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Abstract This paper proposes a CPG-based control
architecture using a frequency-adaptive oscillator for

undulatory locomotion of snake-like robots. The con-

trol architecture consists of a network of neural oscil-

lators that generates desired oscillatory output signals
with specific phase lags. A key feature of the proposed

architecture is a self-adaptation process that modulates

the parameters of the CPG to adapt the motion of the

robot to varying coefficients of body-ground friction.

This process is based on the frequency-adaptation rule
of the oscillator that is designed to learn the period-

icity of sensory feedback signals. It has an important

meaning of establishing a closed-loop CPG much more

robust against environmental and/or system parameter
changes. We verify the validity of the proposed locomo-

tion control system employing a simulated snake-like

robot moving over terrains with different friction coef-

ficients with a constant velocity.

Keywords Undulatory Locomotion · Central Pat-

tern Generator · Adaptive Oscillator · Frequency

Adaptation

1 Introduction

Snakes have highly efficient methods of locomotion, eas-

ily adapting themselves to widely varying ground condi-
tions. Mimicking their locomotor repertoire, snake-like

robots have been developed for use in, e.g., search and

rescue tasks. Hirose [1] pioneered the research and de-

velopment of snake-like robots in 1972. Since then, a

variety of different mechanisms have been designed [2]
[3] [4], and their trajectory planning and motion control

have been discussed extensively [5] [6] [7].

Address(es) of author(s) should be given

This work is inspired by recent attempts imitat-
ing the vertebrate nervous system to generate rhyth-

mic movements of robots. In the spinal cord of verte-

brates, there exists the locomotor central pattern gen-

erator (CPG) that consists of neural oscillators pro-
ducing rhythmic patterned outputs. One example is

the undulatory locomotion of snakes that emerges as

a stable limit-cycle system from a global entrainment

between the nervous system and the body interacting

with its environment. There are certain advantages re-
lating to the use of CPGs in robotics for achieving

natural rhythms of movements. Some of them can be

summarized as follows: (1) They efficiently support a

distributed control system, (2) they require only sim-
ple command signals to produce complex coordinated

multi-dimensional output signals, and (3) it is easy to

incorporate sensory feedback and absorb parameter vari-

ation uncertainties and external perturbations.

Previous studies suggest that CPG-based locomo-

tion control appears promising. Conradt and Varshavskaya
developed WormBot controlled by local CPGs that are

scalable to much larger numbers of degrees of freedom

[8]. Ekeberg created a neuro-mechanical model of swim-

ming locomotion of lamprey using physiologically ac-
quired knowledge about its neural structure [9]. The

model has biological reality, but it is not easy to be

applied to real robots due to its structural complex-

ity. Ijspeert developed a neural mechanism and real-

ized swimming and crawling motion in lamprey and
salamander using Ekeberg’s CPG model and a genetic

algorithm [10] [11]. Inoue and Ma’s group employed mu-

tual inhibitory CPG neurons to construct a locomotion

controller for snake-like robots [12] [13]. They recently
attempted to configure a closed-loop control system by

incorporating sensory feedback from the environment,

where the CPG parameters were determined with a ge-
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netic algorithm [14]. But their approach did not pro-

vide an evolutionary process of adaptation to changing

environments, and the CPG parameters were adjusted

with a particular set of frictions. Overall, most previ-

ous CPG-based control methods were open-loop that
did not feed any sensory information to CPGs, and the

potentials for environmental adaptability was not fully

exploited.

Regarding the implementation of the CPG-based
control, several issues need to be further considered. For

robots with large degrees of freedom, appropriate ad-

justment of inter-CPG relation remains a challenge. It is

also difficult to tune the adequate parameters to ensure

that CPGs generate stable rhythmic patterns when sen-
sory inputs of varying frequencies exist. What is more

important is online modulation of the CPG parame-

ters, which allows the robot to adapt itself to unknown

environment without stopping its motion or requiring
any human intervention. In this paper, we propose a

new CPG-based control architecture to realize adap-

tive undulatory locomotion of snake-like robots under

environmental uncertainties. The proposed architecture

consists of a network of existing neural oscillators and
a new frequency-adaptive neural oscillator. Each oscil-

lator generates desired oscillatory signals with a spe-

cific phase shift, while the frequency-adaptive oscilla-

tor modulates the frequency and phase of the signals
responding to sensory inputs. We verify the validity of

the proposed control architecture, focusing on how the

robot keeps its locomotion velocity over terrains with

different ground frictions.

The rest of the paper is organized as follows. Section
2 describes our computer model to simulate the loco-

motion of the snake-like robot. Section 3 describes the

details of the control architecture and its mathemati-

cal properties. Section 4 presents dynamic simulations
performed to verify how the proposed architecture en-

hances locomotor adaptive function where varying fric-

tion conditions are encountered. Finally, a conclusion is

drawn in Section 5.

2 Simulation model of snake locomotion

Snake locomotion can be widely classified into four dis-

tinct modes such as lateral undulation, rectilinear, sidewind-

ing, and concertina [1]. Depending on the environmen-
tal conditions, snakes perform mixed and more complex

gait, but the lateral undulation is the most commonly

seen mode characterized by an S-shaped wave prop-

agating from head to tail [15]. To create this lateral
undulation, a low friction force is required in the direc-

tion of forward movement, and a high friction force is

required in lateral directions, allowing snakes to avoid

Table 1 Parameters of the snake-like robot

Parameters Values

Segment number 15
Segment length[m] 0.1052
Segment mass[kg] 0.5
Segment inertia[kg · m2] 0.016
Wheel joint friction coefficient 0.05

lateral slips and propel itself forward. Such difference

in friction force is obtained by the particular structure

of scales in snakes. Thus, a ratio between the friction
forces in the forward and lateral directions affects the

movement velocity of snakes. Snakes modulate their

winding angle or change the locomotion mode to cope

with varying friction or uneven ground conditions. There-
fore, given environment conditions, many research ef-

forts have been devoted to optimizing the configuration

of the body segments such as the winding angle and the

axis length [1] [12]. The winding angle is an angle be-

tween the winding body and the movement direction.
The axis length is one quarter of a wave cycle, which is

related to the wavelength of the motion. In this work,

we concentrate our efforts on the lateral undulatory lo-

comotion by controlling the oscillation frequency of the
traveling wave. It is well understood that the oscillation

frequency changes the locomotion velocity in a linear

proportional manner [15].

Specifically, we have enhanced the performance of
lateral undulatory locomotion of snake-like robots by

the proposed CPG-based control architecture. Consid-

ering the robot body dynamics and interaction with its

environment as shown in Fig. 1, the simulated model

was created with RecurDyn [16] and SolidWorks. The
robot moving on a horizontal plane is composed of se-

rially connected 15 segments. Between neighboring seg-

ments, a one-dimensional revolute joint rotating about

the yaw axis is located. A tactile sensor and an accel-
eration sensor are located in the head segment. The

friction force between the robot body and the terrain is

assumed to be large in the lateral direction and small

in the forward direction, which was realized by using

passive wheels. Table 1 shows the detailed parameters
of our simulation model.

3 Adaptive locomotion control architecture

In this section, we propose a novel CPG-based loco-

motion control architecture for snake-like robots. The
architecture allows robots to self-modulate locomotion

patterns by changing the CPG parameters adapting to

the changes in the ground friction coefficient.
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Fig. 1 Simulation model of snake-like robot

3.1 CPG model

We use the neural oscillator model proposed by Mat-

suoka [17] [18] [19] [20]. The neural model is a half-
center oscillator which consists of two (extensor and

flexor) neurons, having mutual inhibitory interactions.

The model can be described by the following set of dif-

ferential equations.

τ1u̇e = u0e − ue − βνe − wef [uf ]+ −

j=n
∑

j=1

hj [sj ]
+ (1)

τ2ν̇e = −νe + [ue]
+ (2)

τ1u̇f = u0f − uf − βνf − wfe[ue]
+ −

j=n
∑

j=1

hj [sj ]
− (3)

τ2ν̇f = −νf + [uf ]+ (4)

yi = [ui]
+ = max(ui, 0), [ui]

− = min(ui, 0) (5)

yout = [ue]
+ − [uf ]+ = ye − yf (6)

where ue, νe, uf , and νf are the internal states of the

oscillator. yout is the output of the oscillator. β is the

adaptation coefficient. w and h are the weights of the

inter-oscillator and the input signal, respectively. s is

the input from other oscillators or sensory systems. τ1

and τ2 are the positive time constants that determine

the envelope and frequency of the output. u0e,0f is the

positive tonic input that modulates the amplitude of

the output. Specifically, to maintain a stable oscillation,
we set the ratio between the time constants to a value

falling within the range of 0.1-0.5 [20]. In this work, we

assume that τ1 is the only parameter that controls the
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Fig. 2 Adaptive Matsuoka’s oscillator

intrinsic frequency of the oscillator. τ2 is automatically

determined by the predetermined ratio.

3.2 Frequency-adaptive oscillator

If the input frequency is far away from the oscillator fre-

quency, no synchronization may occur between them.

Therefore in such cases, the parameters of the oscil-

lator need to be adjusted appropriately to change the
frequency and phase of the oscillator signal. It allows

the oscillator to entrain input signals over a wide range

of frequencies. Few methodologies have yet emerged for

adjusting oscillator parameters online. Some existing

approaches required a priori knowledge of the dynam-
ics of oscillators. Moreover, they were limited to simple

classes of oscillators [22] [23] [24]. Recently, Righetti [21]

proposed a frequency learning rule based on the phase

dynamics of the limit cycle system, and extended the
rule to different oscillators. But the frequency change

was too slow for most real-time control problems. Héliot

[25] presented an observer-based method to estimate os-

cillator state variables, and computed the phase of the

oscillator with a given periodic sensory input. But a
phenomenological model of the oscillator needs to be

built and its isochrones have to be defined in advance.

In this work, we propose an evolutionary approach that

explores interrelationships among potential factors as-
sociated with the process of frequency adaptation for

all types of oscillators. It does not require any a priori

knowledge about the oscillator dynamics. The proposed
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approach is based on the phase dynamics of the limit-

cycle system [26] and an artificial evolution method [27].

Neural oscillators generate sustained, periodic pat-

terned outputs. Given various initial states, their tra-

jectory settles into a limit cycle in the phase plane.
If the input signal is periodic, the phase of oscillator

is delayed or advanced according to the difference be-

tween the oscillator and input frequencies. If the input

frequency is close to the oscillator frequency and the
input amplitude is large, the difference in frequency is

tightly locked. We now need to devise a rule that con-

trol the adaptation of the oscillator frequency to deal

with a wide range of input frequencies. The rule is as-

sumed to be a linear combination of the state variables
as follows:

τ̇1(t) = sgn × ηSexternal × (w1ue + w2νe + w3uf

+ w4νf + w5u̇e + w6ν̇e + w7u̇f + w8ν̇f ) (7)

τ2(t) = τ1(t)/R (8)

where η < 1 is the constant that determines the learn-

ing rate. w1 through w8 are the weighting factors. The

amplitude of the periodic input signal Sexternal is mul-

tiplied to ensure that the frequency adaptation process
can be activated only when the input signal exists. The

sgn is determined by the rotation direction of the os-

cillator trajectory in the phase plane. R is the time

constant ratio.
The form of frequency-adaptation rule given above

is based on the state feedback control system. We em-

ploy a genetic algorithm (GA) to discover the interre-

lationships among the state variables. Specifically, the

GA determines the weighting factors of the proposed
rule. In order to evaluate the fitness of the weighting

factors, we design an objective function that quantifies

the convergence time in frequency adaptation and the

degree of correlation in frequency/phase between the
input and oscillator output signals given by

VF = MF − (αTelapsed + (1 − α)(Fd + Pd)) (9)

where MF is the maximum fitness that is set to 20. α is

the factor that determines the relative weight between

the convergence time in frequency adaptation and the
correlation degree in frequency/phase. Telapsed means

the elapsed time until the frequency of the oscillator

converges into the input frequency. Fd is the difference

in frequency between the oscillator output and input

signals. Pd is the difference in phase when the oscillator
output is synchronized with the input.

A real-coded GA was implemented in this work as

follows: first, the initial population is determined. Then,

two individuals are randomly selected to produce off-
spring fivefold. We used the UNDX crossover and no

mutation. After the production, the offspring is evalu-

ated by the objective function given in Eq. 9. Two best
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(b) Output in the proposed adaptive oscillator
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Fig. 3 Frequency adaptation of the proposed adaptive oscillator

individuals in the offspring replace the selected individ-

uals in the population. This updating model is the Min-

imal Gap Generation (MGG) model. This process iter-

ates until the termination condition is satisfied. Each

loop of the algorithm is referred to as a generation. Fi-
nally, we can obtain an optimal adaptation rule of the

oscillator.

We performed simulations to confirm whether the
frequency adaptive oscillator can adapt its phase to an

input signal with varying frequency. We set the param-

eters of the oscillator as follows: τ1initial
=0.3, R=0.5,

β=2.5, h=0.6, wef=wfe=2.5, u0e=u0f=1.0, and η=0.01.

The input signal is represented by a sinusoidal function
sin 5t. We encoded only four weighting factors (w1, w2,

w5, and w6) of the extensor neuron in genotype be-

cause the extensor and flexor neurons have mutually

inhibitory interactions. The population size is 50 and
the total generation is 200. Fig. 3 shows that when the

frequency of the input signal increases, Matsuoka’s os-

cillator fails to entrain the signal, but the frequency-

adaptive oscillator entrains the signal keeping a specific

phase difference. Thus, an adaptive CPG can be real-
ized using the proposed oscillator that autonomously

adapt itself to changes in feedback signals. Moreover,

through the adaptation process, we can obtain the ade-

quate parameters that produce a desired oscillator out-
put. Fig. 4 shows how the proposed oscillator entrains a

wide variety of different types of input signals of varying

frequency.
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Fig. 4 Frequency adaptation of adaptive oscillator to various
types of input signals: (τ1initial

=0.35, η=0.05)

3.3 Stability of the frequency-adaptive oscillator

In this section, we prove the stability of the frequency-

adaptive oscillator employing Matsuoka’s oscillator. Since

Matsuoka’s oscillator is a half-center oscillator, which

consists of two mutually inhibiting neurons (See Section

3.1, [17]), we can consider only one neuron.

u̇i =
1

τ1
(u0i − ui − βνi − wij [uj]

+ − hi[si]
+) (10)

ν̇i =
R

τ1
(−νi + [ui]

+) (11)

τ̇1 = −ηsi(w1ui + w2νi + w3u̇i + w4ν̇i) (12)

c(x) = [x]+ = max(0, x) (13)

where R falls within the range of 0.1 to 0.5, assumed to
remain constant [20].

Now the first step is to check whether the solutions

of Eqs. 10 and 11 will be bounded regardless of any

variation of τ1(t) when periodic input signals are fed
into the oscillator. Then we verify the stability of sta-

tionary states of Eqs. 10, 11, and 12 using Lyapunov’s

stability theory.

Theorem 1 (boundedness) A solution of the frequency-

adaptive Matsuoka oscillator (FAMO) with a periodic
input si(t) exists for any initial state (regardless of any

variation of τ1(t) that is assumed to be nonnegative)

and is bounded for t ≥ 0.

Proof. We extend the proof in [17] to include the ef-

fect of the frequency-adaptation rule given in Eq. 12.

First, we assume that τ1(t) is not negative for t ≥ 0,

and β ≥ 0, hi > 0, wij ≥ 0, u0i > 0, 0 < η < 1.

To verify the boundedness of the FAMO, we deter-
mine the maximum and minimum values for initial os-

cillator parameters and initial states. Integrating Eq. 11

with respect to νi, we get

νi(t) = νi(0)e−h2 + Re−h2

∫ t

0

eh2
1

τ1(T )
c(ui(T ))dT,

h2 = R

∫ t

0

1

τ1(t)
dt (14)

Since c(ui(T )) is not negative and τ1(t) > 0

νi(t) ≥ −|νi(0)| (t ≥ 0) (15)

Also, integrating Eq. 10 with respect to ui, we get

ui(t) = ui(0)e−h1 + u0ie
−h1

∫ t

0

eh1
1

τ1(T )
dT

−βeh1

∫ t

0

eh1
1

τ1(T )
νi(T )dT

−wije
−h1

∫ t

0

eh1
1

τ1(T )
c(uj(T ))dT

−hie
−h1

∫ t

0

eh1
1

τ1(T )
c(si(T ))dT,

h1 =

∫ t

0

1

τ1(t)
dt (16)

Since c(uj(T )), c(si(T )) is not negative and τ1(t) > 0,

applying Eq. 15 to Eq. 16, we get

ui(t) ≤ |ui(0)| +
1

τ1(0)
u0i +

1

τ1(0)
β|νi(0)| (17)

Applying Eq. 17 to Eq. 14 gives similarly

νi(t) ≤ |νi(0)| +
R

τ1(0)
(|ui(0)| +

1

τ1(0)
u0i

+
1

τ1(0)
β|νi(0)|) (18)

Applying Eqs. 17 and 18 again to Eq. 16, we obtain

ui(t) ≥ −|ui(0)| − u0i

1

τ1(0)
− β

1

τ1(0)
(|νi(0)|

+
R

τ1(0)
|ui(0)| +

1

τ1(0)
u0i +

1

τ1(0)
β|νi(0)|)

−wij(
1

τ1(0)
|uj(0)| +

1

τ1(0)
u0j +

1

τ1(0)
|νj(0)|)

−hic
1

τ1(0)
(si(0) (19)

Since si(t) is a bounded signal, smin ≤ si(t) ≤ smax,

from Eqs. 15, 17, 18, and 19, we can conclude that the
neuron state is bounded for t ≥ 0 regardless of any vari-

ation of τ1(t).
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Theorem 2 (Stability) There is at least one stable

limit cycle in FAMO.

Proof. We assume that the input si is non-negative.

We also assume that τ1(t) > 0, R > 0, β ≥ 0, hi > 0,

wij ≥ 0, u0i > 0, and 0 < η < 1. (For details, refer to
[17], [20])

In case that ui > 0, let us define a Lyapunov function

candidate as

V (ui, νi, τ1) =
1

2
u2

i +
1

2R
βν2

i +
1

2η
τ2
1 (20)

which represents a measure of distance from the limit

cycle. We take the derivative of the above function given

by

V̇ = uiu̇i +
1

R
βνiν̇i +

1

η
τ1τ̇1 (21)

From Eq. 10,

uiu̇i = ui(−
1

τ1
ui −

1

τ1
βνi + a) = −

1

τ1
u2

i

−
1

τ1
βuiνi + aui (22)

where a = 1/τ1(u0i − wij [yj ]
+ − hi[si]

+).

From Eq. 11,

1

R
βνiν̇i =

1

R
βνi(

R

τ1
νi +

R

τ1
c(ui)) = −

1

τ1
βν2

i

+
1

τ1
βνic(ui) (23)

From Eq. 12,

1

η
τ1τ̇1 =

1

η
τ1(−ηsiw1ui − ηsiw2νi − ηsiw3u̇i

−ηsiw4ν̇i) = −si((τ1w1 − w2 + Rw4)ui +

(τ1w2 − βw3 − Rw4)νi + w3a) (24)

Now V̇ can be written in the following form.

V̇ = −
1

τ1
u2

i + aui −
1

τ1
βν2

i − si((τ1w1 − w2

+Rw4)ui + (τ1w2 − βw3 − Rw4)νi + w3a) (25)

Thus V̇ is negative semi-definite, if the following con-
ditions are satisfied:

a < 0, (τ1w1 − w2 + Rw4) > 0, w3 < 0,

(τ1w2 − βw3 − Rw4) > 0 (26)

From Theorem 2, we can conclude that there must

exist one stable limit cycle, if the parameters of the os-

cillator and the weight factors of Eq. 12 are suitably
determined. Note that the varying parameter τ1 is con-

trolled by Eq. 12 whose weighting factors are deter-

mined by employing our genetic algorithm. In practice,

Matsuoka 
N. O.

Head Tail

Adaptive 
M. N. O.

Matsuoka 
N. O.

Matsuoka 
N. O.

Matsuoka 
N. O.

periodic 
stimulus 

signal

y0 y1 y2 yn-1 yn

tau1

Fig. 5 Adaptive CPG network used in simulations

Eq. 26 is implicitly satisfied, since the weighting factor

candidates that do not generate a stable limit cycle may

not be selected for reproduction. If the weighting factor

candidates do not satisfy Eq. 26, they do not achieve a
good fitness value for the given objective function that

includes the degree of correlation such as Fd and Pd.

This stability condition could be also explicitly incor-

porated in designing an objective function.

3.4 Adaptive CPG network for snake-like robot

CPG-based locomotion controllers may exhibit a cer-

tain degree of robustness to external perturbations, which

relies on their limit cycle behavior. Snakes can adapt

continuously their locomotion to a wide variety of envi-
ronmental conditions. Here we describe how this self-

modulating, adaptive function of snakes can be im-

plemented with our adaptive CPG-based approach to

achieve higher degrees of adaptation.

We construct a novel adaptive CPG network that
produces undulatory locomotion patterns and modu-

lates the oscillation frequency of the traveling wave of

the snake-like robot according to the ground friction.

One adaptive oscillator and thirteen Matsuoka’s os-
cillators are coupled to each of the robot joints from

the head to the tail with constant coupling weights as

shown in Fig. 5. Each oscillator produces rhythmic mo-

tor patterns for corresponding robot joints. The oscilla-

tion of the traveling wave is propagated from the head
to the tail with a phase lag. The adaptive oscillator,

connected to the head joint, is synchronized with a pe-

riodic stimulus signal which may vary in frequency in

time. Also propagating the time constant to the fol-
lowing thirteen Matsuoka’s oscillators, the entire CPG

network can be kept synchronized continuously to the

periodic stimulus signal. Therefore, the locomotion of

the snake-like robot can be adapted to different envi-

ronments through sensory feedback.

3.5 Overall control architecture

Fig. 6 shows the locomotion control architecture that

consists of the signal modulator and the adaptive CPG.
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Fig. 6 Adaptive locomotion control architecture

The adaptive CPG generates rhythmic patterns for the

undulatory locomotion, which can be synchronized to

sensory feedback signals. Sensory signals are incorpo-

rated into the adaptive CPG via the signal modula-
tor. The signal modulator determines the tonic signal

u0e,0f to control the traveling direction of the robot

or the traveling wave’s amplitude, and generates peri-

odic stimulus signals to increase/decrease the traveling
wave’s frequency. Considering a practical way of im-

plementing sensory feedback, we assume that the head

joint is equipped with an accelerometer to measure the

traveling velocity. We employ a Hopf oscillator to gen-

erate periodic signals using the measured feedback sig-
nals. More specifically, to keep the robot moving at a

constant velocity irrespective of changes in friction, pe-

riodic stimulus signals can be obtained by the following

equations.

ω̇ = k1e + k2ė (27)

ẋ1 = (µ − r2)x1 − ωx2 (28)

ẋ2 = (µ − r2)x2 − ωx1, (29)

where k1 and k2 are gains, e and ė mean the error and
its derivative between the desired and current traveling

velocity. x1 and x2 are the states of the oscillator, and

r =
√

x2
1 + x2

2. ω > 0 is the parameter that controls

the oscillator frequency, µ is a damping coefficient, and

x1 is the periodic stimulus signal, which is equivalent
to Sexternal in Eq. 7, to be fed to the adaptive CPG.

The Hopf oscillator can also be used as a filter that

suppresses the measurement noise [26]. Eventually, en-

training the periodic stimulus signal x1, the adaptive
CPG can modulate its frequency and keep the robot’s

traveling velocity constant under varying friction con-

ditions.

Table 2 Parameters of the adaptive CPG network

Parameters Values

u0e 1
u0f 1
τ1 0.595
τ2 τ1/0.5
β 3.5
wef 2.0
wfe 2.0
hinput signal 0.6

4 Numerical simulation

We performed simulations of undulatory motion by the

proposed control architecture through co-simulation with
Matlab and RecurDyn. Specifically, we aimed to verify

the self-modulation of the CPG parameters relevant to

the traveling wave’s frequency, assuming that the robot

locomotion velocity needs to remain unchanged under
varying or unknown environments.

4.1 Undulatory locomotion by the adaptive CPG

First, we tested snake-like robot locomotion using the

adaptive CPG network with parameters shown in Table

2. In this simulation, no sensory signal was fed back to

the CPG. Fig. 7 shows that the CPG network can make
sustained rhythmic patterns for joint input signals. The

robot successfully exhibited undulatory locomotion as

shown in Fig. 8. The time step between the snapshots

is 0.6 seconds.

Now we investigate how the oscillator parameters
affect the locomotion behavior of the robot. The phase

lag depends mainly on the adaptation coefficient, β. If

β is set to a large value, the phase lag will be large.

This corresponds to the number of S-shapes along the
robot body. The frequency of oscillation can be con-

trolled by the time constant, τ1. If τ1 is set to a large

value, the frequency becomes high. This corresponds

to the locomotion velocity. The positive tonic inputs

of each neuron, u0e and u0f , modulate the amplitude
of S-shaped traveling wave, and the difference between

the inputs makes a left or right turn. Fig. 9 shows the

CPG output and left turning motions controlled by the

difference of the tonic inputs.

4.2 Frequency adaptation under different friction
conditions

In order to verify the validity of the proposed frequency

adaptation, we investigate how the frictional force ex-

erted on the robot body affects its locomotion veloc-
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Fig. 7 Output pattern of CPG

Fig. 8 The shape of the robot during forward locomotion

ity. Fig. 10 shows the variation in forward locomotion

velocity when the coefficient of friction changes. Note

that the locomotion velocity is affected by the ground

friction, but when the coefficient of friction reaches a
certain threshold value, the velocity remains almost un-

changed. The threshold level above which the robot can

effectively get a propulsive force will be determined by

the coefficient of friction between the passive wheels and
the ground as well as the shape of the oscillating robot

body. It can be observed from the figure that when the

coefficient of friction is high enough, since all segments
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(b) Snake-like robot’s motion

Fig. 9 Left turning motion (at 15 sec., u0e: 1→0.7, u0f : 1→1)

line up straightly before starting an undulating motion,

the initial velocity rapidly increases.

We now compare two cases where there is frequency

adaptation or not. In both cases, the periodic stimulus
signal obtained from sensory feedback is provided (See

Eqs. 27, 28, and 29). Fig. 11 shows the case where there

is no frequency adaptation. The robot moves over dif-

ferent types of terrain (ground A ⇒ ground B). One

can notice that the robot can not keep its desired head
velocity after the coefficient of friction changes at the

instant of 30 sec. as shown in Fig. 11-(a). The robot

can not modulate its pattern of coordinated locomotion

adapting to changes in stimulus signal. Fig. 11-(b, c, d)
indicate that the phase difference between the head and

tail joints is not kept constant. Finally, the robot can

not move forward, but wiggles in place. Fig. 12 shows
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Fig. 10 Effect of the ground friction variation on the velocity

the case where our frequency adaptation rule is em-
ployed. The snake-like robot can adapt to a different

ground friction self-modulating its CPG parameter to

maintain the desired head velocity. Fig. 12-(b, c, d) in-

dicate that the phase difference between the head and

tail joints remains unchanged. It can be also observed
from Fig. 12-(c, d) that the orbital shape enlarges along

the vertical direction (symmetrically with respect to the

horizontal axis) according to the change in ground fric-

tion, when compared to Fig. 11-(c, d). It is apparent
that the frequency of the proposed CPG network be-

comes higher to maintain the desired locomotion veloc-

ity.

5 Conclusion

In this paper, we proposed a CPG-based control archi-
tecture to produce stable undulatory locomotion pat-

terns for snake-like robots by modulating the CPG pa-

rameters according to changes in ground frictions. This

self-modulation function controlled eventually the lo-

comotion velocity of the robot through modulating the
traveling wave’s frequency while keeping a specific phase

difference between each joint of the robot body seg-

ment. For this, we employed our frequency-adaptive

oscillator to build the CPG network, which can learn
and adapt to the changes in the frequency of external

signals. It facilitated the configuration of a closed-loop

CPG much more robust against environmental and/or

system parameter changes. In order to verify the va-

lidity of the self-modulation function of the proposed
control architecture, we carried out dynamic simula-

tions with a simulated snake-like robot under different

ground friction conditions. Employing the frequency-

adaptation capability of our adaptive CPG, the snake-
like robot could keep its locomotion velocity, and showed

the capability to maintain its locomotion patterns and

phases against changes in the ground friction. Our fu-
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(d) Tail joint trajectory

Fig. 11 Adapting to terrains with different friction coefficients
through constant frequency (friction coefficient A: 0.1 ⇒ friction
coefficient B: 0.04 at 30 sec.)

ture study will attempt to investigate the direct feed-

back from sensory systems to the oscillators distributed
in each joint. This will allow us to achieve a more effi-

cient locomotion of the snake-like robot especially where

terrain slopes exist.
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