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Abstract We discuss the fundamental problems and practical issues underlying the

deployment of a swarm of autonomous mobile robots that can potentially be used

to build mobile robotic sensor networks. For the purpose, a geometric approach is

proposed that allows robots to configure themselves into a two-dimensional plane with

uniform spatial density. Particular emphasis is paid to the hole repair capability for

dynamic network reconfiguration. Specifically, each robot interacts selectively with two

neighboring robots so that three robots can converge onto each vertex of the equilateral

triangle configuration. Based on the local interaction, the self-configuration algorithm

is presented to enable a swarm of robots to form a communication network arranged in

equilateral triangular lattices by shuffling the neighbors. Convergence of the algorithms

is mathematically proved using Lyapunov theory. Moreover, it is verified that the self-

reparation algorithm enables robot swarms to reconfigure themselves when holes exist

in the network or new robots are added to the network. Through extensive simulations,

we validate the feasibility of applying the proposed algorithms to self-configuring a

network of mobile robotic sensors. We describe in detail the features of the algorithm,

including self-organization, self-stabilization, and robustness, with the results of the

simulation.

Keywords robot swarms · local interactions · equilateral triangular lattice ·
self-configuration · self-reparation

1 Introduction

With the advance of mobile networking technology, much attention has been paid

to the use of a swarm of simple robots having mobility and wireless communication
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Fig. 1 Deploying networked robots with uniform spatial density

capabilities [1][2]. Mobile robotic sensors can be expected to be used in real applications

such as environmental or habitat monitoring, exploration, search-and-rescue, and so

on. These applications are performed within an area of interest that should be properly

covered by robots [3][4]. It is therefore necessary to coordinate the positions of robots,

since their sensing and communication ranges are usually limited to a small area.

Recently, a decentralized control for robot deployment has been reported in the field

of swarm robotics. These works can be broadly classified into global and local strategies

according to whether global state information is available to all robots. Global strategies

[5]-[9] may provide accurate deployment, but lack scalability. On the other hand, local

strategies are based on interactions between individual robots observed from social

organisms such as colonies of ants or schools of fish, or physical phenomena such as

crystallization. Local strategies can be further divided into biological emergence [10]-

[14], behavior-based [15][16], and virtual physics-based [17]-[28] approaches. Many of

the behavior-based and virtual physics-based approaches used such physical phenomena

as electric charges [17], gravitational forces [18][19], springs [20]-[22], potential field

[23][24], and other virtual force models [25]-[28]. Those works mostly use a force balance

between inter-individual interactions exerting an attractive or repulsive force onto all

the robots within a certain range, which might over-constrain individual robots and

frequently lead to deadlocks.

To overcome the above-mentioned problems, we propose a self-configuration con-

trol that constructs a communication network composed of equilateral triangle lattices

as shown in Fig 1. Based on partially connected mesh topology [29][30], the proposed

method can take advantage of the redundancy provided by a fully connected network

topology without the expense and complexity of networking processes. In [21][22], par-

tial graph pairs of robots were proposed that exert virtual spring forces onto each other

when their connection is part of the graph. Our approach can reduce the number of

deployed robots in a given location compared with their approaches, and configure

more energy-efficient routing protocols than those of randomly deployed robots [31].

The main contribution of this work lies in establishing the selective local inter-

action among neighboring robots that forms a network of equilateral triangles over a

two-dimensional plane. It moreover provides the hole repair capability and improves

the network connectivity by increasing the number of robots positioned at the uniform

distance. Regarding the convergence of the proposed algorithms, energy-like scalar
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Fig. 2 Three network topologies: (a) triangle, (b) square, (c) hexagon

functions based on Lyapunov theory are utilized [32]-[35], leading to asymptotic stabil-

ity of the desired configuration from an arbitrary distribution. Both individual behavior

of robots and overall shape of the swarm can be coordinated with scalability.

The rest of this paper is organized as follows. Section 2 presents the assumptions

about the robot and the definitions of the self-configuration problem. Section 3 de-

scribes the fundamental motion planning concept through the selective local interac-

tion with neighboring robots and the convergence property of the proposed interaction

model. Section 4 presents the convergence of the algorithm for a swarm of n (that is

greater than 3) robots utilizing the collective scalar function which is a diminished

energy function with a scalar potential. Section 5 provides the results of simulations

and discussion. Section 6 draws conclusions.

2 Background and Problem Statement

2.1 Network Topology

We discuss three basic networking patterns of different geometries. By comparing these

patterns, we explain the features of the equilateral triangular lattice characterized by

our proposed model. Each of the patterns consists of 24 robots with communication

capabilities as shown in Fig. 2. It is assumed that robots are deployed with the same

uniform density du so that direct communication is available between neighboring

robots. Each robot ri has six, four, and three neighboring robots uniformly located

around itself, yielding the geometry of triangle, square, and hexagon, respectively.

Given the same number of robots, we compare the coverage area, coverage density [39],

and k connectivity [40][41] of the network. The coverage area of each triangular lattice

is
√

3
4 du

2. n robots can cover approximately an area of less than
√

3
2 ndu

2. Similarly,

the same number of robots arranged in square lattices and hexagonal lattices can

cover approximately an area of ndu
2 and 3

√
3

4 ndu
2, respectively. Secondly, the coverage

density can accordingly be obtained by dividing the number of robots by the coverage

area. Each density of triangle, square, and hexagon are approximated to be 1.2
du

2 , 1
du

2 ,

and 0.77
du

2 , respectively. Finally, k connectivity represented by the number of neighbor

robots indicate six in the triangular lattice, four in the square lattice, and three in

the hexagonal lattice. It is evident that the hexagonal lattice provides the best spatial
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coverage with the same number of robots. In contrast, the triangular lattice provides

enhanced coverage density and k connectivity while trading off the coverage range.

Thus, it is our goal to construct an equilateral triangular lattice toward an efficient

and robust network covering an assigned area.

2.2 Robotic Model

We consider a swarm of autonomous mobile robots r1, · · · , rn. It is assumed that an

initial distribution of all robots is arbitrary and distinct. Each robot is modeled as

a point with orientation, that freely moves on a two-dimensional plane with limited

ranges of sensing. They have no identifiers and do not share any common coordinate

system. They do not retain any memory of past states or actions, which gives inher-

ently self-stabilizing property1 [5], provided that no two robots are exactly identical

(i.e., having both the same initial position and the same local coordinates). They can

detect the position of other robots in close proximity, but are not allowed to commu-

nicate explicitly with them. Each of the robots executes the same algorithm, but acts

independently and asynchronously from other robots.

2.3 Notations and Formal Definitions

This part gives notations and formal definitions used throughout the paper. The dis-

tance between the robot ri’s position pi and the robot rj ’s position pj is denoted as

dist(pi, pj). Denote a constant distance as du that is finite and greater than zero. Each

robot has a limited sensing boundary SB. Then ri detects the position of other robots

{p1, p2, · · ·} located within its SB, and makes the set of the observed positions Oi with

respect to its local coordinate system. Now ri can select two robots s1 and s2 from Oi

and denote their positions as ps1 and ps2, respectively. We call s1 and s2 the neighbors

of ri and denote the set of their positions {ps1, ps2} as Ni.

Definition 1. (Triangular Configuration) Given pi and Ni, a triangular con-

figuration is defined as a set of three distinct positions {pi, ps1, ps2} denoted by

Ti = {pi, ps1, ps2},

where we define the internal angle of ri as αi, which is ∠ps1pips2 (or ∠ps2pips1).

When robots form Ti, the following definition can be addressed:

Definition 2. (Equilateral Configuration) Among Ti, we define an equilateral

configuration Ei, provided that all the possible distance permutations dist(pπ(i), pπ(j))

are equal to du. (It can also be expressed in the following way. Given Ti whose internal

angles are all the same, we call such Ti an equilateral configuration.)

Now we need a measure indicating to which degree Ti is configured into Ei as fol-

lows:

1 Self-stabilizing system, when started from an arbitrary initial state, always converges to-
ward a desired behavior [37][38].
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Definition 3. (Distance Matrix) Given Ti, we can express all the possible distance

permutations among robots as the following matrix termed the distance matrix with

respect to ri.

Di =















(

dist(pm, pn) − du

)2

if m 6= n

0 otherwise

(1)

where {{pm, pn}| pm, pn ∈ Ti = {pi, ps1, ps2}}.

We will denote (dist(pm, pn) − du)2) for simplicity as (dk − du)2.

Using Ti and Ei, we can define the local interaction as follows:

Problem 4. (Local Interaction) Given Ti, the local interaction is to have ri main-

tain du with Ni at each instant in time toward forming Ei.

Based on the local interaction that allows three robots to converge into Ei, Self-

Configuration Problem by a swarm of mobile robots can be stated as follows:

Problem 5. (Self-configuration) Given a swarm of robots r1, · · · , rn with arbitrar-

ily distinct positions in a two-dimensional plane, all robots can configure themselves

into Ei without irregularities such as holes through the local interaction after a finite

number of activation steps.

Each robot can either be idle or execute the interaction, repeating recursive acti-

vation at each cycle. They compute their movement position (computation), based on

the positions of other robots (observation), and move toward the computed position

(motion). Here, the motion of each robot is controlled by the first-order linear differ-

ential equation for the distance from the centroid of Ti, and for the internal angle of

Ti, respectively (see Section 3.3).

3 Local Interactions

This section describes the local interaction algorithm that enables three neighboring

robots to generate Ei from an arbitrary Ti (see Algorithm-1), and proves the con-

vergence of the algorithm.

3.1 Algorithm Description

The algorithm consists of a function ϕinteraction whose arguments are pi and Ni at

each activation. Consider the robot ri and its two neighbors s1 and s2 located within

ri’s SB. As shown in Fig. 3-(a), three robots are configured into Ti whose vertices are

pi, ps1, and ps2, respectively. As illustrated in Fig. 3-(b), ri finds the centroid pct of

the triangle △pips1ps2 with respect to its local coordinates, and measures the angle φ

between the line connecting two neighbors and ri’s horizontal axis. Using pct and φ, ri
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Algorithm-1 Local Interaction

constant du := uniform distance
FUNCTION ϕinteraction({ps1, ps2}, pi)
1 (pct,x, pct,y) := centroid(ps1, ps2, pi)
2 φ := angle between ps1ps2 and ri’s local horizontal axis

3 pti,x := pct,x + du cos(φ + π/2)/
√

3

4 pti,y := pct,y + du sin(φ + π/2)/
√

3
5 pti := (pti,x, pti,y)

Fig. 3 Illustration of Algorithm-1 (a) triangular configuration (Ti), (b) computation of the
target point

calculates the target point pti as described in Line 3 and Line 4 of Algorithm-1. Each

robot computes the target point at each instant in time by their current observation

of neighboring robots.

To assist the explicit understanding of the proposed local interaction, we explain

how the positions of three robots converge into Ei. Consider a triangle with three

vertices pa, pb, and pc that represent the position of three robots A, B, and C as

shown in Fig. 4. Let α, β, and γ denote the internal angles of the triangle, respectively.

Each robot located at the vertex of △papbpc moves to the new target position pta,

ptb, and ptc computed by Algorithm-1. The internal angles of △ptaptbptc are α′,

β′, and γ′, respectively. Let pct denote the centroid of △papbpc. Also, let p denote

the point projected from pct onto papb. Similarly, let q indicate the point projected

from pct onto papc. If we consider a quadrangle �pappctq, the angles of p and q are

right angles. Therefore, ∠ppctq becomes 180◦ − α. From Fig. 4, ∠ptbpctptc is equal to

∠ppctq. △ptbpctptc is an isosceles triangle since pctptb and pctptc is identical (du/
√

3 =√
3/2 × du × 2/3). Hence, α of △papbpc is equal to 2a in the figure. With the same

manner, β and γ become 2b and 2c, respectively. Moreover, we see that α′ of △ptaptbptc

is (β+γ)/2 (or equal to (b + c)). Likewise, β′ indicates (α+γ)/2 and γ′ does (α+β)/2.

Accordingly, α′ is given by (β + γ)/2. Now the relation between internal angles can be

rewritten as a function of time to give the following equation:

α(t + 1) = (β(t) + γ(t))/2

β(t + 1) = (γ(t) + α(t))/2

γ(t + 1) = (α(t) + β(t))/2

. (2)
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Fig. 4 Robots attempt to form an isosceles triangle at each time

where t and t + 1 represent the current time instant and the next time instant.

Similarly, the following equations hold:

α(t + 2) =
β(t+1)+γ(t+1)

2 =
α(t)
2 +

β(t)+γ(t)
4

β(t + 2) =
γ(t+1)+α(t+1)

2 =
β(t)
2 +

γ(t)+α(t)
4

γ(t + 2) =
α(t+1)+β(t+1)

2 =
γ(t)
2 +

α(t)+β(t)
4

. (3)

Now, using (2), (3) can be rewritten as follows:

α(t + 2) = α(t)/2 + α(t + 1)/2

β(t + 2) = β(t)/2 + β(t + 1)/2

γ(t + 2) = γ(t)/2 + γ(t + 1)/2

. (4)

It is straightforward to transform (2) into the following matrix:





α(t + 1)

β(t + 1)

γ(t + 1)



=
1

2





0 1 1

1 0 1

1 1 0









α(t)

β(t)

γ(t)



 . (5)

(4) can also be rewritten as follows:




α(t + 2)

β(t + 2)

γ(t + 2)



=
1

2









α(t)

β(t)

γ(t)



+





α(t + 1)

β(t + 1)

γ(t + 1)







 . (6)

Substituting (5) into (6) gives




α(t + 2)

β(t + 2)

γ(t + 2)



=
1

2





α(t)

β(t)

γ(t)



+
1

22





0 1 1

1 0 1

1 1 0









α(t)

β(t)

γ(t)





=
1

22





α(t)

β(t)

γ(t)



 +
3

22





1

1

1





α(t) + β(t) + γ(t)

3
. (7)
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(a) control parameters: range and bearing (b) equilateral triangular configuration

Fig. 5 Two control parameters in local interaction

The relation for (t + n) becomes the following generalized equation:





α(t + n)

β(t + n)

γ(t + n)



=
1

2n





α(t)

β(t)

γ(t)



 +

n
∑

k=1

3·2k−2

2n





1

1

1





α(t) + β(t) + γ(t)

3
. (8)

Taking an infinite value, the final value is given by,

lim
n→∞





α(t+n)

β(t+n)

γ(t+n)



=0×





α(t)

β(t)

γ(t)



+1×





1

1

1





α(t)+β(t)+γ(t)

3
=





60◦

60◦

60◦



 . (9)

From (9), we see that each internal angle converges into 60◦ after infinite activation

steps. ri attempts to maintain du with its two neighbors, forming an isosceles triangle

at each time instant. By repeatedly doing this, three robots will configure themselves

into an equilateral triangle with side length du.

3.2 Convergence of Local Interactions

Let’s consider the circumscribed circle of an equilateral triangle whose center is pct

of △pips1ps2 configured from the positions of three robots and radius is du/
√

3. The

motion planning of the robots is performed by controlling the distance from pct and

the internal angle (See Fig. 5-(a)).

First, the distance is controlled by the following equation

ḋi(t) = −a

(

di(t) − dr

)

(10)

where a is a positive constant and dr represents the length du/
√

3. Indeed, the solution

of (10) is di(t) = |di(0)|e−at + dr that converges exponentially to dr as t approaches

infinity.
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Secondly, the internal angle is controlled by the following equation

α̇i(t) = k

(

βi(t) + γi(t) − 2αi(t)

)

(11)

where k is a positive number. Because the total internal angle of a triangle is 180◦,

(11) can be rewritten as

α̇i(t) = k′
(

60◦ − αi(t)

)

, (12)

where k′ is 3k. Likewise, the solution of (12) is αi(t) = |αi(0)|e−k′t+60◦ that converges

exponentially to 60◦ as t approaches infinity.

Note that (10) and (12) imply that the trajectory of ri converges to dr and 60◦,

an equilibrium state shown in Fig. 5-(b). This also implies that three robots eventually

form an equilateral triangle with du. In order to prove the correctness, we will take

advantage of stability based on Lyapunov’s theory [35]. The stability theorem states if

there exists a scalar function fl,i of the state x = [di(t) αi(t)]
T with continuous first

order derivatives such that fl,i is positive definite, ḟl,i is negative definite, and fl,i → ∞
as ‖ x ‖→ ∞, then the equilibrium at the desired state [dr 60◦]T is asymptotically

stable. Thus, at the desired configuration Ei, the energy level of the scalar function is

minimized.

THEOREM 1. Given that three robots are positioned arbitrarily and distinctively in

a two-dimensional plane, under the local interaction algorithm, each robot can converge

onto any vertex of Ei with du.

proof: Consider the following scalar function:

fl,i =
1

2
(di − dr)

2 +
1

2
(60◦ − αi)

2 (13)

This scalar function is always positive definite except di 6= dr and αi 6= 60. The

derivative of the above function is given by

ḟl,i = −(di − dr)
2 − (60◦ − αi)

2, (14)

which is obtained using (10) and (11). Eq. (14) is negative definite. The scalar function

fl,i is radially unbounded since it tends to infinity as ‖ x ‖→ ∞. Therefore, the

equilibrium state is asymptotically stable, implying that ri reaches a vertex of Ei. �

4 Self-configuration

This section describes the self-configuration algorithm, termed Algorithm-2, to de-

ploy a swarm of robots into equilateral triangle lattices based on the local interaction

and proves the convergence of the algorithm.
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Algorithm-2 Self-configuration

Function ϕconfiguration(Oi, pi)
1 ps1 := min

p∈Oi−{pi}
[dist(pi, p)]

2 ps2 := min
p∈Oi−{pi,ps1}

[dist(ps1, p) + dist(p, pi)]

3 ϕinteraction({ps1, ps2}, pi)

4.1 Algorithm Description

A multitude of equilateral triangular lattices is denoted by
∑n

i=1 Ei. At each time,

to form Ti, ri selects the first neighbor s1 positioned at the shortest distance away

from itself within Oi. When there exists more than one candidate for s1, ri uniquely

determines its s1 by sorting the positions of the candidates in increasing order as

follows;

∀ps1m
, ps1n

, ∃ps1m
= (xs1m

, ys1m
), ps1n

= (xs1n
, ys1n

)

if(ps1m
< ps1n

) ⇐⇒ [(ys1m
< ys1n

) ∨ {(ys1m
= ys1n

) ∧ (xs1m
< xs1n

)}]

where ps1m
and ps1n

are the positions of the candidates rs1m
and rs1n

with respect

to the ri’s local coordinates. Next, the second neighbor s2 is selected such that the

total distance from s1 (ps1) to ri (pi) passing through s2 (ps2) is minimized. If there

exist multiple candidates for s2, ri determines its s2 by applying the same sorting rule

stated above. This condition is called the minimum perimeter condition of Ti. Then,

ri forms Ti with ps1 and ps2, and computes the target point pti toward forming Ei

by ϕinteraction of Algorithm-1. When three neighboring robots are all aligned, the

centroid pct is set to the center point of the line segment between ps1 and ps2. If ri

is located on the line segment, pti is set to the point
√

3du

2 away from pct. Otherwise,

pti is set to the point du√
3

away from pct. Now, Algorithm-2 is proposed to enable a

swarm of robots to be arranged in
∑n

i=1 Ei.

4.2 Convergence of Self-Configuration

Let’s assume that when ri arrives at pti, a new robot D is found in close vicinity as

illustrated in Fig. 6. Then, under Algorithm-2, ri selects D as s1, since it is located

the shortest distance, and C as s2, since the distance from ps1 to pi via ps2 can be

minimized. Thus, ri shuffles its neighbors within SB at each time instant, enabling the

robots to configure themselves without having adjacent triangles partly overlapping

each other.

We now introduce a modified scalar function of (13) in order to consider the effect

of changing neighbors.

LEMMA 2. Under Algorithm-2, ||pi − ps1|| and ||pi − ps2|| converge into du for ri

after a finite number of activation steps.

proof: We use Lyapunov’s theory with a scalar function given by

fsc,i =
∑

Ti

(dk − du)2 + fl,i (15)
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Fig. 6 Dynamically changing neighbors by the minimum perimeter test ((a) ri moves toward
pti, (b) ri selects new neighbors according to the minimum perimeter)

where fl,i is given in (13) and
∑

Ti
(dk−du)2 is defined as the constant value associated

with Ti at each time (see Definition 3).

A symmetric matrix Di can be said to be positive definite, denoted by Di > 0, if

xT Dix > 0 for every nonzero x [36]. Thus, from Theorem 1 and Di > 0, the scalar

function (15) is always positive definite except di 6= dr and αi 6= 60. (If Ti is equal to

Ei, it is easily seen that
∑

Ti
(dk − du)2 reaches 0, resulted from dr = du/

√
3. Note

that even though
∑

Ti
(dk − du)2 is 0, fl,i is nonzero by Theorem 1.) The derivative of

the scalar function is given by

ḟsc,i = ḟl,i = −(di − dr)
2 − (60◦ − αi)

2. (16)

Eq. (16) is negative definite. Finally, fsc,i is radially unbounded since it tends to infinity

as ‖ x ‖→ ∞. Therefore, the equilibrium state is asymptotically stable, implying that

ri reaches a vertex of Ei from an arbitrary Ti. �

Next, the collective scalar function Fsc of a swarm of robots is a nonzero function

with the property that any solution of the set of algebraic constraints on range and

bearing (see Fig. 5-(b)) is closely related to a set of equilibria for {ri|1 ≤ i ≤ n} and

vice versa. Without loss of generality, Fsc is a diminished energy function with a scalar

potential. Now we prove the convergence of the algorithm for a swarm of n robots.

LEMMA 3. Under Algorithm-2, ||pi −ps1|| and ||pi −ps2|| converge into du for

all robots.

proof: The n-order scalar function Fsc is defined as

Fsc =
n

∑

i=1

fsc,i =
n

∑

i=1

∑

Ti

(dk − du)2 +
n

∑

i=1

fl,i. (17)

From Lemma 2, it is straightforward to verify that Fsc is positive definite and Ḟsc is

negative definite. Fsc is radially unbounded since it tends to infinity as t approaches

infinity. Consequently, a swarm of n robots converges into
∑n

i=1 Ei. �

The proposed self-configuration algorithm terminates when the distance of each

robot with their neighbors converges into du ± 1%, which is denoted as d1%. Figs.
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(a)initial distribution (b) 2.68 [sec] (c) d1%: 20.66 [sec]

Fig. 7 Self-configuration results from a conglomerate formation with 100 robots

(a) initial distribution (b) 3.37 [sec] (c) d1%: 23.91 [sec]

Fig. 8 Self-configuration results from a random distribution with 100 robots

7 and 8 show that 100 robots configure themselves into a uniform density pattern

from different initial conditions. Therefore, collecting the local geometries can globally

reach
∑n

i=1 Ei without centralized control schemes. From a practical point of view,

each robot interacts with only two neighbors, which ensures that the motion of the

robot is less affected than other approaches that employ a larger number of neighbors.

Accordingly, the computational load decreases.

4.3 Extended Algorithm

Now, we introduce Algorithm-3, called the self-reparation algorithm, that enables

robots to deploy themselves in a uniform spatial density without such irregularities as

holes based on the local interaction algorithm. As observed in Figs. 7-(c) and 8-(c), the

self-configuration algorithm may yield holes in a converged distribution. Specifically,

Algorithm-2 involves only two neighbors for direct interaction. Each robot determines

their direction of movement when selecting the neighbors at each time. Also, from the

obliviousness condition, robots neither remember their previous neighbors nor estimate

the neighbors’ motion. Therefore it is often the case that unintended holes remain.

The above-mentioned problem can be solved by updating the neighbor selection

rules. ri checks whether Ti is equal to Ei. If the condition is correct, ri finds the new

neighbors within the area to be repaired. Let Pu denote the set of positions of the

robots located within the range of du. ri defines its heading h with respect to the
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Algorithm-3 Self-Reparation

FUNCTION ϕreparation(Oi, pi)
1 IF (Ti = Ei) THEN

2 h := heading direction
3 Pu := {set of robot positions located in the range of du }
4 pref := min

pu∈Pu

[|ang(h,−−→pipu)|]
5 prn := farthest position in the right-hand dir. of −−−−→pipref

6 pln := farthest position in the left-hand dir. of −−−−→pipref

7 A(r) := reparation area
8 Pr := { set of positions of robots located in A(r) }
9 ps1 := min

p∈Pr−{prn,pln}
[dist(pi, p)]

10 ps2 := min
p∈{prn,pln}

[dist(ps1, p) + dist(p, pi)]

11 END IF

(a) area of self-reparation (b) neighbor selection

Fig. 9 Illustration of Algorithm-3

local coordinates. Let ang(m,n) denote the angle between two arbitrary vectors m

and n. As shown in Fig. 9-(a), ri selects the reference neighbor pref in Pu such that

the value of ang(h,−−−−→pipref ) is minimized. ri then checks if any neighbor exists in the

area obtained by rotating −−−−→pipref 60 degrees clockwise. If there exists one, ri checks

the next neighbor by sweeping another 60 degree clockwise. ri continues to check until

it finds a hole, then the last neighbor is defined as pln. Similarly, ri attempts to find

neighbors by rotating −−−−→pipref counterclockwise and locate the last neighbor prn. Now

the reparation area A(r) is defined as the area between −−−→piprn and −−−→pipln in SB, where

no element of Pu exists. As illustrated in Fig. 9-(b), ri selects the first neighbor located

the shortest distance away from pi in A(r) as ps1. The second position is defined such

that the total distance from ps1 to pi can be minimized through either prn or pln. As

a result, pti can be determined by ϕinteraction.
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Fig. 10 Illustration of the maximum number of neighboring robots (In this figure, ri and rj

form and maintain
∑

6
j=1

(Ei)j and
∑

2
j=1

(Ei)j , respectively.

4.4 Convergence of Extended Algorithm

As illustrated in Fig. 10, like the surface tension of liquids caused by intermolecular

forces, the self-reparation aims to increase the number of neighboring robots. In other

words, ri attempts to reach the maximum possible number of desired configurations

given by

max[
s

∑

j=1

(Ei)j ] (18)

where s is greater than or equal to one and is less than or equal to six. Here, s will not

exceed a maximum of six since the desired configuration is a hexagon composed of six

equilateral triangle lattices.

We define the scalar function related to self-reparation with respect to ri as fsr,i. As

described in Algorithm-3, to obtain max[
∑s

j=1(Ei)j ], our self-reparation algorithm

shuffles the neighbors when ri has converged into Ei with holes at each instant in time.

Therefore, we can express the relation equation using the following scalar function:

fsr,i =











∑ŝ
j=1(fl,i)j + fsc,i if Ti = Ei

fsc,i otherwise

(19)

where fsc,i is given in (15) and ŝ is less than max[s]. Using (19), (18) can be rewritten

as follows:

fsr,i = min[
s

∑

j=1

(fl,i)j ]. (20)

Here, (20) enables ri to reach the minimum energy level by maximizing the number of

Ei.

Next, let the internal energy of ri, increasing or decreasing during self-configuration,

be denoted as qi given by

qi =
ŝ

∑

j=1

(fl,i)j . (21)
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When Ti is equal to Ei, qi forces ri to change its neighbors toward forming another

equilateral triangular lattice. We assume that qi starts with any nonnegative value

qi(0) and evolves according to the following equation:

q̇i =
ŝ

∑

j=1

(ḟl,i)j . (22)

Note that, by approaching new neighbors, (21) implies that qi forces ri to minimize

fsc,i. If qi decreases, we can predict that ri becomes stable, namely, min[
∑s

j=1(fl,i)j ].

By doing this repeatedly, the holes in the network will be eliminated.

LEMMA 4. Under Algorithm-3, a robot can have a maximum of six neighboring

robots positioned at du while forming Ei.

proof: We use Lyapunov’s theory and show the convergence of ri using (19) and

(21), defined as:

fsr,i = fsc,i + qi. (23)

Recall that qi(0) was initialized to a nonnegative value and evolved according to

(22). Moreover, qi was defined in such a way that it increases when fl,i lacks. Whenever

Ti = Ei, qi is set to qi(0). On the other hand, fsc,i is positive definite by Lemma 2.

Therefore, Since fsc,i > 0 and qi > 0, it is clear that fsr,i > 0.

Differentiating fsr,i gives

ḟsr,i = ḟsc,i + q̇i. (24)

(ḟsr,i = ḟsc,i +
∑ŝ

j=1(ḟl,i)j = ḟl,i +
∑ŝ

j=1(ḟl,i)j)

which can be simplified to:

ḟsr,i =

s
∑

j=1

(ḟl,i)j . (25)

Now it is easy to see that ḟsr,i is negative definite based on Lemma 2. Similar

to Lemma 2, the scalar function fsr,i is radially unbounded since it tends to infinity

as ‖ x ‖→ ∞ even though qi remains as a positive constant. Therefore, based on

Lyapunov’s theory, the motion of ri under self-reparation converges into
∑s

j=1(Ei)j .

�

Now we prove the convergence of self-reparation for a swarm of n robots.

LEMMA 5. Under Algorithm-3, all robots can have a maximum of six neighboring

robots positioned at du while forming
∑n

i=1 Ei.

proof: Using Lemma 4, the n-order scalar function Fsr is defined as

Fsr =
n

∑

i=1

fsr,i =
n

∑

i=1

fsc,i +
n

∑

i=1

qi. (26)

It is straightforward to verify that Fsr is positive definite. Next, differentiating Fsr

gives

Ḟsr =
n

∑

i=1

ḟsc,i +
n

∑

i=1

q̇i. (27)
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(a) reparation of Fig. 7 (b) reparation of Fig. 8

Fig. 11 Reconfiguration with self-reparation for each case in Fig. 7 and Fig. 8

Ḟsr is negative definite and radially unbounded since it tends to infinity as t ap-

proaches infinity. Consequently, a swarm of n robots converges into
∑n

i=1

(

max[
∑s

j=1(Ei)j ]

)

.

�

THEOREM 6. The self-configuration algorithm together with Algorithm-3 enables

all robots to have a maximum of six neighboring robots positioned at du while forming
∑n

i=1 Ei.

proof: By Lemma 3, each robot can be located in Ei, and, using Algorithm-3, the

swarm can form
∑n

i=1

(

max[
∑s

j=1(Ei)j ]

)

(Lemma 5). Consequently, these algorithms

solve the self-configuration problem. �

Fig. 11 presents the effects of self-reparation. Compared with Figs. 7-(c) and 8-(c),

Fig. 11 present no holes and improved the connectivity between neighboring robots.

5 Simulation Results and Discussion

To validate our self-configuration approach, we performed extensive simulations demon-

strating convergence and robustness of the algorithms.

CONVERGENCE Fig. 12 is the simulation results performed by 100 robots from

a conglomerate state, where distance variations between each robot and their Ni are

plotted according to time. Here, the bold line, dotted line, and dashed line indicate

the mean value, minimum value, and maximum value, respectively. The error bars

represent the 95% confidence intervals. As can be seen from the variation trends, each

robot could converge into Ei.

Now we investigate the effects of self-reparation under the termination condition

of d1%. With the same initial condition as Fig. 12, Fig. 13 indicates the number of

neighbors positioned du away from each robot according to time. Figs. 13-(a) and

13-(b) illustrate the differences when configuring the swarm without and with the self-

reparation algorithm, respectively. We can largely divide their variation into four time

periods. First, during the first 10 sec., each robot generated an equilateral triangle

of side length du with their neighbors, which resulted in a significant increase of the

number of robots having two neighbors at distance du. Secondly, from 10 sec. to 20

sec., the number of robots accompanied by zero or one neighbor decreased, while the

number of robots accompanied by four and six neighbors increased in Fig. 13-(a). In
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(a) distance variation between ri and s1

(b) distance variation between ri and s2

Fig. 12 Distance variations between ri and Ni during self-configuration

contrast, Fig. 13-(b) is exceedingly complex. The lines for zero and one neighbor show

regions of significant increase and decrease that later flatten out. During this period, the

other lines maintain the number of neighbors almost constantly. This is caused by self-

reparation that allows robots to interact with new neighbors and attempt to increase

the number of neighbors. Thirdly, from 20 sec. to 25 sec., the number of neighbors

gradually increased as expected. After that, there is little change. Like Fig. 11-(a),

robots eventually constructed a single swarm without holes. In addition, Table I shows

the comparison data for the number of robots at distance du after the deployment is

complete with and without self-reparation. We verified that self-reparation increased

the number of robots positioned at du by repairing holes.

From another point of view, the deployment time was examined with and without

self-reparation. Table II indicates the average deployment time for 30 kinds of initial

distributions of 100 robots for respective termination conditions of 1%, 0.1%, and
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(a) self-configuration without self-reparation

(b) self-configuration with self-reparation

Fig. 13 Changes in the number of neighbors at du during self-configuration

Table 1 The number of neighbors located du away from each robot

No. neighbor at du
deployment results

Fig. 7 Fig. 11-(a) Fig. 8 Fig. 11-(b)

2 4 4 3 3

3 7 4 21 12

4 18 14 22 13

5 16 12 15 12

6 55 60 39 60

0.01%. Fig. 14 shows the statistical results for the deployment time with self-reparation

(scratched box) and without self-reparation (empty box). The boxes represent the inter-

quartile range of the data, while the horizontal bars inside the boxes mark the median
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Fig. 14 Deployment time without (empty box) or with (scratched box) self-reparation for 30
kinds of different distributions

Table 2 Deployment time executing Algorithm-2 with/without self-repairing [sec]

average Algorithm-2 without Algorithm-2 with

configuration time self-reparation self-reparation

within 1 % 27.36 41.54

within 0.1 % 42.86 56.28

within 0.01 % 61.48 78.22

values. From the results, we see that self-reparation does not require more time with

respect to any particular termination condition.

ROBUSTNESS Robustness is verified against disappearances of robot members

due to accidental failures. The initial condition is equal to Fig. 8-(a) with 100 robots.

From the result of Fig. 11-(b), 5 robots and 10 robots disappeared in Fig. 15 and Fig.

16, respectively, and accordingly the same number of holes appeared. Each robot checks

the existence of holes within SB. If there is a hole around it, it executes Algorithm-2

together with Algorithm-3. By the algorithms, robots approached new neighbors, and

then holes disappeared. Fig. 15-(b) and Fig. 16-(b) present the results of re-deployment

with 95 robots and 90 robots. In addition, we replaced the failed robots in Fig. 15-(c)

and Fig. 16-(c). Fig. 15-(d) and Fig. 16-(d) show the results of re-deployment when new

robots are included. From the simulation results, Algorithm-2 with self-reparation

has proven to be effective in improving the robustness of robotic sensor networks against

robot failures.

Four primary emphases discriminate our geometric approach from other works.

First, an equilateral triangle lattice network is built with a partially connected mesh

topology. Among all the possible types of regular polygons, the equilateral triangle

lattices can reduce the computational burden and become less influenced by other

robots, due to the limited number of neighbors. It is also highly scalable. Secondly,

each robot utilizes only distance information of other robots. On the contrary, many

related works require the computation of relative velocities or accelerations to calculate

attractive or repulsive forces. Thirdly, robots compute the target position without
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(a) loss of 5 robots (b) redeployment with 95 robots

(c) replaced 5 robots (d) redeployment with 100 robots

Fig. 15 Simulation results for robustness against loss of 5 robots

requiring memories of past actions or states. This oblivious algorithm can effectively

cope with transient errors. It is known that nonoblivious algorithms might not work in

situations where robots are activated asynchronously, or robots are newly added to or

removed from swarms at any time. Most importantly, we attempt to solve the swarm

configuration problem by eliminating such major assumptions as robot identification

numbers, common coordinates, and global orientation, often made in other works.

To enable the successful configuration based on our minimal model, the proposed

algorithms rely on the fact that robots can exactly sense the positions of neighbor-

ing robots, using, for instance, sonar sensors [42] or infrared sensors [19]. Moreover,

it requires robots to be able to distinguish other robots from various objects in the

environment. As an alternative way, when direct communications are employed, robots

need to have a priori knowledge such as individual identification numbers or global

coordinates [43][44]. Thus, direct communications may also be faced with many dif-

ficulties including the limited bandwidth, range, and interference. From a practical

standpoint, the observation problem will remain open.
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(a)loss of 10 robots (b) redeployment with 90 robots

(c) replaced 10 robots (d) redeployment with 100 robots

Fig. 16 Simulation results for robustness against loss of 10 robots

6 Conclusion

In this paper, we addressed the self-configuration problem of a swarm of autonomous

mobile robots in a two-dimensional plane based on a robotic model with minimum func-

tionality. For the solution to the problem, we proposed a geometric approach whereby

robots could be configured into equilateral triangular lattices by locally interacting with

neighboring robots in a selective way. Specifically, robots were allowed to dynamically

select and interact only with two neighbors. Collecting this local behavior, the swarm

could be self-deployed with uniform spatial density in a coordinated manner. Moreover,

to cope with possible holes in the deployment, the self-reparation capability enabled

the robots to increase the number of neighboring robots positioned at the uniform

distance. This will allow the robot swarm to improve the network connectivity. The

proposed algorithm features decentralization, self-organization, self-stabilization, and

robustness, which was proved mathematically and verified through extensive simula-

tions. Our analysis and simulation results showed that the proposed self-configuration

method is a simple and efficient approach to the deployment of robotic sensor devices.
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