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Abstract

In recent years, a number of noise reduction methods based
on empirical mode decomposition (EMD) have been pro-
posed in the field of speech signal processing. However, these
methods cannot effectively reduce noise components from
noisy speech they lack useful prior knowledge related to the
noise characteristics. Moreover, because they reduce only the
higher frequency components of noise, the overall effect on
noise reduction seems to be insufficient. Our aim was to de-
velope a speech signal analysis method that can adequately
analyze non-stationary speech signals in time-frequency do-
mains. We investigated the properties of an analysis method
for non-stationary signals based on EMD and the characteris-
tics of AM-FM representations in the intrinsic mode function
(IMF) and have subsequently developed a method of noise
reduction based on our investigations. Simulations were con-
ducted to determine whether or not the proposed method can
effectively reduce noise components from noisy speech. Re-
sults demonstrate that it can do so adequately.

1. Introduction

Currently, the Fourier transform and the wavelet transform
are the standard techniques used to analyze signals in time-
frequency analysis. These methods can analyze the tempo-
ral spectral fluctuations of the signal in the time-frequency
domains, but only if the analytical signal is assumed to
be stationary. Realistic signals (i.e., electroencephalogram
(EEG) signals, seismic waves, speech signals, etc.) are non-
stationary signals so these methods cannot precisely analyze
the non-stationary fluctuations of the instantaneous amplitude
and the instantaneous phase of the signal.

In recent years, the empirical mode decomposition (EMD)
technique [1], originally proposed by Huang et al., has been
used for analyzing non-stationary signals. This technique can
analyze EEG signals and explore the source of seismic waves,
and it is currently being applied to speech signal processing.
In particular, EMD-based noise reduction methods have been
proposed to reduce musical noise [2] from restored speech
and to classify robust voiced/unvoiced signals in noisy envi-
ronments [3].

Because speech signals are generally non-stationary,

speech representation based on EMD seems to be more
suitable that conventional methods in terms of representing
speech features such as non-stationary fluctuations. How-
ever, it is unclear how or if noisy speech can be represented
as suitable forms (separately speech and noise), and it is also
unclear whether these speech and noise components can be
completely separated in the representations. Because these
previously proposed methods [2, 3] use particular IMFs cor-
responding to noise components in speech in which the noise
is to be reduced, they can remove IMFs of non-stationary
speech by reducing the noise components on these represen-
tations.

We investigated the properties of the analysis method for
non-stationary signals using EMD and the characteristics of
the decomposed intrinsic mode function (IMF). We then ex-
amined the possibility of using EMD to reduce the noise in
noisy speech signals.

2. Empirical Mode Decomposition (EMD)

2.1. Signal representation using EMD

EMD decomposes signal x(t) into IMFs, ck(t), and negli-
gible residue r(t). x(t) is represented as follows.

x(t) =
K∑

k=1

ck(t) + r(t) (1)

where k represents the channel number and K represents the
number of IMFs. Here, the IMF must satisfy two conditions:
(1) in the entire data set, the number of extrema and the num-
ber of zero crossings must either equal or differ at most by
one, and (2) at any point, the mean value of the envelope de-
fined by the local maxima and the envelope defined by the
local minima is zero. K depends on the characteristics of the
analytical signal so all signals may not have the same K .

Figure 1 shows the problem analysis diagram (PAD) of
the EMD algorithm. In this algorithm, upper envelope u(t)
and lower envelope l(t) are obtained from local maxima and
local minima, respectively, by using cubic spline interpola-
tion. Next, the mean value between u(t) and l(t) is subtracted
from the original signal while mean value is not zero. Finally,
while the IMF satisfies the two constraints, the original signal



Figure 1: PAD of the empirical mode decomposition
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Figure 2: Mixed signal y(t) composed of non-stationary sig-
nal x(t) and stationary signal n(t)

is decomposed into IMFs by repeating these subtractions, as
shown in Fig. 1.

2.2. Properties of EMD

In this section, we investigate the properties of EMD and
the characteristics of the decomposed IMFs. First, we study
how the IMFs are derived by the EMD algorithm. The mean
value between the upper and lower envelopes is subtracted
from the signal to derive the first IMF. This step is repeated
while the mean value is not zero to derive the kth IMF. It can
thus be understood that the decomposed IMFs are obtained
with the intent of grouping them in a common envelope. In
this case, the IMF can be matched to slow or fast fluctuations
in the envelope.

Next, we investigate the characteristics of the decomposed
IMFs. The first constraint indicated that IMFs must be a sig-
nal that alternates the extreme value and zero crossing in turn.
This suggests that the IMFs are represented as an FM-signals
without any band-limitation because there is no limitation
of the pair-frequency of the extreme value and zero cross-
ing. The second constraint indicated that the IMFs must have
the same upper and lower envelopes. This suggests that the
IMFs are common AM-signals. In summary, the decomposed
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Figure 3: Decomposition of y(t) (IMFs, ck(t))
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Figure 4: Resynthesized signals x̂(t) and n̂(t)

IMFs can be regarded as AM-FM signals based on common-
envelope decomposition.

2.3. Example of signal analysis using the EMD

We examined an example of signal analysis using EMD for
the following mixture: y(t) is composed of non-stationary
signal x(t) and stationary signal n(t), as shown in Fig. 2.
The decomposed IMFs of y(t), c1(t), c2(t), · · ·, and c4(t),
are shown in Fig. 3. Based on our investigations in Sec.
2.2, c1(t) can be regarded as a stationary signal with a con-
stant envelope while the other IMFs c2(t), c3(t), and c4(t)
can be regarded as non-stationary signals. This means that
the first IMF, c1(t), seems to be n̂(t) and the summed IMF,
c2(t) + c3(t) + c4(t), seems to be x̂(t), as shown in Fig. 4.
This result demonstrates that the essence of signal analysis
based on EMD is to separate non-stationary signals from sta-
tionary signals during the signal representation procedure by
a common-envelope-based decomposition.

3. EMD-Based Noise Reduction Method

We next consider the applicability of sound analysis based
on EMD. In the previous section, we showed that EMD can
easily separate stationary and non-stationary signals on the
decomposed IMFs. With this advantage, we consider a sepa-



Figure 5: Proposed method

Figure 6: Channel selection of IMFs

ration of non-stationary speech signals and stationary white
noise as an application. An EMD-based noise reduction
method has already proposed by Molla & Hirose [3]. In this
method, they focus on energy distribution of noise in the de-
composed IMFs as prior knowledge to remove noise IMFs,
and they then mandatorily remove the first two IMFs (c1(t)
and c2(t)) to reduce the noise components. This method re-
sults in the reduction of only higher frequency components of
the noise and therefore seems to be insufficient.

We propose another approach to noise reduction based on
EMD, as shown in Fig. 5. In our method, the channel se-
lection of speech-IMFs and noise-IMFs, as shown in Fig. 6,
is combined with the conventional method to separate noise
IMFs from the decomposed IMFs. First, noisy speech y(t)
is decomposed by EMD. Next, temporal envelope ek(t) is
extracted from decomposed IMF ck(t), by the Hilbert trans-
form and low-pass filtering where the cut-off frequency is 20
Hz because modulation index (MI) of lower than 20 Hz is im-
portant for speech perception. Next, a modulation filterbank
(with a constant bandwidth filterbank) is used to analyze the
modulation characteristics of the IMF’s temporal envelope
ek,m(t). The MI of decomposed IMF Mk,m is determined
as

Mk,m =
max(ek ,m(t)) − min(ek ,m(t))

max(ek ,m(t)) + ek ,m(t)
(2)

Channel selection (Fig. 6) is used to clarify the decomposed
IMFs into speech IMFs and noise IMFs based on the modula-
tion characteristics in Eq. (2). Finally, the proposed method
resynthesizes restored speech x̂(t) as follows.

x̂(t) =
∑

k∈S

ck(t) (3)

where S is a set of speech IMFs.
We examine the differences between the characteristics of

the speech and noise IMFs. Here, we focus on the difference

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Modulation frequency [Hz]

M
od
ul
at
io
n 
In
de
x

 

 
Speech IMF
Noise IMF

Figure 7: Modulation index of speech and noise IMFs
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Figure 8: Evaluation result: improved SNR [dB]

between the modulation spectrum of speech and that of noise.
It is well known that the dominant modulation frequency on
the speech MI is roughly between 2 and 8 [Hz] [4], and we
classify the decomposed IMFs of noisy speech in relation to
these characteristics. The MIs of the speech IMF and noise
IMF are shown in Fig. 7. In the proposed method, speech
IMFs are defined as if the MI peak position is in a region
between 2 and 8 Hz and the MI peak value is over 0.25.

4. Evaluation

We conducted simulations to determine the effectiveness
of the proposed method compared with Molla & Hirose’s
method [3]. Thirty speech signals (each comprised of three
words from five males and five females) from the ATR
database a-set [5] were used in these simulations. White noise
was added to original speech signals to obtain noisy speech
signals with SNRs of −5, 0, 5, 10, 15, and 20 [dB]. An im-
proved SNR, I , was used to evaluate the amplitude informa-
tion as well as the signal’s phase information. Here, I is de-
fined as

I = 10 log10

∫
x̂2(t)dt∫
n̂2(t)dt

− 10 log10

∫
x2(t)dt∫
n2(t)dt

(4)

The proposed method and Molla & Hirose’s method were
applied to 30 noisy speech signals. Improved SNRs for both
methods were calculated by using Eq. (4). The results are
shown in Fig. 8. In a low SNR condition, the noise reduc-
tion was more effective in the proposed method than in Molla
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Figure 9: Noisy speech y(t) composed of original speech x(t)
and Gaussian noise n(t) (SNR = 0 [dB])

-1

0

1

c 1
(t

)

-1

0

1

c 2
(t

)

-1

0

1

c 3
(t

)

-1

0

1

c 4
(t

)

-1

0

1

c 5
(t

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-1

0

1

c 6
(t

)

Time [s]

Figure 10: Decomposition of noisy speech y(t) (the first six
IMFs: c1(t), c2(t), · · ·, and c6(t))

& Hirose’s method. In a high SNR condition, Molla & Hi-
rose’s method exhibited a speech signal that was over-filtered,
which resulted in a restored signal that was corrupted due to
over-subtraction. In the same condition, the proposed method
reduced the noise components from noisy speech without
distortion, because it uses channel selection to reduce only
noise-IMFs in the decomposed IMFs.

We illustrate an example of noise reduction using the pro-
posed method. A noisy speech y(t) with a SNR of 0 dB is
shown in Fig. 9. The noisy speech is decomposed by EMD
and the decomposed IMFs (the first six) are then obtained,
as shown in Fig. 10. These results demonstrated how EMD
decomposes noisy speech into stationary noise IMFs and non-
stationary speech IMFs. The proposed method reduced noise
components in the decomposed IMFs and then restored the
signal, as shown in Fig. 11.
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Figure 11: Restored signal x̂(t)

5. Conclusion

We investigated the properties of an analysis method based
on EMD for non-stationary signals and found that the essence
of this method is to represent non-stationary signals as an
AM-FM decomposition based on a common temporal enve-
lope. We then investigated the characteristics of the decom-
posed IMFs from the noisy speech signal and found that EMD
decomposes noisy speech into two separate IMFs, speech and
noise. We used these findings to develope a noise reduc-
tion method based on EMD and then conducted simulations
to evaluate its effectiveness in reducing noise components in
noisy speech. Results demonstrate that non-stationary speech
and stationary noise can effectively be separated by using our
proposed method.
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