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1 Introduction

A user identity (such as the name, e-mail address and so
on) can be used for accessing control of some resources.
For example, in Identity-Based Encryption (IBE) schemes
such as [9, 12], an encryptor can restrict a decryptor to in-
dicate the identity of the decryptor. An Attribute-Based
Encryption (ABE) is an encryption scheme, where users
with some attributes can decrypt the ciphertext associ-
ated with these attributes. Although IBE schemes have
a restriction such that an encryptor only indicates a sin-
gle decryptor, in ABE schemes, an encryptor can indicate
many decryptors by assigning common attributes of these
decryptors such as gender, age, affiliation and so on. There
are two kinds of ABE, Key-Policy ABE (KP-ABE) and
Ciphertext-Policy ABE (CP-ABE). KP-ABE [18, 27] are
schemes such that each private key is associated with an ac-
cess structure. CP-ABE [5, 15, 17, 25, 32] are schemes such
that each ciphertext is associated with an access structure.
An application of KP-ABE is for a biometric system. If
an IBE scheme is used to construct the biometric system,
then a user’s information (such as a finger-print, iris data
and so on) is registered as the identity of the user. How-
ever, these values are somewhat changed since they depend
on a user’s condition, on humidity and so on. Therefore,
the user is forced to manage secret keys corresponding to
all identities. KP-ABE schemes with threshold structures
can solve this problem to indicate a threshold value as an
error-tolerant value. An application of CP-ABE is for an
encrypted storage system. If 1 data is encrypted by using
1 encryption key, then the total number of encryption and
decryption keys increases. If plural data are encrypted by
using one encryption key, then a fine-grained access con-
trol is not achieved. To indicate the set of attributes of
a decryptor such as affiliation, the CP-ABE scheme can
achieve a fine-grained access control without increasing the
number of keys. There are some extended ABE schemes
such as ABE schemes with the multi-authority [14, 22], an
attribute-based broadcast encryption scheme [23], and a
CP-ABE scheme with recipient anonymity [25]. A prob-
lem of previous ABE schemes is that the length of the
ciphertext depends on the number of attributes. Also, the
number of pairing computations depends on the number of
attributes. A Predicate Encryption Scheme (PES), where
secret keys correspond to predicates, and where cipher-
texts are associated with attributes, has been proposed
in [11, 21]. It is shown that PES can be regarded as a kind
of CP-ABE (see Appendix A and B in [25] for details).
Both the [11] and [21] schemes also have the same prob-
lems, in that the length of the ciphertext and the number
of pairing computations are not constant.

Contribution. In this paper, for the first time we propose
a CP-ABE scheme with a constant length of ciphertext and
a constant length of the number of pairing computations.
The access structure used in our CP-ABE is constructed
by AND-gates on multi-valued attributes. This is a sub-
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set of the access structures used in [15, 25]. Although
previous CP-ABE schemes [5, 15, 17, 25, 32] can comple-
ment our access structures, the length of the ciphertext
depends on the number of attributes. This means that,
until our work, to the best of our knowledge, there has
been no scheme that enables a constant ciphertext length
with AND-gates on multi-valued attributes. Our scheme
enables Chosen Plaintext Attack (CPA) security. In ad-
dition, we construct a Chosen Ciphertext Attack (CCA)-
secure CP-ABE scheme with constant ciphertext length by
using the conversion method proposed in CN07 [15]. This
is the main difference between this paper and the previous
version [16].

Organization : The paper is organized as follows: Some
definitions are presented in Section 2. The previous scheme
is introduced in Section 3. Our scheme with CPA security
and the CCA-conversion scheme are described in Section
4. The security proof of our scheme is presented in Section
5. Efficiency comparisons are made in Section 6. The
security proof of our CCA-conversion scheme is presented
in the Appendix.

2 Preliminary

In this section, some definitions are presented. Note that
x ∈R S means x is randomly chosen for a set S.

2.1 Bilinear Groups and Complexity Assumption

Definition 1. (Bilinear Groups) Bilinear groups and a
bilinear map are defined as follows:

1. G1 and GT are cyclic groups of prime order p.

2. g is a generator of G1.

3. e is an efficiently computable bilinear map e : G1 ×
G1 → GT with the following properties.

• Bilinearity : for all u, u′, v, v′ ∈ G1, e(uu′, v) =
e(u, v)e(u′, v) and e(u, vv′) = e(u, v)e(u, v′).

• Non-degeneracy : e(g, g) �= 1GT (1GT is the GT ’s
unit).

Definition 2. (DBDH assumption)
The Decision Bilinear Diffie-Hellman (DBDH) problem

in G1 is a problem, for input of a tuple (g, ga, gb, gc, Z) ∈
G4

1×GT , to decide whether Z = e(g, g)abc or not. An algo-
rithm A has advantage ε in solving the DBDH problem in
G1 if AdvDBDH(A) := |Pr[A(g, ga, gb, gc, e(g, g)abc) = 0]−
Pr[A(g, ga, gb, gc, e(g, g)z) = 0]| ≥ ε(κ), where e(g, g)z ∈
GT \{e(g, g)abc}. We say that the DBDH assumption holds
in G1 if no PPT algorithm has an advantage of at least ε
in solving the DBDH problem in G1.

2



2.2 Definition of Access Structures

Several access structures such as the threshold struc-
ture [27], the tree-based access structure [5, 17], AND-gates
on positive and negative attributes with wildcards [15],
AND-gates on multi-valued attributes with wildcards [25],
and the linear access structure [32] are used in previous
ABE schemes. In our scheme, we use AND-gates on multi-
valued attributes as follows:

Definition 3. Let U = {att1, . . . , attn} be a set of at-
tributes. For atti ∈ U , Si = {vi,1, vi,2, . . . , vi,ni} is a set of
possible values, where ni is the number of possible values
for atti. Let L = [L1, L2, . . . , Ln], Li ∈ Si be an attribute
list for a user, and W = [W1,W2, . . . ,Wn], Wi ∈ Si be
an access structure. The notation L |= W expresses that
an attribute list L satisfies an access structure W , namely,
Li = Wi (i = 1, 2, . . . , n).

The number of access structures is
∏n

i=1 ni. For each atti,
an encryptor has to explicitly indicate a status vi,∗ from
Si = {vi,1, vi,2, . . . , vi,ni}.

2.2.1 Differences between the previous AND-gate
structures [15, 25] and ours

If ni = 2 (i = 1, 2, . . . , n), then our structure is the same as
the access structures [15] excluding wildcards. In [25], an
access structure W is defined as W = [W1,W2, . . . ,Wn]
for Wi ⊆ Si, and L |= W is defined as Li ∈ Wi (i =
1, 2, . . . , n). This means that our access structure is a sub-
set of these in [15, 25].

2.2.2 Adequacy of AND-gate structures

If flexible structures can be achieved (e.g., OR-gate, wild-
cards, tree-based structures, and so on), then we can
achieve fine-grained access control. On the contrary, in
our scheme, an encryptor must indicate all attribute, ex-
plicitly. We insist that AND-gate structures are the most
basic usage, namely, an encryptor indicates a concrete set
of attributes, and optionally takes advantage of flexible
structures. We have only to accept AND-gate structures,
then an efficient CP-ABE scheme can be constructed such
as to produce a constant ciphertext length and to reduce
the number of additional bits required from CPA-secure
CP-ABE to CCA-secure CP-ABE. Furthermore, as a dif-
ference of secret sharing [28] (in this case, “AND-gate only”
means the unanimous structure, namely, the number of ac-
cess structures is only 1), the number of access structures
is

∏n
i=1 ni. We insist that no redundancy, namely without

wild cards, is a reasonable restriction.

2.3 Ciphertext-Policy Attribute-Based Encryp-
tion Scheme (CP-ABE)

CP-ABE is described using four algorithms, Setup, Key-
Gen, Encrypt and Decrypt [15].

Definition 4. Ciphertext-Policy Attribute-Based Encryp-
tion Scheme

Setup: This algorithm takes as input the security param-
eter κ, and returns a public key PK and a master
secret key MK.

KeyGen: This algorithm takes as input PK, MK and a
set of attributes L, and returns a secret key SKL as-
sociated with L.

Encrypt: This algorithm takes as input PK, a message M
and an access structure W . It returns a ciphertext C
with the property that a user with SKL can decrypt C
if and only if L |= W .

Decrypt: This algorithm takes as input PK, C which was
encrypted by W , and SKL. It returns M if SKL is
associated with L |= W .

2.4 Selective Game for CP-ABE

The selective game for CP-ABE has been defined in [15].
This game captures the indistinguishability of messages
and the collusion resistance of secret keys, namely, attack-
ers cannot generate a new secret key by combining their
secret keys. To capture the collusion resistance, multiple
secret key queries can be issued by the adversary A after
the challenge phase. This means that A can issue the Key-
Gen queries L1 and L2 such as (L1 �|= W ∗) ∧ (L2 �|= W ∗)
and (L1 ∪ L2) |= W ∗. This collusion resistance is an im-
portant property of the CP-ABE scheme, which has not
been considered in Hierarchical IBE (HIBE) schemes such
as in [8]. A weaker definition of CP-ABE has been con-
sidered [20], where an adversary cannot obtain secret keys
associated with any atti such that atti ∈ L |= W ∗. How-
ever, we do not use this weaker definition because it does
not guarantee collusion resistance. The selective game for
CP-ABE under the CCA is defined as follows:

Definition 5. Selective Game for CP-ABE under the
CCA

Init: The adversary A sends the challenge access structure
W ∗ to the challenger.

Setup: The challenger runs Setup and KeyGen, and gives
PK to A.

Phase 1: A makes KeyGen and Decryption queries. Note
that these queries can be repeated adaptively.

KeyGen queries : A sends an attribute list L to the
challenger for a KeyGen query, where L �|= W ∗. The
challenger answers with a secret key for these at-
tributes.

Decryption queries : A sends a ciphertext C encrypted
to W . If C is an invalid ciphertext, then A loses. The
challenger answers the corresponding plaintext M .
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Challenge: A sends two equal-length messages M0 and M1

to the challenger. The challenger chooses µ ∈R {0, 1},
and runs C∗ = Encrypt(PK,Mµ,W

∗). The challenger
gives the challenge ciphertext C∗ to A.

Phase 2: Same as Phase 1. A sends L to the challenger
for a KeyGen query. The challenger answers with a
secret key for these attributes. Note that L �|= W ∗,
and these queries can be repeated adaptively.

Guess: A outputs a guess µ′ ∈ {0, 1}.

The advantage of A is defined as Adv(A) := |Pr(µ′ =
µ) − 1

2 |.
The selective game for CP-ABE under the CPA is simply

defined in the same way as in the above game excluding
Decryption queries. Our scheme is proven along with the
selective game for CP-ABE under the CPA, and can be
converted into the CP-ABE scheme that is proven along
with the selective game for CP-ABE under the CCA.

3 Previous CP-ABE

In this section, we summarize a CPA-secure CP-ABE
scheme (called the CN07-1 scheme) and a CCA-secure CP-
ABE scheme (called the CN07-2 scheme) proposed in [15].
Let Ū = {¬att1, . . . ,¬attn} be a set of negative attributes
for a set of attributes U . We refer to attributes atti ∈ U
and their negations ¬atti as literals. Let W =

∧
atti∈I

¯atti
be an access structure, where I ⊆ U and ¯atti is either
atti or ¬atti. The public key elements Ti, Tn+i, T2n+i cor-
respond to the three properties of atti, namely, positive,
negative and don’t care.

Protocol 1. The CPA-secure CP-ABE Scheme [CN07-
1] [15]

Setup(1κ): A trusted authority TA chooses a prime num-
ber p, a bilinear group G1 with order p, a generator
g ∈ G1, y ∈R Zp and ti ∈R Zp (i = 1, 2, . . . , 3n), and
computes Y = e(g, g)y and Ti = gti (i = 1, 2, . . . , 3n).
TA outputs PK = (e, g, Y, T1, . . . , T3n) and MK =
(y, t1, . . . , t3n).

KeyGen(PK,MK, S): Every atti �∈ S is implicitly consid-
ered to be a negative attribute. TA chooses ri ∈R Zp

(i = 1, 2, . . . , n), sets r =
∑n

i=1 ri, and computes
D̂ = gy−r. TA computes Di and Fi as follows:

Di =

{
g

ri
ti (atti ∈ S)

g
ri

tn+i (atti �∈ S)
,

Fi = g
ri

t2n+i (atti ∈ U)

TA outputs SK = (D̂, {Di, Fi}i∈[1,n]).

Encrypt(PK,M,W ): Let W =
∧

atti∈I
¯atti. An encryptor

chooses s ∈R Zp, and computes C̃ = M · Y s and Ĉ =
gs. The encryptor computes Ci as follows:

Ci =

⎧⎨
⎩

T s
i ( ¯atti = atti)
T s

n+i ( ¯atti = ¬atti)
T s

2n+i (atti ∈ U \ I)
The encryptor outputs C = (W, C̃, Ĉ, {Ci}i∈[1,n]).

Decrypt(PK,C, SK): A decryptor computes the pairing
e(Ci, Di) (atti ∈ I) and e(Ci, Fi) (atti �∈ I) as fol-
lows:

e(Ci, Di) =

{
e(gti·s, g

ri
ti ) ( ¯atti = atti)

e(gtn+i·s, g
ri

tn+i ) ( ¯atti = ¬atti)

}

= e(g, g)ri·s

e(Ci, Fi) = e(gt2n+i·s, g
ri

t2n+i ) = e(g, g)ri·s

Then C̃
e(Ĉ,D̂)

�
n
i=1 e(g,g)ri·s = M · e(g,g)sy

e(g,g)s(y−r)e(g,g)sr = M

holds.

To compute e(g, g)sr, the decryptor has to compute ei-
ther e(Ci, Di) or e(Ci, Fi) for each i. This means that all
Ci are included in a ciphertext, and thus the length of a
ciphertext depends on the number of attributes n. More-
over, the CN07-1 scheme does not provide for adding new
attributes after Setup. If some attributes are added after
Setup, then some users (who have already obtained the
secret key) can decrypt a ciphertext which one must not
be able to decrypt. For example, let U = {att1, att2},
and assume that a user U has secret keys of att1 and
att2, and that a ciphertext C is associated with W =
att1 ∧ att2. Then, U can decrypt a ciphertext associated
with att1 ∧ att2 ∧ att3 without a secret key of att3. Con-
cretely, U ignores a part of the ciphertext for att3. CP-
ABE schemes which enable the addition of new attributes
after Setup have been proposed in BSW07 [5] and in the
2nd-scheme of NYO08 [25]. If a user wants to decrypt a
ciphertext with an access structure including newly added
attributes, then the user must once more obtain a new
secret key (including newly added attributes) from the
trusted authority again. However, the security proof of
both schemes contains no reduction, namely, it is proven
under the generic group heuristic.

The CN07-1 scheme can be translated into a CCA-secure
CP-ABE scheme by using Strongly Existentially Unforge-
able (SEU) one-time signatures. This technique is the
same as the CHK (Canetti, Halevi and Katz) technique [13]
that is a generic construction for a CCA-secure public key
encryption using a CPA-secure IBE and an SEU one-time
signature. Let SigKeyGen, Sign and Verify be a signature
scheme. SigKeyGen is a probabilistic algorithm which out-
puts a signing/verification key pair 〈Ks,Kv〉. Sign is a
probabilistic algorithm which outputs a signature σ from
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Ks and a message M . Verify is a deterministic algorithm
which outputs a bit from σ, Kv and M . If Verify outputs
1, this means that σ is a valid signature, and 0 otherwise.
The security game of strong existential unforgeability un-
der an adaptive chosen message attack [7] is defined as
follows:

Definition 6. Setup: The challenger runs SigKeyGen,
and obtains a signing key Ks and a verification key
Kv. The adversary A is given Kv.

Sign Queries: A requests signatures on messages
M1,M2, . . . ,Mqs ∈ {0, 1}∗, where qs is the number of
queries. The challenger answers σi = Sign(Ks,Mi)
for each query. Note that these queries can be repeated
adaptively.

Output: A outputs a pair (M∗, σ∗), and wins the
game if (M∗, σ∗) �∈ {(M1, σ1), . . . , (Mqs , σqs)} and
Verify(Kv, σ

∗,M∗) = 1.

In the above definition, the forged pair M could have
been signed previously. There are techniques which con-
vert (non-strong) existentially unforgeable signatures into
strong existentially unforgeable ones [10, 19, 30]. Espe-
cially, Huang et. al. [19] have proposed the generic trans-
formation which converts any existentially unforgeable sig-
nature into SEU ones by using strong one-time signature
schemes. We call this conversion way the HWZ conver-
sion. Note that strong one-time signature schemes can be
constructed from any one-way function-based one-time sig-
nature. The security game of strong one-time existential
unforgeability [19] is simply defined as follows:

Definition 7. Setup: The challenger runs SigKeyGen,
and obtains a signing key Ks and a verification key
Kv. The adversary A is given Kv.

Sign Queries: A requests a signature on a message M ∈
{0, 1}∗. The challenger answers σ = Sign(Ks,M).

Output: A outputs a pair (M∗, σ∗), and wins the game if
(M∗, σ∗) �= (M,σ) and Verify(Kv, σ

∗,M∗) = 1.

Next, we summarize a CCA-secure CP-ABE scheme
(called the CN07-2 scheme). Let m be the size of Kv,
Kv,i be the i-th bit of Kv, and M = {1, . . . ,m}. Added
to the construction of a CPA-secure scheme, a user has se-
cret keys G0

i and G1
i (i ∈ M) associated with i ∈ M (this

is a secret key of Kv,i = 0) and m+ i (this is a secret key
of Kv,i = 1), respectively.

Protocol 2. The CCA-secure CP-ABE Scheme [CN07-
2] [15]

Setup(1κ): A trusted authority TA chooses a prime num-
ber p, a bilinear group G1 with order p, a generator g ∈
G1, y ∈R Zp, ti ∈R Zp (i = 1, 2, . . . , 3n) and ui ∈R Zp

(i = 1, 2, . . . , 2m), and computes Y = e(g, g)y, Ti =
gti (i = 1, 2, . . . , 3n) and Ui = gui (i = 1, 2, . . . , 2m).
TA outputs PK = (e, g, Y, T1, . . . , T3n, U1, . . . , U2m)
and MK = (y, t1, . . . , t3n, u1, . . . , u2m).

KeyGen(PK,MK, S): Every atti �∈ S is implicitly consid-
ered to be a negative attribute. TA chooses ri ∈R Zp

(i = 1, 2, . . . , n) and ωi ∈R Zp (i = 1, 2, . . . ,m), sets
r =

∑n
i=1 ri +

∑m
i=1 ωi, and computes D̂ = gy−r. TA

computes Di, Fi, G0
i and G1

i as follows:

Di =

{
g

ri
ti (atti ∈ S)

g
ri

tn+i (atti �∈ S)
,

Fi = g
ri

t2n+i (atti ∈ U), G0
i = g

ωi
ui , G1

i = g
ωi

um+i

TA outputs SK =
(D̂, {Di, Fi}i∈[1,n], {G0

i , G
1
i }i∈[1,m]).

Encrypt(PK,M,W ): Let W =
∧

atti∈I
¯atti. An encryptor

runs SigGenKey and obtains a signing/verification key
pair 〈Ks,Kv〉. The encryptor chooses s ∈R Zp, and
computes C̃ = M · Y s and Ĉ = gs. The encryptor
computes Ci (i = 1, 2, . . . , n) as follows:

Ci =

⎧⎨
⎩

T s
i ( ¯atti = atti)
T s

n+i ( ¯atti = ¬atti)
T s

2n+i (atti ∈ U \ I)

The encryptor computes Ei (i = 1, 2, . . . ,m) as fol-
lows:

Ei =
{
Us

i (Kv,i = 0)
Us

m+i (Kv,i = 1)

The encryptor computes a signature σ =
Sign(Ks, 〈W, C̃, Ĉ, {Ci}i∈[1,n], {Ei}i∈[1,m]〉).
The encryptor outputs C =
(W,σ,Kv, C̃, Ĉ, {Ci}i∈[1,n], {Ei}i∈[1,m]).

Decrypt(PK,C, SK): A decryptor checks
Verify(Kv, σ, 〈W, C̃, Ĉ, {Ci}i∈[1,n], {Ei}i∈[1,m]〉).
If σ is valid, then the decryptor computes the pairing
e(Ci, Di) (atti ∈ I) and e(Ci, Fi) (atti �∈ I) as
follows:

e(Ci, Di) =

{
e(gti·s, g

ri
ti ) ( ¯atti = atti)

e(gtn+i·s, g
ri

tn+i ) ( ¯atti = ¬atti)

}

= e(g, g)ri·s

e(Ci, Fi) = e(gt2n+i·s, g
ri

t2n+i ) = e(g, g)ri·s

Moreover, for each i ∈ M, the decryptor computes
e(Ei, G

0
i ) (when Kv,i = 0) and e(Ei, G

1
i ) (when

Kv,i = 1), and obtains e(g, g)ωi·s.

Then C̃
e(Ĉ,D̂)

�n
i=1 e(g,g)ri·s

�m
i=1 e(g,g)ωi·s =

M · e(g,g)sy

e(g,g)s(y−r)e(g,g)sr = M holds.
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To enable the CCA-secure scheme, the CN07-2 scheme
has to require the additional values {Ui}i∈[1,2m] as
PK, {ui}i∈[1,2m] as MK, {G0

i , G
1
i }i∈[1,m] as SK, and

({Ei}i∈[1,m], σ,Kv) as C. Especially, the overhead of the
length of ciphertext is m|G1| + signature size + m. If
we require the BB short signature [7] as a SEU signa-
ture, the verification key1 is (u, v) ∈ G2

1, and the sig-
nature is (σ, r) ∈ G1 × Zp. Therefore, when we eval-
uate that m = 161 × 2 = 322 bits, the overhead is
322×161+321+322 = 52485 bits and the total ciphertext
length is (n+1)|G1|+|GT |+52485 = 161(n+1)+53505 bits,
where |p| = 160 bits. Note that any SEU signature scheme
can be regarded as a strong one-time signature scheme.
Next, we evaluate the overhead when a strong one-time
signature is used. In the HWZ conversion [19], Reyzin et.
al.’s HORS (Hash to Obtain Random Subset) scheme [26]
is recommended as a one-time signature scheme to convert
a strong one-time signature scheme. The verification key
length is 40960 bits, the signing key length is 61440 bits,
and the signature length is 4800 bits in the Strong HORS
setting recommended in [19]. An efficient strong one-time
signature scheme based on a two-tier signature scheme has
been proposed in [4]. The verification key length is 480
bits over a 160-bit elliptic curve group. Therefore, from
the viewpoint of the length of ciphertext, the BB short
signature is the best one.

4 Our construction

In this section, we propose a constant ciphertext length
CP-ABE scheme.

4.1 The difficulty

Our main aim is construction of a constant ciphertext
length CP-ABE scheme. Here we explain how difficult is
the construction of a constant ciphertext length CP-ABE
scheme with access structures included wildcard expres-
sion. Under the wildcard setting, an encryptor does not
expect what secret keys will be used. Concretely, we can
construct a CP-ABE scheme such that a ciphertext will be
decrypted using secret keys of a correct set of attributes
L, and will not be decrypted using secret keys of an ille-
gal set of attributes L′, where L′ ∩ L �= L. However, it is
difficult to treat a set of attributes L′′ such that L � L′′

(L is a proper subset of L′′), since the encryptor cannot
expect a redundancy part L′′ \ L. This problem can be
solved to admit the attribute depended number of cipher-
texts. Here we show how to enable the wildcard expres-
sion in previous CP-ABE schemes [15, 25] without con-
stant ciphertext length. For atti (i = 1, 2, . . . , n), we can
construct a ciphertext Ci which can be decrypted by us-
ing a correct secret key of atti, and cannot be decrypted
by using a illegal secret key. This is the same situation

1Note that, in the original paper [7], the verification key is
(g1, g2, u, v, z) ∈ �

4
1 × � T . However, g1, g2 and z = e(g1, g2) are

regarded as common public values.

of usual public key encryption scheme, and it is used in
the (both) CN07 scheme [15]. In the CN07 scheme, an
encryptor computes Ci (i = 1, 2, . . . , n) for atti by us-
ing one of the public key (Ti, Tn+1, T2n+i). Let W be an
access structure chosen by the encryptor. If atti ∈ W
(resp. ¬atti ∈ W ), then Ti (resp. Tn+i) is used. Oth-
erwise, if atti �∈ W (this means the encryptor does not
care about atti), then T2n+i is used. A user has three
kinds of secret keys (for positive or negative attributes and
for wildcards), and decrypts Ci by using a “positive key”
(atti ∈ W ) or a “negative key” (¬atti ∈ W ), or a “wild-
card key” (atti �∈ W ). Therefore, every user has 2n secret
keys, respectively. It is easy to construct a extended CN07
scheme with AND-gates on multi-valued attributes with
wildcards. However, every users have

∑n
i=1 ni secret keys,

respectively. However, this kind of construction requires
the number of n ciphertexts. On the other hand, each user
has only n secret keys in the NYO08 scheme [25]. How-
ever, the number of

∑n
i=1 ni ciphertexts is required. An

access structure W is defined as W = [W1,W2, . . . ,Wn]
for Wi ⊆ Si. If vi,t ∈ Wi, then Ci,t is correctly computed.
Otherwise, if vi,t �∈ Wi, Ci,t is randomly chosen. A user
has one state vi,� (� ∈ [1, ni]) for each attribute atti, and
can decrypt Ci,� if vi,� ∈Wi. If Si = Wi, then any user can
decrypt a ciphertext corresponding to atti, since all states
of atti are included in Wi. This means atti is indicated as
a wildcard, since the encryptor does not care about atti.
From the above considerations, the wildcard expression is
achieved to provide the number of n (or

∑n
i=1 ni) cipher-

texts. Otherwise, in the AND-gates on multi-valued at-
tributes (without wildcard) setting, an encryptor does not
have to expect a redundancy part, since an access struc-
ture is explicitly described. In addition, the sum of master
keys ti,j (described as

∑
vi,j∈W ti,j) is applied to express

an access structure W . This form enables the constant ci-
phertext length. Although a mapping W → ∑

vi,j∈W ti,j is
not one-to-one, the condition

∑
vi,j∈W ti,j �= ∑

vi,j∈W ′ ti,j ,
where W �= W ′, holds with overwhelming probability.
See Section 4.3 for details. A generic construction of an
identity-based encryption scheme with wildcards (called
WIBE for short) from any HIBE scheme has been pro-
posed [2]. However, a user’s secret key size is exponential
in the depth of the hierarchy tree. To solve this problem,
WIBE schemes also have been constructed based on the
Watre’s HIBE [31], the Boneh-Boyen HIBE [6], and the
Boneh-Boyen-Goh HIBE [8], respectively. The length of
the secret key linearly depends on the maximal hierarchy
depth. However, these schemes do not enable the con-
stant ciphertext length, since the length of ciphertext also
linearly depends on the maximal hierarchy depth. Next,
we discuss the difference between a CP-ABE scheme with
AND-gates on multi-valued attributes (without wildcard)
and a HIBE scheme. In a HIBE scheme, the user’s identity
in depth � is described using the set of identities from root
node to own node such that I� := ID1||ID1|| . . . ||ID�.
The user with the secret key of I� can generate a new
secret key of I�′ , where I�′ := I�||ID�′ . On the other
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hand, the CP-ABE scheme has to require the collusion
resistance, namely, attackers cannot generate a new secret
key by combining their secret keys. Therefore, proposing
a constant ciphertext length CP-ABE scheme with AND-
gates on multi-valued attributes is a challenging problem,
because a HIBE scheme cannot be regarded as a CP-ABE
scheme, since HIBE does not satisfy the collusion resis-
tance property.

4.2 Our schemes

Protocol 3. Our CPA Secure CP-ABE Scheme
with Constant Ciphertext Length

Setup(1κ): A trusted authority TA chooses a prime num-
ber p, a bilinear group (G1,GT ) with order p, a gen-
erator g ∈ G1, h ∈ G1, y ∈R Zp and ti,j ∈R Zp

(i ∈ [1, n], j ∈ [1, ni]). TA computes Y = e(g, h)y,
and Ti,j = gti,j (i ∈ [1, n], j ∈ [1, ni]). TA out-
puts PK = (e, g, h, Y, {Ti,j}i∈[1,n],j∈[1,ni]) and MK =
(y, {ti,j}i∈[1,n],j∈[1,ni]). Note that ∀L,L′ (L �= L′),∑

vi,j∈L ti,j �= ∑
vi,j∈L′ ti,j is assumed.

KeyGen(PK,MK,L): TA chooses r ∈R Zp, outputs
SKL = (hy(g

�
vi,j∈L ti,j )r, gr), and gives SKL to a

user with L.

Encrypt(PK,M,W ): An encryptor chooses s ∈R Zp,
and computes C1 = M · Y s, C2 = gs and
C3 = (

∏
vi,j∈W Ti,j)s. The encryptor outputs C =

(W,C1, C2, C3).

Decrypt(PK,C, SKL): A decryptor computes what fol-
lows:

C1 · e(C3, g
r)

e(C2, hy(g
�

vi,j∈L ti,j )r)

=
M · e(g, h)sye(g, g)sr

�
vi,j∈W ti,j

e(g, h)sye(g, g)sr
�

vi,j∈L ti,j

=M

4.3 Construction of secret keys ti,j

In our scheme,
∑

vi,j∈L ti,j �= ∑
vi,j∈L′ ti,j is assumed. If

there exist L and L′ (L �= L′) such that
∑

vi,j∈L ti,j =∑
vi,j∈L′ ti,j , a user with the attribute list L′ can decrypt a

ciphertext associated with W , where L′ �|= W and L |= W .
Note that the assumption holds with overwhelming prob-
ability p(p−1)···(p−(N−1))

pN > (p−(N−1))N

pN = (1 − N−1
p )N >

1 − N(N−1)
p > 1 − N2

p , where N :=
∏n

i=1 ni. Therefore, if
each secret key ti,j is chosen at random from Zp, then our
assumption is natural.

4.4 CCA-conversion scheme

Our scheme can be converted into a CCA-secure CP-
ABE scheme by using the conversion method proposed in
CN07 [15]. For Kv, let Vv = {Kv,1,Kv,2, . . . ,Kv,m} be
the set of bits of Kv, uv,i be ui (if Kv,i = 0) or um+i (if
Kv,i = 1), and Uv,i = guv,i .

Protocol 4. Our CCA-Secure CP-ABE Scheme
with Constant Ciphertext Length

Setup(1κ): A trusted authority TA chooses a prime num-
ber p, a bilinear group (G1,GT ) with order p, a gen-
erator g ∈ G1, h ∈ G1, y ∈R Zp, ti,j ∈R Zp

(i ∈ [1, n], j ∈ [1, ni]) and ui ∈R Zp (i = 1, 2, . . . , 2m).
TA computes Y = e(g, h)y, Ti,j = gti,j (i ∈ [1, n], j ∈
[1, ni]) and Ui = gui (i = 1, 2, . . . , 2m). TA outputs
PK = (e, g, h, Y, {Ti,j}i∈[1,n],j∈[1,ni], {Ui}i∈[1,2m]) and
MK = (y, {ti,j}i∈[1,n],j∈[1,ni], {ui}i∈[1,2m]). Note
that ∀L,L′ (L �= L′) and ∀Vv, Vv′ (Vv �= Vv′),
(
∑

vi,j∈L ti,j +
∑

Kv,i∈Vv
uv,i) �= (

∑
vi,j∈L′ ti,j +∑

Kv′,i∈Vv′ uv′,i) is assumed.

KeyGen(PK,MK,L): TA chooses r ∈R Zp,
computes hy(g

�
vi,j∈L ti,j )r, gr and {G0

i =
guir, G1

i = gum+ir}i∈[1,m], and gives SKL =

(hy(g
�

vi,j∈L ti,j )r, gr, {G0
i , G

1
i }i∈[1,m]) to a user with

L.

Encrypt(PK,M,W ): An encryptor runs SigGenKey and
obtains a signing/verification key pair 〈Ks,Kv〉.
The encryptor chooses s ∈R Zp, and com-
putes C1 = M · Y s, C2 = gs and C3 =(
(
∏

vi,j∈W Ti,j)(
∏

Kv,i∈Vv
Uv,i)

)s. The encryptor
computes a signature σ = Sign(Ks, 〈W,C1, C2, C3〉).
The encryptor outputs C = (W,σ,Kv, C1, C2, C3).

Decrypt(PK,C, SKL): A decryptor checks
Verify(Kv, σ, 〈W,C1, C2, C3〉). If σ is valid, then
the decryptor computes what follows:

∏m
i=1G

bv

i

(bv = 0 if Kv,i = 0, and bv = 1 if Kv,i = 1), and

C1 · e(C3, g
r)

e(C2, hy(g
�

vi,j∈L ti,j )r
∏m

i=1G
bv

i )

=
C1 · e(C3, g

r)

e(C2, hy(g((
�

vi,j∈L ti,j)+(
�

Kv,i∈Vv
uv,i))r)

=
M · e(g, h)sye(g, g)sr((

�
vi,j∈W ti,j)+(

�
Kv,i∈Vv

uv,i))

e(g, h)sye(g, g)sr((
�

vi,j∈L ti,j)+(
�

Kv,i∈Vv
uv,i))

=M

4.5 Order of a finite group

In our CCA-conversion scheme, (
∑

vi,j∈L ti,j +∑
Kv,i∈Vv

uv,i) �= (
∑

vi,j∈L′ ti,j +
∑

Kv′,i∈Vv′ uv′,i) is
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assumed. This assumption holds with probability
1 − (2m�n

i=1 ni))
2

p . If we use the BB short signature
as a SEU signature scheme, then we can evaluate
m = 322. We cannot use the same size finite groups
of the scheme (|p| = 160 bits). Let n = 10 and∏n

i=1 ni = 220. We believe that this setting is enough
in practice. Then, the length of a prime order p can be
728 bits. Then the ciphertext length of our CCA-secure
scheme is 2|G1| + |GT | = 2 × 729 + 4368 = 5826 bits,
whereas the ciphertext length of the CN07-2 scheme is
161(n + 1) + 1020 + 322m + 321 + m = 55276 bits. This
means that our scheme can enable the CCA security with
an approximately 4500 bits overhead, whereas the CN07-2
scheme requires an approximately 52500 bits overhead
to enable the CCA security. To sum up, the number of
additional bits required from CPA-secure CP-ABE to
CCA-secure CP-ABE is reduced by 90% with respect to
that of previous scheme.

5 Security Analysis

In this section, we prove that our scheme is CPA-secure
under the DBDH assumption.

Theorem 1. Our scheme satisfies the indistinguishability
of messages under the DBDH assumption and the chosen
message attack.

Proof. We suppose that the adversary A wins the selective
CPA game for CP-ABE with the advantage ε. Then we can
construct an algorithm B that breaks the DBDH assump-
tion with the advantage ε

2 (1− N2

p ), where N :=
∏n

i=1 ni is
the number of expressed access structures. The DBDH
challenger selects a, b, c, z ∈R Zp, ν ∈R {0, 1}, and g,
where 〈g〉 = G1. If ν = 0, then Z = e(g, g)abc. Other-
wise, if ν = 1, then Z = e(g, g)z. The DBDH challenger
gives the DBDH instance (g, ga, gb, gc, Z) ∈ G4

1 × GT to
B. First, B is given the challenge access structure W ∗

from A. Let W ∗ = [W ∗
1 , . . . ,W

∗
n ]. B selects u ∈R Z∗

p,
and sets h = gu and Y = e(ga, (gb)u) = e(g, h)ab. More-
over, B selects t′i,j ∈R Zp (i ∈ [1, n], j ∈ [1, ni]), and sets
ti,j = t′i,j (in the case where vi,j = W ∗

i ) and ti,j = bt′i,j (in
the case where vi,j �= W ∗

i ), and computes public keys Ti,j

(i ∈ [1, n], j ∈ [1, ni]) as follows:

Ti,j = gti,j =

{
gt′i,j (vi,j = W ∗

i )
(gb)t′i,j (vi,j �= W ∗

i )

B gives PK = (e, g, h, Y, {Ti,j}i∈[1,n],j∈[1,ni]) to A. For
KeyGen query L, there exists vi,� such that vi,� = Li∧vi,� �=
W ∗

i , since L �|= W ∗. Therefore,
∑

vi,j∈L ti,j can be repre-
sented as

∑
vi,j∈L ti,j = T1+bT2, where T1, T2 ∈ Zp. B can

compute T1 and T2, since both T1 and T2 are represented
by the sum of t′i,j . B chooses β ∈R Zp, sets r := β−ua

T2
, and

computes SKL = ((gb)βg
T1
T2

β(ga)−
T1u

T2 , g
β

T2 (ga)−
u

T2 ). We
show that SKL is a valid secret key as follows:

(gb)βg
T1
T2

β(ga)−
T1u
T2 = guab · g−uab(gb)βg

T1
T2

β(ga)−
T1u
T2

= guab · g
T1
T2

(β−ua) · gb(β−ua)

= guab(gT1 · gbT2)
β−ua

T2

= guab(gT1+bT2)
β−ua

T2

= hy(g
�

vi,j∈L ti,j )r,

and

g
β

T2 (ga)−
u

T2 = g
β−ua

T2 = gr

If T2 = 0 mod p, then B aborts. If T2 = 0 mod p holds,
then there exists L such that

∑
vi,j∈L ti,j =

∑
vi,j∈W∗ ti,j

holds. Therefore, this probability is at most N2

p . See
Section 4.3 for details. For the challenge ciphertext, B
chooses µ ∈R {0, 1}, computes C∗

1 = Mµ · Zu, C∗
2 = gc

and C∗
3 = (gc)

�
vi,j∈W∗ t′i,j , and sends (C∗

1 , C
∗
2 , C

∗
3 ) to A.

Finally, A outputs µ′ ∈ {0, 1}. B outputs 1 if µ′ = µ, or
outputs 0 if µ′ �= µ. If Z = e(g, g)abc, then (C∗

1 , C
∗
2 , C

∗
3 ) is a

valid ciphertext associated with W ∗. Therefore, A has the
advantage ε. Hence, Pr[B → 1|Z = e(g, g)abc] = Pr[µ′ =
µ|Z = e(g, g)abc] = 1

2 + ε. Otherwise, if Z = e(g, g)z, A
has no advantage to distinguish a bit µ, since all parts of
the challenge ciphertext when µ = 0 and when µ = 1 have
the same distributions. Hence, Pr[B → 0|Z = e(g, g)z] =
Pr[µ′ �= µ|Z = e(g, g)z] = 1

2 . It follows that B’s advantage
in the DBDH game is ε

2 (1 − N2

p ).

The CCA-conversion scheme is CCA secure under both
the DBDH assumption and a signature scheme is strongly
unforgeable. Proof of theorem 2 is given in the Appendix.

Theorem 2. Our CCA-conversion scheme satisfies the
indistinguishability of messages under the DBDH assump-
tion and the chosen ciphertext attack.

Although a symmetric bilinear map is required in these
proofs, our schemes can be proven with an asymmetric
bilinear map such as the Weil or Tate pairing e : G1×G2 →
GT over MNT curves [24], where G1 and G2 are distinct
groups. Then the indistinguishability of messages can be
proven under the DBDH assumption over G2 [3].

6 Comparison

Let PK, MK, SK and Ciphertext be the size of the public
key, of the master key, of the secret key, and the ciphertext
length excluding the access structure, respectively. More-
over, Enc. and Dec. are the computational times of en-
cryption and decryption, respectively. We use the terms
DBDH, DMBDH [27] and D-Linear [25] to refer to the
Decision Bilinear Diffie-Hellman assumption, the Decision
Modified Bilinear Diffie-Hellman assumption and the De-
cision Linear assumption, respectively. The notation |G|

8



Table 1. Size of each value
PK MK SK Ciphertext

SW05 [27] N ′|G1| + |GT | (N ′ + 1)|Zp| r2|G1| r1|G1| + |GT |
GPSW06 [18] N ′|G1| + |GT | (N ′ + 1)|Zp| r2|G1| r1|G1| + |GT |

CN07 [15] (N ′ + 1)|G1| + |GT | (N ′ + 1)|Zp| (2n+ 1)|G1| (n+ 1)|G1| + |GT |
BSW07 [5] 3|G1| + |GT | |Zp| + |G| (2n+ 1)|G1| (2r2 + 1)|G1| + |GT |
NYO08 [25] (2N ′ + 1)|G1| + |GT | (2N ′ + 1)|Zp| (3n+ 1)|G1| (2N ′ + 1)|G1| + |GT |
W08 [32] 2|G1| + |GT | |G1| (1 + n+ r2)|G1| (1 + r1n)|G1| + |GT |
Our CPA (2N ′ + 3)|G1| + |GT | (N ′ + 1)|Zp| 2|G1| 2|G1| + |GT |
scheme

Our CCA (2N ′ + 2m+ 3)|G1| (N ′ + 2m+ 1)|Zp| 2|G1| + 2m 2|G1| + |GT |
scheme +|GT |

Table 2. Computational time of each algorithm

Enc. Dec.
SW05 [27] r1G1 + 2GT r1e+ (r1 + 1)GT

GPSW06 [18] r1G1 + 2GT r1e+ (r1 + 1)GT

CN07 [15] (n+ 1)G1 + 2GT (n+ 1)e+ (n+ 1)GT

BSW07 [5] (2r1 + 1)G1 + 2GT 2r1e+ (2r1 + 2)GT

NYO08 [25] (2N ′ + 1)G1 + 2GT (3n+ 1)e+ (3n+ 1)GT

W08 [32] (1 + 3r1n)G1 + 2GT (1 + n+ r1)e+ (3r1 − 1)G1 + 3GT

Our CPA scheme (n+ 1)G1 + 2GT 2e+ 2GT

Our CCA scheme (n+m+ 1)G1 + 2GT 2e+ (m+ 1)G2 + 2GT

Table 3. Expressiveness of policy

SW05 [27] Threshold Structure
GPSW06 [18] Tree-based Structure
CN07-1 [15] AND-gates on positive and negative attributes with wildcards
BSW07 [5] Tree-Based Structure
W08 [32] Linear Structure

NYO08 [25] AND-gates on multi-valued attributes with wildcards
Our schemes AND-gates on multi-valued attributes

Table 4. Performance Results for n = 3

Enc. Time Dec. Time
CN07-1 [15] 0.028sec 0.031sec
NYO08 [25] 0.032sec 0.078sec

Our CPA scheme 0.015sec 0.015sec

is the bit-length of the element which belongs to G. Let
the notations kG and ke (where k ∈ Z>0) be the k-times
calculation over the group G and pairing, respectively. Let
U = {att1, att2, . . . , attn} be the set of attributes. Let γ1

(|γ1| = r1) be a set of attributes associated with the ci-
phertext, and γ2 (|γ2| = r2) a set of attributes associated
with the secret key. Actually, γ2 is different for each user.
Let N ′ :=

∑n
i=1 ni be the total number of possible state-

ments of attributes. The computational time over Zp is
ignored as usual. Note that SW05 [27] and GPSW06 [18]
do not consider the multi-valued attributes. They assign
each attribute atti with a leaf node of an attribute tree.
To estimate the same level, we show the result in the case
of that each multi-valued attribute vi,j is assigned with a

leaf node of an attribute tree. Our scheme is efficient in
that the ciphertext length and the costs of decryption do
not depend on the number of attributes. In particular, the
number of pairing computations is constant. No previous
schemes provide these properties. An access structure is
constructed by AND-gates on multi-valued attributes de-
fined in section 2.2, which is a subset of the access struc-
tures in [25]. To the best of our knowledge, our scheme is
the first constant ciphertext length CP-ABE with AND-
gates on multi-valued attributes.

Our scheme does not provide recipient anonymity when
a symmetric bilinear group is applied. Concretely, for an
access structure W ′, an attacker can run the DDH test
e(C2,

∏
vi,j∈W ′ Ti,j)

?= e(C3, g). Then, the attacker can de-
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termine whether an encryptor used the policy W ′ or not.
When a DDH-hard bilinear group is applied, namely, the
eXternal Diffie-Hellman (XDH) assumption holds, we can
show that our scheme enables the property of the hidden
encryptor-specified policies in the generic bilinear group
model [5, 8, 29]. Let g2 ∈ G2 and g1 = ψ(g2) ∈ G1 be
generators, where ψ is an efficiently computable isomor-
phism G2 → G1. We say that the XDH assumption holds
if the DDH problem is hard in G1, namely, ψ−1 is un-
computable. In the same way as shown in [25], we have
only to show that the adversary cannot run the DDH test,
even if the adversary is given g1, gs

1, and all Ti,j = g
ti,j

1 .
Under the XDH assumption, where the adversary cannot
compute gti,j

2 ∈ G2 from g
ti,j

1 ∈ G1, this condition holds.
The CN07-1 scheme [15], the NYO08 scheme [25] and

ours are implemented with the same access structure
{v1,1, v2,1, v3,1}, by using the Pairing-Based Cryptography
(PBC) Library ver. 0.4.18 [1]. The performance results
are shown in Table 4. Our experiment was performed
by using a PC with an Intel(R) Core(TM)2 Duo CPU
P8400 2.26GHz Windows Vista Home Premium Edition
Service Pack 1. The execution of our scheme takes a very
small amount of time, which is quite feasible for practi-
cal implementation. When n = 3, our decryption algo-
rithm is approximately twice as fast as that of the CN07-1
scheme, and approximately five times faster than that of
the NYO08 scheme.

7 Conclusion

In this paper, we propose a constant ciphertext length CP-
ABE with AND-gates on multi-valued attributes. More-
over, the number of pairing computations is also constant.
In addition, the number of additional bits required from
CPA-secure CP-ABE to CCA-secure CP-ABE is reduced
by 90% with respect to that of previous scheme. To the
best of our knowledge, this is the first such construction.
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Appendix

In this Appendix, we give the proof of Theorem 2:

Proof. We suppose that the adversary A wins the selective
CCA game for CP-ABE with the advantage ε. Then we can
construct an algorithm B that breaks the DBDH assump-
tion with the advantage ε

2 (1− N2

p ), where N :=
∏n

i=1 ni is
the number of expressed access structures. The DBDH
challenger selects a, b, c, z ∈R Zp, ν ∈R {0, 1}, and g,
where 〈g〉 = G1. If ν = 0, then Z = e(g, g)abc. Other-
wise, if ν = 1, then Z = e(g, g)z. The DBDH challenger
gives the DBDH instance (g, ga, gb, gc, Z) ∈ G4

1 × GT to
B. B runs SigKeyGen, and obtains 〈Ks∗ ,Kv∗〉. First, B
is given the challenge access structure W ∗ from A. Let
W ∗ = [W ∗

1 , . . . ,W
∗
n ]. B selects u ∈R Z∗

p, and sets h = gu

and Y = e(ga, (gb)u) = e(g, h)ab. Moreover, B selects
t′i,j ∈R Zp (i ∈ [1, n], j ∈ [1, ni]) and ui ∈R Zp (i ∈ [1, 2m]),
and sets ti,j = t′i,j (in the case where vi,j = W ∗

i ) and
ti,j = bt′i,j (in the case where vi,j �= W ∗

i ), and computes
public keys Ui (i ∈ [1, 2m]) and Ti,j (i ∈ [1, n], j ∈ [1, ni])
as follows:

Ui = gui

Ti,j = gti,j =

{
gt′i,j (vi,j = W ∗

i )
(gb)t′i,j (vi,j �= W ∗

i )

B gives PK = (e, g, h, Y, {Ti,j}i∈[1,n],j∈[1,ni], {Ui}i∈[1,2m])
to A. For KeyGen query L, there exists vi,� such that
vi,� = Li ∧ vi,� �= W ∗

i , since L �|= W ∗. Therefore,∑
vi,j∈L ti,j can be represented as

∑
vi,j∈L ti,j = T1 +

bT2, where T1, T2 ∈ Zp. B can compute T1 and T2,
since both T1 and T2 are represented by the sum of
t′i,j . B chooses β ∈R Zp, sets r := β−ua

T2
, and com-

putes SKL = ((gb)βg
T1
T2

β(ga)−
T1u
T2 , g

β
T2 (ga)−

u
T2 , {G0

i =

(g
β

T2 (ga)−
u

T2 )ui , G1
i = (g

β
T2 (ga)−

u
T2 )um+i}). We show that

SKL is a valid secret key as follows:

(gb)βg
T1
T2

β(ga)−
T1u

T2 = guab · g−uab(gb)βg
T1
T2

β(ga)−
T1u

T2

= guab · g
T1
T2

(β−ua) · gb(β−ua)

= guab(gT1 · gbT2)
β−ua

T2

= guab(gT1+bT2)
β−ua

T2

= hy(g
�

vi,j∈L ti,j )r,

and

g
β

T2 (ga)−
u

T2 = g
β−ua

T2 = gr,

and

(g
β

T2 (ga)−
u

T2 )ui = guir

(g
β

T2 (ga)−
u

T2 )um+i = gum+ir

If T2 = 0 mod p, then B aborts. If T2 = 0 mod p holds,
then there exists L such that

∑
vi,j∈L ti,j =

∑
vi,j∈W∗ ti,j

holds. Therefore, this probability is at most N2

p . See Sec-
tion 4.3 for details. Note that this probability does not
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depend on m since all ui are not included in T2. For
Decryption query C = (W,σ,Kv, C1, C2, C3), B checks σ.
If σ is invalid, then B aborts. If Kv = Kv∗ (we call
this a forge event), then B gives a random answer to
the DBDH challenger. Otherwise, if Kv �= Kv∗ , then B
computes SKL, where L |= W , using the same proce-
dure as a KeyGen query. By using SKL, B decrypts C,
obtains M , and returns M to A. For the challenge ci-
phertext, B chooses µ ∈R {0, 1}, computes C∗

1 = Mµ ·
Zu, C∗

2 = gc, C∗
3 = (gc)

(
�

vi,j∈W∗ t′i,j)+(
�

Kv∗,i∈Vv∗ uv∗,i)

and σ∗ = Sign(Ks∗ , 〈W ∗, C∗
1 , C

∗
2 , C

∗
3 〉), and sends

(σ∗,Ks∗ , C∗
1 , C

∗
2 , C

∗
3 ) to A. Finally, A outputs µ′ ∈ {0, 1}.

B outputs 1 if µ′ = µ, or outputs 0 if µ′ �= µ. If
Z = e(g, g)abc, then (C∗

1 , C
∗
2 , C

∗
3 ) is a valid ciphertext asso-

ciated with W ∗. Therefore, A has the advantage ε. Hence,
Pr[B → 1|Z = e(g, g)abc] ≥ 1

2 + ε−Pr[forge|Z = e(g, g)abc].
Otherwise, if Z = e(g, g)z, A has no advantage in distin-
guishing a bit µ, since all parts of the challenge ciphertext,
when µ = 0 and when µ = 1 have the same distribu-
tions. Hence, Pr[B → 0|Z = e(g, g)z] ≥ 1

2 − Pr[forge|Z =
e(g, g)z]. It follows that B’s advantage in the DBDH game
is ( ε

2 −Pr[forge])(1− N2

p ). Next, we prove that Pr[forge] is
negligible. We construct an algorithm B′ which can win the
SEU game with probability of at least Pr[forge]. B′ obtains
Kv∗ from the SEU challenger, instead of executing SigKey-
Gen to obtain 〈Ks∗ ,Kv∗〉. B′ proceeds as B using the SEU
challenger. In the challenge phase of the CCA game, B′

obtains σ∗ from the SEU challenger. Therefore, B′ makes
at most one signature query. If the event forge occurs,
namely A sends a decryption query (W,σ,Kv, C1, C2, C3),
where Kv = Kv∗ , then B′ submits a forge signature σ
to the SEU challenger and wins. Therefore, Pr[forge] is
negligible, since we assume that the signature scheme is
SEU.
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