
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
自己反映的構文解析系とコンパイルタイムリフレクシ

ョンに関する研究

Author(s) 加藤, 大志朗

Citation

Issue Date 2002-06

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/930

Rights

Description Supervisor:片山 卓也, 情報科学研究科, 博士

A Research on Reflective Parsing System and

Compile-time Reflection

by

Daijiro KATO

Submitted to
Japan Advanced Institute of Science and Technology

In partial fulfillment of the requirements
For the degree of

Doctor of Philosophy

Supervisor: Professor Takuya Katayama

School of Information Science
Japan Advanced Institute of Science and Technology

June 2002

Copyright c© 2002 Daijiro Kato

Abstract

The purpose of this paper is to construct a frame work of compiler-compiler for compile-
time extensible language systems. This paper consists of three parts. Firstly, a self-
extensible formal language system, named Reflective Context-Free Grammar (RCFG), is
proposed. Secondly, an incremental construction method for LALR(1) parser is proposed.
And additionally, we discuss on a frame work of descriptions of semantics for production
rules which are newly introduced and embedded in program texts by users of compilers.

RCFG is one of self-extensible formal language systems, and an extension of Context-
Free Grammar (CFG). The extensibility is obtained so as to embed new production rules
which are desired to be used in the text following of the embedment. Typical point of
RCFG is self-extensibility. To formalize the self-extensibility on the framework of CFG,
we introduce a notion, named Augmented Forms (AF), and define derivation relation
on AF sequences. In this paper, we establish some properties on RCFG, including the
language class which is middle between Context-Free Language and Context-Sensitive
Language, and the property that each word derived by given RCFG is also derived by a
CFG which production rule set is identical to initial rule set of RCFG augmented with
embedded production rules in the word. Especially, the latter property designates the
characteristic of RCFG. Additionally, general parsing algorithm for RCFG, which is an
extension of Earley’s parsing algorithm for CFG, is given. Soundness and completeness
of the algorithm are established, and also, the complexity of the algorithm and some
restriction methods in order to accelerate parsing process are discussed.

In the second part of the paper, an incremental construction method for LALR(1)
paser is discussed. In the method, both of LR(0) graphs and Look Ahead Symbol Sets
are calculated in fully incremental manner, without use of any item set informations.
Algorithms for the method are presented, and the worst case complexity is discussed.
Adding to these, applications of the method for RCFG are discussed. To realize them,
we introduce some notions. Firstly, we rearrange a method for incremental construction
of LR(0) graphs so as not to use item set information. In conventional method for LR(0)
parse table construction, some kind of subsets of items, called core or kernel, are used
to identify states. Secondly, we introduce a notion for identification of states, named
MaxInc which does not contain any information on item sets, instead of kernels. For
incremental calculation of Look Ahead Symbol Set (LA), we introduce notions, named
Dependency Domain, E∆ for ε-productivity judgment, and some other functions for cal-
culation of (LA) with ε-productivity conditions. These notions essentially contribute to
the incremental method proposed in this paper. We establish the equivalence between
results obtained by conventional method and by our method.

In the additional part of the paper, we introduce a variation of Syntax Directed Trans-
lation (SDT) as a frame work for descriptions of semantics of new production rules which
are introduced by users of compilers. As appendent arguments, we discuss on two kinds
of implementation model of extended SDT from the point of view of development stages
of programming language systems.

Acknowledgements

The author wishes to thank his principal advisor Professor Takuya Katayama of Japan
Advanced Institute of Science and Technology, who has pointed out instructive sugges-
tions on this paper. The author has sincere gratitude to him for granting the author this
invaluable and irreplaceable oppotunity. The author wishes to thank his advisor Assosi-
cate Professor Katsuhiko Gondow and his advisor Associate Professor Hajime Ishihara
of Japan Advanced Institute of Science and Technology for their helpful discussions and
suggestions. The author wishes to thank Professor Atsushi Ohori of Japan Advanced
Institute of Science and Technology and Professor Takehiro Tokuda of Tokyo Institute of
Technology for thier helpful discussions and accurate comments. The author wishes to
thank Assistant Toshiaki Aoki of Japan Advanced Institute of Science and Technology
for his helpful discussions and suggestions, and for his obliging advices. The author is
also thankfull with Mr. Yasser Kotb who helped the author to detect insufficiency on the
early works, with all members of Katayama-lab. in JAIST, and with all people at Kagawa
University who have presented me passive but enough appreciation on my activities.

i

Contents

1 Introduction and Related Works 1

2 Preliminaries 4
2.1 Basic Notations . 4
2.2 Graph . 5
2.3 String and Language . 6
2.4 Finite Automata and Regular Expression 6
2.5 Context-Free Grammar . 8
2.6 Parsing Algorithms for CFG . 9

3 Reflective Context-Free Grammar 13
3.1 Definition of Reflective Context-Free Grammar 14

3.1.1 Formalization of RCFG . 14
3.1.2 Notations and Terminologies for RCFG 15
3.1.3 Derivation and Language of RCFG 16

3.2 Examples . 21
3.3 Properties on RCFG . 23
3.4 General Parsing Algorithm for RCFG . 26

3.4.1 Algorithm . 27
3.4.2 Soundness and Completeness . 28
3.4.3 Discussion on Complexity . 31

4 Incremental Construction of LALR Parser and its Applications for RCFG 33
4.1 Introduction . 33
4.2 Discussions on Finite Automata . 34

4.2.1 Definition of Fusion of FAs and Some Properties 34
4.3 Discussions on LR(0) Parsing Table (State Transition Graph) 42

4.3.1 Mono-Graph . 42
4.3.2 MaxInc: a descriptor for state identification of LR(0) 44

4.4 Discussions on Look Ahead Symbol Set . 53
4.4.1 Dependency Domain . 54
4.4.2 Ind∆: an index for LA . 57
4.4.3 Space Reduction Method on DD and Ind∆ 64
4.4.4 A Supplement of the Section . 65

4.5 Algorithms . 65
4.6 Examples . 76
4.7 Discussions on Efficiency of the Algorithms 80

4.7.1 Worst case Analysis of E∆ . 80

ii

4.7.2 About implementations and complexities of E∆, Top∆, Dep∆ . . . 80
4.7.3 Worst case analysis of fusion . 81
4.7.4 About implementation of MaxInc and its Time/Space complexity . 82

4.8 About LR Parsing on RCFG . 82

5 Conclusion and Future Works 85

A Discussions on Semantic Descriptions for Augmented Rules 86
A.1 Motivation on Semantic Description for Augmented Rules 86
A.2 An example of description by SDT . 89
A.3 An Implementation of SDT . 91

A.3.1 Attributted Grammars . 91
A.3.2 An implementation of SDT using AG 92
A.3.3 Discussion on the Choice of Implementation; Interpretation or Em-

bedment . 96

Publications 100

iii

Chapter 1

Introduction and Related Works

Since Fortran, i.e., earliest high level programming language, was developed, various pro-
gramming languages have been developed under various concepts. Some of them are still
used for developments of actual systems, and also, some are objects of improvements.
Besides them, significantly many programming languages have been proposed. However,
it is obvious that there is a common problem among all of them, the problem how to give
them their syntax and semantics, which is one of essences on development of programming
language.

Most of syntaxes of programming languages are static. In other words, after a syntax
of such a programming language is fixed, the language which is accepted by the system
is also fixed. On the other hands, there are several programming languages which have
dynamic syntaxes. For example, languages such as C are provided with apparent diversity
of syntax, using pre-processor. Languages such as Algol68, Dec10-Prolog and SML/NJ
enable for programmer to define new operators in program texts, which have some re-
strictions on definition. Languages such as C++ enable for programmer to define new
semantics only on existing operators (over-loading), and so on. It is possible to regard
all of them to have dynamic syntaxes, which means that their systems have syntaxes
extensible on run-time without reconstructions of systems themselves. On languages de-
scribed above, excepting C and C++, the extensibility is based on Operator Precedence,
for Dec-10 Prolog, and TLG (Two Level Grammar) [22, 27], for Algol68. Implementation
of extensibility of syntax based on Operator Precedence has advantage in the meaning
that it has clarity and is easy to understand. However, because the language class of
Operator Precedence is narrow, it has restriction when one applies it to extensibility on
parts of a grammar other than concerning to operators. TLG is one of very complicated
grammars. It has less readability, and moreover, it has no efficient parsing algorithm, if
we make no restrictions on it [22].

In this paper, using a formal language system, RCFG (Reflective Context-Free Gram-
mar), which is extensible on parse-time, we establish and propose a new parsing system
which is able to deal language class larger than that of LALR(1). A hint for a frame work
in which semantic descriptions are given for newly augmented production rules during
parsing, the augmentation is enabled under the formalism of RCFG, are discussed in Ap-
pendix A. On the frame work, we consider two kinds of implementation model of extended
Syntax Directed Translation (SDT) scheme, from the point of view of development stages
of programming language systems.

RCFG is one of variations of CFG (Context-Free Grammar), which language class is

1

middle between CFL (Context-Free Language) and CSL (Context-Sensitive Language),
and which has an efficient parsing algorithm that is an extension of Earley’s parsing
algorithm for CFG [11]. Details of RCFG are provided in Chapter 3. To construct a
parse-time extensible formal language system, it is an easy way to enable to embed newly
defined production rules in text which is just being parsed. The effective range of newly
defined production rule is after the embedded position of the rule. Deletion of production
rule is not considered in the frame work of RCFG.

Some frame works for extensible grammars have been proposed([6, 7, 8, 30, 31], etc.).
Many of those ([6, 7, 8], etc.) are based on Definite Clause Grammar [9], so as summarized
in [8], and some others are based on Attributted Grammar [20, 21] and its resemblances
[28]. There are several purpose to introduce extensibility to grammars. One of them is to
describe the correspondence between declarations of variables of programming language
and its uses. This problem requires a method in order to restrict the effective range of
definitions of variables. So, in many approaches, parse-time augmentation and deletion of
production rules have been indispensable aspects on extensible grammars. However, the
function of deletion of production rules causes too much computability of the systems,
which is equivalent to Turing Machine. Mostly alike system to RCFG is ECL [30, 31] on a
few points. ECL is one of extensions of CFG, permits deletion of production rules, and its
language class involves CSL, if no restrictions. Newly augmenting rules are extracted by a
finite automaton with outputs defined with EC Grammar. We give an example language
in Example 3.2.2, which is accepted by RCFG but ECL, that is of tricky one in some
sense.

Our main purpose is to construct a frame work of compiler-compiler which is upper
compatible to YACC [16] or Bison [10], and moreover, which can treat extensible gram-
mar. According to this purpose, some restrictions and needs arise. 1) the base grammar
processed by the system must be an extension of CFG. It must includes CFG as a special
case. 2) with some restrictions on the base grammar, LALR(1) parsing scheme or some
other scheme resemble to it can be processed on the system. 3) ambiguity of given gram-
mar must be solved in YACC style. 4) about error handling. These are the reason why
we propose RCFG, and 1) and 2) are solved in this paper. 3) and 4) are remained as a
future works. Moreover, a frame work in which semantic descriptions are given for newly
augmented production rules during parsing are discussed in Appendix A.

One might have a question on the expressive power of RCFG, because it abandoned
the function of deletion of production rules. However, this simple choice leads us to har-
vests as a good properties of RCFG. No deletion means that all newly defined production
rules have global scopes. Even if the scope is restricted to only global one, many appli-
cations are remained, e.g., operator declaration, introduction of new sentences, and so
on. Additionally, it is well-known that careless deletion destroys modularity. Above all,
RCFG gains efficiency on parsing. So our approach is quite a choice. The condition 1),
above, is cleared with RCFG.

For a solution of the condition 2) above, we introduced a new approach of incremen-
tal construction of LALR(1) parser. A few methods had been proposed [12, 13, 15] as
incremental construction system of LR parsers. All of these are not fit to our purpose,
because they are for environments of development of programming languages, but for
parsing system on extensible grammars. Their systems have complete item sets on each
stage of computation. Calculation of Look Ahead Set is not clearly mentioned. It is con-
jectured to be calculated by conventional methods [1, 2, 3, 14], which is not incremental.

2

In contrast with these works, in our approach, each states of LR(0) parse table do not
have any information of item set, and Look Ahead Symbol Set (LA) are calculated in
fully incremental manner. To achieve it, several notions are introduced, and properties
on them are established.

For semantic descriptions of production rules newly augmented during parsing, we
start discussion with Syntax Directed Translation (SDT) scheme. SDT is a method of
translating string to actions. SDT was introduced in [23] for the programming language
LITHE which have flexible syntax. In Appendix A, we show a way to provide semantics
for dynamically augmented rules, extending SDT so as to introduce a reflective method.

3

Chapter 2

Preliminaries

2.1 Basic Notations

We use the notion of set as a priori one, and sometime define sets denotatively such as,
{x | P (x)} with a predicate P . x ∈ A denotes that a set A contains an object x, and x is
called an element of A . An empty set which contains no element is denoted by φ. A set
which contains finite elements in it is called a finite set, and a set which contains infinite
elements in it an infinite set. A ⊂ B denotes that B contains all elements of A, or simply
A is called a subset of B. Especially, A ⊂ B includes a case A = B. For a finite set A
= {x1, x2, . . . , xn}, the number of elements of A is denoted by #(A) which is equal to n.
Standard operations on sets, union, intersection, difference, Cartesian product and power
set are denoted by A ∪ B, A ∩ B, A \ B, A × B and Power(A), respectively. For a set of
sets, say C = {A1, A2, . . .}, ⋃

A∈C

A

denotes
A1 ∪ A2 ∪ · · · ,

and also, ⋂
A∈C

A

denotes
A1 ∩ A2 ∩ · · · ,

respectively. Especially, in this paper, we adopt the notation

⋃
C

for the former expression.
For given C ⊂ Power(A), if an element B of C satisfies the condition that ∀B′ ∈ C,

B ⊂ B′ implies B = B′, then B is called a maximal element of C, or simply maximal.

Binary Relation R on sets A and B is a subset of A × B. When elements x ∈ A and
y ∈ B have relation R, we write xR y or (x, y) ∈ R. When elements x ∈ A and y ∈ B
do not have relation R, we write x �R y or (x, y) �∈ R. For a relation R on A × A, if
∀x ∈ A, x R x, then R is called reflective, if ∀x, y, z ∈ A, xR y and y R z imply x R z, then

4

R is called transitive, and if ∀x, y ∈ A, x R y implies y R x, then R is called symmetric.
A relation which is reflective, transitive and symmetric is called equivalent relation. For
given set A and its division D = {Ai}, where

⋃
D = A, if D satisfies the conditions,

i) ∀i, Ai �= φ,

ii) ∀i, j, if i �= j, then Ai ∩ Aj = φ,

iii) ∀i, ∀x, y ∈ Ai, x R y,

iv) ∀i, j, s.t., i �= j, ∀x ∈ Ai, y ∈ Aj , x �R y,

D is called quotient set and denoted by A/R. Each element of D is called equivalent class.
If an element x of A is involved in an equivalent class Ai, Ai is denoted by R[x], or simply
by [x].

A function f is assumed to be a subset of A×B, which satisfies the condition ∀x ∈ A,
there exists an element (x, y) ∈ f for some y ∈ B, and ∀x ∈ A, (x, y1), (x, y2) ∈ f implies
y1 = y2. The function type of f is denoted by A → B. A is called the domain of the
function, and B the co-domain. If (x, y) ∈ f , y is written by f(x). A function is also
called a mapping. If given function f satisfies the condition that ∀x, y ∈ A, f(x) = f(y)
implies x = y, then f is called a one-to-one mapping. If given function f satisfies the
condition that ∀y ∈ B, there exists an element x ∈ A, s.t., f (x) = y, then f is called an
onto mapping. A mapping which is one-to-one and onto is also called isomorphism. For
given sets A and B, if there exists a one-to-one, onto mapping between A and B, then A
and B are called isomorphic, sometimes with some structural conditions.

Especially in this paper, each subset R of A × B is assumed as a function R : A →
Power(B), so as that R(x) = {y ∈ B | (x, y) ∈ R}. So, for given functions f, g : A →
Power(B), treating f and g as subsets of A ×B, we define operations on functions f ∩ g
and f ∪ g, as below,

(f ∩ g)(x) = f(x) ∩ g(x),

(f ∪ g)(x) = f(x) ∪ g(x).

2.2 Graph

A graph G is given by a 2-tuple (V, E), where V is called a vertex set of verteces, and E
⊂ Power(V) called an edge set of edges. Each element of E is an unordered pair of V .
The number of elements of each element of E is one or two. An oriented graph, or called
directed graph, is given also by (V, E), where V is a vertex set and E is a subset of V ×V ,
which is called an edge set of arcs. An arc is also called an edge. Sometimes, V or E may be
infinite sets, however, we deal with only finite sets and directed graphs, moreover, usually
each vertex and each edge are labelled, in this papper. An edge (x, y) ∈ E designates
that the edge joins verteces x and y, x is called a predecessor and y a successor. A mutual
sequence of verteces and edges, say v0, e1, v1, . . . , en, vn is called path, when each ei joins
vi−1 and vi, where vi ∈ V and ei ∈ E. In this case, vn is called reachable from v0.

A directed graph is called a tree, if the following conditions are satisfied,

5

i) there is a unique vertex, called root, which has no predecessor,

ii) each vertex is reachable from the root,

iii) each vertex except the root has unique predecessor,

iv) all successors of each vertex, if exist, have an order from left to right.

For given directed graph G = (V, E) and V ′ ⊂ V , vertex induced subgraph G′ is given
so as,

G′ = (V ′, E ∩ (V ′ × V ′)).

2.3 String and Language

An alphabet is a finite set of symbols, occasionally denoted by Σ with a suffix. A string is
a finite sequence of symbols, sometimes denoted by u,v and w with a suffix. The length of
a string w is written by | w | which denotes the number of symbols that w consists of. A
zero length string is called empty string or null string, and denoted by ε. Concatenation
of two strings w1 and w2 is simply denoted by w1w2. On concatenations of strings, the
equation w1(w2w3) = (w1w2)w3 holds for any strings w1, w2 and w3.

A set of whole strings which consists of symbols in Σ is denoted by Σ∗, and Σ ∗ \{ε},
the set which consists of whole positive length strings, is denoted by Σ+. A language is
a subset of Σ∗. An element of a language is also called word. A product of two languages
L1 and L2 is denoted by L1L2, and defined as,

L1L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}.

2.4 Finite Automata and Regular Expression

A Finite Automaton (FA) A is defined with 5-tuple as below,

A = (Σ, Q, δ, q0, F)

Σ is a finite set of symbols (alphabet),

Q is a finite set of states,

δ is a state transition function, which function type depends on the type of Automata,
DFA(Deterministic Finite Automata):

δ : Q × Σ → Q

εNFA(Non-deterministic Finite Automata with ε-transitions)

δ : Q × (Σ ∪ {ε}) → Power(Q)

q0 is initial state,

F is a subset of Q called final states.

6

For given εNFA, an ε-Closure for each state q is denoted by εC(q), and defined by,

1. q ∈ εC(q),

2. q′ ∈ εC(q), then δ(q′, ε) ⊂ εC(q),

3. εC(q) is a minimum set which satisfies above two conditions.

εC is extended to a function εĈ : Power(Q) → Power(Q) defined as,

εĈ(U) =
⋃
q∈U

εC(q),

where U is a subset of Q. We write εC also for εĈ, if no ambiguity. When to emphasize
the ε-Closure is under the transition function δ, we write εC(δ, q) or εC(δ, U).

Lemma 2.4.1

εC(U ∪ V) = εC(U) ∪ εC(V)

εC(εC(U)) = εC(U)

These are well-known results. Proofs are omitted.

The transition function δ is usually extended by following manner,

for DFA:

δ∗(q, ε) = q,

δ∗(q, w a) = δ(δ∗(q, w), a),

for NFA:

δ̂(U, ε) = εC(U),

δ̂(U, w a) = εC(
⋃

q∈δ̂(U,w)

δ(q, a)).

We write δ for δ∗ or δ̂, if no ambiguity.

The language L(A) of given DFA A is stated as,

L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ F},

and also the language L(A) of given εNFA A is stated as,

L(A) = {w ∈ Σ∗ | δ({q0}, w) ∩ F �= φ}.

7

For given εNFA A, a DFA A′ which is equivalent to A is constructed as,

DFA A′ = (Σ, Q′, δ′, q′0, F
′),

where,

Q′ = Power(Q),

δ′ = δ̂,

q′0 = εC(q0),

F ′ = {U ⊂ Q | U ∩ F �= φ},

is called Subset Construction, and denoted by SC(A) in this paper. See [14] for detail.

Regular Expression (RE) forms a language class equivalent to the class of FA. In this
paper, sometimes we adopt the following notations for RE,

empty language φ, empty string ε,
union R1 + R2, product R1R2,
Kleene closure R∗.

RR∗ is abbreviated to R+.

2.5 Context-Free Grammar

Context-Free Grammar (CFG) is defined with 4-tuple G = (V, T, P, S), where,

V is a finite set of syntactic variables, or called non-terminals,

T is a finite set of terminal symbols,

P is a finite set of production rules, which is a finite subset of V × (V ∪ T)∗,
S ∈ V is start variable.

Each production rule (A, α) ∈ P is denoted by A → α.
The derivation relation ⇒ on (V ∪ T)∗ is defined as,

γ1Aγ2 ⇒ γ1αγ2,

if A → α ∈ P , for each γ1, γ2 ∈ (V ∪T)∗. The reflective transitive closure of ⇒ is denoted

by
∗⇒.
The language stated by G is denoted by L(G), so as,

L(G) = {w ∈ T∗ | S
∗⇒ w}.

8

2.6 Parsing Algorithms for CFG

In this section, two parsing algorithms, i.e. Earley’s algorithm [11] and LALR(1) [1, 2, 3],
are summarized. Earley’s algorithm is the basis of general parsing algorithm for RCFG
defined in Section 3.4.2. The definitions for LALR(1) stated here (Definition 2.6.3 and
2.6.7) are not standard. The definitions are constructed so as to make the structur of
LALR(1) graph clear and to make incremental construction method discussed in Chap-
ter 4 easily. For each algorithms, i.e. Earley’s algorithm, LALR(1) and general parsing
algorithm for RCFG, notions item are defined. The term ‘item’ is used for the distinct
notions of each algorithms, according to conventional manner.

Earley’s Algorithm

Algorithm 2.6.1 (Earley’s Algorithm)
Suppose a CFG G = (V, T, P, S) is given. An item is denoted by [A → α • β, i], where
A → αβ ∈ P and i ≥ 0 is an integer. For an input string w = a1a2 · · ·an, parse lists
I0, I1, . . . , In are being calculated during parsing in Ealey’s algorithm. Each parse list Ij

consists of items.

Initial Phase:

1) initialize I0, I1, . . . , In to φ,

2) add item [S → •α, 0] to I0, for each S → α ∈ P ,

repeat 3), 4) until no new item is added to I0,

3) if [A → α • Bβ, 0] and [B → γ•, 0] are in I0, then add [A → αB • β, 0] to I0,

4) if [A → α • Bβ, 0] is in I0, then add [B → •γ, 0] to I0 for each B → γ ∈ P ,

Main Loop:
repeat 5), 6) until no new item is added to I0, . . . , In,

5) if [A → α • a β, i] is in Ij, and aj+1 = a, then add [A → α a • β, i] to Ij+1,

6) if [A → α • Bβ, i] is in Ij and [B → γ•, j] is in Ik, then add [A → α B • β, i] to Ik,

Judgement:

7) if [S → α•, 0] is in In, then the input is accepted, otherwise rejected.

LALR(1)

In following descriptions, each given CFGs are assumed to be Extended Grammars. For
given CFG G = (V, T, P, S), an extended grammar G′ is given by,

G′ = (V ′, T, P ′, S′),

9

where,

V ′ = V ∪ {S ′},
P ′ = P ∪ {S ′ → S},

for newly added syntactic variable S ′.

Definition 2.6.2 (Item, Item Set)
Item Set is defined as a subset of V × (V ∪ T)∗ × (V ∪ T)∗. Each item (A, α, β) ∈ V ×
(V ∪ T)∗ × (V ∪ T)∗ is denoted by A → α •β. For given CFG G = (V, T, P, S), item
set Item derived from G is defined as

Item = {A → α • β | A → αβ ∈ P}.

When to restrict it on items which have syntactic variable X on left-hand side, it is
denoted by Item(X),

Item(X) = {X → α • β | X → αβ ∈ P}.

When to emphasize that Item is derived from CFG G or its production rule set P , we
write ItemG, ItemP or Item(P), and also ItemG(X) or ItemP (X).

Definition 2.6.3 (LR(0) graph)
For given CFG G, LR(0) graph (εNFA) lr(G) derived from G is defined as

lr(G) = (V ∪ T, Item ∪ {q0}, δ, q0, φ)

δ(q0, ε) = {S → •α | S → •α ∈ Item}
δ(q0, X) = φ (X ∈ V ∪ T)
δ(A → α • Xβ,X) = {A → αX • β}
δ(A → α • Xβ, Y) = φ (X �= Y)
δ(A → α • Xβ, ε) = {X → •α | X → •α ∈ Item}

From now on, we prepare basic notions and notations for items.

Definition 2.6.4 (εItem, Reduce Item)
For given CFG G = (V, T, P, S), let U be a set of items, wrote U ⊂ Item. A set of all
items which dot are on top of right-hand side, i.e., X → •α, is called εItem. It is strictly
defined as

εItem = {Y → •α | Y → α ∈ P}.
We call every elements of εItem , also, εItem. A set of εItems, concerning to given
syntactic variable X, is denoted by εItem(X), and defined as,

εItem(X) = {X → •α | X → α ∈ P}.

A kind of items, X → α•, is called Reduce Item.

10

Definition 2.6.5 (Root, Kernel)
For given εNFA lr(G) = (V ∪ T, Item ∪ {q0}, δ, q0, φ) of given CFG G, if state q of
SC(lr(G)) = (V ∪ T, Power(Item ∪ {q0}), δ′, q′0, φ) contains a reduce item A → α•,
Root(q, A → α•) denotes a set of states in which an item A → •α is produced and it is
a root of A → α• in q.

Root(q, A → α•) = {q′ ⊂ Item ∪ {q0} | δ′(q′, α) = q, A → •α ∈ q′}.
Also we define Kernel Set of State q ∈ Power(Item ∪ {q0}), denoted by Ker(q), such as,

Ker(q′0) = εC(q0) \ {q0},
Ker(q) = δ(q′, X) where δ̂(q′, X) = q.

In following, firstly, we collect notions concerning to LA, which are arranged in ex-
pected forms.

Definition 2.6.6 (First)
For given CFG G = (V, T, P, S) and given α ∈ (V ∪ T)∗, a set of first symbols derived
from α, denoted by First(α), is defined as

First(α) = {a ∈ T | α
∗⇒ aα′}.

If emphasizing the value of First is on grammar G or production rule set P , we write
FirstG(α) or FirstP (α).

Definition 2.6.7 (Look Ahead Sets of LALR(1))
For given CFG G = (V, T, P, S ′), let SC(lr(G)) = (V ∪ T, Q, δ′, q′0, ∗), where Q =
Power(Item∪{q0}) and q′0 = εC(δ, q0), then a function λ : Q× Item → Power((V ∪T)∗)
is defined as,

λ(q′0, S
′ → •S) = {$}

A → α • Xβ ∈ q, δ′(q,X) = q′ ⇒ λ(q,A → α • Xβ) ⊂ λ(q′, A → αX • β)
A → α • Bβ ∈ q ⇒ ∀B → γ ∈ P, βλ(q, A → α • Bβ) ⊂ λ(q,B → •γ)
∀i ∈ Item, s.t., i �∈ q ⇒ λ(q, i) = φ

(the value of λ is minimum set that satisfies above condition).
LA for each reduce item A → α• in each state of SC(lr(G)) is obtained by First(λ(q,

A → α•)).

Next propositon is well-known, but the substance of the proof is very important on
the discussions in Section 4.4. So, a brief proof is attached.

Proposition 2.6.8 For any given CFG G = (V, T, P, S) and any symbol sequences α,
β ∈ (V ∪ T)∗, First(ααβ) = First(αβ).

(proof) Consider two cases that i) ε is derived from α and ii) ε is not derived from α. On
the case i), First(αβ) = First(α) ∪ First(β) and First(ααβ) = First(α) ∪ First(αβ) =
First(α) ∪ First(α) ∪ First(β) = First(α) ∪ First(β), and on the case of ii) First(αβ) =
First(α) and First(ααβ) = First(α). On both cases, the equation holds.//

11

Proposition 2.6.9 For any εItem which belongs to state q of SC(lr(G)) and which left-
hand side is common syntactic variable, say A, A → •α, A → •β ∈ q ∩ εItem(A),

λ(q, A → •α) = λ(q, A → •β).

We write Indλ(q, A) = λ(q, A → • α), which means Induced LA Set for syntactic variable
A at state q.

12

Chapter 3

Reflective Context-Free Grammar

In this chapter, we introduce a formal language system, named Reflective Context-Free
Grammar (RCFG), which provides a basis of self-extensible language systems. RCFG
is a simple extension of CFG. Its language class is middle between CFL and CSL. And,
moreover, it has an efficient general parsing algorithm which is an extension of Earley’s
parsing algorithm for CFG. The idea of RCFG is quite simple. Production rule description
of CFG forms, such as,

Exp → Exp ′ +′ Exp.

The “Grammar of Production Rule of CFG” is also defined in CFG,

Production-Rule → V ariable ′ →′ Symbol-Sequence

Symbol-Sequence →
Symbol-Sequence → V ariable Symbol-Sequence

Symbol-Sequence → Terminal Symbol-Sequence.

This observation is the start point of RCFG. To realize self-extensible language system, we
adopt a way so as to enable for programmers and/or developers to embed new production
rules into program texts which is just being parsed. For example, in SML/NJ , new
operators will be defined by use of ‘infix’ of ‘infixr’, such as,

infix 5 newop;.

In this statement, a new operator ‘newop’ is defined as an infix operator with precedence
number ‘5’. Here, we ignore precedence number, because it is a parsing algorithm depen-
dent notion. If it is permitted that a portion of syntactic rules is used at defining new
operator, such that,

Exp newop Exp is also Exp,

we gain freedom to define new operators which have another types other than infix oper-
ators, as follow,

Exp ? Exp : Exp is also Exp. (3.1)

The main idea of RCFG is to embed portions of production rules in texts which are
derived by given RCFG augmented with these embedded portions themselves. In other
words, texts with which RCFG deals is ‘self referential’ in the sense that the text contains

13

information or partial definitions about text itself. This feature is the most significant
difference with CFG. For example, in RCFG, description (3.1) above is written as,

[Exp � Exp ? Exp : Exp].

‘[’ and ‘]’ indicate the sentense enclosed by these brackets is an embedded production
rule. ‘Exp’ is a terminal symbol which is introduced in order to express a syntactic
variable Exp. When such a description is derived from specified syntactic variable, an
augmentation of designated production rule happens.

In following of this chapter, we provide a formal definition of RCFG, definition of
derivation sequence, examples of RCFG, some properties on RFCG, general parsing al-
gorithm which is an extension of Earley’s parsing algorithm for CFG, soundness and
completeness of the algorithm and discussion on the efficiency of the algorithm, in this
order.

3.1 Definition of Reflective Context-Free Grammar

3.1.1 Formalization of RCFG

Definition 3.1.1 (RCFG)
RCFG G is defined with 8-tuple as below,

G = (V, T, M, D,Aug, f, P, s)

V is a finite set of Syntactic Variable,

T is a finite set of Terminal Symbol, especially including special symbols [, � ,], which
are used for parsing-time, augmentation (dynamic extension) of Production Rules ,

M is a subset of T , called Meta-Symbols,

D is a subset of M , called Definables,

Aug is a subset of V , each elements of which causes Augmentation of production rules,

f is a one-to-one, onto map, s.t., M → V ,which is used for interpretation of augmenting
production rules,

P is a finite set of (Initial)Production Rules, each production rule is an element of V ×
(V ∪ T)∗,

s is Start Symbol.

From now on, we introduce two notions, FSP (Feasible Set of Production rules) and
AF (Augmented Forms) to discuss and define dynamic augmentation of production rules.
In RCFG framework, it is not meant that any production rules will be augmented. Pro-
duction rules which are possibly augmented are predictable. Roughly, those candidates
are included in {X → α | X ∈ f(D), α ∈ (f(M)∪T)∗}, which is named FSP. In following
discussions, we assume the domain of newly augmented production rules is FSP.

AF is one of most important notions on RCFG. On CFG, derivation is defined on
sequences on syntactic variables and terminal symbols. In contrast to CFG, it is need

14

to express the augmentation of production rules, in RCFG. So, derivation on RCFG
must contains production rule information which denotes a collection of production rules
available to be used at the point of derivation. An intuitive explanation for AF is given
after the definition, again.

Definition 3.1.2 (feasible set of production rules)
For given RCFG G = (V, T, M, D, Aug, f, P, s), a feasible set of production rules FSP
is defined as bellow,

FSP = P ∪ (f(D) × (f(M) ∪ T)∗).

Definition 3.1.3 (Augmented Form)
Augmented Form of Syntactic Variable A ∈ V forms 4-tuple,

(A, P1, P2, w),

where P1 and P2 are finite sets of production rules, and w ∈ T∗. Also, Augmented Form
of Terminal Symbol a ∈ T forms,

(a, P1, P2, w).

We simply call Augmented Form (AF) for both.

To reduce descriptions in following discussions, an AF sequence (X1, P1, P2, u1) (X2,
P2, P3, u2) · · · (Xn, Pn, Pn+1, un) may be abbreviated to (α, P1, Pn+1, u), where α =
X1X2 · · ·Xn, u = u1u2 · · ·un.

Intuitively, an augmented forms (X, P1, P2, w) indicates that string w is derived from
X by use of production rules in P2, and, while derivation is done, some new production
rules which are embedded in w are attached to P1. P1 is to be seen as a ‘core rule set for
production,’ and P2 to be seen as a ‘augmented rule set by production.’

3.1.2 Notations and Terminologies for RCFG

Notation 3.1.4 (Notations on RCFG)

A capital letter, A, B, C, . . ., possibly with some suffix, denotes a syntactic variable
exclude special syntactic variables in Aug.

A lowercase letter, a, b, c, . . ., possibly with some suffix, denotes a terminal symbol
exclude ”[”, ”�” and ”]”.

An X, Y , Z, possibly with some suffix, denotes a syntactic variable or a terminal
symbol.

A u, v, w, possibly with some suffix, denotes finite sequences of elements of T , string.
A small Greek letter, α, β, γ, . . ., possibly with some suffix, denotes a finite sequence

of elements of T and V .
An element (A, α) of P and FSP is denoted using arrow as ’A → α’.
A P , Q, possibly with some suffix, denotes a finite subset of FSP.
We extend f to f̂ : T → V ∪ T , where

f̂(a) =

{
f(a) if a ∈ M
a otherwise.

15

Also, f̂∗ : T∗ → (V ∪T)∗ is defined recursively, where f̂∗(ε) = ε, f̂∗(aw) = f̂(a)f̂∗(w),
and, f̃ : T∗ → V × (V ∪ T)∗, where

f̃(w) =

{
A → α if f̂∗(w) forms A � α, A ∈ f(D) and α ∈ (f(M) ∪ T)∗
� otherwise.

We use f in order to denote one of all these functions, if no ambiguity.

Terminologies
When A is a member of f(M) then we term A a public variable. When A is a member

of f(D) then we term A a definable variable. When for a string [w] ∈ T∗, f(w) �= � then
we term [w] an embedded portion.

3.1.3 Derivation and Language of RCFG

Definition 3.1.5 (Derivation of RCFG)
A binary relation ⇒ on finite sequences of augmented forms is defined as,

1) ordinal case,

(α, P, P1, w1)(A, P1, Pn+1, w2)(β, Pn+1, Pn+2, w3)

⇒ (α, P, P1, w1)(X1, P1, P2, u1) · · · (Xn, Pn, Pn+1, un)(β, Pn+1, Pn+2, w3)

with constraints,

• A �∈ Aug,

• A → X1 · · ·Xn ∈ Pn+1,

• w2 = u1 · · ·un,

• ∀i = 1, . . . , n, if Xi ∈ T , then ui = Xi and Pi+1 = Pi,

2) reflective case,

(α, P, P0, w1)(p, P0, P
′
1, w2)(β, P ′

1, P
′
2, w3)

⇒ (α, P, P0, w1)([, P0, P0, [)

(X0, P0, P1, u0)(�, P1, P1, �)(X1, P1, P2, u1) · · · (Xn, Pn, Pn+1, un)

(], Pn+1, P
′
1,])(β, P ′

1, P
′
2, w3)

with constraints,

• p ∈ Aug

• w2 = [u0 � u1 · · ·un]

• p → [X0 � X1 · · ·Xn] ∈ P ′
1 and f(u0 � u1 · · ·un) has valid form of production

rule,

• ∀i = 0, . . . , n, if Xi ∈ T , then ui = Xi and Pi+1 = Pi,

• P ′
1 = Pn+1 ∪ {f(u0 � u1 · · ·un)} .

We write reflective transitive closure of ⇒ by
∗⇒.

16

This definition of derivation is some what complicated. In this definition, production
rule sets which occur in each AFs has no procedure to calculate them. Only they have
constraints on them, some of them are provided in definition explicitly as ‘constraints’
conditions as described above, and the other is implicitly provided in the definition, e.g.,
such as P1 in AF sequence (α, P0, P1, w1) (β, P1, P2, w2). Superficially, one might consider
that if appropriate combinations of production rule sets and strings were provided for
each AFs, then an unexpected derivation would happen. However, such an unexpected
derivation never occurs, because of the constraints described above, and this feature is
established with propositions stated in the following sections.

Here, we give an example which language is out of CFL.

Example 3.1.6 (Grammar out of CFG)
Consider RCFG G1 = (V, T, M, D,Aug, f, P, s), where

V = {s,p, A, B},
T = {0, 1, [, �,], A},

M = D = {A},
Aug = {p},
f(A) = A,

P = {s → pA,p → [A � B], B → ε | 0 B | 1B},

This example specifies a language L(G1) = {[A � w]w | w ∈ {0, 1}∗}. Since there is
no production rule in P , which has A on left-hand side, for any AF (s, P, P ′, u), after
a derivation (s, P, P ′, u) ⇒ (p, P, P ′, u1) (A, P ′, P ′, u2), only one derivation is able to
be done from AF (A, P ′, P ′, u2), using an augmented rule derived from p. A definition
of language of RCFG will be given in Definition 3.1.9 below. A derivation sequence for
terminal string [A � 01] 01 can be given as below,

(s, P, P ′, [A � 01]01)

⇒ (p, P, P ′, [A � 01])(A, P ′, P ′, 01)

⇒ ([, P, P, [)(A, P, P, A)(�, P, P, �)(B, P, P, 01)(], P, P ′,])(A, P ′, P ′, 01)

⇒ ([, P, P, [)(A, P, P, A)(�, P, P, �)(0, P, P, 0)(B, P, P, 1)(], P, P ′,])(A, P ′, P ′, 01)

⇒ ([, P, P, [)(A, P, P, A)(�, P, P, �)(0, P, P, 0)(1, P, P, 1)(B, P, P, ε)(], P, P ′,])

(A, P ′, P ′, 01)

⇒ ([, P, P, [)(A, P, P, A)(�, P, P, �)(0, P, P, 0)(1, P, P, 1)(ε, P, P, ε)(], P, P ′,])

(A, P ′, P ′, 01)

⇒ ([, P, P, [)(A, P, P, A)(�, P, P, �)(0, P, P, 0)(1, P, P, 1)(ε, P, P, ε)(], P, P ′,])

(0, P ′, P ′, 0)(1, P ′, P ′, 1)

where P ′ = P ∪ {A → 01}. If P ′ is given other than P ∪ {A → 01}, the derivation on
p must be fault. Of course, there are infinitely many choices to give arguments of AFs.
However, for successful derivation, there must be given valid combination of values, be-
cause any derivation must satisfy the constraints given in the definition of derivation. On
the above derivation example, the combination given is unique. Properties on arguments
of AFs on derivations are established in Section 3.3.

17

Similar to CFG, on RCFG, notions of derivation tree, leftmost derivation and rightmost
derivation are likely defined. These notions make clear the effective ranges of embedded
portions in the texts contain them. Especially, leftmost derivation is used in the proof of
completeness of the general parsing algorithm for RCFG, stated in Section 3.4.2.

Definition 3.1.7 (Leftmost Derivation) Leftmost derivation is, informally, stated so
that the subjects of derivation on each points are ‘leftmost’ syntactic variables. Formally,
it is stated with binary relation ⇒L, as follows,

1) ordinal case,

(v, P, P1, w1)(A, P1, Pn+1, w2)(β, Pn+1, Pn+2, w3)

⇒L (v, P, P1, w1)(X1, P1, P2, u1) · · · (Xn, Pn, Pn+1, un)(β, Pn+1, Pn+2, w3)

with constraints,

• A �∈ Aug,

• A → X1 · · ·Xn ∈ Pn+1,

• w2 = u1 · · ·un,

• ∀i = 1, . . . , n, if Xi ∈ T , then ui = Xi and Pi+1 = Pi,

2) reflective case,

(v, P, P0, w1)(p, P0, P
′
1, w2)(β, P ′

1, P
′
2, w3)

⇒L (v, P, P0, w1)([, P0, P0, [)

(X0, P0, P1, u0)(�, P1, P1, �)(X1, P1, P2, u1) · · · (Xn, Pn, Pn+1, un)

(], Pn+1, P
′
1,])(β, P ′

1, P
′
2, w3)

with constraints,

• p ∈ Aug

• w2 = [u0 � u1 · · ·un]

• p → [X0 � X1 · · ·Xn] ∈ P ′
1 and f(u0 � u1 · · ·un) has valid form of production

rule,

• ∀i = 0, . . . , n, if Xi ∈ T , then ui = Xi and Pi+1 = Pi,

• P ′
1 = Pn+1 ∪ {f(u0 � u1 · · ·un)} ,

where v ∈ T∗.
Definition 3.1.8 (Rightmost Derivation) Rightmost derivation is, informally, stated
so that the subjects of derivation on each points are ‘rightmost’ syntactic variables. For-
mally, it is stated with binary relation ⇒R, as follows,

1) ordinal case,

(α, P, P1, w1)(A, P1, Pn+1, w2)(v, Pn+1, Pn+2, w3)

⇒R (α,P, P1, w1)(X1, P1, P2, u1) · · · (Xn, Pn, Pn+1, un)(v, Pn+1, Pn+2, w3)

with constraints,

18

• A �∈ Aug,

• A → X1 · · ·Xn ∈ Pn+1,

• w2 = u1 · · ·un,

• ∀i = 1, . . . , n, if Xi ∈ T , then ui = Xi and Pi+1 = Pi,

2) reflective case,

(α, P, P0, w1)(p, P0, P
′
1, w2)(v, P ′

1, P
′
2, w3)

⇒R (v, P, P0, w1)([, P0, P0, [)

(X0, P0, P1, u0)(�, P1, P1, �)(X1, P1, P2, u1) · · · (Xn, Pn, Pn+1, un)

(], Pn+1, P
′
1,])(v, P ′

1, P
′
2, w3)

with constraints,

• p ∈ Aug

• w2 = [u0 � u1 · · ·un]

• p → [X0 � X1 · · ·Xn] ∈ P ′
1 and f(u0 � u1 · · ·un) has valid form of production

rule,

• ∀i = 0, . . . , n, if Xi ∈ T , then ui = Xi and Pi+1 = Pi,

• P ′
1 = Pn+1 ∪ {f(u0 � u1 · · ·un)} ,

where v∈ T∗.

In both of leftmost and rightmost derivations, reflective transitive closure for them are
denoted by

∗⇒L and
∗⇒R, respectively.

These definitions of leftmost derivation and rightmost derivation denote the general-
ity of the definition of derivation for RCFG. The occurrence of terminal strings in AF
sequences may make someone feel that the definition is not sophisticated. The need of ter-
minal strings, i.e. the fourth arguments of AFs, is clear, because, while embedded portions
are objects of terminal strings, intermediate AF sequences contain syntactic variables as
first arguments of AFs, which concern to the embedded portions, and production rules
just augmented must be determined with these intermediate AF sequences. Some kind
of circularity is needed in order to define self-extensibilities. The occurences of terminal
strings in AFs are of such circularity. Our approach for definition of derivation is close to
the stance of [6, 7], rather than ECL [30, 31].

The relations between general definition (Definition 3.1.5) and leftmost derivation
(Definition 3.1.7) and between Definition 3.1.5 and rightmost derivation (Definition 3.1.8)
are stated in the following section. As a consequence, they are quite similar to those of
CFG.

Derivation tree on RCFG is also defined, like CFG. Derivation tree is not indispensable
notion. However, it makes some properties on RCFG clear. To describe a derivation tree
for given derivation sequence, we write AFs ϕi,1, . . . , ϕi,n derived from AF ϕk,l, where
ϕi,j is the AF which is derived from ϕk,l and occurs at j-th position among AFs derived
at i-th derivation. Initial AF is written by ϕ0,1. For example, if s → a b ∈ P , where s
is the start variable and a and b are terminal symbols, a derivation (s, P, P, a b) ⇒ (a,
P, P, a) (b, P, P, b) is written by ϕ0,1 ⇒ ϕ1,1 ϕ1,2, where ϕ0,1 = (s, P, P, a b), ϕ1,1 = (a,

19

s

a b

Figure 3.1: An Example of Derivation Tree

S

[Exp � Exp ** Exp]

p

Figure 3.2: Effective Range of New Rule

P, P, a), ϕ1,2 = (b, P, P, b). The set of nodes of the derivation tree is a finite subset of
N × N. (k, l) is the parent of (i, 1), . . . , (i, n) and (i, j) is the j-th child of (k, l). Each
node of (i, j) is labelled with AF ϕi,j . When we illustrate a derivation tree in a graph,
we may omit each arguments of AFs labelled except their first argumens. For example, a
derivation tree of above example can be illustrated as Figure 3.1.

Effective range of newly added production rule is breafly illustrated in Figure 3.2. In
meshed part of the derivation tree, the new production rule is available to be used for
derivation.

Definition 3.1.9 (Language of RCFG)
For given RCFG G = (V, T, M, D, Aug, f, P, s), the language L(G) of G is defined as,

L(G) = {u ∈ T∗ | ∃P ′, P1, P
′
1 ∈ FSP, ∃w,w′ ∈ T∗, (s, P, P1, w)

∗⇒ (u, P ′, P ′
1, w

′)}.

Note: u = w = w′, P = P ′ and P1 = P ′
1 are concluded with the propositions which will

be shown below.
With definitions of derivation, leftmost (rightmost) derivation and language for RCFG,

we can define a notion of ‘ambiguity’ for RCFG, similarly to CFG.

Definition 3.1.10 (Ambiguity) For given RCFG G, if there is a word in L(G), for
which there are at least two distinct leftmost (rightmost) derivation sequences, G is called
ambiguous grammar, or simply ambiguous.

20

One may doubt the definition of ambiguity is too simple to state the notion, with
supposition that there are two distinct derivation sequences in each step of which AF
sequences are identical on their first arguments. It becomes clear that the supposition is
not true by propositions stated in Section 3.3. The essential points are that a derivation for
a variable p ∈ Aug must cause an augmentation of a production rule and no augmentation
occurs on ordinal cases on derivation, and, fourth arguments of each AFs are identical to
strings derived from the AFs.

3.2 Examples

Here, two examples are given. One is an example for Operator Declaration Problem, in
which a way how to give a grammar enables user to declare new operators is illustrated.
In this example, the grammar illustrated is an ambigous in order to reduce descriptions.
The other example is some what tricky one. In the later example, no production rules for
start variable are given in initial production rule set. However, because a production rule
for start variable can be augmented in texts, the language is not empty.

Example 3.2.1 (Operator declaration)
Consider RCFG G2 = (V, T, M, D, Aug, f, P, s), where

V = {s,p,DefList, Pat, Pat1, Exp, Id},
T = {[, �,], Exp, a, b, . . . , z, +, ∗},

M = D = {Exp},
Aug = {p},

f(Exp) = Exp,

P = {s → DefList Exp,

DefList → ε,

DefList → pDefList,

p → [Exp � Pat],

Pat → Exp Pat1 | Pat1,

Pat1 → Id Exp | IdExpPat1,

Exp → Id | Exp + Exp | Exp ∗ Exp,

Id → a | b | · · · | z | a Id | b Id | · · · | z Id}.
We illustrate a derivation sequence for a string “[Exp � exponential Exp of Exp] a
+ exponential b of c”. G2 is an ambiguous, because of the definition of production rule
concerning to variable Exp. We start with AF (s, P, P ′, u) for some appropriate P ′ and
u.

(s, P, P ′, u) ⇒ (DefList Exp, P, P ′, u)

⇒ (p, P, P1, u1)(DefList, P1, P2, u2)(Exp, P2, P
′, u3)

⇒ (p, P, P1, u1)(ε, P1, P2, u2)(Exp, P2, P
′, u3)

(at this point, it becomes clear that P1 = P2, u2 = ε. AFs with ε string are omitted from
now on,)

⇒ ([Exp � Pat], P, P1, u1)(Exp, P2, P
′, u3)

21

∗⇒ ([Exp � exponential Exp ofExp], P, P1, u1)(Exp, P2, P
′, u3)

(at this point, it becomes clear that P1 = P2 = P ∪ {Exp → exponentialExp of Exp}, and
u1 = “[Exp � exponential Exp of Exp]′′,)

⇒ (u1, P, P1, u1)(Exp + Exp, P2, P
′, u3)

∗⇒ (u1, P, P1, u1)(a + Exp, P2, P
′, u3)

⇒ (u1, P, P1, u1)(a + exponential Exp ofExp, P2, P
′, u3)

(this derivation is enabled, because a production rule Exp → exponential Exp of Exp is
in P2, which was augmented above derivation,)

∗⇒ ([Exp � exponentialExp ofExp]a + exponential b of c, P, P ′,

[Exp � exponentialExp of Exp]a + exponential b of c).

Example 3.2.2 (Tricky)
Here, an example which provides a reflective feature of RCFG is given. Consider RCFG
G3 = (V, T, M, D,Aug, f, P, s), where

V = {s,p, Pat},
T = {[, �,], s,p, a, b},

M = {p, s}
D = {s},

Aug = {p},
f(p) = p, f(s) = s,

P = {p → [s � Pat],

Pat → p | a Pat | Pat a | b Pat | Pat b}.

Initial production rule set P does not contain any rule for start variable s. Thus, in the
sense of CFG, all rules contained in initial production rule set P are nullable. However,
this grammar states a language,

L(G3) = {w1[s � w1pw2]w2 | w1, w2 ∈ {a, b}∗}.

How can we guess so? See the definition of derivation for RCFG (Definition 3.1.5) again.
On case 1), i.e. the ordinal case, derivation on a syntactic variable A is defined with a
production rule A → X1 · · ·Xn contained in a production rule set Pn+1, while Pn+1 is fixed
during derivations on X1, . . . , Xn. Is it circular definition, which leads to a contradiction?
Actually, it leads to no contradiction. Now, we observe a derivation sequence reaches to
a string ‘[s � p]’. From the initial AF (s, P, P ′, u), there are possibly infinite candidates
of AF sequences as a result of derivation by one step,

(s, P, P ′, u) ⇒ (X1, P, P1, u1) · · · (Xn, Pn−1, Pn, un).

However, because s �∈ Aug, (X1, P, P1, u1) · · · (Xn, Pn−1, Pn, un) and s → X1 · · ·Xn must
satisfy the constraints given in the case 1) of Definition 3.1.5. One of the constraints is
s → X1 · · ·Xn ∈ Pn+1 that is not in P . Hence, there must exist at least one AF sequence

22

derived from (X1, P, P1, u1) · · · (Xn, Pn−1, Pn, un), which contains an AF for p. There is
one choice ‘p’ for X1 · · ·Xn among infinite, possibly useless, candidates. As a hindsight,
this choice leads to a success on the derivation, because from the AF for p, an AF sequence
for a string ‘[s�p]’ is derived, and a new production rule s → p is augmented to current
production rule set P .

Why does the example seem to be confused? One of answers might be that the notion of
derivation is congenial to top down scheme, and augmentation of a new rule congenial to
bottom up scheme. A parsing process of this example will be given after the definition of
general parsing algorithm (Algorithm 3.4.2).

3.3 Properties on RCFG

Following arguments are basic properties on RCFG. Proposition 3.3.1 to 3.3.4 and 3.3.6
are used to establish soundness of Algorithm 3.4.2, Theorem 3.3.7 is used in the discussion
on the efficiency of parsing algorithm, and Theorem 3.3.15 gives a basis for the proof of
completeness of Algorithm 3.4.2. From these properties, it is able to see that RCFG is
quite a simple extension of CFG, and the formalism is free from procedural arguments.

Proposition 3.3.1 If (α, P1, P2, w)
∗⇒ (β, P ′

1, P
′
2, w

′) then P1 = P ′
1, P2 = P ′

2.

(proof) By induction on length of derivations. If length is zero, trivial. For one step
of derivation, there are three cases; a derivation occurs at leftmost-side, inner-point or
rightmost-side of the AF sequence. In all cases, it is straightforward from the definition
of derivation. //

Proposition 3.3.2 If (A, P1, P2, w)
∗⇒ (α, P1, P

′
1, w

′)(β, P ′
2, P2, w

′′) then P ′
1 = P ′

2, ∀A ∈
V .

(proof) By induction on length of derivations. If length is zero, trivial. For one step of
derivation, it is straightforward from the definition on derivation. It is easy to see that
the rest case holds, by use of Proposition 3.3.1. //

Proposition 3.3.3 If (α, P1, P2, w)
∗⇒ (β, P ′

1, P ′
2, w′) then w = w′.

(proof) By induction on length of derivations. If length is zero, trivial. For one step, it is
straightforward from the definition of derivation. //

Proposition 3.3.4 If (α, P1, P2, w)
∗⇒ (u, P ′

1, P ′
2, w′) then u = w = w′.

(proof) By induction on length of derivations with Proposition 3.3.3. //

Corollary 3.3.5 If (A, P1, P2, w)
∗⇒ (u, P ′

1, P ′
2, w′) for A ∈ V and u ∈ T∗ then P1 =

P ′
1, P2 = P ′

2, u = w = w′.

23

Proposition 3.3.6 If (A, P1, P2, w)
∗⇒ (α, P1, P ′

1, w′) (β, P ′
1, P2, w′′) ∗⇒ (w, P1, P2,

w) then P1 ⊂ P ′
1 ⊂ P2, for any A ∈ V . Moreover, if P1 is properly included by P2, w

contains at least one embedded portion.

(proof) By induction on length of derivations. If (A, P1, P2, w) ⇒ (w, P1, P2, w) by
one step, it is obvious; only on the case that A = p ∈ Aug and w is an embedded
portion, P2 properly includes P1. Under induction hypothesis, if (A, P1, P2, w)

∗⇒ (α,
P1, P ′

1, w′) (β, P ′
1, P2, w′′) and α and β are derivable to w′ and w′′ respectively, then,

from Proposition 3.3.2, also the the induction hypothesis holds. From the constraint of
case 1), Definition 3.1.5, i.e., about the case ui = Xi , it is obvious that if w contains no
embedded portion, then P1 = P2. The contrary is also easy to show. //

Theorem 3.3.7 If (A, P1, P2, u)
∗⇒ (u, P1, P2, u), then u is also a word of the language

of CFG G = (V, T, P2, A).

(proof) For any step of derivations of (A, P1, P2, u)
∗⇒ (u, P1, P2, u), it is easy to see

that if (α, P1, P2, u) ⇒ (β, P1, P2, u) on RCFG holds, α ⇒ β on CFG G holds, from
Proposition 3.3.6. //

Theorem 3.3.8 The language class of RCFG properly includes the language class of
CFG.

(proof) If all words of given RCFG G contains no embedded portion, i.e., there is no

derivation s.t. (s, P, P ′, u)
∗⇒ (α, P, P1, u1) (p, P1, P2, u2) (β, P2, P ′, u3), where

p ∈ Aug, or, there is no derivation s.t. (p, P, P ′, u)
∗⇒ (u, P, P ′, u), then, from

Proposition 3.3.6 and Theorem 3.3.7, the language of G is identical to the language of
CFG (V, T, P, s). So, all languages of CFG are included in the language class of RCFG.

Now, we consider a RCFG G1 in Example 3.1.6. L(G1) = {[A�w]w | w ∈ (T \{[,]})∗}.
L(G1) is not CFL from the pumping theorem on CFG [14]. So, the language class of CFG
is properly included by the language class of RCFG. //

Lemma 3.3.9 (Folding)
For any given RCFG G, L(G) is preserved after replacing a rule A → αX1X2β with a
new rules A → αHβ and H → X1X2, if X1 �= [and X2 �=], where H is a newly added
syntactic variable �∈ Aug.

(proof) It is almost identical to the discussion on CFG. //

Lemma 3.3.10 (Elimination of ε-rule)
For any given RCFG which language does not contain ε(ε-free), there exists a RCFG G′

which rule contains no ε-rule, and which language is identical to that of G.

(proof) It is almost identical to the discussion on CFG. //

24

Lemma 3.3.11 (Normal Form of RCFG)
For any given ε-free RCFG G, there exists a RCFG G′ which language is identical to that
of G′ , and moreover, of which each rule forms one of following three cases,

1. A → a, where A ∈ V and a ∈ T

2. A → B C, where A, B, C ∈ V

3. p → [B1 � B2], where p ∈ Aug and B1, B2 ∈ V

(proof) Same as the discussion on CFG. //

Note: ε-free RCFG means in same sense of CFG, which does not contain any production
rules that are derived to ε, and moreover, does not accept production rules which have ε
on right-hand side , for newly added production rules.

Theorem 3.3.12 The language class of ε-free RCFG is properly included by that of CSG
(Context-Sensitive Grammars).

(proof) First, we sketch a construction strategy of CSG G′ which language is identical to
given ε-free RCFG G which has Normal Form.

1) All production rules of G with some translations are contained in G′.

2) G′ has production rules for seeking an embedded portion positioning in left of focusing
position, and then replace a syntactic variable due to found embedded portion.

On constructed CSG G′, production sequences of RCFG G are emulated non-deterministically
due to above two cases.

We finish this theorem with a tedious example which is contained in CSL, but in
RCFL, i.e., {w[A � w] | w ∈ (T \ {[,]})∗}. //

Finally, we will guess on leftmost derivation and rightmost derivation. It is trivial from
the definition of leftmost (rightmost) derivation that if there is a leftmost (rightmost)
derivation sequence, we can consider the derivation sequence is merely a derivation of
RCFG. Following propositions argue that if there is a derivation sequence, there exists a
leftmost (rightmost) derivation sequence, and moreover, derivation trees corresponding to
both derivation sequences are mutually isomorphic, where the isomorphism is identical to
that of Graph Theory [5, 26] etc. The proof of completeness of general parsing algorithm
(Algorithm 3.4.2 in Section 3.4.1) depends on the discussion of Theorem 3.3.15. Following
arguments are not difficult at all, but important.

To establish this property, we start with a ‘spliting’ of derivation sequences.

Lemma 3.3.13 (Sub-sequence of Derivation) If there is a derivation sequence

(α, P0, P1, w1)(β, P1, P2, w2)(γ, P2, P3, w3)
∗⇒ (α′, P0, P1, w1)(β

′, P1, P2, w2)(γ
′, P2, P3, w3),

then there exists a derivation

(β, P1, P2, w2)
∗⇒ (β ′, P1, P2, w2).

25

(proof) By induction on length of derivations.//

Lemma 3.3.14 (Concatenation of Derivation) If there are derivation sequences,

(α, P0, P1, w1)
∗⇒ (α′, P0, P1, w1)

and
(β, P1, P2, w2)

∗⇒ (β ′, P1, P2, w2),

then there exists a derivation sequence, such as,

(α,P0, P1, w1)(β, P1, P2, w2)
∗⇒ (α′, P0, P1, w1)(β

′, P1, P2, w2).

(proof) Straightforward from the definition of derivation.//

Theorem 3.3.15 If there is a derivation sequence

(α, P0, P1, w)
∗⇒ (w,P0, P1, w),

then there exists a leftmost derivation sequence, such as,

(α, P0, P1, w)
∗⇒L (w,P0, P1, w),

and also, there exists a rightmost derivation sequence, such as,

(α, P0, P1, w)
∗⇒R (w, P0, P1, w).

(proof) By induction on length of AF sequences and length of derivations on them. Firstly,
we devide AF sequence (α, P0, P1, w) into two parts (α1, P0, P ′

1, w1) and (α2, P ′
1, P1,

w2), where α = α1α2 and w = w1w2. Then, applying Lemma 3.3.13 and induction
hypothesis on each parts, and applying Lemma 3.3.14 to the result of previous application,
we obtain corresponding leftmost derivatioin sequence. On rightmost derivation, reversing
the application order, we also obtain corresponding rightmost derivation sequence.//

3.4 General Parsing Algorithm for RCFG

Here, we discuss on a parsing algorithm for RCFG. The parsing algorithm is grounded
on the arguments of Proposition 3.3.2 and Corollary 3.3.5. The difference between this
algorithm and original Earley’s parsing algorithm is mostly on items. Items are data dealt
in algorithms, which intuitively denotes a point on input text where the algorithm is going
on. On parsing of RCFG text, items are augmented with a finite set of production rules
which might be increased during parsing.

26

3.4.1 Algorithm

We must firstly note that in the formalism of RCFG, “self-definitions” of any enbedded
portions are not enabled. The definition of derivation requires on reflective case that a
variable p ∈ Aug which generates embedded portions has production rules which forms
p → [α] for generating embedded portions. The important point is ‘[’ and ‘]’ present
directly on the right-hand side of production rules on p. To define self-definition on a
variable p, any embedded portion for the purpose must form “[p � α]” for some string
α, and α must be equal to the whole string. Thus, to define self-definition in RCFG
formalism, it is need an infinite length string. This feature enables us to define general
parsing algorithm for RCFG in quite simple manner. And the feature is implicitly used in
the proofs of theorems below, which shows soundness and completeness of the algorithm.

Definition 3.4.1 (item for parsing) An item is given as 5-tuple (Rule, Scanned, Rest,
P re-Rules, Augmented-Rules), each elements are as following; Rule is a production rule
which might be used to produce input text. We assume that Rule forms A → αβ, where
A ∈ V and α, β ∈ (V ∪ T)∗. Scanned is a left portion of right-hand side of Rule, i.e.,
equal to α, which denotes a portion in input text consumed during parsing so far. Rest is
a right portion of right-hand side of Rule, i.e., equal to β, which would be scanned from
now on. Pre-Rules denotes a finite set of production rules, which is ascertained at the
time when the item arises in use on parsing. Augmented-Rules denotes a finite set of
production rules, which might be augmented with rules associated with embedded portions
appeared so far.

We also adopt ‘dot notation’ to represent items. For example (A → α • β, R1, R2) is
identical to (A → αβ, α, β, R1, R2). From now on, items are represented with 3-tuples.

Algorithm 3.4.2 (General Parsing Algorithm for RCFG)
When an RCFG G = (V, T, M, D,Aug, f, P, s) and n-length input text a1 · · · an are given,
parse lists I(0, 0), . . . , I(i, j), . . . , I(n, n)(0 ≤ i ≤ j ≤ n) are calculated during parsing,
where each element of I(i, j) consists of items. Additionally, finite sets of production rules
P0, . . . , Pn are constructed, where Pi holds a maximum set of production rules possible at
the point of i-th input character (and ancestors of it in the derivation tree).

Initial phase:

1) initialize all of P0, . . . , Pn to P ,

2) initialize all of I(i, j) to φ,

3) add (X → •α, P, P) to I(i, i), for each X → α ∈ P and each i = 0, . . . , n,

Main Loop:
repeat 4), 5), 6), 7) until no new 3-tuple is added to any I(i, j)

4) if (X → α • aβ, R1, R2) ∈ I(i, j) and aj+1 = a, and moreover X �∈ Aug or β �= φ,
then add (X → αa • β,R1, R2) to I(i, j + 1),

5) if (X → [α •], R1, R2) ∈ I(i, j), aj+1 =], X ∈ Aug and f(ai+2 . . . aj) has valid form
of production rule, then add (X → [α]•, R1, R2 ∪ {f(ai+2 . . . aj)}) to I(i, j + 1),

27

6) if (Y → γ•, R2, R3) ∈ I(j, k) and Y → γ ∈ R3 and (X → α • Y β, R1, R2) ∈ I(i, j) for
some 0 ≤ i ≤ j ≤ k ≤ n, then add (X → αY • β, R1, R3) to I(i, k),

7) if (p → α•, R1, R2) ∈ I(i, j) and p ∈ Aug and p → α ∈ R2 and [w] = ai+1 · · · aj

and f(w) has valid form of production rule, then let Z → γ = f(w), add Z → γ
to Pj , . . . , Pn and then add (Y → •β, P ′, P ′) to I(k, k) for each k = 0, . . . , n, each
Y → β ∈ Pj and each P ′ s.t. P0 ⊂ P ′ ⊂ Pk

Judgement:

8) if (s → α•, P, P ′) ∈ I(0, n) and s → α ∈ P ′ for some set of production rules P ′, then
accept input else reject input.

Note: On operation 7), only one element (Z → •γ, Pk, Pk) is newly added to I(k, k) for
each k = 0, . . . , j − 1, where Z → γ is augmented production rule at that point. On
operation 8), there are valid cases that P ′ �= Pn, on those cases, some actions on 5) and
7) have occurred, but some of them would not be used in effective derivations.

Figure 3.3 and 3.4 illustrate a parsing process for input [s � p] and the grammar
G3 given in Example 3.2.2. Figure 3.3 is the snapshot at the point when initial phase
is completed, and Figure 3.4 at the point when production rule s → p is augmented,
which is caused by the embedded portion [s � p]. In both of figures, items which do
not concern to the acceptance of the input are omitted. From the item (Pat → •p, P,
P) in parse list I(3, 3), which is added by operation 3) in initial phase, an item (Pat →
p•,P, P) is added to I(3, 4) by operation 4). Also, items (p → [• s � Pat], P, P), · · ·,
(p → [s � Pat •], P, P) are successively added to parse list I(0, 1),· · ·,I(0, 4), from item
(p → •[s � Pat], P, P) in I(0, 0) by operation 4), and finally an item (p → [s � Pat]•,
P, P ′) is added to I(0, 5) by operation 5), where P ′ = P ∪ {s → p}. This operation 5)
causes operation 7) and an augmentation of a production rule s → p to P5, and moreover,
the addition of an item (s → •p, P, P) to I(0, 0). Finally, from this item and the item
included in I(0, 5), we obtain an item (s → p•, P, P ′) in I(0, 5) by operation 6), and
conclude the input is accepted by judgement 8).

3.4.2 Soundness and Completeness

Theorem 3.4.3 (Soundness) If (A → α•β, R1, R2) ∈ I(i, j), then a derivation relation

(A, R1, R′, u)
∗⇒ (ai+1 . . . aj , R1, R2, ai+1 . . . aj) (β, R2, R′, u′) holds.

(proof) By induction on times of actions 4), 5) and 6) to obtain the element (A → α • β,
R1, R2) ∈ I(i, j). On the case of i = j, i.e the case | α | = 0, the proposition holds
vacuously. We assume that α = α′X.

On the case X ∈ T and A �∈ Aug or β �= φ, from the definition of the algorithm
of operation 4), (A → α′ • Xβ, R1, R2) must be involved in I(i, j − 1) and X = aj.

Using induction hypothesis, there is a derivation (A, R1, R′, u)
∗⇒ (ai+1 . . . aj−1, R1, R2,

ai+1 . . . aj−1) (Xβ, R2, R′, u′′) = (ai+1 . . . aj−1, R1, R2, ai+1 . . . aj−1) (X, R2, R2, aj) (β,
R2, R′, u′) = (ai+1 . . . aj , R1, R2, ai+1 . . . aj) (β, R2, R′, u′).

On the case X =] and A ∈ Aug and moreover f(ai+2 . . . aj−1) has valid form of
production rule. This case concerns to the operation 5) of the algorithm. On this case,
we must be careful on the augmentation of a new production rule. From the definition

28

(p� [s � Pat],
 P, P)

�

I(0,0) I(0,1) I(0,5)I(0,4)I(0,3)I(0,2)

I(1,1) I(1,5)I(1,4)I(1,3)I(1,2)

I(2,5)I(2,4)I(2,3)I(2,2)

I(3,5)I(3,4)I(3,3)

[]s � pInput:

P
P0 P1 P2 P3 P4 P5

P P P P P

(Pat � p, P, P)�

Figure 3.3: Initial Parse Lists for Input [s � p]

(p� [s � Pat],
 P, P)

�

I(0,5)I(0,4)I(0,3)I(0,0) I(0,1) I(0,2)

I(1,1) I(1,5)I(1,4)I(1,3)I(1,2)

I(2,5)I(2,4)I(2,3)I(2,2)

I(3,5)I(3,3)

[]s � pInput:

P
P0 P1 P2 P3 P4 P5

P P P P

(Pat � p, P, P)�

�(p� [s � Pat],
 P, P)

(p� [s � Pat] ,
 P, P')

�(p� [s � Pat],
 P, P)

�(p� [s � Pat],
 P, P)

�(p� [s � Pat],
 P, P)

�

(s � p, P, P)�

�(Pat � p , P, P)
I(3,4)

P � {s � p}

By Operation 6)

By Operation 7)

By 5)
By 7)

Figure 3.4: Parse Lists at Augmentation of s → p

29

of the algorithm of operation 5), (A → α′ •]β, R1, R′
2) must be involved in I(i, j − 1),

for appropriate R′
2. Using induction hypothesis, there is a derivation (A, R1, R′, u)

∗⇒
(ai+1 . . . aj−1, R1, R′

2, ai+1 . . . aj−1) (], R′
2, R2,]) (β, R2, R′, u′′) and R2 must equal to

R′
2 ∪ {f(ai+2 . . . aj−1)}. This derivation is also a candidate of derivations which concerns

to the element (A → α • β, R1, R2). So, on this case, induction hypothesis also holds.
On the case X ∈ V , from the defintion of the algorithm of operation 6), (A → α′•Xβ,

R1, R3) must be involved in I(i, k) and also (X → γ, R3, R2) must be involved in I(k, j).

Using induction hypothesis, there are derivations (A, R1, R′, u)
∗⇒ (ai+1 . . . ak, R1, R3,

ai+1 . . . ak) (Xβ, R3, R′, u′′) and (X, R3, R2, ak+1 . . . aj)
∗⇒ (ak+1 . . . aj , R3, R2, ak+1 . . . aj).

To conbine these derivations, we obtain the result.//

Corollary 3.4.4 If w is accepted by the Algorithm, then w is a word of given RCFG G.

To establish completeness of the algorithm, we restrict derivations to leftmost ones.

Theorem 3.4.5 (Completeness) Suppose there exists a leftmost derivation (γ1, P, R1,

u1) (A, R1, R3, w1w2) (γ2, R3, P ′, u2)
∗⇒ (u1, P, R1, u1) (A, R1, R3, w1w2) (γ2, R3,

P ′, u2) ⇒ (u1, P, R1, u1) (α, R1, R2, w1) (β, R2, R3, w2) (γ2, R3, P ′, u2)
∗⇒ (u1, P,

R1, u1)(w1, R1, R2, w1) (w2, R2, R3, w2) (γ2, R3, P ′, u2). Then for some input a =
u1w1w2u2, an element (A → α • β, R′

1, R2) is in I(| u1 |, | u1 | + | w1 |).

(proof) By induction on pair of length of derivations and frequency of augmentation of
production rules. In following, (l, m) denotes the case of l-length derivation sequence
which includes or assumes m times augmentations of new rules. There is partial order
between (l, m) and (l′, m′), (l, m) < (l′, m′) iff m < m′ or m = m′ and l < l′. In the
following descriptions, we use concatenation on derivations implicitly. The supposition of
leftmost derivation is needed to hold the induction hypothesis, mostly on frequencies of
augmentations.

Vacuous cases are that for any production rules X → α in initial production rule set
P , (X → •α, P, P) is in I(k, k), for each k = 0, . . . n, each of which corresponds to
1-length derivation,

(X, P, R3, w2) ⇒ (α,P, R3, w2)

for some appropriate R3 and w2. On the cases, it is trivial that the induction hypothesis
holds by initialization of the algorithm. Suppose α = vα′ for some v = b1 · · · bi ∈ T∗. On
cases if α′ �= ε or v �= v′] or X �∈ Aug, and moreover, input string a1 · · · an contains b1 · · · bi

as a sub-string starts from k + 1-th position, from the item (X → •α, P, P), we obtain
items (X → b1 • b2 · · · biα

′, P, P) ∈ I(k, k + 1),. . ., (X → b1 · · · bi • α′, P, P) ∈ I(k, k + i)
successively, using operation 4). Thus, the induction hypothesis on the induction case
(l, m) = (1, 0) holds.

Suppose that as an ordinal case of derivation, there is a derivation (A, R1, R3, w1w2w3)

⇒ (w1, R1, R1, w1) (B, R1, R2, w2) (β, R2, R3, w3)
∗⇒ (w1, R1, R1, w1) (w2, R1, R2, w2)

(w3, R2, R3, w3) on the case that A �∈ Aug. We assume that the derivation sequence from
(B, R1, R2, w2) to (w2, R1, R2, w2) is under the induction case (l2, m2) and derivation

30

sequences from (β, R2, R3, w3) to (w3, R2, R3, w3) is under the induction case (l3, m3),
where m2 ≤ m3. From the induction hypothesis and from the fact that A → w1Bβ ∈ R3

by the constraint of derivation, we can claim that the item (A → w1 • Bβ, R1, R1) is in
appropriate item list as the induction case (1, m3), considering operation 7). And also,
we can claim that (A → w1B • β, R1, R2) is in appropriate item list as the induction
case (l2 + 1, m3), considering operation 6). By same discussion, induction proceeds so
that an item (A → w1Bβ•, R1, R3) is in appropriate item list as the induction case
(max{l2, l3} + 1, m3).

Suppose that as a reflective case of derivation, there is a derivation (p, R1, R3, [w2])

⇒ ([, R1, R1,]) (β, R1, R2, w2) (], R2, R3,])
∗⇒ ([, R1, R1,]) (w2, R1, R2, w2) (], R2,

R3,]) on the case that p ∈ Aug and f(w2) has valid form for a production rule. We
assume that the derivation sequence from (β, R1, R2, w2) to (w2, R1, R2, w2) is under the
induction case (l2, m2). From the induction hypothesis and from the fact that p → [β]
∈ R3 by the constraint of derivation, items (p → •[β], R1, R1), . . ., (p → [β •], R1, R2)
are in appropriate item lists as the induction cases (1, m2) to (l2 + 1, m2), respectively.
By operation 5), an item (p → [β]•, R1, R3) is added to appropriate item list as the
induction case (l2 + 1, m2 + 1), where R3 = R2 ∪ {f(w2)}, and induction proceeds. And
more over, items (Z → •γ, R′, R′) and (X → •α, R3, R3) are added to appropriate item
list by operation 7) as the induction case (1, m2 + 1), where Z → γ = f(w2), P ⊂ R′ ⊂
Pk and X → α ∈ Pk for corresponding k.//

Corollary 3.4.6 If w is a word of given RCFG G, then w is accepted by the algorithm.

3.4.3 Discussion on Complexity

If we ignore costs of seeking a production rule, which are done at 6), and costs of matching
between sets of production rules, which are done at 6) and 7), and also if no new rules are
added, from Theorem 3.3.7, whole cost of parsing is similar to Earley’s parsing algorithm
[11]. Because seeking or matching of production rules is done for every items on operation
6), and number of items which would be contained in

⋃
i,j I(i, j) at the end of the algorithm

is proportional to n2 on worst case, we can conclude that the complexity of the algorithm
is O(n5).

If embedded portions are contained in input texts, where the number of embedded
portions is denoted by m, the number of items contained in

⋃
i,j I(i, j) is roughly 2m

times of above case, because, on operation 7), there are 2m candidates for selecting P ′

which satisfies P0 ⊂ P ′ ⊂ Pk, if Pk contains whole augmented production rules. So,
roughly the complexity on worst case in which m embedded portions are contained is
O(n32m). On the worst cast, input texts consist of only embedded portions, but some
embedded portions do not cause augmentation of production rules. Of course, a derivation
from a variable p ∈ Aug must cause an augmentation. The worst case is caused by the
deal of embedded portions which are derived from syntactic variables other than of Aug.
If we can suppose that given grammar is not ambiguous, and any strings derived from
the grammar never contains sub-strings which form [α] and does not cause augmentation
of production rules, we can accelerate the algorithm so as to change the condition P0 ⊂
P ′ ⊂ Pk in operation 7) to P ′ = Pk. On such acceleration, the worst cast is O(n × n2 ×
m) = O(n3m) (⊂ O(n4)).

31

Moreover, we have a restriction way to reduce complexity, i.e., so as to modify the
definition of derivation. In each cases in the definition of derivation, a constraint

A → X1 · · ·Xn ∈ Pn+1

must be satisfied. This constraint means that the production rule used at the derivation
may be a result of an augmentation of a production rule which is caused by the derivation
itself. This enables circular definition and use of embedded portions, such like Exam-
ple 3.2.2, and, the origin of expansion of complexity on worst cases. A choice we have
here is to modify above constraint to

A → X1 · · ·Xn ∈ P1.

To do so, we can modify the algorthm on operation 6) and 7), so as,

6) if (Y → γ•, R3, R4) ∈ I(j, k) and (X → α • Y β, R1, R2) ∈ I(i, j) and Y → γ ∈ R2 for
some 0 ≤ i ≤ j ≤ k ≤ n, and if R3 ⊂ R2, then add (X → αY • β, R1, R2 ∪ R4) to
I(i, k),

7) if (p → α•, R1, R2) ∈ I(i, j) and p ∈ Aug and p → α ∈ R2 and [w] = ai+1 · · · aj

and f(w) has valid form of production rule, then let Z → γ = f(w), add Z → γ to
Pj, . . . , Pn and then add (Z → •γ, R2, R2) to I(k, k) for each k = j, . . . , n.

On this modification, complexity on worst case is also O(n5) if we assume that values of
production rule sets in each items are hold as some ordered list, because problems R = R′

and R ⊂ R′ have same complexity on ordered lists R and R′.

32

Chapter 4

Incremental Construction of LALR
Parser and its Applications for
RCFG

4.1 Introduction

In this chapter, we propose an incremental construction method of LALR(1) parser for
CFG, and its application to RCFG. Our main purpose is to construct a frame work of
compiler-compiler which is upper compatible to YACC [16] or Bison [10], and moreover,
which can treat extensible grammar. According to this purpose, some restrictions and
needs arise. 1) the base grammar processed by the system must be an extension of CFG.
It must includes CFG as a special case. 2) with some restrictions on the base grammar,
LALR(1) parsing scheme or some other scheme resemble to it can be processed on the
system. 3) ambiguity of given grammar must be solved in YACC style. 4) about error
handling. These are the reason why we propose RCFG, and 1) and 2) are solved in this
chapter. 3) and 4) are remained as a future works.

The typical points of the methodology is that both of LR(0) graph and Look Ahead
Symbol Set (LA) for LALR(1) are constructed in fully incremental manner on our ap-
proach. To achieve it, we propose sevral notions. This chapter consists of six parts.
Firstly, we discuss on an incremental method for constructing LR(0) graph (Section 4.2).
The discussion in the section is a remake of [12] and [15]. We make discussion and in-
troduce some notions from the point of view that current LR(0) graphs are some kind
of division of expected new graph, rather than constructing new LR(0) graph by current
graphs. From this view point, we clear that the incremental construction method for
LR(0) graphs which had proposed in [12, 15] is not LR(0) graph specific notion, but is
general one for directed graphs.

In Section 4.3, we introduce mainly two notions, MonoG and MaxInc. MonoG is an
LR(0) graph which is induced from only one production rule, and we give an efficient
algorithm to construct MonoG as Algorithm 4.5.1 in Section 4.5. MaxInc is one of most
important notions in this chapter, which provides an idex for identification on LR(0)
states. On conventional methods for constructing Parse Table for LR parsers, states of
LR(0) graph are identified by an item set or a subset of items which forms the states. In
the methodology we propose in this paper, we adopt a stance that no item set infomations
are held in each calculation steps. To accomplish it, we introduce MaxInc which is based

33

on inclusion relations between item sets of which each states consist, and, as a result, we
gained efficiency on both of time and space on identifying states.

In Section 4.4, we discuss on method for calculation of LA for LALR(1) graphs. Main
notions introduced in the section are Dependency Domain(DD), E∆, Top∆, Dep∆ and
Ind∆. DD is a notion which is isomorphic to Disjunction Normal Forms without Negative
Literals on Propositional Logic. We use DD to express conditions for ε-productivity for
each syntactic symbols. E∆ is an ε-productivity judgement function, and Top∆ and
Dep∆ are functions for calculating ‘first’ symbols and used to calculate LA sets. For
three functions, we have established efficient incremental construction method, in the
method no item sets have to be held during calculation on LALR(1) parse table. The
notions introduced in the section are typical point of this chapter.

In Section 4.5, algorithms for calculation of incremental construction of LALR(1)
graphs are provided. We discuss the efficiency of the method in Section 4.7. In Section 4.8,
two ways of applications of the incremental construction method of LALR(1) graphs to
RCFG are given.

4.2 Discussions on Finite Automata

In this section, we introduce a few important notions and establish results. The main
results are Theorem 4.2.11 and 4.2.14 which describe the formalization of incremental
construction of LR(0) graph and its soundness and completeness. To put arguments
forward, we adopt the stance that current LR(0) graph and augmenting graph to it are
obtained by dividing of expected result, instead of the stance that expected result is
constructed by use of current LR(0) graph and augmenting graph. In Definition 4.2.13,
the basis of incremental construction operation, named ‘fusion’, for LR(0) is formalized.
However, in the definition, LR(0) specific notion, i.e. ‘item’, is not used. Intuitively,
the fusion process is defined on given two DFAs, which are obtained from two εNFAs
by subset construction method, with given Bridge Transition which stretches necessary
transitions to construct expected result. The Bridge Transition is defined from expected
result. So, the definition is not of ‘construction’ but of some kind of ‘division’ of a graph.
However, it is not difficult matter on LR(0) to predict the Bridge Transition, as viewed
in the next section. So, we can conclude that incremental construction method discussed
in [12, 15] is not a special notion for LR(0) graph. The peculiarity on the method is the
easiness to calculate Bridge Transition for it. The easiness is obtained from properties of
transitions on LR(0) graphs.

4.2.1 Definition of Fusion of FAs and Some Properties

We introduce a notion Sub-graph of FA, which is quite similar to node induced sub-graph
on Graph Theory, e.g. in [5, 26]. For incremental construction of LR parser, in [12, 13, 15],
‘constructing methods’ are given. We introduce a notion in order to give composition or
fusion process on LR(0) state transition graph, which is defined precisely below, theoretical
back ground from the point of view not of that new graph is created from current graph
by use of incremental method, but of that the current graph is a some kind of division
of expected new graph. First, we discuss on operations on εNFA, because LR(0) state
transition graph described by εNFA makes us easy to understand incremental construction

34

process of LR(0) graphs, as pointed out in [25]. Discussion on εNFA does not have direct
relation to the main results of this section, but it only provides us clear view points.

Definition 4.2.1 (Sub-graph of εNFA)
For given εNFA A, a subgraph A′ induced by Q′ ⊂ Q is defined as,

A′ = (Σ, Q′, δ′, ∗, F ′)

δ′(q, a) = δ(q, a) ∩ Q′(q ∈ Q′, a ∈ Σ ∪ {ε})
(tosay,δ′ = δ ∩ (Q′ × (Σ ∪ {ε}) × Q′))

∗ =

{
q0 if q0 ∈ Q′

undefined otherwise

F ′ = F ∩ Q′.

Sub(A, Q′) denotes induced sub-graph of A with Q′.

Definition 4.2.2 (Composition of εNFA)
For given εNFAs A1 = (Σ, Q1, δ1, s1, F1), A2 = (Σ, Q2, δ2, ∗2, F2) and given a relation
δ′ ⊂ Q1 × (Σ ∪ {ε}) × Q2 ∪ Q2 × (Σ ∪ {ε}) ×Q1, Composition of A1 and A2 with δ′,
A = A1 � A2, δ

′ � is defined as,

A = A1 � A2, δ
′ �= (Σ, Q1 ∪ Q2, δ, s1, F1 ∪ F2)

where δ = δ1 ∪ δ2 ∪ δ′.
A1 is called Subjective Subgraph of A, or simply Subjective, and, A2 is called Dependent

Subgraph of A, or simply Dependent. δ′ is called Bridge Transition.

For arbitrary εNFA A = (Σ, Q1, δ, q0, F), Sub(A, Q1) and Sub(A, Q2), where q0 ∈
Q1 ⊂ Q and Q2 ⊂ Q, if we give Bridge Transition δ′ = δ ∩ ((Q1 × (Σ ∪ {ε}) × Q2 ∪ Q2

× (Σ ∪ {ε}) × Q1)), it is obvious that Sub(A, Q1) � Sub(A, Q2), δ′ � is isomorphic to
A, the isomorphism is given in a manner below.

Definition 4.2.3 (Isomorphism on εNFA)
We write two εNFA A1 = (Σ, Q1, δ1, q1, F1) and A2 = (Σ, Q2, δ2, q2, F2) is equivalent,
when there is an isomorphism f : Q1 → Q2, s.t.,

f (q1) = f(q2)

f(F1) = f(F2)

f(δ1(q, a)) = δ2(f(q), a)(∀q ∈ Q1, ∀a ∈ Σ ∪ {ε}).
Lemma 4.2.4 For any εNFA A = (Σ, Q, δ, q0, F), A is equivalent to Sub(A, Q1) �
Sub(A, Q2), (δ \ δ1) \ δ2 � , where Q1 ∪ Q2 = Q, q0 ∈ Q1, δ1 = δ ∩ (Q1 × (Σ ∪ {ε}) ×
Q1), δ2 = δ ∩ (Q2 × (Σ ∪ {ε}) × Q2).

(proof) Straightforward from definitions.//

Following definitions and results are important on discussion of incremental construc-
tion of LR(0) state transition graph. However all of them hold without use of the notion
‘item’, so we collect them in this section. Especially, relation R defined below will be
used in order to give proof of soundness and completeness of incremental construction of
LR(0) graph.

35

Definition 4.2.5 (Arrival Languages)
For given εNFA A = (Σ, Q, δ, q0, F), Arrival Language L(q), which means a set of strings
that lease from initial state q0 to q, is defined as,

L(q) = {w ∈ Σ∗ | q ∈ δ∗(q0, w)}.
When we emphasize that it is on A, we denote LA(q).

Definition 4.2.6 (Elimination of Unreachable States)
For given DFA A = (Σ, Q, δ, q0, F), Eff(Q), i.e. a set of Effective States, is defined as

Eff(Q) = {q | ∃w ∈ Σ∗, q = δ(q0, w)}.
Under the condition δ′ = δ ∩ Eff(Q) × Σ × Eff(Q), we can define a DFA Eff(A) which
states are all effective states of A, such as,

Eff(A) = (Σ,Eff(Q), δ′, q0, F ∩ Eff(Q)).

Note: An ordinal graph of εNFA or DFA has unique state as start state. However, in
this paper, we will treat a kind of multi-entrance graphs discussed in the next section. So,
in following sections, it is expected that Eff is defined not only on a start state which is
explicitly given in a formal statement of FA, but also on whole entrances. An FA which
we treat has entrances according to each syntactic variable X, say Entε(X), which means
εC({X → •α | X → α ∈ P}). These entrances are needed for fusion process in order to
achieve augmenting a new production rule to current LR(0) graph. On this stance, q0 is
one of entrances, i.e. Entε(S ′), and Eff must be defined as,

Eff(Q) = {q | ∃X ∈ V, ∃w ∈ Σ∗, q = δ(Entε(X), w)}.
In following sections, Eff will be used in this sense.

Definition 4.2.7 (Relation R)
For given εNFA A = (Σ, Q, δ, q0, F) and Q1, Q2 ⊂ Q (Q1 ∪ Q2 = Q, q0 ∈ Q1), we state

εNFAA1 = (Σ, Q1, δ1, q0, ∗) = Sub(A, Q1)

εNFAA2 = (Σ, Q2, δ2, ∗, ∗) = Sub(A, Q2)

(“∗” means not used)

DFA B1 = SC(A)

= (Σ, P1, ζ1, s1, H1)

εNFA B2 = SC(A1) � SC(A2), ξ �
= (Σ,Power(Q1) ∪ Power(Q2), δ

′, F ′)

DFA B′
2 = SC(B2)

= (Σ, P2, ζ2, s2, H2)

where

ξ ⊂ (Power(Q1) × (Σ ∪ {ε}) × Power(Q2))

∪(Power(Q2) × (Σ ∪ {ε}) × Power(Q1))

36

(U, a, V) ∈ ξ ⇔ U ⊂ Q1, V = εC(δ2, δ(U, a) ∩ Q2)

or U ⊂ Q2, V = εC(δ1, δ(U, a) ∩ Q1).

Now, we define a relation R on P1 × P2 recursively, such as

(s1, s2) ∈ R
(q1, q2) ∈ R ⇒ ∀a ∈ Σ, (ζ1(q1, a), ζ2(q2, a)) ∈ R

R is a minimum set that satisfies above two conditions.
R(q1) denotes a set {q2 | (q1, q2) ∈ R} , and also, R−(q2) denotes a set {q1 | (q1, q2) ∈ R}.

Lemma 4.2.8 For any q1 ∈ P1, q2 ∈ P2, if q1 is reachable from s1, then R(q1) �= φ, and
also, if q2 is reachable from s2, then R−(q2) �= φ.

(proof) What q1 is reachable from s1 means that there exists a word of arrival language
w1 ∈ L(q1), and q1 = ζ1(s1, w1). Thus, (q1, ζ2(s2, w1)) ∈ R. In same way, (ζ1(s1, w2), q2) ∈
R holds.//

Lemma 4.2.9

∀U ∈ Power(Q1),
⋃

εC(δ′, εC(δ1, U)) = εC(δ, U),

∀U ∈ Power(Q2),
⋃

εC(δ′, εC(δ2, U)) = εC(δ, U).

(proof) We can easily show
⋃

εC(δ′, εC(δi, U)) ⊂ εC(δ, U) (i = 1 or 2) from the facts
U ⊂ εC(δ, U) and δ′ = δ1 ∪ δ2 ∪ ξ. Conversely, for any state q ∈ εC(δ, U), we show
q ∈ ⋃

εC(δ′, εC(δi, U)) by induction, considering an ε-transition sequence on A, ρ =
q1, . . . , qk(q1 ∈ εC(δi, U), qk = q) (i = 1 or 2). First, ρ is divided into sub-sequences from
its top, ρ = ρ1, . . . , ρm, on the condition whether each element is included in Q1 or Q2\Q1,
s.t., all elements of ρj are included in Q1 then all elements of ρj+1 is included in Q2 \Q1,
or conversely. On the case m = 1, because each element q′ of ρ1 is included in εC(δi, U),
q′ ∈ ⋃

εC(δ′, εC(δi, U)) holds. We suppose the induction hypothesis holds on m. Let
q′ = δ(q, ε) and consider an ε-transition sequence ρq′. If q′ is contained in the same set
of ρm, which means Q1 or Q2 \ Q1, then for the top state p of ρm, q′ ∈ εC(δi, p) holds.
Thus, we can claim that q′ ∈ ⋃

εC(δ′, εC(δi, U)) holds from the definition of ξ. If q′ is
contained in the opposite set to ρm, because a transition from a state which consists of
ρm to a state of εC(δ′i, q

′) is given by ξ, we can claim that ∃U ′ ∈ εC(δ′, εC(δi, U)) and
εC(δ′i, q

′) ⊂ U ′ hold. So, q′ ∈ ⋃
εC(δ′, εC(δi, U)) and the induction hypothesis holds also

on m + 1.//

These two lemmas are implicitly used in followings.

Lemma 4.2.10 For any a ∈ Σ, any U ∈ Power(Q1) ∪ Power(Q2) and any q ∈ ⋃
δ′(εC(δi,

U), a), there exists q′ ∈ U , s.t., q ∈ εC(δ(εC(δ, q′), a)), where i = 1 if U ⊂ Q1, i = 2 if
U ⊂ Q2.

37

(proof) εC(δi, U) is a state of SC(Sub(A, Qi)). We write the state transition function of
SC(Sub(A, Qi)) by δ′i, then

δ′(εC(δi, U), a) = {δ′i(εC(δi, U), a)}
∪ ξ(εC(δi, U), a).

Consider the case q ∈ δ′i(εC(δi, U), a), it is obvious that

δ′i(εC(δi, U), a) = εC(δi, δi(εC(δi, U), a))

⊂ εC(δ, δ(εC(δi, U), a))

holds, so the proposition holds on this case. Consider the case q ∈ ⋃
ξ(εC(δi, U), a)

remained, it is clear that ∃U ′ ∈ ξ(εC(δi, U), a) s.t. q ∈ U ′ holds, and from the definition
of ξ,

U ′ = εC(δ′i, δ(εC(δi, U), a) ∩ Q′
i)

⊂ εC(δ, δ(εC(δ, U), a))

is trivial. So the proposition holds in any cases. //

Theorem 4.2.11 (U1, U2) ∈ R ⇒ U1 =
⋃

U2

(proof) Proved by induction. On the case of U1 = s1 = εC(δ, q0), s2 = εC(δ1, q0) holds.
Let ρ be an ε-transition sequence from q0 to q, say ρ = q0, qi1 , qi2, . . . , qik = q. ∀q ∈
U1 ⇒ q ∈ ⋃

s2 vacuously holds on the case k = 0. On the case k ≥ 1, we divide ρ
into sub-sequences ρ = ρ0, ρ1, . . . , ρm in the same manner of Lemma 4.2.9. We write ρj

= qinj−1+1, . . . , qinj
. If j is even, all elements of ρj are included in Q1, and if j is odd,

all elements of ρj are included in Q2. On the case m = 0, because whole elements of ρ
are included in εC(δ1, q0), q ∈ ⋃

s2 holds. Suppose on all cases that k = 0, . . . , t, the
induction hypothesis is holds. Let ρ′ = ρq′ be an ε-transition sequence. It is obvious
that qint

∈ Q1, and if q′ ∈ Q1, then a transition from a state of SC(Sub(A, Q2)) which
includes qint−1 to εC(δ1, qink−1)is stretched by ξ. Additionally, considering the fact q′ ∈
εC(qint−1+1), we can claim q′ ∈ ⋃

s2. Thus s1 ⊂ ⋃
s2 holds.

⋃
s2 ⊂ s1 is proved in the

same way.
Consider states ζ1(U1, a) and ζ2(U2, a) for a pair of states (U1, U2), s.t., (U1, U2) ∈ R

and U1 =
⋃

U2. From the facts that ζ1(U1, a) = εC(δ, δ(U1, a)),

ζ2(U2, a) = εC(ξ,

(δ1(U2 ∩ Power(Q1), a) ∪ δ2(U2 ∩ Power(Q2), a)

∪
⋃

ξ(U2 ∩ Power(Q1), a) ∪
⋃

ξ(U2 ∩ Power(Q2), a))

and U1 =
⋃

U2, we can claim δ1(U2 ∩ Power(Q1), a) ⊂ δ(U1, a), δ2(U2 ∩ Power(Q2), a) ⊂
δ(U1, a), ξ(U2 ∩ Power(Q1), a) ⊂ εC(δ, δ(U1, a)), ξ(U2 ∩ Power(Q2), a) ⊂ εC(δ, δ(U1, a)).
So, by Lemma 4.2.10,

⋃
ζ2(U2, a) ⊂ εC(δ, δ(U1, a)).

Conversely, we show εC(δ, δ(U1, a)) ⊂ ⋃
ζ2(U2, a). From the construction of R, U1 =

εC(δ, U1). From the definition of SC(Sub(A, Q1)), SC(Sub(A, Q2) and ξ,

δ(U1, a) ⊂ δ1(U2 ∩ Power(Q1), a) ∪ δ2(U2 ∩ Power(Q2), a)

∪
⋃

ξ(U2 ∩ Power(Q1), a)

∪
⋃

ξ(U2 ∩ Power(Q2), a)

38

q0 q1

q2

�
�

a

b

a

(a) Original �NFA A

q0 q1
a

b

(b) Induced Sub-Graph Sub(A, {q0, q1})

q2

a

(c) Induced Sub-Graph Sub(A, {q2}) (d) DFA SC(A) by Subset Construction

�

a

b

a,b

b

�q0�q2� �q0�q1�q2�

a

Figure 4.1: Example of State Disruption (1)

holds. Using these facts and Lemma 4.2.10, we can claim

εC(δ, δ(U1, a)) ⊂ εC(ξ, δ1(U2 ∩ Power(Q1), a)

∪δ2(U2 ∩ Power(Q2), a)

∪
⋃

ξ(U2 ∩ Power(Q1), a)

∪
⋃

ξ(U2 ∩ Power(Q2), a)),

and proof is completed.//

Before entering definitions which concern to incremental construction, we give rise an
example which illustrates the needs of the definition. From the result of Theorem 4.2.11,
one might imagine that SC(A) ∼ SC(SC(Sub(A, Q1)) � SC(Sub(A, Q2)), ξ �) holds
with some fortunate Bridge Transition ξ. If it held, it would become quite fortunate
method for us, because we would like to construct an incremental construction method
for LR(0) graph without use of any item set. Unfortunately, SC(SC(Sub(A, Q1)) �
SC(Sub(A, Q2)), ξ �) causes state disruptions in some cases, and following example is
one of them.

Example 4.2.12 There exist εNFA A = (Σ, Q, δ, q0, F) and a pair of subsets of Q,
Q1, Q2, s.t., Q1 ∪ Q2 = Q and q0 ∈ Q1, which causes a result that Eff(SC(A)) is not
equivalent to Eff(SC(SC(Sub(A, Q1)) � SC(Sub(A, Q2)), ξ �)).

Figure 4.1 and 4.2 illustrate an example of the case above. (d) in Figure 4.1 is the
result of Sub-set Construction on original εNFA (a), and (f) in Figure 4.2 is the result
of Sub-set Construction on compositions of (b) SC(Sub(A, {q0, q1})) and (c) SC(Sub(A,
{q2})). (f) is not isomorphic to (d).

Definition 4.2.13 (Fusion of two DFA)
For given εNFA A = (Σ, Q, δ, q0, F) and a pair of subsets of Q, Q1, Q2, where Q1 ∪ Q2

= Q and q0 ∈ Q1, we also state, same as Definition 4.2.7,

εNFA A1 = (Σ, Q1, δ1, q0, ∗) = Sub(A, Q1)

39

(e) Composition of SC(Sub(A, {q0, q1}))
and SC(Sub(A, {q2})) with �

� �

�q0�
a

b

q2

a

�

a,b

�q0�q1�

�q1�

a

b

b

a

b

�

SC(Sub(A, {q0, q1}))

SC(Sub(A, {q2}))

�

(f) DFA of (e) by Subset Construction

a

b

��q0�� �q2��

���

��� �q0�� �q1�� �q2��

��q0�� �q1�� �q2��

��� �q0�� �q2��

b

b

a,b

a b

a

a

Figure 4.2: Example of State Disruption (2)

εNFA A2 = (Σ, Q2, δ2, ∗, ∗) = Sub(A, Q2)

DFA B1 = SC(A)

= (Σ, P1, ζ1, s1, H1)

εNFA B2 = SC(A1) � SC(A2), ξ �
= (Σ,Power(Q1) ∪ Power(Q2), δ

′, F ′)

DFA B′
2 = SC(B2)

= (Σ, P2, ζ2, s2, H2).

DFA Fus(SC(A1), SC(A2)) under A is defined as

Fus(SC(A1), SC(A2)) = (Σ,Power(Q), δ′′, q′′0 , F
′′)

q′′0 =
⋃

εC(ξ, εC(δ1, q0))

δ′′(
⋃

V, a) =
⋃

ζ2(V, a) (4.1)

F ′′ = {U ⊂ Q | U ∩ F �= φ} = {⋃ U | U ∈ Power(F1 ∪ F2) \ φ},
where ξ is defined same as Definition 4.2.7,

ξ ⊂ (Power(Q1) × (Σ ∪ {ε}) × Power(Q2))

∪(Power(Q2) × (Σ ∪ {ε}) × Power(Q1))

40

(U, a, V) ∈ ξ ⇔ U ⊂ Q1, V = εC(δ2, δ(U, a) ∩ Q2)

or U ⊂ Q2, V = εC(δ1, δ(U, a) ∩ Q1).

We also call SC(A1) subjective and SC(A2) dependent.

The definition of Bridge Transition ξ gives us an understanding such that it is need
a notion of entrances for graphs other than start states in order to fuse graphs, that
are denoted by εC(δ1, δ(U, a) ∩ Q1) for SC(A1) and εC(δ2, δ(U, a) ∩ Q2) for SC(A2).
As discussed in next section, on the case of fusing LR(0) graphs, εC(δ1, δ(U, a) ∩ Q1)
means an item set equal to εC({X → •α | X → α ∈ P}) for some syntactic variable X
concerning to the process. So, LR(0) graphs dealt in this paper are essentially some kind
of multi-entrance graphs rather than conventional LR(0) graphs. We will write Entε(X)
for a state εC({X → •α | X → α ∈ P}). Using Entε, ξ is easily defined at LR(0) graphs
so as that if a state q contains an item Y → α •X β, which can be determined with the
existence of transition by X from q, ξ must contain a pair (q, Entε(X)). So, we can use
fusion as an effective construction process of two LR(0) graphs, which does not use item
set information at all.

Theorem 4.2.14 SC(A) ∼ Fus(SC(Sub(A, Q1)), SC(Sub(A, Q2)))

(proof) From the definition of Fus, each state of Fus(SC(Sub(A, Q1)), SC(Sub(A, Q2)))
is merely a rename of a state of SC(A). The soundness and the completeness are ensured
by Theorem 4.2.11.//

Corollary 4.2.15 For given εNFA A = (Σ, Q, δ, q0, F) and given finite class of subset
of Q, Q1, Q2, . . . , Qn, where Q1 ∪ Q2 ∪ · · · ∪ Qn = Q, let

C1 = SC(Sub(A, Q1))

Ci = Fus(Ci−1, SC(Sub(A, Qi)))) (2 ≤ i ≤ n)

where

ξj ⊂ (Power(Q1 ∪ · · · ∪ Qj) × (Σ ∪ {ε}) × Power(Qj+1))

∪ (Power(Qj+1) × (Σ ∪ {ε}) × Power(Q1 ∪ · · · ∪ Qj))

(U, a, V) ∈ ξj ⇔ U ⊂ Q1 ∪ · · · ∪ Qj, V = εC(δ′j+1, δ(U, a) ∩ Qj+1)

or U ⊂ Qj+1, V = εC(δj , δ(U, a) ∩ (Q1 ∪ · · · ∪ Qj))

when we state Sub(A, Q1 ∪ · · · ∪ Qj) = (Σ, Q1 ∪ · · · ∪ Qj, δj , ∗j , Fj), Sub(A, Qj+1) =
(Σ, Qj+1, δ

′
j+1, ∗′j+1, F

′
j+1). Then Ci ∼ SC(Sub(A, Q1 ∪ · · · ∪ Qi))(1 ≤ i ≤ n). Especially

on the case i = n, Cn ∼ SC(A).

Someone might have doubt on fusion as an incremental construction method for LR(0)
which does not use information ‘item set’, because in the definition of fusion, as expres-
sion 4.1, it is seemed so that union operation on item set is needed. However, this doubt
will be cleared in the next section. The expression 4.1 plays a role of identification of states
in algorithms of incremental construction. We prepare another way to identification of
states, which is based on inclusion relation between states.

41

4.3 Discussions on LR(0) Parsing Table (State Tran-

sition Graph)

In this section, we discuss on subjects which depends on notions essentially forms LR(0)
graph. Basic notions and notations on this section are also summarized in Chapter 2. Most
important results in this section are MonoG, MaxInc and properties on them, defined in
Notation 4.3.3 and Definition 4.3.10, respectively. MonoG is an LR(0) graph induced
from only one production rule, which has good properties for incremental construction of
LR(0) graphs and for calculation of Look Ahead Sets without item set information. In
the algorithms of incremental construction of LALR(1) graph, described in Section 4.5,
it is assumed that both of initial graph, which is the start graph of construction, and
augmenting graph are MonoG. MaxInc is used in order to identify states. On conventional
construction algorithms for LR(0) graphs, as written in [1, 2], a state is identified with
a subset of items which form the state, so called kernel or core. On contrary to the
conventional methods, our approach adopts another information, i.e. MaxInc, in order
to identify states, which does not consists of items, but consists of inclusion information
between states. The efficiency of MaxInc will be discussed in Section 4.6.

Usually, LR(0) graph is constructed as a DFA. Using the notation described in Chap-
ter 2, for any given CFG G, LR(0) graph is denoted by Eff(SC(lr(G)). The fact that if a
transition from q to q′ by X exists, then it is clear that q must contain some item forms
Y → α • Xβ. Also, this feature is inherited to Eff(SC(lr(G)), and used frequently in
algorithms presented in Section 4.5. In fact, Bridge Transition ξ needed to achieve fusion
operation is calculated using this information, as described in Algorithm 4.5.3. How many
information is needed to achieve incremental construction of LR(0) graph? Making an
extreme argument, if topology of LR(0) graph and reduce information for each state are
given, we can recalculate item sets for each state. If we can decide topology of LR(0)
graph with the other information, the role of item set information, or kernel, is needed
only on identifying states. For such purpose, we introduce a notion MaxInc defined below.
To calculate topology of LR(0) and MaxInc easily, we use notion MonoG. To calculate
MonoG, we use no item set. Instead of item sets, we adopt a notion Flow defined below.
Our approach can be illustrated as an iteration process of construction of MonoG and
fusion of LR(0) graph and MonoG.

4.3.1 Mono-Graph

Firstly, we confirm a proposition stated below.

Lemma 4.3.1 Let A = lr(G) be an LR(0) graph, A′ = SC(A) = (V ∪ T, Power(Item
∪ {q0}), δ′, q′0, φ), and q be a state of SC(A). For some item X → α X1 · · ·Xk •β ∈ q,
there exists a state of SC(A), say q′, s.t., δ′(q′, X1 · · ·Xk) = q. Moreover, if , for some
string w ∈ (V ∪ T)∗, | w | = k, δ′(q′′, w) = q then w = X1 · · ·Xk.

(proof) By induction on k.//

Corollary 4.3.2

Root(q,X → α • β) = {q′ ⊂ Item | δ′(q′, α) = q}
= {q′ ⊂ Item | δ′(q′, w) = q, | w |=| α |}

42

Lemma 4.3.4 is one of most important results of this section, which concerns to MonoG.
The proof of the lemma suggests an algorithm of effective construction of MonoG.

Notation 4.3.3 (Mono-Graph)
An LR(0) graph (DFA) which is obtained from only one production rule Z → X1 · · ·Xn

is denoted by MonoG(Z → X1 · · ·Xn).

Lemma 4.3.4 The number of states of MonoG(Z → X1 · · ·Xn) is strictly n + 1.

(proof) Function Index : Item({Z → X1 · · ·Xn}) → N, which assigns an integer for each
item, is defined as,

Index(Z → •X1 · · ·Xn) = 0

Index(Z → X1 · · ·Xi • · · ·Xn) = i (1 ≤ i ≤ n),

and, using Index, let Index : Power(Item({Z → X1 · · ·Xn}) → N be defined as,

Index(U) = max
item∈U

Index(item).

Index denotes either Index or Index, if no ambiguity. From the definition of LR(0) graph
A (εNFA), there is a sequence of n + 1 states, starts with an item Z → •X1 · · ·Xn to
Z → X1 · · ·Xn•. It is obvious that the values of Index for each states are mutually
distinct, which values are 0, 1, . . . , n. From this fact, the values of Index for each states
of SC(A) also exhausts 0 to n, because destination state by ε-transition from any state
Z → X1 · · · •Xj · · ·Xn on A is, if exists, only Z → •X1 · · ·Xn. So, the value of Index
on εC(Z → X1 · · · •Xj · · · Xn) is also j. Thus, from initial state εC(Z → •X1 · · ·Xn),
for each i = 0, . . . , n, there exists a state which includes an item Z → X1 · · · •Xi · · ·Xn

that gives value of Index of the state is reachable. Thus, the number of states of SC(A)
is more than n + 1.

Before giving a proof of the converse, we certify a fact that if X1 �= Z, then kernel of
each state contains only one element. Suppose a state q contains an item Z → · · · •Z
· · · , then q must contain an item Z → •X1 · · ·Xn. However, because of the supposition
X1 �= Z, Z → · · ·Z• · · · and Z → X1 •X2 · · ·Xn never occurs in same state. So, number
of elements of kernel never increases.

Conversely, suppose there are two distinct states of SC(A) which have same value of
Index, say q and q′, and Index(q) = Index(q′) = j. Kernels of q and q′ are distinct, because
we assume q �= q′. Thus there exists an item Z → X1 · · ·Xi• · · ·Xn ∈ q, Z → X1 · · ·Xi•
· · · Xn �∈ q′ and i < j, and addtionally we can assume i as the maximum among such
values. From assumptions that Z → X1 · · · •Xj · · ·Xn ∈ q, q′ and Z → X1 · · ·Xi• · · ·Xn

∈ q, we can claim that Xj−i · · ·Xj−1 = X1 · · ·Xi by Lemma 4.3.1 and there exist states
p and p′, s.t., q is reachable from p by X1 · · ·Xi and q′ is reachable from p′ by X1 · · ·Xi,
respectively, and Z → •X1 · · ·Xn ∈ p, Z → •X1 · · ·Xn �∈ p′. From the fact discussed
above, Xj−i = X1 = Z must hold. So, because p′ contains item Z → X1 · · · •Xj−i · · ·Xn,
p′ must contain item Z → •X1 · · ·Xn. It is contradiction.

Above all, states are identified by values of Index, thus, number of states is just n+1.//

To calculate topology of MonoG, and also LA discussed in the next section, we in-
troduce a notion Flow. Intuitively, Flow holds information whether item Z → α •Xβ

43

A� CAB�

p0

A� CA B �

p2

AC
A� CAB �

p3

B

p1

A� C AB�

A� CAB�

C

Figure 4.3: Mono for G4

belongs to q, for each state q and each X ∈ V . If (q, X, i) ∈ Flow then Z → α •X β ∈
q and Xi = X. In other words, under an interpretation of Flow being a function Q2 × V
→ Power({1, . . . n}), ⋃

X∈V Flow(q, X) gives item set description of state q. Precise argu-
ments on use of Flow is described in Algorithm 4.5.1. Flow is calculated and used during
calculating MonoG, and when the calculation of MonoG is completed, Flow is destructed.

Definition 4.3.5 (Flow)
For given MonoG(Z → X1 · · ·Xn) = (V ∪ T, Q2, ζ2, {Z → •X1 · · ·Xn}, ∗), Flow ⊂ Q2

× V × {1, . . . , n} is defined as (q,Xi, i) ∈ Flow iff Z → X1 · · ·Xi−1 •Xi · · ·Xn ∈ q and
Xi ∈ V .

Note: Actual values of Flow are calculated in according to the structure of MonoG which
is established in the proof of Lemma 4.3.4.

Example 4.3.6 (MonoG and Flow) Here, we illustrate an example of MonoG and
Flow for CFG G4 = ({A, B, C}, φ, {A → C A B}, A) (= lr(A → C A B)). MonoG(G4)
is illustrated in Figure 4.3 with item sets. To construct this graph, firstly we calculate Flow
for the graph. Flow is calculated, piling up εNFA lr(A → CAB) as shown in Figure 4.4.
Strict value of the Flow for MonoG(lr(A → C A B)) is as below,

Flow = {(p0, C, 1), (p1, A, 2), (p1, C, 1), (p2, B, 3)}

4.3.2 MaxInc: a descriptor for state identification of LR(0)

From now on, we start arguments concerning to a method for state identification. As
mentioned at the top of this chapter, we abandon information of item set for each state.
Instead of it, we adopt inclusion relation between states. And, using the relation, an index
for state identifier, named MaxInc, is introduced. Intuitively, for each state q, MaxInc(q) is
a subset of states as its value. If MaxInc(q) is empty set, then q is a minimum state which
has a unique item item, in the meaning that if ∃q′, s.t., item ∈ q′ then q′ must involve
q. If MaxInc(q) is not empty set, then q is obtained so as to fuse states of MaxInc(q).
Of coarse, there are combinatorially many choices to express such a set. Trivial one
choice is so as to collect all states which are included by q, but we adopt another way
founded on a property of LR(0) graph, which is stated in Lemma 4.3.9. The way is to
calculate a kind of maximal set, of which existence and uniqueness is stated in the lemma.
Moreover, we show methods for incremental renewal of MaxInc through Lemma 4.3.12 to
Theorem 4.3.18.

44

A� CAB�

p0

A� CA B �

p2

AC

p1

A� C AB� A� CAB �

p3

B

A� CAB�

�

A� CA B �

A� C AB�

A� CAB �
BC

A

Figure 4.4: Calculation of Flow

Lemma 4.3.7
Suppose, given an LR(0) graph (DFA)

SC(lr(G)) = (V ∪ T,Power(Item), ζ, εC({S ′ → •S}), ∗).
If states q1, q2 ⊂ Item are reachable from εC(εItem(X1)) and εC(εItem(X2)) for some
X1, X2 ∈ V , respectively, and if q1 ∩ q2 �= φ, then there is a non-empty state q ⊂ q1 ∩ q2

which is reachable from εC(εItem(X)) for some X ∈ V .

(proof) Consider X → Y1 · · ·Yi •β ∈ q1 ∩ q2. From the construction of SC(lr(G)),
we can state that q1 is reachable from an entrance εC(εItem(X1)) with a symbol se-
quence w1Y1 · · ·Yi for some w1 ∈ (V ∪ T)∗, and also, q2 is reachable from an entrance
εC(εItem(X2)) with a symbol sequence w2Y1 · · ·Yi for some w2 ∈ (V ∪ T)∗. Considering
states p1 and p2, which are stated by p1 = ζ(εC(εItem(X1)), w1), p2 = ζ(εC(εItem(X2)),
εC(εItem(X)) ⊂ p1 ∩ p2 must hold. Thus, we can claim that ζ(εC(εItem(X)), Y1 · · ·Yi)
⊂ q1 ∩ q2, and so, q = ζ(εC(εItem(X)), Y1 · · ·Yi) ⊂ q1 ∩ q2, which satisfies the proposi-
tion.//

Definition 4.3.8 (An index Inc for Inclusion Relation)
For given LR(0) graph SC(lr(G)) = (V ∪ T, Power(Item), ζ, εC({S ′ → •S}), ∗), we
write ES(Effective States) for a set of all states which are reachable from εC(εItem(X))
for some X ∈ V . We define Inc : ES → Power(ES), using

Inc′(q) = {U ⊂ ES | q =
⋃

U and q �∈ U},
as,

Inc(q) = {U ⊂ ES | q =
⋃

U and q �∈ U and ∀q′ ∈ U, Inc′(q′) = φ}.
Lemma 4.3.9 (The existence of Maximal Set of Inc(q))
If Inc(q) �= φ, then there exists a unique maximal set in Inc(q), where a maximal set µ
∈ Inc(q) is a set of states which satisfies condition ∀U ∈ Inc(q), ∀q′ ∈ U , ∃q′′ ∈ µ, q′ ⊂
q′′.

45

p0 = Entε(S)
A

a

B

p1

B� a b� B� a b� �B� a b
a b

p10p9p8 = Entε(B)

p3

p2

S� B �

�A� a a

B� a b�

S� A �S� A
S� B
A� a a

B� a b�

�

�

�

a

b

A� a C�

A� a C�

C� c�

p11 = Entε(C) p12

C� c �C� c�

A� a a �

a a
p6p5p4 = Entε(A)

A� a C �

�A� a a
A� a C�

p7
C

C

C� c�

c
c

c

A� a a�

A� a C�

Figure 4.5: LR(0) graph for G5

(proof) Suppose Inc(q) is not empty. The existence of maximal set in Inc(q) is trivial,
because the co-domain of Inc is Power(Power(Item)) which is finite. If there exist distinct
maximal sets in Inc(q), say U1 and U2, there must be p ∈ U1 and p′1, . . . , p

′
k ∈ U2, s.t., p

�= p′j and p∩ p′
j �= φ for each j = 1, . . . , k, moreover p ⊂ p′1 ∪ · · · ∪ p′k. By Lemma 4.3.7, p

consists of some other states, thus Inc′(p) �= φ. It is contradiction. So, the maximal set
is unique.//

Definition 4.3.10 (MaxInc)

MaxInc(q) =

{
φ iff Inq(q) = φ
µ(= maximals of Inc(q)) otherwise.

Example 4.3.11 (An Example of Inc and MaxInc) Figure 4.5 illustrates SC(lr(G5))
for CFG G5 = ({S, A, B, C}, {a, b, c}, {S → A, S → B, A → a a, A → a C, B → a b,
C → c}, S). Values of Inc′, Inc and MaxInc for each states are as follows.

p0, p1, p2 p3 p4, p5, p6, p7, p8, p9, p10, p11, p12

Inc′ φ {{p5, p9, p11}, {p5, p9}} φ
Inc φ {{p5, p9, p11}, {p5, p9}} φ
MaxInc φ {p5, p9} φ

46

Clearly, because p1, p2, p4, p6, p7, p8, p9, p10, p11 and p12 are unique states, all values
of Inc′, Inc and MaxInc for their states are φ. For p5, while p11 ⊂ p5 holds, Inc′(p5) =
Inc(p5) = MaxInc(p5) = φ, because p5 contains unique item A → a • a. By same reason,
Inc′(p0) = Inc(p0) = MaxInc(p0) = φ. p3 is sole synthetic state in this example.

Of course, to calculate above values, information of inclusion relations must be held,
as below.

p0 p1, p2,p4,p6, p7, p8, p9, p10, p11, p12 p3 p5

⊂ p4, p8 φ p5, p9, p11 p11

Lemma 4.3.12 (Evolution on MaxInc)
For given q1, q2 ∈ ES, where q1 ∪ q2 ∈ ES,

MaxInc(q1 ∪ q2) =

MaxInc(q1) if q2 ⊂ q1

MaxInc(q2) if q1 ⊂ q2

{q1, q2} if MaxInc(q1) = MaxInc(q2) = φ

maximals of MaxInc(q1) ∪ {q2} if MaxInc(q1) �= φ and MaxInc(q2) = φ

maximals of {q1} ∪ MaxInc(q2) if MaxInc(q1) = φ and MaxInc(q2) �= φ

maximals of MaxInc(q1) ∪ MaxInc(q2) otherwise.

(proof) On cases of q2 ⊂ q1 or q1 ⊂ q2, they are trivial. On the case of MaxInc(q1) =
MaxInc(q2) = φ, it is obvious that φ �= {q1, q2} ∈ Inc′(q1 ∪ q2), {q1, q2} ∈ Inc(q1 ∪ q2).
We obtain results q1, q2 ∈ MaxInc(q1 ∪ q2) and q3 ∈ MaxInc(q1 ∪ q2) ⇒ q3 = q1 or q3 = q2

by same discussion as in the proof of Lemma 4.3.9. Thus MaxInc(q1 ∪ q2) = {q1, q2}.
Equations remained are obtained same as above.//

Corollary 4.3.13 For given σ = {q1, q2, . . . , qn} ⊂ ES, we assume ∀qi, qj ∈ σ, qi �⊂ qj.
Let σ1 = {qi ∈ σ | Inc′(qi) = φ}, σ2 = σ \ σ1, then

MaxInc(
⋃

σ) = maximals of (σ1 ∪
⋃

qi∈σ2

MaxInc(qi)).

Lemma 4.3.14 For given MonoG(Z → X1 · · ·Xn) = (V ∪T, Q2, ζ2, {Z → •X1 · · ·Xn},
∗), and we assume that Q2 = {q1, . . . , qn+1} those contents are same of them in the proof
of Lemma 4.3.4, then,

(q, Z, i) ∈ Flow ⇔ qi ⊂ q.

(proof) Same discussion in Lemma 4.3.4.//

Lemma 4.3.15 For each state q of MonoG(Z → X1 · · ·Xn), MaxInc(q) = φ.

47

(proof) It is obvious from the fact that for each state qi ∈ Q2, if q′ ⊂ qi then Z → X1 · · ·
• Xi · · ·Xn �∈ q′.//

So far, we have shown definitions and some features of MaxInc and inclusion relations.
Because our purpose is to construct an incremental construction method for LALR(1)
parser, we must argue on a renewal method for MaxInc. Suppose a situation that CFG
G and LR(0) graph SC(lr(G)) for G are given and we are going to calculate LR(0) graph
for G′ which is G augmented with a new production rule Z → X1 · · ·Xn. Let Q1 be the
set of states of SC(lr(G)), and Q2 that of MonoG(Z → X1 · · ·Xn). During computing
Fus(SC(lr(G)), MonoG(Z → X1 · · ·Xn)), in order to express inclusion relation between
state and values of MaxInc, we use Q1 ∪ Q2 as a set of states. Because we assume that
Z → X1 · · ·Xn is a really new production rule, during computing, there happens no
contradiction. To complete fusion operation, we have to rearrange inclusion relations and
value of MaxInc for each state, because some states in Q1 ∪ Q2 would be unreachable
from any entrance Entε(X), and some states would be newly introduced. Arguments
following concern to this rearrangement. In the following, we assume that G = (V, T, P, S),
G′ = (V, T, P ′, S), where P ′ = P ∪{Z → X1 · · ·Xn}. And also, a set of all reachable states
from an entrance of graph A is denoted by ESA. In order to emphasize that it is on graph
A, inclusion relation is denoted by ⊂A and MaxInc is denoted by MaxIncA. However,
as intermediate values, notations ⊂(Q1∪Q2) and MaxInc(Q1∪Q2) are used, for the purpose
described above. In the following discussions, firstly, ⊂(Q1∪Q2) and MaxInc(Q1∪Q2) are
calculated from ⊂SC(lr(G)), MaxIncSC(lr(G)), ⊂M and MaxIncM , where M = MonoG(Z →
X1 · · · Xn). And then ⊂A, MaxIncA are defined, where A = Fus(SC(lr(G)), MonoG(Z →
X1 · · ·Xn)). Finally, it is proved that ⊂A and MaxIncA are equivalent to ⊂SC(lr(G′)) and
MaxIncSC(lr(G′)), respectively.

Definition 4.3.16 (MaxInc(Q1∪Q2), ⊂(Q1∪Q2))
For each state q ⊂ Q1 ∪ Q2 of given A = Fus(SC(lr(G)), MonoG(Z → X1 · · ·Xn)),
where Q1 = Item(P), Q2 = Item({Z → X1 · · ·Xn}), we assume that q = q1 ∪ q2 ∪
· · · ∪ qk (∀i, qi ⊂ Q1 or qi ⊂ Q2), and, let Uq is a set of maximal elements of {qi |
qi �= q,MaxInc(qi) = φ, i = 1, . . . , k}. Then, MaxInc(Q1∪Q2), which holds intermediate
values in order to calculate MaxIncSC(lr(G′)), where G′ is the grammar augmented to G by
MonoG(Z → X1 · · ·Xn), is defined as,

MaxInc(Q1∪Q2)(q) = maximals of (Uq ∪
⋃

q′′∈{q1,...,qn}\Uq

MaxInc(q′′))

(in the expression, MaxInc means either MaxIncSC(lr(G)) or MaxIncM in according to its
argument, where M = MonoG(Z → X1 · · ·Xn)). We define inclusion relation ⊂(Q1∪Q2)

so as,

1) MaxInc(Q1∪Q2)(q) = φ and MaxInc(Q1∪Q2)(q
′) = φ and (q, q′) ∈⊂

⇒ (q, q′) ∈⊂(Q1∪Q2),

2) MaxInc(Q1∪Q2)(q) = φ and MaxInc(Q1∪Q2)(q
′) �= φ

and ∃p′ ∈ MaxInc(Q1∪Q2)(q
′), (q, p′) ∈⊂

⇒ (q, q′) ∈⊂(Q1∪Q2),

48

3) MaxInc(Q1∪Q2)(q) �= φ and MaxInc(Q1∪Q2)(q
′) = φ

and ∀p ∈ MaxInc(Q1∪Q2)(q), (p, q
′) ∈⊂

⇒ (q, q′) ∈⊂(Q1∪Q2),

4) MaxInc(Q1∪Q2)(q) �= φ and MaxInc(Q1∪Q2)(q
′) �= φ

and ∀p ∈ MaxInc(Q1∪Q2)(q),∃p′ ∈ MaxInc(Q1∪Q2)(q
′), (p, p′) ∈⊂

⇒ (q, q′) ∈⊂(Q1∪Q2),

⊂(Q1∪Q2) is a minimum set which satisfies above conditions.
(also, in these expressions, ⊂ means either ⊂SC(lr(G)) or ⊂M , where M = MonoG(Z →
X1 · · · Xn)).

Definition 4.3.17 (MaxIncA, ⊂A)
For each q ∈ ESSC(lr(G′)) and each q′ ∈ MaxInc(Q1∪Q2)(q), let PreInc(q, q′) be

PreInc(q, q′) = {q′′ ∈ ESSC(lr(G′)) | q′ ⊂(Q1∪Q2) q′′ and q′′ ⊂(Q1∪Q2) q},

then MaxIncA is defined as,

MaxIncA(q) =




φ if ∃q′ ∈ MaxInc′(q),
s.t.,PreInc(q, q′) = φ

maximals of (
⋃

q′∈MaxInc′
(q)

PreInc(q, q′)) otherwise.

where MaxInc′ = MaxInc(Q1∪Q2). And also, ⊂A is defined simply as

⊂A=⊂(Q1∪Q2) ∩ (ESA × ESA).

Theorem 4.3.18

⊂A = ⊂SC(lr(G′)),

MaxIncA = MaxIncSC(lr(G′))

(proof) From Theorem 4.2.14, SC(lr(G′)) and A = Fus(SC(lr(G)), MonoG(Z → X1 · · ·Xn))
are isomorphic. To mention precisely, we must argue that this proof is on the correspon-
dence given by the isomorphism. However, to reduce description, states p of SC(lr(G′)),
which are associated to state p′ of Fus(SC(lr(G)), MonoG(Z → X1 · · ·Xn)) by the iso-
morphism, are identified with p′.

Let SC(lr(G′)) = (V ∪ T, Power(Item(P ′)), ζ, s, ∗). From the definitions of Fus
and MonoG, for each states q ⊂ q′ ⊂ ESSC(lr(G′)), we can write q = q1 ∪ · · · ∪ qk, q′ =
q′1 ∪ · · · ∪ q′k′ (qi ⊂ Q1 or qi ⊂ q2, q′j ⊂ Q1 or q′j ⊂ Q2). From the assumption q ⊂ q′,
for each i = 1, . . . , k, we can select a minimum set {q′j1 , . . . , q′jm

} on q′ so that qi ⊂ q′j1∪ · · · ∪ q′jm
. Of course, there might be alternative selections. If m > 1, by Lemma 4.3.7,

MaxInc(qi) �= φ must hold. This case corresponds to the case 4) in Definition 4.3.16. It

49

p'0 = Entε(S)
A

a

B

p1

B� a b� B� a b� �B� a b
a b

p10p9p8 = Entε(B)

p2

S� B �

S� A �S� A
S� B
A� a a
B� a b�

�

�

�

a
b

p11 = Entε(C) p12

C� c �C� c�
c

p'3
�A� a a

B� a b�

�A� a aA� a a� A� a a �

a a
p6p'5p'4 = Entε(A)

Figure 4.6: Before Evolution (MaxInc)

a
p"5p"4 = Entε(A)

A� a C �A� a C�

p7
C

A� a C�

Figure 4.7: Augmenting MonoG for Evolution (MaxInc)

is easy to see that the other cases correspond to one of 1),. . ., 3) of Definition 4.3.16, with
same discussions. Hence (q, q′) ∈ ⊂SC(lr(G′)) ⇒ (q, q′) ∈ ⊂A is obtained straightforwardly
from the definitions. Conversely, (q, q′) ∈ ⊂A ⇒ (q, q′) ∈ ⊂SC(lr(G′) is obtained easily by
same way.

Finally, we can conclude that MaxIncA = MaxIncSC(lr(G′)), because SC(lr(G′)) and
Fus(SC(lr(G)), MonoG(Z → X1 · · ·Xn)) have same inclusion relation.//

Example 4.3.19 (Evolusion of MaxInc) We consider a situation that from two LR(0)
graphs Figure 4.6, say SC(lr(G′

5)), and Figure 4.7, LR(0) graphs Figure 4.5, i.e. of Exam-
ple 4.3.11, is obtained by Fus operation. The values of Inc′, Inc and MaxInc for Figure 4.6
is provided in Table 4.1, and for Figure 4.7 in Table 4.2. Fus(SC(lr(G′

5)), MonoG(A →
a C)) is given in Figure 4.8. The constructions of states are given in Table 4.3.

From Lemma 4.3.12, Corollary 4.3.13 and Definition 4.3.16, MaxInc(p0) = MaxInc(p′0∪
p′′4), MaxInc(p3) = MaxInc(p′3 ∪ p′′5 ∪ p11), MaxInc(p4) = MaxInc(p′

4 ∪ p′′4) and MaxInc(p5)
= MaxInc(p′

5 ∪ p′′5 ∪ p11) are calculated indivisually. Results of the calculations are shown

50

p′0, p1, p2 p′3 p′4, p′5, p6, p8, p9, p10, p11, p12

Inc′ φ {{p′5, p9}} φ
Inc φ {{p′5, p9}} φ
MaxInc φ {p′5, p9} φ

Table 4.1: Inc′, Inc and MaxInc for Figure 4.6

p′′4, p′′5, p7

Inc′ φ
Inc φ

MaxInc φ

Table 4.2: Inc′, Inc and MaxInc for Figure 4.7

p0 = p′0 ∪ p′′4 p1 = p1 p2 = p2

p3 = p′3 ∪ p′′5 ∪ p11 p4 = p′4 ∪ p′′4 p5 = p′5 ∪ p′′5 ∪ p11

p6 = p6 p7 = p7 p8 = p8

p9 = p9 p10 = p10 p11 = p11

p12 = p12

Table 4.3: Construction of States for SC(lr(G5))

MaxInc(p0) MaxInc(p3) MaxInc(p4) MaxInc(p5)
{p′0, p′′4} {p′5, p′′5, p9, p11} {p′4, p′′4} {p′5, p′′5, p11}

Table 4.4: MaxInc(Q1∪Q2)

MaxIncA(p0) MaxIncA(p3) MaxIncA(p4) MaxIncA(p5)
φ {p5, p9} φ φ

Table 4.5: MaxIncA for SC(lr(G5))

51

p0 = Entε(S)
A

a

B

p1

B� a b� B� a b� �B� a b
a b

p10p9p8 = Entε(B)

p3

p2

S� B �

�A� a a

B� a b�

S� A �S� A
S� B
A� a a

B� a b�

�

�

�

a

b

A� a C�

A� a C�

C� c�

p11 = Entε(C) p12

C� c �C� c�

A� a a �

a a
p6p5p4 = Entε(A)

A� a C �

�A� a a
A� a C�

p7
C

C

C� c�

c
c

c

A� a a�

A� a C�

p'0

S� A
S� B
A� a a
B� a b�

�

�

�

p'3
�A� a a

B� a b�

A

B a

a b

a
�A� a aA� a a�

a
p'5p'4

a
p"5p"4

A� a C�
C

A� a C�

Figure 4.8: Result of Fus on Figure 4.6 and Figure 4.7

52

in Table 4.4. After the calculations of all of these values are completed, values of ⊂(Q1∪Q2)

are calculated.
Using values of MaxInc(Q1∪Q2), finally we obtain values of MaxIncA by Definition 4.3.17,

as shown in Table 4.5. The calculation of these values requires to seek states which are
included in MaxInc(Q1∪Q2)(q) for each state q ∈ ESSC(lr(G5)), i.e. PreInc. For exam-
ple, while MaxInc(Q1∪Q2)(p0) = {p′0, p′′4}, because both of p′0 and p′′4 are not included in
ESSC(lr(G5)), MaxIncA(p0) = φ. For MaxInc(p3),

⋃
q′∈MaxInc′

(p3)

PreInc(p3, q
′) = {p5, p9, p11}

is obtained. However, because p11 ⊂ p5, MaxInc(p3) = {p5, p9}.

4.4 Discussions on Look Ahead Symbol Set

In this section, we discuss on a way of calculation of Look Ahead Symbols Sets (LA)
on LALR(1) parser. Typical point of the method discussed here is that the calculation
is achieved without use of any item sets. Of course, some informations concerning to
item sets is used. To illustrate the idea, firstly we observe a process of calculation of LA
in conventional algorithm. Suppose LR(0) graph is given, and, we stand on a point of
calculation of LA. An item Y → α •X β is included in some state q with LA θ, then q
must include an item X → •γ induced from Y → α •X β, so, LA of it includes First(β)
and , if ε is derived from β, θ is also included by the LA. First(β) and the condition ‘if ε
is derived from β’ and θ possibly change as a result of augmentation of a production rule.
Firstly, we focus on the condition ‘if ε is derived from β’.

In simplest cases, if β contains a terminal symbol, ε is never derived from β, and if β
= Z for some syntactic variable Z, the ε-productivity depends on the ε-productivity of
Z. In general case, i.e. β = Z1 · · ·Zn, ε-productivity of β depends on ε-productivities of
Z1 to Zn. So the condition must include,

ε-producible(Z1) ∧ · · · ∧ ε-producible(Zn). (4.2)

The order of predicates is not important. Suppose a grammar contains a production rule
Z1 → Y1 · · ·Ym, if ε is derived from all of Yk, and from all of Z2 to Zn, ε is derived from
β. So the condition also must contain,

ε-producible(Y1)∧ · · ·∧ ε-producible(Ym)∧ ε-producible(Z2) · · · ∧ε-producible(Zn). (4.3)

If one of (4.2) and (4.3) satisfies, the condition becomes true. Thus, (4.2) and (4.3) must be
composed by conjunction. To express such a condition, we introduce Dependency Domain
(DD), which is defined in Definition 4.4.1. The condition above is denoted by E∆(β) in
following discussions. In most cases described in the algorithems of our method, E∆ is
not computed directly from production rules, the exceptional case is on construction of
MonoG. As a method for compute E∆, we present some kind of recurrence relations of
E∆ on production rule set, shown in Theorem 4.4.9, using a few operations defined in
Definition 4.4.3 and 4.4.8.

In addition to DD, we introduce IndT∆, IndV ∆ and Link∆ in order to express an
index, named Ind∆ for LA, instead of First. IndT∆ and IndV ∆ concern to inner state

53

production of LA, and Link∆ concerns to propagation of LA from another states. Here,
we illustrate only our points of view. Precises are discussed through Definition 4.4.13 to
Definition 4.4.23. In conventional calculation method for LA asigns LA to each items in
each states. However, for example, in above discussion, First(β) and θ is also asigned to
item X → •γ′, if exists in the state. The item-wise asignment is an excessive quantitative
choice. LA is common on each εItem(X). IndT∆ and IndV ∆ give indeces of LA flow
out to εItems which are induced in the state, with some conditions by DD. We also give
a few operations in order to calculate their values in fully incremental manner.

The advantage of the method using IndT∆, IndV ∆ and Link∆ are not only that
there is no need to keep item set information, but also that there is an operation so
as to decrease space usage, as a result, which operation increases efficiency on time to
proceed computations. For example, constructing a parser for RCFG, when construction
of initial parser completes, information about ε-productivity on syntactic variables other
than those of f(D), i.e. dynamically definable variables, has no need to be kept. In
such a situation, we can eliminate conditions which contains ε-productivity on X. The
operation, named Domain Restriction, is stated in Definition 4.4.30.

Through discussions in this section, we essentially depend on the grounds of a propo-
sition, i.e.

First(ααβ) = First(αβ),

stated as Proposition 2.6.8, explicitly or implicitly. This equation is one of typical prop-
erties of CFG. Using this property, we succeeded to give simple operations on E∆, Top∆,
Dep∆ and Link∆. Top∆ and Dep∆ are functions to calculate values of IndT∆ and
IndV ∆, respectively.

4.4.1 Dependency Domain

From now on, notions which are introduced for the method of incremental construction
of LALR(1) parser are stated.

Definition 4.4.1 (Dependency Domain (DD))
For any H1, H2 ⊂ Power(Ω), where Ω is an arbitrary finite set, firstly we define a pre-
order <, such as,

H1 < H2 ⇔ ∀U ∈ H2, ∃V ∈ H1, V ⊂ U,

also define equation = ,
H1 = H2 ⇔ H1 < H2, H2 < H1,

then, we obtain a quotient set of Power(Power(Ω)) by =,i.e., Power(Power(Ω)) / =,
denoted by [Power(Power(Ω))]. We call [Power(Power(Ω))] Dependency Domain on Ω,
or Disjunction Form on Ω. Additionally, for each H ∈ [Power(Power(Ω))], [H] denotes
the class to which H belongs.

Note: For each elements of [Power(Power(Ω))] are regarded as Disjunctive Normal Form
without Negative Literals. On this interpretation, Ω is assumed to be a set of Propositional
Variables. The element {φ} ∈ [Power(Power(Ω))] can be interpreted as Absolutely True,
and φ Absolutely False, which will be denoted by true and false, respectively.

Proposition 4.4.2 For any H ⊂ Power(Ω),

η, η′ ∈ H, η ⊂ η′(η �= η′) ⇒ [H] = [H \ {η′}].

54

(proof) Straightforward from the definition.//

Definition 4.4.3 (Convolution on DD)
For given H, H ′ ∈ [Power(Power(Ω))], we define Convolution Operation ∗ on H, H ′ as

H ∗ H ′ = [{η ∪ η′ | η ∈ H, η′ ∈ H ′}].
Definition 4.4.4 (ε-Productivity Decision)
Suppose given CFG G = (V, T, P, S) and given a subset of V , say V ′. For any symbol
sequence α ∈ (V ∪ T)∗, εDerivatioin Judgement E∆(α) is defined as

E∆(α) = [{{X1, . . . , Xn} ⊂ V ′ | α
∗⇒ X1 · · ·Xn,

Xi

∗
�⇒ ε, for 1 ≤ i ≤ n}].

The value of E∆(α) is of [Power(Power(V ′))]. To emphasize the value of E∆ is under
G or P , we write E∆G(α) or E∆P (α). Moreover, to emphasize the value of E∆ is over
V ′, we write E∆(α) | V ′, E∆G(α) | V ′, E∆P (α) | V ′.

Example 4.4.5 Let CFG G6 = (V6, T6, P6, S), where

V6 = {S, X, Y, A, B, C},
T6 = {a, b, c},
P6 = {S → X Y, X → A, X → A X,

Y → B, Y → B Y,

Y → C, Y → C Y,

A → a, B → b, C → c },
L(G6) = (a+)(b + c)+. No ε-derivation is achieved from any syntactic variables on this
grammar. Intuitively, if new production rule B → ε is added to the grammar, B becomes
ε-producible, and also Y ε-producible. So, {B} must be included in E∆(Y). From same
reason, {C} ∈ E∆(Y). Because syntactic variable sequences derived from Y are (B+C)+
= {B, C, BB, BC, CB, CC, . . .}, E∆(Y) = [H1], where H1 = {{Y }, {B}, {C}, {B, C}}.
From the definition of DD, E∆(Y) = [H2], where H2 = {{Y }, {B}, {C}}, because H2

⊂ H1 indicates H1 < H2 from the definition of DD (Definition 4.4.1), and for {B, C} ∈
H1, ∃{B} ∈ H2, {B} ⊂ {B, C}, thus H1 and H2 is equivalent.

The values of E∆ for each syntactic variables are given in the table, as follows.

S X Y
E∆ {{S}, {X, Y }, {A, Y }, {X, B}, {{X}, {A}} {{Y }, {B}, {C}}

{X, C}, {A, B}, {A, C}}
A B C

E∆ {{A}} {{B}} {{C}}

55

Proposition 4.4.6 E∆(αβ) = E∆(α) ∗ E∆(β).

(proof) Straightforward from the definition of Convolution on DD (Definition 4.4.3) and
the definition of E∆ (Definition 4.4.4).//

Proposition 4.4.7 If given α ∈ (V ∪ T)∗ is ε-producible on G, then E∆(α) = [{φ}].

(proof) If α is ε-producible, then φ ∈ {{X1, . . . , Xn} ⊂ V ′ | α
∗⇒ X1 · · ·Xn, Xi

∗
�⇒

ε, for 1 ≤ i ≤ n} as a vacuous case that n = 0.//

Definition 4.4.8 (Substitution on DD)
For given H, H ′ ∈ [Power(Power(Ω))] and given X ∈ Ω, Substitution of X in H ′ to H is
defined as

H ′[H/X] = [{η′′ ⊂ Ω | η′ ∈ H ′, η ∈ H,

X �∈ η′ ⇒ η′′ = η′,

X ∈ η′ ⇒ η′′ = η ∪ η′ \ {X}}].

Also, Substition of X in E∆(α) to H ∈ [Power(Power(V ′))] is defined as

E∆(α)[H/X] = [{η′′ ⊂ V ′ | η′ ∈ E∆(α), η ∈ H,

X �∈ η′ ⇒ η′′ = η′,

X ∈ η′ ⇒ η′′ = η ∪ η′ \ {X}}].

Theorem 4.4.9 (Evolution of E∆)
For each production rule set P ′ = P ∪ {X → γ}, α ∈ (V ∪ T)∗,

E∆P ′(α) = [E∆P (α) ∪ E∆P (α)[E∆P (γ)/X]].

(proof) It is obvious that E∆P (α)∪E∆P (α)[E∆P (γ)/X] denotes ε-producible condition
for α on the restriction that use of production rule X → γ in each derivations on P ′

is restricted to at most once. Hence, it is clear that E∆P (α) ∪ E∆P (α)[E∆P (γ)/X] ⊂
E∆P ′(α). However, a set of all syntactic variables which occur in each symbol sequences on
each derivations from α never increases, whether X → γ is used once or more than twice.
Thus, each element of E∆P ′(α) must be included in E∆P (α) ∪ E∆P (α)[E∆P (γ)/X].//

Example 4.4.10 (Evolution on G6)
Suppose a situation that a new production rule A → ε is augmented to G6 given in
Example 4.4.5 above. From Definition 4.4.4, E∆P6(ε) = {φ}. Using this value, values of
E∆P6 [{φ}/A] for each syntactic variables are as below.

S X Y
E∆P6[{φ}/A] {{S}, {Y }, {B}, {C}} {φ} {{Y }, {B}, {C}}

A B C
E∆P6[{φ}/A] {φ} {{B}} {{C}}

56

From the definition of Substitution on E∆ (Definition 4.4.8), E∆P6(S)[{φ}/A] = [{{S},
{X, Y }, {Y }, {X, B}, {X, C}, {B}, {C}}]. Hewever, from the definition of DD (Def-
inition 4.4.1), the elements {X, Y }, {X, B} and {X, C} can be omitted. To use theses
values, values of E∆P ′

6
for each syntactic variables are calculated, where P ′

6 = P6 ∪{A →
ε}. On this case, they are same to E∆P6[{φ}/A].

Before continue the discussion, we summarize operations and properties on E∆. As an
interpretation of DD given by the definition of E∆, DD can be interpreted to Disjunction
Normal Form without Negative Literals.

Logical Sum [H ∪ H ′]
Logical Product H ∗ H ′

Substitution overZ H ′[H/Z]
Evolution byZ → γ [H ∪ H [E∆(γ)/Z]]

Each operations are defined in denotational forms of sets. However, it is easy to show
that the implementations of them can be quite efficient. Imprementation problem is
discussed in Section 4.7. Domain restriction operation for DD is also prepared other than
these operations, which is discussed in Definition 4.4.30, with same operations on another
elements.

4.4.2 Ind∆: an index for LA

From now on, an index for LA, say Ind∆, is discussed. The index is associated to each
state q for each syntactic variable Y , i.e. Ind∆(q, Y), which consists of three values
IndT∆, IndV ∆ and Link∆. Domains for each are as follows,

IndT∆ : T → [Power(Power(V ′))],

IndV ∆ : V → [Power(Power(V ′))],

Link∆ ⊂ N × V × [Power(Power(V ′))].

These form a core information of indeces for LA on each states. These three values
are associated to each εItem(Y) in each state q, the triple is denoted by Ind∆(q, Y) =
(IndT∆, IndV ∆, Link∆) defined in Definition 4.4.24 and Lemma 4.4.26 below. The
meaning is that, in some context which leads to the state q, then a terminal symbol
a follows to each εItem(Y) in q, when grammar satisfies the condition IndT∆(a), a
syntactic variable X follow to each εItem(Y) in q, when grammar satisfies the condition
IndV ∆(X), and, if (k, X, H) ∈ Link∆ then all of LA which flows to X on the state
preceding of q by k steps is propageted to the LA for εItem(Y) on q, when grammar
satisfies the condition H. Our purpose is to state a scheme to calculate these data in
incremental manner. To achieve it, we introduce functions Top∆ and Dep∆ which are
similar notions to First, except that the value of Top∆ and Dep∆ have conditions on
ε-productivity. Types of the functions are,

Top∆ : (V ∪ T)∗ → (T → [Power(Power(V ′))]),

Dep∆ : (V ∪ T)∗ → (V → [Power(Power(V ′))]).

57

In order to define values of Ind∆, the functions Top∆ and Dep∆ are used.
Suppose a derivation sequence α

∗⇒ γaβ, if ε is derived from γ, a ∈ First(α), if not,
a might not be in First(α). Considering incremental calculation of LA, the condition of
ε-productivity of γ may change. So, it is useful to supplement a condition to each symbol.
Intuitively, this idea leads us to generalize the notion First : (V ∪ T)∗ → Power(T) to
Fist∆ : (V ∪ T)∗ → (T → [Power(Power(V))]). However, First∆ is not so easy to
be reconstructed on augmenting a new production rule. So, we devide First∆ into two
notions, i.e. Top∆ and Dep∆. The easiness of reconstruction of Top∆ and Dep∆ are
shown in Theorem 4.4.19. Intuitively, Dep∆(α)(X) gives a condition so that if α

∗⇒ γXβ,
then ε-productivity of γ is included in the condition. To use values of Top∆(α), Dep∆(α)
and Top∆(γ) for each Y ∈ V and for each Y → γ ∈ P , it is easy to calculate First(α). A
way to calculate First(α) from them is breafly discussed at the end of Section 4.5.

Following several definitions and propositions are given as basic operations.

Definition 4.4.11 (Operation ∪ on Domain V →DD, T →DD)
For each Λ, Λ′ : V → [Power(Power(Ω))], we define operation ∪ , such as,

Λ ∪ Λ′ = {(X, [H ∪ H ′]) | X ∈ V, (X, H) ∈ Λ, (X, H ′) ∈ Λ′},
in other words,

(Λ ∪ Λ′)(X) = [Λ(X) ∪ Λ′(X)],

for arbitrary syntactic variable X ∈ V . Similarly, for each Λ, Λ′ : T → [Power(Power(Ω))],
we define operation ∪ , such as,

Λ ∪ Λ′ = {(a, [H ∪ H ′]) | a ∈ T, (a, H) ∈ Λ, (a, H ′) ∈ Λ′},
in other words,

(Λ ∪ Λ′)(a) = [Λ(a) ∪ Λ′(a)],

for arbitrary terminal symbol a ∈ T .

Definition 4.4.12 (Inclusion Relation on V →DD, T →DD)
For each Λ, Λ′ : V → [Power(Power(Ω))], if following condition satisfies, then Λ ⊂ Λ′

holds.
∀X ∈ V, Λ(X) ⊂ Λ′(X).

Similarly, for each Λ, Λ′ : T → [Power(Power(Ω))],if following condition satisfies, then
Λ ⊂ Λ′ holds.

∀a ∈ T, Λ(a) ⊂ Λ′(a).

Moreover, occasionally, we denote (Λt, Λd) ⊂ (Λ′
t, Λ

′
d) for some Λt, Λ

′
t ∈ T → [Power(

Power(Ω))] and Λd, Λ
′
d ∈ V → [Power(Power(Ω))] in the sense that Λt ⊂ Λ′

t and Λd ⊂ Λ′
d.

Definition 4.4.13 (Top∆, Dep∆)
For given CFG G = (V, T, P, S) and given V ′ ⊂ V , functions Top∆ : (V ∪T)∗ → (T →
[Power(Power(V ′))]) and Dep∆ : (V ∪ T)∗ → (V → [Power(Power(V ′))]) are defined as,

Top∆(α) = {(a,
⋃

α=α′aα′′
E∆(α′)) | a ∈ T},

Dep∆(α) = {(X,
⋃

α
∗⇒α′Xα′′

E∆(α′)) | X ∈ V }.

58

Similarly to E∆, to emphasize they are under G or under P , or over V ′, we write Top∆G,
Dep∆G, Top∆P , Dep∆P , Top∆G | V ′, Dep∆G | V ′, Top∆P | V ′, Dep∆P | V ′, respec-
tively.

Example 4.4.14 (Example of Top∆, Dep∆) For CFG G6 given in Example 4.4.5, the
values of Dep∆ for each syntactic variables are given in followin table.

S X Y A B C

Dep∆(S) {φ} {φ} {{X}, {A}} {φ} {{X}, {A}} {{X}, {A}}
Dep∆(X) φ {φ} φ {φ} φ φ
Dep∆(Y) φ φ {φ} φ {φ} {φ}
Dep∆(A) φ φ φ {φ} φ φ
Dep∆(B) φ φ φ φ {φ} φ
Dep∆(C) φ φ φ φ φ {φ}

From the definition of Top∆ (Definition 4.4.13), the values of Top∆(γ)(x) for each syn-
tactic variable sequence γ ∈ V6∗ and each terminal x ∈ T6 are φ, because no terminal
occurs immediately in γ. The function Top∆ is used to extract terminal symbols of ‘in-
ner produced’ LAs. It is mostly used in the calculation of MonoG, which is achieved in
Algorithm 4.5.1 shown in Section 4.5, and applied to symbol sequences of right-hand side
of production rules.

Definition 4.4.15 (Restriction of Top∆ and Dep∆)
For given H ∈ [Power(Power(V ′))], Restriction of Top∆ and Dep∆, namely Top∆ ∗ H
and Dep∆ ∗ H, respectively, are defined as,

Top∆(α) ∗ H = {(a, H ∗ H ′) | (a, H ′) ∈ Top∆(α)},
Dep∆(α) ∗ H = {(X, H ∗ H ′) | (X, H ′) ∈ Dep∆(α)}.

Lemma 4.4.16

Top∆(αβ) = Top∆(α) ∪ Top∆(β) ∗ E∆(α),

Dep∆(αβ) = Dep∆(α) ∪ Dep∆(β) ∗ E∆(α).

(proof) It is easy to show that,

Top∆(αβ)

= {(a, H ∪ H ′) | (a, H) ∈ Top∆(α), (a, H ′) ∈ Top∆(β) ∗ E∆(α)}
= {(a, H ∪ H ′′ ∗ E∆(α)) | (a, H) ∈ Top∆(α), (a, H ′′) ∈ Top∆(β)}
= Top∆(α) ∪ Top∆(β) ∗ E∆(α),

59

��������

� � �1Y �2

�1 �3� �'� Y �''�Z�2� �'� �''�

Figure 4.9: Derivation Trees derived from α

and,

Dep∆(αβ)

= {(X, H ∪ H ′) | (X, H) ∈ Dep∆(α), (X, H ′) ∈ Dep∆(β) ∗ E∆(α)}
= {(X, H ∪ H ′′ ∗ E∆(α)) | (X, H) ∈ Dep∆(α), (X, H ′′) ∈ Dep∆(β)}
= Dep∆(α) ∪ Dep∆(β) ∗ E∆(α).

//

The purpose of following three arguments is to provide an incremental method of
reconstruction of Top∆ an Dep∆ on augmenting a new production rule. The leading
point of the arguments is how to give a differencial. There are probably many choices
of U which satisfies Top∆P (α) ∪ U = Top∆P ′(α), where ∪ holds the meaning given
in Definition 4.4.11. Following two definitions give a choice from the point of view of
easiness on their constructions. Figure 4.9 illustrates derivation trees derived from given
symbol sequence α. Just before augmenting new production rule Z → γ, where γ =
γ1 Y γ2, one of symbol sequences derived from α is β1 β ′

2 Z β ′′
2 β ′

3 Y β ′′
3 . Let W be a set

of all syntactic variables contained in β1 β ′
2 Z β ′′

2 β ′
3 Y β ′′

3 , then some subset of W may be
included in Dep∆P (α)(Y). Suppose a situation that Z → γ is augmented to P . At least
two elements would be in Dep∆P ′(α)(Y), i.e., W1 which contains all syntactic variables
occur in β1 β ′

2 γ1, and W2 which contains all syntactic variables occur in β1 β ′
2 γ β ′′

2 β ′
3.

These two kind of elements must be reflected in the definition of differencial of Dep∆.

Definition 4.4.17 (Substitution on Top∆)
For given Z ∈ V ′ ⊂ V and given γ ∈ (V ∪ T)∗, we define Substitution on Z in Top∆(α)
to γ, such as,

Top∆(α)[γ/Z] = {(a, H[E∆(γ)/Z]) | (a, H) ∈ Top∆(α)}.

Definition 4.4.18 (Substitution on Dep∆)
For given Z ∈ V ′ ⊂ V and given γ ∈ (V ∪ T)∗, we define Substitution on Z in Dep∆(α)

60

to γ, such as,

Dep∆(α)[γ/Z] = {(Y, [Hγ
Y ∗ Hα

Z ∪ Hα
Y [E∆(γ)/Z]]) | Y ∈ V, Hγ

Y = Dep∆(γ)(Y),

Hα
Y = Dep∆(α)(Y),

Hα
Z = Dep∆(α)(Z)}

Theorem 4.4.19 (Evolution of Top∆ and Dep∆)
For each production rule set P ′ = P ∪ {Z → γ} and each symbol sequence α ∈ (V ∪ T)∗,

Top∆P ′(α) = Top∆P (α) ∪ Top∆P (α)[γ/Z],

Dep∆P ′(α) = Dep∆P (α) ∪ Dep∆P (α)[γ/Z].

(proof) It is shown by same discussion on Theorem 4.4.9.//

Example 4.4.20 (Example of Evolution on Dep∆) Suppose a situation that a new
production rule A → ε is augmented, same as discussed in Example 4.4.10. The result of
the augmentation is given as below,

S X Y A B C

Dep∆P ′
6
(S) {φ} {φ} {φ} {φ} {φ} {φ}

where P ′
6 = P6 ∪ {A → ε}. The values other than Dep∆(S) are not changed on this

augmentation. For example, while Dep∆P6(S)(Y) = {{X}, {A}} (see the table in Exam-
ple 4.4.10), Dep∆P ′

6
(S)(Y) = {φ}, because from Definition 4.4.18,

Dep∆P6(S)[ε/A](Y) = [Hε
Y ∗ HS

A ∪ HS
Y [E∆(ε)/A]],

Hε
Y = Dep∆P6(ε)(Y)

= φ,

HS
Y = Dep∆P6(S)(Y)

= {{X}, {A}}
HS

Y [E∆(ε)/A] = {φ}.
From same reason, Dep∆P ′

6
(S)(B) = Dep∆P ′

6
(S)(C) = {φ}.

As described at the top of this section, Link∆ is introduced so as to present propa-
gation of LA.

Definition 4.4.21 (Link∆)
Link∆ is a subset of N × V ×[Power(Power(V ′))].

Precise value of Link∆ will appear as the third elements of values of Ind∆ defined in
Definition 4.4.24 and Lemma 4.4.26 below. Here, we illustrate an intuitive explanation of
it. Each state q of LALR(1) graph is asigned its own Link∆ values with each syntactic
variables. If (k, X, H) ∈ Link∆ for Y of q, where Y is a syntactic variable and k must be
a positive integer, then all of LA which flows to X on the state preceding of q by k steps
is propageted to the LA for Y on q with additional condition H.

61

Definition 4.4.22 (Restriction of Link∆)
For given Link∆ ⊂ N × V × [Power(Power(V ′))] and given H ∈ [Power(Power(V ′))],
restriction of Link∆ by H is denoted by Link∆ ∗ H, and is defined as,

Link∆ ∗ H = {(k, X, H ′ ∗ H) | (k, X, H ′) ∈ Link∆}.

Definition 4.4.23 (Substitution on Link∆)
For given Link∆ ⊂ N × V × [Power(Power(V ′))] , given H ∈ [Power(Power(V ′))] and
given Z ∈ V , Substitution of Link∆ on Z to H is denoted by Link∆[H/Z], and is defined
as,

Link∆[H/Z] = {(k, X, H ′[H/Z]) | (k, X, H ′) ∈ Link∆}.

We modify LA to have enough data for augmentation of production rules. Following
definitions and propositions are given in order to define indeces for LA, i.e. Ind∆, and in
order to determine the equivalence of Ind∆ with LA of LALR(1).

Definition 4.4.24 (LA with ε-Productivity Decision)
For given CFG G = (V, T, P, S ′) (G is assumed as Extended Grammar), let SC(lr(G)) =
(V ∪ T, Q, δ′, q′0, ∗), where Q = Power(Item∪ {q0}) and q′0 = εC(δ, q0), then a function
λ∆ : Q × Item → ((T → [Power(Power(V ′))]) × (V → [Power(Power(V ′))])), where
V ′ ⊂ V is fixed, is defined as,

λ∆(q′0, S
′ → •S) = (Top∆($), Dep∆($))

A → α • Xβ ∈ q, δ′(q, X) = q′

⇒ λ∆(q, A → α • Xβ) ⊂ λ∆(q′, A → αX • β)

A → α • Bβ ∈ q, λ∆(q, A → α • Bβ) = (Λt, Λd)

⇒ ∀B → γ ∈ P,

(Top∆(β) ∪ Λt ∗ E∆(β), Dep∆(β) ∪ Λd ∗ E∆(β)) ⊂ λ∆(q, B → •γ)

∀i ∈ Item, s.t., i �∈ q ⇒ λ∆(q, i) = (Top∆(ε), Dep∆(ε))

(the value of λ∆ is minimum set that satisfies above conditions),
where the inclusion relation ⊂ is of defined in Definition 4.4.12.

Note: Top∆(ε)(a) = φ for all a ∈ T , and, Dep∆(ε)(X) = φ for all X ∈ V .

Lemma 4.4.25 For each state q ∈ Power(Item ∪ {q0}) of SC(lr(G)) and each item
i ∈ Item,

First(λ(q, i)) = {a ∈ T | Λt(a) = true} ∪
⋃

Λd(X)=true

First(X),

where (Λt, Λd) = λ∆(q, i).

(proof) From the fact that for any H, H ′ ∈ [Power(Power(V ′))], H ∗ H ′ is true if and
only if both of H and H ′ are true, it is easy to see that, when λ∆′ is defined as,

λ∆′(q′0, S
′ → •S) = ({$}, φ)

62

A → α • Xβ ∈ q, δ′(q,X) = q′

⇒ λ∆′(q, A → α • Xβ) ⊂ λ∆′(q′, A → αX • β)

A → α • Bβ ∈ q, λ∆′(q, A → α • Bβ) = (Ut, Ud)

⇒ ∀B → γ ∈ P,

U ′t = {a ∈ T | Top∆(β)(a) = true} ∪ Ut if E∆(β) = true
= {a ∈ T | Top∆(β)(a) = true} otherwise,

U ′d = {Y ∈ V | Dep∆(β)(Y) = true} ∪ Ud if E∆(β) = true
= {Y ∈ V | Dep∆(β)(Y) = true} otherwise,

(U ′t, U ′d) ⊂ λ∆′(q,B → •γ)

∀i ∈ Item, s.t., i �∈ q ⇒ λ∆′(q, i) = (φ, φ)

(the value of λ∆′ is minimum set that satisfies above conditions),
λ∆′(q, i) = ({a ∈ T | Λt(a) = true}, {Y ∈ V | Λd(Y) = true}) for (Λt, Λd) =

λ∆(q, i). Also, it is easy to see, by induction on length of context, for each state q and
item i, λ∆′(q, i) = (Ut, Ud), First(λ(q, i)) = Ut ∪ ⋃

X∈Ud First(X), from the similarity of
the definition of λ and λ∆′. So, we can conclude the equation

First(λ(q, i)) = {a ∈ T | Λt(a) = true} ∪
⋃

Λd(X)=true

First(X).

//

Lemma 4.4.26 For each state q ∈ Power(Item ∪ {q0}) of SC(lr(G)) and each εItem
A → •α, A → •β ∈ εItem(A),

λ∆(q, A → •α) = λ∆(q, A → •β).

(proof) Trivial.//

Definition 4.4.27 (Introduction of Link∆)
For given CFG G = (V, T, P, S ′) (G is assumed to Extended Grammar), let SC(lr(G))
= (V ∪T, Q, δ′, q′0, ∗), where Q = Power(Item∪{q0}) and q′0 = εC(δ, q0), then a function
∆ : Q × Item → ((T → [Power(Power(V ′))]) × (V → [Power(Power(V ′))]) × Power(N
× V × [Power(Power(V ′))]), where V ′ ⊂ V is fixed, is defined as,

∆(q′0, S
′ → •S) = (Top∆($), Dep∆($), φ)

A → α • Xβ ∈ q, δ′(q, X) = q′,

∆(q,A → α • Xβ) = (Λt, Λd, L)

⇒ (Top∆(ε), Dep∆(ε), Incr(L)) ⊂ ∆(q′, A → αX • β)

A → α • Bβ ∈ q, λ∆(q, A → α • Bβ) = (Λt, Λd, L)

⇒ ∀B → γ ∈ P,

(Top∆(β) ∪ Λt ∗ E∆(β), Dep∆(β)

∪Λd ∗ E∆(β), L ∗ E∆(β)) ⊂ ∆(q,B → •γ)

∀i ∈ Item, s.t., i �∈ q ⇒ ∆(q, i) = (Top∆(ε), Dep∆(ε), φ)

(value of ∆ is minimum set that satisfies above condition).

63

Note : the third argument of ∆ concerns to Link∆.

Lemma 4.4.28 For each state q ∈ Power(Item ∪ {q0})ofSC(lr(G)) and each εItem
A → •α, A → •β ∈ εItem(A),

∆(q, A → •α) = ∆(q, A → •β).

(proof) Trivial.//

We write Ind∆(q, A) = ∆(q, A → •α).

Theorem 4.4.29 Let a function Exp : ((T → [Power(Power(V ′))]) × (V → [Power(
Power(V ′))]) × Power(N×V × [Power(Power(V ′))])) → ((T → [Power(Power(V ′))]) ×
(V → [Power(Power(V ′))])) be,

Exp(Ind∆(q, A)) = {a ∈ T | Λt(a) = true}
∪

⋃
Λd(X)=true

First(X)

∪
⋃

(k,X)∈L

Exp(Ind∆(q(−k), X)),

where Ind∆(q,A) = (Λt, Λd, L) and q(−k) is a state ,s.t.,δ′(q(−k), w) = q for | w |= k,
then,

Exp(Ind∆(q, A)) = First(Indλ(q, A)).

(proof) Same discussion as Lemma 4.4.25.//

4.4.3 Space Reduction Method on DD and Ind∆

As mentioned at the top of this section, we have a method so as to increase efficiency
of computation, named Domain Restriction. The operations are defined on E∆, Top∆,
Dep∆ and Link∆. Each operations ground on the operation on E∆. The other restriction
method on Dep∆ can be invented, but ommitted here.

Definition 4.4.30 (Domain Restrictions)
For given E∆ : (V ∪T)∗ → [Power(Power(V ′))], Top∆ : (V ∪T)∗ → (T → [Power(Power(
V ′))]), Dep∆ : (V ∪T)∗ → (V → [Power(Power(V ′))]) and Link∆ ⊂ N × V × [Power(
Power(V ′))], each restrictions of Dependency Domain on V ′ to V ′′ ⊂ V ′ are denoted by
E∆ ↓ V ′′, Top∆ ↓ V ′′, Dep∆ ↓ V ′′ and Link∆ ↓ V ′′, respectively, and defined as,

E∆(α) ↓ V ′′ = {η ∈ E∆(α) | η ⊂ V ′′},
T op∆(α) ↓ V ′′ = {(a, H ↓ V ′′) | (a, H) ∈ Top∆(α)},
Dep∆(α) ↓ V ′′ = {(X, H ↓ V ′′) | (X, H) ∈ Dep∆(α)},

Link∆ ↓ V ′′ = {(k, X, H ↓ V ′′) | (k, X, H) ∈ Link∆},
respectively.

64

4.4.4 A Supplement of the Section

As a final argument of this section, a notion named Inherit∆ is introduced. When fusing
two states during incremental construction of LALR(1) graph, according to the direction
of ε-transition caused by Bridge Transition ξ, some LA may be inherited from one state
to the other. To express the inheritance, we use a function Inherit∆ : Q → Power(V),
where Q is the set of states of LALR(1) graph.

Definition 4.4.31 (Inherit∆)

Inherit∆(q) = {X ∈ V | q = εC(εItem(X))}.

Note: If q �= εC(εItem(X)), say Entε(X), for any X ∈ V , then Inherit∆(q) = φ. On al-
most all cases, Inherit∆(Entε(X)) contains unique element X. However, given grammar
has production rules which have mutual leftmost recursion, then #(Inherit∆(Entε(X)))
might be greater than 1.

4.5 Algorithms

Here, we present five algorithms. Algorithm 4.5.1 shows a procedure to construct MonoG,
which depends on the statements of Lemma 4.3.4, Definition 4.3.5, Lemma 4.3.14 and
4.3.15 for constructing LR(0) graph for MonoG, and Definition 4.4.27 and its reliances
in previous section. Algorithm 4.5.2 shows a procedure to calculate Ind∆ for a fused
state. Algorithm 4.5.3 shows a procedure of fusion operation given in Definition 4.2.13.
Algorithm 4.5.4 and 4.5.5 are procedures for augmenting a new production rule to current
LALR(1) graph, and for incremental construction of LALR(1) graph, respectively. The
process of incremental construction is illustrated that, firstly constructing a MonoG(S ′ →
S) as a core graph (by Algorithm 4.5.1), then constructing a MonoG for next production
rule (by Algorithm 4.5.1) and fusing the MonoG and current graph (by Algorithm 4.5.3
and 4.5.2), and the iteration of it (by Algorithm 4.5.5). As mentioned so far, we treat
LALR(1) graph as a kind of multi-entrance graph. So, fusion process must be influenced to
each entrances and their succeeding states of the graph. Algorithm 4.5.4 gives a procedure
for it.

Precise procedures for the operations on E∆, Top∆, Dep∆, Link∆ and MaxInc are
not presented here. Because it seems to be clear that the procedures are implemented
straightforwardly from the definitions of them, and in fact, we have implemented the
procedures in such a way. Some discussions on the procedures and the efficiencies on
them are stated in the next section.

Whole algorithms are described in Pascal like style. Operations on sets, i.e. of set
theoretical meaning, are immediately used. On such a cases that the order to take el-
ements out of a set essentially influences results, we insert comments for them. Ad-
ditionally, we adopt ‘=’ for substitution, and, combinations ‘=’ with other operators
like C language, e.g., A∪ = B means A = A ∪ B. For accessing to an element of
Ind∆(q,X) = (IndT∆, IndV ∆, Link∆), we write Ind∆(q,X).IndT∆, so on.

Finally, we must note that some outputs of algorithms are assumed as side-effect at
the time when to call them. For example, only first output of MonoG is explicitly used
in the description of Algorithm 4.5.4, while there are seven outputs from MonoG.

65

Algorithm 4.5.1 (Construction Algorithm of MonoG)
Suppose the situation that CFG G′ = (V, T, P, S ′) is given and for each X ∈ V , E∆G′(X)
and Dep∆G′(X) are already calculated. Here, we show an algorithm for construction of
MonoG(Z → X1 · · · Xn) and calculating its Ind∆. Here, we suppose Z ∈ V , X1, . . . ,
Xn ∈ V ∪ T . In the algorithm below, we write value of Ind∆(q, i) = (Ind∆(q, i).IndT∆,
Ind∆(q, i).IndV ∆, Ind∆(q, i).Link∆).

Inputs:

• a Production Rule Z → X1 · · ·Xn

• for each X ∈ V , values of E∆P (X) and Dep∆P (X)

Outputs:

• MonoG(Z → X1 · · ·Xn) = (V ∪ T, Q2, ζ2, q2,0, ∗)
(where Q2 is represented by {p1, . . . , pn+1}, by Lemma 4.3.7)

• for each X ∈ V , values of E∆P ′(X) and Dep∆P ′(X)
(where P ′ = P ∪ {Z → X1 · · ·Xn})

• for each pi ∈ Q2, X ∈ V , values of Ind∆(pi, X)

• Reduce Item Table, Red : Q2 → Power(V × N).

• Inherit∆(pi) for each pi ∈ Q2.

• ⊂MonoG(Z→X1···Xn)

• MaxInc(q) for each state q of MonoG(Z → X1 · · ·Xn)

Internal Data: • Flow ⊂ Q2 × V × {1, 2, . . . , n}

(* Initialization *)

- Find Z in X1, . . . , Xn, then make occurrence position list J = {j1, . . . , jm},
where Xji

= Z for each 1 ≤ i ≤ m.
(* J may be dynamically augmented by some values in {1, . . . , n} in calculation

of ζ2 and Flow stage *)
- Initialize all values of Flow to φ.
- Initialize ⊂MonoG(Z→X1···Xn) to φ.
- for all q ∈ {q1, . . . , qn+1}, MaxInc(q) = φ.

(* Evolution of E∆P (X) and Dep∆P (X) *)

foreach X ∈ V do
E∆P ′(X) = E∆P (X) ∪ E∆P (X)[E∆P (X1 · · ·Xn)/Z];
(* by Theorem 4.4.9 *)
Dep∆P ′(X) = Dep∆P (X) ∪ Dep∆P (X)[X1 · · ·Xn/Z];
(* by Theorem 4.4.19 *)

end ;

(* Calculation of ζ2, Flow and ⊂MonoG(Z→X1···Xn) *)

66

for i = 1 to n do
ζ2(pi, Xi) = pi+1 ;
if Xi ∈ V then

Flow(pi, Xi)∪ = {i}
end

end ;

J = {j1, . . . , jm};
J ′ = φ;
while J �= φ do

k ∈ J ;
J = J \ {k} ;
J ′∪ = {k};

for i = 1 to n do
if i �= k then
- Add (pi, pk) to ⊂MonoG(Z→X1···Xn).
end;

if Xi ∈ V then
Flow(pk, Xi)∪ = {i}

end;

if Xi = Z and k �∈ J ′ then
J∪ = {k}

end ;

if ζ2(pk, Xi) = Undefined then
ζ2(pk.Xi) = pi+1 ;
k = pi+1

else
k = ζ2(pk, Xi)

end
end

end;

(* Registration of Reduce Item *)

Red(pn+1) = {(Z, n)};
for i = 1 to n do

Red(pi) = φ ;
end ;

(* Compute values of Ind∆ *)

- for each state, initialize values of Ind∆to(Top∆(ε), Dep∆(ε), φ).
- for each i = 1, . . . , n, compute values of Dep∆P ′(Xi · · ·Xn), Top∆P ′(Xi · · ·Xn),

and E∆P ′(Xi · · ·Xn).

67

(* for Fusion Process *)
Ind∆(p1, Z).IndT∆ = {($, true)};

(* For Inheritance of Look Ahead Symbols when to fuse two states. *)

foreach (p, X, k) ∈ Flow do
(* if (p, X, k), (p, X, k′) ∈ Flow and k > k′, then we assume the process for

(p, X, k) will be done first.
*)
if X = Z and X1 = Z then

(* the case of Left Recursion *)
Ind∆(p, X).IndV ∆∪ = Dep∆P ′(Xk+1 · · ·Xn) ∗ E∆P ′(X2 · · ·Xn) ;
Ind∆(p, X).IndT∆∪ = Top∆P ′(Xk+1 · · ·Xn) ∗ E∆P ′(X2 · · ·Xn) ;
if k > 1 then

Ind∆(p, X).Link∆∪ = {(k−1, Z, E∆P ′(Xk+1 · · ·Xn)∗E∆P ′(X2 · · ·Xn))}
end

end ;

Ind∆(p, X).IndV ∆∪ = Dep∆P ′(Xk+1 · · ·Xn) ;
Ind∆(p, X).IndT∆∪ = Top∆P ′(Xk+1 · · ·Xn) ;
if k > 1 then

Ind∆(p, X).Link∆∪ = {(k − 1, Z, E∆P ′(Xk+1 · · ·Xn))}
else

Ind∆(p, X).IndV ∆∪ = Ind∆(p, Z).IndV ∆ ∗ E∆P ′(X2 · · ·Xn) ;
Ind∆(p, X).IndT∆∪ = Ind∆(p, Z).IndT∆ ∗ E∆P ′(X2 · · ·Xn) ;

end

end;

(* Registration of Inherit∆ *)

Inherit∆(p1) = {Z};
for i = 2 to n + 1 do

Inherit∆(pi) = φ
end;

(* End of Algorithm *)

Algorithm 4.5.2 (Fusion of two States FuseState(q1, q2))
We give here an algorithm to calculate new state q′ obtained by Fusion of given two states
q1, q2, where q′ = q1 ∪ q2. Let q1 be Subjective State and q2 be Dependent State. The
relation between Subjective State and Dependent State is decided by the direction of ε-
transition which is caused by Bridge Transition ξ defined in Fusion Operation on two
DFAs. The source state of ε-transition by ξ is called Subjective State and the Destina-
tion State Dependent State. Some inheritance of LA may happen from Subjective State
to Dependent State. To express the inheritance, we use values of Inherit∆ and values
concerning to special symbol ‘$’ in IndT∆ of Ind∆. In conventional LR parsers, ‘$’ is
used for “End of Text”. This interpretation of ‘$’ remains in this paper as a special case
for initial state.

68

Inputs:

• Subjective State q1, its values of Ind∆(q1, X) for each X ∈ V , and value of
Inherit∆(q1).

• Dependent State q2, its values of Ind∆(q2, X) for each X ∈ V , and value of
Inherit∆(q2).

Outputs:

• Fused state q′ = q1 ∪ q2 , its values of Ind∆(q′, X) for each X ∈ V , and value
of Inherit∆(q′).

Internal Data:

• ∆ as temporal data which has data type of Ind∆.

(* Initialization *)

- get a new state q′ as q1 ∪ q2.

(* copy Ind∆ for q2 *)
foreach X ∈ V do

∆(X) = Ind∆(q2, X)
end ;

(* On the case of Inheritance *)

foreach Z ∈ Inherit∆(q2) do
foreach Y ∈V do

if ($, H) ∈ ∆(Y).IndT∆ then
∆(Y).IndT∆ = ∆(Y).IndT∆ \ {($, H)};
∆(Y).IndT∆∪ = Ind∆(q1, Z).IndT∆ ∗ H;
∆(Y).IndV ∆∪ = Ind∆(q1, Z).IndV ∆ ∗ H ;
∆(Y).Link∆∪ = Ind∆(q1, Z).Link∆ ∗ H

end
end

end ;

(* Main Process *)

foreach Y ∈ V do
Ind∆(q′, Y).IndT∆ = Ind∆(q1, Y).IndT∆ ∪ ∆(Y).IndT∆;
Ind∆(q′, Y).IndV ∆ = Ind∆(q1, Y).IndV ∆ ∪ ∆(Y).IndV ∆;
Ind∆(q′, Y).Link∆ = Ind∆(q1, Y).Link∆ ∪ ∆(Y).Link∆

end;

(* Inheritance of Inheritance *)

69

Inherit∆(q′) = Inherit∆(q1);

(* Register Reduce Items *)

Red(q′) = Red(q1) ∪ Red(q2);

(* End of Algorithm *)

Algorithm 4.5.3 (Fusion of Two Sub-Graphs FuseGraph(q1, q2))
On process of this algorithm, there are leading problem, one is how to take information for
Bridge Transition, and the other is how to distinguish or identify a state beging fused from
existing states. As discussed in Sections 4.3, the former problem is resolved by use of in-
formation on transition, and the latter by use of MaxInc. The description of this algorithm
is complicated, which is caused by division of cases. Important cases are on fusing initial
states of given graphs, and on grammars contain production rules which form mutual left
recursion. On the latter case, some entrances concerning to mutually different syntactic
variables are identical. Here, we give an explanation of internal data used in the algorithm.
Stack data are assumed to be elements of Q1 ×Power(Q1)×Power(Q2)×Power(V ∪ T).
Consider the definition of fuse operation. There are two directions on Bridge Transition,
one is from subjective to dependent, the other from dependent to subjective. The first ar-
gument of stack data is concerned to a state of subjective as a source of Bridge Transition,
the second a set of states of dependent as destinations, and, the third is a set of states of
subjective as destinations. The forth argument of stack data designates a set of symbols
on what transition must be focused at some points of remaining process.

Inputs:

• Initial State q1 of Subjective Sub-Graph and value of Inherit∆(q1).

• Initial State q2 of Dependent Sub-Graph and value of Inherit∆(q2).
(we assume Dependent Sub-Graph is a Mono-Graph)
(where we assume that q1 = εC(δ1, εItem(X1)) = Entε(X1) and
q2 = εC(δ2, εItem(X2)), for X1, X2 ∈ V . δ1 and δ2 are of
Definition 4.2.7)

• Table of Entε(X) = εC(ζ1, X) for each X ∈ V

• Inclusion Information (⊂ and MaxInc for each graph)

Outputs:

• Fused Sub-Graph starts with Initial State q0 and value of Inherit∆(q0).

• Values of Ind∆(q,X) for each X ∈ V and newly added state q.

• Inclusion Information (⊂ and MaxInc for fused graph, but it is partial
information concerning to input graphs; subset of ⊂(Q1,Q2) and
MaxInc(Q1∪Q2) of Definition 4.3.16)

Internal Data:

70

• Stack ∈ Q1 × Power(Q1) × Power(Q2) × Power(V ∪ T),
where Q1 and Q2 are Set of States of Graphs start with q1 and q2,
respectively.

(* ζ1 and ζ2 denote Transition Function of Graphs start with q1 and q2 respectively *)

(* Initialize *)

Stack = Empty;

(* Calculation of Initial State *)
if ζ1(q1, X2) �= Error or q1 = Entε(X2) then

(* where Error is the abbreviation of φ *)
(* this check is just ξ. *)

(* make new Initial State for Entε(X1) = εC(εItem(X1)) *)

if ζ1(q1, X2) �= Error and ζ2(q2, X1) �= Error then
(* the case of mutual left-recursion. Entε(X1) and Entε(X2) will be

identical. *)
inherit∆(q2)∪ = inherit∆(q1); (* some what tricky! *)
inherit∆(q1) = inherit∆(q2)

end;
q′ = FuseState(q1, q2);

if ∃!Y ∈ V s.t. Y �= X2 and ζ2(q2, Y) �= Error and ζ1(q1, Y) = Error then
q′ = FuseState(q′, Entε(Y)) ; (* because dependent is Mono-Graph *)

- Register q′ as Entε(X1). (* However, state q1 still remained. *)
MaxInc(q′) = MaxInc(q1 ∪ q2 ∪ Entε(Y));

(* will be φ in process after FuseGraph *)
- Register ∀p ⊂ q1, p �= φ, p ⊂ q′.
- Register ∀p ⊂ q2, p �= φ, p ⊂ q′.
- Register ∀p ⊂ Entε(Y), p �= φ, p ⊂ q′.

foreachX ∈ V ∪ T do (* copy Transition *)
ζ1(q

′, X) = ζ1(q1, X)
end;

q1 = q′;

Push(Stack, (q1, {q2}, {Entε(Y)}, V ∪ T))

else

- Register q′ as εC(εItem(X1)). (* However, state q1 still remained. *)
MaxInc(q′) = MaxInc(q1 ∪ q2);

(* will be φ in process after FuseGraph *)
- Register ∀p ⊂ q1, p �= φ, p ⊂ q′.
- Register ∀p ⊂ q2, p �= φ, p ⊂ q′.

71

foreach X ∈ V ∪ T do (* copy Transition *)
ζ1(q

′, X) = ζ1(q1, X)
end;

q1 = q′;

Push(Stack, (q1, {q2}, φ, V ∪ T)

end
else

Push(Stack, (q1, φ, φ, V ∪ T))
end;

(* Main Loop *)

while not Empty(Stack) do
(q, σ1, σ2, U) = Pop(Stack);
a ∈ U ;
U = U \ {a};
if U �= φ then

Push(Stack, (q, σ1, σ2, U))
end;

q′ = ζ1(q, a);
if ζ1(q

′, X2) �= Error then
σ′

1 = {q2}
else

σ′
1 = φ

end;

σ′
2 = φ;

foreach q′′ ∈ σ1 do
if ζ2(q

′′, a) �= Error then
σ′

1∪ = {ζ2(q
′′, a)} ;

foreach Y ∈ V do
if ζ1(q

′, Y) = Error and ζ2(ζ2(q
′′, a), Y) �= Error then

σ′
2∪ = {Entε(Y)}

end
end

end
end

foreach q′′′ ∈ σ2 do
if ζ1(q

′′′, a) �= Error then
σ′

2∪ = {ζ1(q
′′′, a)}

end
end

72

foreach q′′′ ∈ σ′
2 do

if ζ1(q
′′′, X2) �= Error then

σ′
1∪ = {q2} ;

if ∃!Y ∈ V s.t. Y �= X2 and ζ2(q2, Y) �= Error then
σ′

2∪ = {Entε(Y)}
end

end
end;

(* check Error case *)
if q′ = Error and σ′

1 = φ and σ′
2 = φ then

ζ1(q, a) = Error;
continue

end;

(* check existing state *)
if ∃!p s.t. MaxInc(p) = MaxInc(q′ ∪ (

⋃
σ′

1) ∪ (
⋃

σ′
2)) then

ζ1(q, a) = p;
continue

end;

(* Fuse States *)
q3 = q′;
foreach q′′ ∈ σ′

1 do
q3 = FuseState(q3, q

′′)
end;
foreach q′′′ ∈ σ′

2 do
q3 = FuseState(q3, q

′′′)
end;

(* copy Transition *)
foreach X ∈ V ∪ T do

ζ1(q3, X) = ζ1(q
′, X)

end;

(* renewal Transition, may be *)
ζ1(q, a) = q3;

(* register inclusion relation *)
MaxInc(q3) = MaxInc(q′ ∪ (

⋃
σ′

1) ∪ (
⋃

σ′
2));

- Register ∀p ⊂ q′, p ⊂ q3

foreach q′′ ∈ σ′
1 do

- Register ∀p ⊂ q′′, p ⊂ q3

end;
foreach q′′′ ∈ σ′

2 do
- Register ∀p ⊂ q′′′, p ⊂ q3

end

Push(Stack, (q3, σ
′
1, σ

′
2, V ∪ T));

73

end;

(* Post Operations *)

- Maximalize MaxInc(q) for each state q.
(* there is possibility for MaxInc to have non-maximal elements *)

(* End of Algorithm *)

Algorithm 4.5.4 (Augmentation of a new Production Rule, AugRule)

Assumptions: SC(lr(G)) contains two kinds of states

1. Actually used states for parsing starts with initial state

2. Entε(X) = εC(εItem(X)) for each X ∈ V , and States which are able
to be arrived from them.
Each state does not have information about Items which belong to the
state. We only have inclusion relation between states.
In the description,

• SC(lr(G)) = (V ∪ T, Q1, ζ1, q1, ∗),
• MonoG(Z → X1 · · ·Xn) = (Σ, Q2, ζ2, q2, ∗)

are assumed.

Inputs:

• a new Production Rule Z → X1 · · ·Xn that will be augmented to SC(lr(G)).

Outputs:

• SC(lr(G′)), where G′ is the new Grammar which is obtained so as to augment
Z → X1 · · ·Xn to G.

(* Construct Mono-Graph for given new Production Rule *)

G2 = MonoG(Z → X1 · · ·Xn); (* by Algorithm 4.5.1 *)
(* Initial State of G2 is εC(εItem(Z)) in the mean of MonoG(Z →

X1 · · ·Xn) *)

(* Renewal existing Ind∆ to fit with augmented grammar *)

74

foreach q ∈ Q1 do
foreach X ∈ V do

(* Dep∆(X1 · · ·Xn) and E∆(X1 · · ·Xn) are already computed above.
*)

Ind∆(q,X).IndT∆∪ = Ind∆(q,X).IndT∆[X1 · · ·Xn/Z];
Ind∆(q,X).IndV ∆∪ = Ind∆(q,X).IndV ∆[X1 · · ·Xn/Z];
Ind∆(q,X).Link∆∪ = Ind∆(q,X).Link∆[E∆(X1 · · ·Xn)/Z];

end
end;

(* Fuse Graphs *)
Entε(S ′) = FuseGraph(Entε(S ′), G2);
Entε(Z) = FuseGraph(Entε(Z), G2);

(* but this call enforces to fuse each initial states *)
foreach X ∈ V \ {S ′, Z} do

Entε(X) = FuseGraph(Entε(X), G2);
end;

(* Post Process *)

- Calculate ⊂SC(lr(G′)) and MaxIncSC(lr(G′)). (* by Definition 4.3.17 *)
- Remove unreachable states from any Entε(X).

(* End of Algorithm *)

Algorithm 4.5.5 (Incremental Construction of LALR(1) graph)
This procedure contains initialization and simply iterate adaptation of AugRule (Algo-
rithm 4.5.4).

Inputs: • Extended CFG G = (V, T, P, S ′)

Outputs: • SC(lr(G))

(* Initialization *)

foreach X ∈ V do
E∆(X) = {{X}};

foreach a ∈ T do
Top∆(X)(a) = false

end;

foreach Y ∈ V \ {X} do
Dep∆(X)(Y) = false

end;
Dep∆(X)(X) = true ;

end;

75

(* Main *)

Entε(S ′) = MonoG(S ′ → S);
foreach X → α ∈ P \ {S ′ → S} do

AugRule(X → α)
end;

(* End of Algorithm *)

As a final remark of this section, here we discuss on calculation of LA from Ind∆.
To calculate Exp(Ind∆(q, A)), defined in Theorem 4.4.29, there needs to prepare an
exclusive procedures for it outside of algorithms above. However, among terms of which
the definition of Exp is constructed, the first term {a ∈ T | Λt(a) = true} is calculated
straightforwardly from Ind∆, and for the second term

⋃
Λd(X)=true First(X) , it can be

calculated by also in incremental manner. To illustrate this fact, we adopt a notation
First∆P (X), i.e. production rule set P is emphasized, and defined values with DD,

First∆P (X) =
⋃

X→γ∈P

Top∆P (γ).

Using it, Exp(Ind∆(q, A)) is written as,

Exp(Ind∆(q, A)) = {a ∈ T | Λt(a) = true}
∪{a ∈ T | Λd(X) = true, First∆P (X)(a) = true}
∪

⋃
(k,X)∈L

Exp(Ind∆(q(−k), X)).

When new production rule X → γ′ is augmented to the grammar, First∆P (X) is renewed
such as,

First∆P ′(X) = First∆P (X) ∪ First∆P (X)[γ/X] ∪ Top∆P ′(γ′),

where in the equation, operation ∪ is on Top∆, defined in Definition 4.4.12. The equation
is easily established from Theorem 4.4.19 and Definition 4.4.12. To embed the equation
of FirstP ′ in Algorithm 4.5.4, most of work for calculation of Exp is completing. Thus,
remaining process in order to calculate Exp(Ind∆(q,A)) is a closure process so as to trace
links given by Link∆.

4.6 Examples

Example 4.6.1 (Mono-Graph(1))
Figure 4.10 illustrates a Mono-Graph of production rule A → Ab. As shown in Lemma 4.3.4,
there are three states consisted of. Induce information for LA, IndT∆, IndV ∆ and
Link∆, and state identifier MaxInc are presented beside each states. Values of MaxInc
of each states are φ, as shown in Lemma 4.3.15. Terminal symbol ‘$’ has the meaning
of “end of text” same as on conventional LALR(1) parser, and moreover, as described in
Algorithm 4.5.2, it has a new interpretation in that it denotes ‘inheritance’ of LA, when
fused. So, because q0 = Entε(A), IndT∆(A)($) is true unconditionally. IndT∆(A)(b)

76

A� Ab�

q0

A� A b�

q1

A� Ab �

q2

bA

MaxInc

Link∆

�

�A��$�

Inclusion �

�A��b�
true
true

�

�

IndT∆

IndV∆

MaxInc

Link∆

�

Inclusion �

�

�

�IndT∆
IndV∆

MaxInc

Link∆

�

Inclusion �

�

�

�IndT∆
IndV∆

Figure 4.10: Mono Graph (1)

A� CAB�

p0

A� CA B �

p2

AC
A� CAB �

p3

B

p1

A� C AB�

A� CAB�

C

�A��$� true

MaxInc

IndT∆

IndV∆

Link∆

�

Inclusion �

�

�C��$� ��A� B��

�C��A�

�C��B�

true

��A��

true

MaxInc

Link∆

�

Inclusion

�

�p0�

�A��B�

�A� ���� A���B����

�C��A�

�C��B�

true

�C� ���� A���A� B����

��A��

IndT∆
IndV∆

MaxInc

Link∆

�

Inclusion �

�

�

�B� ��	� A�true��

IndT∆
IndV∆

MaxInc

Link∆

�

Inclusion �

�

�

�IndT∆
IndV∆

Figure 4.11: Mono Graph (2)

is also true, because an item A → •Ab belongs to q0, dot is followed by syntactic variable
A, and A is followed by b directly. In q1 and q2, dot is followed by a syntactic variable
or no symbol. So, whole values of IndT∆ and IndV ∆ are false. We should emphasize
repeatedly that in our approach, any item set is not used during whole computation. Items
described in Figure 4.10 are only for facilitation to understand the graph.

Example 4.6.2 (Mono-Graph(2))
Figure 4.11 illustrates MonoG(A → CAB) which grammar is identical to Example 4.3.6.
By same reason as described in Example 4.6.1, in state p0, IndT∆(A)($) = true. Except-
ing this vacuous case, we concentrate on syntactic variable C during calculating values
of IndT∆ and IndV ∆, because only syntactic variable C occurs just right of dot in the
item consisted of by p0. A terminal ‘$’ is influenced to syntactic variable C through AB
which is situated just right of C, so, IndT∆(C)($) = {{A, B}}, IndV ∆(C)(A) = true
and IndV ∆(C)(B) = {{A}}. In state p1, Link∆(A) has value {(1, A, {{B}})}. It means
that LA for all εItem(A) induced in the state inherit LA of εItem(A) in previous states
by one step, with a condition if some new production rules are added so as that ε is derived

77

from B. We can understand that the value of Link∆ in p1 is valid, from the fact that p1

includes item A → C • AB, dot is followed by A and A is followed by B. In order for
item A → •CAB to inherit LA of A → C • AB, ε must be derived from B. By similar
discussion, Link∆(C) in p1 has value {(2, A, {{A, B})}.

To calculate all of these value, in Algorithm 4.5.1, Flow, which is defined at Def-
inition 4.3.5, is calculated first. Its process is just related to the calculation of Subset
Construction. As the result, Flow = {(p0, C, 1), (p1, A, 2), (p1, C, 1), (p2, B, 3)}. Induce
information for LA is calculated by use of Flow, and initial values of Dep∆(X) for each
X ∈ V = {A, B, C}, i.e., Dep∆(X)(X) = true, Dep∆(X)(Y) = false for X �= Y ,
and E∆(X) = {{X}} for each X ∈ V . On second step of Algorithm 4.5.1, i.e. “Evo-
lution of E∆P (X) and Dep∆P (X)” following initialization, only E∆(A) and Dep∆(A)
are evolved, because no E∆(X) and Dep∆(X) contain A if X �= A, at the time. For a
moment, we trace the calculation, following the algorithm faithfully.

E∆P ′(A) = E∆P (A) ∪ E∆P (A)[E∆P (CAB)/A]

= {{A}} ∪ {{A}}[{{A, B, C}}/A]

(by Definition 4.4.4 and Proposition 4.4.6)

= {{A}} ∪ {{A, B, C}}
(by Definition 4.4.8)

= {{A}}
(by Definition 4.4.1)

Dep∆P (CAB) = Dep∆P (C) ∪ Dep∆P (AB) ∗ E∆P (C)

(by Lemma 4.4.16)

= {(C, {φ})} ∪ (Dep∆P (A) ∪ Dep∆P (B) ∗ E∆P (A)) ∗ {{C}}
= {(C, {φ})} ∪ ({(A, {φ})} ∪ {(B, {φ})} ∗ {{A}}) ∗ {{C}}
= {(C, {φ})} ∪ ({(A, {φ})} ∪ {(B, {{A}})}) ∗ {{C}}

(by Definition 4.4.15)

= {(C, {φ})} ∪ {(A, {φ}), (B, {{A}})} ∗ {{C}}
(by Definition 4.4.11)

= {(C, {φ})} ∪ {(A, {{C}}), (B, {{A, C}})}
= {(A, {{C}}), (B, {{A, C}}), (C, {φ})}

Dep∆P ′(A) = Dep∆P (A) ∪ Dep∆P (A)[CAB/A]

= {(A, {φ})} ∪ {(A, {φ})}[CAB/A]

= {(A, {φ})} ∪ {(A, {{C}} ∗ {φ}), (B, {{A, C}} ∗ {φ}), (C, {φ} ∗ {φ})}
(by Definition 4.4.18)

= {(A, {φ})} ∪ {(A, {{C}}), (B, {{A, C}}), (C, {φ})}
(by Definition 4.4.3)

= {(A, {φ}), (B, {{A, C}}), (C, {φ})}(byDefinition 4.4.11)

To use these values, in Algorithm 4.5.1, calculations are going on.

Example 4.6.3 (Fusion)
Figure 4.12 illustrates the result of fusion of two MonoGs that are presented in previ-
ous examples. IndT∆(A)($) = true of q0 is inherited to IndT∆(C)($) = {{A, B}} of r0

78

r2� p2�q1 p3

r0� q0�p0 q1 q2

C

B

bA

A� C AB�

A� CAB�

A� Ab�

A� Ab�

A� CAB�
A� A b� A� Ab �

A� CA B �

A� A b�
A� CAB �

b

A

C

r1� p1�q0

MaxIncQ�P
InclusionQ�P

�q0�p0�
�q0�p0�

MaxIncQ�P
InclusionQ�P

�q1�p2�
�q1�p2�

MaxIncQ�P
InclusionQ�P

�q0�p1�
�q0�p0�p1�r0�

MaxInc

Link∆

�

Inclusion �

�

�

�IndT∆
IndV∆

MaxInc

Link∆

�

Inclusion �

�

�

�IndT∆
IndV∆

MaxInc

Link∆

�

Inclusion �

�

�

�IndT∆
IndV∆

MaxInc

Link∆

�

Inclusion

�

�

�B� ��	� A�true��

�q1�

IndT∆
IndV∆

MaxInc

Link∆

�

�A��$�

Inclusion �

�A��b�
true
true

�

IndT∆

IndV∆

�C��$�
�C��b�

��A� B��
��A� B��

�C��A�
�C��B�

true
��A��

true

MaxInc

Link∆

�

Inclusion �r0�

�A��B�

�A� ��
� A���B����

�A��b� trueIndT∆

IndV∆

�C�

�C��b�

�C��A�

�C��B�

true

��A� B��

��A��

��
� A���A� B����

Figure 4.12: Example of Fusion

79

through inheritance symbol ‘$’ and its value of IndT∆(C)($) = {{A, B}} of p0. The inher-
itance is calculated in the part of “On the case of Inheritance” in Algorithm 4.5.2. See the
value of IndV ∆(C)(C) at r1. Suppose each context leads to state r1, e.g. A ⇒ C •AB ⇒
C • CABB, IndV ∆(C) must includes value of Dep∆(ABB). Dep∆(ABB)(A) = true
is trivial, because A occurs at the top of ABB. By Definition 4.4.13, Dep∆(ABB)(B) =
[{{A}, {A, B}}], and {A} ⊂ {A, B}, hence, Dep∆(ABB)(B) is also [{{A}}]. Thus,
IndV ∆(C)(B) = {{A}} at state r1.

In Figure 4.12, MaxInc(Q∪P) and ⊂(Q∪P) are presented for each fused states, where Q =
{q0, q1, q2} and P = {p0, p1, p2, p3}. See the values of MaxInc, MaxInc(Q∪P) at r1. So r1 is
the result of fusion on q0 and p1, and MaxInc(q0) = φ and MaxInc(p1) = φ, MaxInc(Q∪P)

has value {q0, p1} for r1 = q0 ∪ p1. However, both of q0 and p1 are unreachable from
Entε(X) for each X ∈ V = {A, B, C}, where Entε(A) = r0, Entε(B) = Entε(C) = φ. It
is the reason why MaxInc(r1) = φ which is calculated by Definition 4.3.16. We can under
stand validity of MaxInc(r1) = φ by the fact that r1 contains a unique item A → C •AB.

4.7 Discussions on Efficiency of the Algorithms

4.7.1 Worst case Analysis of E∆

Worst case on calculation of E∆ is quite bad. To see it, we consider on maximum number
of elements which are included in a member of DD = [Power(Power(Ω))]. It is trivial
that the maximum member of Power(Power(Ω)) is Power(Ω), which number of elements
is 2#(Ω). However our interest is on [Power(Power(Ω))]. Generally, we can select smallest
member as a representative. So

max
H∈[Power(Power(Ω))]

min
H′∈[H]

#(H ′)

indicates worst case for E∆, i.e. nCn/2, where C gives number of combinations, for
n = #(Ω), and, nCn/2 ∈ Θ(2cn). As an example of worst case, we present a grammar by
production rule set,

Z2 → X1X2, Z3 → Z2X3, · · · , Zn → Zn−1Xn,

Z2,1 → X2, Z2,2 → X1,

. . .

Zk+1,1 → Zk,1Xk+1, . . . , Zk+1,k → Zk,kXk+1, Zk+1,k+1 → Zk,

. . .

Z → Zn,1 | . . . | Zn,n,

which gives nCn/2 for Ω = {X1, . . . , Xn}. If we adopted number of production rules as a

measure, say m, worst case complexity would be Θ(2c
√

m).

4.7.2 About implementations and complexities of E∆, Top∆,
Dep∆

It is not difficult problem how to implement domains of E∆, Top∆ and Dep∆, and
operations on them, they are straightforwardly obtained from definitions. So, domains

80

of Top∆ and Dep∆ have function types, simplest implementation of them is to prepare
tables. However, this choice leads to immense usage of strages. In practical grammars,
Top∆ has almost everywhere false values, so does Dep∆, as seen on examples below.
Costs for calculation of operations on E∆, Top∆ and Dep∆ are,

[H ∪ H ′] : NV × #(H) × #(H ′),

H ∗ H ′ : NV
2 × #(H) × #(H ′) × (#(H) + #(H ′)),

H ′[H/X] : NV × #(H) × #(H ′)2,

Λ ∪ Λ′ : NT × NV × m2,

Λ ∗ H : NT × NV
2 × m × #(H),

Λ[γ/Z] : NT × NV × m′3,

where NV = #(V), NT = #(T), H, H ′ ∈ [Power(Power(V))], Λ, Λ′ ∈ T → [Power(Power(V))],
m = max

a∈T
#(Λ(a)) , and m′ = max{#(E∆(γ)), m}, on worst case of simplest implemen-

tation. From the discussion on worst case of E∆ above, these computational costs seem
very expensive. However, in practical cases, #(H) � NV holds, and moreover, almost
all values on [Power(Power(V))] which occur during computation are very close to 1 or
2. So, we might be able to adopt followings as a measure for plactical cases,

[H ∪ H ′] : � NV

H ∗ H ′ : � NV
2

H ′[H/X] : � NV ,

Λ ∪ Λ′ : � NT
2,

Λ ∗ H : � NT
3,

Λ[γ/Z] : � NT
2.

4.7.3 Worst case analysis of fusion

Here is given an example for worst case of fusion, which is presented in [15] and was
constructed by Alan Demer. As described in [15], the example is an inheritance of a
general feature of LR parsing scheme.

S0 → a S0 | b S0,

S0 → c S1,

S1 → a S2 | b S2,

S2 → a S3 | b S3,

. . .

Sn−1 → a Sn | b Sn,

Sn → d.

Number of states of LR(0) graph for above grammar is 4n + 6. However, if we add a rule
S0 → aS1 to the grammar, number of states grows to 2n + 4n + 6. So, we can conclude
that worst case complexity of fusion process is exponential.

81

4.7.4 About implementation of MaxInc and its Time/Space com-
plexity

It is easy to see the efficiency on space usage of MaxInc and inclusion information between
states. In our approach on state identification, each state identifier, which is naturally
given as an integer, represents some set of items. If the item set contains a unique item,
then MaxInc for the state is φ. Thus, with respect with the observation, complexity on
space usage never exceeds that of conventional representation of states, i.e. by use of
kernel.

The definition of evolution process of MaxInc, defined at Definition 4.3.16 and 4.3.17,
also ensured the equivalence by Theorem 4.3.18, might seem to be intricate. However, the
implementation is quite simple. Firstly, we illustrate calculation process of MaxInc(Q1∪Q2).
Suppose a situation that a new state is obtained by fusion on q1, q2, . . . , qk. To calculate
MaxInc(Q1∪Q2), 1) expand {q1, q2, . . . , qk} to U = {q1, q2, . . . , qk}∪

⋃k
i=1 MaxInc(qi). 2) find

states q′, s.t. MaxInc(q′) �= φ and MaxInc(q′) ⊂ U , and add each elements of MaxInc(q′) to
U . 3) maximalize U . On worst case, at 1) n× k times of addition of elements are needed,
where n is the number of whole states. At 2), to determine relation MaxInc(q′) ⊂ U ,
n × n times of comparisons on elements in U might be achieved on worst case, and the
determination should be done for each states. Thus, the iteration of 2) requires n3 times of
comparisons on elements of U , on worst case. However, as seen at Example 4.6.3, values of
MaxInc almost of all states are φ, in general, time complexity needed to calculate MaxInc
of new state is very close to n.

Calculation process of MaxIncA is also achieved by expansion and reduction of el-
ements, same as MaxInc(Q1∪Q2), excepting such a case that if unreachable states are
contained, the value of MaxInc is determined directly to be φ.

4.8 About LR Parsing on RCFG

Example 3.2.2 is one of typincal cases which bring out the difference between CFG and
RCFG. It is cleared by Greibach Normal Form, explained in [14] etc., that candidates
of first terminal symbols of CFL are predictable from given production rule set. In
other words, if first terminal symbol is given, candidates of production rules used first on
derivation is predictable on CFG. This feature is not affirmative on RCFG.

Suppose LR parsing for RCFG, there are RCFG and inputs which rise up a situation
that initial parse table does not provide any action on initial state for given input, but
given RCFG must accepts the input without no ambiguity. Example 3.2.2 provides such
a case. LALR(1) graph calculated from initial production rule set P given in RCFG G3

has empty initial state. In conventional meaning, the situation means error.
In this section, we treat two kinds of restrictions on RCFG so that LALR(1) parsing

scheme is applicable to those of restrictions on RCFG classes. In this paper, only the
outline is presented.

First candidate of restrictions is of a simple choice, which restricts RCFG to a class,
named RCFG-S, so that RCFG such that causes tricky case is not allowed. It concerns
to the case that the definition of derivation on RCFG, see Definition 3.1.5, is restricted
so that constraints A → X1 · · ·Xn ∈ P1 and p → [X0 � X1 · · ·Xn] ∈ P0 are adopted
instead of A → X1 · · ·Xn ∈ Pn+1 on case 1) and p → [X0 � X1 · · ·Xn] ∈ P ′

1 on case
2), respectively. Figure 3.2 illustrates the effective range of embedded production rule on

82

S

p

[Exp � Exp ** Exp]

Figure 4.13: Effective Range of restricted RCFG

derivation tree for normal RCFG, while Figure 4.13 illustrates the restricted one. The
difference appears on a boundary. On normal RCFG definition, newly added production
rules are enabled to be used as ancestors of p ∈ Aug on derivation trees, which cause the
augmentations, while restricted RCFG does not allow this feature.

When this simple restriction is adopted, parsing using LALR(1) scheme is simple,
described as below,

1) construct initial LALR(1) graph by the incremental method,

2) restrict domains of DD from V to f(D), using restriction method defined in Defini-
tion 4.4.30,

3) calculate LA by use of Exp,

(start parsing)
repeat 4), until parse completes,

4) if reduce action is done with an item p → α• , where p ∈ Aug, then augmenting
a new rule by use of Algorithm 4.5.4, and calculate LA for new LALR(1) graph
obtained by augmentation.

Of cource, if Shit-Reduce or Reduce-Reduce confliction occurs as a result of augmentation
at 4), the system discontinues to parse it as an error.

The second choice is illustrated as following,

1) construct initial LALR(1) graph by the incremental method,

2) restrict domains of DD from V to f(D), using restriction method defined in Defini-
tion 4.4.30,

3) calculate LA by use of Exp,

(start parsing)
repeat 4), 5), until parse completes,

83

4) if reduce action is done with an item p → α• , where p ∈ Aug, then augmenting a
new rule by use of Algorithm 4.5.4, calculate LA for new LALR(1) graph obtained
by augmentation,

5) if parser stops with error, that means no action at that time, then try to detect
embedded portion in the rest of input. If detected a rule, augmenting the rule to
current LALR(1) graph, but mark on reduce action of detected rule so that the
reduce action is effective after the detected position.

Conventional LALR(1) graph corresponds to the graph starts from Entε(S ′) on our
method. To achieve detection of 5), we can use another sub-graphs start from Entε(p)
for each p ∈ Aug. Process of 5) must be non-deterministic.

84

Chapter 5

Conclusion and Future Works

We formalize a formal language model as RCFG, which deals with texts including aug-
mentations of part of grammar rules, show RCFG has good properties and its language
class, i.e. in between CFL and CSL, and give an efficient parsing algorithm. Most of for-
mal language systems which have expressive power stronger than CFG have no efficient
parsing algorithms, and have to be restricted to some subsets of them. Such a restriction
is one of main causes of loss of clarity and readability of their descriptions. We consider
that RCFG will be helpful base model for system programmers to construct self-referential
systems or to use it as a rapidly prototyping system, because of the simple and natural
feature of RCFG

An incremental construction method of LALR(1) parser in which method any item
sets are not used, and applications of the method to parsers for RCFG are illustrated.
We introduce notions Mono-Graph, fusion, MaxInc, DD, Ind∆ and operations on them
in order to achieve it, and establish some properties on them, especially establish that
the method proposed in this paper induces LALR(1) parser. And also, we present a set
of algorithms for the method, and discuss on the efficiency of the method, on worst case.
Typical points of our work are the introduction of notions for incremental construction
for both of LR(0) graphs and indices on Look Ahead Sets in fully incremental manner
and no use of item sets.

To use this method in practice, there are several problems must be solved. As pars-
ing problems, ways to treat ambiguous grammars and frameworks for error handling are
remained. Additionally, most important problem that how to give semantic descriptions
to newly added production rules are remained as future works. A hint to the problem on
semantics is discussed in Appendix A. Additionally, Ind∆, index for incremental calcu-
lation of LA, gives us a possibility of static analysis of grammars. Because informations
provided by Ind∆ indicates dependencies between production rules, it may be useful on
grammar debugging.

85

Appendix A

Discussions on Semantic
Descriptions for Augmented Rules

A.1 Motivation on Semantic Description for Aug-

mented Rules

It is one of most important problems how to give a semantics for dynamically extensible
grammars. Of course, the problem depends on formalisms of such extensible grammars.
However, we can observe that most of extensible grammars based on CFG have mech-
anisms to restrict domains of production rules which will be augmented at parse-time.
That is to say, it does not mean that arbitrary production rules are augmented to initial
production rule set. Only production rules which are supposed to be augmented in the
initial grammar are augmented. RCFG is one of such formal language systems. With re-
spect to this observation, we can consider some models on giving semantics to dynamically
augmented production rules. Followings are both extremes in such models,

1) giving semantics in advance for all production rules which might be augmented,

2) giving frame works for users to define semantic rules for augmented production rules
in identical manner of the other rules.

Model 1) gives us an impression that there is no merit to have dynamically extensibility
on syntax. However, it is not true. For example, we should consider the case of the over-
loading mechanism on operators in C++. gcc gives us a good example for it. In C++,
no new operator is enabled to be defined as a new token. Only enabled is over-loading.
What function is substituted to an operator, in other words, how to give a semantics to
an operator, is remained for users (programmars). Under this sense, we can conclude that
C++ has flexibility, and is not a language which has merely fixed semantics. In fact, in
the implementation of gcc, a unique function is assigned as a semantic function to every
production rules concerning to ‘Expression’, in which function codes for expressions are
generated accoding to their types or classes. Semantic assignment in this way is one of
choices. In such a way, it is important problem how to model a mechanism in semantic
functions to assign semantics to each syntactical entities, and the mechanism seems to be
valuable as an object of studies. However, we do not adopt the model.

We tentatively call model 2) Compile-time Reflection. In this paper, we introduce
two kinds of implementation models on Compile-time Reflection. Essentially, Compile-

86

CCL2
CL1

0

CCL2+L1
0

CL1
1

CL1

L1
0 : L2

*

L1

L1
n : L1

0, ..., L1
n-1, L2

*

L1
1 : L1

0, L2
*

...

(Partial) Compilation

Dynamic Linking

Figure A.1: Diagram of Compile-time Reflection

time Reflection is regarded as a mechanism to embed object codes, i.e. generated by the
compiler, into the compiler process itself, or some other mechanism which is similar to
the embedment (see Figure A.1). This mechanism will supply facilities to developpers of
programming language systems on some aspects. Adopting the mechanism, developpers
will be provided a step-by-step development environment. As another aspect, embedding
object codes into compiler process itself means that compiler can seize higher mechanisms
which are realized as functions of programming languages which are processed by the
compiler. This leads us to an expectation of easiness to develop compilers.

Frankly speaking without fear to misleading, Reflection can be regarded as confusion of
meta objects and first order objects, or, inclusion of objects in either directions. However,
the core parts of any reflective systems are initially stated. Reflective features of such
systems are constructed or proceeded starting from the core parts and piling up on them.
This aspect is explained with the words of meta-circularity or meta-circular interpreter [24,
29, 32] . On structures of systems which include reflective mechanisms in the descriptions
of compilers of them, there are hierarchies similar to [29]. (Figure A.2)

It is able to discuss on properties of programming languages of which compilers have
the reflective hierarchical structure, i.e. explained above, but, we focus on features of
development process of programming languages, using compiler-compiler which has mech-
anisms including the hierarchical structure. For any software, it is able to divide its each
parts into some hierarchy, although the devision is not clear. For example, basic oper-
ations such as memory managements, further higher level processes which use the basic
operations, main operations, user interfaces, and so on. Usually, during development,
developpers continue coding and debugging process, mutually iterating them. They can
shift jobs to coding and/or debugging on higher level parts of the system after completing
verification on lower level components. Total jobs form a spiral of development cycle.
On developments of programming language systems, using development tools which have
reflective hierarchical structure, developpers obtain freedom so as to rise up higher mecha-
nisms of target systems into the description of compiler itself at some time of development
cycle.

87

CCL2
CL1

0

CL1
1

L1
0 : L2

*

L1
1 : L1

0, L2
*

CL1L1
n : L1

0, ..., L1
n-1, L2

*

... CL1
n-1

Meta Level

Object Level

Figure A.2: Meta-circularity

For example, here we consider development of a programming language which has
function of garbage collection on memory management. When completing coding and
debugging of the part of memory management, if the function of the part can be involved
in the description of the compiler, developper obtains the merit of the function at the
phase of development of the compiler itself. As similar examples, we can enumerate type
checking mechanism, calculation of array indeces which deeply depends on types, and
pattern matching mechanism, so well. Of course, it is obvious that these examples are
realized if there are compatibility between paradigm of compiler description language and
that of target language, and exists an interface between them.

A conceptual diagram which reflects the intuition on the circularity of reflective hier-
archy on compiling process, to say meta-circular compilation, which is explained so far,
is given in Figure A.1. This diagram explains an implementation model of meta-circular
compilation, under which object codes are partially generated and the codes might be
involved in compiler via dynamic linking process. To say, the diagram describes the in-
volvement of functions of target languages. Besides this implementation model, we can
consider an another implementation model in which some parts of compiler codes are
embedded in object codes. (Figrue A.3) There seems to be at least two implementation
models of meta-circularity via compilation process, such that,

1) involving object codes into compiler process,

2) embedding of some parts of compiler codes into object codes.

Focusing on efficiency of generation of codes, in general, it is easy to predict that model
1) provides an enfficient frame work. Before easily concluding so, we try to discuss on
each models, because it is expected that there is significant difference depending on where
reflective descriptions occur, and on how to implement reflective functions.

We start discussion with an example. Here, we suppose that target system of devel-
opment is a language system, to say further a compiler, and the object of discussion is
a frame work for compiler-compiler with which compilers that have reflective functions

88

CCL2
CL1

0 (= CL2
)

CCL2+L1
0

CL1
1 (= CL2

+CL1
0)

CL1

L1
0 : L2

*

L1

L1
n : L1

0, ..., L1
n-1, L2

*

L1
1 : L1

0, L2
*

...

Compilation

CL1
n (= CL2

+CL1
0+...+CL1

n-1)

Compilation (Embeddition)

Figure A.3: A way of inprementation by embedding meta-codes

are described. Individual reflective programming languages are not the objects of the dis-
cussions here. To clear our stance, we are conscious of description levels of programming
languages, such as,

A) level compiler-compiler (Level CC),

B) level compiler (Level C),

C) level object codes (Level Obj).

Moreover, we adopt RCFG for a base grammar. From the property of RCFG (Theo-
rem 3.3.7), there is no problem to assume CFG as a base grammar, excepting the dynam-
ical extensibility of RCFG. For semantic descriptions, we adopt Attributted Grammars
(AG) [20, 21] on Level C, and Syntax Directed Translation (SDT) which has been used
to describe flexible syntax languages, such as [23] and its resemblances.

A.2 An example of description by SDT

In this section, we give an example to introduce a string notation into the syntax of
pure-Prolog. In this example, introduced string is interpreted as a list which consists of
atoms, each atom has one-length name, such that ”abc” is interpreted to [a, b, c]. Firstly,
we suppose that production rules,

Term → List | Functor

List → ′[′ ′]′ | ′[′Term-Seq′]′ | ′[′Term-Seq′ |′ Term′]′

Term-Seq → Term | Term′,′ Term-Seq

Functor → Id | Id′(′Term-seq′)′

89

are included in the syntax of pure-Prolog. We consider that the introduction of string
notation causes augmentation of new production rule

Term → ′”′ Id ′”′.

This introduction of string notation is given by SDT description as below.

[List � ” Id ”] (A.1)

synfn(” Id(str) ”):List (A.2)

begin
if str = emptyString then []
else [Id ↓ head(str) | ”Id ↓ rest(str)”]

end

A.1 represents an augmentation of new production rule, and the description A.2
provides semantics for the rule. Formal definition of SDT is stated in later section. Here,
we give an intuitive explanations for it. (” Id(str) ”) following synfn is a Signature
with parameters. The head line of SDT synfn(” Id(str) ”):List means that it provides
the mean for a production rule which left-hand side is List and which right-hand side is
” Id ”. str represents a set of attribute values of Id, and we assume that string attribute
value is included in it. In this example, we assume that every symbols which occur in
signatures have string as an attribute, and that every string attributes hold terminal
symbol sequeces which is derived from symbols concerned to the attributes. This de-
scription lacks accuracy, because input string sequeces for parse module are sequences of
tokens cut out by lexcal analyser, which do not occur in program texts, on actual com-
pilers. Values of string attributes concern rather to values which are held in a variable
yytext of YACC. In the meaning of SDT of this example, the signature ” Id ” represents
a requirment that on some portion of input of parser, if there is a occurence of sequence
” Id ”, then the attribute of second symbol Id must be assigned to str. If the value of
string attibute held in str is empty string, then result of SDT is [], empty list, otherwise,
the result is constructed in a way that firstly constructing a list for (” Id ↓ rest(str) ”),
which means a list concerns to a string of str from which the first symbol is taken away,
then appending the first symbol of str to the list. Id ↓< string > represents a generation
of new syntactic entity, and a coercion of an attribute set to the generated entity. From a
given symbol sequence ”abc”, using SDT given by A.1 and A.2, a translation sequence
will be achieved as

”abc” ⇒ [a | ”bc”] ⇒ [a, b | ”c”] ⇒ [a, b, c | []],

then, finally obtained symbol sequence which represents a list will be parsed by the parser
with initial semantic interpretation.

If we focus on the function of translations of strings which are achieve by SDT, SDT
might be seen as a macro language, like GNU m4. However, SDT is differ from macro
languages such as GNU m4 on the point that an SDT description is defined with a
new production rule, so the definition causes an extension of grammar. While macro
expansions are achieved by sub-string matching, SDT requires on its applications that
each translatees have context which the signature of the SDT should have. Moreover,

90

because SDT is applied during parsing, informations which are fixed on parsing, e.g.
types of expressions, are available to be used in SDT. So, on SDT, it is able to choose
translations according to types of translatees. These are the essentially different points
from macro languages.

A.3 An Implementation of SDT

Here, we try to generalize SDT to a system which has enough features to be called as
compile-time reflection. There seems to be at least two ways of generalizations. One way
is to adopt some reflective mechanism on the parser as an implementation of SDT instead
of string replacements. The other is to enable to use user defined functions alike system
functions such as if then else, head, rest used in above example. User defined functions
indicates functions of the language system which is being constructed using SDT.

We begin discussions firstly on the former stance so as to lead us to the later stance,
adopting Attributted Grammars as a description frame work.

A.3.1 Attributted Grammars

Attributted Grammars (AG) had been proposed in [20, 21], and have been used for de-
scriptions of Syntax Oriented Systems. For given CFG G = (V, T, P, S), two kinds of
attributted values, so called Inherited Attribute and Synthesized Attributes are augmented
for each X in V . For each terminal symbols in T , only Synthesized Attributes are usually
augmented. Intuitively, Inherited Attributes of X can be regarded as inputs of sub-trees
of parse trees which has X as root node. Also Synthesized Attributes of X can be re-
garded as outputs, e.g. [19]. Rules for calculation of attributted values, called Attribution
are appended to each production rules. In each attributions, a list of procedures which
calculate Synthesized Attributes of the symbol on left-hand side of the production rule
and Inherited Attributes of the symbols on right-hand side, from Inherited Attributes of
the symbol on left-hand side and Synthesized Attributes of the symbols on right-hand
side, is provided. An example illustrating a tiny system in which values for binary strings
are calculated are given as below.

An example of AG

G = (V, T, P, S)

V = {S, B}, T = {0, 1},
P = {S → B,

B → 0, B → 1,

B → B 0, B → B 1}

In(S) = φ, Syn(S) = {value}
In(B) = {figure}, Syn(B) = {value}

S → B {B.figure = 1; S.value = B.value}

91

B → 0 {B.value = 0}
B → 1 {B.value = B.figure}

B → B 0 {B[1].f igure = B.figure ∗ 2;

B.value = B[1].value}
B → B 1 {B[1].f igure = B.figure ∗ 2;

B.value = B[1].value + B.figure}

In this paper, we adopt a notation that each symbols appears in right-hand side of pro-
duction rules are appended with a number of its occurence position in order to distinguish
different occurences of same symbols, e.g. B[1] designates symbol B which occurs at first
position of right-hand side of its rule.

It is not a trivial problem to determine evaluation order of each attributions in AG.
From descriptions of Attributions, dependency relations between attribute values can be
established. Generally, depending on given parse tree, the dependency may consist of
circularities. AGs which contain no circularity on the dependencies between attribute
values, for any words generated from G, are called Well-defined Attributted Grammars
(WAG). Sevral sub-classes of WAG have been proposed from sevral point of view [4,
17, 18], such as LR Attributted Grammar (LR-AG) [17, 18] which is intended that each
attribute values are calculated during LR parsing are going.

A.3.2 An implementation of SDT using AG

Here, we give an implementation of SDT under the frame work of AG.

Example A.3.1 (Example of a semantics for synfn)

Inherited Attributes:
(string ∗ Type list)
BODY.id list, SF EXP.id list, BOOL EXP.id list

Synthesized Attributes:
(string ∗ Type)
SIGN.id

string ∗ Type) list
SIGN LIST.id list

(string)
identifier.w

(Type)
SDTYPE.type, SMTYPE.type, STYPE.type, BASETYPE.type, TYPE.type

(λexpression)
SIGN LIST.exp
BODY.exp
SF EXP.exp

92

FUN1ARG.exp

(where Type = string)

SYNFUN → synfn identifier (SIGN LIST) :SDTYPEBODY
{SIGN LIST[4].pre list = [];
BODY.id list = SIGN LIST[4].id list;
reflect((SDTYPE[7].type, SIGN LIST[4].type),
(λµ : string.SIGN LIST[4].exp)BODY[8].exp)} (3)

SDTYPE → X (where X ∈ D)
{SDTYPE.type = X.w}

SMTYPE → Y (where Y ∈ M)
{SMTYPE.type = Y.w}

STYPE → Y (where Y ∈ T)
{STYPE.type = Y.w} Note: D ⊂ M ⊂ T

BASETYPE → STYPE
{BASETYPE.type = STYPE[1].type}

BASETYPE → bool
{BASETYPE.type = bool}

BASETYPE → char
{BASETYPE.type = char}

BASETYPE → string
{BASETYPE.type = string}

BASETYPE → tree
{BASETYPE.type = tree}

TYPE →′ identifier
{TYPE.type =′:: identifier[2].w}

TYPE → BASETYPE
{TYPE.type = BASETYPE[1].type}

TYPE → TYPElist
{TYPE.type = TYPE[1].type :: list}

SIGN → STYPE
{SIGN.type = STYPE[1].type;
SIGN.id = (emptySymbol,STYPE[1].type)}

SIGN → STYPE(identifier)
{SIGN.type = STYPE[1].type;
SIGN.id = (identifier[3].w, STYPE[1].type)}

SIGN LIST → SIGN
{SIGN LIST.type = SIGN[1].type;
SIGN LIST.id list = [SIGN[1].id];

93

SIGN LIST.exp
= λπ1(SIGN[1].id) : π2(SIGN[1].id) ↑ µ} (4)

SIGN LIST → SIGN , SIGN LIST
{SIGN LIST.type = SIGN[1].type :: SIGN LIST[3].type;
SIGN LIST.id list = SIGN[1].id :: SIGN LIST[3].id list;
SIGN LIST.exp = λπ1(SIGN[1].id) : π2(SIGN[1].id).SIGN LIST[3].exp}

BODY → begin SF EXP end
{SF EXP[2].id list = BODY.id list;
BODY.exp = SF EXP.exp
}

SF EXP → identifier
{SF EXP.exp = getValue(SF EXP.id list, identifier[1].w)}

SF EXP → []
{SF EXP.w = ε; SF EXP.tree = (ε, [])}

SF EXP → if BOOL EXP thenSF EXP elseSF EXP
{BOOL EXP[2].id list = SF EXP.id list;
SF EXP[4].id list = SF EXP.id list;
SF EXP[6].id list = SF EXP.id list;
SF EXP.exp

= if(BOOL EXP[2].exp,SF EXP[4].exp,SF EXP[6].exp)}
SF EXP → FUN1ARG(SF EXP)

{SF EXP[3].id list = SF EXP.id list;
SF EXP.exp = FUN1ARG.exp(SF EXP[3].exp)}

SF EXP → (SF EXP)
{SF EXP[2].id list = SF EXP.id list;
SF EXP.exp = SF EXP[2].exp}

SF EXP → SF EXP :: SF EXP
{SF EXP[1].id list = SF EXP.id list;
SF EXP[3].id list = SF EXP.id list;
SF EXP.exp = concatinate(SF EXP[1].exp,SF EXP[3].exp)}

SF EXP → SMTYPE ↓ SF EXP
{SF EXP[3].id list = SF EXP.id list;
SF EXP.exp = getToken(SMTYPE[1].type,

getvalue(SF EXP.id list,
SF EXP[3].exp))}

BOOL EXP → empty(SF EXP)
{SF EXP[3].id list = BOOL EXP.id list;
BOOL EXP.exp = empty(SF EXP[3].exp)}

BOOL EXP → SF EXP = SF EXP
{SF EXP[1].id list = BOOL EXP.id list;
SF EXP[3].id list = BOOL EXP.id list;
BOOL EXP.exp = equal(SF EXP[1].exp,SF EXP[3].exp)}

BOOL EXP → (BOOL EXP)
{BOOL EXP[2].id list = BOOL EXP.id list;

94

BOOL EXP.exp = BOOL EXP[2].exp}
BOOL EXP → notBOOL EXP

{BOOL EXP[2].id list = BOOL EXP.id list;
BOOL EXP.exp = not(BOOL EXP[2].exp)}

BOOL EXP → BOOL EXP or BOOL EXP
{BOOL EXP[1].id list = BOOL EXP.id list;
BOOL EXP[3].id list = BOOL EXP.id list;
BOOL EXP.exp = or(BOOL EXP[1].exp,BOOL EXP[3].exp)}

BOOL EXP → BOOL EXP andBOOL EXP
{BOOL EXP[1].id list = BOOL EXP.id list;
BOOL EXP[3].id list = BOOL EXP.id list;
BOOL EXP.exp = and(BOOL EXP[1].exp,BOOL EXP[3].exp)}

FUN1ARG → head
{FUN1ARG.exp = head}

FUN1ARG → rest
{FUN1ARG.exp = rest}

FUN1ARG → root
{FUN1ARG.exp = root}

FUN1ARG → children
{FUN1ARG.exp = children}

Note: the attributes SF EXP.exp, BOOL EXP.exp and FUN1ARG.exp hold λ expres-
sions as their values. It does not means that we treat λ expressions directly, but means
that each λ expression expresses a continuation for evaluations of attribute values.

In this example, a continuation of calculation of a symbol sequence which will be the
result of SDT is going to be constructed in attributes SF EXP.exp and BOOL EXP.exp.
The continuation obtained by the example is to calculate a symbol sequence, not to
calculate attribute values for the symbols sequence provided by SDT. A procedure to
calculate expected symbol sequence is assigned by system function reflect, i.e. used
in (3), to the production rule which is designated by the signature of SDT description.
↑ in expression (4) parses its argument and constructs its parse tree. The result of ↑
is a function from a collection of Inherited Attributes of the root of the parse tree to a
collection of Synthesized Attributes of the root, the function which is explained in previous
section. On this aspect, out approach is similar to Higher Order Attributted Grammar
(HAG) [28].

HAG is a model of multi-pass processes. On first pass, data which has tree structure
are calculated in a way of AG frame work. On later passes, using tree structured data as
a parse tree, which are calculated on previous pass, and adapting AG frame work again,
targer objects are obtained finally. In our implementation scheme for SDT given here,
when SDT is parsed, a symbol sequence, which may include some non-terminal symbols,
is calculated as a attribute value, then the symbols sequence is parsed again by same
parser, and finally parser obtains a collection of Attribution for given SDT.

We can assume that this implementation of SDT indicates that the compiler involves
an interpreter for SDT. (Figure A.4)

As an alternative imprementation of SDT, instead that compiler includes SDT inter-
preter, we suppose to implement SDT so as to embed SDT processes into target objects.
It is to say SDT compiler. The idea for the implementation is quite simple. To explain

95

Source

SDT Description

Compiler (with Interpreter for SDT)

Parser
Attribution Evaluator

SDT Interpreter

String Inputs
for Parsing

Figure A.4: SDT Interpreter

it with above example, in this implementation, system functions, like if , head, rest, . . .,
are not assumed for the functions which evaluate their values immediately, but functions
which calculate code streams, i.e. continuations, to evaluate original system functions.
This methodology corresponds to Unfolding process which is discussed in the sphere of
program translations. We must note that branches in generated code streams are caused
not only by system function if , but also by a process which concerns to a parsing process
caused by ”↑”.

A.3.3 Discussion on the Choice of Implementation; Interpreta-

tion or Embedment

So far, for the methodology of implementing SDT, we have discussed on two ways, one
is to involve SDT interpreter in compiler, and the other to embed SDT procresses in
target object codes via Unfolding. Here, we discuss and compare them from the points of
view of software development stages. We call the former Interpretation method, the latter
Embedment Method, in followings.

On the efficiency of generated codes, as described in the first section, it is expected that
Interpreter Method has advantage. In spite of inefficiency of Embedment Method, it has
advantages. One of them is the posibility to realize a system which includes self-compiler
in it. Such a system is realized via embedded codes concerning to SDT interpreter, and
the code generates codes and/or data which can be regarded as function closures. How-
ever, this aspects of Embedded Method is not the subject of this paper. It is assumed to
be harmful under the discussions stated below. The subject here is development cycles of
programming language systems. On this view point, most important feature of Embed-
ment Method is for developpers to debug and/or varification of developping systems on

96

object codes level.
Considering the advantage of Interpreter Method on efficiency of code generation and

the advantage of Embedment Method on debugging environment, there is one posibility
not to select one from these two methods, but to select one in accoding to stages of
development. On first stage of development, developpers achieve coding and debugging
on core parts of the system. On middle stages of development, using Embedment Method,
developpers are going on coding and debugging without obstacles such as stack data for
parsing which are already varified. On final stage, using Interpreter Method, efficient
codes are obtained. We can adopt such a step wise development process. The varification
of the step-wise development on actual systems is a future work.

97

Bibliography

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[2] A. V. Aho and J. D. Ullman. Principles of Compiler Design. Addison-Wesley, 1977.

[3] A.V. Aho and S.C. Johnson. LR parsing. ACM Computing Surveys, 6(2):99–124,
1974.

[4] G. V. Bochmann. Semantic evaluation from left to right. CACM, 19:55–62, 1976.

[5] B. Bollobas. Modern Graph Theory. Springer-Verlag, 1998.

[6] B. Burshteyn. Generation and recognition of formal languages by modifiable gram-
mars. SIGPLAN Notices, 25(12):45–53, 1990.

[7] B. Burshteyn. On the modification of the formal grammar at parse time. SIGPLAN
Notices, 25(5):117–123, 1990.

[8] H. Christiansen. A survey of adaptable grammars. SIGPLAN Notices, 25(11):35–44,
1990.

[9] A. Colmerauer. Metamorphosis grammars. In Lecture Notes in Computer Science
64, pages 133–189. Springer-Verlag, 1978.

[10] C. Donnelly and R. Stallman. Bison: The YACC-compatible Parser Generator Bison
Version 1.25, Nov. 1995. http://www.gnu.org/manual/bison/index.html.

[11] J. Earley. An efficient context-free parsing algorithm. Comm. ACM, 13(2):94–102,
1970.

[12] G. Fischer. Incremental LR (1) parser construction as an aid to syntactical extensibil-
ity. PhD thesis, Dortmund Univ., 1980. Tech. Report 102, Department of Computer
Science, Univ. of Dortmund, Federal Republic of Germany, 1980.

[13] J. Heering, P. Klint, and J. Rekers. Incremental generation of parsers. IEEE Trans-
actions on Software Engineering, 16(12):1344–1351, 1990. Also in SIGPLAN Notices,
24(7):179-191, 1989.

[14] E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, 1979.

[15] R. N. Horspool. Incremental generation of LR parsers. J. of Computer Languages,
15(4):205–223, 1990.

98

[16] S. C. Johnson. YACC: yet another compiler-compiler. Bell Laboratories, unix sup-
plementary documents, vol. 1 edition, 1986.

[17] N. D. Jones and M. Madsen. Attribut-influenced LR parsing. In LNCS, volume 94,
pages 393–407. Springer-Verlag, 1980.

[18] U. Kastens. Ordered attribute grammars. Acta Infomatica, 13:229–256, 1980.

[19] D. Kato. A proposal of categorial attributted grammars. Computer Software,
12(2):52–66, 1995. in Japanese.

[20] D. E. Knuth. Semantics of context free languages. Math. Sys. Theory, 2(2):127–145,
1968.

[21] D. E. Knuth. Semantics of context free languages. Math. Sys. Theory, 5(1):95–96,
1971.

[22] C. H. A. Koster. Affix grammars. In Proc. of the IFIP Work. Conf. on Algol 68
implementation, pages 95–109, Amsterdam, 1972. North Holland.

[23] D. Sandberg. LITHE: a language combining a flexible syntax and classes. In Con-
ference Record of the Ninth Annual ACM Symposium on Principles of Programming
Languages, pages 142–145. ACM, 1982.

[24] B. C. Smith. Reflection and semantics in Lisp. In Proceedings of ACM Symposium
on Principles of Programming Languages (POPL), pages 23–35, 1984.

[25] A. Tanaka and T. Watanabe. An extensible LR parser generator - a case study
of composable metalevel extensions -. In IWPSE99 Proceedings, pages 1–5, 1999.
http://dontaku.csce.kyushu-u.ac.jp/IWPSE99/Proceedings/17.pdf.

[26] K. Thulasiraman and M. N. S. Swamy. Graphs: Theory and Algorithms. John Wiley
& Sons, 1992.

[27] A. van Wijngaarden. Orthogonal design and description of formal languages. Tech-
nical Report MR 76, 1965.

[28] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. Higher order attribute grammars.
ACM SIGPLAN Notices, 24(7):131–145, 1989.

[29] M. Wand and D. P. Friedman. The mystery of the tower revealed: A non-reflective
description of the reflective tower. In Proceedings 1986 ACM Symposium on LISP
and Functional Programming, pages 298–307, August 1986.

[30] B. Wegbreit. Extensible programming languages. Harward University, Cambridge,
Massachusetts, 1970. Garland Publishing Inc., New York & London, 1980.

[31] B. Wegbreit. The ECL programming system. In Proc. of FJCC 39, pages 253–261.
AFIPS, 1971.

[32] R. Weyrauch. Prolegomena to a theory of mechanized formal reasoning. Artificial
Intelligence, 13(1):133–170, 1980.

99

Publications

[1] D. Kato, “A Proposal of Categorial Attributted Grammars”, Computer Software,
Vol. 12, No. 2, pp. 52-66, 1995. (in Japanese)

[2] D. Kato, “A Proposal of Reflective Context Free Grammars”, in Proc. of ITC-
CSCC2001 in Tokushima, pp. 556-559, July, 2001.

[3] D. Kato, “Incremental Construction of LALR(1) Parsers and its Application to
RCFG”, (under submission).

[4] D. Kato, “Reflective Context-Free Grammar”, (under submission).

100

