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Do We Need a Stack to Erase a Component in a
Binary Image?

Tetsuo Asano'
Japan Advanced Institute of Science and Technology (JAIST)
Ishikawa 923-1292, Japan
t-asano@jaist.ac. jp

Abstract. Removing noises in a given binary image is one of common
operations. A generalization of the operation is to erase arbitrarily spec-
ified component by reversing pixels values in the component. This paper
shows that this operation is done without using any data structure like a
stack or queue, or without using any extra work space in O(nlog n) time
for a component consisting of n pixels. This is an in-place algorithm, but
the image matrix cannot be used as work space since it has a single bit for
each pixel. Whenever we flip pixel value in an objective component, the
component shape also changes, which causes some difficulty. An idea for
our constant work space algorithm is a conversion keeping its topology.
Keyword: constant work space, binary image, component, connectivity.

1 Introduction

Consider a binary image consisting of black and white pixels. We can define
connected components of white (or black) pixels. Each connected component
may correspond to some object or a noise component. Erasing a component
is rather easy. Starting at any pixel in the component, we iteratively include
neighboring pixels of the same color into a stack while marking them. When no
more extension is possible, we pop pixels from the stack and flip its pixel value.
It is done in linear time in the component size. This algorithm, however, needs
mark bits and a stack (or queue), whose size can be linear in the image size in
the worst case. Since we have to keep locations of those pixels in the stack, the
total work space can be much larger than the given binary image itself which
requires O(m)bits for a binary image with m pixels. We also need O(m) bits for
the mark bits.

In this paper we show that we can erase a given component consisting of n
pixels in O(nlogn) time without using any extra work space except O(logn)
bits in total. The algorithm works even for a component having a number of
holes in 1t in the same time complexity.

This is the first constant work space algorithm for erasing a component in a
binary image, where erasing a component means flipping a pixel value at each
pixel in the component, say from white to black. Although it is usual to assume
a read-only array for input image in other constant work space algorithms, our
input image is a read/write array. But it is hard to use the image matrix as



work space since it has a single bit for each pixel. Furthermore, whenever we
flip pixel value in an objective component, the component shape also changes,
which causes some difficulty. An idea for our constant work space algorithm is
a conversion keeping its topology.

There are several related results on images, such as an in-place algorithm for
rotating an image by an arbitrary angle [1] and a constant work space algorithm
for scanning an image with an arbitrary angle [2] and others [9]. For in-place
algorithms a number of different algorithms are reported [7].

2 Preliminary

Consider a binary image G which consists of n white (value 1) and black (value 0)
pixels. When two pixels of the same color are adjacent horizontally or vertically,
we say they are 4-connected [10]. Moreover, if there is a pixel sequence of the
same color interconnecting two pixels p and ¢ and every two consecutive pixels
in the sequence are 4-connected, then we also say that they are 4-connected. We
can define 8-connectivity in a similar fashion. In the 4-connectivity we take only
four among eight immediate neighbors (pixels in the 3 x 3-neighborhood) of a
pixel. In the 8-connectivity we take all of those eight immediate neighbors as
8-connected neighbors.

A 4-connected (resp., 8-connected) component is a maximal set of pixels of
the same color any two of which are 4-connected (resp., 8-connected). Hereafter,
it is referred to as a component in short if there is no confusion. Following
the tradition we assume that white components are defined by 4-connectivity
while black ones by 8-connectivity. A binary image may contain many white
components. Some of them may have holes, which are black components. Even
holes may contain white components, called islands, and islands may contain
islands’ holes, etc.

In this paper a pixel 1s represented by a square. The four sides of the square
are referred to as edges. An edge is called a boundary edge if it lies between
two pixels of different colors. We orient each boundary edge so that a white
pixel always lies to its left. Thus, external boundaries are oriented in a counter-
clockwise manner while internal boundaries are clockwisely oriented.

The leftmost vertical boundary edge on a boundary is defined as a canonical
edge of the boundary. If there are two or more such edges then we take the lowest
one. The definition guarantees that each boundary, internal or external, has a
unique canonical edge. It is also easily seen that the canonical edge of an external
boundary is always downward (directed to the South) and that of an internal
one upward (directed to the North). So, when we find a canonical edge, it is
also easy to determine whether the boundary containing it is external or not. It
suffices to check the direction of the canonical edge.



Fig.1. (White) components C; and Cs, (black) holes By and Bz, and (white) islands
C5 and (4 in a binary image. There are four (White) components consisting of white
pixels. Note that (s and Cy are not 4-connected. Holes consist of black pixels. Since
8-connectivity is used for (black) pixels, this image contains only two black components.

3 Erasing a connected component in constant work space

One of the most fundamental problems in computer vision or pattern recognition
18, given a query pixel p in a binary image, to enumerate all pixels belonging
to a component to which the pixel p belongs. The problem is also considered
for an intensity image. Suppose we know a local rule (or a function using local
information around a pixel in question) on how to partition a given intensity
image into homogeneous regions. Then, the problem of extracting a region to
which a query pixel belongs is just the same as above for a binary image.

The problem is easily solved using a stack or queue. Starting from a query
pixel ¢, we expand a search space just as wave is propagated from ¢q. Whenever
we find a pixel of the same color reachable from ¢ which has not been checked yet,
we put it into the data structure and check its neighborhood to look for unvisited
pixels of the same color. This simple algorithm works quite well. In fact, 1t runs
in time linear in the number of pixels of the component (or component size).
Unfortunately, it is known that the size of the data structure is linear in the
size of the component in the worst case [?]. This storage size is sometimes too
expensive. We could also use depth-first algorithm with mark bits over the image.
In this case the total storage size is reduced to O(n) bits for an image of n pixels,
but we also need storage for recursive calls of the depth-first search.

A question we address in this paper is whether we can solve the problem in
a more space efficient manner. That is, can we design an algorithm for erasing
a component without using any extra array? An input binary image is given
using an array consisting of n bits in total. This is an ordinary bit array. We
are allowed to modify their values, but it is hard to use the array to store some
useful information to be used in the algorithm since we have only one bit for
each pixel.

In the problem above we are requested to enumerate all pixels belonging to
the same component as a query pixel. Whenever we find a pixel to be output, we



output its coordinates and to prevent duplicate outputs we flip the pixel value
to 0. This corresponds to erasing a component containing a query pixel. Thus,
our problem is restated as follows.

Problem: Let (G be a binary image. Given an arbitrary pixel ¢ in (i, erase the
component containing the query pixel gq. Here, by erasing a component we mean
flipping a color of each pixel in the component.

How fast can we erase a connected component? This is a problem we address
in this paper.

An algorithm to be presented consists of the following four steps. At the first
step a query pixel 1s specified. Assuming it is a white pixel, we compute the
canonical edge e, of the component containing the query pixel.

Then, at the second step, we follow the external boundary of the component
starting from the canonical edge. During the traverse we also try to find a canon-
ical edge of a hole by extending a horizontal ray to the right at each downward
edge. Recall that no extra array is available. When we extend the ray to find a
boundary edge e, we have to determine whether the edge e is on a hole or not.
The decision is done by finding the canonical edge on the boundary to which e
belongs. It is on the external boundary if it is the canonical edge e, found at
the first step. Otherwise, it is on a hole. We can perform this test using only
constant work space. It takes quadratic time if we just follow the boundaries, but
the running time is shortened to O(nlogn) time by using bidirectional search.

Once we find any hole, we traverse it while flipping white pixels on the way
and finally returning to the original edge from the canonical edge by walking to
the left until we touch any boundary edge.

The above flipping operations remove all the holes and a single connected
component is left. At the third step we traverse the boundary again and slim the
component into a tree that is one-pixel wide by erasing all possible safe pixels
in the component. Here, a pixel p is safe if and only if removal of p (flipping the
pixel value of p) does not separate any component within the 3 x 3 neighborhood
around p. Safe pixel check is done in constant time.

The final step 1s to erase all the pixels in the thinned component. It is rather
easier than others.

Now, we will describe the four step in more detail.

Step 1: Locating a given pixel

Given a query white pixel p, we want to locate it in a given binary image.
In other words, we want to find a (connected) component of white pixels, which
is equivalently to find a canonical edge of the component. For the purpose we
first traverse the image horizontally to the left until we encounter a black pixel.
The eastern edge e of the pixel is a candidate of the canonical edge. To verify it
we follow the boundary starting from the edge whether we encounter any other
vertical edge that is lexicographically smaller than e. Here, a vertical edge e is
lexicographically smaller than another vertical edge ¢’ if ¢ lies to the left of €’
(more precisely, the z-coordinate of e is smaller than that of e’) or both of them
lie on the same vertical line but e is below €’ on the line. If there is no smaller



edge than e then it is certainly the canonical edge of the external boundary we
seek. Otherwise, starting from the pixel just to the left of e we perform the same
procedure again. Figure 2 illustrates how the canonical edge is found.

Fig. 2. Finding a canonical edge of a component containing a query point p by following
boundaries at the first step of the algorithm.

Step 1: Locating a given pixel
Let p be a given white pixel and f be the western edge of the pixel p.
do{
e = ScanLeft(f).
f = CanonicalEdge(e).
} while(f is an internal edge)
return f.
ScanLeft(e){ // move to the left until we encounter an edge between 0 and 1
do{
e = vertical edge just to the left of e.
+ while(e is an edge between 0 and 1)

return e

CanonicalEdge(f){ // edge f is canonical if no edge on the same boundary is smaller than f.
e*=e; = f.
do{

e = nextEdge(e).
if e < e* then e* = e.
+ while(e # €5)
return e*
nextEdge(e){

return the next (uniquely determined) boundary edge of e.
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Lemma 1. The algorithm given above finds the canonical edge of the external
boundary of a component which contains a query pizel p, in time linear in the
size (the number of pizels) of the component.

Proof. Since the canonical edge 1s defined to be the leftmost vertical boundary
edge, every time when we apply the function LeftScan() we move to the left until
we reach some boundary. If it happens to be an internal boundary, we follow it
to find its canonical edge and then apply LeftScan() again from there. Due to
the same reason we further move to the left. Thus, eventually we must reach
the external boundary. Once we reach it, then it suffices to follow the boundary.
Thus, the total running time is linear in the size of the component.

Step 2: Removing holes

At the first step we obtain the canonical edge es of the external boundary.
At the next step we remove all the holes by merging them to others or to the
external boundary. For the purpose we traverse the boundary again. This part
is just the same as the algorithm for reporting components with their sizes in
our previous paper [4]. That is, we traverse the boundaries starting from the
canonical edge of the external boundary.

At each downward edge e, we walk to the right until we encounter a boundary
edge f. If we find f a canonical edge after following the boundary, then we move
to the hole and continue the traverse again from f. Otherwise, we go back to
the edge e and continue the traverse.

At each upward edge e, we check whether it is a canonical edge of a hole
by following the boundary. If it is the case, we walk to the left from e until we
hit some boundary corner. There are two cases to consider. If we touch just one
corner, then we erase the white pixels visited during the walk from e, which
merges the hole into the boundary of the corner. If we touch two corners, we
erase the white pixels visited during the walk except the last one and also erase
the pixel just below the last pixel.

After erasing those pixels we still keep walking to the left until we reach a
boundary edge and then start traversing the boundary again from there. Repeat-
ing this process until we come back to the starting canonical edge, the second
step is done. Figure 3 illustrates behavior of the algorithm.

Step 2: Removing holes
e = es: // the canonical edge of the external boundary
do{
e = nextEdge(e).
if e is downward then {
f = ScanRight(e).
Check whether f is canonical or not.
if f is a canonical edge of a hole then e = f.
} else if e is upward and a canonical edge of a hole then{



(d)

Fig. 3. Step 2: Removing holes. We traverse the boundaries. At each downward edge
we check whether its right corresponding edge is canonical or not. If so, we move to
the edge. At each canonical edge we walk to the left while erasing pixels until we touch
some other boundary. (a) touching external boundary, (b) touching a hole, (c¢) touching
two corners, and (d) touching two corners of the same component.

traverse to the left from e until we touch some boundary corner.
Let pi1, ..., pr be those pixels.
If the last pixel py touches one corner (or one edge) then
erase all those pixels.
If it touches two corners then{
erase them except the last one p; and
erase the pixel just below pyg.
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keep traversing to the left until it encounters a vertical boundary edge f.

e=f.
}
+ while(e # e;)

Lemma 2. The algorithm given above transforms a component with holes into
one without any hole in O(nlogn) time, where n is the number of pizels in the
component.

Proof. In the algorithm we traverse the boundaries starting from the canonical
edge of the external boundary. At each downward edge e we perform ScanRight()
until we encounter a vertical boundary edge f and check whether f is a canonical
edge of an internal boundary or not. The test is done by bidirectional search.
Since the test is done at most twice for each vertical edge, the total time we
need is bounded by O(nlogn) (the proof is similar to the one in [3]).

Once we find a canonical edge of an internal boundary, we move to the bound-
ary and continue the traverse. Then, eventually we come back to the canonical
edge f again. In the algorithm we check every upward edge whether it is a canon-
ical edge. If we find such a upward canonical edge f then we walk to the left until
we touch some boundary corner. Let pq, ..., pr be a sequence of pixels visited in



this walk. If the last pixel pg touches a single corner, then we can safely erase
all these pixels without touching any other boundary. After erasing them the
internal boundary which used to contain f is merged into the boundary of the
corner. Thus, one hole is removed. If the last pixel py touches two corners from
dirrerent sides, then erasing p; may cause a trouble. Refer to Figure 3(d). If the
two corners belong to the same boundary, then erasing pg creates a new hole.
So, to avoid the situation, we erase p1,...,pr_1 and the pixel p’ just below p.
The pixel p’ must be a white pixel since otherwise we have touched it before
reaching py. Since py touches two corners from both sides (from above and be-
low), the row of pj is not the bottom row. Recall that holes are treated using
8-connectivity. So, the boundary is merged into that of the lower corner without
creating a new hole.

Step 3: Thinning a component

Now, we can assume that a connected component forms a simple polygon
(without any hole). What we do next is to erase fat parts so that a one pixel wide
skinny pattern is obtained. Again we traverse the boundary. For each downward
edge e we traverse horizontally to the right until we encounter another boundary
edge f. During the traverse we erase every safe pixel. This process is illustrated
in Figure 4.

Fig.4. Extension from the left wall while removing every safe pixel. Colored pixels
have been flipped into 0.

Step 3: Thinning a component
es = canonical edge of a component, and let e = e,.
do{

e = nextEdge(e).



if e is downward edge then {
p = the eastern pixel of e.
while(p is a safe pixel of value 1){
Erase the pixel p and p = the right pixel of p.}
e = the western edge of the pixel p.
while(the pixel value of p is 1){
if(p is a safe pixel) then Erase the pixel p.
p = the eastern pixel of p.}

}
+ while(e # e;)

Lemma 3. Implementing the algorithm above results in a slimmed component
i which every remaining pirel in the component touches the external boundary.

Proof. The algorithm scans pixels starting from each downward boundary edge
until 1t reaches the external boundary. Thus, every pixel in the component must
be examined. A pixel 1s erased as far as it is safe. Suppose a pixel p in the
component which does not touch any boundary remains in the resulting image.
Then, if we walked from the pixel p to the left then we would encounter a
boundary edge, which must be downward. The downward edge may be created
by a boundary edge further to the left, but there is no reason that the pixel is
left without being erased, a contradiction.

Step 4: Erasing the skinny component

Applying the operation we obtain a skinny pattern such that every pixel
touches the external boundary as shown in Figure 5. Now, it is not so hard to
erase all the pixel in the final pattern. We traverse the boundary again. When-
ever the pixel associated with the current edge is a safe pixel, we erase it, and
otherwise we leave it as it is. In practice we must be more careful not to miss
any pixel. For that we have a procedure to find the next pixel to be handled.
The detail is found in the following pseudocode.

Step 4: Erasing the thinned component
es = canonical edge of the component.
p = Pixel(e).
=N
do{
do{
e = nextEdge(e).
+ while(Pixel(e) = p)
g=p.
p = nextPixel(p).
if p is nil then p = Pixel(e).
erase the pixel q.

} while(p has a neighbor)

nextPixel(p){



Fig.5. Erasing the skinny component by removing safe pixels (colored pixels) in order.

if only one pixel ¢ 1s 4-adjacent to p then return gq.
else return nil.

1

Lemma 4. The algorithm above erases all the pirels in a given component in
linear time in the size of the component.

Proof. In the algorithm we start traversing the boundary from its canonical
edge, the leftmost vertical edge. Unless the pixel associated with the edge is a
branching pixel (to above and to the right), the pixel is safe and it is erased. If it is
a branching point, the we traverse the boundary. It never happens that we reach
the starting pixel again without erasing any pixel. The reason is as follows: We
know that the component forms a simple polygon consisting of white pixels such
that every such pixel touches the boundary. If we define a graph representing
adjacency of those white pixels in the component, it must be a tree. So, if we
traverse the boundary of the polygon from some edge and come back to the
same pixel again, then we must pass some leaf node in the graph. The white
pixel corresponding to the leaf node is safe and thus it must have been erased
in the algorithm. This means that when we start traversing the boundary, we
must have erased at least one pixel before coming back to the same pixel again.
Therefore, every pixel must be erased in the algorithm.

Combining the four lemmas above, we have the following theorem.

Theorem 1. Guwen a binary image B with n pizels in total and a pizel p, a con-
nected component containing p can be erased in O(nlogn) time using constant
work space by flipping pivel values of those pirels in the component.

Unfortunately we cannot erase a component in linear time since we have to
traverse boundaries to find canonical edges of internal boundaries.



4 Some Applications of the algorithm

4.1 Removing Small Connected Components as Noise

One of basic tasks in image processing on binary images is to remove noise. If
we define a noise to be a small component, with size bounded by some small
number, we can remove all such noise components by applying our algorithm
using only constant work space.

In the first step we scan the entire image and finds every component. When-
ever we find a canonical edge, we scan the pixels in the component to compute
the size of the component. If it 1s small, then we apply our algorithm to erase
the component. Tt runs in O(nlogn) time for a binary image with n pixels.

Suppose T is a specified size for small component. If O(T) work space is
available, we can do better. We scan the entire image to find a white pixel
p such that its left and lower pixels are both black. We grow a white region
reachable from p using a queue of size T'. If the component is small enough, we
can include all the pixels in the component into the queue, and thus it is easy
to erase them. Otherwise, the queue will be overflowed. Then, we conclude that
the component is a large component, not a noise. Since an enqueue operation
takes O(logT) time to avoid duplication, the algorithm takes O(nlogT) time.

4.2 Region Segmentation

One of the most fundamental tasks for pattern recognition for color images
is region segmentation, which partitions a given color image into meaningful
regions. A number of algorithms have been proposed so far. Here we simplify
the problem. That is, we assume that there is a simple rule for determining
whether any two adjacent pixels belong to the same region or not.

In this particular situation we can solve the following problem:
Region Clipping: Given a color image G and an arbitrary pixel p, report
all the pixels belonging to a region containing p using a given local rule for
determining similarity of pixels.

It is rather easy to design such an algorithm if some sufficient amount of
work space is available. What about if only constant work space is available?
Well, we can apply our algorithm by assuming a binary image implicitly defined
using the given local rule. To clip a region we don’t need to convert the whole
image into a binary image, but it suffices to convert the region and its adjacent
areas into binary data.

Using our algorithm we can collect all regions with some useful information
such as areas and average pixel values, etc., as well in O(nlogn) time. If every
region is small, then our algorithm runs in almost linear time.

5 Concluding Remarks

This paper has presented an in-place algorithm for erasing an arbitrarily spec-
ified component without using mark bits or extra array. The algorithm runs in



O(nlogn) time when the component to be erased consists of n pixels. Since the
output is written on an input array and hence the input array allows write as
well as read, which is a difference from other constant work space (or log-space)
algorithms assuming read-only input arrays. If we are interested only in enu-
merating all pixels in a component without changing pixel values, it is easier in
some sense. An efficient O(nlogn)-time algorithm is known in our unpublished
paper [4]. A basic idea for traversing component boundaries is similar to that of
traversing planar subdivision in the literature [6,8]. The algorithmic techniques
developed here would be useful for other purposes in computer vision.
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