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Abstract This paper presents a distributed approach
to enabling mobile robot swarms to track multiple tar-

gets moving unpredictably. The proposed approach con-

sists of two constituent algorithms: local interaction and

target tracking. When the robots are faster than the
targets, Lyapunov theory can be applied to show that

the robots converge asymptotically to each vertex of

the desired equilateral triangular configurations while

tracking the targets. Toward practical implementation

of the algorithms, it is important to realize the obser-
vation capability of individual robots in an inexpen-

sive and efficient way. A new proximity sensor that we

call dual rotating infrared (DRIr) sensor is developed to

meet these requirements. Both our simulation and ex-
perimental results employing the proposed algorithms

and DRIr sensors confirm that the proposed distributed

multi-target tracking method for a swarm of robots is

effective and easy to implement.

Keywords robot swarms · local interactions · triangle
lattice · target tracking · DRIr sensor

1 Introduction

The object tracking problem by a single robot with the
required high-level capabilities has been studied over

the past several decades toward real applications such

as surveillance or reconnaissance. In recent years, in-

creasing attention has been paid to swarms of simple

robots with limited sensing and computational capabil-
ities. It may offer many advantages over a single robot

in terms of efficiency, fault-tolerance, adaptability, and

so on [1][2]. Exploiting such features that swarms of

robots can exhibit, new applications have emerged, such

as order localization or plume tracing [3]-[6], and have
expanded to support multiple target tracking [7]-[11].

Zarzhitsky et al. reported a chemical plume tracing

method imitated from fluid physics [3] under the arti-
ficial physics framework [13]. Jatmiko et al. presented

an algorithm for odor source localization in a changing

environment based on the particle swarm optimization

[4]. There also has been a wide range of discussion on
the problem of sensor planning. Spletzer and Taylor [7]

controlled the configuration of a team of mobile robots

to optimally estimate the positions of a group of visible

targets. Jung and Sukhatme [8] proposed a combination

strategy of a local tracking controller and a high-level
behavior-based framework, when a topological map of

the environment is given, that distributed robots into

regions according to target density. These works can be

classified as cooperative target tracking. Other related
works were mainly devoted to developing decentralized

tracking strategies of robot swarms or mobile sensor

networks for multiple stationary targets [9]-[11]. Krish-

nanand et al. addressed a problem for multiple odor

source localization using mobile robot swarms [9]. In
[10], a decentralized strategy for tracking multiple tar-

gets was introduced with a mobile sensor network based

on the principle of triangulation.

This paper addresses the problem of coordinated

multi-target tracking for a swarm of autonomous mo-

bile robots, when the target is visible to only a lim-

ited number of robots. The main purpose is to de-
velop a new distributed approach that enables large-

scale robot swarms with limited sensing capabilities

to track and/or capture multiple moving targets while

achieving dynamic formations. This approach can be
further applied to robotic sensor networks for tracking

and/or capturing multiple toxic and hazardous sub-

stances or automated wide area surveillance. We em-
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ploy the relative degree of attraction from individual

targets based on the universal law of gravitation [26]

and local interactions [23]. Specifically, the proposed co-

ordinated tracking is achieved without using any leader,

identifiers, common coordinate frame, memory of previ-
ous states, or explicit communication. The convergence

properties of the proposed algorithms are proven us-

ing the theory of Lyapunov functions. Toward practical

implementation of the algorithms, it is important to re-
alize the observation capability of individual robots in

an inexpensive and efficient way. For the purpose, the

low-cost proximity sensor that we call “dual rotating

infrared (DRIr) sensor” capable of 360 degree obser-

vation is developed and mounted on the front and rear
edge of each robot. This allows mobile robots in various

shapes 1) to obtain relative position measurements of

neighboring robots, and 2) to follow a specific moving

target, both in all directions. We explain how to real-
ize each robot’s observation function through the use

of DRIr sensors. Extensive simulations and real robot

experiments are performed to show the validity of the

proposed method.

The rest of this paper is organized as follows. Sec-
tion 2 gives a brief description on the state-of-the-art

of local interactions. Section 3 presents the computa-

tional model and the physical robot configuration used

in this paper. Section 4 illustrates how to realize each
robot’s observation function through the use of DRIr

sensors. Section 5 describes the proposed tracking algo-

rithm, its convergence properties, and simulation and

experimental results. Section 6 draws our conclusions.

2 Background

In order to allow a swarm of robots to achieve the

goal of a collaborative task, the motions of individual

robots should be coordinated preferably in a decentral-
ized way. Most of decentralized coordination is based on

local rules of behavior observed from physical phenom-

ena. Many approaches used such physical phenomena

as van der Waals forces [12], gravitational forces [13],
electric charges [14], spring forces [15]-[17], potential

fields [18][19], line forces [20], equilibrium of molecules

[21], and other virtual force [22]. Those works mostly

use some sort of force balance between inter-individual

interactions exerting an attractive or repulsive force on
each other. This is mainly because the force-based in-

teraction rules are considered simple but effective, and

provide an intuitive understanding on local behavior.

Local formations achieved by the aforementioned
local interactions may result in a mesh type. These

formations offer multiple redundant connections ensur-

ing maximum reliability and flexibility from the stand-
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Fig. 1 Notations and definitions ((a) ri’s local coordinates and
sensing boundary SB, (b) observation set Oi, neighbor set Ni,
and triangular configuration Ti)

point of topology. Depending on the degree of inter-
action among the robots, the network can be classi-

fied into fully or partially-connected topologies [24].

The fully-connected topologies have each robot inter-

act with all of other robots simultaneously within a cer-
tain range. Thus, it poses too tight constraints on robot

motion, and develops more computational complexity.

Notably, it might lead to deadlocks where some of the

robots have become trapped interstitially. These prob-

lems arise in most of the previous works [13][15][21][22].
On the contrary, using the partially-connected topol-

ogy, robots interact selectively with other robots, but

can be connected to all other robots by aggregating

the local formations. In [16][17], partial graph pairs of
robots were proposed that exert virtual forces to each

other when their connection is part of the graph. For

example, robots may choose to exert forces in a certain

direction [16], where this selective interaction helps pre-

vent them from being too tightly constrained. Due to
similar reason, robots are enabled to achieve faster for-

mation without deadlocks [17]. Our local interaction ap-

proach [23] based on such partially-connected topology

is to construct uniformly spaced equilateral triangles
that can reduce the number of interacting robots in a

given location, yet establish an energy-efficient routing

[25]. More importantly, compared with the computa-

tion of virtual spring forces to calculate an equilibrium

of force balance, each robot utilizes only relative dis-
tance information of other robots.

3 Computational Model and Physical System

Description

3.1 Computational Model and Definitions

We consider a swarm of autonomous mobile robots de-

noted as r1, · · · , rn. It is assumed that an initial dis-

tribution of all robots is arbitrary and their positions
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are distinct. Each robot autonomously moves on a two-

dimensional (2-D) plane. Robots have no leader and no

identifiers. They do not share any common coordinate

system, and do not retain any memory of past actions

that gives inherently self-stabilizing property [27][28].
Due to a limited observation range, each robot can de-

tect the positions of other robots only within its sight

range or line-of-sight. In addition, robots do not com-

municate explicitly with other robots. Let the position
pi(t) of a robot ri at time t be denoted as a state vec-

tor pi(t) = [pi,x pi,y]
T . We can define ri’s kinematics by

ṗi,x = uicosθi, ṗi,y = uisinθi, where ui and θi are the

translational and angular velocity of ri, respectively.

Based on the above model, all the robots execute an
identical algorithm, and act independently and asyn-

chronously of each other.

From now, we introduce the notation and definitions

frequently used in this paper. Let us consider a robot ri
with local coordinates

−→
l x,i and

−→
l y,i seen in Fig. 1-(a).

Here,
−→
l x,i defines the vertical axis of ri’s coordinate

system as its heading direction, and
−→
l y,i denotes the

horizontal axis by rotating the vertical axis 90 degrees

counterclockwise. The center position of ri is denoted
as pi(t)) (pi, for simplicity, hereafter). Accordingly, pi
is (0, 0) with respect to ri’s local coordinates. The dis-

tance between the robot ri’s position pi and the robot

rj ’s position pj is denoted as dist(pi, pj). We define a
desired distance du between ri and rj . Next, ri observes

other robots located within its sensing boundary SB.

As illustrated in Fig. 1-(b), it estimates the center posi-

tions of the observed robots, yielding a set of the posi-

tions Oi (={pj, pk, pk}) with respect to its local coordi-
nates. Now, ri can select two robots rs1 and rs2 within

its SB that we call the neighbors of ri and denote the

set of their positions, {ps1, ps2}, asNi. Given pi andNi,

the Triangular Configuration, denoted by Ti, is defined
as a set of three distinct positions {pi, ps1, ps2}, where
the internal angle ∠ps1pips2 of ri is denoted by αi. We

define the Equilateral Configuration, denoted by Ei, as

a configuration that all the distance permutations of Ti

are equal to du. We need a measure indicating to what
degree Ti is configured into Ei. Given Ti, we can ex-

press the distance permutations with respect to ri as

the following matrix Di

Di =

{
(

dist(pm, pn)− du

)2

if m 6= n

0 otherwise
(1)

where {{pm, pn}| pm, pn ∈ Ti = {pi, ps1, ps2}}. We will

denote (dist(pm, pn)−du)
2 for simplicity as (dk −du)

2.

Using Ti and Ei, we can formally define the Local Inter-
action as follows: Given Ti, the local interaction allows

pi of ri to maintain du with Ni at each time toward

forming Ei.

(a) DRIr sensor and its controller

(b) sensor installation

Fig. 2 Mobile robot equipped with DRIr sensors

Several additional assumptions are made in con-

structing our robot model: 1) ri is faster than the mov-

ing targets, 2) ri is capable of estimating the distance

and bearing of the target individually, if the target is
within its SB, and 3) ri is assigned to a single target at

each time. Now we formally describe the Target Track-

ing problem based on the local interaction as follows:

Given robots r1, · · · , rn located at arbitrarily distinct po-

sitions and moving targets, how to enable robots to track
the targets with their positions formed into Ei.

3.2 DRIr Sensor

Fig. 2 illustrates a pair of dual rotating infrared (DRIr)

sensors and their controller, mounted on top of a Pio-
neer 3-DX mobile robot. A DRIr sensor has two MiniS-

tudio MiniS RB90 servo motors and one Sharp GP2Y0A02YK

infrared sensor. In detail, the Atmel ATmega128 mi-

crocontroller controls each servo motor rotating the in-

frared sensor and feeds the measured data to the main
controller of the robot. The DRIr sensor controller for-

wards two-channel control signals to the front and rear

DRIr sensors. One signal controls the rotation angle of

each servo motor by pulse width modulation. The other
signal is used for on-off control of the infrared sensor.

Moreover, the analog output voltage representing the

distance to the detecting surface is fed to the controller
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(a) rotation of the upper motor

(b) rotation of the base motor

Fig. 3 Combined motion of sensor rotation

and converted to 10-bit digital values. From the rela-

tionship between the analog voltage level and the mea-

sured distance, the range from 12 cm to 180 cm, where

the voltage level decreases with increasing distance in a
unimodal fashion, can be used to estimate the distance.

Each robot can be provided with a sensing range up to

400 cm including the size of the robot body.

The servo motors are independently controlled by
the controller. One servo motor rotates up to 180 de-

grees, thus two identical motors can sweep a full 360

degrees. As illustrated in Fig. 3, the base motor en-

ables the infrared sensor to be directed toward a spe-

cific direction, while the upper motor can rotate 180
degrees with respect to the direction of the base mo-

tor. By the combination of the base and upper mo-

tors, a wide variety of emitting directions of infrared

rays can be effectively controlled. Specifically, the front
DRIr sensor scans from -120 degrees to 120 degrees in

azimuth with respect to the heading of the robot, where

the base motor rotates 180 degrees and the upper mo-

tor adds another 60 degrees. The remaining 120 degree

range cannot be observed since the line-of-sight path
is blocked by the controller housing, but is covered by

the rear DRIr sensors (that scan the same amount of

range in the opposite direction). Therefore, a pair of

DRIr sensors can cover a full 360 degrees.

3.3 Physical Robot Integration

Our customized mobile robot largely consists of three
parts: a pair of DRIr sensors, MobileRobots Pioneer

3-DX platform, and the main controller. The DRIr sen-

sors are mounted on the front and rear edge of the

Observation
function

desired distance:
u

d

next
movement

point

DRIr
sensors

main controller

mobile robot

Tracking
function

Fig. 4 System integration overview

robot, which allows each robot to detect other robots in

the front and rear direction simultaneously. The circular

controller housing designed for the controller board rep-
resents the surface geometry whose center point is easy

to detect irrespective of the robot’s heading. Specifi-

cally, the center of the housing is coincident with the

center of the mobile robot. A laptop PC is used as the

main controller on top of the robot. It consists of the
observation function and the tracking function. Fig. 4

shows the control architecture of the overall system.

The inputs to the main controller include the measure-

ment data obtained by the DRIr sensors and the prede-
fined du between neighboring robots. At each time, our

proposed tracking function enables ri to compute its

movement position at the next time step based on the

observation function (see Section 4). A series of these

iterative activations are controlled by the main con-
troller.

4 Observation Function

4.1 Observation Function Algorithm

The observation function gives reliable estimates of the

surface of neighboring robots, which can be obtained

through the steps detailed below.
The measurement step constructs two one-dimensional

arrays in the memory of each robot as illustrated in Fig.

5-(a). Here, the dimension of each array can be auto-

matically adjusted according to the angular interval of
the servo motor. When ri scans the environment us-

ing its DRIr sensors at regular intervals, the distance

to the surface of neighboring robots is recorded in the

corresponding cell of the first array. At the same time,

the servo motor angle is recorded in the second array
so that the distance array corresponds to the motor an-

gle array. Next, ri checks their distance array cells that

contain a non-zero value (from the lower bound dmin

to the upper bound dmax) and reads the corresponding
angle array cells.

The update step calibrates the measurement data

with respect to a reference. For the purpose, a 100 ×
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(b) ri observes the neighbor robot rj

Fig. 5 Observation scanning of the surface of a robot rj

(a) (b) (c) (d)

Fig. 6 Observation process of the neighbor rj by the robot ri
((a) test scene, (b) measurement step, (c) update step, (d) recog-
nition step)

100 2-D grid with 4 cm × 4 cm unit cells is built. While

recording data in the distance and angle arrays, the es-

timated distance is simultaneously stored in the corre-

sponding cell of the grid as an integer intensity value.
Once a full 360 degree scanning is completed, the So-

bel edge detection algorithm [29] improves the original

surface detection data.

The recognition step identifies the positions of robots.

ri collects the cells with the non-zero value from dmin to

dmax in the updated distance array. Then, three feature

points, pmin, pmax, and ps, are specified using dmin,
dmax, cdis, and their corresponding cells in the angle

array, respectively. By computing the average of a se-

quence of numeric values in the motor angle array, ri se-

(a) test scene

(b) measurement step

(c) recognition step

Fig. 7 Observation of the moving robot rj by the robot ri

lects the cell containing the value equal or closest to the
average, and sets the center angle cang to this value. The

distance cell corresponding cang is defined as the center

distance cdis. As shown in Fig. 5-(b), ps is computed

based on cdis with the minimum distance value among
the cells and cang. Next, ri computes dist(pmin, pmax)

and checks whether dist(pmin, pmax) is shorter than the

controller housing diameter. If this distance exceeds the

diameter, the collected cells can be considered as an

arena border. Otherwise, these cells are considered as a
robot. Through the above process, if robots are recog-

nized, their center point pj can be obtained by adding

cdis to the radius dr of the controller housing (see Fig. 5-

(b)). Consequently, the outputs of the observation func-
tion are Oi of neighboring robots.

4.2 Preliminary Tests

As shown in Figs. 6 through 8, we performed three

kinds of tests evaluating the effectiveness of the obser-

vation function. In the first test seen in Fig. 6-(a), the

robot ri observes its neighbor rj located 100 cm away.
Figs. 6-(b), (c), and (d) show the data processing re-

sults obtained through the measurement, update, and

recognition steps, respectively. Compared with Fig. 6-
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(b) rj ’s center points in the recognition step

(c) comparing DRIr sensor and laser scanner

Fig. 8 Estimation of rj ’s center points in Fig. 6-(a)

(b), Fig. 6-(c) shows the enhanced surface detection by

eliminating blurred and distorted edges. Fig. 7 presents

the observation result for a moving robot rj . Similarly,

compared with Fig. 7-(b), Fig. 7-(c) shows that ri could

compute the center points of rj moving with a reason-
able velocity. Fig. 8 shows the results of 300 trials in the

condition of Fig. 6-(a). Figs. 8-(a) and (b) show the es-

timation results of rj ’s center points through each step

of the process. Fig. 8-(c) shows the results of statistical
analysis of rj ’s distances estimated by the DRIr sen-

sor and Hokuyo’s URG laser scanner. Here, the square,

triangle, and circle indicate the mean value, maximum

Algorithm-1 Local Interaction (code executed by ri)

FUNCTION ϕinteraction({ps1, ps2}, pi)
1 pct,x := (ps1,x + ps2,x + pi,x)/3

2 pct,y := (ps1,y + ps2,y + pi,y)/3
3 pct := (pct,x, pct,y) // centroid

4 φ := angle between ps1ps2 and
−→
l y,i

5 pti,x := pct,x + du cos(φ+ π/2)/
√
3

6 pti,y := pct,y + du sin(φ+ π/2)/
√
3

7 pti := (pti,x, pti,y) // output

value and minimum value, respectively. The error bars
represent the 95% confidence intervals. The laser scan-

ner outperforms the DRIr sensor in terms of accuracy,

but the DRIr sensor also shows reasonably good ac-

curacy. Note that the observation function algorithm
requires robots to be initially positioned a minimum

distance of 100 mm apart from DRIr sensor, with a

clear line of sight. From the results that we have seen

so far, the DRIr sensor scanning observation capability

can be considered quite satisfactory for practical use.

5 Tracking Function

5.1 Local Interaction Algorithm

Here we explain the local interaction algorithm, termed
Algorithm-1, that enables three neighboring robots

to generate Ei of side length du from an arbitrary Ti.

Algorithm-1 includes the function ϕinteraction whose

arguments are pi and Ni at each time. Consider ri
and its two neighbors rs1 and rs2 located within its

SB. As shown in Fig. 9-(a), three robots are config-

ured into Ti whose vertices are pi, ps1, and ps2, respec-

tively. First, ri calculates the centroid of the triangle
△pips1ps2, denoted by pct, with respect to its local co-

ordinates, and measures the angle φ between the line

connecting the two neighbors ps1ps2 and
−→
l y,i. Using

pct and φ, ri calculates the next movement point pti
by its current observation of neighboring robots. Intu-

itively, under Algorithm-1, ri may maintain du with

its two neighbors at each time. In other words, each

robot attempts to form an isosceles triangle with Ni at

each time, and by repeatedly doing this, three robots
configure themselves into Ei.

As illustrated in Fig. 9-(b), we consider the circum-

scribed circle of an equilateral triangle whose centroid

is pct of △pips1ps2 and radius dc is du/
√
3. The local

interaction determines the position of each robot by

controlling the distance di from pct and αi (see Fig.

9-(a)). First, di is controlled by the following equation:

ḋi(t) = −a(di(t)− dc), (2)
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Fig. 9 Illustration of Algorithm-1

where a is a positive constant. Indeed, the solution of

(2) is di(t) = |di(0)|e−at + dc that converges exponen-

tially to dc as t approaches infinity. Secondly, αi is con-

trolled by the following equation:

α̇i(t) = k(π/3− αi(t)), (3)

where k is a positive number. Since the total inter-
nal angle of a triangle is 180 degrees, (π/3 − αi(t))

can be derived from 1

3
(βi(t) + γi(t) − 2αi(t)) where

βi and γi indicate ∠pips1ps2 and ∠pips2ps1, respec-

tively (see Fig. 9-(a)). Likewise, the solution of (3) is

αi(t) = |αi(0)|e−kt + π
3
that converges exponentially to

60 degrees as t approaches infinity.

Note that (2) and (3) imply that the trajectory of ri
converges to dc and 60 degrees, an equilibrium state xd

shown as [di(t) αi(t)]
T in Fig. 9-(b). This also implies

that three neighboring robots eventually form Ei. In

order to prove the convergence of the local interactions,

we demonstrate the application of Lyapunov stability

theory [30]. Now, the desired xd can be regarded as one
that minimizes the energy level of a Lyapunov function.

Note that (2) and (3) imply that three robots even-

tually form an equilateral triangle of side length du. In

order to show the convergence, consider the following
scalar function

fl,i =
1

2
(di − dc)

2 +
1

2
(
π

3
− αi)

2 (4)

that is always positive definite except di 6= dc and αi 6=
π
3
. The derivative of the scalar function is given by ḟl,i =

(di−dc)ḋi−(π
3
−αi)α̇i. Using (2) and (3), the derivative

is rewritten by

ḟl,i = −a(di − dc)
2 − k(

π

3
− αi)

2. (5)

Since a and k are positive, (5) is negative definite. The

scalar function fl,i is radially unbounded since it tends
to infinity as ‖ xd ‖→ ∞. Therefore, xd is asymptot-

ically stable, implying that ri reaches a vertex of Ei.

Regarding the scalability of the algorithm, see [23].

5.2 Target Tracking Algorithm

The target tracking algorithm, Algorithm-2, gives a

solution to how to find ri’s moving direction toward a
desired target, and simultaneously how to configure the

positions of the neighboring robots into Ei according to

the desired target direction.

Under Algorithm-2, it is assumed that ri is faster

than the moving targets. When detecting multiple tar-

gets, defined {gk|1 ≤ k ≤ m}, in Fig. 10-(a), ri selects
its direction toward a target gk. Imitated from the law

of gravitation, ri determines its direction by using the

relative degree of attraction from the targets, termed

the favorite vector fk, whose magnitude is given by
‖fk‖ = ‖1/d2k‖ where dk denotes the distance between

gk and ri. Thus, the set of detected targets Gi is rep-

resented by the set of favorite vectors {fk|1 ≤ k ≤ m}.
Then ri selects the maximum magnitude of fk, denoted

by ‖fk‖max. From fk, ri is assigned to a single target
within its SB at each time. As shown in Fig. 10-(b), ri
defines a maximum favorite target area A(fmax) within

its SB intersected with the upper half plane along the

direction of ‖fk‖max. ri checks whether there exist any
neighbors in A(fmax). If neighbors are found, ri se-

lects the first neighbor rs1 located the shortest distance

away from pi to define ps1. Otherwise, ri spots a virtual

point pv located at some distance dv away from pi along

‖fk‖max to define ps1. When no target is observed, ri
finds the first neighbor within its SB. As illustrated in

Fig. 10-(c), ri defines its heading h with respect to its

local coordinates. Let A(h) denote the area of heading

direction within SB intersected with the upper half-
plane along h. ri checks whether there exist any neigh-

bors in A(h). If neighbors exist within A(h), ri selects

rs1 with the shortest distance away from pi. Otherwise,

ri finds rs1 within SB by the same method above. The

second neighbor rs2 is selected such that the total dis-
tance from ps1 to pi passing through ps2 is minimized.

As a result, using pi and Ni, pti can be obtained by

ϕinteraction in Algorithm-1.

Note that the robots are always required to main-

tain their formation of equilateral triangles, denoted by
∑n

i=1
Ei. When the targets are detected, ri is required

to determine its direction toward ‖fk‖max. ‖fk‖max forces

ri to move to a certain direction while being configured

into Ei. Therefore, ‖fk‖max can be used for controlling

individual robot motions given by ‖fk‖max = f̈l,i. If
ri follows ‖fk‖max through local interactions, we can

prove its convergence into Ei while tracking gk as de-

tailed below.
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Fig. 10 Illustration of Algorithm-2

Algorithm-2 Target Tracking (code executed by ri)

FUNCTION ϕtracking(Oi, Gi, pi)
1 If {∃gk ∈ Gi} Then

2 fmax := max
gk∈Gi

[‖fk‖]
3 A(fmax) := favorite target area
4 Ap := {set of positions of robots located in A(fmax)}
5 If {∃p ∈ Ap} Then

6 ps1 := min
p∈Ap−{pi}

[dist(pi, p)]

7 Else

8 ps1 := pv
9 End If

10 Else

11 h := heading direction
12 A(h) := heading direction area
13 Ap := {set of robot positions located in A(h)}
14 If {∃p ∈ Ap} Then

15 ps1 := min
p∈Ap−{pi}

[dist(pi, p)]

16 Else

17 ps1 := min
p∈Oi−{pi}

[dist(pi, p)]

18 End If

19 End If

20 ps2 := min
p∈Oi−{pi,ps1}

[dist(ps1, p) + dist(p, pi)]

21 ϕinteraction({ps1, ps2}, pi)

Here, Lyapunov’s theory is applied to show the con-

vergence of ri using the positive definite scalar function
ft,i given by

ft,i =
1

2
(ḟl,i)

2 + fl,i +
∑

Ti

(dk − du)
2, (6)

where fl,i indicates the scalar function of local interac-

tions in (4), and
∑

Ti
(dk−du)

2 is defined as the constant

value Di associated with Ti at each time (see (1)). A

symmetric matrixDi can be said to be positive definite,
if xTDix > 0 for every nonzero x [31]. Moreover fl,i is

always positive definite except di 6= dc and αi 6= π
3
. (If

Ti is equal to Ei, it is easily seen that
∑

Ti
(dk − du)

2

reaches 0, resulted from dc = du/
√
3.) Next, The deriva-

tive of ft,i is given by

ḟt,i = ḟl,i(f̈l,i) + ḟl,i = ḟl,i(f̈l,i + 1). (7)

It is evident that ḟt,i is negative definite. Therefore,

based on Lyapunov’s theory, the motion of ri can even-

tually converge into Ei while following ‖fk‖max.

Next, the collective scalar function Ft of a swarm of

robots is a nonzero function with the property that any
solution of the set of algebraic constraints on range and

bearing (see Fig. 9-(b)) is closely related to a set of equi-

libria for {ri|1 ≤ i ≤ n} and vice versa. Without loss

of generality, Ft is a diminishing energy function with a
scalar potential. Therefore, Ft for a swarm of n robots is

defined as Ft =
∑n

i=1
ft,i. It is straightforward to verify

that Ft is positive definite and Ḟt is negative definite.

Consequently, a swarm of n robots converges into Ei

with their Ni while tracking gk by ‖fk‖max within their
SB.

5.3 Simulation and Experimental Results

The effectiveness of our tracking function is verified

through extensive simulations and experiments. Simu-

lations are conducted to investigate the ability of the al-

gorithm to scale to large number of robots and multiple
targets. The targets are assumed to be either a light or

odor source whose position can be measured with high

precision within SB. Moreover, robots do not know the

time-varying velocities and moving directions of targets

in advance. In simulation tests, we set the distance dv
between pv and pi to 1.2 times longer than du and the

range of SB to 3.5 times longer than du. In the real

robot experiments, each robot is equipped with a pair

of DRIr sensors. They move with a linear velocity of 60
mm/s and an angular velocity of 100 deg/s. du is set to

80 cm and DRIr sensors measure relative distance up

to 200 cm by emitting an infrared ray every one degree
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Fig. 11 Simulation of tracking a moving target

Fig. 12 Tracking a target moving along a square trajectory

while rotating with 308 deg/s. One robot, teleoperated

by a human operator, is assumed to be a moving target.

Fig. 11 shows that a swarm of 100 robots tracks
a moving target indicated by the bold red line. As

the target moves from its initial location, robots start

to track the target, where traffic congestion happens

(a) observation in Fig. 12-(a) (b) observation in Fig. 12-(c)

(c) observation in Fig. 12-(h) (d) observation in Fig. 12-(j)

Fig. 13 Observation result of ri in Fig. 12

seen in Figs. 11-(b) through (d). This is because the

inter-robot distance does not converge uniformly in a
short period, as robots with limited visibility, unless

the target is detected, interact with their neighbors to

form Ei. Similar phenomena are observed in Fig. 17.

This congestion is relieved in Fig. 11-(e) as the target
moves ahead to a certain extent. Even though an un-

even spatio-temporal congestion may exist, each robot

can track the target successfully while forming Ei. As

shown in Fig. 11-(j), once the target stops, robots starts

to self-configure themselves into
∑n

i=1
Ei.

Figs. 12 through 14 show how robots form an equi-

lateral triangle while tracking a target. Fig. 12 shows

that two robots track a target that moves along a square
trajectory. Fig. 13 displays the results of observation of

other robots performed by the robot ri, tagged with

the red arrow in Fig. 12. Starting from the initial ran-

dom distribution in Fig. 12-(a), two robots successfully
tracked the target with which they form an equilateral

triangle. We test the next case, where the target moves

straight away as shown in Fig. 14. The left hand side fig-

ures present the snapshots of the target tracking. Cor-

respondingly, the outputs of ri’s observation function
is shown on the right hand side figures. As ri observed

the target in Figs. 14-(g) and (h), under Algorithm-2,

ri interacted with its two neighbors and formed them-

selves into Ei. If there exist a larger number of robots
around ri, it may select a specific subset of robots as its

neighbors considering the direction of the nearest tar-

get. Moreover, the area border (wall) was also detected



10

ri

ri

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 14 Experiment of tracking by three real robots

by the DRIr sensors. From these results, we have ver-

ified that robots equipped with DRIr sensors tracked

a moving target satisfactorily in an equilateral triangle
formation under our laboratory conditions.

Next, we performed simulations to investigate how

a swarm of 100 robots tracks multiple moving targets.

Figs. 15 and 16 show the difference in tracking capa-

bility for slow and fast moving targets, respectively. In
both cases, robots can locate and keep track of a target

nearest to them. As they get closer to other targets,

they switch to the nearest target while forming Ei. Fig.

17 shows the results of tracking three targets. In Figs.

17-(a) through 17-(c), robots track the targets moving
at the same velocity in the same direction. As the tar-

gets change their velocity and direction, robots spilt

themselves into three groups in Figs. 17-(d) through

(h). It can be observed that robots always keep track of
the nearest target regardless of the number of targets.

In most cases, a considerable majority of robots may

not directly detect any targets, but they can track a

Fig. 15 Simulation results of tracking two slow moving targets

Fig. 16 Simulation results of tracking two fast moving targets

target through local interactions with their neighbors.

A small number of robots that stay close to targets can
cause the remaining robots to move toward their indi-

vidual target.

5.4 Discussion

Our tracking approach offers several notable advan-

tages. First, an equilateral triangle lattice network can
be built with a partially connected mesh topology. Among

all the possible types of regular polygons, the equilat-

eral triangle lattice can minimize the computational
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Fig. 17 Simulation results of tracking three moving targets

burden, because only a limited number of robots in-

teract with each other. It is also highly scalable. Sec-

ondly, each robot utilizes only position information of

other robots. On the contrary, many related works re-
quire the computation of relative velocities or accelera-

tions to calculate attractive or repulsive forces. Thirdly,

robots compute the target position without requiring

memories of past actions or states. This oblivious al-
gorithm can effectively cope with transient errors. It is

known that nonoblivious algorithms might not work in

situations where robots are activated asynchronously,

or the number of robots increases or decreases. Most

importantly, we attempt to solve the tracking problem
by eliminating such major assumptions as robot identi-

fiers, common coordinates, and explicit communication,

often made in other works.

For real world applications, there still remain several

issues. In order to distinguish between other robots and
various objects, it could be advantageous to fuse DRIr

and RFID sensor data for obstacle-cluttered environ-

ments. It is also required to develop adequate sensors

and recognition algorithms suited for a specific type of

target. As an alternative way of interaction, some sys-
tem for direct communication may be used. In this case,

robots need to have such information as individual iden-

tification numbers or global coordinates. Likewise, it

may face many difficulties including limited bandwidth,
range, and interference. The required robot capabilities

and resources, and possible interaction models are left

for future work.

6 Conclusion

This paper presented a real-time tracking approach,

enabling a swarm of mobile robots to follow multiple

moving targets while forming regular triangle meshes

through local interactions. The proposed algorithms are

distributed and deadlock free, without requiring any
leader, identifiers, common coordinate system, memory

of previous states, or explicit means of communication.

We also addressed practical design and hardware imple-

mentation of the proximity DRIr sensors that provide
robots with full 360 degree azimuth scanning capabil-

ity. By employing a pair of DRIr sensors, each robot

could obtain relative positioning information as well as

the surface geometry of neighboring robots. The major

contribution of this work can be summarized as follows:
1) The convergence properties of the proposed track-

ing algorithm were proven mathematically, and veri-

fied through extensive simulations and real robot ex-

periments. 2) A new proximity sensor was developed.
Its features include low cost, high reliability, and easy

integratability into commercial mobile robots. 3) The

proposed algorithm and devices can be effectively ap-

plied to mobile robotic sensor networks for surveillance

missions or capturing toxic and hazardous substances.
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