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Weakly-non-overlapping non-collapsing shallow term
rewriting systems are confluent

Masahiko Sakai®, Mizuhito Ogawa®

% Graduate School of Information Science, Nagoya University,
Furo-cho Chikusa-ku Nagoya, 464-8603 Japan
b Japan Advanced Institute of Science and Technology,
1-1 Asahidai Nomi Ishikawa, 923-1292 Japan

Abstract

This paper shows that weakly-non-overlapping, non-collapsing and shallow term
rewriting systems are confluent, which is a new sufficient condition on confluence
for non-left-linear systems.
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1. Introduction

Confluence, which guarantees the uniqueness of a computation, is an impor-
tant property for term rewriting systems (TRSs). This property is undecidable
not only for general TRSs, but also for flat TRSs [Mitsu06] and length-two string
rewrite systems [Sakai08]. It becomes decidable if TRSs are either right-linear
and shallow [Godoy05], or terminating [KB70].

For left-linear TRSs, many sufficient conditions have been studied: non-
overlapping [Rosen73], parallel-closed [Huet80], and their extensions [Toyama&7,
Oostrom95, Gramlich96, Oyama97, Okui98, Oyama03].

However, the analysis of non-left-linear TRSs is difficult and only few suf-
ficient conditions are known: simple-right-linear TRSs (i.e., right-linear and
non-left-linear variables do not appear in the rhs) such that either non-E-
overlapping [Ohta95] or its conditional linearizations are weight-decreasing join-
able [Toyama95]. Without right-linearity, Gomi, Oyamaguchi, and Ohta showed
sufficient conditions: strongly depth-preserving and non-E-overlapping [Gomi96],
and strongly depth-preserving and root-E-closed [Gomi98].

This paper shows that weakly-non-overlapping, non-collapsing and shallow
TRSs are confluent, which is a new sufficient condition for non-left-linear and
non-right-linear systems.

2. Basic notion

We assume that readers are familiar with basic notions of term rewriting
systems. The precise definitions are found in [Baader98].
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2.1. Abstract reduction system
For a binary relation —, we use <, — T and — * for the symmetric closure,

the transitive closure, and the reflexive and transitive closure of —, respectively.
We use o for the composition operation of two relations.

An abstract reduction system (ARS) G is a pair (V,—) of a set V and a
binary relation — on V. If (u,v) € — we say that u is reduced to v, denoted
by u — v. An element u of V is (G-)normal if there exists no v € V' such that
u — v. We sometimes call a normal element a normal form.

Let G = (V,—) be an ARS. We say G is finite if V is finite, confluent if
—%o—"C —="o«" and Church-Rosser (CR) if <" C —" o« ". It is well
known that confluence and CR are equivalent.

We say G is terminating if it does not admit an infinite reduction sequence.
We say G is convergent if it is confluent and terminating. A cycle of G is a
reduction sequence ¢ — 1 t. An edge v — wu is called an out-edge of v and

an in-edge of u. Note that a node v having no out-edge is normal. We say G
is connected if uw —* v for every u,v € G. We say G' (C G) is a connected

component of G if G’ is connected and u " v for any u € G’ and v € G\ G'.

2.2. Term rewriting system

Let F be a finite set of function symbols with fixed arity, and X be an
enumerable set of variables where F N X = (). By T(F, X), we denote the set of
terms constructed from F and X. Terms in T(F, () are said to be ground.

The set of positions of a term ¢ is the set Pos(t) of strings of positive integers,
which is defined by Pos(t) = {e} if ¢ is a variable, and Pos(t) = {e} U {ip | p €
Pos(t;),1 <i < n}ift = f(t1,...,tn) (0 < m). We call € the root position.
For p € Pos(t), the subterm of ¢ at position p, denoted by t|,, is defined as
t|lc =t and f(t1,...,tn)]|iqg = tilq. The term obtained from t by replacing its
subterm at position p with s, denoted by t[s],, is defined as t[s]. = s and
Ft1s.oitn)slig = f(t1, ..o tic1, tilslg, tiga, - .- tn). The size |t| of a term ¢
is |Pos(t)|. We use Args(t) for the set of direct subterms (or arguments) of a
term ¢ defined as Args(t) = 0 if ¢ is a variable and Args(t) = {t1,...,tn} if
t=f(t1,...,tn) (0 < n). For aset T of terms, Args(T') = J,c Args(t).

A mapping 6 : X — T(F, X) is called a substitution if its domain Dom(6) =
{z | 6(x) # x} is finite. A substitution # is naturally extended to the mapping
on terms by defining 0(f(¢1,...,tn)) = f(0(t1),...,0(t,)). The application 0(t)
of a substitution # to a term ¢ is denoted by t6.

A rewrite rule is a pair (I, r) of terms such that [ ¢ X and every variable in
r occurs in [. We write [ — r for the pair. A term rewriting system (TRS) is a
set R of rewriting rules. The reduction relation - on T(F,X) induced by R is

defined as follows; s - t if and only if s = s[lo], and t = s[ro], for a rewriting

rule I — r € R, a substitution o, and p € Pos(s). We sometimes write s % t



g(b) <= [f(b,b) < f(a,b) — fla,a) — g(a)
A G = <V1,H1>

g(b) by f(bab) s f(aab) 2 f(ava) g(a)
a) /

B. GQ = <Vv2,4>2>

Figure 1: R1-Reduction graphs

to indicate the rewrite step at the position p. Let s % t. It is a top reduction

. . ol . . . . e<
if p =¢. Otherwise it is an inner reduction, written as s ? t.

A term is shallow if |p| is 0 or 1 for every position p of variables in the term.
A rewrite rule [ — 7 is shallow if [ and r are shallow, and collapsing if r is a
variable. A TRS is shallow if its rules are all shallow. A TRS is non-collapsing
if it contains no collapsing rules.

Let [ — r1 and lo — 7o be rewrite rules whose variables have been renamed
so that variables in the former rule and those in the latter rule are disjoint.
Let p be a position in {1 such that l1|, is not a variable, and let 6 be a most
general unifier of 11|, and l. (r16, (110)[r20],) is a critical pair except that p = ¢
and the two rules are identical (up to renaming variables). A TRS is weakly
non-overlapping if every critical pair consists of the identical terms.

3. Reduction graph

In this section, we introduce the notion of reduction graphs: finite graphs
that represent reductions on terms. We will show confluence by a transformation
(in Section 4) from a given reduction graph into a connected and confluent
reduction graph that contains nodes of the former reduction graph.

Definition 1. Let R be a TRS over T(F, X). An ARS G = (V,—) is an R-
reduction graph if V' is a finite subset of T(F, X) and — C re

Example 2. Consider a weakly-non-overlapping non-collapsing shallow TRS
Ry ={ f(z,z) — g(x), a = b, b — a }. The Ry-reduction graph G; = (V;, —1)
shown in Figure 1 A. is terminating but is not confluent. The R;-reduction
graph G2 = (Va2, —3) shown in Figure 1 B. is convergent.

We say a mapping § : V' — V is a choice mapping of G = (V, —) if v — * §(v)
and v <" v = d(v) = §(V) for all v,0" € V.

Proposition 3. Let G = (V,—) be an R-reduction graph. Then,
(1) G is confluent if and only if it has a choice mapping.



(2) G is terminating if and only if it has no cycles.
(3) If G is convergent then it has a unique choice mapping whose range is the
set of G-normal forms.

Proof. (1) Since “<=-direction” trivially holds from the definition of choice map-
pings, we show “=--direction”. First we show the following claim:

Let G = (V,—) be a non-empty, connected and confluent reduction
graph. Then there exists a node v with Vv’ € Vo' —* v.

Let [[v]| = {w | w € V, w 4™ v}|, i.e., the number of nodes that cannot
reach v. Assume that the claim does not hold. Let v be a minimal node with
respect to ||v]], then [|v]| > 0 and there exists a node w such that w 4" v.
There exists a node u such that w —* u «* v from confluence. Since every

node having a path to v has a path to u, and w has no path to v but a path to

u, we obtain ||u|| < ||v]|, which is a contradiction to the minimality of v.
Second we construct a mapping 6 : V' — V. By the preceding claim, for

every connected component G; of G there exists a node u; reachable from all

nodes in G;. Thus it is enough to define 0 as §(v) = u; for nodes v of G;.

(2) The statement follows from the finiteness of V.

(3) Assume that §; and do are different choice mappings. Then there exists a

node u such that d;(u) # d2(u). From termination property these terms &y (u)

and d2(u) are both normal forms, which contradicts confluence. O

From the previous proposition, if a reduction graph G = (V, —) is conver-
gent, then the choice mapping is equal to the function that returns the G-normal
form of a given term. We denote the choice mapping by |; sometimes we also
denote v] instead of [(v). We use this notation also for substitutions o: o] is
defined by z(c]) = (zo)] for x € Dom(o) and zo € V.

Proposition 4. Let (V,— ) be a convergent reduction graph. If v,0' € V

satisfies that v is — -normal and v' /7 v, then — U {(v,v")} is convergent.

Proof. Let —,, = {(v,v’)} and — 4, = —; U —,. First we show the termina-
tion. Assume that —; U — ;, is not terminating. Since V is finite and —; is
terminating, any cycle contains the edge (v,v’) and hence v" — 7 v, which is a

contradiction to (2).
Second we show the confluence. Let s — 3 ¢; (i = 1,2). Each sequence s — 3

t; contains the edge — 1, at most once (from (2)). We can assume that only one
sequence contains (v,v’) from confluence of —; ¢ <7 s =] v —450 —7 ta.

Then t; — 7 v from the confluence of — | and (1). Therefore t; — 35 to. O



(del):

—1; —2

=1\ {(loyro)}; —2

ifl =r€eR, (lo,ro) € =1, l(o]) <35 r(c])

(mOV): —1; —2 . ZHTGR7 (lO’,T’O’) E4)17

=1\ {(lo,ro)}; =2 U{(l(c]),r(c]))} if lol),r(cl) € Va, I(c]) 5 r(a])

Figure 2: Basic-transformation rules

b PN .
1 2’

A, Gl/ = <V1/’—>1/> B G2/ = <‘/2/7*>2/>

Figure 3: Rj-Reduction graphs in the transformation

4. Confluence of weakly-non-overlapping shallow systems

Theorem 5. Weakly-non-overlapping, non-collapsing and shallow TRSs are
confluent.

This is the main theorem, which directly follows from the next key lemma
proven in Section 5 based on a transformation Conv. The transformation gives
convergence to a given reduction graph, but neither removes nodes nor divides
connected components. (See Example 12)

Lemma 6. Let R be a weakly-non-overlapping non-collapsing shallow TRS. For
any R-reduction graph G1 = (Vi,—1), there exists a convergent R-reduction
graph Go = (Va, —2) such that Vo D V4 and <5 2 7.

4.1. Basic transformation

Let (V1,—4) and (Va,—,) be R-reduction graphs, and let | be a partial
function on terms. A basic transformation step [—,; — o] F [— 1 ; — o] is an
application of a rule shown in Figure 2. We sometimes display the name of a
rule at the suffix of F.

Example 7. Consider —5 of G5 in Figure 1 B. Let | be the choice mapping of
Gor in Figure 3 B. Then

[{(f(a,a),g(a)), (f(b,b),g(b))}, =2\ {(f(b,b),9(b))}]
F(mov) [{ (f(ba b)a g(b))}v *)2] F(del) [@, 4’2]'
Lemma 8. Let (Vi,—1) and (Va,—3) be R-reduction graphs of a TRS R. For

a basic transformation [— 1 ; — 5] F [—= 1 ; — o], the following statements hold.

(1) The convergence of — 5 is preserved if the rule (del) is applied or l(c]) is

— 5-normal.



(2) Iflo (<1 Uey)" l(o]) and ro (<1, U o))" r(ol), then (< U )" =

(o Uey)n

Proof. To prove (1), it is enough to consider an application of the rule (mov).
Since I(0]) is — y-normal and I(c|) ¢ 5 r(c]), Proposition 4 implies this claim.

For (2), note that the basic-transformation holds: A. —1 = —1 U{(lo,ro)},
B. =, U{(l(a]),r(c]))} 2 =2, B =2 € =y, and C. I(0]) <35 r(o]).

(2): We have —1/ U =9 € —1 U —2 U{(l(c]),r(c]))} from A. and B. Since
l(o]) (o Uey)* lo = ro (& Uey)" r(o]) from A., we have (o))

(=1 U 5)* r(o]) from A. Therefore (<, U< 5)* D (<1, U y)*.

(©): We have -, U—, C — 4, U{(lo,ro)} U —, from A. and B’. Since
lo (& Ueo) (o)) <35 r(ol) (<1 Uey)* ro from C., we have (lo,ro) €
(1, U o)* from B’. Therefore (<« U 5)* C (1, U o))" O

4.2. Procedures
For an R-reduction graph G = (V, =), let = = —n % and 5 = —n EE>< )

Remark that an edge (s,t) € — may belong to both = and 5. For example,

consider rules a — b and f(z,2) — f(b,a), and an edge (f(a,a), f(b,a)).
The monotonic extension of a reduction graph G7 = (V1, —1) is a reduction
graph Go = (Va2, —3) where

ng{f(sl,...,snﬂfEF, sieVl},
=2 ={(f(-s), f(ot-2)) [ 5,0 €VA, 5 =1 B}

Example 9. The monotonic extension of Gy in Figure 3 B. is a subgraph
Gz = (Va,—2 \{(f(b,b),g(b))}) of G2 in Figure 1 (b).

We can easily show the following proposition on a monotonic extension.

Proposition 10. Let Go = (Va, —3) be the monotonic extension of a reduction
graph Gy = (Vi,—1). Then,

(1) f(---s---) € Va and s — 7 t together imply f(---t---) € Va,

(2) Vi 2 Args(V) implies Vo 2V for any V C T(F, X), and

(3) both termination and confluence are preserved by this extension.

Procedure Merge is shown in Figure 4. If a TRS R is weakly non-overlapping,

the output Go = (Va,—,) is convergent, Vo D Vi, and (<, U< 3)* = <3
(Lemma 14).

Example 11. For a subgraph Gy = (V4, N 1) of Gy in Figure 1 A. and the

graph Gy in Figure 3 B., Mergey (G17,Go) produces Gz in Figure 1 B. The
steps M1 and M2 are demonstrated in Examples 9 and 7, respectively.



Procedure: Merge(G1,Gy/)

Input: A non-collapsing shallow TRS R, an R-reduction graph G = (V1,—1) and
a convergent R-reduction graph Gy = (Vi/,—1/) such that —, = =, and

Vi 2 Args(V1). Let | be the choice mapping of Gy/.
Output: An R-reduction graph Go.
M1 Compute the monotonic extension Gs = (V3, —3) of Gy and set V2 := V3.

M2 Do basic transformations from [—1 ; —3] until the first item is empty.
Let [0 ; —2] be the result.

M3 Output G2 = (Va, —2).

Figure 4: Procedure Merge

Procedure: Convg(Gh)
Input: A non-collapsing shallow TRS R and an R-reduction graph G1 = (Vi,—1).
Output: An R-reduction graph Go.

C1 If 55, = 0, output the reduction graph G2 = (Va,—2) obtained from
Merge 5 (G1, (Args(V1),0)) and stop.

C2 If55, # (0, construct an R-reduction graph Gy = (Vi —/):

Vir = Args(V4)

—p= {(Si,ti) e Vir x Vy, | flsi,..., Sn) s 1 f(ta, ... ,tn), Si # ti}.
C3 Invoke Convg(Gy/) recursively. Let Go be the resulting reduction graph.
C4 Output G = (Va, —2) obtained from Merge((Vi, =), Ga) and stop.

Figure 5: Procedure Conv

Procedure Conv is shown in Figure 5. If a TRS R is weakly non-overlapping,
the output Go = (Va, —3) is convergent, Vo 2 V3, and <5 2O <] (Lemma 6).

Example 12. For GG in Figure 1 A., the steps Convg, (G1) are as follows.

1. The step C2 constructs the reduction graph Gy, in Figure 3 A..

2. The step C3 produces a convergent R-reduction graph Go (in Figure 3 B.)
from Gy by applying Convpy, recursively.

3. The step C4 obtains Gy by Mergep (G17,Gor) as shown in Example 11.

5. Proof of Lemma 6

Proposition 13. Let R be a weakly-non-overlapping shallow TRS, and let Gs =
(Va,—4) be the monotonic extension of a convergent R-reduction graph G1 =
(Vir,— 1) having the choice mapping |. A node v € Vs is a Gs-normal form if
v=1I(cl) for somel —r € R and a substitution o such that l(c|) /4 r(c]).



Proof. Assume that [(c]) is not a Gz-normal form. Since [ is shallow and
G is a monotonic extension, ¢; — ;, s for some ground direct subterm ¢; of

l = f(t1,...,t,) and s € Vi,. Since weakly-non-overlapping, we have l(c]) =
Flotio-) o)) Sy f(---5---)(o]) = (o)), contradicting the premise. O

Lemma 14. Let R be a weakly-non-overlapping non-collapsing shallow TRS.
If Gy and Gy satisfy the input conditions of Merge, the reduction graph Gs =
(Va, —2) obtained by Merger(G1,G1/) is convergent and satisfies Vo O Vi and
(=1 U g)" =35, where Gs = (V3,—3) is the monotonic extension of Gyr.

Proof. First we have Vo D V4, since Vo = V3 and V3 O V; by Proposition 10 (2).
Second we show that the transformation in Step M2 of Merge continues until
the first item empty. Since G is an R-reduction graph with —, = 5 1, every

pair in — is represented as (lo,r0) for some | — r € R and a substitution

o. Thus, it is enough to see that I(c]) and r(c|) are in V3 (= Vo 2 V4). This
follows from shallowness of [ and r, xo — 7}, 2(0]|), and Proposition 10 (1).

Now we can represent the sequence as [—1 ; —3] = [—1, ; —2,) F [—1, ;
—o, | bk [=1, 5 —2,] = [0 ; —2]. Note that Vi» O Args(Vi) and — 3 C —, .

Third we show the convergence of G5 and (< U« 3)* = < 5. By induction

on ¢, we will prove the following claims for each 0 < i < k:

(1) —,, is convergent,

(2) (=1 U <_’3)* = (& 1, Y <—’2i)*a and

(3) =2, \ =2 C—=3C =y,
(Case i = 0): G3 = (V3,—3) is convergent by Proposition 10 (3). Thus, the
claims (1), (2), and (3) follow from —3 = —9, and —1 = —1,,.
(Case i > 0): Let [—1, , ; —2,_,] F [—1, ; —2,;]. Then —q,_, is convergent by
induction hypothesis. To prove the claim (1), from Lemma 8 (1) it is enough

to consider when (mov) is applied, and show that {(c]) is —3, ,-normal. From
the side condition of (mov), we have I(c]) /2, , r(c]) and hence

e [(0]) has no out-edges in 327’71, since R is weakly non-overlapping,

e Since —3 C —9, |, we have [(c]) 3 r(o]). From Proposition 13, I(c])
is Gi3-normal. By the induction hypothesis —, '\ 521_71 C —g3, (o))

. €
has no out-edges in —,,_ \ —, .

The claim (2) follows from Lemma 8 (2), if lo <5 l(o]) and ro <35, |
r(ol). Since zo — 7, x(0]), — 5 is the monotonic extension of — /,, and [ and
r are shallow, we have [0 — 3 I(0]) and 70 — 3 r(c]). Then, lo —5 _ I(c])

and ro — 5. r(o]) follow from the induction hypothesis —3 C —o, .



The claim (3) holds if — \527’ C—y, \ S 9,, and —,  C —,. The

former holds, since only top reductions can be added. The latter also holds,
since no edges are removed from —,._ . O

Proof. (of Lemma 6) It is enough to show that the reduction graph Go obtained
by invoking Convg, (G1) satisfies Vo D V4 and <5 O « . This is proved by

induction on the total size of terms in V.

Case 1. Assume that edges of G are all due to top reductions of R. Then, C1 of
Conv occurs and we obtain G = (Va, —2) by invoking Merge (G, (Args(V1), 0)).
From Lemma 14, G5 is convergent and V5 2 V;. Since the monotonic extension
of (Args(V1),0) has no edges, we have <35 = <] from Lemma 14.

Case 2. Assume that some edges are due to inner reductions of R. Then,
C2-C4 of Conv occur. By induction hypothesis Gor = (Var, —o/) is convergent
and satisfies the conditions that A. Vor O V3, and B. <3, O < 7,. Note that

Vor 2 Vir = Args(V1) from A. From Lemma 14, G5 is convergent, V5 2 V4, and
(&, U 3)* =« 5, where G3 = (V3, —3) is the monotonic extension of Gy,

Now we show that <5 D . Let s = f(-+-, 8/, ) 55, f(-oo /- ) =1t
From s’ — 4, t' and B., we have s’ <3, t/. Thus, we obtain s <} ¢.

Therefore % = (S, US ) C (S, U= = (S, Uo) =« O
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