, the extensibility is based on Operator Precedence, for Dec-10 Prolog, and TLG (Two Level Grammar) [22, 27], for Algol68. Implementation of extensibility of syntax based on Operator Precedence has advantage in the meaning that it has clarity and is easy to understand. However, because the language class of Operator Precedence is narrow, it has restriction when one applies it to extensibility on parts of a grammar other than concerning to operators. TLG is one of very complicated grammars. It has less readability, and moreover, it has no efficient parsing algorithm, if we make no restrictions on it [22].

In this paper, using a formal language system, RCFG (Reflective Context-Free Grammar), which is extensible on parse-time, we establish and propose a new parsing system which is able to deal language class larger than that of LALR(1). A hint for a frame work in which semantic descriptions are given for newly augmented production rules during parsing, the augmentation is enabled under the formalism of RCFG, are discussed in Appendix A. On the frame work, we consider two kinds of implementation model of extended Syntax Directed Translation (SDT) scheme, from the point of view of development stages of programming language systems.

RCFG is one of variations of CFG (Context-Free Grammar), which language class is
middle between CFL (Context-Free Language) and CSL (Context-Sensitive Language), and which has an efficient parsing algorithm that is an extension of Earley's parsing algorithm for CFG [11]. Details of RCFG are provided in Chapter 3. To construct a parse-time extensible formal language system, it is an easy way to enable to embed newly defined production rules in text which is just being parsed. The effective range of newly defined production rule is after the embedded position of the rule. Deletion of production rule is not considered in the frame work of RCFG.

Some frame works for extensible grammars have been proposed([6, 7, 8, 30, 31], etc.). Many of those ($[6,7,8]$, etc.) are based on Definite Clause Grammar [9], so as summarized in [8], and some others are based on Attributted Grammar [20, 21] and its resemblances [28]. There are several purpose to introduce extensibility to grammars. One of them is to describe the correspondence between declarations of variables of programming language and its uses. This problem requires a method in order to restrict the effective range of definitions of variables. So, in many approaches, parse-time augmentation and deletion of production rules have been indispensable aspects on extensible grammars. However, the function of deletion of production rules causes too much computability of the systems, which is equivalent to Turing Machine. Mostly alike system to RCFG is ECL [30, 31] on a few points. ECL is one of extensions of CFG, permits deletion of production rules, and its language class involves CSL, if no restrictions. Newly augmenting rules are extracted by a finite automaton with outputs defined with EC Grammar. We give an example language in Example 3.2.2, which is accepted by RCFG but ECL, that is of tricky one in some sense.

Our main purpose is to construct a frame work of compiler-compiler which is upper compatible to YACC [16] or Bison [10], and moreover, which can treat extensible grammar. According to this purpose, some restrictions and needs arise. 1) the base grammar processed by the system must be an extension of CFG. It must includes CFG as a special case. 2) with some restrictions on the base grammar, LALR(1) parsing scheme or some other scheme resemble to it can be processed on the system. 3) ambiguity of given grammar must be solved in YACC style. 4) about error handling. These are the reason why we propose RCFG, and 1) and 2) are solved in this paper. 3) and 4) are remained as a future works. Moreover, a frame work in which semantic descriptions are given for newly augmented production rules during parsing are discussed in Appendix A.

One might have a question on the expressive power of RCFG, because it abandoned the function of deletion of production rules. However, this simple choice leads us to harvests as a good properties of RCFG. No deletion means that all newly defined production rules have global scopes. Even if the scope is restricted to only global one, many applications are remained, e.g., operator declaration, introduction of new sentences, and so on. Additionally, it is well-known that careless deletion destroys modularity. Above all, RCFG gains efficiency on parsing. So our approach is quite a choice. The condition 1), above, is cleared with RCFG.

For a solution of the condition 2) above, we introduced a new approach of incremental construction of $\operatorname{LALR}(1)$ parser. A few methods had been proposed [12, 13, 15] as incremental construction system of LR parsers. All of these are not fit to our purpose, because they are for environments of development of programming languages, but for parsing system on extensible grammars. Their systems have complete item sets on each stage of computation. Calculation of Look Ahead Set is not clearly mentioned. It is conjectured to be calculated by conventional methods [1, 2, 3, 14], which is not incremental.

In contrast with these works, in our approach, each states of $\mathrm{LR}(0)$ parse table do not have any information of item set, and Look Ahead Symbol Set (LA) are calculated in fully incremental manner. To achieve it, several notions are introduced, and properties on them are established.

For semantic descriptions of production rules newly augmented during parsing, we start discussion with Syntax Directed Translation (SDT) scheme. SDT is a method of translating string to actions. SDT was introduced in [23] for the programming language LITHE which have flexible syntax. In Appendix A, we show a way to provide semantics for dynamically augmented rules, extending SDT so as to introduce a reflective method.

Chapter 2

Preliminaries

2.1 Basic Notations

We use the notion of set as a priori one, and sometime define sets denotatively such as, $\{x \mid P(x)\}$ with a predicate $P . x \in A$ denotes that a set A contains an object x, and x is called an element of A. An empty set which contains no element is denoted by ϕ. A set which contains finite elements in it is called a finite set, and a set which contains infinite elements in it an infinite set. $A \subset B$ denotes that B contains all elements of A, or simply A is called a subset of B. Especially, $A \subset B$ includes a case $A=B$. For a finite set A $=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, the number of elements of A is denoted by $\#(A)$ which is equal to n. Standard operations on sets, union, intersection, difference, Cartesian product and power set are denoted by $A \cup B, A \cap B, A \backslash B, A \times B$ and $\operatorname{Power}(A)$, respectively. For a set of sets, say $C=\left\{A_{1}, A_{2}, \ldots\right\}$,

$$
\bigcup_{A \in C} A
$$

denotes

$$
A_{1} \cup A_{2} \cup \cdots,
$$

and also,

denotes

$$
A_{1} \cap A_{2} \cap \cdots,
$$

respectively. Especially, in this paper, we adopt the notation

$$
\bigcup C
$$

for the former expression.
For given $C \subset \operatorname{Power}(A)$, if an element B of C satisfies the condition that $\forall B^{\prime} \in C$, $B \subset B^{\prime}$ implies $B=B^{\prime}$, then B is called a maximal element of C, or simply maximal.

Binary Relation R on sets A and B is a subset of $A \times B$. When elements $x \in A$ and $y \in B$ have relation R, we write $x R y$ or $(x, y) \in R$. When elements $x \in A$ and $y \in B$ do not have relation R, we write $x \not R y$ or $(x, y) \notin R$. For a relation R on $A \times A$, if $\forall x \in A, x R x$, then R is called reflective, if $\forall x, y, z \in A, x R y$ and $y R z$ imply $x R z$, then
R is called transitive, and if $\forall x, y \in A, x R y$ implies $y R x$, then R is called symmetric. A relation which is reflective, transitive and symmetric is called equivalent relation. For given set A and its division $D=\left\{A_{i}\right\}$, where $\bigcup D=A$, if D satisfies the conditions,
i) $\forall i, A_{i} \neq \phi$,
ii) $\forall i, j$, if $i \neq j$, then $A_{i} \cap A_{j}=\phi$,
iii) $\forall i, \forall x, y \in A_{i}, x R y$,
iv) $\forall i, j$, s.t., $i \neq j, \forall x \in A_{i}, y \in A_{j}, x \not R y$,
D is called quotient set and denoted by A / R. Each element of D is called equivalent class. If an element x of A is involved in an equivalent class A_{i}, A_{i} is denoted by $R[x]$, or simply by $[x]$.

A function f is assumed to be a subset of $A \times B$, which satisfies the condition $\forall x \in A$, there exists an element $(x, y) \in f$ for some $y \in B$, and $\forall x \in A,\left(x, y_{1}\right),\left(x, y_{2}\right) \in f$ implies $y_{1}=y_{2}$. The function type of f is denoted by $A \rightarrow B$. A is called the domain of the function, and B the co-domain. If $(x, y) \in f, y$ is written by $f(x)$. A function is also called a mapping. If given function f satisfies the condition that $\forall x, y \in A, f(x)=f(y)$ implies $x=y$, then f is called a one-to-one mapping. If given function f satisfies the condition that $\forall y \in B$, there exists an element $x \in A$, s.t., $f(x)=y$, then f is called an onto mapping. A mapping which is one-to-one and onto is also called isomorphism. For given sets A and B, if there exists a one-to-one, onto mapping between A and B, then A and B are called isomorphic, sometimes with some structural conditions.

Especially in this paper, each subset R of $A \times B$ is assumed as a function $R: A \rightarrow$ $\operatorname{Power}(B)$, so as that $R(x)=\{y \in B \mid(x, y) \in R\}$. So, for given functions $f, g: A \rightarrow$ $\operatorname{Power}(B)$, treating f and g as subsets of $A \times B$, we define operations on functions $f \cap g$ and $f \cup g$, as below,

$$
\begin{aligned}
(f \cap g)(x) & =f(x) \cap g(x), \\
(f \cup g)(x) & =f(x) \cup g(x) .
\end{aligned}
$$

2.2 Graph

A graph G is given by a 2-tuple (V, E), where V is called a vertex set of verteces, and E $\subset \operatorname{Power}(V)$ called an edge set of edges. Each element of E is an unordered pair of V. The number of elements of each element of E is one or two. An oriented graph, or called directed graph, is given also by (V, E), where V is a vertex set and E is a subset of $V \times V$, which is called an edge set of arcs. An arc is also called an edge. Sometimes, V or E may be infinite sets, however, we deal with only finite sets and directed graphs, moreover, usually each vertex and each edge are labelled, in this papper. An edge $(x, y) \in E$ designates that the edge joins verteces x and y, x is called a predecessor and y a successor. A mutual sequence of verteces and edges, say $v_{0}, e_{1}, v_{1}, \ldots, e_{n}, v_{n}$ is called path, when each e_{i} joins v_{i-1} and v_{i}, where $v_{i} \in V$ and $e_{i} \in E$. In this case, v_{n} is called reachable from v_{0}.

A directed graph is called a tree, if the following conditions are satisfied,
i) there is a unique vertex, called root, which has no predecessor,
ii) each vertex is reachable from the root,
iii) each vertex except the root has unique predecessor,
iv) all successors of each vertex, if exist, have an order from left to right.

For given directed graph $G=(V, E)$ and $V^{\prime} \subset V$, vertex induced subgraph G^{\prime} is given so as,

$$
G^{\prime}=\left(V^{\prime}, E \cap\left(V^{\prime} \times V^{\prime}\right)\right)
$$

2.3 String and Language

An alphabet is a finite set of symbols, occasionally denoted by Σ with a suffix. A string is a finite sequence of symbols, sometimes denoted by u, v and w with a suffix. The length of a string w is written by $|w|$ which denotes the number of symbols that w consists of. A zero length string is called empty string or null string, and denoted by ε. Concatenation of two strings w_{1} and w_{2} is simply denoted by $w_{1} w_{2}$. On concatenations of strings, the equation $w_{1}\left(w_{2} w_{3}\right)=\left(w_{1} w_{2}\right) w_{3}$ holds for any strings w_{1}, w_{2} and w_{3}.

A set of whole strings which consists of symbols in Σ is denoted by $\Sigma *$, and $\Sigma * \backslash\{\varepsilon\}$, the set which consists of whole positive length strings, is denoted by $\Sigma+$. A language is a subset of $\Sigma *$. An element of a language is also called word. A product of two languages L_{1} and L_{2} is denoted by $L_{1} L_{2}$, and defined as,

$$
L_{1} L_{2}=\left\{w_{1} w_{2} \mid w_{1} \in L_{1}, w_{2} \in L_{2}\right\}
$$

2.4 Finite Automata and Regular Expression

A Finite Automaton (FA) A is defined with 5-tuple as below,

$$
A=\left(\Sigma, Q, \delta, q_{0}, F\right)
$$

Σ is a finite set of symbols (alphabet),
Q is a finite set of states,
δ is a state transition function, which function type depends on the type of Automata, DFA(Deterministic Finite Automata):

$$
\delta: Q \times \Sigma \rightarrow Q
$$

ε NFA(Non-deterministic Finite Automata with ε-transitions)

$$
\delta: Q \times(\Sigma \cup\{\varepsilon\}) \rightarrow \operatorname{Power}(Q)
$$

q_{0} is initial state,
F is a subset of Q called final states.

For given ε NFA, an ε-Closure for each state q is denoted by $\varepsilon C(q)$, and defined by,

1. $q \in \varepsilon C(q)$,
2. $q^{\prime} \in \varepsilon C(q)$, then $\delta\left(q^{\prime}, \varepsilon\right) \subset \varepsilon C(q)$,
3. $\varepsilon C(q)$ is a minimum set which satisfies above two conditions.
εC is extended to a function $\varepsilon \hat{C}: \operatorname{Power}(Q) \rightarrow \operatorname{Power}(Q)$ defined as,

$$
\varepsilon \hat{C}(U)=\bigcup_{q \in U} \varepsilon C(q)
$$

where U is a subset of Q. We write εC also for $\varepsilon \hat{C}$, if no ambiguity. When to emphasize the ε-Closure is under the transition function δ, we write $\varepsilon C(\delta, q)$ or $\varepsilon C(\delta, U)$.

Lemma 2.4.1

$$
\begin{aligned}
\varepsilon C(U \cup V) & =\varepsilon C(U) \cup \varepsilon C(V) \\
\varepsilon C(\varepsilon C(U)) & =\varepsilon C(U)
\end{aligned}
$$

These are well-known results. Proofs are omitted.
The transition function δ is usually extended by following manner,

for DFA:

$$
\begin{aligned}
\delta^{*}(q, \varepsilon) & =q \\
\delta^{*}(q, w a) & =\delta\left(\delta^{*}(q, w), a\right),
\end{aligned}
$$

for NFA:

$$
\begin{aligned}
\hat{\delta}(U, \varepsilon) & =\varepsilon C(U), \\
\hat{\delta}(U, w a) & =\varepsilon C\left(\bigcup_{q \in \hat{\delta}(U, w)} \delta(q, a)\right) .
\end{aligned}
$$

We write δ for δ^{*} or $\hat{\delta}$, if no ambiguity.
The language $L(A)$ of given DFA A is stated as,

$$
L(A)=\left\{w \in \Sigma * \mid \delta\left(q_{0}, w\right) \in F\right\}
$$

and also the language $L(A)$ of given ε NFA A is stated as,

$$
L(A)=\left\{w \in \Sigma * \mid \delta\left(\left\{q_{0}\right\}, w\right) \cap F \neq \phi\right\} .
$$

For given ε NFA A, a DFA A^{\prime} which is equivalent to A is constructed as,

$$
\text { DFA } A^{\prime}=\left(\Sigma, Q^{\prime}, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)
$$

where,

$$
\begin{aligned}
Q^{\prime} & =\operatorname{Power}(Q), \\
\delta^{\prime} & =\hat{\delta} \\
q_{0}^{\prime} & =\varepsilon C\left(q_{0}\right) \\
F^{\prime} & =\{U \subset Q \mid U \cap F \neq \phi\},
\end{aligned}
$$

is called Subset Construction, and denoted by $S C(A)$ in this paper. See [14] for detail.
Regular Expression (RE) forms a language class equivalent to the class of FA. In this paper, sometimes we adopt the following notations for RE,

empty language	ϕ,	empty string	ε,
union	$R_{1}+R_{2}$,	product	$R_{1} R_{2}$,
Kleene closure	$R *$.		

$R R *$ is abbreviated to $R+$.

2.5 Context-Free Grammar

Context-Free Grammar (CFG) is defined with 4-tuple $G=(V, T, P, S)$, where,
V is a finite set of syntactic variables, or called non-terminals,
T is a finite set of terminal symbols,
P is a finite set of production rules, which is a finite subset of $V \times(V \cup T) *$,
$S \in V$ is start variable.
Each production rule $(A, \alpha) \in P$ is denoted by $A \rightarrow \alpha$.
The derivation relation \Rightarrow on $(V \cup T) *$ is defined as,

$$
\gamma_{1} A \gamma_{2} \Rightarrow \gamma_{1} \alpha \gamma_{2}
$$

if $A \rightarrow \alpha \in P$, for each $\gamma_{1}, \gamma_{2} \in(V \cup T) *$. The reflective transitive closure of \Rightarrow is denoted by $\stackrel{*}{\Rightarrow}$.

The language stated by G is denoted by $L(G)$, so as,

$$
L(G)=\{w \in T * \mid S \stackrel{*}{\Rightarrow} w\} .
$$

2.6 Parsing Algorithms for CFG

In this section, two parsing algorithms, i.e. Earley's algorithm [11] and $\operatorname{LALR}(1)[1,2,3]$, are summarized. Earley's algorithm is the basis of general parsing algorithm for RCFG defined in Section 3.4.2. The definitions for LALR(1) stated here (Definition 2.6.3 and 2.6.7) are not standard. The definitions are constructed so as to make the structur of LALR(1) graph clear and to make incremental construction method discussed in Chapter 4 easily. For each algorithms, i.e. Earley's algorithm, LALR(1) and general parsing algorithm for RCFG, notions item are defined. The term 'item' is used for the distinct notions of each algorithms, according to conventional manner.

Earley's Algorithm

Algorithm 2.6.1 (Earley's Algorithm)

Suppose a CFG $G=(V, T, P, S)$ is given. An item is denoted by $[A \rightarrow \alpha \bullet \beta, i]$, where $A \rightarrow \alpha \beta \in P$ and $i \geq 0$ is an integer. For an input string $w=a_{1} a_{2} \cdots a_{n}$, parse lists $I_{0}, I_{1}, \ldots, I_{n}$ are being calculated during parsing in Ealey's algorithm. Each parse list I_{j} consists of items.

Initial Phase:

1) initialize $I_{0}, I_{1}, \ldots, I_{n}$ to ϕ,
2) add item $[S \rightarrow \bullet \alpha, 0]$ to I_{0}, for each $S \rightarrow \alpha \in P$,
repeat 3), 4) until no new item is added to I_{0},
3) if $[A \rightarrow \alpha \bullet B \beta, 0]$ and $[B \rightarrow \gamma \bullet, 0]$ are in I_{0}, then add $[A \rightarrow \alpha B \bullet \beta, 0]$ to I_{0},
4) if $[A \rightarrow \alpha \bullet B \beta, 0]$ is in I_{0}, then add $[B \rightarrow \bullet \gamma, 0]$ to I_{0} for each $B \rightarrow \gamma \in P$,

Main Loop:

repeat 5), 6) until no new item is added to I_{0}, \ldots, I_{n},
5) if $[A \rightarrow \alpha \bullet a \beta, i]$ is in I_{j}, and $a_{j+1}=a$, then add $[A \rightarrow \alpha a \bullet \beta, i]$ to I_{j+1},
6) if $[A \rightarrow \alpha \bullet B \beta, i]$ is in I_{j} and $[B \rightarrow \gamma \bullet, j]$ is in I_{k}, then add $[A \rightarrow \alpha B \bullet \beta, i]$ to I_{k},

Judgement:
7) if $[S \rightarrow \alpha \bullet, 0]$ is in I_{n}, then the input is accepted, otherwise rejected.

LALR(1)

In following descriptions, each given CFGs are assumed to be Extended Grammars. For given CFG $G=(V, T, P, S)$, an extended grammar G^{\prime} is given by,

$$
G^{\prime}=\left(V^{\prime}, T, P^{\prime}, S^{\prime}\right),
$$

where,

$$
\begin{aligned}
V^{\prime} & =V \cup\left\{S^{\prime}\right\} \\
P^{\prime} & =P \cup\left\{S^{\prime} \rightarrow S\right\}
\end{aligned}
$$

for newly added syntactic variable S^{\prime}.

Definition 2.6.2 (Item, Item Set)

Item Set is defined as a subset of $V \times(V \cup T) * \times(V \cup T) *$. Each item $(A, \alpha, \beta) \in V \times$ $(V \cup T) * \times(V \cup T) *$ is denoted by $A \rightarrow \alpha \bullet \beta$. For given $C F G G=(V, T, P, S)$, item set Item derived from G is defined as

$$
\text { Item }=\{A \rightarrow \alpha \bullet \beta \mid A \rightarrow \alpha \beta \in P\} .
$$

When to restrict it on items which have syntactic variable X on left-hand side, it is denoted by $\operatorname{Item}(X)$,

$$
\operatorname{Item}(X)=\{X \rightarrow \alpha \bullet \beta \mid X \rightarrow \alpha \beta \in P\} .
$$

When to emphasize that Item is derived from CFG G or its production rule set P, we write $\operatorname{Item}_{G}, \operatorname{Item}_{P}$ or $\operatorname{Item}(P)$, and also $\operatorname{Item}_{G}(X)$ or $\operatorname{Item}_{P}(X)$.

Definition 2.6.3 (LR(0) graph)

For given CFG $G, L R(0)$ graph ($\varepsilon N F A$) $\operatorname{lr}(G)$ derived from G is defined as

$$
\left.\begin{array}{ll}
l r(G) & =\left(V \cup T, \text { Item } \cup\left\{q_{0}\right\}, \delta, q_{0}, \phi\right) \\
& =\{S \rightarrow \bullet \alpha \mid S \rightarrow \bullet \alpha \in \text { Item }\} \\
\delta\left(q_{0}, \varepsilon\right) & =\phi \quad(X \in V \cup T) \\
\delta\left(q_{0}, X\right) & =\{A \rightarrow \alpha X \bullet \beta\} \\
\delta(A \rightarrow \alpha \bullet X \beta, X) & =\{(X \neq Y) \\
\delta(A \rightarrow \alpha \bullet X \beta, Y) & =\phi \quad(A \rightarrow \alpha \bullet X \beta, \varepsilon)
\end{array}\right)\{X \rightarrow \propto \mid X \rightarrow \bullet \alpha \in \text { Item }\} .
$$

From now on, we prepare basic notions and notations for items.

Definition 2.6.4 (ε Item, Reduce Item)

For given $C F G G=(V, T, P, S)$, let U be a set of items, wrote $U \subset$ Item. A set of all items which dot are on top of right-hand side, i.e., $X \rightarrow \bullet \alpha$, is called ε Item. It is strictly defined as

$$
\varepsilon \text { Item }=\{Y \rightarrow \bullet \mid Y \rightarrow \alpha \in P\}
$$

We call every elements of ε Item, also, हItem. A set of ε Items, concerning to given syntactic variable X, is denoted by $\operatorname{sItem}(X)$, and defined as,

$$
\varepsilon \operatorname{Item}(X)=\{X \rightarrow \bullet \alpha \mid X \rightarrow \alpha \in P\} .
$$

A kind of items, $X \rightarrow \alpha \bullet$, is called Reduce Item.

Definition 2.6.5 (Root, Kernel)
For given $\varepsilon N F A \operatorname{lr}(G)=\left(V \cup T\right.$, Item $\left.\cup\left\{q_{0}\right\}, \delta, q_{0}, \phi\right)$ of given CFG G, if state q of $S C(l r(G))=\left(V \cup T, \operatorname{Power}\left(\right.\right.$ Item $\left.\left.\cup\left\{q_{0}\right\}\right), \delta^{\prime}, q_{0}^{\prime}, \phi\right)$ contains a reduce item $A \rightarrow \alpha \bullet$, $\operatorname{Root}(q, A \rightarrow \alpha \bullet)$ denotes a set of states in which an item $A \rightarrow \bullet \alpha$ is produced and it is a root of $A \rightarrow \alpha \bullet$ in q.

$$
\operatorname{Root}(q, A \rightarrow \alpha \bullet)=\left\{q^{\prime} \subset \operatorname{Item} \cup\left\{q_{0}\right\} \mid \delta^{\prime}\left(q^{\prime}, \alpha\right)=q, A \rightarrow \bullet \alpha \in q^{\prime}\right\}
$$

Also we define Kernel Set of State $q \in \operatorname{Power}\left(\operatorname{Item} \cup\left\{q_{0}\right\}\right)$, denoted by $\operatorname{Ker}(q)$, such as,

$$
\begin{aligned}
& \operatorname{Ker}\left(q_{0}^{\prime}\right)=\varepsilon C\left(q_{0}\right) \backslash\left\{q_{0}\right\}, \\
& \operatorname{Ker}(q)=\delta\left(q^{\prime}, X\right) \quad \text { where } \hat{\delta}\left(q^{\prime}, X\right)=q .
\end{aligned}
$$

In following, firstly, we collect notions concerning to LA, which are arranged in expected forms.

Definition 2.6.6 (First)
For given $C F G G=(V, T, P, S)$ and given $\alpha \in(V \cup T) *$, a set of first symbols derived from α, denoted by First (α), is defined as

$$
\operatorname{First}(\alpha)=\left\{a \in T \mid \alpha \stackrel{*}{\Rightarrow} a \alpha^{\prime}\right\} .
$$

If emphasizing the value of First is on grammar G or production rule set P, we write First $_{G}(\alpha)$ or First $_{P}(\alpha)$.

Definition 2.6.7 (Look Ahead Sets of LALR(1))

For given $C F G G=\left(V, T, P, S^{\prime}\right)$, let $S C(\operatorname{lr}(G))=\left(V \cup T, Q, \delta^{\prime}, q_{0}^{\prime}\right.$, *), where $Q=$ $\operatorname{Power}\left(\operatorname{Item} \cup\left\{q_{0}\right\}\right)$ and $q_{0}^{\prime}=\varepsilon C\left(\delta, q_{0}\right)$, then a function $\lambda: Q \times \operatorname{Item} \rightarrow \operatorname{Power}((V \cup T) *)$ is defined as,

$$
\begin{array}{ll}
\lambda\left(q_{0}^{\prime}, S^{\prime} \rightarrow \bullet S\right)=\{\$\} & \\
A \rightarrow \alpha \bullet X \beta \in q, \delta^{\prime}(q, X)=q^{\prime} & \Rightarrow \lambda(q, A \rightarrow \alpha \bullet X \beta) \subset \lambda\left(q^{\prime}, A \rightarrow \alpha X \bullet \beta\right) \\
A \rightarrow \alpha \bullet B \beta \in q & \Rightarrow \forall B \rightarrow \gamma \in P, \beta \lambda(q, A \rightarrow \alpha \bullet B \beta) \subset \lambda(q, B \rightarrow \bullet \gamma) \\
\forall i \in \text { Item, s.t., } i \notin q & \Rightarrow \lambda(q, i)=\phi
\end{array}
$$

(the value of λ is minimum set that satisfies above condition).
$L A$ for each reduce item $A \rightarrow \alpha \bullet$ in each state of $S C(\operatorname{lr}(G))$ is obtained by First $(\lambda(q$, $A \rightarrow \alpha \bullet)$).

Next propositon is well-known, but the substance of the proof is very important on the discussions in Section 4.4. So, a brief proof is attached.

Proposition 2.6.8 For any given $C F G G=(V, T, P, S)$ and any symbol sequences α, $\beta \in(V \cup T) *$, $\operatorname{First}(\alpha \alpha \beta)=\operatorname{First}(\alpha \beta)$.
(proof) Consider two cases that i) ε is derived from α and ii) ε is not derived from α. On the case i), $\operatorname{First}(\alpha \beta)=\operatorname{First}(\alpha) \cup \operatorname{First}(\beta)$ and $\operatorname{First}(\alpha \alpha \beta)=\operatorname{First}(\alpha) \cup \operatorname{First}(\alpha \beta)=$ $\operatorname{First}(\alpha) \cup \operatorname{First}(\alpha) \cup \operatorname{First}(\beta)=\operatorname{First}(\alpha) \cup \operatorname{First}(\beta)$, and on the case of ii) $\operatorname{First}(\alpha \beta)=$ $\operatorname{First}(\alpha)$ and $\operatorname{First}(\alpha \alpha \beta)=\operatorname{First}(\alpha)$. On both cases, the equation holds.//

Proposition 2.6.9 For any ε Item which belongs to state q of $\operatorname{SC}(\operatorname{lr}(G))$ and which lefthand side is common syntactic variable, say $A, A \rightarrow \bullet \alpha, A \rightarrow \bullet \beta \in q \cap \varepsilon \operatorname{Item}(A)$,

$$
\lambda(q, A \rightarrow \bullet \alpha)=\lambda(q, A \rightarrow \bullet \beta) .
$$

We write $\operatorname{Ind} \lambda(q, A)=\lambda(q, A \rightarrow \bullet \alpha)$, which means Induced LA Set for syntactic variable A at state q.

Chapter 3

Reflective Context-Free Grammar

In this chapter, we introduce a formal language system, named Reflective Context-Free Grammar (RCFG), which provides a basis of self-extensible language systems. RCFG is a simple extension of CFG. Its language class is middle between CFL and CSL. And, moreover, it has an efficient general parsing algorithm which is an extension of Earley's parsing algorithm for CFG. The idea of RCFG is quite simple. Production rule description of CFG forms, such as,

$$
E x p \rightarrow E x p^{\prime}+^{\prime} \operatorname{Exp}
$$

The "Grammar of Production Rule of CFG" is also defined in CFG,

$$
\begin{aligned}
\text { Production-Rule } & \rightarrow \text { Variable' } \rightarrow^{\prime} \text { Symbol-Sequence } \\
\text { Symbol-Sequence } & \rightarrow \\
\text { Symbol-Sequence } & \rightarrow \text { Variable Symbol-Sequence } \\
\text { Symbol-Sequence } & \rightarrow \text { Terminal Symbol-Sequence. }
\end{aligned}
$$

This observation is the start point of RCFG. To realize self-extensible language system, we adopt a way so as to enable for programmers and/or developers to embed new production rules into program texts which is just being parsed. For example, in SML/NJ, new operators will be defined by use of 'infix' of 'infixr', such as,
infix 5 newop;.
In this statement, a new operator 'newop' is defined as an infix operator with precedence number ' 5 '. Here, we ignore precedence number, because it is a parsing algorithm dependent notion. If it is permitted that a portion of syntactic rules is used at defining new operator, such that,

Exp newop Exp is also Exp,
we gain freedom to define new operators which have another types other than infix operators, as follow,

Exp ? Exp : Exp is also Exp.
The main idea of RCFG is to embed portions of production rules in texts which are derived by given RCFG augmented with these embedded portions themselves. In other words, texts with which RCFG deals is 'self referential' in the sense that the text contains
information or partial definitions about text itself. This feature is the most significant difference with CFG. For example, in RCFG, description (3.1) above is written as,

$$
[\underline{E x p} \triangleright \underline{E x p} ? \underline{E x p}: \underline{E x p}] .
$$

'[' and ']' indicate the sentense enclosed by these brackets is an embedded production rule. ' $E x p$ ' is a terminal symbol which is introduced in order to express a syntactic variable Exp. When such a description is derived from specified syntactic variable, an augmentation of designated production rule happens.

In following of this chapter, we provide a formal definition of RCFG, definition of derivation sequence, examples of RCFG, some properties on RFCG, general parsing algorithm which is an extension of Earley's parsing algorithm for CFG, soundness and completeness of the algorithm and discussion on the efficiency of the algorithm, in this order.

3.1 Definition of Reflective Context-Free Grammar

3.1.1 Formalization of RCFG

Definition 3.1.1 (RCFG)

RCFG G is defined with 8-tuple as below,

$$
G=(V, T, M, D, \mathbf{A u g}, f, P, s)
$$

V is a finite set of Syntactic Variable,
T is a finite set of Terminal Symbol, especially including special symbols $[, \triangleright$,$] , which$ are used for parsing-time, augmentation (dynamic extension) of Production Rules,
M is a subset of T, called Meta-Symbols,
D is a subset of M, called Definables,
Aug is a subset of V, each elements of which causes Augmentation of production rules,
f is a one-to-one, onto map, s.t., $M \rightarrow V$, which is used for interpretation of augmenting production rules,
P is a finite set of (Initial)Production Rules, each production rule is an element of $V \times$ $(V \cup T) *$,
s is Start Symbol.
From now on, we introduce two notions, FSP (Feasible Set of Production rules) and AF (Augmented Forms) to discuss and define dynamic augmentation of production rules. In RCFG framework, it is not meant that any production rules will be augmented. Production rules which are possibly augmented are predictable. Roughly, those candidates are included in $\{X \rightarrow \alpha \mid X \in f(D), \alpha \in(f(M) \cup T) *\}$, which is named FSP. In following discussions, we assume the domain of newly augmented production rules is FSP.

AF is one of most important notions on RCFG. On CFG, derivation is defined on sequences on syntactic variables and terminal symbols. In contrast to CFG, it is need
to express the augmentation of production rules, in RCFG. So, derivation on RCFG must contains production rule information which denotes a collection of production rules available to be used at the point of derivation. An intuitive explanation for AF is given after the definition, again.

Definition 3.1.2 (feasible set of production rules)

For given $R C F G G=(V, T, M, D, \mathbf{A u g}, f, P, s)$, a feasible set of production rules FSP is defined as bellow,

$$
F S P=P \cup(f(D) \times(f(M) \cup T) *) .
$$

Definition 3.1.3 (Augmented Form)

Augmented Form of Syntactic Variable $A \in V$ forms 4-tuple,

$$
\left(A, P_{1}, P_{2}, w\right)
$$

where P_{1} and P_{2} are finite sets of production rules, and $w \in T *$. Also, Augmented Form of Terminal Symbol $a \in T$ forms,

$$
\left(a, P_{1}, P_{2}, w\right)
$$

We simply call Augmented Form (AF) for both.
To reduce descriptions in following discussions, an AF sequence $\left(X_{1}, P_{1}, P_{2}, u_{1}\right)\left(X_{2}\right.$, $\left.P_{2}, P_{3}, u_{2}\right) \cdots\left(X_{n}, P_{n}, P_{n+1}, u_{n}\right)$ may be abbreviated to ($\alpha, P_{1}, P_{n+1}, u$), where $\alpha=$ $X_{1} X_{2} \cdots X_{n}, u=u_{1} u_{2} \cdots u_{n}$.

Intuitively, an augmented forms $\left(X, P_{1}, P_{2}, w\right)$ indicates that string w is derived from X by use of production rules in P_{2}, and, while derivation is done, some new production rules which are embedded in w are attached to $P_{1} . P_{1}$ is to be seen as a 'core rule set for production,' and P_{2} to be seen as a 'augmented rule set by production.'

3.1.2 Notations and Terminologies for RCFG

Notation 3.1.4 (Notations on RCFG)

A capital letter, A, B, C, \ldots, possibly with some suffix, denotes a syntactic variable exclude special syntactic variables in Aug.

A lowercase letter, a, b, c, \ldots, possibly with some suffix, denotes a terminal symbol exclude "[", "म" and "]".

An X, Y, Z, possibly with some suffix, denotes a syntactic variable or a terminal symbol.

A u, v, w, possibly with some suffix, denotes finite sequences of elements of T, string.
A small Greek letter, $\alpha, \beta, \gamma, \ldots$, possibly with some suffix, denotes a finite sequence of elements of T and V.

An element (A, α) of P and FSP is denoted using arrow as ' $A \rightarrow \alpha$ '.
A P, Q, possibly with some suffix, denotes a finite subset of FSP.
We extend f to $\hat{f}: T \rightarrow V \cup T$, where

$$
\hat{f}(a)= \begin{cases}f(a) & \text { if } a \in M \\ a & \text { otherwise }\end{cases}
$$

Also, $\hat{f} *: T * \rightarrow(V \cup T) *$ is defined recursively, where $\hat{f} *(\varepsilon)=\varepsilon, \hat{f} *(a w)=\hat{f}(a) \hat{f} *(w)$, and, $\tilde{f}: T * \rightarrow V \times(V \cup T) *$, where

$$
\tilde{f}(w)= \begin{cases}A \rightarrow \alpha & \text { if } \hat{f} *(w) \text { forms } A \triangleright \alpha, A \in f(D) \text { and } \alpha \in(f(M) \cup T) * \\ \top & \text { otherwise. }\end{cases}
$$

We use f in order to denote one of all these functions, if no ambiguity.

Terminologies

When A is a member of $f(M)$ then we term A a public variable. When A is a member of $f(D)$ then we term A a definable variable. When for a string $[w] \in T *, f(w) \neq \top$ then we term $[w]$ an embedded portion.

3.1.3 Derivation and Language of RCFG

Definition 3.1.5 (Derivation of RCFG)

A binary relation \Rightarrow on finite sequences of augmented forms is defined as,

1) ordinal case,

$$
\begin{aligned}
& \left(\alpha, P, P_{1}, w_{1}\right)\left(A, P_{1}, P_{n+1}, w_{2}\right)\left(\beta, P_{n+1}, P_{n+2}, w_{3}\right) \\
& \quad \Rightarrow \quad\left(\alpha, P, P_{1}, w_{1}\right)\left(X_{1}, P_{1}, P_{2}, u_{1}\right) \cdots\left(X_{n}, P_{n}, P_{n+1}, u_{n}\right)\left(\beta, P_{n+1}, P_{n+2}, w_{3}\right)
\end{aligned}
$$

with constraints,

- $A \notin \mathrm{Aug}$,
- $A \rightarrow X_{1} \cdots X_{n} \in P_{n+1}$,
- $w_{2}=u_{1} \cdots u_{n}$,
- $\forall i=1, \ldots, n$, if $X_{i} \in T$, then $u_{i}=X_{i}$ and $P_{i+1}=P_{i}$,

2) reflective case,

$$
\begin{aligned}
& \left(\alpha, P, P_{0}, w_{1}\right)\left(\mathbf{p}, P_{0}, P_{1}^{\prime}, w_{2}\right)\left(\beta, P_{1}^{\prime}, P_{2}^{\prime}, w_{3}\right) \\
& \Rightarrow \quad\left(\alpha, P, P_{0}, w_{1}\right)\left(\left[, P_{0}, P_{0},[)\right.\right. \\
& \quad\left(X_{0}, P_{0}, P_{1}, u_{0}\right)\left(\triangleright, P_{1}, P_{1}, \triangleright\right)\left(X_{1}, P_{1}, P_{2}, u_{1}\right) \cdots\left(X_{n}, P_{n}, P_{n+1}, u_{n}\right) \\
& \left.\left.\quad(], P_{n+1}, P_{1}^{\prime}\right]\right)\left(\beta, P_{1}^{\prime}, P_{2}^{\prime}, w_{3}\right)
\end{aligned}
$$

with constraints,

- $\mathbf{p} \in$ Aug
- $w_{2}=\left[u_{0} \triangleright u_{1} \cdots u_{n}\right]$
- $\mathbf{p} \rightarrow\left[X_{0} \triangleright X_{1} \cdots X_{n}\right] \in P_{1}^{\prime}$ and $f\left(u_{0} \triangleright u_{1} \cdots u_{n}\right)$ has valid form of production rule,
- $\forall i=0, \ldots, n$, if $X_{i} \in T$, then $u_{i}=X_{i}$ and $P_{i+1}=P_{i}$,
- $P_{1}^{\prime}=P_{n+1} \cup\left\{f\left(u_{0} \triangleright u_{1} \cdots u_{n}\right)\right\}$.

We write reflective transitive closure of $\Rightarrow b y \stackrel{*}{\Rightarrow}$.

This definition of derivation is some what complicated. In this definition, production rule sets which occur in each AFs has no procedure to calculate them. Only they have constraints on them, some of them are provided in definition explicitly as 'constraints' conditions as described above, and the other is implicitly provided in the definition, e.g., such as P_{1} in AF sequence $\left(\alpha, P_{0}, P_{1}, w_{1}\right)\left(\beta, P_{1}, P_{2}, w_{2}\right)$. Superficially, one might consider that if appropriate combinations of production rule sets and strings were provided for each AFs, then an unexpected derivation would happen. However, such an unexpected derivation never occurs, because of the constraints described above, and this feature is established with propositions stated in the following sections.

Here, we give an example which language is out of CFL.

Example 3.1.6 (Grammar out of CFG)

Consider RCFG $G_{1}=(V, T, M, D$, Aug, $f, P, s)$, where

$$
\begin{aligned}
V & =\{s, \mathbf{p}, A, B\} \\
T & =\{0,1,[, \triangleright,], \underline{A}\} \\
M & =D=\{\underline{A}\} \\
\mathbf{A u g} & =\{\mathbf{p}\} \\
f(\underline{A}) & =A \\
P & =\{s \rightarrow \mathbf{p} A, \mathbf{p} \rightarrow[\underline{A} \triangleright B], B \rightarrow \varepsilon|0 B| 1 B\},
\end{aligned}
$$

This example specifies a language $L\left(G_{1}\right)=\{[\underline{A} \triangleright w] w \mid w \in\{0,1\} *\}$. Since there is no production rule in P, which has A on left-hand side, for any AF (s, P, P^{\prime}, u), after a derivation $\left(s, P, P^{\prime}, u\right) \Rightarrow\left(\mathbf{p}, P, P^{\prime}, u_{1}\right)\left(A, P^{\prime}, P^{\prime}, u_{2}\right)$, only one derivation is able to be done from $\mathrm{AF}\left(A, P^{\prime}, P^{\prime}, u_{2}\right)$, using an augmented rule derived from \mathbf{p}. A definition of language of RCFG will be given in Definition 3.1.9 below. A derivation sequence for terminal string $[\underline{A} \triangleright 01] 01$ can be given as below,

$$
\begin{aligned}
&\left(s, P, P^{\prime},[\underline{A} \triangleright 01] 01\right) \\
& \Rightarrow\left(\mathbf{p}, P, P^{\prime},[\underline{A} \triangleright 01]\right)\left(A, P^{\prime}, P^{\prime}, 01\right) \\
& \Rightarrow\left(\left[, P, P,[)(\underline{A}, P, P, \underline{A})(\triangleright, P, P, \triangleright)(B, P, P, 01)(], P, P^{\prime},\right]\right)\left(A, P^{\prime}, P^{\prime}, 01\right) \\
& \Rightarrow\left(\left[, P, P,[)(\underline{A}, P, P, \underline{A})(\triangleright, P, P, \triangleright)(0, P, P, 0)(B, P, P, 1)(], P, P^{\prime},\right]\right)\left(A, P^{\prime}, P^{\prime}, 01\right) \\
& \Rightarrow\left(\left[, P, P,[)(\underline{A}, P, P, \underline{A})(\triangleright, P, P, \triangleright)(0, P, P, 0)(1, P, P, 1)(B, P, P, \varepsilon)(], P, P^{\prime},\right]\right) \\
&\left(A, P^{\prime}, P^{\prime}, 01\right) \\
& \Rightarrow\left(\left[, P, P,[)(\underline{A}, P, P, \underline{A})(\triangleright, P, P, \triangleright)(0, P, P, 0)(1, P, P, 1)(\varepsilon, P, P, \varepsilon)(], P, P^{\prime},\right]\right) \\
&\left(A, P^{\prime}, P^{\prime}, 01\right) \\
& \Rightarrow \quad\left(\left[, P, P,[)(\underline{A}, P, P, \underline{A})(\triangleright, P, P, \triangleright)(0, P, P, 0)(1, P, P, 1)(\varepsilon, P, P, \varepsilon)(], P, P^{\prime},\right]\right) \\
&\left(0, P^{\prime}, P^{\prime}, 0\right)\left(1, P^{\prime}, P^{\prime}, 1\right)
\end{aligned}
$$

where $P^{\prime}=P \cup\{A \rightarrow 01\}$. If P^{\prime} is given other than $P \cup\{A \rightarrow 01\}$, the derivation on \mathbf{p} must be fault. Of course, there are infinitely many choices to give arguments of AFs. However, for successful derivation, there must be given valid combination of values, because any derivation must satisfy the constraints given in the definition of derivation. On the above derivation example, the combination given is unique. Properties on arguments of AFs on derivations are established in Section 3.3.

Similar to CFG, on RCFG, notions of derivation tree, leftmost derivation and rightmost derivation are likely defined. These notions make clear the effective ranges of embedded portions in the texts contain them. Especially, leftmost derivation is used in the proof of completeness of the general parsing algorithm for RCFG, stated in Section 3.4.2.

Definition 3.1.7 (Leftmost Derivation) Leftmost derivation is, informally, stated so that the subjects of derivation on each points are 'leftmost' syntactic variables. Formally, it is stated with binary relation \Rightarrow_{L}, as follows,

1) ordinal case,

$$
\begin{aligned}
& \left(v, P_{,} P_{1}, w_{1}\right)\left(A, P_{1}, P_{n+1}, w_{2}\right)\left(\beta, P_{n+1}, P_{n+2}, w_{3}\right) \\
& \quad \Rightarrow_{L} \quad\left(v, P, P_{1}, w_{1}\right)\left(X_{1}, P_{1}, P_{2}, u_{1}\right) \cdots\left(X_{n}, P_{n}, P_{n+1}, u_{n}\right)\left(\beta, P_{n+1}, P_{n+2}, w_{3}\right)
\end{aligned}
$$

with constraints,

- $A \notin \mathrm{Aug}$,
- $A \rightarrow X_{1} \cdots X_{n} \in P_{n+1}$,
- $w_{2}=u_{1} \cdots u_{n}$,
- $\forall i=1, \ldots, n$, if $X_{i} \in T$, then $u_{i}=X_{i}$ and $P_{i+1}=P_{i}$,

2) reflective case,

$$
\begin{aligned}
& \left(v, P, P_{0}, w_{1}\right)\left(\mathbf{p}, P_{0}, P_{1}^{\prime}, w_{2}\right)\left(\beta, P_{1}^{\prime}, P_{2}^{\prime}, w_{3}\right) \\
& \quad \Rightarrow_{L} \quad\left(v, P, P_{0}, w_{1}\right)\left(\left[, P_{0}, P_{0},[)\right.\right. \\
& \quad\left(X_{0}, P_{0}, P_{1}, u_{0}\right)\left(\triangleright, P_{1}, P_{1}, \triangleright\right)\left(X_{1}, P_{1}, P_{2}, u_{1}\right) \cdots\left(X_{n}, P_{n}, P_{n+1}, u_{n}\right) \\
& \left.\left.\quad(], P_{n+1}, P_{1}^{\prime},\right]\right)\left(\beta, P_{1}^{\prime}, P_{2}^{\prime}, w_{3}\right)
\end{aligned}
$$

with constraints,

- $\mathbf{p} \in$ Aug
- $w_{2}=\left[u_{0} \triangleright u_{1} \cdots u_{n}\right]$
- $\mathbf{p} \rightarrow\left[X_{0} \triangleright X_{1} \cdots X_{n}\right] \in P_{1}^{\prime}$ and $f\left(u_{0} \triangleright u_{1} \cdots u_{n}\right)$ has valid form of production rule,
- $\forall i=0, \ldots, n$, if $X_{i} \in T$, then $u_{i}=X_{i}$ and $P_{i+1}=P_{i}$,
- $P_{1}^{\prime}=P_{n+1} \cup\left\{f\left(u_{0} \triangleright u_{1} \cdots u_{n}\right)\right\}$,
where $v \in T *$.
Definition 3.1.8 (Rightmost Derivation) Rightmost derivation is, informally, stated so that the subjects of derivation on each points are 'rightmost' syntactic variables. Formally, it is stated with binary relation \Rightarrow_{R}, as follows,

1) ordinal case,

$$
\begin{aligned}
& \left(\alpha, P, P_{1}, w_{1}\right)\left(A, P_{1}, P_{n+1}, w_{2}\right)\left(v, P_{n+1}, P_{n+2}, w_{3}\right) \\
& \quad \Rightarrow_{R} \quad\left(\alpha, P, P_{1}, w_{1}\right)\left(X_{1}, P_{1}, P_{2}, u_{1}\right) \cdots\left(X_{n}, P_{n}, P_{n+1}, u_{n}\right)\left(v, P_{n+1}, P_{n+2}, w_{3}\right)
\end{aligned}
$$

with constraints,

- $A \notin \mathrm{Aug}$,
- $A \rightarrow X_{1} \cdots X_{n} \in P_{n+1}$,
- $w_{2}=u_{1} \cdots u_{n}$,
- $\forall i=1, \ldots, n$, if $X_{i} \in T$, then $u_{i}=X_{i}$ and $P_{i+1}=P_{i}$,

2) reflective case,

$$
\begin{aligned}
& \left(\alpha, P_{,}, P_{0}, w_{1}\right)\left(\mathbf{p}, P_{0}, P_{1}^{\prime}, w_{2}\right)\left(v, P_{1}^{\prime}, P_{2}^{\prime}, w_{3}\right) \\
& \quad \Rightarrow_{R} \quad\left(v, P, P_{0}, w_{1}\right)\left(\left[, P_{0}, P_{0},[)\right.\right. \\
& \quad\left(X_{0}, P_{0}, P_{1}, u_{0}\right)\left(\triangleright, P_{1}, P_{1}, \triangleright\right)\left(X_{1}, P_{1}, P_{2}, u_{1}\right) \cdots\left(X_{n}, P_{n}, P_{n+1}, u_{n}\right) \\
& \left.\left.\quad(], P_{n+1}, P_{1}^{\prime},\right]\right)\left(v, P_{1}^{\prime}, P_{2}^{\prime}, w_{3}\right)
\end{aligned}
$$

with constraints,

- $\mathbf{p} \in \mathrm{Aug}$
- $w_{2}=\left[u_{0} \triangleright u_{1} \cdots u_{n}\right]$
- $\mathbf{p} \rightarrow\left[X_{0} \triangleright X_{1} \cdots X_{n}\right] \in P_{1}^{\prime}$ and $f\left(u_{0} \triangleright u_{1} \cdots u_{n}\right)$ has valid form of production rule,
- $\forall i=0, \ldots, n$, if $X_{i} \in T$, then $u_{i}=X_{i}$ and $P_{i+1}=P_{i}$,
- $P_{1}^{\prime}=P_{n+1} \cup\left\{f\left(u_{0} \triangleright u_{1} \cdots u_{n}\right)\right\}$,
where $v \in T *$.
In both of leftmost and rightmost derivations, reflective transitive closure for them are denoted by \Rightarrow_{L}^{*} and \Rightarrow_{R}^{*}, respectively.

These definitions of leftmost derivation and rightmost derivation denote the generality of the definition of derivation for RCFG. The occurrence of terminal strings in AF sequences may make someone feel that the definition is not sophisticated. The need of terminal strings, i.e. the fourth arguments of AFs, is clear, because, while embedded portions are objects of terminal strings, intermediate AF sequences contain syntactic variables as first arguments of AFs, which concern to the embedded portions, and production rules just augmented must be determined with these intermediate AF sequences. Some kind of circularity is needed in order to define self-extensibilities. The occurences of terminal strings in AFs are of such circularity. Our approach for definition of derivation is close to the stance of $[6,7]$, rather than ECL $[30,31]$.

The relations between general definition (Definition 3.1.5) and leftmost derivation (Definition 3.1.7) and between Definition 3.1.5 and rightmost derivation (Definition 3.1.8) are stated in the following section. As a consequence, they are quite similar to those of CFG.

Derivation tree on RCFG is also defined, like CFG. Derivation tree is not indispensable notion. However, it makes some properties on RCFG clear. To describe a derivation tree for given derivation sequence, we write AFs $\varphi_{i, 1}, \ldots, \varphi_{i, n}$ derived from AF $\varphi_{k, l}$, where $\varphi_{i, j}$ is the AF which is derived from $\varphi_{k, l}$ and occurs at j-th position among AFs derived at i-th derivation. Initial AF is written by $\varphi_{0,1}$. For example, if $s \rightarrow a b \in P$, where s is the start variable and a and b are terminal symbols, a derivation $(s, P, P, a b) \Rightarrow(a$, $P, P, a)(b, P, P, b)$ is written by $\varphi_{0,1} \Rightarrow \varphi_{1,1} \varphi_{1,2}$, where $\varphi_{0,1}=(s, P, P, a b), \varphi_{1,1}=(a$,

Figure 3.1: An Example of Derivation Tree

Figure 3.2: Effective Range of New Rule
$P, P, a), \varphi_{1,2}=(b, P, P, b)$. The set of nodes of the derivation tree is a finite subset of $\mathbf{N} \times \mathbf{N} .(k, l)$ is the parent of $(i, 1), \ldots,(i, n)$ and (i, j) is the j-th child of (k, l). Each node of (i, j) is labelled with $\mathrm{AF} \varphi_{i, j}$. When we illustrate a derivation tree in a graph, we may omit each arguments of AFs labelled except their first argumens. For example, a derivation tree of above example can be illustrated as Figure 3.1.

Effective range of newly added production rule is breafly illustrated in Figure 3.2. In meshed part of the derivation tree, the new production rule is available to be used for derivation.

Definition 3.1.9 (Language of RCFG)

For given $R C F G G=(V, T, M, D$, Aug, $f, P, s)$, the language $L(G)$ of G is defined as,

$$
L(G)=\left\{u \in T * \mid \exists P^{\prime}, P_{1}, P_{1}^{\prime} \in F S P, \exists w, w^{\prime} \in T *,\left(s, P, P_{1}, w\right) \stackrel{*}{\Rightarrow}\left(u, P^{\prime}, P_{1}^{\prime}, w^{\prime}\right)\right\} .
$$

Note: $u=w=w^{\prime}, P=P^{\prime}$ and $P_{1}=P_{1}^{\prime}$ are concluded with the propositions which will be shown below.

With definitions of derivation, leftmost (rightmost) derivation and language for RCFG, we can define a notion of 'ambiguity' for RCFG, similarly to CFG.

Definition 3.1.10 (Ambiguity) For given $R C F G G$, if there is a word in $L(G)$, for which there are at least two distinct leftmost (rightmost) derivation sequences, G is called ambiguous grammar, or simply ambiguous.

One may doubt the definition of ambiguity is too simple to state the notion, with supposition that there are two distinct derivation sequences in each step of which AF sequences are identical on their first arguments. It becomes clear that the supposition is not true by propositions stated in Section 3.3. The essential points are that a derivation for a variable $\mathbf{p} \in$ Aug must cause an augmentation of a production rule and no augmentation occurs on ordinal cases on derivation, and, fourth arguments of each AFs are identical to strings derived from the AFs.

3.2 Examples

Here, two examples are given. One is an example for Operator Declaration Problem, in which a way how to give a grammar enables user to declare new operators is illustrated. In this example, the grammar illustrated is an ambigous in order to reduce descriptions. The other example is some what tricky one. In the later example, no production rules for start variable are given in initial production rule set. However, because a production rule for start variable can be augmented in texts, the language is not empty.

Example 3.2.1 (Operator declaration)

Consider RCFG $G_{2}=(V, T, M, D$, Aug, $f, P, s)$, where

$$
\begin{aligned}
& V=\left\{s, \mathbf{p}, \text { DefList, Pat, Pat }{ }_{1}, \text { Exp }, \text { Id }\right\}, \\
& T=\{[, \triangleright,], \underline{\text { Exp }}, a, b, \ldots, z,+, *\}, \\
& M=D=\{\underline{E x p}\}, \\
& \text { Aug }=\{\mathbf{p}\}, \\
& f(\underline{E x p})=E x p \text {, } \\
& P=\{s \rightarrow \text { DefList Exp, } \\
& \text { DefList } \rightarrow \varepsilon \text {, } \\
& \text { DefList } \rightarrow \mathbf{p} \text { DefList, } \\
& \mathbf{p} \rightarrow \underline{\underline{E x p}} \triangleright P a t], \\
& \text { Pat } \rightarrow \underline{\text { Exp } \text { Pat }_{1} \mid \text { Pat }_{1}, ~} \\
& \text { Pat } t_{1} \rightarrow I d \underline{\text { Exp }} \mid I d \underline{\text { Exp } P a t_{1},} \\
& E x p \rightarrow I d|E x p+E x p| E x p * E x p, \\
& I d \rightarrow a|b| \cdots|z| a I d|b I d| \cdots \mid z I d\} .
\end{aligned}
$$

We illustrate a derivation sequence for a string " $[$ Exp \triangleright exponential Exp of Exp] a + exponential b of c". G_{2} is an ambiguous, because of the definition of production rule concerning to variable Exp. We start with $A F\left(s, P, P^{\prime}, u\right)$ for some appropriate P^{\prime} and u.

$$
\begin{aligned}
\left(s, P, P^{\prime}, u\right) & \Rightarrow\left(\text { DefList Exp }, P, P^{\prime}, u\right) \\
& \Rightarrow\left(\mathbf{p}, P, P_{1}, u_{1}\right)\left(\text { DefList }, P_{1}, P_{2}, u_{2}\right)\left(E x p, P_{2}, P^{\prime}, u_{3}\right) \\
& \Rightarrow\left(\mathbf{p}, P, P_{1}, u_{1}\right)\left(\varepsilon, P_{1}, P_{2}, u_{2}\right)\left(E x p, P_{2}, P^{\prime}, u_{3}\right)
\end{aligned}
$$

(at this point, it becomes clear that $P_{1}=P_{2}, u_{2}=\varepsilon$. AFs with ε string are omitted from now on,)

$$
\Rightarrow \quad\left([\underline{E x p} \triangleright P a t], P, P_{1}, u_{1}\right)\left(E x p, P_{2}, P^{\prime}, u_{3}\right)
$$

$$
\left.\stackrel{*}{\Rightarrow}(\underline{[\text { Exp }} \triangleright \text { exponential Exp of } \underline{\text { Exp }}], P, P_{1}, u_{1}\right)\left(\text { Exp }, P_{2}, P^{\prime}, u_{3}\right)
$$

(at this point, it becomes clear that $P_{1}=P_{2}=P \cup\{$ Exp \rightarrow exponential Exp of Exp $\}$, and $u_{1}=$ " $[\underline{\text { Exp }} \triangleright$ exponential $\underline{\text { Exp }}$ of $\underline{\text { Exp }}]$ ",)

$$
\begin{aligned}
& \Rightarrow\left(u_{1}, P, P_{1}, u_{1}\right)\left(\operatorname{Exp}+\operatorname{Exp}, P_{2}, P^{\prime}, u_{3}\right) \\
& \stackrel{*}{\Rightarrow}\left(u_{1}, P, P_{1}, u_{1}\right)\left(a+\operatorname{Exp}, P_{2}, P^{\prime}, u_{3}\right) \\
& \Rightarrow\left(u_{1}, P, P_{1}, u_{1}\right)\left(a+\operatorname{exponential} \text { Exp of Exp }, P_{2}, P^{\prime}, u_{3}\right)
\end{aligned}
$$

(this derivation is enabled, because a production rule Exp \rightarrow exponential Exp of Exp is in P_{2}, which was augmented above derivation,)

$$
\begin{aligned}
\stackrel{*}{\Rightarrow} & (\underline{\text { Exp }} \triangleright \text { exponential } \underline{\text { Exp }} \text { of } \underline{\text { Exp }}] a+\text { exponential b of } c, P, P^{\prime}, \\
& {[\underline{\text { Exp }} \triangleright \text { exponential } \underline{\text { Exp }} \text { of } \underline{\text { Exp }}] a+\text { exponential b of } c) . }
\end{aligned}
$$

Example 3.2.2 (Tricky)

Here, an example which provides a reflective feature of $R C F G$ is given. Consider $R C F G$ $G_{3}=(V, T, M, D, \mathbf{A u g}, f, P, s)$, where

$$
\begin{aligned}
V= & \{s, \mathbf{p}, P a t\} \\
T= & \{[, \triangleright,], \underline{s}, \underline{\mathbf{p}}, a, b\} \\
M= & \{\underline{\mathbf{p}}, \underline{s}\} \\
D= & \{\underline{s}\} \\
\text { Aug }= & \{\mathbf{p}\} \\
f(\underline{\mathbf{p}})= & \mathbf{p}, f(\underline{s})=s \\
P= & \{\mathbf{p} \rightarrow[\underline{s} \triangleright \text { Pat }] \\
& P a t \rightarrow \underline{\mathbf{p}} \mid a \text { Pat } \mid \text { Pat } a \mid b \text { Pat } \mid \text { Pat } b\}
\end{aligned}
$$

Initial production rule set P does not contain any rule for start variable s. Thus, in the sense of CFG, all rules contained in initial production rule set P are nullable. However, this grammar states a language,

$$
L\left(G_{3}\right)=\left\{w_{1}\left[\underline{[} \triangleright w_{1} \underline{\mathbf{p}} w_{2}\right] w_{2} \mid w_{1}, w_{2} \in\{a, b\} *\right\} .
$$

How can we guess so? See the definition of derivation for RCFG (Definition 3.1.5) again. On case 1), i.e. the ordinal case, derivation on a syntactic variable A is defined with a production rule $A \rightarrow X_{1} \cdots X_{n}$ contained in a production rule set P_{n+1}, while P_{n+1} is fixed during derivations on X_{1}, \ldots, X_{n}. Is it circular definition, which leads to a contradiction? Actually, it leads to no contradiction. Now, we observe a derivation sequence reaches to a string ' $[\underline{s} \triangleright \underline{\mathbf{p}}]$ '. From the initial $A F\left(s, P, P^{\prime}, u\right)$, there are possibly infinite candidates of $A F$ sequences as a result of derivation by one step,

$$
\left(s, P, P^{\prime}, u\right) \Rightarrow\left(X_{1}, P, P_{1}, u_{1}\right) \cdots\left(X_{n}, P_{n-1}, P_{n}, u_{n}\right)
$$

However, because s \notin Aug, $\left(X_{1}, P, P_{1}, u_{1}\right) \cdots\left(X_{n}, P_{n-1}, P_{n}, u_{n}\right)$ and $s \rightarrow X_{1} \cdots X_{n}$ must satisfy the constraints given in the case 1) of Definition 3.1.5. One of the constraints is $s \rightarrow X_{1} \cdots X_{n} \in P_{n+1}$ that is not in P. Hence, there must exist at least one AF sequence
derived from $\left(X_{1}, P, P_{1}, u_{1}\right) \cdots\left(X_{n}, P_{n-1}, P_{n}, u_{n}\right)$, which contains an AF for \mathbf{p}. There is one choice ' \mathbf{p} ' for $X_{1} \cdots X_{n}$ among infinite, possibly useless, candidates. As a hindsight, this choice leads to a success on the derivation, because from the AF for \mathbf{p}, an AF sequence for a string ' $[\underline{s} \triangleright \underline{\mathbf{p}}]$ ' is derived, and a new production rule $s \rightarrow \mathbf{p}$ is augmented to current production rule set P.

Why does the example seem to be confused? One of answers might be that the notion of derivation is congenial to top down scheme, and augmentation of a new rule congenial to bottom up scheme. A parsing process of this example will be given after the definition of general parsing algorithm (Algorithm 3.4.2).

3.3 Properties on RCFG

Following arguments are basic properties on RCFG. Proposition 3.3.1 to 3.3.4 and 3.3.6 are used to establish soundness of Algorithm 3.4.2, Theorem 3.3.7 is used in the discussion on the efficiency of parsing algorithm, and Theorem 3.3.15 gives a basis for the proof of completeness of Algorithm 3.4.2. From these properties, it is able to see that RCFG is quite a simple extension of CFG, and the formalism is free from procedural arguments.

Proposition 3.3.1 If $\left(\alpha, P_{1}, P_{2}, w\right) \stackrel{*}{\Rightarrow}\left(\beta, P_{1}^{\prime}, P_{2}^{\prime}, w^{\prime}\right)$ then $P_{1}=P_{1}^{\prime}, P_{2}=P_{2}^{\prime}$.
(proof) By induction on length of derivations. If length is zero, trivial. For one step of derivation, there are three cases; a derivation occurs at leftmost-side, inner-point or rightmost-side of the AF sequence. In all cases, it is straightforward from the definition of derivation. //

Proposition 3.3.2 If $\left(A, P_{1}, P_{2}, w\right) \stackrel{*}{\Rightarrow}\left(\alpha, P_{1}, P_{1}^{\prime}, w^{\prime}\right)\left(\beta, P_{2}^{\prime}, P_{2}, w^{\prime \prime}\right)$ then $P_{1}^{\prime}=P_{2}^{\prime}, \forall A \in$ V.
(proof) By induction on length of derivations. If length is zero, trivial. For one step of derivation, it is straightforward from the definition on derivation. It is easy to see that the rest case holds, by use of Proposition 3.3.1. //

Proposition 3.3.3 If $\left(\alpha, P_{1}, P_{2}, w\right) \stackrel{*}{\Rightarrow}\left(\beta, P_{1}^{\prime}, P_{2}^{\prime}, w^{\prime}\right)$ then $w=w^{\prime}$.
(proof) By induction on length of derivations. If length is zero, trivial. For one step, it is straightforward from the definition of derivation. //

Proposition 3.3.4 If $\left(\alpha, P_{1}, P_{2}, w\right) \stackrel{*}{\Rightarrow}\left(u, P_{1}^{\prime}, P_{2}^{\prime}, w^{\prime}\right)$ then $u=w=w^{\prime}$.
(proof) By induction on length of derivations with Proposition 3.3.3. //

Corollary 3.3.5 If $\left(A, P_{1}, P_{2}, w\right) \stackrel{*}{\Rightarrow}\left(u, P_{1}^{\prime}, P_{2}^{\prime}, w^{\prime}\right)$ for $A \in V$ and $u \in T *$ then $P_{1}=$ $P_{1}^{\prime}, P_{2}=P_{2}^{\prime}, u=w=w^{\prime}$.

Proposition 3.3.6 If $\left(A, P_{1}, P_{2}, w\right) \stackrel{*}{\Rightarrow}\left(\alpha, P_{1}, P_{1}^{\prime}, w^{\prime}\right)\left(\beta, P_{1}^{\prime}, P_{2}, w^{\prime \prime}\right) \stackrel{*}{\Rightarrow}\left(w, P_{1}, P_{2}\right.$, $w)$ then $P_{1} \subset P_{1}^{\prime} \subset P_{2}$, for any $A \in V$. Moreover, if P_{1} is properly included by P_{2}, w contains at least one embedded portion.
(proof) By induction on length of derivations. If $\left(A, P_{1}, P_{2}, w\right) \Rightarrow\left(w, P_{1}, P_{2}, w\right)$ by one step, it is obvious; only on the case that $A=\mathbf{p} \in \mathbf{A u g}$ and w is an embedded portion, P_{2} properly includes P_{1}. Under induction hypothesis, if $\left(A, P_{1}, P_{2}, w\right) \stackrel{*}{\Rightarrow}(\alpha$, $\left.P_{1}, P_{1}^{\prime}, w^{\prime}\right)\left(\beta, P_{1}^{\prime}, P_{2}, w^{\prime \prime}\right)$ and α and β are derivable to w^{\prime} and $w^{\prime \prime}$ respectively, then, from Proposition 3.3.2, also the the induction hypothesis holds. From the constraint of case 1), Definition 3.1.5, i.e., about the case $u_{i}=X_{i}$, it is obvious that if w contains no embedded portion, then $P_{1}=P_{2}$. The contrary is also easy to show. //

Theorem 3.3.7 If $\left(A, P_{1}, P_{2}, u\right) \stackrel{*}{\Rightarrow}\left(u, P_{1}, P_{2}, u\right)$, then u is also a word of the language of $C F G G=\left(V, T, P_{2}, A\right)$.
(proof) For any step of derivations of $\left(A, P_{1}, P_{2}, u\right) \stackrel{*}{\Rightarrow}\left(u, P_{1}, P_{2}, u\right)$, it is easy to see that if $\left(\alpha, P_{1}, P_{2}, u\right) \Rightarrow\left(\beta, P_{1}, P_{2}, u\right)$ on RCFG holds, $\alpha \Rightarrow \beta$ on CFG G holds, from Proposition 3.3.6. //

Theorem 3.3.8 The language class of $R C F G$ properly includes the language class of $C F G$.
(proof) If all words of given RCFG G contains no embedded portion, i.e., there is no derivation s.t. $\left(s, P, P^{\prime}, u\right) \stackrel{*}{\Rightarrow}\left(\alpha, P, P_{1}, u_{1}\right)\left(\mathbf{p}, P_{1}, P_{2}, u_{2}\right)\left(\beta, P_{2}, P^{\prime}, u_{3}\right)$, where $\mathbf{p} \in \mathbf{A u g}$, or, there is no derivation s.t. $\left(\mathbf{p}, P, P^{\prime}, u\right) \stackrel{*}{\Rightarrow}\left(u, P, P^{\prime}, u\right)$, then, from Proposition 3.3.6 and Theorem 3.3.7, the language of G is identical to the language of CFG (V, T, P, s). So, all languages of CFG are included in the language class of RCFG.

Now, we consider a RCFG G_{1} in Example 3.1.6. $L\left(G_{1}\right)=\{[\underline{A} \triangleright w] w \mid w \in(T \backslash\{[]\}) *$,$\} .$ $L\left(G_{1}\right)$ is not CFL from the pumping theorem on CFG [14]. So, the language class of CFG is properly included by the language class of RCFG. //

Lemma 3.3.9 (Folding)

For any given RCFG $G, L(G)$ is preserved after replacing a rule $A \rightarrow \alpha X_{1} X_{2} \beta$ with a new rules $A \rightarrow \alpha H \beta$ and $H \rightarrow X_{1} X_{2}$, if $X_{1} \neq\left[\right.$ and $\left.X_{2} \neq\right]$, where H is a newly added syntactic variable \notin Aug.
(proof) It is almost identical to the discussion on CFG. //

Lemma 3.3.10 (Elimination of ε-rule)

For any given RCFG which language does not contain $\varepsilon\left(\varepsilon\right.$-free), there exists a $R C F G G^{\prime}$ which rule contains no ε-rule, and which language is identical to that of G.
(proof) It is almost identical to the discussion on CFG. //

Lemma 3.3.11 (Normal Form of RCFG)

For any given ε-free $R C F G G$, there exists a $R C F G G^{\prime}$ which language is identical to that of G^{\prime}, and moreover, of which each rule forms one of following three cases,

1. $A \rightarrow a$, where $A \in V$ and $a \in T$
2. $A \rightarrow B C$, where $A, B, C \in V$
3. $\mathbf{p} \rightarrow\left[B_{1} \triangleright B_{2}\right]$, where $\mathbf{p} \in \operatorname{Aug}$ and $B_{1}, B_{2} \in V$
(proof) Same as the discussion on CFG. //
Note: ε-free RCFG means in same sense of CFG, which does not contain any production rules that are derived to ε, and moreover, does not accept production rules which have ε on right-hand side, for newly added production rules.

Theorem 3.3.12 The language class of ε-free RCFG is properly included by that of CSG (Context-Sensitive Grammars).
(proof) First, we sketch a construction strategy of CSG G^{\prime} which language is identical to given ε-free RCFG G which has Normal Form.

1) All production rules of G with some translations are contained in G^{\prime}.
2) G^{\prime} has production rules for seeking an embedded portion positioning in left of focusing position, and then replace a syntactic variable due to found embedded portion.

On constructed CSG G^{\prime}, production sequences of RCFG G are emulated non-deterministically due to above two cases.

We finish this theorem with a tedious example which is contained in CSL, but in RCFL, i.e., $\{w[A \triangleright w] \mid w \in(T \backslash\{[]\}) *$,$\} . //$

Finally, we will guess on leftmost derivation and rightmost derivation. It is trivial from the definition of leftmost (rightmost) derivation that if there is a leftmost (rightmost) derivation sequence, we can consider the derivation sequence is merely a derivation of RCFG. Following propositions argue that if there is a derivation sequence, there exists a leftmost (rightmost) derivation sequence, and moreover, derivation trees corresponding to both derivation sequences are mutually isomorphic, where the isomorphism is identical to that of Graph Theory $[5,26]$ etc. The proof of completeness of general parsing algorithm (Algorithm 3.4.2 in Section 3.4.1) depends on the discussion of Theorem 3.3.15. Following arguments are not difficult at all, but important.

To establish this property, we start with a 'spliting' of derivation sequences.
Lemma 3.3.13 (Sub-sequence of Derivation) If there is a derivation sequence

$$
\left(\alpha, P_{0}, P_{1}, w_{1}\right)\left(\beta, P_{1}, P_{2}, w_{2}\right)\left(\gamma, P_{2}, P_{3}, w_{3}\right) \stackrel{*}{\Rightarrow}\left(\alpha^{\prime}, P_{0}, P_{1}, w_{1}\right)\left(\beta^{\prime}, P_{1}, P_{2}, w_{2}\right)\left(\gamma^{\prime}, P_{2}, P_{3}, w_{3}\right),
$$

then there exists a derivation

$$
\left(\beta, P_{1}, P_{2}, w_{2}\right) \stackrel{*}{\Rightarrow}\left(\beta^{\prime}, P_{1}, P_{2}, w_{2}\right) .
$$

(proof) By induction on length of derivations.//

Lemma 3.3.14 (Concatenation of Derivation) If there are derivation sequences,

$$
\left(\alpha, P_{0}, P_{1}, w_{1}\right) \stackrel{*}{\Rightarrow}\left(\alpha^{\prime}, P_{0}, P_{1}, w_{1}\right)
$$

and

$$
\left(\beta, P_{1}, P_{2}, w_{2}\right) \stackrel{*}{\Rightarrow}\left(\beta^{\prime}, P_{1}, P_{2}, w_{2}\right),
$$

then there exists a derivation sequence, such as,

$$
\left(\alpha, P_{0}, P_{1}, w_{1}\right)\left(\beta, P_{1}, P_{2}, w_{2}\right) \stackrel{*}{\Rightarrow}\left(\alpha^{\prime}, P_{0}, P_{1}, w_{1}\right)\left(\beta^{\prime}, P_{1}, P_{2}, w_{2}\right) .
$$

(proof) Straightforward from the definition of derivation.//

Theorem 3.3.15 If there is a derivation sequence

$$
\left(\alpha, P_{0}, P_{1}, w\right) \stackrel{*}{\Rightarrow}\left(w, P_{0}, P_{1}, w\right),
$$

then there exists a leftmost derivation sequence, such as,

$$
\left(\alpha, P_{0}, P_{1}, w\right) \Rightarrow_{L}^{*}\left(w, P_{0}, P_{1}, w\right),
$$

and also, there exists a rightmost derivation sequence, such as,

$$
\left(\alpha, P_{0}, P_{1}, w\right) \Rightarrow_{R}^{*}\left(w, P_{0}, P_{1}, w\right) .
$$

(proof) By induction on length of AF sequences and length of derivations on them. Firstly, we devide AF sequence $\left(\alpha, P_{0}, P_{1}, w\right)$ into two parts $\left(\alpha_{1}, P_{0}, P_{1}^{\prime}, w_{1}\right)$ and $\left(\alpha_{2}, P_{1}^{\prime}, P_{1}\right.$, w_{2}), where $\alpha=\alpha_{1} \alpha_{2}$ and $w=w_{1} w_{2}$. Then, applying Lemma 3.3.13 and induction hypothesis on each parts, and applying Lemma 3.3.14 to the result of previous application, we obtain corresponding leftmost derivatioin sequence. On rightmost derivation, reversing the application order, we also obtain corresponding rightmost derivation sequence.//

3.4 General Parsing Algorithm for RCFG

Here, we discuss on a parsing algorithm for RCFG. The parsing algorithm is grounded on the arguments of Proposition 3.3.2 and Corollary 3.3.5. The difference between this algorithm and original Earley's parsing algorithm is mostly on items. Items are data dealt in algorithms, which intuitively denotes a point on input text where the algorithm is going on. On parsing of RCFG text, items are augmented with a finite set of production rules which might be increased during parsing.

3.4.1 Algorithm

We must firstly note that in the formalism of RCFG, "self-definitions" of any enbedded portions are not enabled. The definition of derivation requires on reflective case that a variable $\mathbf{p} \in \mathbf{A u g}$ which generates embedded portions has production rules which forms $\mathbf{p} \rightarrow[\alpha]$ for generating embedded portions. The important point is '[' and ']' present directly on the right-hand side of production rules on \mathbf{p}. To define self-definition on a variable \mathbf{p}, any embedded portion for the purpose must form " $[\underline{\mathbf{p}} \triangleright \alpha]$ " for some string α, and α must be equal to the whole string. Thus, to define self-definition in RCFG formalism, it is need an infinite length string. This feature enables us to define general parsing algorithm for RCFG in quite simple manner. And the feature is implicitly used in the proofs of theorems below, which shows soundness and completeness of the algorithm.

Definition 3.4.1 (item for parsing) An item is given as 5-tuple (Rule, Scanned, Rest, Pre-Rules, Augmented-Rules), each elements are as following; Rule is a production rule which might be used to produce input text. We assume that Rule forms $A \rightarrow \alpha \beta$, where $A \in V$ and $\alpha, \beta \in(V \cup T) *$. Scanned is a left portion of right-hand side of Rule, i.e., equal to α, which denotes a portion in input text consumed during parsing so far. Rest is a right portion of right-hand side of Rule, i.e., equal to β, which would be scanned from now on. Pre-Rules denotes a finite set of production rules, which is ascertained at the time when the item arises in use on parsing. Augmented-Rules denotes a finite set of production rules, which might be augmented with rules associated with embedded portions appeared so far.

We also adopt 'dot notation' to represent items. For example $\left(A \rightarrow \alpha \bullet \beta, R_{1}, R_{2}\right)$ is identical to $\left(A \rightarrow \alpha \beta, \alpha, \beta, R_{1}, R_{2}\right)$. From now on, items are represented with 3-tuples.

Algorithm 3.4.2 (General Parsing Algorithm for RCFG)

When an $R C F G G=(V, T, M, D$, Aug, $f, P, s)$ and n-length input text $a_{1} \cdots a_{n}$ are given, parse lists $I(0,0), \ldots, I(i, j), \ldots, I(n, n)(0 \leq i \leq j \leq n)$ are calculated during parsing, where each element of $I(i, j)$ consists of items. Additionally, finite sets of production rules P_{0}, \ldots, P_{n} are constructed, where P_{i} holds a maximum set of production rules possible at the point of i-th input character (and ancestors of it in the derivation tree).

Initial phase:

1) initialize all of P_{0}, \ldots, P_{n} to P,
2) initialize all of $I(i, j)$ to ϕ,
3) add $(X \rightarrow \bullet, P, P)$ to $I(i, i)$, for each $X \rightarrow \alpha \in P$ and each $i=0, \ldots, n$,

Main Loop:
repeat 4), 5), 6), 7) until no new 3 -tuple is added to any $I(i, j)$
4) if $\left(X \rightarrow \alpha \bullet a \beta, R_{1}, R_{2}\right) \in I(i, j)$ and $a_{j+1}=a$, and moreover $X \notin \operatorname{Aug}$ or $\beta \neq \phi$, then add $\left(X \rightarrow \alpha a \bullet \beta, R_{1}, R_{2}\right)$ to $I(i, j+1)$,
5) if $\left.\left(X \rightarrow[\alpha \bullet], R_{1}, R_{2}\right) \in I(i, j), a_{j+1}=\right], X \in \mathbf{A u g}$ and $f\left(a_{i+2} \ldots a_{j}\right)$ has valid form of production rule, then add $\left(X \rightarrow[\alpha] \bullet, R_{1}, R_{2} \cup\left\{f\left(a_{i+2} \ldots a_{j}\right)\right\}\right)$ to $I(i, j+1)$,
6) if $\left(Y \rightarrow \gamma \bullet, R_{2}, R_{3}\right) \in I(j, k)$ and $Y \rightarrow \gamma \in R_{3}$ and $\left(X \rightarrow \alpha \bullet Y \beta, R_{1}, R_{2}\right) \in I(i, j)$ for some $0 \leq i \leq j \leq k \leq n$, then add $\left(X \rightarrow \alpha Y \bullet \beta, R_{1}, R_{3}\right)$ to $I(i, k)$,
7) if $\left(\mathbf{p} \rightarrow \alpha \bullet, R_{1}, R_{2}\right) \in I(i, j)$ and $\mathbf{p} \in \mathbf{A u g}$ and $\mathbf{p} \rightarrow \alpha \in R_{2}$ and $[w]=a_{i+1} \cdots a_{j}$ and $f(w)$ has valid form of production rule, then let $Z \rightarrow \gamma=f(w)$, add $Z \rightarrow \gamma$ to P_{j}, \ldots, P_{n} and then add $\left(Y \rightarrow \bullet \beta, P^{\prime}, P^{\prime}\right)$ to $I(k, k)$ for each $k=0, \ldots, n$, each $Y \rightarrow \beta \in P_{j}$ and each P^{\prime} s.t. $P_{0} \subset P^{\prime} \subset P_{k}$

Judgement:
8) if $\left(s \rightarrow \alpha \bullet, P, P^{\prime}\right) \in I(0, n)$ and $s \rightarrow \alpha \in P^{\prime}$ for some set of production rules P^{\prime}, then accept input else reject input.

Note: On operation 7), only one element $\left(Z \rightarrow \bullet \gamma, P_{k}, P_{k}\right)$ is newly added to $I(k, k)$ for each $k=0, \ldots, j-1$, where $Z \rightarrow \gamma$ is augmented production rule at that point. On operation 8), there are valid cases that $P^{\prime} \neq P_{n}$, on those cases, some actions on 5) and 7) have occurred, but some of them would not be used in effective derivations.

Figure 3.3 and 3.4 illustrate a parsing process for input $[\underline{s} \triangleright \underline{\mathbf{p}}]$ and the grammar G_{3} given in Example 3.2.2. Figure 3.3 is the snapshot at the point when initial phase is completed, and Figure 3.4 at the point when production rule $s \rightarrow \mathbf{p}$ is augmented, which is caused by the embedded portion $[\underline{s} \triangleright \underline{\mathbf{p}}]$. In both of figures, items which do not concern to the acceptance of the input are omitted. From the item ($P a t \rightarrow \bullet \mathbf{p}, P$, $P)$ in parse list $I(3,3)$, which is added by operation 3) in initial phase, an item ($P \bar{a} \bar{t} \rightarrow$ $\underline{\mathbf{p} \bullet}, P, P)$ is added to $I(3,4)$ by operation 4). Also, items $(\mathbf{p} \rightarrow[\bullet \underline{s} \triangleright P a t], P, P), \cdots$, $(\mathbf{p} \rightarrow[\underline{s} \triangleright P a t \bullet], P, P)$ are successively added to parse list $I(0,1), \cdots, I(0,4)$, from item $(\mathbf{p} \rightarrow \bullet[\underline{s} \triangleright P a t], P, P)$ in $I(0,0)$ by operation 4$)$, and finally an item $(\mathbf{p} \rightarrow[\underline{s} \triangleright P a t] \bullet$, $\left.P, P^{\prime}\right)$ is added to $I(0,5)$ by operation 5), where $P^{\prime}=P \cup\{s \rightarrow \mathbf{p}\}$. This operation 5) causes operation 7) and an augmentation of a production rule $s \rightarrow \mathbf{p}$ to P_{5}, and moreover, the addition of an item $(s \rightarrow \bullet \mathbf{p}, P, P)$ to $I(0,0)$. Finally, from this item and the item included in $I(0,5)$, we obtain an item $\left(s \rightarrow \mathbf{p} \bullet, P, P^{\prime}\right)$ in $I(0,5)$ by operation 6), and conclude the input is accepted by judgement 8).

3.4.2 Soundness and Completeness

Theorem 3.4.3 (Soundness) If $\left(A \rightarrow \alpha \bullet \beta, R_{1}, R_{2}\right) \in I(i, j)$, then a derivation relation $\left(A, R_{1}, R^{\prime}, u\right) \stackrel{*}{\Rightarrow}\left(a_{i+1} \ldots a_{j}, R_{1}, R_{2}, a_{i+1} \ldots a_{j}\right)\left(\beta, R_{2}, R^{\prime}, u^{\prime}\right)$ holds.
(proof) By induction on times of actions 4), 5) and 6) to obtain the element $(A \rightarrow \alpha \bullet \beta$, $\left.R_{1}, R_{2}\right) \in I(i, j)$. On the case of $i=j$, i.e the case $|\alpha|=0$, the proposition holds vacuously. We assume that $\alpha=\alpha^{\prime} X$.

On the case $X \in T$ and $A \notin \mathbf{A u g}$ or $\beta \neq \phi$, from the definition of the algorithm of operation 4), $\left(A \rightarrow \alpha^{\prime} \bullet X \beta, R_{1}, R_{2}\right)$ must be involved in $I(i, j-1)$ and $X=a_{j}$. Using induction hypothesis, there is a derivation $\left(A, R_{1}, R^{\prime}, u\right) \stackrel{*}{\Rightarrow}\left(a_{i+1} \ldots a_{j-1}, R_{1}, R_{2}\right.$, $\left.a_{i+1} \ldots a_{j-1}\right)\left(X \beta, R_{2}, R^{\prime}, u^{\prime \prime}\right)=\left(a_{i+1} \ldots a_{j-1}, R_{1}, R_{2}, a_{i+1} \ldots a_{j-1}\right)\left(X, R_{2}, R_{2}, a_{j}\right)(\beta$, $\left.R_{2}, R^{\prime}, u^{\prime}\right)=\left(a_{i+1} \ldots a_{j}, R_{1}, R_{2}, a_{i+1} \ldots a_{j}\right)\left(\beta, R_{2}, R^{\prime}, u^{\prime}\right)$.

On the case $X=]$ and $A \in \mathbf{A u g}$ and moreover $f\left(a_{i+2} \ldots a_{j-1}\right)$ has valid form of production rule. This case concerns to the operation 5) of the algorithm. On this case, we must be careful on the augmentation of a new production rule. From the definition

Figure 3.3: Initial Parse Lists for Input $[\underline{s} \triangleright \underline{\mathbf{p}}]$

Figure 3.4: Parse Lists at Augmentation of $s \rightarrow \mathbf{p}$
of the algorithm of operation 5), $\left.\left(A \rightarrow \alpha^{\prime} \bullet\right] \beta, R_{1}, R_{2}^{\prime}\right)$ must be involved in $I(i, j-1)$, for appropriate R_{2}^{\prime}. Using induction hypothesis, there is a derivation $\left(A, R_{1}, R^{\prime}, u\right) \stackrel{*}{\Rightarrow}$ $\left.\left.\left(a_{i+1} \ldots a_{j-1}, R_{1}, R_{2}^{\prime}, a_{i+1} \ldots a_{j-1}\right)(], R_{2}^{\prime}, R_{2},\right]\right)\left(\beta, R_{2}, R^{\prime}, u^{\prime \prime}\right)$ and R_{2} must equal to $R_{2}^{\prime} \cup\left\{f\left(a_{i+2} \ldots a_{j-1}\right)\right\}$. This derivation is also a candidate of derivations which concerns to the element $\left(A \rightarrow \alpha \bullet \beta, R_{1}, R_{2}\right)$. So, on this case, induction hypothesis also holds.

On the case $X \in V$, from the defintion of the algorithm of operation 6), ($A \rightarrow \alpha^{\prime} \bullet X \beta$, R_{1}, R_{3}) must be involved in $I(i, k)$ and also ($X \rightarrow \gamma, R_{3}, R_{2}$) must be involved in $I(k, j)$. Using induction hypothesis, there are derivations $\left(A, R_{1}, R^{\prime}, u\right) \stackrel{*}{\Rightarrow}\left(a_{i+1} \ldots a_{k}, R_{1}, R_{3}\right.$, $\left.a_{i+1} \ldots a_{k}\right)\left(X \beta, R_{3}, R^{\prime}, u^{\prime \prime}\right)$ and $\left(X, R_{3}, R_{2}, a_{k+1} \ldots a_{j}\right) \stackrel{*}{\Rightarrow}\left(a_{k+1} \ldots a_{j}, R_{3}, R_{2}, a_{k+1} \ldots a_{j}\right)$. To conbine these derivations, we obtain the result.//

Corollary 3.4.4 If w is accepted by the Algorithm, then w is a word of given RCFG G.

To establish completeness of the algorithm, we restrict derivations to leftmost ones.

Theorem 3.4.5 (Completeness) Suppose there exists a leftmost derivation $\left(\gamma_{1}, P, R_{1}\right.$, $\left.u_{1}\right)\left(A, R_{1}, R_{3}, w_{1} w_{2}\right)\left(\gamma_{2}, R_{3}, P^{\prime}, u_{2}\right) \stackrel{*}{\Rightarrow}\left(u_{1}, P, R_{1}, u_{1}\right)\left(A, R_{1}, R_{3}, w_{1} w_{2}\right)\left(\gamma_{2}, R_{3}\right.$, $\left.P^{\prime}, u_{2}\right) \Rightarrow\left(u_{1}, P, R_{1}, u_{1}\right)\left(\alpha, R_{1}, R_{2}, w_{1}\right)\left(\beta, R_{2}, R_{3}, w_{2}\right)\left(\gamma_{2}, R_{3}, P^{\prime}, u_{2}\right) \stackrel{*}{\Rightarrow}\left(u_{1}, P\right.$, $\left.R_{1}, u_{1}\right)\left(w_{1}, R_{1}, R_{2}, w_{1}\right)\left(w_{2}, R_{2}, R_{3}, w_{2}\right)\left(\gamma_{2}, R_{3}, P^{\prime}, u_{2}\right)$. Then for some input $a=$ $u_{1} w_{1} w_{2} u_{2}$, an element $\left(A \rightarrow \alpha \bullet \beta, R_{1}^{\prime}, R_{2}\right)$ is in $I\left(\left|u_{1}\right|,\left|u_{1}\right|+\left|w_{1}\right|\right)$.
(proof) By induction on pair of length of derivations and frequency of augmentation of production rules. In following, (l, m) denotes the case of l-length derivation sequence which includes or assumes m times augmentations of new rules. There is partial order between (l, m) and $\left(l^{\prime}, m^{\prime}\right),(l, m)<\left(l^{\prime}, m^{\prime}\right)$ iff $m<m^{\prime}$ or $m=m^{\prime}$ and $l<l^{\prime}$. In the following descriptions, we use concatenation on derivations implicitly. The supposition of leftmost derivation is needed to hold the induction hypothesis, mostly on frequencies of augmentations.

Vacuous cases are that for any production rules $X \rightarrow \alpha$ in initial production rule set $P,(X \rightarrow \bullet \alpha, P, P)$ is in $I(k, k)$, for each $k=0, \ldots n$, each of which corresponds to 1-length derivation,

$$
\left(X, P, R_{3}, w_{2}\right) \Rightarrow\left(\alpha, P, R_{3}, w_{2}\right)
$$

for some appropriate R_{3} and w_{2}. On the cases, it is trivial that the induction hypothesis holds by initialization of the algorithm. Suppose $\alpha=v \alpha^{\prime}$ for some $v=b_{1} \cdots b_{i} \in T *$. On cases if $\alpha^{\prime} \neq \varepsilon$ or $\left.v \neq v^{\prime}\right]$ or $X \notin \mathbf{A u g}$, and moreover, input string $a_{1} \cdots a_{n}$ contains $b_{1} \cdots b_{i}$ as a sub-string starts from $k+1$-th position, from the item $(X \rightarrow \bullet, P, P)$, we obtain items $\left(X \rightarrow b_{1} \bullet b_{2} \cdots b_{i} \alpha^{\prime}, P, P\right) \in I(k, k+1), \ldots,\left(X \rightarrow b_{1} \cdots b_{i} \bullet \alpha^{\prime}, P, P\right) \in I(k, k+i)$ successively, using operation 4). Thus, the induction hypothesis on the induction case $(l, m)=(1,0)$ holds.

Suppose that as an ordinal case of derivation, there is a derivation $\left(A, R_{1}, R_{3}, w_{1} w_{2} w_{3}\right)$ $\Rightarrow\left(w_{1}, R_{1}, R_{1}, w_{1}\right)\left(B, R_{1}, R_{2}, w_{2}\right)\left(\beta, R_{2}, R_{3}, w_{3}\right) \stackrel{*}{\Rightarrow}\left(w_{1}, R_{1}, R_{1}, w_{1}\right)\left(w_{2}, R_{1}, R_{2}, w_{2}\right)$ ($w_{3}, R_{2}, R_{3}, w_{3}$) on the case that $A \notin \mathbf{A u g}$. We assume that the derivation sequence from (B, R_{1}, R_{2}, w_{2}) to ($w_{2}, R_{1}, R_{2}, w_{2}$) is under the induction case (l_{2}, m_{2}) and derivation
sequences from $\left(\beta, R_{2}, R_{3}, w_{3}\right)$ to $\left(w_{3}, R_{2}, R_{3}, w_{3}\right)$ is under the induction case $\left(l_{3}, m_{3}\right)$, where $m_{2} \leq m_{3}$. From the induction hypothesis and from the fact that $A \rightarrow w_{1} B \beta \in R_{3}$ by the constraint of derivation, we can claim that the item $\left(A \rightarrow w_{1} \bullet B \beta, R_{1}, R_{1}\right)$ is in appropriate item list as the induction case ($1, m_{3}$), considering operation 7). And also, we can claim that $\left(A \rightarrow w_{1} B \bullet \beta, R_{1}, R_{2}\right)$ is in appropriate item list as the induction case ($l_{2}+1, m_{3}$), considering operation 6). By same discussion, induction proceeds so that an item $\left(A \rightarrow w_{1} B \beta \bullet, R_{1}, R_{3}\right)$ is in appropriate item list as the induction case $\left(\max \left\{l_{2}, l_{3}\right\}+1, m_{3}\right)$.

Suppose that as a reflective case of derivation, there is a derivation $\left(\mathbf{p}, R_{1}, R_{3},\left[w_{2}\right]\right)$ $\left.\left.\Rightarrow\left(\left[, R_{1}, R_{1},\right]\right)\left(\beta, R_{1}, R_{2}, w_{2}\right)(], R_{2}, R_{3},\right]\right) \stackrel{*}{\Rightarrow}\left(\left[, R_{1}, R_{1},\right]\right)\left(w_{2}, R_{1}, R_{2}, w_{2}\right)(], R_{2}$, $\left.R_{3},\right]$) on the case that $\mathbf{p} \in \mathbf{A u g}$ and $f\left(w_{2}\right)$ has valid form for a production rule. We assume that the derivation sequence from $\left(\beta, R_{1}, R_{2}, w_{2}\right)$ to $\left(w_{2}, R_{1}, R_{2}, w_{2}\right)$ is under the induction case $\left(l_{2}, m_{2}\right)$. From the induction hypothesis and from the fact that $\mathbf{p} \rightarrow[\beta]$ $\in R_{3}$ by the constraint of derivation, items $\left(\mathbf{p} \rightarrow \bullet[\beta], R_{1}, R_{1}\right), \ldots,\left(\mathbf{p} \rightarrow[\beta \bullet], R_{1}, R_{2}\right)$ are in appropriate item lists as the induction cases $\left(1, m_{2}\right)$ to $\left(l_{2}+1, m_{2}\right)$, respectively. By operation 5), an item ($\mathbf{p} \rightarrow[\beta] \bullet, R_{1}, R_{3}$) is added to appropriate item list as the induction case $\left(l_{2}+1, m_{2}+1\right)$, where $R_{3}=R_{2} \cup\left\{f\left(w_{2}\right)\right\}$, and induction proceeds. And more over, items $\left(Z \rightarrow \bullet \gamma, R^{\prime}, R^{\prime}\right)$ and $\left(X \rightarrow \bullet \alpha, R_{3}, R_{3}\right)$ are added to appropriate item list by operation 7) as the induction case ($1, m_{2}+1$), where $Z \rightarrow \gamma=f\left(w_{2}\right), P \subset R^{\prime} \subset$ P_{k} and $X \rightarrow \alpha \in P_{k}$ for corresponding k.//

Corollary 3.4.6 If w is a word of given $\operatorname{RCFG} G$, then w is accepted by the algorithm.

3.4.3 Discussion on Complexity

If we ignore costs of seeking a production rule, which are done at 6), and costs of matching between sets of production rules, which are done at 6) and 7), and also if no new rules are added, from Theorem 3.3.7, whole cost of parsing is similar to Earley's parsing algorithm [11]. Because seeking or matching of production rules is done for every items on operation 6), and number of items which would be contained in $\bigcup_{i, j} I(i, j)$ at the end of the algorithm is proportional to n^{2} on worst case, we can conclude that the complexity of the algorithm is $O\left(n^{5}\right)$.

If embedded portions are contained in input texts, where the number of embedded portions is denoted by m, the number of items contained in $\bigcup_{i, j} I(i, j)$ is roughly 2^{m} times of above case, because, on operation 7), there are 2^{m} candidates for selecting P^{\prime} which satisfies $P_{0} \subset P^{\prime} \subset P_{k}$, if P_{k} contains whole augmented production rules. So, roughly the complexity on worst case in which m embedded portions are contained is $O\left(n^{3} 2^{m}\right)$. On the worst cast, input texts consist of only embedded portions, but some embedded portions do not cause augmentation of production rules. Of course, a derivation from a variable $\mathbf{p} \in$ Aug must cause an augmentation. The worst case is caused by the deal of embedded portions which are derived from syntactic variables other than of Aug. If we can suppose that given grammar is not ambiguous, and any strings derived from the grammar never contains sub-strings which form $[\alpha]$ and does not cause augmentation of production rules, we can accelerate the algorithm so as to change the condition $P_{0} \subset$ $P^{\prime} \subset P_{k}$ in operation 7) to $P^{\prime}=P_{k}$. On such acceleration, the worst cast is $O\left(n \times n^{2} \times\right.$ $m)=O\left(n^{3} m\right)\left(\subset O\left(n^{4}\right)\right)$.

Moreover, we have a restriction way to reduce complexity, i.e., so as to modify the definition of derivation. In each cases in the definition of derivation, a constraint

$$
A \rightarrow X_{1} \cdots X_{n} \in P_{n+1}
$$

must be satisfied. This constraint means that the production rule used at the derivation may be a result of an augmentation of a production rule which is caused by the derivation itself. This enables circular definition and use of embedded portions, such like Example 3.2.2, and, the origin of expansion of complexity on worst cases. A choice we have here is to modify above constraint to

$$
A \rightarrow X_{1} \cdots X_{n} \in P_{1}
$$

To do so, we can modify the algorthm on operation 6) and 7), so as,
6) if $\left(Y \rightarrow \gamma \bullet, R_{3}, R_{4}\right) \in I(j, k)$ and $\left(X \rightarrow \alpha \bullet Y \beta, R_{1}, R_{2}\right) \in I(i, j)$ and $Y \rightarrow \gamma \in R_{2}$ for some $0 \leq i \leq j \leq k \leq n$, and if $R_{3} \subset R_{2}$, then add $\left(X \rightarrow \alpha Y \bullet \beta, R_{1}, R_{2} \cup R_{4}\right)$ to $I(i, k)$,
7) if $\left(\mathbf{p} \rightarrow \alpha \bullet, R_{1}, R_{2}\right) \in I(i, j)$ and $\mathbf{p} \in \mathbf{A u g}$ and $\mathbf{p} \rightarrow \alpha \in R_{2}$ and $[w]=a_{i+1} \cdots a_{j}$ and $f(w)$ has valid form of production rule, then let $Z \rightarrow \gamma=f(w)$, add $Z \rightarrow \gamma$ to P_{j}, \ldots, P_{n} and then add $\left(Z \rightarrow \bullet \gamma, R_{2}, R_{2}\right)$ to $I(k, k)$ for each $k=j, \ldots, n$.

On this modification, complexity on worst case is also $O\left(n^{5}\right)$ if we assume that values of production rule sets in each items are hold as some ordered list, because problems $R=R^{\prime}$ and $R \subset R^{\prime}$ have same complexity on ordered lists R and R^{\prime}.

Chapter 4

Incremental Construction of LALR Parser and its Applications for RCFG

4.1 Introduction

In this chapter, we propose an incremental construction method of LALR(1) parser for CFG, and its application to RCFG. Our main purpose is to construct a frame work of compiler-compiler which is upper compatible to YACC [16] or Bison [10], and moreover, which can treat extensible grammar. According to this purpose, some restrictions and needs arise. 1) the base grammar processed by the system must be an extension of CFG. It must includes CFG as a special case. 2) with some restrictions on the base grammar, LALR(1) parsing scheme or some other scheme resemble to it can be processed on the system. 3) ambiguity of given grammar must be solved in YACC style. 4) about error handling. These are the reason why we propose RCFG, and 1) and 2) are solved in this chapter. 3) and 4) are remained as a future works.

The typical points of the methodology is that both of $\operatorname{LR}(0)$ graph and Look Ahead Symbol Set (LA) for LALR(1) are constructed in fully incremental manner on our approach. To achieve it, we propose sevral notions. This chapter consists of six parts. Firstly, we discuss on an incremental method for constructing LR(0) graph (Section 4.2). The discussion in the section is a remake of [12] and [15]. We make discussion and introduce some notions from the point of view that current $\mathrm{LR}(0)$ graphs are some kind of division of expected new graph, rather than constructing new $\operatorname{LR}(0)$ graph by current graphs. From this view point, we clear that the incremental construction method for $\operatorname{LR}(0)$ graphs which had proposed in $[12,15]$ is not $\operatorname{LR}(0)$ graph specific notion, but is general one for directed graphs.

In Section 4.3, we introduce mainly two notions, MonoG and MaxInc. MonoG is an $\operatorname{LR}(0)$ graph which is induced from only one production rule, and we give an efficient algorithm to construct MonoG as Algorithm 4.5.1 in Section 4.5. MaxInc is one of most important notions in this chapter, which provides an idex for identification on $\operatorname{LR}(0)$ states. On conventional methods for constructing Parse Table for LR parsers, states of $\mathrm{LR}(0)$ graph are identified by an item set or a subset of items which forms the states. In the methodology we propose in this paper, we adopt a stance that no item set infomations are held in each calculation steps. To accomplish it, we introduce MaxInc which is based
on inclusion relations between item sets of which each states consist, and, as a result, we gained efficiency on both of time and space on identifying states.

In Section 4.4, we discuss on method for calculation of LA for LALR(1) graphs. Main notions introduced in the section are Dependency Domain(DD), E Δ, Top Δ, Dep Δ and $\operatorname{Ind} \Delta$. DD is a notion which is isomorphic to Disjunction Normal Forms without Negative Literals on Propositional Logic. We use DD to express conditions for ε-productivity for each syntactic symbols. $E \Delta$ is an ε-productivity judgement function, and Top Δ and Dep Δ are functions for calculating 'first' symbols and used to calculate LA sets. For three functions, we have established efficient incremental construction method, in the method no item sets have to be held during calculation on LALR(1) parse table. The notions introduced in the section are typical point of this chapter.

In Section 4.5, algorithms for calculation of incremental construction of LALR(1) graphs are provided. We discuss the efficiency of the method in Section 4.7. In Section 4.8, two ways of applications of the incremental construction method of LALR(1) graphs to RCFG are given.

4.2 Discussions on Finite Automata

In this section, we introduce a few important notions and establish results. The main results are Theorem 4.2.11 and 4.2.14 which describe the formalization of incremental construction of LR(0) graph and its soundness and completeness. To put arguments forward, we adopt the stance that current $\operatorname{LR}(0)$ graph and augmenting graph to it are obtained by dividing of expected result, instead of the stance that expected result is constructed by use of current $\operatorname{LR}(0)$ graph and augmenting graph. In Definition 4.2.13, the basis of incremental construction operation, named 'fusion', for $\mathrm{LR}(0)$ is formalized. However, in the definition, $\operatorname{LR}(0)$ specific notion, i.e. 'item', is not used. Intuitively, the fusion process is defined on given two DFAs, which are obtained from two ε NFAs by subset construction method, with given Bridge Transition which stretches necessary transitions to construct expected result. The Bridge Transition is defined from expected result. So, the definition is not of 'construction' but of some kind of 'division' of a graph. However, it is not difficult matter on $\mathrm{LR}(0)$ to predict the Bridge Transition, as viewed in the next section. So, we can conclude that incremental construction method discussed in $[12,15]$ is not a special notion for $\operatorname{LR}(0)$ graph. The peculiarity on the method is the easiness to calculate Bridge Transition for it. The easiness is obtained from properties of transitions on $\mathrm{LR}(0)$ graphs.

4.2.1 Definition of Fusion of FAs and Some Properties

We introduce a notion Sub-graph of FA, which is quite similar to node induced sub-graph on Graph Theory, e.g. in [5, 26]. For incremental construction of LR parser, in [12, 13, 15], 'constructing methods' are given. We introduce a notion in order to give composition or fusion process on $\operatorname{LR}(0)$ state transition graph, which is defined precisely below, theoretical back ground from the point of view not of that new graph is created from current graph by use of incremental method, but of that the current graph is a some kind of division of expected new graph. First, we discuss on operations on ε NFA, because $\operatorname{LR}(0)$ state transition graph described by ε NFA makes us easy to understand incremental construction
process of $\operatorname{LR}(0)$ graphs, as pointed out in [25]. Discussion on ε NFA does not have direct relation to the main results of this section, but it only provides us clear view points.

Definition 4.2.1 (Sub-graph of ε NFA)

For given $\varepsilon N F A A$, a subgraph A^{\prime} induced by $Q^{\prime} \subset Q$ is defined as,

$$
\begin{aligned}
A^{\prime} & =\left(\Sigma, Q^{\prime}, \delta^{\prime}, *, F^{\prime}\right) \\
\delta^{\prime}(q, a) & =\delta(q, a) \cap Q^{\prime}\left(q \in Q^{\prime}, a \in \Sigma \cup\{\varepsilon\}\right) \\
\text { (tosay, }, \delta^{\prime} & \left.=\delta \cap\left(Q^{\prime} \times(\Sigma \cup\{\varepsilon\}) \times Q^{\prime}\right)\right) \\
* & = \begin{cases}q_{0} & \text { if } q_{0} \in Q^{\prime} \\
\text { undefined } & \text { otherwise }\end{cases} \\
F^{\prime} & =F \cap Q^{\prime} .
\end{aligned}
$$

Sub $\left(A, Q^{\prime}\right)$ denotes induced sub-graph of A with Q^{\prime}.
Definition 4.2.2 (Composition of ε NFA)
For given $\varepsilon N F A s A_{1}=\left(\Sigma, Q_{1}, \delta_{1}, s_{1}, F_{1}\right), A_{2}=\left(\Sigma, Q_{2}, \delta_{2}, *_{2}, F_{2}\right)$ and given a relation $\delta^{\prime} \subset Q_{1} \times(\Sigma \cup\{\varepsilon\}) \times Q_{2} \cup Q_{2} \times(\Sigma \cup\{\varepsilon\}) \times Q_{1}$, Composition of A_{1} and A_{2} with δ^{\prime}, $A=A_{1} \ll A_{2}, \delta^{\prime} \gg$ is defined as,

$$
A=A_{1} \ll A_{2}, \delta^{\prime} \gg=\left(\Sigma, Q_{1} \cup Q_{2}, \delta, s_{1}, F_{1} \cup F_{2}\right)
$$

where $\delta=\delta_{1} \cup \delta_{2} \cup \delta^{\prime}$.
A_{1} is called Subjective Subgraph of A, or simply Subjective, and, A_{2} is called Dependent Subgraph of A, or simply Dependent. δ^{\prime} is called Bridge Transition.

For arbitrary ε NFA $A=\left(\Sigma, Q_{1}, \delta, q_{0}, F\right), \operatorname{Sub}\left(A, Q_{1}\right)$ and $\operatorname{Sub}\left(A, Q_{2}\right)$, where $q_{0} \in$ $Q_{1} \subset Q$ and $Q_{2} \subset Q$, if we give Bridge Transition $\delta^{\prime}=\delta \cap\left(\left(Q_{1} \times(\Sigma \cup\{\varepsilon\}) \times Q_{2} \cup Q_{2}\right.\right.$ $\left.\times(\Sigma \cup\{\varepsilon\}) \times Q_{1}\right)$), it is obvious that $\operatorname{Sub}\left(A, Q_{1}\right) \ll \operatorname{Sub}\left(A, Q_{2}\right), \delta^{\prime} \gg$ is isomorphic to A, the isomorphism is given in a manner below.

Definition 4.2.3 (Isomorphism on ε NFA)

We write two $\varepsilon N F A A_{1}=\left(\Sigma, Q_{1}, \delta_{1}, q_{1}, F_{1}\right)$ and $A_{2}=\left(\Sigma, Q_{2}, \delta_{2}, q_{2}, F_{2}\right)$ is equivalent, when there is an isomorphism $f: Q_{1} \rightarrow Q_{2}$, s.t.,

$$
\begin{aligned}
f\left(q_{1}\right) & =f\left(q_{2}\right) \\
f\left(F_{1}\right) & =f\left(F_{2}\right) \\
f\left(\delta_{1}(q, a)\right) & =\delta_{2}(f(q), a)\left(\forall q \in Q_{1}, \forall a \in \Sigma \cup\{\varepsilon\}\right) .
\end{aligned}
$$

Lemma 4.2.4 For any $\varepsilon N F A A=\left(\Sigma, Q, \delta, q_{0}, F\right)$, A is equivalent to $\operatorname{Sub}\left(A, Q_{1}\right) \ll$ $\operatorname{Sub}\left(A, Q_{2}\right),\left(\delta \backslash \delta_{1}\right) \backslash \delta_{2} \gg$, where $Q_{1} \cup Q_{2}=Q, q_{0} \in Q_{1}, \delta_{1}=\delta \cap\left(Q_{1} \times(\Sigma \cup\{\varepsilon\}) \times\right.$ $\left.Q_{1}\right), \delta_{2}=\delta \cap\left(Q_{2} \times(\Sigma \cup\{\varepsilon\}) \times Q_{2}\right)$.
(proof) Straightforward from definitions.//
Following definitions and results are important on discussion of incremental construction of $\operatorname{LR}(0)$ state transition graph. However all of them hold without use of the notion 'item', so we collect them in this section. Especially, relation \mathcal{R} defined below will be used in order to give proof of soundness and completeness of incremental construction of LR(0) graph.

Definition 4.2.5 (Arrival Languages)

For given $\varepsilon N F A A=\left(\Sigma, Q, \delta, q_{0}, F\right)$, Arrival Language $L(q)$, which means a set of strings that lease from initial state q_{0} to q, is defined as,

$$
L(q)=\left\{w \in \Sigma * \mid q \in \delta^{*}\left(q_{0}, w\right)\right\} .
$$

When we emphasize that it is on A, we denote $L_{A}(q)$.

Definition 4.2.6 (Elimination of Unreachable States)

For given DFA $A=\left(\Sigma, Q, \delta, q_{0}, F\right)$, Eff (Q), i.e. a set of Effective States, is defined as

$$
\operatorname{Eff}(Q)=\left\{q \mid \exists w \in \Sigma *, q=\delta\left(q_{0}, w\right)\right\} .
$$

Under the condition $\delta^{\prime}=\delta \cap \operatorname{Eff}(Q) \times \Sigma \times \operatorname{Eff}(Q)$, we can define a DFA Eff(A) which states are all effective states of A, such as,

$$
\operatorname{Eff}(A)=\left(\Sigma, \operatorname{Eff}(Q), \delta^{\prime}, q_{0}, F \cap \operatorname{Eff}(Q)\right) .
$$

Note: An ordinal graph of ε NFA or DFA has unique state as start state. However, in this paper, we will treat a kind of multi-entrance graphs discussed in the next section. So, in following sections, it is expected that Eff is defined not only on a start state which is explicitly given in a formal statement of FA, but also on whole entrances. An FA which we treat has entrances according to each syntactic variable X, say $\operatorname{Ent\varepsilon }(X)$, which means $\varepsilon C(\{X \rightarrow \bullet \alpha \mid X \rightarrow \alpha \in P\})$. These entrances are needed for fusion process in order to achieve augmenting a new production rule to current $\mathrm{LR}(0)$ graph. On this stance, q_{0} is one of entrances, i.e. $\operatorname{Ent\varepsilon }\left(S^{\prime}\right)$, and $E f f$ must be defined as,

$$
\operatorname{Eff}(Q)=\{q \mid \exists X \in V, \exists w \in \Sigma *, q=\delta(\operatorname{Ent\varepsilon }(X), w)\} .
$$

In following sections, Eff will be used in this sense.

Definition 4.2.7 (Relation \mathcal{R})

For given $\varepsilon N F A A=\left(\Sigma, Q, \delta, q_{0}, F\right)$ and $Q_{1}, Q_{2} \subset Q\left(Q_{1} \cup Q_{2}=Q, q_{0} \in Q_{1}\right)$, we state

$$
\begin{aligned}
& \varepsilon \text { NFA } A_{1}=\left(\Sigma, Q_{1}, \delta_{1}, q_{0}, *\right)=\operatorname{Sub}\left(A, Q_{1}\right) \\
& \varepsilon N F A A_{2}=\left(\Sigma, Q_{2}, \delta_{2}, *, *\right)=\operatorname{Sub}\left(A, Q_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { ("*" means not used) } \\
& \qquad \begin{aligned}
\text { DFA } B_{1} & =S C(A) \\
& =\left(\Sigma, P_{1}, \zeta_{1}, s_{1}, H_{1}\right) \\
\varepsilon N F A B_{2} & =S C\left(A_{1}\right) \ll S C\left(A_{2}\right), \xi \gg \\
& =\left(\Sigma, \operatorname{Power}\left(Q_{1}\right) \cup \operatorname{Power}\left(Q_{2}\right), \delta^{\prime}, F^{\prime}\right) \\
\text { DFA } B_{2}^{\prime} & =S C\left(B_{2}\right) \\
& =\left(\Sigma, P_{2}, \zeta_{2}, s_{2}, H_{2}\right)
\end{aligned}
\end{aligned}
$$

where

$$
\begin{aligned}
\xi \subset & \left(\operatorname{Power}\left(Q_{1}\right) \times(\Sigma \cup\{\varepsilon\}) \times \operatorname{Power}\left(Q_{2}\right)\right) \\
& \cup\left(\operatorname{Power}\left(Q_{2}\right) \times(\Sigma \cup\{\varepsilon\}) \times \operatorname{Power}\left(Q_{1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
(U, a, V) \in \xi & \Leftrightarrow U \subset Q_{1}, V=\varepsilon C\left(\delta_{2}, \delta(U, a) \cap Q_{2}\right) \\
& \text { or } \quad U \subset Q_{2}, V=\varepsilon C\left(\delta_{1}, \delta(U, a) \cap Q_{1}\right) .
\end{aligned}
$$

Now, we define a relation \mathcal{R} on $P_{1} \times P_{2}$ recursively, such as

$$
\begin{aligned}
& \left(s_{1}, s_{2}\right) \in \mathcal{R} \\
& \left(q_{1}, q_{2}\right) \in \mathcal{R} \quad \Rightarrow \quad \forall a \in \Sigma,\left(\zeta_{1}\left(q_{1}, a\right), \zeta_{2}\left(q_{2}, a\right)\right) \in \mathcal{R}
\end{aligned}
$$

\mathcal{R} is a minimum set that satisfies above two conditions. $\mathcal{R}\left(q_{1}\right)$ denotes a set $\left\{q_{2} \mid\left(q_{1}, q_{2}\right) \in \mathcal{R}\right\}$, and also, $\mathcal{R}^{-}\left(q_{2}\right)$ denotes a set $\left\{q_{1} \mid\left(q_{1}, q_{2}\right) \in \mathcal{R}\right\}$.

Lemma 4.2.8 For any $q_{1} \in P_{1}, q_{2} \in P_{2}$, if q_{1} is reachable from s_{1}, then $\mathcal{R}\left(q_{1}\right) \neq \phi$, and also, if q_{2} is reachable from s_{2}, then $\mathcal{R}^{-}\left(q_{2}\right) \neq \phi$.
(proof) What q_{1} is reachable from s_{1} means that there exists a word of arrival language $w_{1} \in L\left(q_{1}\right)$, and $q_{1}=\zeta_{1}\left(s_{1}, w_{1}\right)$. Thus, $\left(q_{1}, \zeta_{2}\left(s_{2}, w_{1}\right)\right) \in \mathcal{R}$. In same way, $\left(\zeta_{1}\left(s_{1}, w_{2}\right), q_{2}\right) \in$ \mathcal{R} holds.//

Lemma 4.2.9

$$
\begin{aligned}
& \forall U \in \operatorname{Power}\left(Q_{1}\right), \quad \bigcup \varepsilon C\left(\delta^{\prime}, \varepsilon C\left(\delta_{1}, U\right)\right)=\varepsilon C(\delta, U), \\
& \forall U \in \operatorname{Power}\left(Q_{2}\right), \quad \bigcup \varepsilon C\left(\delta^{\prime}, \varepsilon C\left(\delta_{2}, U\right)\right)=\varepsilon C(\delta, U) .
\end{aligned}
$$

(proof) We can easily show $\bigcup \varepsilon C\left(\delta^{\prime}, \varepsilon C\left(\delta_{i}, U\right)\right) \subset \varepsilon C(\delta, U)(i=1$ or 2$)$ from the facts $U \subset \varepsilon C(\delta, U)$ and $\delta^{\prime}=\delta_{1} \cup \delta_{2} \cup \xi$. Conversely, for any state $q \in \varepsilon C(\delta, U)$, we show $q \in \bigcup \varepsilon C\left(\delta^{\prime}, \varepsilon C\left(\delta_{i}, U\right)\right)$ by induction, considering an ε-transition sequence on $A, \rho=$ $q_{1}, \ldots, q_{k}\left(q_{1} \in \varepsilon C\left(\delta_{i}, U\right), q_{k}=q\right)(i=1$ or 2$)$. First, ρ is divided into sub-sequences from its top, $\rho=\rho_{1}, \ldots, \rho_{m}$, on the condition whether each element is included in Q_{1} or $Q_{2} \backslash Q_{1}$, s.t., all elements of ρ_{j} are included in Q_{1} then all elements of ρ_{j+1} is included in $Q_{2} \backslash Q_{1}$, or conversely. On the case $m=1$, because each element q^{\prime} of ρ_{1} is included in $\varepsilon C\left(\delta_{i}, U\right)$, $q^{\prime} \in \bigcup \varepsilon C\left(\delta^{\prime}, \varepsilon C\left(\delta_{i}, U\right)\right)$ holds. We suppose the induction hypothesis holds on m. Let $q^{\prime}=\delta(q, \varepsilon)$ and consider an ε-transition sequence ρq^{\prime}. If q^{\prime} is contained in the same set of ρ_{m}, which means Q_{1} or $Q_{2} \backslash Q_{1}$, then for the top state p of $\rho_{m}, q^{\prime} \in \varepsilon C\left(\delta_{i}, p\right)$ holds. Thus, we can claim that $q^{\prime} \in \bigcup \varepsilon C\left(\delta^{\prime}, \varepsilon C\left(\delta_{i}, U\right)\right)$ holds from the definition of ξ. If q^{\prime} is contained in the opposite set to ρ_{m}, because a transition from a state which consists of ρ_{m} to a state of $\varepsilon C\left(\delta_{i}^{\prime}, q^{\prime}\right)$ is given by ξ, we can claim that $\exists U^{\prime} \in \varepsilon C\left(\delta^{\prime}, \varepsilon C\left(\delta_{i}, U\right)\right)$ and $\varepsilon C\left(\delta_{i}^{\prime}, q^{\prime}\right) \subset U^{\prime}$ hold. So, $q^{\prime} \in \bigcup \varepsilon C\left(\delta^{\prime}, \varepsilon C\left(\delta_{i}, U\right)\right)$ and the induction hypothesis holds also on $m+1$.//

These two lemmas are implicitly used in followings.
Lemma 4.2.10 For any $a \in \Sigma$, any $U \in \operatorname{Power}\left(Q_{1}\right) \cup \operatorname{Power}\left(Q_{2}\right)$ and any $q \in \bigcup \delta^{\prime}\left(\varepsilon C\left(\delta_{i}\right.\right.$, $U)$, a), there exists $q^{\prime} \in U$, s.t., $q \in \varepsilon C\left(\delta\left(\varepsilon C\left(\delta, q^{\prime}\right)\right.\right.$, a)), where $i=1$ if $U \subset Q_{1}, i=2$ if $U \subset Q_{2}$.
(proof) $\varepsilon C\left(\delta_{i}, U\right)$ is a state of $S C\left(\operatorname{Sub}\left(A, Q_{i}\right)\right)$. We write the state transition function of $S C\left(S u b\left(A, Q_{i}\right)\right)$ by δ_{i}^{\prime}, then

$$
\begin{aligned}
\delta^{\prime}\left(\varepsilon C\left(\delta_{i}, U\right), a\right)= & \left\{\delta_{i}^{\prime}\left(\varepsilon C\left(\delta_{i}, U\right), a\right)\right\} \\
& \cup \xi\left(\varepsilon C\left(\delta_{i}, U\right), a\right) .
\end{aligned}
$$

Consider the case $q \in \delta_{i}^{\prime}\left(\varepsilon C\left(\delta_{i}, U\right), a\right)$, it is obvious that

$$
\begin{aligned}
\delta_{i}^{\prime}\left(\varepsilon C\left(\delta_{i}, U\right), a\right) & =\varepsilon C\left(\delta_{i}, \delta_{i}\left(\varepsilon C\left(\delta_{i}, U\right), a\right)\right) \\
& \subset \varepsilon C\left(\delta, \delta\left(\varepsilon C\left(\delta_{i}, U\right), a\right)\right)
\end{aligned}
$$

holds, so the proposition holds on this case. Consider the case $q \in \bigcup \xi\left(\varepsilon C\left(\delta_{i}, U\right), a\right)$ remained, it is clear that $\exists U^{\prime} \in \xi\left(\varepsilon C\left(\delta_{i}, U\right)\right.$, a) s.t. $q \in U^{\prime}$ holds, and from the definition of ξ,

$$
\begin{aligned}
U^{\prime}= & \varepsilon C\left(\delta_{i}^{\prime}, \delta\left(\varepsilon C\left(\delta_{i}, U\right), a\right) \cap Q_{i}^{\prime}\right) \\
& \subset \varepsilon C(\delta, \delta(\varepsilon C(\delta, U), a))
\end{aligned}
$$

is trivial. So the proposition holds in any cases. //

Theorem 4.2.11 $\left(U_{1}, U_{2}\right) \in \mathcal{R} \Rightarrow U_{1}=\bigcup U_{2}$
(proof) Proved by induction. On the case of $U_{1}=s_{1}=\varepsilon C\left(\delta, q_{0}\right), s_{2}=\varepsilon C\left(\delta_{1}, q_{0}\right)$ holds. Let ρ be an ε-transition sequence from q_{0} to q, say $\rho=q_{0}, q_{i_{1}}, q_{i_{2}}, \ldots, q_{i_{k}}=q$. $\forall q \in$ $U_{1} \Rightarrow q \in \bigcup s_{2}$ vacuously holds on the case $k=0$. On the case $k \geq 1$, we divide ρ into sub-sequences $\rho=\rho_{0}, \rho_{1}, \ldots, \rho_{m}$ in the same manner of Lemma 4.2.9. We write ρ_{j} $=q_{i_{n_{j}-1}+1}, \ldots, q_{i_{j}}$. If j is even, all elements of ρ_{j} are included in Q_{1}, and if j is odd, all elements of ρ_{j} are included in Q_{2}. On the case $m=0$, because whole elements of ρ are included in $\varepsilon C\left(\delta_{1}, q_{0}\right), q \in \bigcup s_{2}$ holds. Suppose on all cases that $k=0, \ldots, t$, the induction hypothesis is holds. Let $\rho^{\prime}=\rho q^{\prime}$ be an ε-transition sequence. It is obvious that $q_{i_{n_{t}}} \in Q_{1}$, and if $q^{\prime} \in Q_{1}$, then a transition from a state of $S C\left(S u b\left(A, Q_{2}\right)\right)$ which includes $q_{i_{n_{t}-1}}$ to $\varepsilon C\left(\delta_{1}, q_{i_{n_{k}-1}}\right)$ is stretched by ξ. Additionally, considering the fact $q^{\prime} \in$ $\varepsilon C\left(q_{i_{n_{t}-1}+1}\right)$, we can claim $q^{\prime} \in \bigcup s_{2}$. Thus $s_{1} \subset \bigcup s_{2}$ holds. $\bigcup s_{2} \subset s_{1}$ is proved in the same way.

Consider states $\zeta_{1}\left(U_{1}, a\right)$ and $\zeta_{2}\left(U_{2}, a\right)$ for a pair of states $\left(U_{1}, U_{2}\right)$, s.t., $\left(U_{1}, U_{2}\right) \in \mathcal{R}$ and $U_{1}=\bigcup U_{2}$. From the facts that $\zeta_{1}\left(U_{1}, a\right)=\varepsilon C\left(\delta, \delta\left(U_{1}, a\right)\right)$,

$$
\begin{aligned}
\zeta_{2}\left(U_{2}, a\right)= & \varepsilon C(\xi, \\
& \left(\delta_{1}\left(U_{2} \cap \operatorname{Power}\left(Q_{1}\right), a\right) \cup \delta_{2}\left(U_{2} \cap \operatorname{Power}\left(Q_{2}\right), a\right)\right. \\
& \left.\cup \bigcup \xi\left(U_{2} \cap \operatorname{Power}\left(Q_{1}\right), a\right) \cup \bigcup \xi\left(U_{2} \cap \operatorname{Power}\left(Q_{2}\right), a\right)\right)
\end{aligned}
$$

and $U_{1}=\bigcup U_{2}$, we can claim $\delta_{1}\left(U_{2} \cap \operatorname{Power}\left(Q_{1}\right), a\right) \subset \delta\left(U_{1}, a\right), \delta_{2}\left(U_{2} \cap \operatorname{Power}\left(Q_{2}\right), a\right) \subset$ $\delta\left(U_{1}, a\right), \xi\left(U_{2} \cap \operatorname{Power}\left(Q_{1}\right), a\right) \subset \varepsilon C\left(\delta, \delta\left(U_{1}, a\right)\right), \xi\left(U_{2} \cap \operatorname{Power}\left(Q_{2}\right), a\right) \subset \varepsilon C\left(\delta, \delta\left(U_{1}, a\right)\right)$. So, by Lemma 4.2.10, $\bigcup \zeta_{2}\left(U_{2}, a\right) \subset \varepsilon C\left(\delta, \delta\left(U_{1}, a\right)\right)$.

Conversely, we show $\varepsilon C\left(\delta, \delta\left(U_{1}, a\right)\right) \subset \bigcup \zeta_{2}\left(U_{2}, a\right)$. From the construction of $\mathcal{R}, U_{1}=$ $\varepsilon C\left(\delta, U_{1}\right)$. From the definition of $S C\left(S u b\left(A, Q_{1}\right)\right), S C\left(S u b\left(A, Q_{2}\right)\right.$ and ξ,

$$
\begin{aligned}
\delta\left(U_{1}, a\right) \subset & \delta_{1}\left(U_{2} \cap \operatorname{Power}\left(Q_{1}\right), a\right) \cup \delta_{2}\left(U_{2} \cap \operatorname{Power}\left(Q_{2}\right), a\right) \\
& \cup \bigcup \xi\left(U_{2} \cap \operatorname{Power}\left(Q_{1}\right), a\right) \\
& \cup \bigcup \xi\left(U_{2} \cap \operatorname{Power}\left(Q_{2}\right), a\right)
\end{aligned}
$$

Figure 4.1: Example of State Disruption (1)
holds. Using these facts and Lemma 4.2.10, we can claim

$$
\begin{aligned}
\varepsilon C\left(\delta, \delta\left(U_{1}, a\right)\right) \subset & \varepsilon C\left(\xi, \delta_{1}\left(U_{2} \cap \operatorname{Power}\left(Q_{1}\right), a\right)\right. \\
& \cup \delta_{2}\left(U_{2} \cap \operatorname{Power}\left(Q_{2}\right), a\right) \\
& \cup \bigcup \xi\left(U_{2} \cap \operatorname{Power}\left(Q_{1}\right), a\right) \\
& \left.\cup \bigcup \xi\left(U_{2} \cap \operatorname{Power}\left(Q_{2}\right), a\right)\right)
\end{aligned}
$$

and proof is completed.//
Before entering definitions which concern to incremental construction, we give rise an example which illustrates the needs of the definition. From the result of Theorem 4.2.11, one might imagine that $S C(A) \sim S C\left(S C\left(S u b\left(A, Q_{1}\right)\right) \ll S C\left(S u b\left(A, Q_{2}\right)\right), \xi \gg\right)$ holds with some fortunate Bridge Transition ξ. If it held, it would become quite fortunate method for us, because we would like to construct an incremental construction method for $\operatorname{LR}(0)$ graph without use of any item set. Unfortunately, $\operatorname{SC}\left(S C\left(S u b\left(A, Q_{1}\right)\right) \ll\right.$ $\left.S C\left(\operatorname{Sub}\left(A, Q_{2}\right)\right), \xi \gg\right)$ causes state disruptions in some cases, and following example is one of them.

Example 4.2.12 There exist $\varepsilon N F A A=\left(\Sigma, Q, \delta, q_{0}, F\right)$ and a pair of subsets of Q, Q_{1}, Q_{2}, s.t., $Q_{1} \cup Q_{2}=Q$ and $q_{0} \in Q_{1}$, which causes a result that $\operatorname{Eff}(S C(A))$ is not equivalent to $\operatorname{Eff}\left(S C\left(S C\left(S u b\left(A, Q_{1}\right)\right) \ll S C\left(S u b\left(A, Q_{2}\right)\right), \xi \gg\right)\right)$.

Figure 4.1 and 4.2 illustrate an example of the case above. (d) in Figure 4.1 is the result of Sub-set Construction on original $\varepsilon N F A(a)$, and (f) in Figure 4.2 is the result of Sub-set Construction on compositions of (b) $\operatorname{SC}\left(\operatorname{Sub}\left(A,\left\{q_{0}, q_{1}\right\}\right)\right)$ and (c) $\operatorname{SC}(\operatorname{Sub}(A$, $\left.\left\{q_{2}\right\}\right)$). (f) is not isomorphic to (d).

Definition 4.2.13 (Fusion of two DFA)

For given $\varepsilon N F A A=\left(\Sigma, Q, \delta, q_{0}, F\right)$ and a pair of subsets of Q, Q_{1}, Q_{2}, where $Q_{1} \cup Q_{2}$ $=Q$ and $q_{0} \in Q_{1}$, we also state, same as Definition 4.2.7,

$$
\varepsilon \operatorname{NFA} A_{1}=\left(\Sigma, Q_{1}, \delta_{1}, q_{0}, *\right)=\operatorname{Sub}\left(A, Q_{1}\right)
$$

Figure 4.2: Example of State Disruption (2)

$$
\begin{aligned}
\varepsilon N F A ~ A_{2} & =\left(\Sigma, Q_{2}, \delta_{2}, *, *\right)=\operatorname{Sub}\left(A, Q_{2}\right) \\
\operatorname{DFA} B_{1} & =S C(A) \\
& =\left(\Sigma, P_{1}, \zeta_{1}, s_{1}, H_{1}\right) \\
\varepsilon N F A B_{2} & =S C\left(A_{1}\right) \ll S C\left(A_{2}\right), \xi \gg \\
& =\left(\Sigma, \operatorname{Power}\left(Q_{1}\right) \cup \operatorname{Power}\left(Q_{2}\right), \delta^{\prime}, F^{\prime}\right) \\
\text { DFA } B_{2}^{\prime} & =S C\left(B_{2}\right) \\
& =\left(\Sigma, P_{2}, \zeta_{2}, s_{2}, H_{2}\right)
\end{aligned}
$$

DFA Fus $\left(S C\left(A_{1}\right), S C\left(A_{2}\right)\right)$ under A is defined as

$$
\begin{gather*}
\operatorname{Fus}\left(S C\left(A_{1}\right), S C\left(A_{2}\right)\right)=\left(\Sigma, \operatorname{Power}(Q), \delta^{\prime \prime}, q_{0}^{\prime \prime}, F^{\prime \prime}\right) \\
q_{0}^{\prime \prime}=\bigcup \varepsilon C\left(\xi, \varepsilon C\left(\delta_{1}, q_{0}\right)\right) \\
\delta^{\prime \prime}(\bigcup V, a)=\bigcup \zeta_{2}(V, a) \tag{4.1}\\
F^{\prime \prime}=\{U \subset Q \mid U \cap F \neq \phi\}=\left\{\bigcup U \mid U \in \operatorname{Power}\left(F_{1} \cup F_{2}\right) \backslash \phi\right\},
\end{gather*}
$$

where ξ is defined same as Definition 4.2.7,

$$
\begin{aligned}
\xi \subset & \left(\operatorname{Power}\left(Q_{1}\right) \times(\Sigma \cup\{\varepsilon\}) \times \operatorname{Power}\left(Q_{2}\right)\right) \\
& \cup\left(\operatorname{Power}\left(Q_{2}\right) \times(\Sigma \cup\{\varepsilon\}) \times \operatorname{Power}\left(Q_{1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
(U, a, V) \in \xi & \Leftrightarrow \quad U \subset Q_{1}, V=\varepsilon C\left(\delta_{2}, \delta(U, a) \cap Q_{2}\right) \\
& \text { or } \quad U \subset Q_{2}, V=\varepsilon C\left(\delta_{1}, \delta(U, a) \cap Q_{1}\right) .
\end{aligned}
$$

We also call $S C\left(A_{1}\right)$ subjective and $S C\left(A_{2}\right)$ dependent.
The definition of Bridge Transition ξ gives us an understanding such that it is need a notion of entrances for graphs other than start states in order to fuse graphs, that are denoted by $\varepsilon C\left(\delta_{1}, \delta(U, a) \cap Q_{1}\right)$ for $S C\left(A_{1}\right)$ and $\varepsilon C\left(\delta_{2}, \delta(U, a) \cap Q_{2}\right)$ for $S C\left(A_{2}\right)$. As discussed in next section, on the case of fusing LR (0) graphs, $\varepsilon C\left(\delta_{1}, \delta(U, a) \cap Q_{1}\right)$ means an item set equal to $\varepsilon C(\{X \rightarrow \bullet \alpha \mid X \rightarrow \alpha \in P\})$ for some syntactic variable X concerning to the process. So, $\operatorname{LR}(0)$ graphs dealt in this paper are essentially some kind of multi-entrance graphs rather than conventional $\mathrm{LR}(0)$ graphs. We will write $\operatorname{Ent\varepsilon }(X)$ for a state $\varepsilon C(\{X \rightarrow \bullet \alpha \mid X \rightarrow \alpha \in P\})$. Using Ent ε, ξ is easily defined at $\mathrm{LR}(0)$ graphs so as that if a state q contains an item $Y \rightarrow \alpha \bullet X \beta$, which can be determined with the existence of transition by X from q, ξ must contain a pair $(q, \operatorname{Ent\varepsilon }(X))$. So, we can use fusion as an effective construction process of two $\operatorname{LR}(0)$ graphs, which does not use item set information at all.

Theorem 4.2.14 $S C(A) \sim \operatorname{Fus}\left(S C\left(S u b\left(A, Q_{1}\right)\right), S C\left(S u b\left(A, Q_{2}\right)\right)\right)$
(proof) From the definition of Fus, each state of $\operatorname{Fus}\left(S C\left(S u b\left(A, Q_{1}\right)\right), S C\left(S u b\left(A, Q_{2}\right)\right)\right)$ is merely a rename of a state of $S C(A)$. The soundness and the completeness are ensured by Theorem 4.2.11.//

Corollary 4.2.15 For given $\varepsilon N F A A=\left(\Sigma, Q, \delta, q_{0}, F\right)$ and given finite class of subset of $Q, Q_{1}, Q_{2}, \ldots, Q_{n}$, where $Q_{1} \cup Q_{2} \cup \cdots \cup Q_{n}=Q$, let

$$
\begin{array}{ll}
C_{1}=\operatorname{SC}\left(\operatorname{Sub}\left(A, Q_{1}\right)\right) \\
C_{i} & \left.=\operatorname{Fus}\left(C_{i-1}, S C\left(\operatorname{Sub}\left(A, Q_{i}\right)\right)\right)\right)
\end{array} \quad(2 \leq i \leq n)
$$

where
$\xi_{j} \subset\left(\operatorname{Power}\left(Q_{1} \cup \cdots \cup Q_{j}\right) \times(\Sigma \cup\{\varepsilon\}) \times \operatorname{Power}\left(Q_{j+1}\right)\right)$
$\cup\left(\operatorname{Power}\left(Q_{j+1}\right) \times(\Sigma \cup\{\varepsilon\}) \times \operatorname{Power}\left(Q_{1} \cup \cdots \cup Q_{j}\right)\right)$

$$
\begin{aligned}
(U, a, V) \in \xi_{j} & \Leftrightarrow U \subset Q_{1} \cup \cdots \cup Q_{j}, V=\varepsilon C\left(\delta_{j+1}^{\prime}, \delta(U, a) \cap Q_{j+1}\right) \\
& \text { or } U \subset Q_{j+1}, V=\varepsilon C\left(\delta_{j}, \delta(U, a) \cap\left(Q_{1} \cup \cdots \cup Q_{j}\right)\right)
\end{aligned}
$$

when we state $\operatorname{Sub}\left(A, Q_{1} \cup \cdots \cup Q_{j}\right)=\left(\Sigma, Q_{1} \cup \cdots \cup Q_{j}, \delta_{j}, *_{j}, F_{j}\right)$, $\operatorname{Sub}\left(A, Q_{j+1}\right)=$ $\left(\Sigma, Q_{j+1}, \delta_{j+1}^{\prime}, *_{j+1}^{\prime}, F_{j+1}^{\prime}\right)$. Then $C_{i} \sim S C\left(S u b\left(A, Q_{1} \cup \cdots \cup Q_{i}\right)\right)(1 \leq i \leq n)$. Especially on the case $i=n, C_{n} \sim S C(A)$.

Someone might have doubt on fusion as an incremental construction method for $\operatorname{LR}(0)$ which does not use information 'item set', because in the definition of fusion, as expression 4.1, it is seemed so that union operation on item set is needed. However, this doubt will be cleared in the next section. The expression 4.1 plays a role of identification of states in algorithms of incremental construction. We prepare another way to identification of states, which is based on inclusion relation between states.

4.3 Discussions on LR(0) Parsing Table (State Transition Graph)

In this section, we discuss on subjects which depends on notions essentially forms LR(0) graph. Basic notions and notations on this section are also summarized in Chapter 2. Most important results in this section are MonoG, MaxInc and properties on them, defined in Notation 4.3.3 and Definition 4.3.10, respectively. MonoG is an $\operatorname{LR}(0)$ graph induced from only one production rule, which has good properties for incremental construction of $\mathrm{LR}(0)$ graphs and for calculation of Look Ahead Sets without item set information. In the algorithms of incremental construction of LALR(1) graph, described in Section 4.5, it is assumed that both of initial graph, which is the start graph of construction, and augmenting graph are MonoG. MaxInc is used in order to identify states. On conventional construction algorithms for $\mathrm{LR}(0)$ graphs, as written in $[1,2]$, a state is identified with a subset of items which form the state, so called kernel or core. On contrary to the conventional methods, our approach adopts another information, i.e. MaxInc, in order to identify states, which does not consists of items, but consists of inclusion information between states. The efficiency of MaxInc will be discussed in Section 4.6.

Usually, $\operatorname{LR}(0)$ graph is constructed as a DFA. Using the notation described in Chapter 2, for any given CFG $G, \operatorname{LR}(0)$ graph is denoted by $\operatorname{Eff}(S C(\operatorname{lr}(G))$. The fact that if a transition from q to q^{\prime} by X exists, then it is clear that q must contain some item forms $Y \rightarrow \alpha \bullet X \beta$. Also, this feature is inherited to $\operatorname{Eff}(S C(\operatorname{lr}(G))$, and used frequently in algorithms presented in Section 4.5. In fact, Bridge Transition ξ needed to achieve fusion operation is calculated using this information, as described in Algorithm 4.5.3. How many information is needed to achieve incremental construction of $\operatorname{LR}(0)$ graph? Making an extreme argument, if topology of $\operatorname{LR}(0)$ graph and reduce information for each state are given, we can recalculate item sets for each state. If we can decide topology of $\operatorname{LR}(0)$ graph with the other information, the role of item set information, or kernel, is needed only on identifying states. For such purpose, we introduce a notion MaxInc defined below. To calculate topology of $\operatorname{LR}(0)$ and MaxInc easily, we use notion MonoG. To calculate MonoG, we use no item set. Instead of item sets, we adopt a notion Flow defined below. Our approach can be illustrated as an iteration process of construction of MonoG and fusion of $\operatorname{LR}(0)$ graph and MonoG.

4.3.1 Mono-Graph

Firstly, we confirm a proposition stated below.
Lemma 4.3.1 Let $A=\operatorname{lr}(G)$ be an LR(0) graph, $A^{\prime}=S C(A)=(V \cup T$, $\operatorname{Power}($ Item $\left.\left.\cup\left\{q_{0}\right\}\right), \delta^{\prime}, q_{0}^{\prime}, \phi\right)$, and q be a state of $S C(A)$. For some item $X \rightarrow \alpha X_{1} \cdots X_{k} \bullet \beta \in q$, there exists a state of $S C(A)$, say q^{\prime}, s.t., $\delta^{\prime}\left(q^{\prime}, X_{1} \cdots X_{k}\right)=q$. Moreover, if, for some string $w \in(V \cup T) *,|w|=k, \delta^{\prime}\left(q^{\prime \prime}, w\right)=q$ then $w=X_{1} \cdots X_{k}$.
(proof) By induction on k.//

Corollary 4.3 .2

$$
\begin{aligned}
\operatorname{Root}(q, X \rightarrow \alpha \bullet \beta) & =\left\{q^{\prime} \subset \operatorname{Item} \mid \delta^{\prime}\left(q^{\prime}, \alpha\right)=q\right\} \\
& =\left\{q^{\prime} \subset \operatorname{Item}\left|\delta^{\prime}\left(q^{\prime}, w\right)=q,|w|=|\alpha|\right\}\right.
\end{aligned}
$$

Lemma 4.3.4 is one of most important results of this section, which concerns to MonoG. The proof of the lemma suggests an algorithm of effective construction of MonoG.

Notation 4.3.3 (Mono-Graph)

An $L R(0)$ graph (DFA) which is obtained from only one production rule $Z \rightarrow X_{1} \cdots X_{n}$ is denoted by Mono $G\left(Z \rightarrow X_{1} \cdots X_{n}\right)$.

Lemma 4.3.4 The number of states of Mono $G\left(Z \rightarrow X_{1} \cdots X_{n}\right)$ is strictly $n+1$.
(proof) Function Index : $\operatorname{Item}\left(\left\{Z \rightarrow X_{1} \cdots X_{n}\right\}\right) \rightarrow \mathbf{N}$, which assigns an integer for each item, is defined as,

$$
\begin{aligned}
\operatorname{Index}\left(Z \rightarrow \bullet X_{1} \cdots X_{n}\right) & =0 \\
\operatorname{Index}\left(Z \rightarrow X_{1} \cdots X_{i} \bullet \cdots X_{n}\right) & =i
\end{aligned} \quad(1 \leq i \leq n),
$$

and, using Index, let $\overline{\operatorname{Index}}: \operatorname{Power}\left(\operatorname{Item}\left(\left\{Z \rightarrow X_{1} \cdots X_{n}\right\}\right) \rightarrow \mathbf{N}\right.$ be defined as,

$$
\overline{\operatorname{Index}}(U)=\max _{i t e m \in U} \operatorname{Index}(\text { item })
$$

Index denotes either Index or $\overline{\text { Index, if no ambiguity. From the definition of } \operatorname{LR}(0) \text { graph }}$ $A(\varepsilon \mathrm{NFA})$, there is a sequence of $n+1$ states, starts with an item $Z \rightarrow X_{1} \cdots X_{n}$ to $Z \rightarrow X_{1} \cdots X_{n} \bullet$. It is obvious that the values of Index for each states are mutually distinct, which values are $0,1, \ldots, n$. From this fact, the values of Index for each states of $S C(A)$ also exhausts 0 to n, because destination state by ε-transition from any state $Z \rightarrow X_{1} \cdots \bullet X_{j} \cdots X_{n}$ on A is, if exists, only $Z \rightarrow \bullet X_{1} \cdots X_{n}$. So, the value of Index on $\varepsilon C\left(Z \rightarrow X_{1} \cdots \bullet X_{j} \cdots X_{n}\right)$ is also j. Thus, from initial state $\varepsilon C\left(Z \rightarrow \bullet X_{1} \cdots X_{n}\right)$, for each $i=0, \ldots, n$, there exists a state which includes an item $Z \rightarrow X_{1} \cdots \bullet X_{i} \cdots X_{n}$ that gives value of Index of the state is reachable. Thus, the number of states of $S C(A)$ is more than $n+1$.

Before giving a proof of the converse, we certify a fact that if $X_{1} \neq Z$, then kernel of each state contains only one element. Suppose a state q contains an item $Z \rightarrow \cdots \bullet Z$ \cdots, then q must contain an item $Z \rightarrow \bullet X_{1} \cdots X_{n}$. However, because of the supposition $X_{1} \neq Z, Z \rightarrow \cdots Z \bullet \cdots$ and $Z \rightarrow X_{1} \bullet X_{2} \cdots X_{n}$ never occurs in same state. So, number of elements of kernel never increases.

Conversely, suppose there are two distinct states of $S C(A)$ which have same value of Index, say q and q^{\prime}, and $\operatorname{Index}(q)=\operatorname{Index}\left(q^{\prime}\right)=j$. Kernels of q and q^{\prime} are distinct, because we assume $q \neq q^{\prime}$. Thus there exists an item $Z \rightarrow X_{1} \cdots X_{i} \bullet \cdots X_{n} \in q, Z \rightarrow X_{1} \cdots X_{i} \bullet$ $\cdots X_{n} \notin q^{\prime}$ and $i<j$, and addtionally we can assume i as the maximum among such values. From assumptions that $Z \rightarrow X_{1} \cdots \bullet X_{j} \cdots X_{n} \in q, q^{\prime}$ and $Z \rightarrow X_{1} \cdots X_{i} \bullet \cdots X_{n}$ $\in q$, we can claim that $X_{j-i} \cdots X_{j-1}=X_{1} \cdots X_{i}$ by Lemma 4.3.1 and there exist states p and p^{\prime}, s.t., q is reachable from p by $X_{1} \cdots X_{i}$ and q^{\prime} is reachable from p^{\prime} by $X_{1} \cdots X_{i}$, respectively, and $Z \rightarrow \bullet X_{1} \cdots X_{n} \in p, Z \rightarrow \bullet X_{1} \cdots X_{n} \notin p^{\prime}$. From the fact discussed above, $X_{j-i}=X_{1}=Z$ must hold. So, because p^{\prime} contains item $Z \rightarrow X_{1} \cdots \bullet X_{j-i} \cdots X_{n}$, p^{\prime} must contain item $Z \rightarrow \bullet X_{1} \cdots X_{n}$. It is contradiction.

Above all, states are identified by values of Index, thus, number of states is just $n+1 . / /$
To calculate topology of $\operatorname{Mono} G$, and also LA discussed in the next section, we introduce a notion Flow. Intuitively, Flow holds information whether item $Z \rightarrow \alpha \bullet X \beta$

Figure 4.3: $M o n o$ for G_{4}
belongs to q, for each state q and each $X \in V$. If $(q, X, i) \in$ Flow then $Z \rightarrow \alpha \bullet X \beta \in$ q and $X_{i}=X$. In other words, under an interpretation of Flow being a function $Q_{2} \times V$ $\rightarrow \operatorname{Power}(\{1, \ldots n\}), \bigcup_{X \in V} \operatorname{Flow}(q, X)$ gives item set description of state q. Precise arguments on use of Flow is described in Algorithm 4.5.1. Flow is calculated and used during calculating MonoG, and when the calculation of MonoG is completed, Flow is destructed.

Definition 4.3.5 (Flow)
For given Mono $G\left(Z \rightarrow X_{1} \cdots X_{n}\right)=\left(V \cup T, Q_{2}, \zeta_{2},\left\{Z \rightarrow \bullet X_{1} \cdots X_{n}\right\}\right.$, $\left.*\right)$, Flow $\subset Q_{2}$ $\times V \times\{1, \ldots, n\}$ is defined as $\left(q, X_{i}, i\right) \in$ Flow iff $Z \rightarrow X_{1} \cdots X_{i-1} \bullet X_{i} \cdots X_{n} \in q$ and $X_{i} \in V$.

Note: Actual values of Flow are calculated in according to the structure of Mono G which is established in the proof of Lemma 4.3.4.

Example 4.3.6 (MonoG and Flow) Here, we illustrate an example of MonoG and Flow for $C F G G_{4}=(\{A, B, C\}, \phi,\{A \rightarrow C A B\}, A)(=\operatorname{lr}(A \rightarrow C A B)) . \operatorname{Mono} G\left(G_{4}\right)$ is illustrated in Figure 4.3 with item sets. To construct this graph, firstly we calculate Flow for the graph. Flow is calculated, piling up $\varepsilon N F A \operatorname{lr}(A \rightarrow C A B)$ as shown in Figure 4.4. Strict value of the Flow for Mono $G(\operatorname{lr}(A \rightarrow C A B))$ is as below,

$$
\text { Flow }=\left\{\left(p_{0}, C, 1\right),\left(p_{1}, A, 2\right),\left(p_{1}, C, 1\right),\left(p_{2}, B, 3\right)\right\}
$$

4.3.2 MaxInc: a descriptor for state identification of $\operatorname{LR}(\mathbf{0})$

From now on, we start arguments concerning to a method for state identification. As mentioned at the top of this chapter, we abandon information of item set for each state. Instead of it, we adopt inclusion relation between states. And, using the relation, an index for state identifier, named MaxInc, is introduced. Intuitively, for each state $q, \operatorname{MaxInc}(q)$ is a subset of states as its value. If $\operatorname{MaxInc}(q)$ is empty set, then q is a minimum state which has a unique item item, in the meaning that if $\exists q^{\prime}$, s.t., item $\in q^{\prime}$ then q^{\prime} must involve q. If $\operatorname{MaxInc}(q)$ is not empty set, then q is obtained so as to fuse states of $\operatorname{MaxInc}(q)$. Of coarse, there are combinatorially many choices to express such a set. Trivial one choice is so as to collect all states which are included by q, but we adopt another way founded on a property of $\operatorname{LR}(0)$ graph, which is stated in Lemma 4.3.9. The way is to calculate a kind of maximal set, of which existence and uniqueness is stated in the lemma. Moreover, we show methods for incremental renewal of MaxInc through Lemma 4.3.12 to Theorem 4.3.18.

Figure 4.4: Calculation of Flow

Lemma 4.3.7

Suppose, given an $L R(0)$ graph (DFA)

$$
S C(\operatorname{lr}(G))=\left(V \cup T, \operatorname{Power}(\text { Item }), \zeta, \varepsilon C\left(\left\{S^{\prime} \rightarrow \bullet S\right\}\right), *\right)
$$

If states $q_{1}, q_{2} \subset$ Item are reachable from $\varepsilon C\left(\varepsilon \operatorname{Item}\left(X_{1}\right)\right)$ and $\varepsilon C\left(\varepsilon \operatorname{Item}\left(X_{2}\right)\right)$ for some $X_{1}, X_{2} \in V$, respectively, and if $q_{1} \cap q_{2} \neq \phi$, then there is a non-empty state $q \subset q_{1} \cap q_{2}$ which is reachable from $\varepsilon C(\varepsilon I t e m(X))$ for some $X \in V$.
(proof) Consider $X \rightarrow Y_{1} \cdots Y_{i} \bullet \beta \in q_{1} \cap q_{2}$. From the construction of $\operatorname{SC}(\operatorname{lr}(G))$, we can state that q_{1} is reachable from an entrance $\varepsilon C\left(\varepsilon \operatorname{Item}\left(X_{1}\right)\right)$ with a symbol sequence $w_{1} Y_{1} \cdots Y_{i}$ for some $w_{1} \in(V \cup T) *$, and also, q_{2} is reachable from an entrance $\varepsilon C\left(\varepsilon \operatorname{Item}\left(X_{2}\right)\right)$ with a symbol sequence $w_{2} Y_{1} \cdots Y_{i}$ for some $w_{2} \in(V \cup T) *$. Considering states p_{1} and p_{2}, which are stated by $p_{1}=\zeta\left(\varepsilon C\left(\varepsilon \operatorname{Item}\left(X_{1}\right)\right), w_{1}\right), p_{2}=\zeta\left(\varepsilon C\left(\varepsilon \operatorname{Item}\left(X_{2}\right)\right)\right.$, $\varepsilon C(\varepsilon \operatorname{Item}(X)) \subset p_{1} \cap p_{2}$ must hold. Thus, we can claim that $\zeta\left(\varepsilon C(\varepsilon \operatorname{Item}(X)), Y_{1} \cdots Y_{i}\right)$ $\subset q_{1} \cap q_{2}$, and so, $q=\zeta\left(\varepsilon C(\varepsilon \operatorname{Item}(X)), Y_{1} \cdots Y_{i}\right) \subset q_{1} \cap q_{2}$, which satisfies the proposition.//

Definition 4.3.8 (An index $I n c$ for Inclusion Relation)

For given $L R(0)$ graph $S C(\operatorname{lr}(G))=\left(V \cup T\right.$, Power (Item), $\zeta, \varepsilon C\left(\left\{S^{\prime} \rightarrow \bullet S\right\}\right)$, *), we write $E S(E f f e c t i v e ~ S t a t e s) ~ f o r ~ a ~ s e t ~ o f ~ a l l ~ s t a t e s ~ w h i c h ~ a r e ~ r e a c h a b l e ~ f r o m ~ \varepsilon ~ ع ~(~ ह I t e m ~(X)) ~$ for some $X \in V$. We define Inc $: E S \rightarrow \operatorname{Power}(E S)$, using

$$
\operatorname{Inc}^{\prime}(q)=\{U \subset E S \mid q=\bigcup U \text { and } q \notin U\}
$$

as,

$$
\operatorname{Inc}(q)=\left\{U \subset E S \mid q=\bigcup U \text { and } q \notin U \text { and } \forall q^{\prime} \in U, \operatorname{Inc} c^{\prime}\left(q^{\prime}\right)=\phi\right\}
$$

Lemma 4.3.9 (The existence of Maximal Set of $\operatorname{Inc}(q)$)

If $\operatorname{Inc}(q) \neq \phi$, then there exists a unique maximal set in Inc (q), where a maximal set μ $\in \operatorname{Inc}(q)$ is a set of states which satisfies condition $\forall U \in \operatorname{Inc}(q), \forall q^{\prime} \in U, \exists q^{\prime \prime} \in \mu, q^{\prime} \subset$ $q^{\prime \prime}$.

Figure 4.5: $\operatorname{LR}(0)$ graph for G_{5}
(proof) Suppose $\operatorname{Inc}(q)$ is not empty. The existence of maximal set in $\operatorname{Inc}(q)$ is trivial, because the co-domain of $I n c$ is $\operatorname{Power}(\operatorname{Power}(\operatorname{Item}))$ which is finite. If there exist distinct maximal sets in $\operatorname{Inc}(q)$, say U_{1} and U_{2}, there must be $p \in U_{1}$ and $p_{1}^{\prime}, \ldots, p_{k}^{\prime} \in U_{2}$, s.t., p $\neq p_{j}^{\prime}$ and $p \cap p_{j}^{\prime} \neq \phi$ for each $j=1, \ldots, k$, moreover $p \subset p_{1}^{\prime} \cup \cdots \cup p_{k}^{\prime}$. By Lemma 4.3.7, p consists of some other states, thus $\operatorname{Inc}^{\prime}(p) \neq \phi$. It is contradiction. So, the maximal set is unique.//

Definition 4.3.10 (MaxInc)

$$
\operatorname{MaxInc}(q)= \begin{cases}\phi & \text { iff } \operatorname{Inq}(q)=\phi \\ \mu(=\text { maximals of } \operatorname{Inc}(q)) & \text { otherwise }\end{cases}
$$

Example 4.3.11 (An Example of Inc and MaxInc) Figure 4.5 illustrates $S C\left(\operatorname{lr}\left(G_{5}\right)\right)$ for $C F G G_{5}=(\{S, A, B, C\},\{a, b, c\},\{S \rightarrow A, S \rightarrow B, A \rightarrow a a, A \rightarrow a C, B \rightarrow a b$, $C \rightarrow c\}, S$). Values of Inc', Inc and MaxInc for each states are as follows.

	p_{0}, p_{1}, p_{2}	p_{3}	$p_{4}, p_{5}, p_{6}, p_{7}, p_{8}, p_{9}, p_{10}, p_{11}, p_{12}$
Inc $^{\prime}$	ϕ	$\left\{\left\{p_{5}, p_{9}, p_{11}\right\},\left\{p_{5}, p_{9}\right\}\right\}$	ϕ
Inc	ϕ	$\left\{\left\{p_{5}, p_{9}, p_{11}\right\},\left\{p_{5}, p_{9}\right\}\right\}$	ϕ
MaxInc	ϕ	$\left\{p_{5}, p_{9}\right\}$	ϕ

Clearly, because $p_{1}, p_{2}, p_{4}, p_{6}, p_{7}, p_{8}, p_{9}, p_{10}, p_{11}$ and p_{12} are unique states, all values of Inc', Inc and MaxInc for their states are ϕ. For p_{5}, while $p_{11} \subset p_{5}$ holds, $\operatorname{Inc}^{\prime}\left(p_{5}\right)=$ $\operatorname{Inc}\left(p_{5}\right)=\operatorname{MaxInc}\left(p_{5}\right)=\phi$, because p_{5} contains unique item $A \rightarrow a \bullet a$. By same reason, $\operatorname{Inc} c^{\prime}\left(p_{0}\right)=\operatorname{Inc}\left(p_{0}\right)=\operatorname{MaxInc}\left(p_{0}\right)=\phi . p_{3}$ is sole synthetic state in this example.

Of course, to calculate above values, information of inclusion relations must be held, as below.

	p_{0}	$p_{1}, p_{2}, p_{4}, p_{6}, p_{7}, p_{8}, p_{9}, p_{10}, p_{11}, p_{12}$	p_{3}	p_{5}
\subset	p_{4}, p_{8}	ϕ	p_{5}, p_{9}, p_{11}	p_{11}

Lemma 4.3.12 (Evolution on MaxInc)
For given $q_{1}, q_{2} \in E S$, where $q_{1} \cup q_{2} \in E S$,

```
\(\operatorname{MaxInc}\left(q_{1} \cup q_{2}\right)=\)
    \(\operatorname{MaxInc}\left(q_{1}\right) \quad\) if \(q_{2} \subset q_{1}\)
    \(\operatorname{MaxInc}\left(q_{2}\right) \quad\) if \(q_{1} \subset q_{2}\)
    \(\left\{q_{1}, q_{2}\right\} \quad\) if \(\operatorname{MaxInc}\left(q_{1}\right)=\operatorname{MaxInc}\left(q_{2}\right)=\phi\)
    maximals of \(\operatorname{MaxInc}\left(q_{1}\right) \cup\left\{q_{2}\right\} \quad\) if \(\operatorname{MaxInc}\left(q_{1}\right) \neq \phi\) and \(\operatorname{MaxInc}\left(q_{2}\right)=\phi\)
    maximals of \(\left\{q_{1}\right\} \cup \operatorname{MaxInc}\left(q_{2}\right) \quad\) if \(\operatorname{MaxInc}\left(q_{1}\right)=\phi\) and \(\operatorname{MaxInc}\left(q_{2}\right) \neq \phi\)
    maximals of \(\operatorname{MaxInc}\left(q_{1}\right) \cup \operatorname{MaxInc}\left(q_{2}\right)\) otherwise.
```

(proof) On cases of $q_{2} \subset q_{1}$ or $q_{1} \subset q_{2}$, they are trivial. On the case of $\operatorname{MaxInc}\left(q_{1}\right)=$ $\operatorname{MaxInc}\left(q_{2}\right)=\phi$, it is obvious that $\phi \neq\left\{q_{1}, q_{2}\right\} \in \operatorname{Inc}^{\prime}\left(q_{1} \cup q_{2}\right),\left\{q_{1}, q_{2}\right\} \in \operatorname{Inc}\left(q_{1} \cup q_{2}\right)$. We obtain results $q_{1}, q_{2} \in \operatorname{MaxInc}\left(q_{1} \cup q_{2}\right)$ and $q_{3} \in \operatorname{MaxInc}\left(q_{1} \cup q_{2}\right) \Rightarrow q_{3}=q_{1}$ or $q_{3}=q_{2}$ by same discussion as in the proof of Lemma 4.3.9. Thus $\operatorname{MaxInc}\left(q_{1} \cup q_{2}\right)=\left\{q_{1}, q_{2}\right\}$. Equations remained are obtained same as above.//

Corollary 4.3.13 For given $\sigma=\left\{q_{1}, q_{2}, \ldots, q_{n}\right\} \subset E S$, we assume $\forall q_{i}, q_{j} \in \sigma, q_{i} \not \subset q_{j}$. Let $\sigma_{1}=\left\{q_{i} \in \sigma \mid\right.$ Inc $\left.^{\prime}\left(q_{i}\right)=\phi\right\}, \sigma_{2}=\sigma \backslash \sigma_{1}$, then

$$
\operatorname{MaxInc}(\bigcup \sigma)=\text { maximals of }\left(\sigma_{1} \cup \bigcup_{q_{i} \in \sigma_{2}} \operatorname{MaxInc}\left(q_{i}\right)\right)
$$

Lemma 4.3.14 For given $\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)=\left(V \cup T, Q_{2}, \zeta_{2},\left\{Z \rightarrow \bullet X_{1} \cdots X_{n}\right\}\right.$, *), and we assume that $Q_{2}=\left\{q_{1}, \ldots, q_{n+1}\right\}$ those contents are same of them in the proof of Lemma 4.3.4, then,

$$
(q, Z, i) \in \text { Flow } \Leftrightarrow q_{i} \subset q .
$$

(proof) Same discussion in Lemma 4.3.4.//

Lemma 4.3.15 For each state q of $\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right), \operatorname{MaxInc}(q)=\phi$.
(proof) It is obvious from the fact that for each state $q_{i} \in Q_{2}$, if $q^{\prime} \subset q_{i}$ then $Z \rightarrow X_{1} \cdots$

- $X_{i} \cdots X_{n} \notin q^{\prime} . / /$

So far, we have shown definitions and some features of MaxInc and inclusion relations. Because our purpose is to construct an incremental construction method for LALR(1) parser, we must argue on a renewal method for MaxInc. Suppose a situation that CFG G and $\mathrm{LR}(0)$ graph $S C(\operatorname{lr}(G))$ for G are given and we are going to calculate $\operatorname{LR}(0)$ graph for G^{\prime} which is G augmented with a new production rule $Z \rightarrow X_{1} \cdots X_{n}$. Let Q_{1} be the set of states of $\operatorname{SC}(\operatorname{lr}(G))$, and Q_{2} that of $\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)$. During computing $\operatorname{Fus}\left(S C(\operatorname{lr}(G)), \operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)\right)$, in order to express inclusion relation between state and values of MaxInc, we use $Q_{1} \cup Q_{2}$ as a set of states. Because we assume that $Z \rightarrow X_{1} \cdots X_{n}$ is a really new production rule, during computing, there happens no contradiction. To complete fusion operation, we have to rearrange inclusion relations and value of MaxInc for each state, because some states in $Q_{1} \cup Q_{2}$ would be unreachable from any entrance $\operatorname{Ent\varepsilon }(X)$, and some states would be newly introduced. Arguments following concern to this rearrangement. In the following, we assume that $G=(V, T, P, S)$, $G^{\prime}=\left(V, T, P^{\prime}, S\right)$, where $P^{\prime}=P \cup\left\{Z \rightarrow X_{1} \cdots X_{n}\right\}$. And also, a set of all reachable states from an entrance of graph A is denoted by $E S_{A}$. In order to emphasize that it is on graph A, inclusion relation is denoted by \subset_{A} and MaxInc is denoted by MaxInc ${ }_{A}$. However, as intermediate values, notations $\subset_{\left(Q_{1} \cup Q_{2}\right)}$ and $\operatorname{MaxInc} c_{\left(Q_{1} \cup Q_{2}\right)}$ are used, for the purpose described above. In the following discussions, firstly, $C_{\left(Q_{1} \cup Q_{2}\right)}$ and $\operatorname{MaxInc} c_{\left(Q_{1} \cup Q_{2}\right)}$ are calculated from $\subset_{S C(l r(G))}$, MaxInc $c_{S C(l r(G))}, \subset_{M}$ and $\operatorname{MaxInc}_{M}$, where $M=\operatorname{Mono} G(Z \rightarrow$ $\left.X_{1} \cdots X_{n}\right)$. And then $\subset_{A}, \operatorname{MaxInc}_{A}$ are defined, where $A=\operatorname{Fus}(S C(\operatorname{lr}(G)), \operatorname{Mono} G(Z \rightarrow$ $\left.X_{1} \cdots X_{n}\right)$). Finally, it is proved that \subset_{A} and $\operatorname{MaxInc}_{A}$ are equivalent to $\subset_{S C\left(l r\left(G^{\prime}\right)\right)}$ and MaxInc $c_{S C\left(l r\left(G^{\prime}\right)\right)}$, respectively.

Definition 4.3.16 ($\left.\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}, \subset_{\left(Q_{1} \cup Q_{2}\right)}\right)$
For each state $q \subset Q_{1} \cup Q_{2}$ of given $A=\operatorname{Fus}\left(S C(\operatorname{lr}(G))\right.$, $\left.\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)\right)$, where $Q_{1}=\operatorname{Item}(P), Q_{2}=\operatorname{Item}\left(\left\{Z \rightarrow X_{1} \cdots X_{n}\right\}\right)$, we assume that $q=q_{1} \cup q_{2} \cup$ $\cdots \cup q_{k}\left(\forall i, q_{i} \subset Q_{1}\right.$ or $\left.q_{i} \subset Q_{2}\right)$, and, let U_{q} is a set of maximal elements of $\left\{q_{i} \mid\right.$ $\left.q_{i} \neq q, \operatorname{MaxInc}\left(q_{i}\right)=\phi, i=1, \ldots, k\right\}$. Then, $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}$, which holds intermediate values in order to calculate $\operatorname{MaxInc}_{S C\left(l r\left(G^{\prime}\right)\right)}$, where G^{\prime} is the grammar augmented to G by $\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)$, is defined as,

$$
\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}(q)=\text { maximals of }\left(U_{q} \cup \bigcup_{q^{\prime \prime} \in\left\{q_{1}, \ldots, q_{n}\right\} \backslash U_{q}} \operatorname{MaxInc}\left(q^{\prime \prime}\right)\right)
$$

(in the expression, MaxInc means either MaxInc $c_{S C(l r(G))}$ or MaxInc c_{M} in according to its argument, where $M=\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)$). We define inclusion relation $\subset_{\left(Q_{1} \cup Q_{2}\right)}$ so as,

1) $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}(q)=\phi$ and $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}\left(q^{\prime}\right)=\phi$ and $\left(q, q^{\prime}\right) \in \subset$

$$
\Rightarrow\left(q, q^{\prime}\right) \in \subset_{\left(Q_{1} \cup Q_{2}\right)},
$$

2) $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}(q)=\phi$ and $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}\left(q^{\prime}\right) \neq \phi$ and $\exists p^{\prime} \in \operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}\left(q^{\prime}\right),\left(q, p^{\prime}\right) \in \subset$

$$
\Rightarrow\left(q, q^{\prime}\right) \in \subset_{\left(Q_{1} \cup Q_{2}\right)},
$$

3) $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}(q) \neq \phi$ and $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}\left(q^{\prime}\right)=\phi$
and $\forall p \in \operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}(q),\left(p, q^{\prime}\right) \in \subset$

$$
\Rightarrow\left(q, q^{\prime}\right) \in \subset_{\left(Q_{1} \cup Q_{2}\right)},
$$

4) $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}(q) \neq \phi$ and $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}\left(q^{\prime}\right) \neq \phi$
and $\forall p \in \operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}(q), \exists p^{\prime} \in \operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}\left(q^{\prime}\right),\left(p, p^{\prime}\right) \in \subset$

$$
\Rightarrow\left(q, q^{\prime}\right) \in \subset_{\left(Q_{1} \cup Q_{2}\right)},
$$

$\subset_{\left(Q_{1} \cup Q_{2}\right)}$ is a minimum set which satisfies above conditions.
(also, in these expressions, \subset means either $\subset_{S C(l r(G))}$ or \subset_{M}, where $M=\operatorname{Mono} G(Z \rightarrow$ $\left.X_{1} \cdots X_{n}\right)$).

Definition 4.3.17 $\left(\right.$ MaxInc $\left._{A}, \subset_{A}\right)$
For each $q \in E S_{S C\left(l r\left(G^{\prime}\right)\right)}$ and each $q^{\prime} \in \operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}(q)$, let $\operatorname{PreInc}\left(q, q^{\prime}\right)$ be

$$
\operatorname{PreInc}\left(q, q^{\prime}\right)=\left\{q^{\prime \prime} \in E S_{S C\left(l r\left(G^{\prime}\right)\right)} \mid q^{\prime} \subset_{\left(Q_{1} \cup Q_{2}\right)} q^{\prime \prime} \text { and } q^{\prime \prime} \subset_{\left(Q_{1} \cup Q_{2}\right)} q\right\},
$$

then MaxInc A_{A} is defined as,

$$
\operatorname{MaxInc}_{A}(q)= \begin{cases}\phi & \text { if } \exists q^{\prime} \in \operatorname{MaxInc} c^{\prime}(q), \\ \text { maximals of }\left(\bigcup_{q^{\prime} \in \operatorname{MaxInc}^{\prime}(q)} \operatorname{PreInc}\left(q, q^{\prime}\right)\right) & \text { otherwise }\end{cases}
$$

where MaxInc ${ }^{\prime}=\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}$. And also, \subset_{A} is defined simply as

$$
\subset_{A}=\subset_{\left(Q_{1} \cup Q_{2}\right)} \cap\left(E S_{A} \times E S_{A}\right) .
$$

Theorem 4.3.18

$$
\begin{aligned}
\subset_{A} & =\subset_{S C\left(l r\left(G^{\prime}\right)\right)} \\
\operatorname{MaxInc}_{A} & =\operatorname{MaxIn} c_{S C\left(l r\left(G^{\prime}\right)\right)}
\end{aligned}
$$

(proof) From Theorem 4.2.14, $S C\left(\operatorname{lr}\left(G^{\prime}\right)\right)$ and $A=\operatorname{Fus}\left(S C(\operatorname{lr}(G))\right.$, $\left.\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)\right)$ are isomorphic. To mention precisely, we must argue that this proof is on the correspondence given by the isomorphism. However, to reduce description, states p of $S C\left(\operatorname{lr}\left(G^{\prime}\right)\right)$, which are associated to state p^{\prime} of $\operatorname{Fus}\left(S C(\operatorname{lr}(G)), \operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)\right)$ by the isomorphism, are identified with p^{\prime}.

Let $S C\left(\operatorname{lr}\left(G^{\prime}\right)\right)=\left(V \cup T, \operatorname{Power}\left(\operatorname{Item}\left(P^{\prime}\right)\right), \zeta, s, *\right)$. From the definitions of Fus and Mono G, for each states $q \subset q^{\prime} \subset E S_{S C\left(l r\left(G^{\prime}\right)\right)}$, we can write $q=q_{1} \cup \cdots \cup q_{k}, q^{\prime}=$ $q_{1}^{\prime} \cup \cdots \cup q_{k^{\prime}}^{\prime}\left(q_{i} \subset Q_{1}\right.$ or $q_{i} \subset q_{2}, q_{j}^{\prime} \subset Q_{1}$ or $\left.q_{j}^{\prime} \subset Q_{2}\right)$. From the assumption $q \subset q^{\prime}$, for each $i=1, \ldots, k$, we can select a minimum set $\left\{q_{j_{1}}^{\prime}, \ldots, q_{j_{m}}^{\prime}\right\}$ on q^{\prime} so that $q_{i} \subset q_{j_{1}}^{\prime}$ $\cup \cdots \cup q_{j_{m}}^{\prime}$. Of course, there might be alternative selections. If $m>1$, by Lemma 4.3.7, $\operatorname{MaxInc}\left(q_{i}\right) \neq \phi$ must hold. This case corresponds to the case 4) in Definition 4.3.16. It

Figure 4.6: Before Evolution (MaxInc)

Figure 4.7: Augmenting MonoG for Evolution (MaxInc)
is easy to see that the other cases correspond to one of 1),...,3) of Definition 4.3.16, with same discussions. Hence $\left(q, q^{\prime}\right) \in \subset_{S C\left(l r\left(G^{\prime}\right)\right)} \Rightarrow\left(q, q^{\prime}\right) \in \subset_{A}$ is obtained straightforwardly from the definitions. Conversely, $\left(q, q^{\prime}\right) \in \subset_{A} \Rightarrow\left(q, q^{\prime}\right) \in \subset_{S C\left(l r\left(G^{\prime}\right)\right.}$ is obtained easily by same way.

Finally, we can conclude that $\operatorname{MaxInc}_{A}=\operatorname{MaxInc}_{S C\left(l r\left(G^{\prime}\right)\right)}$, because $S C\left(\operatorname{lr}\left(G^{\prime}\right)\right)$ and $\operatorname{Fus}\left(S C(\operatorname{lr}(G))\right.$, Mono $\left.G\left(Z \rightarrow X_{1} \cdots X_{n}\right)\right)$ have same inclusion relation.//

Example 4.3.19 (Evolusion of MaxInc) We consider a situation that from two $L R(0)$ graphs Figure 4.6, say $S C\left(\operatorname{lr}\left(G_{5}^{\prime}\right)\right)$, and Figure 4.7, LR(0) graphs Figure 4.5, i.e. of Example 4.3.11, is obtained by Fus operation. The values of Inc', Inc and MaxInc for Figure 4.6 is provided in Table 4.1, and for Figure 4.7 in Table 4.2. Fus $\left(S C\left(\operatorname{lr}\left(G_{5}^{\prime}\right)\right)\right.$, $\operatorname{Mono} G(A \rightarrow$ $a())$ is given in Figure 4.8. The constructions of states are given in Table 4.3.

From Lemma 4.3.12, Corollary 4.3.13 and Definition 4.3.16, $\operatorname{MaxInc}\left(p_{0}\right)=\operatorname{MaxInc}\left(p_{0}^{\prime} \cup\right.$ $\left.p_{4}^{\prime \prime}\right), \operatorname{MaxInc}\left(p_{3}\right)=\operatorname{MaxInc}\left(p_{3}^{\prime} \cup p_{5}^{\prime \prime} \cup p_{11}\right), \operatorname{MaxInc}\left(p_{4}\right)=\operatorname{MaxInc}\left(p_{4}^{\prime} \cup p_{4}^{\prime \prime}\right)$ and $\operatorname{MaxInc}\left(p_{5}\right)$ $=\operatorname{MaxInc}\left(p_{5}^{\prime} \cup p_{5}^{\prime \prime} \cup p_{11}\right)$ are calculated indivisually. Results of the calculations are shown

	$p_{0}^{\prime}, p_{1}, p_{2}$	p_{3}^{\prime}	$p_{4}^{\prime}, p_{5}^{\prime}, p_{6}, p_{8}, p_{9}, p_{10}, p_{11}, p_{12}$
Inc $^{\prime}$	ϕ	$\left\{\left\{p_{5}^{\prime}, p_{9}\right\}\right\}$	ϕ
Inc	ϕ	$\left\{\left\{p_{5}^{\prime}, p_{9}\right\}\right\}$	ϕ
MaxInc	ϕ	$\left\{p_{5}^{\prime}, p_{9}\right\}$	ϕ

Table 4.1: Inc' ${ }^{\prime}$ Inc and MaxInc for Figure 4.6

	$p_{4}^{\prime \prime}, p_{5}^{\prime \prime}, p_{7}$
Inc $^{\prime}$	ϕ
Inc	ϕ
MaxInc	ϕ

Table 4.2: Inc', Inc and MaxInc for Figure 4.7

p_{0}	$=$	$p_{0}^{\prime} \cup p_{4}^{\prime \prime}$	p_{1}	$=$	p_{1}	p_{2}	$=$	p_{2}
p_{3}	$=$	$p_{3}^{\prime} \cup p_{5}^{\prime \prime} \cup p_{11}$	p_{4}	$=$	$p_{4}^{\prime} \cup p_{4}^{\prime \prime}$	p_{5}	$=$	$p_{5}^{\prime} \cup p_{5}^{\prime \prime} \cup p_{11}$
p_{6}	$=$	p_{6}	p_{7}	$=$	p_{7}	p_{8}	$=$	p_{8}
p_{9}	$=$	p_{9}	p_{10}	$=$	p_{10}	p_{11}	$=$	p_{11}
p_{12}	$=$	p_{12}						

Table 4.3: Construction of States for $S C\left(\operatorname{lr}\left(G_{5}\right)\right)$

$\operatorname{MaxInc}\left(p_{0}\right)$	$\operatorname{MaxInc}\left(p_{3}\right)$	$\operatorname{MaxInc}\left(p_{4}\right)$	$\operatorname{MaxInc}\left(p_{5}\right)$
$\left\{p_{0}^{\prime}, p_{4}^{\prime \prime}\right\}$	$\left\{p_{5}^{\prime}, p_{5}^{\prime \prime}, p_{9}, p_{11}\right\}$	$\left\{p_{4}^{\prime}, p_{4}^{\prime \prime}\right\}$	$\left\{p_{5}^{\prime}, p_{5}^{\prime \prime}, p_{11}\right\}$

Table 4.4: $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}$

$\operatorname{MaxInc}_{A}\left(p_{0}\right)$	$\operatorname{MaxInc}_{A}\left(p_{3}\right)$	$\operatorname{MaxInc}_{A}\left(p_{4}\right)$	$\operatorname{MaxInc}_{A}\left(p_{5}\right)$
ϕ	$\left\{p_{5}, p_{9}\right\}$	ϕ	ϕ

Table 4.5: $\operatorname{MaxInc}_{A}$ for $S C\left(\operatorname{lr}\left(G_{5}\right)\right)$

Figure 4.8: Result of Fus on Figure 4.6 and Figure 4.7
in Table 4.4. After the calculations of all of these values are completed, values of $\subset_{\left(Q_{1} \cup Q_{2}\right)}$ are calculated.

Using values of $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}$, finally we obtain values of MaxInc $_{A}$ by Definition 4.3.17, as shown in Table 4.5. The calculation of these values requires to seek states which are included in $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}(q)$ for each state $q \in E S_{S C\left(l r\left(G_{5}\right)\right)}$, i.e. PreInc. For example, while $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}\left(p_{0}\right)=\left\{p_{0}^{\prime}, p_{4}^{\prime \prime}\right\}$, because both of p_{0}^{\prime} and $p_{4}^{\prime \prime}$ are not included in $E S_{S C\left(l r\left(G_{5}\right)\right)}, \operatorname{MaxInc}_{A}\left(p_{0}\right)=\phi$. For $\operatorname{MaxInc}\left(p_{3}\right)$,

$$
\bigcup_{q^{\prime} \in \operatorname{MaxInc}\left(p_{3}\right)} \operatorname{PreInc}\left(p_{3}, q^{\prime}\right)=\left\{p_{5}, p_{9}, p_{11}\right\}
$$

is obtained. However, because $p_{11} \subset p_{5}, \operatorname{MaxInc}\left(p_{3}\right)=\left\{p_{5}, p_{9}\right\}$.

4.4 Discussions on Look Ahead Symbol Set

In this section, we discuss on a way of calculation of Look Ahead Symbols Sets (LA) on LALR(1) parser. Typical point of the method discussed here is that the calculation is achieved without use of any item sets. Of course, some informations concerning to item sets is used. To illustrate the idea, firstly we observe a process of calculation of LA in conventional algorithm. Suppose $\operatorname{LR}(0)$ graph is given, and, we stand on a point of calculation of LA. An item $Y \rightarrow \alpha \bullet X \beta$ is included in some state q with LA θ, then q must include an item $X \rightarrow \bullet \gamma$ induced from $Y \rightarrow \alpha \bullet X \beta$, so, LA of it includes First (β) and, if ε is derived from β, θ is also included by the LA. First (β) and the condition 'if ε is derived from β^{\prime} and θ possibly change as a result of augmentation of a production rule. Firstly, we focus on the condition 'if ε is derived from β '.

In simplest cases, if β contains a terminal symbol, ε is never derived from β, and if β $=Z$ for some syntactic variable Z, the ε-productivity depends on the ε-productivity of Z. In general case, i.e. $\beta=Z_{1} \cdots Z_{n}, \varepsilon$-productivity of β depends on ε-productivities of Z_{1} to Z_{n}. So the condition must include,

$$
\begin{equation*}
\varepsilon \text {-producible }\left(Z_{1}\right) \wedge \cdots \wedge \varepsilon \text {-producible }\left(Z_{n}\right) . \tag{4.2}
\end{equation*}
$$

The order of predicates is not important. Suppose a grammar contains a production rule $Z_{1} \rightarrow Y_{1} \cdots Y_{m}$, if ε is derived from all of Y_{k}, and from all of Z_{2} to Z_{n}, ε is derived from β. So the condition also must contain,

$$
\begin{equation*}
\varepsilon \text {-producible }\left(Y_{1}\right) \wedge \cdots \wedge \varepsilon \text {-producible }\left(Y_{m}\right) \wedge \varepsilon \text {-producible }\left(Z_{2}\right) \cdots \wedge \varepsilon \text {-producible }\left(Z_{n}\right) . \tag{4.3}
\end{equation*}
$$

If one of (4.2) and (4.3) satisfies, the condition becomes true. Thus, (4.2) and (4.3) must be composed by conjunction. To express such a condition, we introduce Dependency Domain (DD), which is defined in Definition 4.4.1. The condition above is denoted by $E \Delta(\beta)$ in following discussions. In most cases described in the algorithems of our method, $E \Delta$ is not computed directly from production rules, the exceptional case is on construction of Mono G. As a method for compute $E \Delta$, we present some kind of recurrence relations of $E \Delta$ on production rule set, shown in Theorem 4.4.9, using a few operations defined in Definition 4.4.3 and 4.4.8.

In addition to DD, we introduce $\operatorname{IndT\Delta }$, $\operatorname{IndV} \Delta$ and $\operatorname{Link} \Delta$ in order to express an index, named $\operatorname{Ind} \Delta$ for LA, instead of First. IndT Δ and $\operatorname{IndV} \Delta$ concern to inner state
production of LA, and Link Δ concerns to propagation of LA from another states. Here, we illustrate only our points of view. Precises are discussed through Definition 4.4.13 to Definition 4.4.23. In conventional calculation method for LA asigns LA to each items in each states. However, for example, in above discussion, $\operatorname{First}(\beta)$ and θ is also asigned to item $X \rightarrow \bullet \gamma^{\prime}$, if exists in the state. The item-wise asignment is an excessive quantitative choice. LA is common on each $\varepsilon \operatorname{Item}(X)$. $\operatorname{IndT\Delta }$ and $\operatorname{IndV} \Delta$ give indeces of LA flow out to عItems which are induced in the state, with some conditions by DD. We also give a few operations in order to calculate their values in fully incremental manner.

The advantage of the method using $\operatorname{IndT\Delta }, \operatorname{IndV} \Delta$ and $\operatorname{Link} \Delta$ are not only that there is no need to keep item set information, but also that there is an operation so as to decrease space usage, as a result, which operation increases efficiency on time to proceed computations. For example, constructing a parser for RCFG, when construction of initial parser completes, information about ε-productivity on syntactic variables other than those of $f(D)$, i.e. dynamically definable variables, has no need to be kept. In such a situation, we can eliminate conditions which contains ε-productivity on X. The operation, named Domain Restriction, is stated in Definition 4.4.30.

Through discussions in this section, we essentially depend on the grounds of a proposition, i.e.

$$
\operatorname{First}(\alpha \alpha \beta)=\operatorname{First}(\alpha \beta),
$$

stated as Proposition 2.6.8, explicitly or implicitly. This equation is one of typical properties of CFG. Using this property, we succeeded to give simple operations on $E \Delta, T o p \Delta$, $\operatorname{Dep} \Delta$ and $\operatorname{Link} \Delta$. Top Δ and $\operatorname{Dep} \Delta$ are functions to calculate values of $\operatorname{IndT\Delta } \Delta$ and $\operatorname{IndV} \Delta$, respectively.

4.4.1 Dependency Domain

From now on, notions which are introduced for the method of incremental construction of LALR(1) parser are stated.

Definition 4.4.1 (Dependency Domain (DD))

For any $H_{1}, H_{2} \subset \operatorname{Power}(\Omega)$, where Ω is an arbitrary finite set, firstly we define a preorder $<$, such as,

$$
H_{1}<H_{2} \Leftrightarrow \forall U \in H_{2}, \exists V \in H_{1}, V \subset U,
$$

also define equation $=$,

$$
H_{1}=H_{2} \Leftrightarrow H_{1}<H_{2}, H_{2}<H_{1},
$$

then, we obtain a quotient set of $\operatorname{Power}(\operatorname{Power}(\Omega))$ by =,i.e., $\operatorname{Power}(\operatorname{Power}(\Omega)) /=$, denoted by $[\operatorname{Power}(\operatorname{Power}(\Omega))]$. We call $[\operatorname{Power}(\operatorname{Power}(\Omega))] \operatorname{Dependency~Domain~on~} \Omega$, or Disjunction Form on Ω. Additionally, for each $H \in[\operatorname{Power}(\operatorname{Power}(\Omega))],[H]$ denotes the class to which H belongs.

Note: For each elements of $[\operatorname{Power}(\operatorname{Power}(\Omega))]$ are regarded as Disjunctive Normal Form without Negative Literals. On this interpretation, Ω is assumed to be a set of Propositional Variables. The element $\{\phi\} \in[\operatorname{Power}(\operatorname{Power}(\Omega))]$ can be interpreted as Absolutely True, and ϕ Absolutely False, which will be denoted by true and false, respectively.

Proposition 4.4.2 For any $H \subset \operatorname{Power}(\Omega)$,

$$
\eta, \eta^{\prime} \in H, \eta \subset \eta^{\prime}\left(\eta \neq \eta^{\prime}\right) \Rightarrow[H]=\left[H \backslash\left\{\eta^{\prime}\right\}\right] .
$$

(proof) Straightforward from the definition.//

Definition 4.4.3 (Convolution on DD)

For given $H, H^{\prime} \in[\operatorname{Power}(\operatorname{Power}(\Omega))]$, we define Convolution Operation $*$ on H, H^{\prime} as

$$
H * H^{\prime}=\left[\left\{\eta \cup \eta^{\prime} \mid \eta \in H, \eta^{\prime} \in H^{\prime}\right\}\right]
$$

Definition 4.4.4 (ε-Productivity Decision)

Suppose given $C F G G=(V, T, P, S)$ and given a subset of V, say V^{\prime}. For any symbol sequence $\alpha \in(V \cup T) *$, ε Derivatioin Judgement $E \Delta(\alpha)$ is defined as

$$
\begin{aligned}
E \Delta(\alpha)=\left[\left\{\left\{X_{1}, \ldots, X_{n}\right\} \subset V^{\prime} \mid\right.\right. & \alpha \stackrel{*}{\Rightarrow} X_{1} \cdots X_{n}, \\
& \left.\left.X_{i} \stackrel{*}{\nRightarrow} \varepsilon, \text { for } 1 \leq i \leq n\right\}\right] .
\end{aligned}
$$

The value of $E \Delta(\alpha)$ is of $\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]$. To emphasize the value of $E \Delta$ is under G or P, we write $E \Delta_{G}(\alpha)$ or $E \Delta_{P}(\alpha)$. Moreover, to emphasize the value of $E \Delta$ is over V^{\prime}, we write $E \Delta(\alpha)\left|V^{\prime}, E \Delta_{G}(\alpha)\right| V^{\prime}, E \Delta_{P}(\alpha) \mid V^{\prime}$.

Example 4.4.5 Let $C F G G_{6}=\left(V_{6}, T_{6}, P_{6}, S\right)$, where

$$
\begin{aligned}
V_{6}= & \{S, X, Y, A, B, C\}, \\
T_{6}= & \{a, b, c\}, \\
P_{6}= & \{S \rightarrow X Y, X \rightarrow A, X \rightarrow A X, \\
& Y \rightarrow B, Y \rightarrow B Y, \\
& Y \rightarrow C, Y \rightarrow C Y, \\
& A \rightarrow a, B \rightarrow b, C \rightarrow c\},
\end{aligned}
$$

$L\left(G_{6}\right)=(a+)(b+c)+$. No ε-derivation is achieved from any syntactic variables on this grammar. Intuitively, if new production rule $B \rightarrow \varepsilon$ is added to the grammar, B becomes ε-producible, and also Y-producible. So, $\{B\}$ must be included in $E \Delta(Y)$. From same reason, $\{C\} \in E \Delta(Y)$. Because syntactic variable sequences derived from Y are $(B+C)+$ $=\{B, C, B B, B C, C B, C C, \ldots\}, E \Delta(Y)=\left[H_{1}\right]$, where $H_{1}=\{\{Y\},\{B\},\{C\},\{B, C\}\}$. From the definition of $D D, E \Delta(Y)=\left[H_{2}\right]$, where $H_{2}=\{\{Y\},\{B\},\{C\}\}$, because H_{2} $\subset H_{1}$ indicates $H_{1}<H_{2}$ from the definition of $D D$ (Definition 4.4.1), and for $\{B, C\} \in$ $H_{1}, \exists\{B\} \in H_{2},\{B\} \subset\{B, C\}$, thus $H 1$ and H_{2} is equivalent.

The values of $E \Delta$ for each syntactic variables are given in the table, as follows.

	S	X	Y
$E \Delta$	$\{\{S\},\{X, Y\},\{A, Y\},\{X, B\}$, $\{X, C\},\{A, B\},\{A, C\}\}$	$\{\{X\},\{A\}\}$	$\{\{Y\},\{B\},\{C\}\}$
	A	B	C
$E \Delta$	$\{\{A\}\}$	$\{\{B\}\}$	$\{\{C\}\}$

Proposition 4.4.6 $E \Delta(\alpha \beta)=E \Delta(\alpha) * E \Delta(\beta)$.
(proof) Straightforward from the definition of Convolution on DD (Definition 4.4.3) and the definition of $E \Delta$ (Definition 4.4.4).//

Proposition 4.4.7 If given $\alpha \in(V \cup T) *$ is ε-producible on G, then $E \Delta(\alpha)=[\{\phi\}]$.
(proof) If α is ε-producible, then $\phi \in\left\{\left\{X_{1}, \ldots, X_{n}\right\} \subset V^{\prime} \mid \alpha \stackrel{*}{\Rightarrow} X_{1} \cdots X_{n}, X_{i} \stackrel{*}{\nRightarrow}\right.$ ε, for $1 \leq i \leq n\}$ as a vacuous case that $n=0 . / /$

Definition 4.4.8 (Substitution on DD)

For given $H, H^{\prime} \in[\operatorname{Power}(\operatorname{Power}(\Omega))]$ and given $X \in \Omega$, Substitution of X in H^{\prime} to H is defined as

$$
\begin{aligned}
H^{\prime}[H / X]=\left[\left\{\eta^{\prime \prime} \subset \Omega \quad \mid\right.\right. & \eta^{\prime} \in H^{\prime}, \eta \in H, \\
& X \notin \eta^{\prime} \Rightarrow \eta^{\prime \prime}=\eta^{\prime}, \\
& \left.\left.X \in \eta^{\prime} \Rightarrow \eta^{\prime \prime}=\eta \cup \eta^{\prime} \backslash\{X\}\right\}\right] .
\end{aligned}
$$

Also, Substition of X in $E \Delta(\alpha)$ to $H \in\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]$ is defined as

$$
\begin{aligned}
E \Delta(\alpha)[H / X]=\left[\left\{\eta^{\prime \prime} \subset V^{\prime} \quad \mid\right.\right. & \eta^{\prime} \in E \Delta(\alpha), \eta \in H, \\
& X \notin \eta^{\prime} \Rightarrow \eta^{\prime \prime}=\eta^{\prime}, \\
& \left.\left.X \in \eta^{\prime} \Rightarrow \eta^{\prime \prime}=\eta \cup \eta^{\prime} \backslash\{X\}\right\}\right] .
\end{aligned}
$$

Theorem 4.4.9 (Evolution of $E \Delta$)

For each production rule set $P^{\prime}=P \cup\{X \rightarrow \gamma\}, \alpha \in(V \cup T) *$,

$$
E \Delta_{P^{\prime}}(\alpha)=\left[E \Delta_{P}(\alpha) \cup E \Delta_{P}(\alpha)\left[E \Delta_{P}(\gamma) / X\right]\right] .
$$

(proof) It is obvious that $E \Delta_{P}(\alpha) \cup E \Delta_{P}(\alpha)\left[E \Delta_{P}(\gamma) / X\right]$ denotes ε-producible condition for α on the restriction that use of production rule $X \rightarrow \gamma$ in each derivations on P^{\prime} is restricted to at most once. Hence, it is clear that $E \Delta_{P}(\alpha) \cup E \Delta_{P}(\alpha)\left[E \Delta_{P}(\gamma) / X\right] \subset$ $E \Delta_{P^{\prime}}(\alpha)$. However, a set of all syntactic variables which occur in each symbol sequences on each derivations from α never increases, whether $X \rightarrow \gamma$ is used once or more than twice. Thus, each element of $E \Delta_{P^{\prime}}(\alpha)$ must be included in $E \Delta_{P}(\alpha) \cup E \Delta_{P}(\alpha)\left[E \Delta_{P}(\gamma) / X\right] . / /$

Example 4.4.10 (Evolution on G_{6})

Suppose a situation that a new production rule $A \rightarrow \varepsilon$ is augmented to G_{6} given in Example 4.4.5 above. From Definition 4.4.4, $E \Delta_{P_{6}}(\varepsilon)=\{\phi\}$. Using this value, values of $E \Delta_{P_{6}}[\{\phi\} / A]$ for each syntactic variables are as below.

	S	X	Y
$E \Delta_{P_{6}}[\{\phi\} / A]$	$\{\{S\},\{Y\},\{B\},\{C\}\}$	$\{\phi\}$	$\{\{Y\},\{B\},\{C\}\}$
	A	B	C
$E \Delta_{P_{6}}[\{\phi\} / A]$	$\{\phi\}$	$\{\{B\}\}$	$\{\{C\}\}$

From the definition of Substitution on $E \Delta$ (Definition 4.4.8), $E \Delta_{P_{6}}(S)[\{\phi\} / A]=[\{\{S\}$, $\{X, Y\},\{Y\},\{X, B\},\{X, C\},\{B\},\{C\}\}]$. Hewever, from the definition of $D D$ (Definition 4.4.1), the elements $\{X, Y\},\{X, B\}$ and $\{X, C\}$ can be omitted. To use theses values, values of $E \Delta_{P_{6}^{\prime}}$ for each syntactic variables are calculated, where $P_{6}^{\prime}=P_{6} \cup\{A \rightarrow$ $\varepsilon\}$. On this case, they are same to $E \Delta_{P_{6}}[\{\phi\} / A]$.

Before continue the discussion, we summarize operations and properties on $E \Delta$. As an interpretation of DD given by the definition of $E \Delta$, DD can be interpreted to Disjunction Normal Form without Negative Literals.

Logical Sum	$\left[H \cup H^{\prime}\right]$
Logical Product	$H * H^{\prime}$
Substitution over Z	$H^{\prime}[H / Z]$
Evolution by $Z \rightarrow \gamma$	$[H \cup H[E \Delta(\gamma) / Z]]$

Each operations are defined in denotational forms of sets. However, it is easy to show that the implementations of them can be quite efficient. Imprementation problem is discussed in Section 4.7. Domain restriction operation for DD is also prepared other than these operations, which is discussed in Definition 4.4.30, with same operations on another elements.

4.4.2 Ind Δ : an index for LA

From now on, an index for LA, say $\operatorname{Ind} \Delta$, is discussed. The index is associated to each state q for each syntactic variable Y, i.e. $\operatorname{Ind} \Delta(q, Y)$, which consists of three values $\operatorname{IndT\Delta }$, IndV Δ and $\operatorname{Link} \Delta$. Domains for each are as follows,

$$
\begin{aligned}
\operatorname{IndT\Delta } & : T \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right] \\
\operatorname{IndV\Delta } & : V \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right], \\
\operatorname{Link} \Delta & \subset \mathbf{N} \times V \times\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right] .
\end{aligned}
$$

These form a core information of indeces for LA on each states. These three values are associated to each $\varepsilon \operatorname{Item}(Y)$ in each state q, the triple is denoted by $\operatorname{Ind} \Delta(q, Y)=$ ($\operatorname{IndT} \Delta, \operatorname{IndV} \Delta, \operatorname{Link} \Delta$) defined in Definition 4.4.24 and Lemma 4.4.26 below. The meaning is that, in some context which leads to the state q, then a terminal symbol a follows to each $\varepsilon \operatorname{Item}(Y)$ in q, when grammar satisfies the condition $\operatorname{IndT\Delta }(a)$, a syntactic variable X follow to each $\varepsilon \operatorname{Item}(Y)$ in q, when grammar satisfies the condition $\operatorname{IndV} \Delta(X)$, and, if $(k, X, H) \in \operatorname{Link} \Delta$ then all of LA which flows to X on the state preceding of q by k steps is propageted to the LA for $\varepsilon \operatorname{Item}(Y)$ on q, when grammar satisfies the condition H. Our purpose is to state a scheme to calculate these data in incremental manner. To achieve it, we introduce functions Top Δ and $D e p \Delta$ which are similar notions to First, except that the value of Top Δ and $\operatorname{Dep} \Delta$ have conditions on ε-productivity. Types of the functions are,

$$
\begin{aligned}
\text { Top } \Delta: & (V \cup T) * \rightarrow\left(T \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right), \\
\operatorname{Dep} \Delta: & (V \cup T) * \rightarrow\left(V \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right) .
\end{aligned}
$$

In order to define values of $\operatorname{Ind} \Delta$, the functions $\operatorname{Top} \Delta$ and $\operatorname{Dep} \Delta$ are used.
Suppose a derivation sequence $\alpha \stackrel{*}{\Rightarrow} \gamma a \beta$, if ε is derived from $\gamma, a \in \operatorname{First}(\alpha)$, if not, a might not be in First (α). Considering incremental calculation of LA, the condition of ε-productivity of γ may change. So, it is useful to supplement a condition to each symbol. Intuitively, this idea leads us to generalize the notion First: $(V \cup T) * \rightarrow \operatorname{Power}(T)$ to Fist $\Delta:(V \cup T) * \rightarrow(T \rightarrow[\operatorname{Power}(\operatorname{Power}(V))])$. However, First Δ is not so easy to be reconstructed on augmenting a new production rule. So, we devide Firsts into two notions, i.e. Top Δ and $D e p \Delta$. The easiness of reconstruction of Top Δ and $D e p \Delta$ are shown in Theorem 4.4.19. Intuitively, $\operatorname{Dep} \Delta(\alpha)(X)$ gives a condition so that if $\alpha \stackrel{*}{\Rightarrow} \gamma X \beta$, then ε-productivity of γ is included in the condition. To use values of $\operatorname{Top} \Delta(\alpha), \operatorname{Dep} \Delta(\alpha)$ and $\operatorname{Top} \Delta(\gamma)$ for each $Y \in V$ and for each $Y \rightarrow \gamma \in P$, it is easy to calculate $\operatorname{First}(\alpha)$. A way to calculate First(α) from them is breafly discussed at the end of Section 4.5.

Following several definitions and propositions are given as basic operations.
Definition 4.4.11 (Operation \cup on Domain $V \rightarrow \mathbf{D D}, T \rightarrow \mathbf{D D}$)
For each $\Lambda, \Lambda^{\prime}: V \rightarrow[\operatorname{Power}(\operatorname{Power}(\Omega))]$, we define operation \cup, such as,

$$
\Lambda \cup \Lambda^{\prime}=\left\{\left(X,\left[H \cup H^{\prime}\right]\right) \mid X \in V,(X, H) \in \Lambda,\left(X, H^{\prime}\right) \in \Lambda^{\prime}\right\}
$$

in other words,

$$
\left(\Lambda \cup \Lambda^{\prime}\right)(X)=\left[\Lambda(X) \cup \Lambda^{\prime}(X)\right]
$$

for arbitrary syntactic variable $X \in V$. Similarly, for each $\Lambda, \Lambda^{\prime}: T \rightarrow[\operatorname{Power}(\operatorname{Power}(\Omega))]$, we define operation \cup, such as,

$$
\Lambda \cup \Lambda^{\prime}=\left\{\left(a,\left[H \cup H^{\prime}\right]\right) \mid a \in T,(a, H) \in \Lambda,\left(a, H^{\prime}\right) \in \Lambda^{\prime}\right\}
$$

in other words,

$$
\left(\Lambda \cup \Lambda^{\prime}\right)(a)=\left[\Lambda(a) \cup \Lambda^{\prime}(a)\right],
$$

for arbitrary terminal symbol $a \in T$.
Definition 4.4.12 (Inclusion Relation on $V \rightarrow \mathbf{D D}, T \rightarrow \mathbf{D D})$
For each $\Lambda, \Lambda^{\prime}: V \rightarrow[\operatorname{Power}(\operatorname{Power}(\Omega))]$, if following condition satisfies, then $\Lambda \subset \Lambda^{\prime}$ holds.

$$
\forall X \in V, \Lambda(X) \subset \Lambda^{\prime}(X)
$$

Similarly, for each $\Lambda, \Lambda^{\prime}: T \rightarrow[\operatorname{Power}(\operatorname{Power}(\Omega))]$, if following condition satisfies, then $\Lambda \subset \Lambda^{\prime}$ holds.

$$
\forall a \in T, \Lambda(a) \subset \Lambda^{\prime}(a)
$$

Moreover, occasionally, we denote $\left(\Lambda_{t}, \Lambda_{d}\right) \subset\left(\Lambda_{t}^{\prime}, \Lambda_{d}^{\prime}\right)$ for some $\Lambda_{t}, \Lambda_{t}^{\prime} \in T \rightarrow[\operatorname{Power}($ $\operatorname{Power}(\Omega))]$ and $\Lambda_{d}, \Lambda_{d}^{\prime} \in V \rightarrow[\operatorname{Power}(\operatorname{Power}(\Omega))]$ in the sense that $\Lambda_{t} \subset \Lambda_{t}^{\prime}$ and $\Lambda_{d} \subset \Lambda_{d}^{\prime}$.

Definition 4.4.13 (Top $\Delta, D e p \Delta)$
For given CFG $G=(V, T, P, S)$ and given $V^{\prime} \subset V$, functions Top $\Delta:(V \cup T) * \rightarrow(T \rightarrow$ $\left.\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right)$ and Dep $\Delta:(V \cup T) * \rightarrow\left(V \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right)$ are defined as,

$$
\begin{aligned}
& \operatorname{Top} \Delta(\alpha)=\left\{\left(a, \bigcup_{\alpha=\alpha^{\prime} a \alpha^{\prime \prime}} E \Delta\left(\alpha^{\prime}\right)\right) \mid a \in T\right\}, \\
& \operatorname{Dep} \Delta(\alpha)=\left\{\left(X, \bigcup_{\alpha * \alpha^{\prime} X \alpha^{\prime \prime}} E \Delta\left(\alpha^{\prime}\right)\right) \mid X \in V\right\} .
\end{aligned}
$$

Similarly to $E \Delta$, to emphasize they are under G or under P, or over V^{\prime}, we write $T o p \Delta_{G}$, $\operatorname{Dep} \Delta_{G}, T o p \Delta_{P}, \operatorname{Dep} \Delta_{P}, T o p \Delta_{G}\left|V^{\prime}, \operatorname{Dep} \Delta_{G}\right| V^{\prime}, T o p \Delta_{P}\left|V^{\prime}, D e p \Delta_{P}\right| V^{\prime}$, respectively.

Example 4.4.14 (Example of $T o p \Delta, D e p \Delta$) For $C F G G_{6}$ given in Example 4.4.5, the values of Dep Δ for each syntactic variables are given in followin table.

	S	X	Y	A	B	C
$D e p \Delta(S)$	$\{\phi\}$	$\{\phi\}$	$\{\{X\},\{A\}\}$	$\{\phi\}$	$\{\{X\},\{A\}\}$	$\{\{X\},\{A\}\}$
$\operatorname{Dep} \Delta(X)$	ϕ	$\{\phi\}$	ϕ	$\{\phi\}$	ϕ	ϕ
$\operatorname{Dep} \Delta(Y)$	ϕ	ϕ	$\{\phi\}$	ϕ	$\{\phi\}$	$\{\phi\}$
$\operatorname{Dep} \Delta(A)$	ϕ	ϕ	ϕ	$\{\phi\}$	ϕ	ϕ
$\operatorname{Dep} \Delta(B)$	ϕ	ϕ	ϕ	ϕ	$\{\phi\}$	ϕ
$\operatorname{Dep} \Delta(C)$	ϕ	ϕ	ϕ	ϕ	ϕ	$\{\phi\}$

From the definition of Top Δ (Definition 4.4.13), the values of $\operatorname{Top} \Delta(\gamma)(x)$ for each syntactic variable sequence $\gamma \in V_{6} *$ and each terminal $x \in T_{6}$ are ϕ, because no terminal occurs immediately in γ. The function Top Δ is used to extract terminal symbols of 'inner produced' LAs. It is mostly used in the calculation of MonoG, which is achieved in Algorithm 4.5.1 shown in Section 4.5, and applied to symbol sequences of right-hand side of production rules.

Definition 4.4.15 (Restriction of Top Δ and Dep Δ)
For given $H \in\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]$, Restriction of Top Δ and Dep Δ, namely Top $\Delta * H$ and Dep $\Delta * H$, respectively, are defined as,

$$
\begin{aligned}
& \operatorname{Top} \Delta(\alpha) * H=\left\{\left(a, H * H^{\prime}\right) \mid\left(a, H^{\prime}\right) \in \operatorname{Top} \Delta(\alpha)\right\}, \\
& \operatorname{Dep} \Delta(\alpha) * H=\left\{\left(X, H * H^{\prime}\right) \mid\left(X, H^{\prime}\right) \in \operatorname{Dep} \Delta(\alpha)\right\} .
\end{aligned}
$$

Lemma 4.4.16

$$
\begin{aligned}
& \operatorname{Top} \Delta(\alpha \beta)=\operatorname{Top} \Delta(\alpha) \cup \operatorname{Top} \Delta(\beta) * E \Delta(\alpha), \\
& \operatorname{Dep} \Delta(\alpha \beta)=\operatorname{Dep} \Delta(\alpha) \cup \operatorname{Dep} \Delta(\beta) * E \Delta(\alpha) .
\end{aligned}
$$

(proof) It is easy to show that,

$$
\begin{aligned}
& \operatorname{Top} \Delta(\alpha \beta) \\
& \quad=\left\{\left(a, H \cup H^{\prime}\right) \mid(a, H) \in \operatorname{Top} \Delta(\alpha),\left(a, H^{\prime}\right) \in \operatorname{Top} \Delta(\beta) * E \Delta(\alpha)\right\} \\
& =\left\{\left(a, H \cup H^{\prime \prime} * E \Delta(\alpha)\right) \mid(a, H) \in \operatorname{Top} \Delta(\alpha),\left(a, H^{\prime \prime}\right) \in \operatorname{Top} \Delta(\beta)\right\} \\
& =\operatorname{Top} \Delta(\alpha) \cup \operatorname{Top} \Delta(\beta) * E \Delta(\alpha),
\end{aligned}
$$

Figure 4.9: Derivation Trees derived from α
and,

$$
\begin{aligned}
& \operatorname{Dep} \Delta(\alpha \beta) \\
& =\left\{\left(X, H \cup H^{\prime}\right) \mid(X, H) \in \operatorname{Dep} \Delta(\alpha),\left(X, H^{\prime}\right) \in \operatorname{Dep} \Delta(\beta) * E \Delta(\alpha)\right\} \\
& =\left\{\left(X, H \cup H^{\prime \prime} * E \Delta(\alpha)\right) \mid(X, H) \in \operatorname{Dep} \Delta(\alpha),\left(X, H^{\prime \prime}\right) \in \operatorname{Dep} \Delta(\beta)\right\} \\
& =\operatorname{Dep} \Delta(\alpha) \cup D e p \Delta(\beta) * E \Delta(\alpha) .
\end{aligned}
$$

//
The purpose of following three arguments is to provide an incremental method of reconstruction of Top Δ an $\operatorname{Dep} \Delta$ on augmenting a new production rule. The leading point of the arguments is how to give a differencial. There are probably many choices of U which satisfies $\operatorname{Top} \Delta_{P}(\alpha) \cup U=\operatorname{Top} \Delta_{P^{\prime}}(\alpha)$, where \cup holds the meaning given in Definition 4.4.11. Following two definitions give a choice from the point of view of easiness on their constructions. Figure 4.9 illustrates derivation trees derived from given symbol sequence α. Just before augmenting new production rule $Z \rightarrow \gamma$, where $\gamma=$ $\gamma_{1} Y \gamma_{2}$, one of symbol sequences derived from α is $\beta_{1} \beta_{2}^{\prime} Z \beta_{2}^{\prime \prime} \beta_{3}^{\prime} Y \beta_{3}^{\prime \prime}$. Let W be a set of all syntactic variables contained in $\beta_{1} \beta_{2}^{\prime} Z \beta_{2}^{\prime \prime} \beta_{3}^{\prime} Y \beta_{3}^{\prime \prime}$, then some subset of W may be included in $\operatorname{Dep} \Delta_{P}(\alpha)(Y)$. Suppose a situation that $Z \rightarrow \gamma$ is augmented to P. At least two elements would be in $\operatorname{Dep} \Delta_{P^{\prime}}(\alpha)(Y)$, i.e., W_{1} which contains all syntactic variables occur in $\beta_{1} \beta_{2}^{\prime} \gamma_{1}$, and W_{2} which contains all syntactic variables occur in $\beta_{1} \beta_{2}^{\prime} \gamma \beta_{2}^{\prime \prime} \beta_{3}^{\prime}$. These two kind of elements must be reflected in the definition of differencial of $D e p \Delta$.

Definition 4.4.17 (Substitution on Top Δ)

For given $Z \in V^{\prime} \subset V$ and given $\gamma \in(V \cup T) *$, we define Substitution on Z in $\operatorname{Top} \Delta(\alpha)$ to γ, such as,

$$
\operatorname{Top} \Delta(\alpha)[\gamma / Z]=\{(a, H[E \Delta(\gamma) / Z]) \mid(a, H) \in \operatorname{Top} \Delta(\alpha)\}
$$

Definition 4.4.18 (Substitution on $\operatorname{Dep} \Delta$)
For given $Z \in V^{\prime} \subset V$ and given $\gamma \in(V \cup T) *$, we define Substitution on Z in $\operatorname{Dep} \Delta(\alpha)$
to γ, such as,

$$
\begin{aligned}
\operatorname{Dep} \Delta(\alpha)[\gamma / Z]=\left\{\left(Y,\left[H_{Y}^{\gamma} * H_{Z}^{\alpha} \cup H_{Y}^{\alpha}[E \Delta(\gamma) / Z]\right]\right) \quad \mid\right. & Y \in V, H_{Y}^{\gamma}=\operatorname{Dep} \Delta(\gamma)(Y), \\
& H_{Y}^{\alpha}=\operatorname{Dep} \Delta(\alpha)(Y), \\
& \left.H_{Z}^{\alpha}=\operatorname{Dep} \Delta(\alpha)(Z)\right\}
\end{aligned}
$$

Theorem 4.4.19 (Evolution of Top Δ and $\operatorname{Dep} \Delta$)
For each production rule set $P^{\prime}=P \cup\{Z \rightarrow \gamma\}$ and each symbol sequence $\alpha \in(V \cup T)$ *,

$$
\begin{aligned}
& \operatorname{Top} \Delta_{P^{\prime}}(\alpha)=\operatorname{Top} \Delta_{P}(\alpha) \cup \operatorname{Top} \Delta_{P}(\alpha)[\gamma / Z], \\
& \operatorname{Dep} \Delta_{P^{\prime}}(\alpha)=\operatorname{Dep} \Delta_{P}(\alpha) \cup \operatorname{Dep} \Delta_{P}(\alpha)[\gamma / Z] .
\end{aligned}
$$

(proof) It is shown by same discussion on Theorem 4.4.9.//

Example 4.4.20 (Example of Evolution on Dep Δ) Suppose a situation that a new production rule $A \rightarrow \varepsilon$ is augmented, same as discussed in Example 4.4.10. The result of the augmentation is given as below,

	S	X	Y	A	B	C
$D e p \Delta_{P_{6}^{\prime}}(S)$	$\{\phi\}$	$\{\phi\}$	$\{\phi\}$	$\{\phi\}$	$\{\phi\}$	$\{\phi\}$

where $P_{6}^{\prime}=P_{6} \cup\{A \rightarrow \varepsilon\}$. The values other than Dep $\Delta(S)$ are not changed on this augmentation. For example, while Dep $\Delta_{P_{6}}(S)(Y)=\{\{X\},\{A\}\}$ (see the table in Example 4.4.10), $\operatorname{Dep} \Delta_{P_{6}^{\prime}}(S)(Y)=\{\phi\}$, because from Definition 4.4.18,

$$
\begin{aligned}
\operatorname{Dep} \Delta_{P_{6}}(S)[\varepsilon / A](Y) & =\left[H_{Y}^{\varepsilon} * H_{A}^{S} \cup H_{Y}^{S}[E \Delta(\varepsilon) / A]\right], \\
H_{Y}^{\varepsilon} & =D e p \Delta_{P_{6}}(\varepsilon)(Y) \\
& =\phi, \\
H_{Y}^{S} & =\operatorname{Dep} \Delta_{P_{6}}(S)(Y) \\
& =\{\{X\},\{A\}\} \\
H_{Y}^{S}[E \Delta(\varepsilon) / A] & =\{\phi\} .
\end{aligned}
$$

From same reason, $\operatorname{Dep} \Delta_{P_{6}^{\prime}}(S)(B)=$ Dep $\Delta_{P_{6}^{\prime}}(S)(C)=\{\phi\}$.

As described at the top of this section, Link Δ is introduced so as to present propagation of LA.

Definition 4.4.21 (Link Δ)
$\operatorname{Link} \Delta$ is a subset of $\mathbf{N} \times V \times\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]$.
Precise value of $\operatorname{Link} \Delta$ will appear as the third elements of values of $\operatorname{Ind} \Delta$ defined in Definition 4.4.24 and Lemma 4.4.26 below. Here, we illustrate an intuitive explanation of it. Each state q of LALR(1) graph is asigned its own $\operatorname{Link} \Delta$ values with each syntactic variables. If $(k, X, H) \in \operatorname{Link} \Delta$ for Y of q, where Y is a syntactic variable and k must be a positive integer, then all of LA which flows to X on the state preceding of q by k steps is propageted to the LA for Y on q with additional condition H.

Definition 4.4.22 (Restriction of Link Δ)

For given Link $\Delta \subset \mathbf{N} \times V \times\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]$ and given $H \in\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]$, restriction of Link Δ by H is denoted by Link $\Delta * H$, and is defined as,

$$
\operatorname{Link} \Delta * H=\left\{\left(k, X, H^{\prime} * H\right) \mid\left(k, X, H^{\prime}\right) \in \operatorname{Link} \Delta\right\} .
$$

Definition 4.4.23 (Substitution on Link Δ)
For given Link $\Delta \subset \mathbf{N} \times V \times\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]$, given $H \in\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]$ and given $Z \in V$, Substitution of Link Δ on Z to H is denoted by Link $\Delta[H / Z]$, and is defined as,

$$
\operatorname{Link} \Delta[H / Z]=\left\{\left(k, X, H^{\prime}[H / Z]\right) \mid\left(k, X, H^{\prime}\right) \in \operatorname{Link} \Delta\right\}
$$

We modify LA to have enough data for augmentation of production rules. Following definitions and propositions are given in order to define indeces for LA, i.e. Ind Δ, and in order to determine the equivalence of $\operatorname{Ind} \Delta$ with LA of LALR(1).

Definition 4.4.24 (LA with ε-Productivity Decision)

For given CFG $G=\left(V, T, P, S^{\prime}\right)(G$ is assumed as Extended Grammar), let $S C(\operatorname{lr}(G))=$ $\left(V \cup T, Q, \delta^{\prime}, q_{0}^{\prime}, *\right)$, where $Q=\operatorname{Power}\left(\operatorname{Item} \cup\left\{q_{0}\right\}\right)$ and $q_{0}^{\prime}=\varepsilon C\left(\delta, q_{0}\right)$, then a function $\lambda \Delta: Q \times \operatorname{Item} \rightarrow\left(\left(T \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right) \times\left(V \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right)\right)$, where $V^{\prime} \subset V$ is fixed, is defined as,

$$
\begin{aligned}
& \lambda \Delta\left(q_{0}^{\prime}, S^{\prime} \rightarrow \bullet S\right)=(\operatorname{Top} \Delta(\$), \operatorname{Dep} \Delta(\$)) \\
& A \rightarrow \alpha \bullet X \beta \in q, \delta^{\prime}(q, X)=q^{\prime} \\
& \Rightarrow \quad \lambda \Delta(q, A \rightarrow \alpha \bullet X \beta) \subset \lambda \Delta\left(q^{\prime}, A \rightarrow \alpha X \bullet \beta\right) \\
& A \rightarrow \alpha \bullet B \beta \in q, \lambda \Delta(q, A \rightarrow \alpha \bullet B \beta)=\left(\Lambda_{t}, \Lambda_{d}\right) \\
& \Rightarrow \quad \forall B \rightarrow \gamma \in P, \\
& \quad\left(\operatorname{Top} \Delta(\beta) \cup \Lambda_{t} * E \Delta(\beta), \operatorname{Dep} \Delta(\beta) \cup \Lambda_{d} * E \Delta(\beta)\right) \subset \lambda \Delta(q, B \rightarrow \bullet \gamma) \\
& \forall i \in \text { Item, s.t., } i \notin q \Rightarrow \lambda \Delta(q, i)=(\operatorname{Top} \Delta(\varepsilon), \operatorname{Dep} \Delta(\varepsilon))
\end{aligned}
$$

(the value of $\lambda \Delta$ is minimum set that satisfies above conditions), where the inclusion relation \subset is of defined in Definition 4.4.12.

Note: $\operatorname{Top} \Delta(\varepsilon)(a)=\phi$ for all $a \in T$, and, $\operatorname{Dep} \Delta(\varepsilon)(X)=\phi$ for all $X \in V$.

Lemma 4.4.25 For each state $q \in \operatorname{Power}\left(\operatorname{Item} \cup\left\{q_{0}\right\}\right)$ of $S C(\operatorname{lr}(G))$ and each item $i \in I t e m$,

$$
\operatorname{First}(\lambda(q, i))=\left\{a \in T \mid \Lambda_{t}(a)=\operatorname{true}\right\} \cup \bigcup_{\Lambda_{d}(X)=\text { true }} \operatorname{First}(X),
$$

where $\left(\Lambda_{t}, \Lambda_{d}\right)=\lambda \Delta(q, i)$.
(proof) From the fact that for any $H, H^{\prime} \in\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right], H * H^{\prime}$ is true if and only if both of H and H^{\prime} are true, it is easy to see that, when $\lambda \Delta^{\prime}$ is defined as,

$$
\lambda \Delta^{\prime}\left(q_{0}^{\prime}, S^{\prime} \rightarrow \bullet S\right)=(\{\$\}, \phi)
$$

$$
\begin{array}{rll}
& A \rightarrow \alpha \bullet X \beta \in q, \delta^{\prime}(q, X)=q^{\prime} \\
\Rightarrow & \lambda \Delta^{\prime}(q, A \rightarrow \alpha \bullet X \beta) \subset \lambda \Delta^{\prime}\left(q^{\prime}, A \rightarrow \alpha X \bullet \beta\right) & \\
& A \rightarrow \alpha \bullet B \beta \in q, \lambda \Delta^{\prime}(q, A \rightarrow \alpha \bullet B \beta)=(U t, U d) \\
\Rightarrow & \forall B \rightarrow \gamma \in P & \\
& U^{\prime} t=\{a \in T \mid \operatorname{Top} \Delta(\beta)(a)=\text { true }\} \cup U t & \text { if } E \Delta(\beta)=\text { true } \\
& =\{a \in T \mid \operatorname{Top} \Delta(\beta)(a)=\text { true }\} & \text { otherwise }, \\
& U^{\prime} d=\{Y \in V \mid \operatorname{Dep} \Delta(\beta)(Y)=\text { true }\} \cup U d & \text { if } E \Delta(\beta)=\text { true } \\
& =\{Y \in V \mid \operatorname{Dep} \Delta(\beta)(Y)=\text { true }\} & \text { otherwise }, \\
& \left(U^{\prime} t, U^{\prime} d\right) \subset \lambda \Delta^{\prime}(q, B \rightarrow \bullet \gamma) & \\
& \forall i \in \text { Item, s.t. }, i \notin q \Rightarrow \lambda \Delta^{\prime}(q, i)=(\phi, \phi) &
\end{array}
$$

(the value of $\lambda \Delta^{\prime}$ is minimum set that satisfies above conditions),
$\lambda \Delta^{\prime}(q, i)=\left(\left\{a \in T \mid \Lambda_{t}(a)=\operatorname{true}\right\},\left\{Y \in V \mid \Lambda_{d}(Y)=\right.\right.$ true $\left.\}\right)$ for $\left(\Lambda_{t}, \Lambda_{d}\right)=$ $\lambda \Delta(q, i)$. Also, it is easy to see, by induction on length of context, for each state q and item $i, \lambda \Delta^{\prime}(q, i)=(U t, U d)$, $\operatorname{First}(\lambda(q, i))=U t \cup \bigcup_{X \in U d} \operatorname{First}(X)$, from the similarity of the definition of λ and $\lambda \Delta^{\prime}$. So, we can conclude the equation

$$
\operatorname{First}(\lambda(q, i))=\left\{a \in T \mid \Lambda_{t}(a)=\operatorname{true}\right\} \cup \bigcup_{\Lambda_{d}(X)=\text { true }} \operatorname{First}(X)
$$

//

Lemma 4.4.26 For each state $q \in \operatorname{Power}\left(\operatorname{Item} \cup\left\{q_{0}\right\}\right)$ of $S C(\operatorname{lr}(G))$ and each ε Item $A \rightarrow \bullet \alpha, A \rightarrow \bullet \beta \in \varepsilon \operatorname{Item}(A)$,

$$
\lambda \Delta(q, A \rightarrow \bullet \alpha)=\lambda \Delta(q, A \rightarrow \bullet \beta) .
$$

(proof) Trivial.//

Definition 4.4.27 (Introduction of Link Δ)

For given $C F G G=\left(V, T, P, S^{\prime}\right)(G$ is assumed to Extended Grammar), let $S C(\operatorname{lr}(G))$ $=\left(V \cup T, Q, \delta^{\prime}, q_{0}^{\prime}, *\right)$, where $Q=\operatorname{Power}\left(\operatorname{Item} \cup\left\{q_{0}\right\}\right)$ and $q_{0}^{\prime}=\varepsilon C\left(\delta, q_{0}\right)$, then a function $\Delta: Q \times \operatorname{Item} \rightarrow\left(\left(T \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right) \times\left(V \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right) \times \operatorname{Power}(\mathbf{N}\right.$ $\left.\times V \times\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right)$, where $V^{\prime} \subset V$ is fixed, is defined as,

$$
\begin{aligned}
& \Delta\left(q_{0}^{\prime}, S^{\prime} \rightarrow \bullet S\right)=(\operatorname{Top} \Delta(\$), \operatorname{Dep} \Delta(\$), \phi) \\
& A \rightarrow \alpha \bullet X \beta \in q, \delta^{\prime}(q, X)=q^{\prime}, \\
& \Delta(q, A \rightarrow \alpha \bullet X \beta)=\left(\Lambda_{t}, \Lambda_{d}, L\right) \\
& \Rightarrow(\operatorname{Top} \Delta(\varepsilon), \operatorname{Dep} \Delta(\varepsilon), \operatorname{Incr}(L)) \subset \Delta\left(q^{\prime}, A \rightarrow \alpha X \bullet \beta\right) \\
& A \rightarrow \alpha \bullet B \beta \in q, \lambda \Delta(q, A \rightarrow \alpha \bullet B \beta)=\left(\Lambda_{t}, \Lambda_{d}, L\right) \\
& \Rightarrow \forall B \rightarrow \gamma \in P, \\
&\left(T o p \Delta(\beta) \cup \Lambda_{t} * E \Delta(\beta), \operatorname{Dep} \Delta(\beta)\right. \\
&\left.\cup \Lambda_{d} * E \Delta(\beta), L * E \Delta(\beta)\right) \subset \Delta(q, B \rightarrow \bullet \gamma) \\
& \forall i \in \text { Item, s.t., } i \notin q \Rightarrow \Delta(q, i)=(\operatorname{Top} \Delta(\varepsilon), \operatorname{Dep} \Delta(\varepsilon), \phi)
\end{aligned}
$$

(value of Δ is minimum set that satisfies above condition).

Note : the third argument of Δ concerns to $\operatorname{Link} \Delta$.

Lemma 4.4.28 For each state $q \in \operatorname{Power}\left(\operatorname{Item} \cup\left\{q_{0}\right\}\right) \operatorname{of~} S C(\operatorname{lr}(G))$ and each EItem $A \rightarrow \bullet \alpha, A \rightarrow \bullet \beta \in \varepsilon \operatorname{Item}(A)$,

$$
\Delta(q, A \rightarrow \bullet \alpha)=\Delta(q, A \rightarrow \bullet \beta) .
$$

(proof) Trivial.//
We write $\operatorname{Ind} \Delta(q, A)=\Delta(q, A \rightarrow \bullet)$.
Theorem 4.4.29 Let a function Exp : $\left(\left(T \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right) \times(V \rightarrow[\operatorname{Power}(\right.$ $\left.\left.\left.\left.\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right) \times \operatorname{Power}\left(\mathbf{N} \times V \times\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right)\right) \rightarrow\left(\left(T \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right) \times\right.$ $\left.\left(V \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right)\right)$ be,

$$
\begin{aligned}
\operatorname{Exp}(\operatorname{Ind} \Delta(q, A))= & \left\{a \in T \mid \Lambda_{t}(a)=\text { true }\right\} \\
& \cup \bigcup_{\Lambda_{d}(X)=\text { true }} \operatorname{First}(X) \\
& \cup \bigcup_{(k, X) \in L} \operatorname{Exp}(\operatorname{Ind} \Delta(q(-k), X)),
\end{aligned}
$$

where $\operatorname{Ind} \Delta(q, A)=\left(\Lambda_{t}, \Lambda_{d}, L\right)$ and $q(-k)$ is a state ,s.t., $\delta^{\prime}(q(-k), w)=q$ for $|w|=k$, then,

$$
\operatorname{Exp}(\operatorname{Ind} \Delta(q, A))=\operatorname{First}(\operatorname{Ind} \lambda(q, A))
$$

(proof) Same discussion as Lemma 4.4.25.//

4.4.3 Space Reduction Method on DD and $\operatorname{Ind} \Delta$

As mentioned at the top of this section, we have a method so as to increase efficiency of computation, named Domain Restriction. The operations are defined on $E \Delta$, Top Δ, $\operatorname{Dep} \Delta$ and $\operatorname{Link} \Delta$. Each operations ground on the operation on $E \Delta$. The other restriction method on $\operatorname{Dep} \Delta$ can be invented, but ommitted here.

Definition 4.4.30 (Domain Restrictions)

For given $E \Delta:(V \cup T) * \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]$, Top $\Delta:(V \cup T) * \rightarrow(T \rightarrow[\operatorname{Power}(\operatorname{Power}($ $\left.\left.V^{\prime}\right)\right]$), $\operatorname{Dep} \Delta:(V \cup T) * \rightarrow\left(V \rightarrow\left[\operatorname{Power}\left(\operatorname{Power}\left(V^{\prime}\right)\right)\right]\right)$ and Link $\Delta \subset \mathbf{N} \times V \times[\operatorname{Power}($ $\left.\operatorname{Power}\left(V^{\prime}\right)\right)$], each restrictions of Dependency Domain on V^{\prime} to $V^{\prime \prime} \subset V^{\prime}$ are denoted by $E \Delta \downarrow V^{\prime \prime}, T o p \Delta \downarrow V^{\prime \prime}$, Dep $\Delta \downarrow V^{\prime \prime}$ and Link $\Delta \downarrow V^{\prime \prime}$, respectively, and defined as,

$$
\begin{aligned}
E \Delta(\alpha) \downarrow V^{\prime \prime} & =\left\{\eta \in E \Delta(\alpha) \mid \eta \subset V^{\prime \prime}\right\}, \\
\operatorname{Top} \Delta(\alpha) \downarrow V^{\prime \prime} & =\left\{\left(a, H \downarrow V^{\prime \prime}\right) \mid(a, H) \in \operatorname{Top} \Delta(\alpha)\right\}, \\
\operatorname{Dep} \Delta(\alpha) \downarrow V^{\prime \prime} & =\left\{\left(X, H \downarrow V^{\prime \prime}\right) \mid(X, H) \in \operatorname{Dep} \Delta(\alpha)\right\}, \\
\operatorname{Link} \Delta \downarrow V^{\prime \prime} & =\left\{\left(k, X, H \downarrow V^{\prime \prime}\right) \mid(k, X, H) \in \operatorname{Link} \Delta\right\},
\end{aligned}
$$

respectively.

4.4.4 A Supplement of the Section

As a final argument of this section, a notion named Inherit Δ is introduced. When fusing two states during incremental construction of LALR(1) graph, according to the direction of ε-transition caused by Bridge Transition ξ, some LA may be inherited from one state to the other. To express the inheritance, we use a function Inherit $\Delta: Q \rightarrow \operatorname{Power}(V)$, where Q is the set of states of $\operatorname{LALR}(1)$ graph.

Definition 4.4.31 (Inherit Δ)

$$
\text { Inherit } \Delta(q)=\{X \in V \mid q=\varepsilon C(\varepsilon \operatorname{Item}(X))\} .
$$

Note: If $q \neq \varepsilon C(\varepsilon \operatorname{Item}(X))$, say $\operatorname{Ent} \varepsilon(X)$, for any $X \in V$, then $\operatorname{Inherit} \Delta(q)=\phi$. On almost all cases, Inherit $\Delta(\operatorname{Ent\varepsilon }(X))$ contains unique element X. However, given grammar has production rules which have mutual leftmost recursion, then $\#(\operatorname{Inherit} \Delta(\operatorname{Ent\varepsilon }(X)))$ might be greater than 1 .

4.5 Algorithms

Here, we present five algorithms. Algorithm 4.5 . 1 shows a procedure to construct Mono G, which depends on the statements of Lemma 4.3.4, Definition 4.3.5, Lemma 4.3.14 and 4.3.15 for constructing $\operatorname{LR}(0)$ graph for $M o n o G$, and Definition 4.4.27 and its reliances in previous section. Algorithm 4.5.2 shows a procedure to calculate Inds for a fused state. Algorithm 4.5.3 shows a procedure of fusion operation given in Definition 4.2.13. Algorithm 4.5.4 and 4.5.5 are procedures for augmenting a new production rule to current LALR(1) graph, and for incremental construction of LALR(1) graph, respectively. The process of incremental construction is illustrated that, firstly constructing a $\operatorname{Mono} G\left(S^{\prime} \rightarrow\right.$ S) as a core graph (by Algorithm 4.5.1), then constructing a Mono G for next production rule (by Algorithm 4.5.1) and fusing the MonoG and current graph (by Algorithm 4.5.3 and 4.5.2), and the iteration of it (by Algorithm 4.5.5). As mentioned so far, we treat LALR(1) graph as a kind of multi-entrance graph. So, fusion process must be influenced to each entrances and their succeeding states of the graph. Algorithm 4.5.4 gives a procedure for it.

Precise procedures for the operations on $E \Delta, T o p \Delta, \operatorname{Dep} \Delta, \operatorname{Link} \Delta$ and MaxInc are not presented here. Because it seems to be clear that the procedures are implemented straightforwardly from the definitions of them, and in fact, we have implemented the procedures in such a way. Some discussions on the procedures and the efficiencies on them are stated in the next section.

Whole algorithms are described in Pascal like style. Operations on sets, i.e. of set theoretical meaning, are immediately used. On such a cases that the order to take elements out of a set essentially influences results, we insert comments for them. Additionally, we adopt ' $=$ ' for substitution, and, combinations ' $=$ ' with other operators like C language, e.g., $A \cup=B$ means $A=A \cup B$. For accessing to an element of $\operatorname{Ind} \Delta(q, X)=(\operatorname{IndT} \Delta, \operatorname{IndV} \Delta, \operatorname{Link} \Delta)$, we write $\operatorname{Ind} \Delta(q, X) \cdot \operatorname{IndT} \Delta$, so on.

Finally, we must note that some outputs of algorithms are assumed as side-effect at the time when to call them. For example, only first output of Mono G is explicitly used in the description of Algorithm 4.5.4, while there are seven outputs from MonoG.

Algorithm 4.5.1 (Construction Algorithm of MonoG)
 Suppose the situation that $C F G G^{\prime}=\left(V, T, P, S^{\prime}\right)$ is given and for each $X \in V, E \Delta_{G^{\prime}}(X)$ and $\operatorname{Dep} \Delta_{G^{\prime}}(X)$ are already calculated. Here, we show an algorithm for construction of Mono $G\left(Z \rightarrow X_{1} \cdots X_{n}\right)$ and calculating its Inds. Here, we suppose $Z \in V, X_{1}, \ldots$, $X_{n} \in V \cup T$. In the algorithm below, we write value of $\operatorname{Ind} \Delta(q, i)=(\operatorname{Ind} \Delta(q, i) \cdot \operatorname{IndT} \Delta$, $\operatorname{Ind} \Delta(q, i) \cdot \operatorname{IndV} \Delta, \operatorname{Ind} \Delta(q, i) . \operatorname{Link} \Delta)$.

Inputs:

- a Production Rule $Z \rightarrow X_{1} \cdots X_{n}$
- for each $X \in V$, values of $E \Delta_{P}(X)$ and $\operatorname{Dep} \Delta_{P}(X)$

Outputs:

- $\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)=\left(V \cup T, Q_{2}, \zeta_{2}, q_{2,0}, *\right)$
(where Q_{2} is represented by $\left\{p_{1}, \ldots, p_{n+1}\right\}$, by Lemma 4.3.7)
- for each $X \in V$, values of $E \Delta_{P^{\prime}}(X)$ and $\operatorname{Dep} \Delta_{P^{\prime}}(X)$
(where $P^{\prime}=P \cup\left\{Z \rightarrow X_{1} \cdots X_{n}\right\}$)
- for each $p_{i} \in Q_{2}, X \in V$, values of $\operatorname{Ind} \Delta\left(p_{i}, X\right)$
- Reduce Item Table, Red : $Q_{2} \rightarrow \operatorname{Power}(V \times \mathbf{N})$.
- Inherit $\Delta\left(p_{i}\right)$ for each $p_{i} \in Q_{2}$.
- $\subset^{M o n o G\left(Z \rightarrow X_{1} \cdots X_{n}\right)}$
- $\operatorname{MaxInc}(q)$ for each state q of $\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)$

Internal Data: - Flow $\subset Q_{2} \times V \times\{1,2, \ldots, n\}$
(* Initialization *)

- Find Z in X_{1}, \ldots, X_{n}, then make occurrence position list $J=\left\{j_{1}, \ldots, j_{m}\right\}$, where $X_{j_{i}}=Z$ for each $1 \leq i \leq m$.
(* J may be dynamically augmented by some values in $\{1, \ldots, n\}$ in calculation of ζ_{2} and Flow stage *)
- Initialize all values of Flow to ϕ.
- Initialize $\subset_{\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)}$ to ϕ.
- for all $q \in\left\{q_{1}, \ldots, q_{n+1}\right\}, \operatorname{MaxInc}(q)=\phi$.
(* Evolution of $E \Delta_{P}(X)$ and $\left.\operatorname{Dep} \Delta_{P}(X){ }^{*}\right)$
foreach $X \in V$ do
$E \Delta_{P^{\prime}}(X)=E \Delta_{P}(X) \cup E \Delta_{P}(X)\left[E \Delta_{P}\left(X_{1} \cdots X_{n}\right) / Z\right] ;$
(* by Theorem 4.4.9 ${ }^{*}$)
$\operatorname{Dep} \Delta_{P^{\prime}}(X)=\operatorname{Dep} \Delta_{P}(X) \cup \operatorname{Dep} \Delta_{P}(X)\left[X_{1} \cdots X_{n} / Z\right] ;$
(* by Theorem 4.4.19 ${ }^{*}$)
end ;
(* Calculation of ζ_{2}, Flow and $\left.\subset_{\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)}{ }^{*}\right)$

```
for \(i=1\) to \(n\) do
    \(\zeta_{2}\left(p_{i}, X_{i}\right)=p_{i+1} ;\)
    if \(X_{i} \in V\) then
        \(\operatorname{Flow}\left(p_{i}, X_{i}\right) \cup=\{i\}\)
        end
end ;
\(J=\left\{j_{1}, \ldots, j_{m}\right\} ;\)
\(J^{\prime}=\phi\);
while \(J \neq \phi\) do
        \(k \in J\);
        \(J=J \backslash\{k\} ;\)
        \(J^{\prime} \cup=\{k\} ;\)
        for \(i=1\) to \(n\) do
        if \(i \neq k\) then
        - Add \(\left(p_{i}, p_{k}\right)\) to \(\subset_{\operatorname{MonoG}\left(Z \rightarrow X_{1} \cdots X_{n}\right)}\).
        end;
        if \(X_{i} \in V\) then
            \(\operatorname{Flow}\left(p_{k}, X_{i}\right) \cup=\{i\}\)
        end;
        if \(X_{i}=Z\) and \(k \notin J^{\prime}\) then
            \(J \cup=\{k\}\)
        end ;
        if \(\zeta_{2}\left(p_{k}, X_{i}\right)=\) Undefined then
            \(\zeta_{2}\left(p_{k} \cdot X_{i}\right)=p_{i+1} ;\)
            \(k=p_{i+1}\)
        else
            \(k=\zeta_{2}\left(p_{k}, X_{i}\right)\)
        end
        end
end;
```

(* Registration of Reduce Item *)
$\operatorname{Red}\left(p_{n+1}\right)=\{(Z, n)\} ;$
for $i=1$ to n do
$\operatorname{Red}\left(p_{i}\right)=\phi ;$
end ;
(* Compute values of $\operatorname{Ind} \Delta^{*}$)

- for each state, initialize values of $\operatorname{Ind} \Delta \operatorname{to}(\operatorname{Top} \Delta(\varepsilon), \operatorname{Dep} \Delta(\varepsilon), \phi)$.
- for each $i=1, \ldots, n$, compute values of $\operatorname{Dep} \Delta_{P^{\prime}}\left(X_{i} \cdots X_{n}\right)$, Top $\Delta_{P^{\prime}}\left(X_{i} \cdots X_{n}\right)$, and $E \Delta_{P^{\prime}}\left(X_{i} \cdots X_{n}\right)$.

```
(* for Fusion Process *)
Ind\Delta ( }\mp@subsup{p}{1}{},Z).IndT\Delta={($, true)}
    (* For Inheritance of Look Ahead Symbols when to fuse two states. *)
foreach ( }p,X,k)\in\mathrm{ Flow do
    (* if (p,X,k), (p,X,k})\inFlow and k> k', then we assume the process for
        ( }p,X,k)\mathrm{ will be done first.
    *)
    if }X=Z\mathrm{ and }\mp@subsup{X}{1}{}=Z then
        (* the case of Left Recursion *)
        Ind\Delta}(p,X).IndV\DeltaU = Dep\Delta\mp@subsup{\Delta}{\mp@subsup{P}{}{\prime}}{\prime}(\mp@subsup{X}{k+1}{}\cdots\mp@subsup{X}{n}{})*E\mp@subsup{\Delta}{\mp@subsup{P}{}{\prime}}{}(\mp@subsup{X}{2}{}\cdots\mp@subsup{X}{n}{})
        Ind\Delta (p,X).IndT\DeltaU = Top\Delta}\mp@subsup{|}{\mp@subsup{P}{}{\prime}}{\prime}(\mp@subsup{X}{k+1}{}\cdots\mp@subsup{X}{n}{})*E\mp@subsup{\Delta}{\mp@subsup{P}{}{\prime}}{\prime}(\mp@subsup{X}{2}{}\cdots\mp@subsup{X}{n}{})
        if }k>1\mathrm{ then
            Ind\Delta(p,X).Link\DeltaU ={(k-1,Z,E\Delta\mp@subsup{\Delta}{\mp@subsup{P}{}{\prime}}{}(\mp@subsup{X}{k+1}{}\cdots\mp@subsup{X}{n}{})*E\mp@subsup{\Delta}{\mp@subsup{P}{}{\prime}}{}(\mp@subsup{X}{2}{}\cdots\mp@subsup{X}{n}{}))}
        end
    end ;
    Ind\Delta (p,X).IndV\DeltaU=Dep\Delta 的}(\mp@subsup{X}{k+1}{}\cdots\mp@subsup{X}{n}{})
```



```
    if }k>1\mathrm{ then
        Ind\Delta
    else
        Ind\Delta (p,X)\cdotIndV \DeltaU = Ind\Delta (p,Z)\cdotIndV\Delta*E\Delta\Delta\mp@subsup{P}{}{\prime}}(\mp@subsup{X}{2}{}\cdots\mp@subsup{X}{n}{})
```



```
    end
```

end;
(* Registration of Inherit Δ *)
Inherit $\Delta\left(p_{1}\right)=\{Z\} ;$
for $i=2$ to $n+1$ do
Inherit $\Delta\left(p_{i}\right)=\phi$
end;
(* End of Algorithm *)

Abstract

Algorithm 4.5.2 (Fusion of two States FuseState $\left(q_{1}, q_{2}\right)$) We give here an algorithm to calculate new state q^{\prime} obtained by Fusion of given two states q_{1}, q_{2}, where $q^{\prime}=q_{1} \cup q_{2}$. Let q_{1} be Subjective State and q_{2} be Dependent State. The relation between Subjective State and Dependent State is decided by the direction of ε transition which is caused by Bridge Transition ξ defined in Fusion Operation on two DFAs. The source state of ε-transition by ξ is called Subjective State and the Destination State Dependent State. Some inheritance of LA may happen from Subjective State to Dependent State. To express the inheritance, we use values of Inherits and values concerning to special symbol '\$' in IndTs of IndD. In conventional LR parsers, '\$' is used for "End of Text". This interpretation of '\$’ remains in this paper as a special case for initial state.

Inputs:

- Subjective State q_{1}, its values of $\operatorname{Ind} \Delta\left(q_{1}, X\right)$ for each $X \in V$, and value of Inherit $\Delta\left(q_{1}\right)$.
- Dependent State q_{2}, its values of $\operatorname{Ind} \Delta\left(q_{2}, X\right)$ for each $X \in V$, and value of Inherit $\Delta\left(q_{2}\right)$.

Outputs:

- Fused state $q^{\prime}=q_{1} \cup q_{2}$, its values of $\operatorname{Ind} \Delta\left(q^{\prime}, X\right)$ for each $X \in V$, and value of Inherit $\Delta\left(q^{\prime}\right)$.

Internal Data:

- Δ as temporal data which has data type of Ind Δ.
(* Initialization *)
- get a new state q^{\prime} as $q_{1} \cup q_{2}$.
(* copy Ind Δ for $q_{2}{ }^{*}$)
foreach $X \in V$ do
$\Delta(X)=\operatorname{Ind} \Delta\left(q_{2}, X\right)$
end ;
(* On the case of Inheritance *)
foreach $Z \in \operatorname{Inherit} \Delta\left(q_{2}\right)$ do
foreach $Y \in_{V}$ do
if $(\$, H) \in \Delta(Y) \cdot I n d T \Delta$ then
$\Delta(Y) \cdot \operatorname{Ind} T \Delta=\Delta(Y) \cdot \operatorname{Ind} d \Delta \backslash\{(\$, H)\} ;$
$\Delta(Y) \cdot \operatorname{IndT} \Delta \cup=\operatorname{Ind} \Delta\left(q_{1}, Z\right) \cdot \operatorname{IndT} \Delta * H ;$
$\Delta(Y) \cdot \operatorname{IndV} \Delta \cup=\operatorname{Ind} \Delta\left(q_{1}, Z\right) \cdot \operatorname{Ind} d \Delta * H ;$
$\Delta(Y) \cdot \operatorname{Link} \Delta \cup=\operatorname{Ind} \Delta\left(q_{1}, Z\right) \cdot \operatorname{Link} \Delta * H$
end
end
end ;
(* Main Process *)
foreach $Y \in V$ do
$\operatorname{Ind} \Delta\left(q^{\prime}, Y\right) \cdot \operatorname{IndT} \Delta=\operatorname{Ind} \Delta\left(q_{1}, Y\right) \cdot \operatorname{Ind} d \Delta \cup \Delta(Y) \cdot \operatorname{IndT} \Delta ;$
$\operatorname{Ind} \Delta\left(q^{\prime}, Y\right) \cdot \operatorname{Ind} V \Delta=\operatorname{Ind} \Delta\left(q_{1}, Y\right) \cdot \operatorname{Ind} V \Delta \cup \Delta(Y) \cdot \operatorname{Ind} V \Delta ;$
$\operatorname{Ind} \Delta\left(q^{\prime}, Y\right) \cdot \operatorname{Link} \Delta=\operatorname{Ind} \Delta\left(q_{1}, Y\right) \cdot \operatorname{Link} \Delta \cup \Delta(Y) \cdot \operatorname{Link} \Delta$
end;
(* Inheritance of Inheritance *)

$$
\begin{aligned}
& \operatorname{Inherit} \Delta\left(q^{\prime}\right)=\operatorname{Inherit} \Delta\left(q_{1}\right) ; \\
& \left({ }^{*} \operatorname{Register} \operatorname{Reduce} \operatorname{Items} *\right) \\
& \operatorname{Red}\left(q^{\prime}\right)=\operatorname{Red}\left(q_{1}\right) \cup \operatorname{Red}\left(q_{2}\right) ; \\
& (* \text { End of Algorithm } *)
\end{aligned}
$$

Abstract

Algorithm 4.5.3 (Fusion of Two Sub-Graphs FuseGraph $\left(q_{1}, q_{2}\right)$) On process of this algorithm, there are leading problem, one is how to take information for Bridge Transition, and the other is how to distinguish or identify a state beging fused from existing states. As discussed in Sections 4.3, the former problem is resolved by use of information on transition, and the latter by use of MaxInc. The description of this algorithm is complicated, which is caused by division of cases. Important cases are on fusing initial states of given graphs, and on grammars contain production rules which form mutual left recursion. On the latter case, some entrances concerning to mutually different syntactic variables are identical. Here, we give an explanation of internal data used in the algorithm. Stack data are assumed to be elements of $Q_{1} \times \operatorname{Power}\left(Q_{1}\right) \times \operatorname{Power}\left(Q_{2}\right) \times \operatorname{Power}(V \cup T)$. Consider the definition of fuse operation. There are two directions on Bridge Transition, one is from subjective to dependent, the other from dependent to subjective. The first argument of stack data is concerned to a state of subjective as a source of Bridge Transition, the second a set of states of dependent as destinations, and, the third is a set of states of subjective as destinations. The forth argument of stack data designates a set of symbols on what transition must be focused at some points of remaining process.

Inputs:

- Initial State q_{1} of Subjective Sub-Graph and value of Inherit $\Delta\left(q_{1}\right)$.
- Initial State q_{2} of Dependent Sub-Graph and value of Inherit $\Delta\left(q_{2}\right)$. (we assume Dependent Sub-Graph is a Mono-Graph) (where we assume that $q_{1}=\varepsilon C\left(\delta_{1}, \varepsilon \operatorname{Item}\left(X_{1}\right)\right)=\operatorname{Ent\varepsilon }\left(X_{1}\right)$ and $q_{2}=\varepsilon C\left(\delta_{2}, \varepsilon \operatorname{Item}\left(X_{2}\right)\right)$, for $X_{1}, X_{2} \in V . \delta_{1}$ and δ_{2} are of Definition 4.2.7)
- Table of $\operatorname{Ent\varepsilon }(X)=\varepsilon C\left(\zeta_{1}, X\right)$ for each $X \in V$
- Inclusion Information (\subset and MaxInc for each graph)

Outputs:

- Fused Sub-Graph starts with Initial State q_{0} and value of Inherit $\Delta\left(q_{0}\right)$.
- Values of $\operatorname{Ind} \Delta(q, X)$ for each $X \in V$ and newly added state q.
- Inclusion Information (\subset and MaxInc for fused graph, but it is partial information concerning to input graphs; subset of $\subset_{\left(Q_{1}, Q_{2}\right)}$ and $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}$ of Definition 4.3.16)

Internal Data:

- $\operatorname{Stack} \in Q_{1} \times \operatorname{Power}\left(Q_{1}\right) \times \operatorname{Power}\left(Q_{2}\right) \times \operatorname{Power}(V \cup T)$, where Q_{1} and Q_{2} are Set of States of Graphs start with q_{1} and q_{2}, respectively.
(* ζ_{1} and ζ_{2} denote Transition Function of Graphs start with q_{1} and q_{2} respectively *)

```
(* Initialize *)
    Stack = Empty;
```

 (* Calculation of Initial State *)
 if \(\zeta_{1}\left(q_{1}, X_{2}\right) \neq\) Error or \(q_{1}=\operatorname{Ent\varepsilon }\left(X_{2}\right)\) then
 (* where Error is the abbreviation of \(\phi^{*}\))
 (* this check is just \(\xi .{ }^{*}\))
 (* make new Initial State for \(\left.\operatorname{Ent\varepsilon }\left(X_{1}\right)=\varepsilon C\left(\varepsilon \operatorname{Item}\left(X_{1}\right)\right){ }^{*}\right)\)
 if \(\zeta_{1}\left(q_{1}, X_{2}\right) \neq\) Error and \(\zeta_{2}\left(q_{2}, X_{1}\right) \neq\) Error then
 (* the case of mutual left-recursion. Ent \(\left(X_{1}\right)\) and \(\operatorname{Ent\varepsilon }\left(X_{2}\right)\) will be
 identical. *)
 inherit \(\Delta\left(q_{2}\right) \cup=\operatorname{inherit} \Delta\left(q_{1}\right) ;\left({ }^{*}\right.\) some what tricky! \(\left.{ }^{*}\right)\)
 inherit \(\Delta\left(q_{1}\right)=\) inherit \(\Delta\left(q_{2}\right)\)
 end;
 \(q^{\prime}=\operatorname{FuseState}\left(q_{1}, q_{2}\right)\);
 if \(\exists!Y \in V\) s.t. \(Y \neq X_{2}\) and \(\zeta_{2}\left(q_{2}, Y\right) \neq\) Error and \(\zeta_{1}\left(q_{1}, Y\right)=\) Error then
 \(q^{\prime}=\operatorname{FuseState}\left(q^{\prime}, \operatorname{Ent\varepsilon }(Y)\right) ;\left(*\right.\) because dependent is Mono-Graph \(\left.{ }^{*}\right)\)
 - Register \(q^{\prime}\) as \(\operatorname{Ent\varepsilon }\left(X_{1}\right)\). (* However, state \(q_{1}\) still remained. \(\left.{ }^{*}\right)\)
 \(\operatorname{MaxInc}\left(q^{\prime}\right)=\operatorname{MaxInc}\left(q_{1} \cup q_{2} \cup \operatorname{Ent\varepsilon }(Y)\right)\);
 (* will be \(\phi\) in process after FuseGraph *)
 - Register \(\forall p \subset q_{1}, p \neq \phi, p \subset q^{\prime}\).
 - Register \(\forall p \subset q_{2}, p \neq \phi, p \subset q^{\prime}\).
 - Register \(\forall p \subset \operatorname{Ent\varepsilon }(Y), p \neq \phi, p \subset q^{\prime}\).
 foreach \(X \in V \cup T\) do (* copy Transition *)
 \(\zeta_{1}\left(q^{\prime}, X\right)=\zeta_{1}\left(q_{1}, X\right)\)
 end;
 \(q_{1}=q^{\prime} ;\)
 \(\operatorname{Push}\left(\operatorname{Stack},\left(q_{1},\left\{q_{2}\right\},\{\operatorname{Ent\varepsilon }(Y)\}, V \cup T\right)\right)\)
 else

- Register q^{\prime} as $\varepsilon C\left(\varepsilon \operatorname{Item}\left(X_{1}\right)\right)$. (* However, state q_{1} still remained. $\left.{ }^{*}\right)$ $\operatorname{MaxInc}\left(q^{\prime}\right)=\operatorname{MaxInc}\left(q_{1} \cup q_{2}\right)$;
(* will be ϕ in process after FuseGraph *)
- Register $\forall p \subset q_{1}, p \neq \phi, p \subset q^{\prime}$.
- Register $\forall p \subset q_{2}, p \neq \phi, p \subset q^{\prime}$.

```
            foreach X 
                        \zeta
            end;
            q}=\mp@subsup{q}{}{\prime}
            Push(Stack, (q},\mp@code{q}{\mp@subsup{q}{2}{}},\phi,V\cupT
        end
else
    Push(Stack, (q},\mp@code{,},\phi,V\cupT)
end;
(* Main Loop *)
    while not Empty(Stack) do
    (q, 位, 泣,U) = Pop(Stack);
    a\inU;
    U=U\{a};
    if U\not=\phi}\mathrm{ then
        Push(Stack,(q, 㳖, 的,U))
    end;
    q}=\mp@subsup{\zeta}{1}{\prime}(q,a)
    if }\mp@subsup{\zeta}{1}{}(\mp@subsup{q}{}{\prime},\mp@subsup{X}{2}{})\not=\mathrm{ Error then
        \sigma
    else
        \sigma
    end;
    \sigma
    foreach q" }\in\mp@subsup{\sigma}{1}{}\mathrm{ do
        if \zeta}\mp@subsup{\zeta}{2}{}(\mp@subsup{q}{}{\prime\prime},a)\not=\mathrm{ Error then
            \sigma
            foreach }Y\inV\mathrm{ do
                if \zeta}\mp@subsup{\zeta}{1}{}(\mp@subsup{q}{}{\prime},Y)=\mathrm{ Error and }\mp@subsup{\zeta}{2}{}(\mp@subsup{\zeta}{2}{}(\mp@subsup{q}{}{\prime\prime},a),Y)\not=\mathrm{ Error then
                \sigma
                    end
            end
        end
    end
    foreach }\mp@subsup{q}{}{\prime\prime\prime}\in\mp@subsup{\sigma}{2}{}\mathrm{ do
        if }\mp@subsup{\zeta}{1}{}(\mp@subsup{q}{}{\prime\prime\prime},a)\not=\mathrm{ Error then
            \sigma
        end
    end
```

```
    foreach }\mp@subsup{q}{}{\prime\prime\prime}\in\mp@subsup{\sigma}{2}{\prime}\mathrm{ do
        if }\mp@subsup{\zeta}{1}{}(\mp@subsup{q}{}{\prime\prime\prime},\mp@subsup{X}{2}{\prime})\not=\mathrm{ Error then
            \sigma
            if }\exists!Y\inV\mathrm{ s.t. }Y\not=\mp@subsup{X}{2}{}\mathrm{ and }\mp@subsup{\zeta}{2}{}(\mp@subsup{q}{2}{},Y)\not=\mathrm{ Error then
                \sigma
            end
        end
    end;
(* check Error case *)
    if }\mp@subsup{q}{}{\prime}=\mathrm{ Error and }\mp@subsup{\sigma}{1}{\prime}=\phi\mathrm{ and }\mp@subsup{\sigma}{2}{\prime}=\phi\mathrm{ then
        \zeta
        continue
    end;
(* check existing state *)
    if \exists!p s.t. MaxInc}(p)=\operatorname{MaxInc}(\mp@subsup{q}{}{\prime}\cup(\bigcup\mp@subsup{\sigma}{1}{\prime})\cup(\bigcup\mp@subsup{\sigma}{2}{\prime}))\mathrm{ then
        \zeta
        continue
    end;
(* Fuse States *)
    q}=\mp@subsup{q}{}{\prime}
    foreach q" }\in\mp@subsup{\sigma}{1}{\prime}\mathrm{ do
        q}=\mathrm{ FuseState( (q3, q')
    end;
    foreach q'I\prime}\in\mp@subsup{\sigma}{2}{\prime}\mathrm{ do
        q}=\mp@code{FuseState( }\mp@subsup{q}{3}{},\mp@subsup{q}{}{\prime\prime\prime}
    end;
(* copy Transition *)
    foreach X\inV\cupT do
        \zeta
    end;
(* renewal Transition, may be *)
    \zeta
(* register inclusion relation *)
MaxInc(q}\mp@subsup{q}{3}{})=\operatorname{MaxInc}(\mp@subsup{q}{}{\prime}\cup(\bigcup\mp@subsup{\sigma}{1}{\prime})\cup(\bigcup\mp@subsup{\sigma}{2}{\prime}))
    - Register }\forallp\subset\mp@subsup{q}{}{\prime},p\subset\mp@subsup{q}{3}{
    foreach q" }\in\mp@subsup{\sigma}{1}{\prime}\mathrm{ do
        - Register }\forallp\subset\mp@subsup{q}{}{\prime\prime},p\subset\mp@subsup{q}{3}{
    end;
    foreach q"'\prime}\in\mp@subsup{\sigma}{2}{\prime}\mathrm{ do
        - Register }\forallp\subset\mp@subsup{q}{}{\prime\prime\prime},p\subset\mp@subsup{q}{3}{
    end
    Push(Stack,(q}\mp@subsup{q}{3}{},\mp@subsup{\sigma}{1}{\prime},\mp@subsup{\sigma}{2}{\prime},V\cupT))
```

end;
(* Post Operations *)

- Maximalize $\operatorname{MaxInc}(q)$ for each state q.
(* there is possibility for MaxInc to have non-maximal elements *)
(* End of Algorithm *)

Algorithm 4.5.4 (Augmentation of a new Production Rule, AugRule)

Assumptions: $S C(\operatorname{lr}(G))$ contains two kinds of states

1. Actually used states for parsing starts with initial state
2. $\operatorname{Ent\varepsilon }(X)=\varepsilon C(\varepsilon \operatorname{Item}(X))$ for each $X \in V$, and States which are able to be arrived from them.
Each state does not have information about Items which belong to the state. We only have inclusion relation between states.
In the description,

- $S C(l r(G))=\left(V \cup T, Q_{1}, \zeta_{1}, q_{1}, *\right)$,
- $\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right)=\left(\Sigma, Q_{2}, \zeta_{2}, q_{2}, *\right)$
are assumed.

Inputs:

- a new Production Rule $Z \rightarrow X_{1} \cdots X_{n}$ that will be augmented to $S C(\operatorname{lr}(G))$.

Outputs:

- $S C\left(\operatorname{lr}\left(G^{\prime}\right)\right)$, where G^{\prime} is the new Grammar which is obtained so as to augment $Z \rightarrow X_{1} \cdots X_{n}$ to G.
(* Construct Mono-Graph for given new Production Rule *)
$G_{2}=\operatorname{Mono} G\left(Z \rightarrow X_{1} \cdots X_{n}\right) ;\left({ }^{*}\right.$ by Algorithm 4.5.1 $\left.{ }^{*}\right)$
(* Initial State of G_{2} is $\varepsilon C(\varepsilon \operatorname{Item}(Z))$ in the mean of $\operatorname{Mono} G(Z \rightarrow$ $\left.\left.X_{1} \cdots X_{n}\right)^{*}\right)$
(* Renewal existing $\operatorname{Ind} \Delta$ to fit with augmented grammar *)

```
    foreach q}\in\mp@subsup{Q}{1}{}\mathrm{ do
    foreach }X\inV\mathrm{ do
        (* Dep\Delta( }\mp@subsup{X}{1}{\cdots}\mp@subsup{\}{n}{})\mathrm{ and }E\Delta(\mp@subsup{X}{1}{}\cdots\mp@subsup{X}{n}{})\mathrm{ are already computed above.
    *)
                Ind\Delta(q,X)\cdotIndT\DeltaU = Ind\Delta (q,X).IndT\Delta[ [X \cdots 稆/Z];
        Ind\Delta
        Ind\Delta(q,X).Link\DeltaU = Ind\Delta (q,X).Link\Delta[E\Delta( (X1\cdots 凉)/Z];
    end
    end;
    (* Fuse Graphs *)
    Ent\varepsilon}(\mp@subsup{S}{}{\prime})=FuseGraph(Ent\varepsilon(S'), G ( )
    Ent\varepsilon(Z)=FuseGraph(Ent\varepsilon(Z),G}\mp@subsup{G}{2}{\prime})
        (* but this call enforces to fuse each initial states *)
    foreach }X\inV\{\mp@subsup{S}{}{\prime},Z}\mathrm{ do
    Ent\varepsilon (X) = FuseGraph(Ent\varepsilon (X),G ();
    end;
(* Post Process *)
    - Calculate }\mp@subsup{\subset}{SC(lr(\mp@subsup{G}{}{\prime}))}{}\mathrm{ and MaxInc}\mp@subsup{\operatorname{SCC(lr(G})}{(\mp@subsup{G}{}{\prime}))}{}.(* by Definition 4.3.17 *)
    - Remove unreachable states from any Ent\varepsilon(X).
(* End of Algorithm *)
```


Algorithm 4.5.5 (Incremental Construction of LALR(1) graph)

This procedure contains initialization and simply iterate adaptation of AugRule (Algorithm 4.5.4).

Inputs: - Extended $C F G G=\left(V, T, P, S^{\prime}\right)$
Outputs: - $S C(\operatorname{lr}(G))$
(* Initialization *)
foreach $X \in V$ do
$E \Delta(X)=\{\{X\}\} ;$
foreach $a \in T$ do $\operatorname{Top} \Delta(X)(a)=$ false
end;
foreach $Y \in V \backslash\{X\}$ do $\operatorname{Dep} \Delta(X)(Y)=$ false
end;
$\operatorname{Dep} \Delta(X)(X)=$ true ;
end;

```
(* Main *)
    \(\operatorname{Ent\varepsilon }\left(S^{\prime}\right)=\operatorname{Mono} G\left(S^{\prime} \rightarrow S\right) ;\)
    foreach \(X \rightarrow \alpha \in P \backslash\left\{S^{\prime} \rightarrow S\right\}\) do
        AugRule \((X \rightarrow \alpha)\)
    end;
(* End of Algorithm *)
```

As a final remark of this section, here we discuss on calculation of LA from Ind Δ. To calculate $\operatorname{Exp}(\operatorname{Ind} \Delta(q, A))$, defined in Theorem 4.4.29, there needs to prepare an exclusive procedures for it outside of algorithms above. However, among terms of which the definition of Exp is constructed, the first term $\left\{a \in T \mid \Lambda_{t}(a)=\right.$ true $\}$ is calculated straightforwardly from $\operatorname{Ind} \Delta$, and for the second term $\bigcup_{\Lambda_{d}(X)=\text { true }} \operatorname{First}(X)$, it can be calculated by also in incremental manner. To illustrate this fact, we adopt a notation First $\Delta_{P}(X)$, i.e. production rule set P is emphasized, and defined values with DD,

$$
\text { First } \Delta_{P}(X)=\bigcup_{X \rightarrow \gamma \in P} \operatorname{Top} \Delta_{P}(\gamma) \text {. }
$$

Using it, $\operatorname{Exp}(\operatorname{Ind} \Delta(q, A))$ is written as,

$$
\begin{aligned}
\operatorname{Exp}(\operatorname{Ind} \Delta(q, A))= & \left\{a \in T \mid \Lambda_{t}(a)=\text { true }\right\} \\
& \cup\left\{a \in T \mid \Lambda_{d}(X)=\text { true, First } \Delta_{P}(X)(a)=\text { true }\right\} \\
& \cup \bigcup_{(k, X) \in L} \operatorname{Exp}(\operatorname{Ind} \Delta(q(-k), X))
\end{aligned}
$$

When new production rule $X \rightarrow \gamma^{\prime}$ is augmented to the grammar, First $\Delta_{P}(X)$ is renewed such as,

$$
\text { First } \Delta_{P^{\prime}}(X)=\text { First } \Delta_{P}(X) \cup \text { First } \Delta_{P}(X)[\gamma / X] \cup \text { Top } \Delta_{P^{\prime}}\left(\gamma^{\prime}\right) \text {, }
$$

where in the equation, operation \cup is on Top Δ, defined in Definition 4.4.12. The equation is easily established from Theorem 4.4.19 and Definition 4.4.12. To embed the equation of First P^{\prime} in Algorithm 4.5.4, most of work for calculation of Exp is completing. Thus, remaining process in order to calculate $\operatorname{Exp}(\operatorname{Ind} \Delta(q, A))$ is a closure process so as to trace links given by Link Δ.

4.6 Examples

Example 4.6.1 (Mono-Graph(1))

Figure 4.10 illustrates a Mono-Graph of production rule $A \rightarrow A b$. As shown in Lemma 4.3.4, there are three states consisted of. Induce information for LA, IndTD, IndV Δ and Link Δ, and state identifier MaxInc are presented beside each states. Values of MaxInc of each states are ϕ, as shown in Lemma 4.3.15. Terminal symbol ' $\$$ ' has the meaning of "end of text" same as on conventional LALR(1) parser, and moreover, as described in Algorithm 4.5.2, it has a new interpretation in that it denotes 'inheritance' of LA, when fused. So, because $q_{0}=\operatorname{Ent\varepsilon }(A)$, $\operatorname{IndT\Delta }(A)(\$)$ is true unconditionally. IndT $\Delta(A)(b)$

Figure 4.10: Mono Graph (1)

Figure 4.11: Mono Graph (2)
is also true, because an item $A \rightarrow \bullet A b$ belongs to q_{0}, dot is followed by syntactic variable A, and A is followed by b directly. In q_{1} and q_{2}, dot is followed by a syntactic variable or no symbol. So, whole values of $\operatorname{IndT\Delta }$ and IndV Δ are false. We should emphasize repeatedly that in our approach, any item set is not used during whole computation. Items described in Figure 4.10 are only for facilitation to understand the graph.

Example 4.6.2 (Mono-Graph(2))

Figure 4.11 illustrates Mono $G(A \rightarrow C A B)$ which grammar is identical to Example 4.3.6. By same reason as described in Example 4.6.1, in state $p_{0}, \operatorname{IndT\Delta }(A)(\$)=$ true. Excepting this vacuous case, we concentrate on syntactic variable C during calculating values of IndTD and IndV Δ, because only syntactic variable C occurs just right of dot in the item consisted of by p_{0}. A terminal '\$’ is influenced to syntactic variable C through $A B$ which is situated just right of C, so, $\operatorname{IndT\Delta }(C)(\$)=\{\{A, B\}\}$, $\operatorname{IndV} \Delta(C)(A)=$ true and $\operatorname{IndV} \Delta(C)(B)=\{\{A\}\}$. In state $p_{1}, \operatorname{Link} \Delta(A)$ has value $\{(1, A,\{\{B\}\})\}$. It means that $L A$ for all $\varepsilon \operatorname{Item}(A)$ induced in the state inherit $L A$ of $\varepsilon \operatorname{Item}(A)$ in previous states by one step, with a condition if some new production rules are added so as that ε is derived
from B. We can understand that the value of Link Δ in p_{1} is valid, from the fact that p_{1} includes item $A \rightarrow C \bullet A B$, dot is followed by A and A is followed by B. In order for item $A \rightarrow \bullet C A B$ to inherit $L A$ of $A \rightarrow C \bullet A B$, ε must be derived from B. By similar discussion, Link $\Delta(C)$ in p_{1} has value $\{(2, A,\{\{A, B\})\}$.

To calculate all of these value, in Algorithm 4.5.1, Flow, which is defined at Definition 4.3.5, is calculated first. Its process is just related to the calculation of Subset Construction. As the result, Flow $=\left\{\left(p_{0}, C, 1\right),\left(p_{1}, A, 2\right),\left(p_{1}, C, 1\right),\left(p_{2}, B, 3\right)\right\}$. Induce information for $L A$ is calculated by use of Flow, and initial values of $D e p \Delta(X)$ for each $X \in V=\{A, B, C\}$, i.e., $\operatorname{Dep} \Delta(X)(X)=$ true, $\operatorname{Dep} \Delta(X)(Y)=$ false for $X \neq Y$, and $E \Delta(X)=\{\{X\}\}$ for each $X \in V$. On second step of Algorithm 4.5.1, i.e. "Evolution of $E \Delta_{P}(X)$ and $\operatorname{Dep} \Delta_{P}(X)$ " following initialization, only $E \Delta(A)$ and $\operatorname{Dep} \Delta(A)$ are evolved, because no $E \Delta(X)$ and $\operatorname{Dep} \Delta(X)$ contain A if $X \neq A$, at the time. For a moment, we trace the calculation, following the algorithm faithfully.

$$
\begin{array}{rl}
E \Delta_{P^{\prime}}(A)= & E \Delta_{P}(A) \cup E \Delta_{P}(A)\left[E \Delta_{P}(C A B) / A\right] \\
= & \{\{A\}\} \cup\{\{A\}\}[\{\{A, B, C\}\} / A] \\
& (\text { by Definition 4.4.4 and Proposition 4.4.6) } \\
= & \{\{A\}\} \cup\{\{A, B, C\}\} \\
& (\text { by Definition 4.4.8) } \\
= & \{\{A\}\} \\
& (b y \text { Definition 4.4.1) } \\
D_{e p} \Delta_{P}(C A B)= & \text { Dep } \Delta_{P}(C) \cup D e p \Delta_{P}(A B) * E \Delta_{P}(C) \\
& (\text { by Lemma 4.4.16) } \\
= & \{(C,\{\phi\})\} \cup\left(\text { Dep } \Delta_{P}(A) \cup D e p \Delta_{P}(B) * E \Delta_{P}(A)\right) *\{\{C\}\} \\
= & \{(C,\{\phi\})\} \cup(\{(A,\{\phi\})\} \cup\{(B,\{\phi\})\} *\{\{A\}\}) *\{\{C\}\} \\
= & \{(C,\{\phi\})\} \cup(\{(A,\{\phi\})\} \cup\{(B,\{\{A\}\})\}) *\{\{C\}\} \\
& (b y \text { Definition } 4 \cdot 4 \cdot 15) \\
= & \{(C,\{\phi\})\} \cup\{(A,\{\phi\}),(B,\{\{A\}\})\} *\{\{C\}\} \\
& (b y \text { Definition 4.4.11) } \\
= & \{(C,\{\phi\})\} \cup\{(A,\{\{C\}\}),(B,\{\{A, C\}\})\} \\
= & \{(A,\{\{C\}\}),(B,\{\{A, C\}\}),(C,\{\phi\})\} \\
D & D e p \Delta_{P}(A) \cup D e p \Delta_{P}(A)[C A B / A] \\
= & \{(A,\{\phi\})\} \cup\{(A,\{\phi\})\}[C A B / A] \\
= & \{(A,\{\phi\})\} \cup\{(A,\{\{C\}\} *\{\phi\}),(B,\{\{A, C\}\} *\{\phi\}),(C,\{\phi\} *\{\phi\})\} \\
& (b y \text { Definition } 4 \cdot 4 \cdot 18) \\
= & \{(A,\{\phi\})\} \cup\{(A,\{\{C\}\}),(B,\{\{A, C\}\}),(C,\{\phi\})\} \\
& (b y \text { Definition } 4 \cdot 4 \cdot 3) \\
= & \{(A,\{\phi\}),(B,\{\{A, C\}\}),(C,\{\phi\})\}(\text { byDefinition } 4.4 .11)
\end{array}
$$

To use these values, in Algorithm 4.5.1, calculations are going on.

Example 4.6.3 (Fusion)

Figure 4.12 illustrates the result of fusion of two MonoGs that are presented in previous examples. $\operatorname{Ind} T \Delta(A)(\$)=$ true of q_{0} is inherited to $\operatorname{IndT\Delta }(C)(\$)=\{\{A, B\}\}$ of r_{0}

Figure 4.12: Example of Fusion
through inheritance symbol '\$’ and its value of $\operatorname{IndT} \Delta(C)(\$)=\{\{A, B\}\}$ of p_{0}. The inheritance is calculated in the part of "On the case of Inheritance" in Algorithm 4.5.2. See the value of $\operatorname{IndV} \Delta(C)(C)$ at r_{1}. Suppose each context leads to state r_{1}, e.g. $A \Rightarrow C \bullet A B \Rightarrow$ $C \bullet C A B B$, IndV $\Delta(C)$ must includes value of $\operatorname{Dep} \Delta(A B B)$. Dep $\Delta(A B B)(A)=$ true is trivial, because A occurs at the top of $A B B$. By Definition 4.4.13, $D e p \Delta(A B B)(B)=$ $[\{\{A\},\{A, B\}\}]$, and $\{A\} \subset\{A, B\}$, hence, Dep $\Delta(A B B)(B)$ is also $[\{\{A\}\}]$. Thus, $\operatorname{IndV} \Delta(C)(B)=\{\{A\}\}$ at state r_{1}.

In Figure 4.12, MaxInc $(Q \cup P)^{(Q)} \subset_{(Q \cup P)}$ are presented for each fused states, where $Q=$ $\left\{q_{0}, q_{1}, q_{2}\right\}$ and $P=\left\{p_{0}, p_{1}, p_{2}, p_{3}\right\}$. See the values of MaxInc, MaxInc $c_{(Q \cup P)}$ at r_{1}. So r_{1} is the result of fusion on q_{0} and p_{1}, and $\operatorname{MaxInc}\left(q_{0}\right)=\phi$ and $\operatorname{MaxInc}\left(p_{1}\right)=\phi, \operatorname{MaxInc} c_{(Q \cup P)}$ has value $\left\{q_{0}, p_{1}\right\}$ for $r_{1}=q_{0} \cup p_{1}$. However, both of q_{0} and p_{1} are unreachable from $\operatorname{Ent\varepsilon }(X)$ for each $X \in V=\{A, B, C\}$, where $\operatorname{Ent\varepsilon }(A)=r_{0}, \operatorname{Ent\varepsilon }(B)=\operatorname{Ent\varepsilon }(C)=\phi$. It is the reason why $\operatorname{MaxInc}\left(r_{1}\right)=\phi$ which is calculated by Definition 4.3.16. We can under stand validity of MaxInc $\left(r_{1}\right)=\phi$ by the fact that r_{1} contains a unique item $A \rightarrow C \bullet A B$.

4.7 Discussions on Efficiency of the Algorithms

4.7.1 Worst case Analysis of $E \Delta$

Worst case on calculation of $E \Delta$ is quite bad. To see it, we consider on maximum number of elements which are included in a member of $\mathrm{DD}=[\operatorname{Power}(\operatorname{Power}(\Omega))]$. It is trivial that the maximum member of $\operatorname{Power}(\operatorname{Power}(\Omega))$ is $\operatorname{Power}(\Omega)$, which number of elements is $2^{\#(\Omega)}$. However our interest is on $[\operatorname{Power}(\operatorname{Power}(\Omega))]$. Generally, we can select smallest member as a representative. So

$$
\max _{H \in[\operatorname{Power}(\operatorname{Power}(\Omega))]} \min _{H^{\prime} \in[H]} \#\left(H^{\prime}\right)
$$

indicates worst case for $E \Delta$, i.e. ${ }_{n} C_{n / 2}$, where C gives number of combinations, for $n=\#(\Omega)$, and, ${ }_{n} C_{n / 2} \in \Theta\left(2^{c n}\right)$. As an example of worst case, we present a grammar by production rule set,

$$
\begin{aligned}
& Z_{2} \rightarrow X_{1} X_{2}, Z_{3} \rightarrow Z_{2} X_{3}, \cdots, Z_{n} \rightarrow Z_{n-1} X_{n}, \\
& Z_{2,1} \rightarrow X_{2}, Z_{2,2} \rightarrow X_{1}, \\
& \ldots \\
& Z_{k+1,1} \rightarrow Z_{k, 1} X_{k+1}, \ldots, Z_{k+1, k} \rightarrow Z_{k, k} X_{k+1}, Z_{k+1, k+1} \rightarrow Z_{k}, \\
& \ldots \\
& Z \rightarrow Z_{n, 1}|\ldots| Z_{n, n},
\end{aligned}
$$

which gives ${ }_{n} C_{n / 2}$ for $\Omega=\left\{X_{1}, \ldots, X_{n}\right\}$. If we adopted number of production rules as a measure, say m, worst case complexity would be $\Theta\left(2^{c \sqrt{m}}\right)$.

4.7.2 About implementations and complexities of $E \Delta$, Top Δ, Dep Δ

It is not difficult problem how to implement domains of $E \Delta, T o p \Delta$ and $D e p \Delta$, and operations on them, they are straightforwardly obtained from definitions. So, domains
of Top Δ and $\operatorname{Dep} \Delta$ have function types, simplest implementation of them is to prepare tables. However, this choice leads to immense usage of strages. In practical grammars, $T o p \Delta$ has almost everywhere false values, so does $D e p \Delta$, as seen on examples below. Costs for calculation of operations on $E \Delta, T o p \Delta$ and $\operatorname{Dep} \Delta$ are,

$$
\begin{aligned}
{\left[H \cup H^{\prime}\right]: } & N_{V} \times \#(H) \times \#\left(H^{\prime}\right) \\
H * H^{\prime}: & N_{V}^{2} \times \#(H) \times \#\left(H^{\prime}\right) \times\left(\#(H)+\#\left(H^{\prime}\right)\right), \\
H^{\prime}[H / X]: & N_{V} \times \#(H) \times \#\left(H^{\prime}\right)^{2} \\
\Lambda \cup \Lambda^{\prime}: & N_{T} \times N_{V} \times m^{2} \\
\Lambda * H: & N_{T} \times N_{V}^{2} \times m \times \#(H) \\
\Lambda[\gamma / Z]: & N_{T} \times N_{V} \times m^{\prime 3}
\end{aligned}
$$

where $N_{V}=\#(V), N_{T}=\#(T), H, H^{\prime} \in[\operatorname{Power}(\operatorname{Power}(V))], \Lambda, \Lambda^{\prime} \in T \rightarrow[\operatorname{Power}(\operatorname{Power}(V))]$, $m=\max _{a \in T} \#(\Lambda(a))$, and $m^{\prime}=\max \{\#(E \Delta(\gamma)), m\}$, on worst case of simplest implementation. From the discussion on worst case of $E \Delta$ above, these computational costs seem very expensive. However, in practical cases, $\#(H) \ll N_{V}$ holds, and moreover, almost all values on $[\operatorname{Power}(\operatorname{Power}(V))]$ which occur during computation are very close to 1 or 2. So, we might be able to adopt followings as a measure for plactical cases,

$$
\begin{aligned}
{\left[H \cup H^{\prime}\right]: } & \ll N_{V} \\
H * H^{\prime}: & \ll N_{V}{ }^{2} \\
H^{\prime}[H / X]: & \ll N_{V}, \\
\Lambda \cup \Lambda^{\prime}: & \ll N_{T}^{2}, \\
\Lambda * H: & \ll N_{T}{ }^{3}, \\
\Lambda[\gamma / Z]: & \ll N_{T}{ }^{2} .
\end{aligned}
$$

4.7.3 Worst case analysis of fusion

Here is given an example for worst case of fusion, which is presented in [15] and was constructed by Alan Demer. As described in [15], the example is an inheritance of a general feature of LR parsing scheme.

$$
\begin{aligned}
S_{0} & \rightarrow a S_{0} \mid b S_{0}, \\
S_{0} & \rightarrow c S_{1}, \\
S_{1} & \rightarrow a S_{2} \mid b S_{2}, \\
S_{2} & \rightarrow a S_{3} \mid b S_{3}, \\
& \cdots \\
S_{n-1} & \rightarrow a S_{n} \mid b S_{n}, \\
S_{n} & \rightarrow d .
\end{aligned}
$$

Number of states of $\operatorname{LR}(0)$ graph for above grammar is $4 n+6$. However, if we add a rule $S_{0} \rightarrow a S_{1}$ to the grammar, number of states grows to $2^{n}+4 n+6$. So, we can conclude that worst case complexity of fusion process is exponential.

4.7.4 About implementation of MaxInc and its Time/Space complexity

It is easy to see the efficiency on space usage of MaxInc and inclusion information between states. In our approach on state identification, each state identifier, which is naturally given as an integer, represents some set of items. If the item set contains a unique item, then MaxInc for the state is ϕ. Thus, with respect with the observation, complexity on space usage never exceeds that of conventional representation of states, i.e. by use of kernel.

The definition of evolution process of MaxInc, defined at Definition 4.3.16 and 4.3.17, also ensured the equivalence by Theorem 4.3.18, might seem to be intricate. However, the implementation is quite simple. Firstly, we illustrate calculation process of $\operatorname{MaxInc} \mathcal{C}_{\left(Q_{1} \cup Q_{2}\right)}$. Suppose a situation that a new state is obtained by fusion on $q_{1}, q_{2}, \ldots, q_{k}$. To calculate $\left.\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}, 1\right)$ expand $\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}$ to $\left.U=\left\{q_{1}, q_{2}, \ldots, q_{k}\right\} \cup \bigcup_{i=1}^{k} \operatorname{MaxInc}\left(q_{i}\right) .2\right)$ find
 U. 3) maximalize U. On worst case, at 1) $n \times k$ times of addition of elements are needed, where n is the number of whole states. At 2), to determine relation $\operatorname{MaxInc}\left(q^{\prime}\right) \subset U$, $n \times n$ times of comparisons on elements in U might be achieved on worst case, and the determination should be done for each states. Thus, the iteration of 2) requires n^{3} times of comparisons on elements of U, on worst case. However, as seen at Example 4.6.3, values of MaxInc almost of all states are ϕ, in general, time complexity needed to calculate MaxInc of new state is very close to n.

Calculation process of MaxInc_{A} is also achieved by expansion and reduction of elements, same as $\operatorname{MaxInc}_{\left(Q_{1} \cup Q_{2}\right)}$, excepting such a case that if unreachable states are contained, the value of MaxInc is determined directly to be ϕ.

4.8 About LR Parsing on RCFG

Example 3.2.2 is one of typincal cases which bring out the difference between CFG and RCFG. It is cleared by Greibach Normal Form, explained in [14] etc., that candidates of first terminal symbols of CFL are predictable from given production rule set. In other words, if first terminal symbol is given, candidates of production rules used first on derivation is predictable on CFG. This feature is not affirmative on RCFG.

Suppose LR parsing for RCFG, there are RCFG and inputs which rise up a situation that initial parse table does not provide any action on initial state for given input, but given RCFG must accepts the input without no ambiguity. Example 3.2.2 provides such a case. LALR(1) graph calculated from initial production rule set P given in RCFG G_{3} has empty initial state. In conventional meaning, the situation means error.

In this section, we treat two kinds of restrictions on RCFG so that LALR(1) parsing scheme is applicable to those of restrictions on RCFG classes. In this paper, only the outline is presented.

First candidate of restrictions is of a simple choice, which restricts RCFG to a class, named RCFG-S, so that RCFG such that causes tricky case is not allowed. It concerns to the case that the definition of derivation on RCFG, see Definition 3.1.5, is restricted so that constraints $A \rightarrow X_{1} \cdots X_{n} \in P_{1}$ and $\mathbf{p} \rightarrow\left[X_{0} \triangleright X_{1} \cdots X_{n}\right] \in P_{0}$ are adopted instead of $A \rightarrow X_{1} \cdots X_{n} \in P_{n+1}$ on case 1) and $\mathbf{p} \rightarrow\left[X_{0} \triangleright X_{1} \cdots X_{n}\right] \in P_{1}^{\prime}$ on case 2), respectively. Figure 3.2 illustrates the effective range of embedded production rule on

Figure 4.13: Effective Range of restricted RCFG
derivation tree for normal RCFG, while Figure 4.13 illustrates the restricted one. The difference appears on a boundary. On normal RCFG definition, newly added production rules are enabled to be used as ancestors of $\mathbf{p} \in \mathbf{A u g}$ on derivation trees, which cause the augmentations, while restricted RCFG does not allow this feature.

When this simple restriction is adopted, parsing using LALR(1) scheme is simple, described as below,

1) construct initial LALR(1) graph by the incremental method,
2) restrict domains of DD from V to $f(D)$, using restriction method defined in Definition 4.4.30,
3) calculate LA by use of Exp,
(start parsing)
repeat 4), until parse completes,
4) if reduce action is done with an item $\mathbf{p} \rightarrow \alpha \bullet$, where $\mathbf{p} \in \mathbf{A u g}$, then augmenting a new rule by use of Algorithm 4.5.4, and calculate LA for new LALR(1) graph obtained by augmentation.

Of cource, if Shit-Reduce or Reduce-Reduce confliction occurs as a result of augmentation at 4), the system discontinues to parse it as an error.

The second choice is illustrated as following,

1) construct initial LALR(1) graph by the incremental method,
2) restrict domains of DD from V to $f(D)$, using restriction method defined in Definition 4.4.30,
3) calculate LA by use of Exp,
(start parsing)
repeat 4), 5), until parse completes,
4) if reduce action is done with an item $\mathbf{p} \rightarrow \alpha \bullet$, where $\mathbf{p} \in \mathbf{A u g}$, then augmenting a new rule by use of Algorithm 4.5.4, calculate LA for new LALR(1) graph obtained by augmentation,
5) if parser stops with error, that means no action at that time, then try to detect embedded portion in the rest of input. If detected a rule, augmenting the rule to current LALR(1) graph, but mark on reduce action of detected rule so that the reduce action is effective after the detected position.

Conventional LALR(1) graph corresponds to the graph starts from $\operatorname{Ent\varepsilon }\left(S^{\prime}\right)$ on our method. To achieve detection of 5), we can use another sub-graphs start from Ente(p) for each $\mathbf{p} \in$ Aug. Process of 5) must be non-deterministic.

Chapter 5

Conclusion and Future Works

We formalize a formal language model as RCFG, which deals with texts including augmentations of part of grammar rules, show RCFG has good properties and its language class, i.e. in between CFL and CSL, and give an efficient parsing algorithm. Most of formal language systems which have expressive power stronger than CFG have no efficient parsing algorithms, and have to be restricted to some subsets of them. Such a restriction is one of main causes of loss of clarity and readability of their descriptions. We consider that RCFG will be helpful base model for system programmers to construct self-referential systems or to use it as a rapidly prototyping system, because of the simple and natural feature of RCFG

An incremental construction method of LALR(1) parser in which method any item sets are not used, and applications of the method to parsers for RCFG are illustrated. We introduce notions Mono-Graph, fusion, MaxInc, DD, Ind Δ and operations on them in order to achieve it, and establish some properties on them, especially establish that the method proposed in this paper induces LALR(1) parser. And also, we present a set of algorithms for the method, and discuss on the efficiency of the method, on worst case. Typical points of our work are the introduction of notions for incremental construction for both of $\operatorname{LR}(0)$ graphs and indices on Look Ahead Sets in fully incremental manner and no use of item sets.

To use this method in practice, there are several problems must be solved. As parsing problems, ways to treat ambiguous grammars and frameworks for error handling are remained. Additionally, most important problem that how to give semantic descriptions to newly added production rules are remained as future works. A hint to the problem on semantics is discussed in Appendix A. Additionally, $\operatorname{Ind} \Delta$, index for incremental calculation of LA, gives us a possibility of static analysis of grammars. Because informations provided by $\operatorname{Ind} \Delta$ indicates dependencies between production rules, it may be useful on grammar debugging.

Appendix A

Discussions on Semantic Descriptions for Augmented Rules

A. 1 Motivation on Semantic Description for Augmented Rules

It is one of most important problems how to give a semantics for dynamically extensible grammars. Of course, the problem depends on formalisms of such extensible grammars. However, we can observe that most of extensible grammars based on CFG have mechanisms to restrict domains of production rules which will be augmented at parse-time. That is to say, it does not mean that arbitrary production rules are augmented to initial production rule set. Only production rules which are supposed to be augmented in the initial grammar are augmented. RCFG is one of such formal language systems. With respect to this observation, we can consider some models on giving semantics to dynamically augmented production rules. Followings are both extremes in such models,

1) giving semantics in advance for all production rules which might be augmented,
2) giving frame works for users to define semantic rules for augmented production rules in identical manner of the other rules.

Model 1) gives us an impression that there is no merit to have dynamically extensibility on syntax. However, it is not true. For example, we should consider the case of the overloading mechanism on operators in $\mathrm{C}++$. gcc gives us a good example for it. In $\mathrm{C}++$, no new operator is enabled to be defined as a new token. Only enabled is over-loading. What function is substituted to an operator, in other words, how to give a semantics to an operator, is remained for users (programmars). Under this sense, we can conclude that $\mathrm{C}++$ has flexibility, and is not a language which has merely fixed semantics. In fact, in the implementation of gcc, a unique function is assigned as a semantic function to every production rules concerning to 'Expression', in which function codes for expressions are generated accoding to their types or classes. Semantic assignment in this way is one of choices. In such a way, it is important problem how to model a mechanism in semantic functions to assign semantics to each syntactical entities, and the mechanism seems to be valuable as an object of studies. However, we do not adopt the model.

We tentatively call model 2) Compile-time Reflection. In this paper, we introduce two kinds of implementation models on Compile-time Reflection. Essentially, Compile-

Figure A.1: Diagram of Compile-time Reflection
time Reflection is regarded as a mechanism to embed object codes, i.e. generated by the compiler, into the compiler process itself, or some other mechanism which is similar to the embedment (see Figure A.1). This mechanism will supply facilities to developpers of programming language systems on some aspects. Adopting the mechanism, developpers will be provided a step-by-step development environment. As another aspect, embedding object codes into compiler process itself means that compiler can seize higher mechanisms which are realized as functions of programming languages which are processed by the compiler. This leads us to an expectation of easiness to develop compilers.

Frankly speaking without fear to misleading, Reflection can be regarded as confusion of meta objects and first order objects, or, inclusion of objects in either directions. However, the core parts of any reflective systems are initially stated. Reflective features of such systems are constructed or proceeded starting from the core parts and piling up on them. This aspect is explained with the words of meta-circularity or meta-circular interpreter [24, $29,32]$. On structures of systems which include reflective mechanisms in the descriptions of compilers of them, there are hierarchies similar to [29]. (Figure A.2)

It is able to discuss on properties of programming languages of which compilers have the reflective hierarchical structure, i.e. explained above, but, we focus on features of development process of programming languages, using compiler-compiler which has mechanisms including the hierarchical structure. For any software, it is able to divide its each parts into some hierarchy, although the devision is not clear. For example, basic operations such as memory managements, further higher level processes which use the basic operations, main operations, user interfaces, and so on. Usually, during development, developpers continue coding and debugging process, mutually iterating them. They can shift jobs to coding and/or debugging on higher level parts of the system after completing verification on lower level components. Total jobs form a spiral of development cycle. On developments of programming language systems, using development tools which have reflective hierarchical structure, developpers obtain freedom so as to rise up higher mechanisms of target systems into the description of compiler itself at some time of development cycle.

Figure A.2: Meta-circularity

For example, here we consider development of a programming language which has function of garbage collection on memory management. When completing coding and debugging of the part of memory management, if the function of the part can be involved in the description of the compiler, developper obtains the merit of the function at the phase of development of the compiler itself. As similar examples, we can enumerate type checking mechanism, calculation of array indeces which deeply depends on types, and pattern matching mechanism, so well. Of course, it is obvious that these examples are realized if there are compatibility between paradigm of compiler description language and that of target language, and exists an interface between them.

A conceptual diagram which reflects the intuition on the circularity of reflective hierarchy on compiling process, to say meta-circular compilation, which is explained so far, is given in Figure A.1. This diagram explains an implementation model of meta-circular compilation, under which object codes are partially generated and the codes might be involved in compiler via dynamic linking process. To say, the diagram describes the involvement of functions of target languages. Besides this implementation model, we can consider an another implementation model in which some parts of compiler codes are embedded in object codes. (Figrue A.3) There seems to be at least two implementation models of meta-circularity via compilation process, such that,

1) involving object codes into compiler process,
2) embedding of some parts of compiler codes into object codes.

Focusing on efficiency of generation of codes, in general, it is easy to predict that model 1) provides an enfficient frame work. Before easily concluding so, we try to discuss on each models, because it is expected that there is significant difference depending on where reflective descriptions occur, and on how to implement reflective functions.

We start discussion with an example. Here, we suppose that target system of development is a language system, to say further a compiler, and the object of discussion is a frame work for compiler-compiler with which compilers that have reflective functions

Figure A.3: A way of inprementation by embedding meta-codes
are described. Individual reflective programming languages are not the objects of the discussions here. To clear our stance, we are conscious of description levels of programming languages, such as,
A) level compiler-compiler (Level CC),
B) level compiler (Level C),
C) level object codes (Level Obj).

Moreover, we adopt RCFG for a base grammar. From the property of RCFG (Theorem 3.3.7), there is no problem to assume CFG as a base grammar, excepting the dynamical extensibility of RCFG. For semantic descriptions, we adopt Attributted Grammars (AG) [20, 21] on Level C, and Syntax Directed Translation (SDT) which has been used to describe flexible syntax languages, such as [23] and its resemblances.

A. 2 An example of description by SDT

In this section, we give an example to introduce a string notation into the syntax of pure-Prolog. In this example, introduced string is interpreted as a list which consists of atoms, each atom has one-length name, such that " $a b c$ " is interpreted to $[a, b, c]$. Firstly, we suppose that production rules,

$$
\begin{aligned}
\text { Term } & \rightarrow \text { List } \mid \text { Functor } \\
\text { List } & \rightarrow{ }^{\prime}\left[^{\prime}\right]^{\prime} \mid{ }^{\prime}\left[{ }^{\prime} \text { Term-Seq } q^{\prime}\right]^{\prime} \mid{ }^{\prime}\left[\text { 'Term-Seq }\left.\right|^{\prime} \text { Term }{ }^{\prime}\right]^{\prime} \\
\text { Term-Seq } & \rightarrow \text { Term } \mid \text { Term','Term-Seq } \\
\text { Functor } & \rightarrow \text { Id } \mid \text { Id' }^{\prime}\left(\text { 'Term-seq' }^{\prime}\right)^{\prime}
\end{aligned}
$$

are included in the syntax of pure-Prolog. We consider that the introduction of string notation causes augmentation of new production rule

$$
\text { Term } \rightarrow ' " \prime \text { Id } d^{\prime \prime \prime \prime} .
$$

This introduction of string notation is given by SDT description as below.

```
\([\underline{\text { List } \triangleright " I d "] ~}\)
\(\operatorname{synfn}(" I d(s t r) "): \underline{L i s t}\)
begin
    if \(s t r=\) emptyString then []
    else \([I d \downarrow \operatorname{head}(s t r) \mid " I d \downarrow \operatorname{rest}(s t r) "]\)
end
```

A. 1 represents an augmentation of new production rule, and the description A. 2 provides semantics for the rule. Formal definition of SDT is stated in later section. Here, we give an intuitive explanations for it. ("Id(str)") following synfn is a Signature with parameters. The head line of SDT synfn("Id(str)"):List means that it provides the mean for a production rule which left-hand side is List and which right-hand side is "Id". str represents a set of attribute values of $I d$, and we assume that string attribute value is included in it. In this example, we assume that every symbols which occur in signatures have string as an attribute, and that every string attributes hold terminal symbol sequeces which is derived from symbols concerned to the attributes. This description lacks accuracy, because input string sequeces for parse module are sequences of tokens cut out by lexcal analyser, which do not occur in program texts, on actual compilers. Values of string attributes concern rather to values which are held in a variable yytext of YACC. In the meaning of SDT of this example, the signature " Id " represents a requirment that on some portion of input of parser, if there is a occurence of sequence "Id", then the attribute of second symbol $I d$ must be assigned to str. If the value of string attibute held in str is empty string, then result of SDT is [], empty list, otherwise, the result is constructed in a way that firstly constructing a list for ("Id $\downarrow \operatorname{rest}(s t r)$ "), which means a list concerns to a string of str from which the first symbol is taken away, then appending the first symbol of str to the list. $I d \downarrow<$ string $>$ represents a generation of new syntactic entity, and a coercion of an attribute set to the generated entity. From a given symbol sequence " $a b c$ ", using SDT given by A. 1 and A.2, a translation sequence will be achieved as

$$
" a b c " \Rightarrow[a \mid " b c "] \Rightarrow[a, b \mid " c "] \Rightarrow[a, b, c \mid[]],
$$

then, finally obtained symbol sequence which represents a list will be parsed by the parser with initial semantic interpretation.

If we focus on the function of translations of strings which are achieve by SDT, SDT might be seen as a macro language, like GNU m 4 . However, SDT is differ from macro languages such as GNU m 4 on the point that an SDT description is defined with a new production rule, so the definition causes an extension of grammar. While macro expansions are achieved by sub-string matching, SDT requires on its applications that each translatees have context which the signature of the SDT should have. Moreover,
because SDT is applied during parsing, informations which are fixed on parsing, e.g. types of expressions, are available to be used in SDT. So, on SDT, it is able to choose translations according to types of translatees. These are the essentially different points from macro languages.

A. 3 An Implementation of SDT

Here, we try to generalize SDT to a system which has enough features to be called as compile-time reflection. There seems to be at least two ways of generalizations. One way is to adopt some reflective mechanism on the parser as an implementation of SDT instead of string replacements. The other is to enable to use user defined functions alike system functions such as if then else, head, rest used in above example. User defined functions indicates functions of the language system which is being constructed using SDT.

We begin discussions firstly on the former stance so as to lead us to the later stance, adopting Attributted Grammars as a description frame work.

A.3.1 Attributted Grammars

Attributted Grammars (AG) had been proposed in [20, 21], and have been used for descriptions of Syntax Oriented Systems. For given CFG $G=(V, T, P, S)$, two kinds of attributted values, so called Inherited Attribute and Synthesized Attributes are augmented for each X in V. For each terminal symbols in T, only Synthesized Attributes are usually augmented. Intuitively, Inherited Attributes of X can be regarded as inputs of sub-trees of parse trees which has X as root node. Also Synthesized Attributes of X can be regarded as outputs, e.g. [19]. Rules for calculation of attributted values, called Attribution are appended to each production rules. In each attributions, a list of procedures which calculate Synthesized Attributes of the symbol on left-hand side of the production rule and Inherited Attributes of the symbols on right-hand side, from Inherited Attributes of the symbol on left-hand side and Synthesized Attributes of the symbols on right-hand side, is provided. An example illustrating a tiny system in which values for binary strings are calculated are given as below.

An example of AG

$$
\begin{aligned}
& G=(V, T, P, S) \\
& V=\{S, B\}, T=\{0,1\} \\
& P=\{S \rightarrow B, \\
& B \rightarrow 0, B \rightarrow 1, \\
&B \rightarrow B 0, B \rightarrow B 1\} \\
& \operatorname{In}(S)= \phi, \operatorname{Syn}(S)=\{\text { value }\} \\
& \operatorname{In}(B)=\{\text { figure }\}, \operatorname{Syn}(B)=\{\text { value }\} \\
& S \rightarrow B \quad\{\text { B.figure }=1 ; \text { S.value }=\text { B.value }\}
\end{aligned}
$$

$$
\begin{aligned}
B \rightarrow 0 & \{\text { B.value }=0\} \\
B \rightarrow 1 & \{B . \text { value }=B \cdot \text { figure }\} \\
B \rightarrow B 0 & \{B[1] . \text { figure }=\text { B.figure } * 2 \\
& \text { B.value }=B[1] \cdot \text { value }\} \\
B \rightarrow B 1 & \{B[1] . \text { figure }=\text { B.figure } * 2 \\
& \text { B.value }=B[1] \cdot \text { value }+ \text { B.figure }\}
\end{aligned}
$$

In this paper, we adopt a notation that each symbols appears in right-hand side of production rules are appended with a number of its occurence position in order to distinguish different occurences of same symbols, e.g. $B[1]$ designates symbol B which occurs at first position of right-hand side of its rule.

It is not a trivial problem to determine evaluation order of each attributions in AG. From descriptions of Attributions, dependency relations between attribute values can be established. Generally, depending on given parse tree, the dependency may consist of circularities. AGs which contain no circularity on the dependencies between attribute values, for any words generated from G, are called Well-defined Attributted Grammars (WAG). Sevral sub-classes of WAG have been proposed from sevral point of view [4, 17, 18], such as LR Attributted Grammar (LR-AG) [17, 18] which is intended that each attribute values are calculated during LR parsing are going.

A.3.2 An implementation of SDT using AG

Here, we give an implementation of SDT under the frame work of AG.

Example A.3.1 (Example of a semantics for synfn)

Inherited Attributes:
(string * Type list)
BODY.id_list, SF_EXP.id_list, BOOL_EXP.id_list
Synthesized Attributes:
(string * Type)
SIGN.id
string * Type) list
SIGN_LIST.id_list
(string)
identifier.w
(Type)
SDTYPE.type, SMTYPE.type, STYPE.type, BASETYPE.type, TYPE.type
(λ expression)
SIGN_LIST.exp
BODY.exp
SF_EXP.exp

```
FUN1ARG.exp
(where Type = string)
SYNFUN }->\mathrm{ synfn identifier (SIGN_LIST) : SDTYPE BODY
    {SIGN_LIST[4].pre_list = [];
    BODY.id_list = SIGN_LIST[4].id_list;
    reflect((SDTYPE[7].type, SIGN_LIST[4].type),
    (\lambda\mu:string.SIGN_LIST[4].exp)BODY[8].exp)}
SDTYPE }->
    {SDTYPE.type = X.w}
SMTYPE }->
    {SMTYPE.type = Y.w}
STYPE }->
                                    (where Y \inT)
    {STYPE.type = Y.w}
Note: }D\subsetM\subset
BASETYPE }->\mathrm{ STYPE
    {BASETYPE.type =STYPE[1].type}
BASETYPE -> bool
    {BASETYPE.type = bool}
BASETYPE }->\mathrm{ char
    {BASETYPE.type =char }
BASETYPE }->\mathrm{ string
    {BASETYPE.type = string}
BASETYPE -> tree
    {BASETYPE.type = tree}
TYPE ->' identifier
    {TYPE.type =':: identifier[2].w}
TYPE }->\mathrm{ BASETYPE
    {TYPE.type = BASETYPE[1].type}
TYPE }->\mathrm{ TYPElist
    {TYPE.type = TYPE[1].type :: list}
SIGN -> STYPE
    {SIGN.type = STYPE[1].type;
    SIGN.id = (emptySymbol, STYPE[1].type ) }
SIGN -> STYPE(identifier)
    {SIGN.type = STYPE[1].type;
    SIGN.id = (identifier[3].w,STYPE[1].type)}
SIGN_LIST -> SIGN
    {SIGN_LIST.type = SIGN[1].type;
    SIGN_LIST.id_list = [SIGN[1].id];
```

```
        SIGN_LIST.exp
        = \lambda\pi
SIGN_LIST }->\mathrm{ SIGN, SIGN_LIST
    {SIGN_LIST.type = SIGN[1].type :: SIGN_LIST[3].type;
    SIGN_LIST.id_list = SIGN[1].id :: SIGN_LIST[3].id_list;
    SIGN_LIST.exp = \lambda\pi
BODY }->\mathrm{ begin SF_EXP end
    {SF_EXP[2].id_list = BODY.id_list;
    BODY.exp = SF_EXP.exp
    }
SF_EXP }->\mathrm{ identifier
    {SF_EXP.exp = getValue(SF_EXP.id_list,identifier[1].w)}
SF_EXP -> []
    {SF_EXP.w = &;SF_EXP.tree = (\varepsilon,[])}
SF_EXP -> if BOOL_EXPthen SF_EXP elseSF_EXP
    {BOOL_EXP[2].id_list = SF_EXP.id_list;
    SF_EXP[4].id_list = SF_EXP.id_list;
    SF_EXP[6].id_list = SF_EXP.id_list;
    SF_EXP.exp
        = if(BOOL_EXP[2].exp,SF_EXP[4].exp,SF_EXP[6].exp)}
SF_EXP }->\mathrm{ FUN1ARG(SF_EXP)
    {SF_EXP[3].id_list = SF_EXP.id_list;
    SF_EXP.exp = FUN1ARG.exp(SF_EXP[3].exp)}
SF_EXP }->\mathrm{ (SF_EXP)
    {SF_EXP[2].id_list = SF_EXP.id_list;
    SF_EXP.exp = SF_EXP[2].exp }
SF_EXP }->\mathrm{ SF_EXP :: SF_EXP
    {SF_EXP[1].id_list = SF_EXP.id_list;
    SF_EXP[3].id_list = SF_EXP.id_list;
    SF_EXP.exp = concatinate(SF_EXP[1].exp,SF_EXP[3].exp)}
SF_EXP }->\mathrm{ SMTYPE }\downarrow\mathrm{ SF_EXP
    {SF_EXP[3].id_list = SF_EXP.id_list;
    SF_EXP.exp = getToken(SMTYPE[1].type,
                getvalue(SF_EXP.id_list,
                SF_EXP[3].exp))}
BOOL_EXP }->\mathrm{ empty(SF_EXP)
    {SF_EXP[3].id_list = BOOL_EXP.id_list;
    BOOL_EXP.exp = empty(SF_EXP[3].exp)}
BOOL_EXP }->\mathrm{ SF_EXP = SF_EXP
    {SF_EXP[1].id_list = BOOL_EXP.id_list;
    SF_EXP[3].id_list = BOOL_EXP.id_list;
    BOOL_EXP.exp = equal(SF_EXP[1].exp,SF_EXP[3].exp)}
BOOL_EXP }->\mathrm{ (BOOL_EXP)
    {BOOL_EXP[2].id_list = BOOL_EXP.id_list;
```

```
    BOOL_EXP.exp \(=\) BOOL_EXP[2].exp \(\}\)
BOOL_EXP \(\rightarrow\) not BOOL_EXP
    \(\{\) BOOL_EXP[2].id_list \(=\) BOOL_EXP.id_list;
    BOOL_EXP.exp \(=\operatorname{not}(\) BOOL_EXP \([2] . e x p)\}\)
BOOL_EXP \(\rightarrow\) BOOL_EXP or BOOL_EXP
    \(\{\) BOOL_EXP[1].id_list \(=\) BOOL_EXP.id_list;
    BOOL_EXP[3].id_list = BOOL_EXP.id_list;
    BOOL_EXP.exp \(=\mathbf{o r}(\) BOOL_EXP[1].exp, BOOL_EXP[3].exp \()\}\)
BOOL_EXP \(\rightarrow\) BOOL_EXP and BOOL_EXP
    \(\{\) BOOL_EXP[1].id_list \(=\) BOOL_EXP.id_list;
    BOOL_EXP[3].id_list = BOOL_EXP.id_list;
    BOOL_EXP.exp \(\left.=\operatorname{and}\left(B O O L_{-} E X P[1] . \exp , B O O L \_E X P[3] . \exp \right)\right\}\)
```

FUN1ARG \rightarrow head
$\{$ FUN1ARG.exp $=\mathbf{h e a d}\}$
FUN1ARG \rightarrow rest
$\{$ FUN1ARG.exp $=\mathbf{r e s t}\}$
FUN1ARG \rightarrow root
$\{$ FUN1ARG.exp $=\operatorname{root}\}$
FUN1ARG \rightarrow children
$\{F U N 1 A R G \cdot \exp =$ children $\}$

Note: the attributes SF_EXP.exp, BOOL_EXP.exp and FUN1ARG.exp hold λ expressions as their values. It does not means that we treat λ expressions directly, but means that each λ expression expresses a continuation for evaluations of attribute values.

In this example, a continuation of calculation of a symbol sequence which will be the result of SDT is going to be constructed in attributes SF_EXP.exp and BOOL_EXP.exp. The continuation obtained by the example is to calculate a symbol sequence, not to calculate attribute values for the symbols sequence provided by SDT. A procedure to calculate expected symbol sequence is assigned by system function reflect, i.e. used in (3), to the production rule which is designated by the signature of SDT description. \uparrow in expression (4) parses its argument and constructs its parse tree. The result of \uparrow is a function from a collection of Inherited Attributes of the root of the parse tree to a collection of Synthesized Attributes of the root, the function which is explained in previous section. On this aspect, out approach is similar to Higher Order Attributted Grammar (HAG) [28].

HAG is a model of multi-pass processes. On first pass, data which has tree structure are calculated in a way of AG frame work. On later passes, using tree structured data as a parse tree, which are calculated on previous pass, and adapting AG frame work again, targer objects are obtained finally. In our implementation scheme for SDT given here, when SDT is parsed, a symbol sequence, which may include some non-terminal symbols, is calculated as a attribute value, then the symbols sequence is parsed again by same parser, and finally parser obtains a collection of Attribution for given SDT.

We can assume that this implementation of SDT indicates that the compiler involves an interpreter for SDT. (Figure A.4)

As an alternative imprementation of SDT, instead that compiler includes SDT interpreter, we suppose to implement SDT so as to embed SDT processes into target objects. It is to say SDT compiler. The idea for the implementation is quite simple. To explain

Figure A.4: SDT Interpreter
it with above example, in this implementation, system functions, like if, head, rest, ..., are not assumed for the functions which evaluate their values immediately, but functions which calculate code streams, i.e. continuations, to evaluate original system functions. This methodology corresponds to Unfolding process which is discussed in the sphere of program translations. We must note that branches in generated code streams are caused not only by system function if, but also by a process which concerns to a parsing process caused by " \uparrow ".

A.3.3 Discussion on the Choice of Implementation; Interpretation or Embedment

So far, for the methodology of implementing SDT, we have discussed on two ways, one is to involve SDT interpreter in compiler, and the other to embed SDT procresses in target object codes via Unfolding. Here, we discuss and compare them from the points of view of software development stages. We call the former Interpretation method, the latter Embedment Method, in followings.

On the efficiency of generated codes, as described in the first section, it is expected that Interpreter Method has advantage. In spite of inefficiency of Embedment Method, it has advantages. One of them is the posibility to realize a system which includes self-compiler in it. Such a system is realized via embedded codes concerning to SDT interpreter, and the code generates codes and/or data which can be regarded as function closures. However, this aspects of Embedded Method is not the subject of this paper. It is assumed to be harmful under the discussions stated below. The subject here is development cycles of programming language systems. On this view point, most important feature of Embedment Method is for developpers to debug and/or varification of developping systems on
object codes level.
Considering the advantage of Interpreter Method on efficiency of code generation and the advantage of Embedment Method on debugging environment, there is one posibility not to select one from these two methods, but to select one in accoding to stages of development. On first stage of development, developpers achieve coding and debugging on core parts of the system. On middle stages of development, using Embedment Method, developpers are going on coding and debugging without obstacles such as stack data for parsing which are already varified. On final stage, using Interpreter Method, efficient codes are obtained. We can adopt such a step wise development process. The varification of the step-wise development on actual systems is a future work.

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques, and Tools. Addison-Wesley, 1986.
[2] A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-Wesley, 1977.
[3] A.V. Aho and S.C. Johnson. LR parsing. ACM Computing Surveys, 6(2):99-124, 1974.
[4] G. V. Bochmann. Semantic evaluation from left to right. CACM, 19:55-62, 1976.
[5] B. Bollobas. Modern Graph Theory. Springer-Verlag, 1998.
[6] B. Burshteyn. Generation and recognition of formal languages by modifiable grammars. SIGPLAN Notices, 25(12):45-53, 1990.
[7] B. Burshteyn. On the modification of the formal grammar at parse time. SIGPLAN Notices, 25(5):117-123, 1990.
[8] H. Christiansen. A survey of adaptable grammars. SIGPLAN Notices, 25(11):35-44, 1990.
[9] A. Colmerauer. Metamorphosis grammars. In Lecture Notes in Computer Science 64, pages 133-189. Springer-Verlag, 1978.
[10] C. Donnelly and R. Stallman. Bison: The YACC-compatible Parser Generator Bison Version 1.25, Nov. 1995. http://www.gnu.org/manual/bison/index.html.
[11] J. Earley. An efficient context-free parsing algorithm. Comm. ACM, 13(2):94-102, 1970.
[12] G. Fischer. Incremental LR (1) parser construction as an aid to syntactical extensibility. PhD thesis, Dortmund Univ., 1980. Tech. Report 102, Department of Computer Science, Univ. of Dortmund, Federal Republic of Germany, 1980.
[13] J. Heering, P. Klint, and J. Rekers. Incremental generation of parsers. IEEE Transactions on Software Engineering, 16(12):1344-1351, 1990. Also in SIGPLAN Notices, 24(7):179-191, 1989.
[14] E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation. Addison-Wesley, 1979.
[15] R. N. Horspool. Incremental generation of LR parsers. J. of Computer Languages, 15(4):205-223, 1990.
[16] S. C. Johnson. YACC: yet another compiler-compiler. Bell Laboratories, unix supplementary documents, vol. 1 edition, 1986.
[17] N. D. Jones and M. Madsen. Attribut-influenced LR parsing. In LNCS, volume 94, pages 393-407. Springer-Verlag, 1980.
[18] U. Kastens. Ordered attribute grammars. Acta Infomatica, 13:229-256, 1980.
[19] D. Kato. A proposal of categorial attributted grammars. Computer Software, 12(2):52-66, 1995. in Japanese.
[20] D. E. Knuth. Semantics of context free languages. Math. Sys. Theory, 2(2):127-145, 1968.
[21] D. E. Knuth. Semantics of context free languages. Math. Sys. Theory, 5(1):95-96, 1971.
[22] C. H. A. Koster. Affix grammars. In Proc. of the IFIP Work. Conf. on Algol 68 implementation, pages 95-109, Amsterdam, 1972. North Holland.
[23] D. Sandberg. LITHE: a language combining a flexible syntax and classes. In Conference Record of the Ninth Annual ACM Symposium on Principles of Programming Languages, pages 142-145. ACM, 1982.
[24] B. C. Smith. Reflection and semantics in Lisp. In Proceedings of ACM Symposium on Principles of Programming Languages (POPL), pages 23-35, 1984.
[25] A. Tanaka and T. Watanabe. An extensible LR parser generator - a case study of composable metalevel extensions -. In IWPSE99 Proceedings, pages 1-5, 1999. http://dontaku.csce.kyushu-u.ac.jp/IWPSE99/Proceedings/17.pdf.
[26] K. Thulasiraman and M. N. S. Swamy. Graphs: Theory and Algorithms. John Wiley \& Sons, 1992.
[27] A. van Wijngaarden. Orthogonal design and description of formal languages. Technical Report MR 76, 1965.
[28] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars. ACM SIGPLAN Notices, 24(7):131-145, 1989.
[29] M. Wand and D. P. Friedman. The mystery of the tower revealed: A non-reflective description of the reflective tower. In Proceedings 1986 ACM Symposium on LISP and Functional Programming, pages 298-307, August 1986.
[30] B. Wegbreit. Extensible programming languages. Harward University, Cambridge, Massachusetts, 1970. Garland Publishing Inc., New York \& London, 1980.
[31] B. Wegbreit. The ECL programming system. In Proc. of FJCC 39, pages 253-261. AFIPS, 1971.
[32] R. Weyrauch. Prolegomena to a theory of mechanized formal reasoning. Artificial Intelligence, 13(1):133-170, 1980.

Publications

[1] D. Kato, "A Proposal of Categorial Attributted Grammars", Computer Software, Vol. 12, No. 2, pp. 52-66, 1995. (in Japanese)
[2] D. Kato, "A Proposal of Reflective Context Free Grammars", in Proc. of ITCCSCC2001 in Tokushima, pp. 556-559, July, 2001.
[3] D. Kato, "Incremental Construction of LALR(1) Parsers and its Application to RCFG", (under submission).
[4] D. Kato, "Reflective Context-Free Grammar", (under submission).

