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Abstract

This thesis discusses mainly multimodal logics constructed by combining two modal
logics. Many monomodal logics have been investigated well. Recently, combined logics
have been developed and applied in various fields of computer science. Here we focus our
attention on multimodal logics obtained by fusion of modal logics. Main results on the

present thesis are as follows.

First, through Kripke type semantics, we give a complete answer to inclusion relation-
ship between pseudo-Euclidean logics K @ {OFp — O™Omp} where m and n are fixed

non-negative integers, and k£ < 0.

Next, we discuss fusions of well-known modal logics. We take up especially preseva-
tions of proof theoretic properties for sequent system of fusions without interdependent
axioms, and those with some interdependent axioms. Attempt to derive general results
on fusions with interdependent axioms, in particular the finite model property of fusions

with more generalized interdependent axioms will be made.

Finally, we consider fusions of epistemic logics and temporal logics, which is called
temporal epistemic logics. Then the subformula property of sequent systems for their
basic temporal epistemic logics is shown by the cut-restriction theorem and restricting
inference rules on temporal notions. Also, Craig’s interpolation property and decidability

as the proof-search procedure are obtained as the consequence.
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Chapter 1

Introduction

1.1 Backgrounds

We have two main goals in this thesis. The first is to show Kripke completeness and finite
model property for some bimodal logics with interdependent axioms. The second is a
proof-theoretic study of temporal epistemic logics; we show the subformula property for
the sequent calculi for their logics, Craig’s interpolation theorem for them, and give an
effective decision procedure. For the former, the finite model property will be shown for bi-
modal logics obtained by adding some interdependent axioms to fusion of two monomodal
logics, using filtration method. As for the later, sequent calculi of some temporal epis-
temic logics are introduced, and the subformula property and the interpolation property
for them will be shown.

Many monomodal logics have been investigated extensively since the early time of
20th century, and a lot of interesting properties of them have been shown. On the other
hand, we have certain technical difficulties when we try to develop study of multimodal
logics to the extent of monomodal logics. Moreover, it will be quite necessary to develop
such a study since we need to introduce many modalities in many cases of applications.
Multimodal logics combined more then two propositional modal logics by means of some
constructions have been studied semantically since 1990’s. Various semantical logical
properties for them were made clear. However, many properties for multimodal logics
with some interdependent axioms are left unanswered. So far, bimodal logics have been
discussed as a fundamental research to general multimodal logics. The following ways of

construction of multimodal logics have been proposed.

(1)  fusion --- the least modal logics containing two different modal logics

(2) product --- the modal logics validated in products of modal frames.

In the construction (1), the correlations among each modalities are out of consideration.
In this construction, in order to obtained some dependently axiomatized multimodal

logics, it is necessary to add some interdependent axioms to fusions. As for dependently



axiomatized logics like this, the introduction of appropriate axioms, the logical properties
for logics with them as axioms and so on are unsolved problems.

Study of multimodal logics will be put in practice not only theoretically but also in
paying attention to application of applied fields. Especially, it has been hoped to apply
multimodal logics into various fields of information science. As application of multimodal
logics, they will be useful in artificial intelligence; for instance, the formalization of multi-
agent systems, information flow, the representations of natural languages, and so on. The
several formalizations of multi-agent systems have been proposed since 1980. Multimodal
logics combined epistemic logics and temporal logics are useful for their formalizations.
By the way, both epistemic logics and temporal logics are regarded as multimodal logics.
They are fusions, or fusions with some interdependent axioms. As to temporal logics,
axiom schemes ¢ — (F)[Plp and ¢ — (P)[F|¢ representing conversions of future and

past are interdependent axioms, and connected two modalities.

1.2 Outline of this thesis

This thesis discusses combined modal logics defined by either Kripke semantics or
Gentzen’s sequent systems. Main contents of the present thesis consist of a study of
general preservation results in combined logics, and a study of temporal epistemic logics
as important examples of combined modal logics. We introduce sequent systems for these
logics and develop both syntactic and semantical study of them. A key result is the
subformula property of these sequent systems, which is obtained from the cut restriction
property. The subformula property implies not only Craig’s interpolation theorem for

these logics but also the existence of an efficient proof-search procedure for these logics.

Chapter 2 reviews propositional monomodal logics. As tools used later, Kripke type
semantics and Gentzen style sequent systems for modal logics are introduced and discussed
in Section 2.2 and in Section 2.3, respectively. A brief survey of the finite model property
by filtration method is given in Section 2.2. Cut elimination property and cut restriction

property are discussed in Section 2.3.

Chapter 3 is devoted to a study of inclusion relation among logics, called pseudo-
Euclidean logics. Here, one will see a good example which shows the usefulness of se-
mantical methods. Pseudo-Euclidean logics Ej obtained from K by adding the axiom
Okp — OmOmp for k > 0 and fixed non-negative integers m and n, are introduced. In
Kripke semantics, a binary relation on a set W of possible worlds is k-pseudo-FEuclidean
if for any u,v,w € W, uRFv and uR™w imply wR™. If m = n = 1, then 1-pseudo-
Euclidean relations coincide with usual Euclidean relations. Then, inclusion relationship

among them is threw light on. When the class of all Kripke frames (W, R) where R is a



k-pseudo-Euclidean relation on W is denoted by P&y,
Then, a complete figure of inclusion relation among pseudo-Euclidean logics is given.

Chapter 4 discusses how to construct combined logics and what kind of logical prop-
erties are preserved under these constructions. Section 4.1 presents two standard ways of
combining modal logics, called fusions and products respectively. Then, we concentrate
mainly on fusions, and give a survey of preservation results on Kripke completeness, the
finite model property and so on. In Section 4.2, the finite model property for fusions
with ”"weak” interdependent axioms is shown by means of filtrations. Proof-theoretical
properties of Gentzen style sequent systems for fusions of modal logics including axioms
T, D, 4,5 or B is discussed in Section 4.3. We introduce a sequent system S(L) for a
logic L under consideration. Then we show that for monomodal logics L; and L. under
consideration, if both S(L;) and S(Ly) have the cut elimination property then S(L; ® Ls)
has also the cut elimination property. On the other hand, since sequent systems for KB,
KTB, KDB, KB4 and S5 given there lacks the cut elimination property but has the cut
restriction property, we can show that any fusion where one of components is among them
has also the cut restriction property and therefore the subformula property. When one
of components of a fusion is K5 or KD5 we can show an extended subformula property,
by using the similar technique. In Section 4.4, we consider two interdependent axioms
Oy — By and Op — BOp where O and B are deferent modal operators, and introduced
some sequent systems obtained from those for fusions of modal logics including axioms T’
or 4 by adding such axioms. For some of their logics, we show the cut elimination theorem

for them.

Main results of the present thesis are given in Chapter 5. We introduce two basic
temporal epistemic logics and discuss their logical properties. They are obtained from the
temporal logic K; by combining either the logic of knowledge or the logic of belief. They
will offer logical bases of formalizing multi-agent systems. In Section 5.1, we introduce a
Kripke type semantics for these temporal epistemic logics. In Section 5.2, we introduce
sequent systems for them. Since the logic of knowledge and the logic of belief correspond
to S5 and KD45, respectively, we cannot expect that cut elimination theorem holds for
these sequent systems. To overcome this difficulty, we try to show the cut restriction
property instead. But, two rules of inferences of K, violate the cut restriction property.
The idea which we introduce here is to restrict applications of these rules so that the
cut restriction property holds also for them. Now it remains to show that each of these
restricted systems determines the same logic as one which the original one determines.

This can be done in Section 5.3 by showing the completeness of these restricted systems.



As mentioned before, the cut restriction property implies the subformula property. Thus,
Craig’s interpolation theorem is shown in Section 5.4 by using Maehara’s Method. In
Section 5.5, a proof-search procedure for these logics, based on the subformula property,

is described in details.
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Chapter 2

Preliminaries

In this chapter, we introduce notations and basic notions of monomodal logics, and give
a brief survey. This chapter take up (i) syntax of monomodal logics, (ii) Kripke type

semantics and (iii) proof theory of Gentzen style sequent systems.

2.1 Fundamentals of modal logics

The language £ of propositional monomodal logic consists of propositional variables,
denoted by p, ¢, r, --- and logical symbols A, V, —, =, O. When we want to express a
particular modality O explicitly, the language is denoted by L£5. Formulas, denoted by
©, Y, X, ++-, are constructed in the usual way from propositional variables and logical
symbols. In particular, Oy is a formula when ¢ is a formula. The set of all subformulas
of ¢ is denoted by Sub(yp). Sometimes, we use propositional variables and formulas with
subscripts. A set L of formulas in £ is a modal logic, if the following conditions are
satisfied:

e all tautologies belong to L,
o ifp,p—1pelL,thenyclL,
o ifpelL thenOype€ L,

Let L be a modal logic of Lg, and @ be a set of formulas in the language £5. Then the
least modal logic containing the set LUQ) is denoted by L@ (). The symbol K denotes the
least modal logic containing the axiom O(¢ — ¢) — (Op — Ov). Any modal logic with
the axiom O(p — ¢) — (Op — Ov) is called a normal modal logic. Historical names for

some well-known axiom schemes are

D : Op — O, T: Op — p, 4 : Op — OOy,

B : p— OO, o Q= OO,



where < is the abbreviation of =0O- in propositional modal logic. Then the following

modal logics can be constructed from their axiom schemes :

K4=K & {4} KD4=K @ {D,4} KB=K & {B}

K5 =K & {5} KD5=K @ {D,5} KTB =K o {T,B}
K45 =K & {4,5} KD45 =K & {D,4,5} KDB =K & {D,B}
KD =K @ {D} S4=K @ {T,4} KB4=K & {B,4}
KT=K & {T} S5=K & {7,5}

Proposition 2.1 The following equivalences hold.

1. If either {T,5}, {T,4,B}, {D,4,B} or {D,5, B} is the subset of Q1,
then K® @1 = S5,

KB4 =K@ {5, B} = K& {4,5, B},
KT =K@ {T,D},
KT4=K@a {T,D,4},

KTB =K o {T, D, B}.

By our definition, modal logics are sets of formulas, and therefore set inclusion defines
a partial order in the set of all modal logics. For logics introduced above, the following
inclusion relationship holds.

Other typical axiom schemes are as follows:
(axl): Op — Op (ax2) 1 OCp <+ Oy (ax3): OO — Ogp
(ax4) : okOlp — OmOp (ax5): O(pAOp — )V O A Dy — )
where formulas 0% and O™ ¢ denote formulas O - - - Oy with n boxes and < - - - O with
n' diamonds. Note that all of axioms D, T, 4, 5 and B introduced before are of the form

(ax4). Moreover, axioms OFp — O™Omg for pseudo-Euclidean logics in Chapter 3 are

also of the form (ax4).

2.2 Kripke type semantics and completeness

Completeness and finite model property

In this Section, we introduce Kripke type semantics, and present semantical properties

for modal logics. Let W be a nonempty set, and Rg be a binary relation on W; i.e.
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Figure 2.1: inclusion relation of modal logics

R CW x W. Then a Kripke frame is a pair (W, R). Here W is called the set of possible
worlds, and R is called accessibility relations. When we express the modality O explicitly,
the relation is denoted by Rn. Let F = (M, R) be a frame, and V' be a mapping such
that V' (p) C W for each propositional variable p. Then V is called a valuation on F. The
triple (W, R, V) is called a Kripke model. Sometimes, (W, R, V') is denoted by (F,V).
For a given Kripke model (W, R, V'), a binary relation = between u € W and formulas is

defined inductively on the length of formulas as follows:

ukp <~ ueV(p

uEpANY <= ufEypandufEY

uEPVY <= ukEporulEy

uEp—=1Y < uf pimpliesu =1

uE - < notufF

u = Op <= for any v € W, uRgpv implies v = ¢

The relation |= is defined uniquely by the valuation V. So = and (W, R, |=) are also
called a valuation and a Kripke model, respectively, when no confusions will occur. A
formula ¢ is true in a model M = (W, R, |=), written as M = ¢, if u |= ¢ for any u € W.
A formula ¢ is valid in frame F = (W, R), written as F | ¢, if M [ ¢ for any model
M= (W,R, ).

Suppose that F = (W, R) is a frame. Then, the binary relation R satisfies one of



the following first-order conditions if and only if the axiom schemes corresponding the

condition is valid in F. This property is called a corresponding theory.

Vu3v(uRv)
Vu(uRu)

D serial )
T

4 VuVuVw(uRv A vRw — uRw)

5

B

reflexive )
transitive )
VuVoYw(uRv A uRw — vRw)
VuVv(uRv — vRu)

Euclidean )
symmetric )
VuVv(uRv A uRw — v = w)
VuVv(u = v)

(ax1) partially functional )
(ax2)

(ax3) :  VuVo(uRv — Jw(uRw A wRv))

(ax4)

(ax5)

unctional )
weakly dense )

VuVoVw(uRFo A uR™w — 3t(vR!t A wR"t)) Church-Rosser )

VuVoVw(uRv A uRw — vRw Vv =w V wRv)

(
(
(
(
(
(
(f
(
(
(

weakly connected )

For a logic L, every frame with the conditions corresponding to the axioms is called
L-frame. For example, every S4-frame is reflexive and transitive. Then the following

Proposition 2.2 can be shown.

Proposition 2.2

1. The lease normal modal logic K is determined by the class of all Kripke frames; i.e.

for any frame F, F = ¢ iff ¢ € K.

2. Let L be any of logics introduced in previous section. Then the logic L is determined
by the class of all L-frames; i.e. for any L-frame F, F = ¢ iff ¢ € L.

Proposition 2.2 is often shown by constructing their canonical models ( See [11] ). If
¢ € L then there exists a model M, for example the canonical model of L, such that
M £ ¢ by the above completeness theorem. But it would be quite useful if we could get
a finite model in which a given unprovable formula is false. Because a consequence of the
finite model property is the decidability. A concrete finite procedure which decides to be
provable or not for any formula in a system is called a decision procedure. If there exists
a decision procedure, the system is said to be decidable. By the Harrop’s theorem, that
is if a finitely axiomatizable logic has the finite model property, then it is decidable ( cf.
[11] ). A logic L has the finite model property if the following condition is satisfied,

if ¢ & L, then there is a finite L-model W such that M F o.

Let (W, R, =) be a model, and V() a finite set which contains Sub(y¢). Now we introduce

the filtration method. We define a binary relation ~ on W as follows:

8



u~ v <= for any x € ¥(p), u E x iff v = x.

Clearly ~ is an equivalence relation. Let [u] denote the equivalence class of u, i.e. [u] =
{x € W|u ~ z}. Then filtration of M = (W, R, =) through ¥(p) is any model N' =
(W/ ~, S, E*) such that

1. if uRw, then [u|S,[v],
2. if [u]S[v], then for any Oy € ¥(p), u = Ot implies v = 1),
3. [ulF"p < ufEnp.

Proposition 2.3  Let N = (W/~,S,E*) be a filtration of a model M = (W, R, E)
through V(). Then for every point u € W and every ¢ € V(y), u = ¢ iff [u] E* 1.

In general, the conditions of the filtration do not determine S uniquely. The following are

two extreme ways of choosing S satisfying the above 1 and 2.

e Coarsest filtration:
[u]S[v] <= for any O € ¥(y), u = Oy implies v = 1.
e Finest filtration:
[u]S[v] <= there exist u’,v" such that u ~u', v ~v" and u'Rv’.
Using filtration method, we can show the following.

Proposition 2.4  Let QQ be a subset of {T,D,4,5, B}. Then the logic K & Q has the
finite model property.

By the Harrop’s theorem, the next corollary can be derived since the logic L & @ is

finitely axiomatizable.

Corollary 2.5 Let QQ be a subset of {T, D, 4,5, B}. Then the logic K & Q is decidable.

Algebraic semantics and general frame

An algebra A = (A, A,V, ', T, L, 0) is called a modal algebra if it satisfies the following

conditions:

(i)  (A,A,Vv, ', T,1)is a Boolean algebra,
(ii) for every a,b € A, O(a Ab) = Oa A Ob,
(i) OT =T



For any modal algebra A = (A, A, Vv, ', L, 0O), then operations — and < on A are defined

as follows.

a—b=ad Vb, Oa = (Qd')

For any modal algebra A = (A, A,V, ', T, 1, 0), a mapping v from the set of all
propositional variables to A is called a valuation on A. A given valuation v on A is

extended to a mapping from all formulas to A by defining inductively as follows;

v(p A) = v(p) Av(ih),
v(p V) =v(p) Vo), v(Bp) = Ou(p),
v(p = ) = v(p) = v(Y).

A formula ¢ is walid in modal algebra A, if v(p) = T for any valuation v on A. The

) Ao(y
)V oy

following is the list of conditions corresponding to axioms discussed before. For any
modal algebra, the identity ¢ = 1) is true in A for every modal formula ¢ and v such that
(p = ) A (¢ = ¢) € K. If we replace in this condition K with a normal modal logic L
then A is called L-algebra. In particular, algebras for logics containing axioms D, T, 4,

5 and B satisfy the following conditions, respectively.
D: Oa<Ca, T:0a<a, 4:0a¢<00a B:a<ObCa, 5 <a<O0a.

By using Lindenbaum algebra, it can be shown that any normal modal logic L is complete

with respect to L-algebra. Then Proposition 2.6 holds.

Proposition 2.6  For each normal modal logic L and each formula ¢, ¢ € L iff ¢ is

valid in every modal algebra.

A modal general frame is a triple F = (W, R, P) in which (W, R) is an ordinary Kripke
frame and P is a subset of 2 containing () and closed under N, U, ¢ and O which is defined
as follows: for every X, Y C W,

OX ={zxeW |VyeW(@Ry —yeX)}.

The subset P of 2" is called a set of possible values in F. Let F = (W, R, P) be a modal
general frame. A model on F is a pair (F,V) in which valuation V is a map from all
propositional variables into P; i.e. V(p) € P for every variable p. The relation |= is
defined in exactly the same way of ordinary Kripke models. It is easy to see that a modal
general frame (W, R, P) is essentially equal to a Kripke frame (W, R) when P = 2"V

For a given modal general frame F = (W, R,P), we denote by F* the algebra
(P,n,u, ¢, W,0,0) and call it the dual of F. We can easily show that the dual of every

modal general frame is a modal algebra.

10



Proposition 2.7 Let F be a modal general frame.
1. The dual F* is a modal algebra.
2. ¢ is valid in F iff @ is valid in FT.

Conversely, suppose that a modal algebra A = (A, A,Vv,”, T, L, 0) is given. Then the
dual of A, denoted by A, is defined by the triple (W4, R4, P4) where (i) W4 is the set
of all prime filters in A, (ii) R4 is a binary relation on W4 satisfying that VR4V iff
Va € A(Oa € Vy = a € Vy), and (iii) P4 = {fa(a) | a € A} where fa(a) = {V € W4 |
a€ V}

Proposition 2.8 Let A be a modal algebra.
1. The dual Ay is a modal general frame.

2. ¢ is valid in A iff ¢ is valid in A,.

Indeed, every modal algebra A is isomorphic to its bidual (A;)", in symbol A =
(A4)*. On the other hand, there are modal general frames F which are not isomorphic
to its bidual (F1);. So, we consider the condition that F = (FT), holds. Any general
frame satisfying the following (GF1), (GF2) and (GF3) is said to be differentiated, tight

and compact, respectively.

(GF1) VYu,v e W(u=viff VX € P(ue X iff v € X))
(GF2) VYu,v e W(uRv iff VX € P(u € OX implies v € X))

(GF3) vxXCP,vycCPh
(NX"UY)#0,X Cpin X,V Cpin Y imply N( X UY) #0)

A modal general frame (W, R, , P) is called refined if the frame is both differentiated and
tight, and descriptive if the frame is both refined and compact. The classes of refined
frames and descriptive frames are denoted by R and D, respectively. Let C be any class
of modal general frames. Then L is C-persistent if, for all (W, R, P) € C, (W,R,P) E L
implies (W, R) = L.

Proposition 2.9 For any descriptive frame F, F = (F*),.

For a class C of modal general frames, a logic L is called C-complete if ¢ is in L

whenever it is valid in L-frame which belongs to C. Then the following holds.

Proposition 2.10 Suppose that C is a class of bimodal general frames. If L is both
C-complete and C-persistent, then L is Kripke complete.

11



We discuss here Sahlquist’s schemes. A formula ¢ is positive if it can be constructed
using no connectives other than A, vV, 0 and <. Sahlqvist’s scheme is of the form O0"(p —
1), where n > 0, 1) is positive, and ¢ is constructed from propositional variables and their
negations using at most A, V, O and <, in such a way that no occurrence of A, V or < is

inside the scope of a O.

Proposition 2.11 Suppose that L is a D-persistent modal logic and Q is any set of
Sahlquist’s schemes. Then the logic L & @ is also D-persistent.

2.3 Gentzen style sequent systems for modal logics

In this section, we introduce Gentzen style sequent systems for some modal logics and give
a survey of their proof-theoretical properties. They are obtained from Gentzen’s sequent
system LK for classical propositional logic by adding some rules for modal operator O.
Greek capital letters ', A, II, ¥, © and = denote sequences ( maybe sets ) of formulas.
The sequence OI" denotes Oy, Ops, - - -, e, when I'is 1, @, - - -, . The set {Sub(y) |
¢ € T'} is denoted by Sub(I'). Any expression of the form I' = A is called a sequent, the
left hand side I" the succedent and the right hand side A the antecedent. An inference rule
is of the form

S Sy S
either gl or 2 g 3

where Sp, Sy, S3 and S are sequents. In the inference, S;, Sy and S; are called the
upper sequents, and S the lower sequent. In particular, Sy and Ss is called the left and
right upper sequents of the inference, respectively. The sequent system LK consists of the

following initial sequents and inference rules.

O Initial sequents [
e the sequents of the form ¢ = ¢
O Inference rules O

e Structural rules:

F:>A F7w7<107HjA

ST A=) STSA (©) F,gp,w,H:A(ei)
F:>A F:>A7g0790 F:>A7¢7<P72
FSAgp =W rsAp =0 IS Aoy (&0




e Logical rules:

el'= A P, [ = A F'=Ap I'=AY
AT M) oagTrsa M) T aong N

= A =AY o, '=A ¢, I'=A
F:>Aa%0v¢(:>v) F=>A,<,0\/@/)(:> ) eV, I'= A (V=)

F'=A¢ ¢,lI=3% o, I'= A

oo rsay 7)) Toaeog o)
= A o, I'= A
T4 ) TSsa -y &7

Inference rules (w =) and (= w) are called weakening rules, (c =) and (= ¢) contrac-
tion rules, and (e =) and (= e) exchange rules. Weakening, contraction and exchange
rules are called weak inferences. The formula ¢ in cut rule is called the cut formula of the

rule.

In a sequent system S, proofs of S and end sequents are defined inductively as follows:

1) Each initial sequent is a proof of S, and the end sequent of the proof is itself,
2) Let Py and P, be proofs of S with the end sequents S; and Ss, respectively. If
S1 Sy S

or

S S

is one of the inferences in the system of §, then

B, B

is a proof of §, and the end sequent is S. A sequent S is provable in S if there

exists a proof of S whose end sequent is S.

If a sequent S is provable in a system &S, then it is often denoted by S I+ S. For a formula
v, if the sequent = ¢ is provable in a sequent system, then it is often said that the formula
@ is provable in the system.

Cut-elimination theorem for a given sequent system S says that any sequent S which
is provable in § has a proof of S containing no applications of cut rule. Such a proof is
called a cut-free proof. When cut-elimination theorem holds for S, sometimes we say that

S has the cut-elimination property. Then the following holds.
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Theorem 2.12 (Cut-elimination theorem for LK)  The system LK has the cut
elimination property. In fact, every proof in LK can be transformed, without changing

the end-sequent, into cut-free one.

As a corollary of Theorem 2.12, the following can be shown by checking all inference

rules except cut rule ( outlines in later ).

Corollary 2.13 (Subformula property) For any provable sequent in LK, proofs of it

can be consists only of subformulas of formulas in the sequent.

One of most important consequences of the cut elimination theorem is the decidability.

In general, the decision procedure by using cut-elimination theorem goes as follows:

1. First, we show cut-elimination theorem.

2. Then, we derive subformula property. In many cases, subformula property follows
from cut-elimination theorem. This is shown by checking that in each inference rule
except cut rule every formula in an upper sequent of the rule is a subformula of

some formulas in the lower sequent.

3. We show the finiteness of proof-search procedure. That, for a given sequent I' = A
we show that the number of “candidates” of proofs of I' = A is finite. If we succeed
to show this, we make an exhaustive search of these candidates and check whether
some of them are “correct proofs” of I' = A or not. This gives us a decision
procedure. To show the finiteness of proof-search procedure, a standard strategy is

as follows;

(1) restriction to reduced sequents:
We show that it is enough to consider sequents of a special form. For example,
in LK we need to consider only sequents such that each formula occurs at most

three times in the antecedent and the succedent.

(2) restriction to proofs without repetitions:
Apparently, if a proof contains the same sequent in a different place of one
of its branches, this proof is redundant, and hence such a repetition can be

eliminated.

If we succeed to show both (1) and (2), we can also the finiteness of proof-search

procedure.

14



In the following, we will consider sequent systems for modal logics with some of axioms
T, D, 4,5 and B. Their sequent systems are obtained from LK by adding the following

rules for the modal operator O.

o, I'= A
Op,I'=> A

ar,r' = 6
ol = 0e

I'= 06

or = 0e (SE1)

(SR2) (SR3)

I'=0A,0
Ol = 0OA, 060

O, I = 0A,0
Or = 0OA, 00

(SR4) (SR5)

= OI1,0
or = 11,00

aor,I' = 0A,00, ¢
O = 0OA,Q,Op

(SR6) (SRT7)

In rules (SR6) and (SR7), OIT C Sub(T'U{y}) and OQ C Sub(OTUAU{p}), respectively.
Also we assume that © consists of a single formula. When we relax this condition on ©
and assume that © consists of at most one formula, we will add the superscript D to these
rules, like (SR1)”

includes the axiom D. Also, when a rule (SRi) is assumed for a particular modal operator

. This relaxation is necessary when a modal logic under consideration

O, we write it as (SRi)q, if necessary. In the following, the Gentzen style sequent system
for a modal logic L is denoted by S(L). Here we will introduce sequent systems for some

of well-known modal logics.

| Systems | Rules | | Systems | Rules | | Systems | Rules |
S(K) (SR1) S(KT) (SR1), (SR2) S(KB) (SR6)
S(K4) (SR3) S(S4) (SR3), (SR2) S(KTB) | (SR2), (SR6)
S(K5) (SR4) S(KD4) (SR3)P S(KDB) (SR6)P
S(K45) | (SRb) S(KD5) (SR4)P S(KB4) (SRT)
S(KD) | (SR1)? S(KD45) (SR5)P S(S5) (SR5), (SR2)

We can show Proposition 2.14 easily.

Proposition 2.14  Let L be any of K, K4, K5, K45, KT, S4, S5, KD, KD4, KD5,
KD45, KB, KTB, KDB and KB4. Then Lt ¢ iff S(L) F= ¢.

In deriving the decidability of a logic by using the sequent system, we show usually
the cut elimination theorem for the system in order to obtain the subformula property.
But some of the above systems lacks the cut elimination property. However, if we can

restrict any application of cut rule to the following way,

F'=A¢p pll=X%
[I=AX

where ¢ € Sub(T UITTU A UX)
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then we can obtain the subformula property. We call such cut rule, acceptable cut. It
is called that the sequent system S(L) has the cut restriction property, if every proof in
S(L) can be transformed, without changing the end sequent, into the proof in which every
cut rule applied in it is acceptable. By [42, 43, 44], we can divide their logics into the

following three groups.

(G1) K, K4, K45, KT, S4, KD, KD4, KD45
(G2) KB, KTB, KDB, KB4, S5
(G3) K5, KD5

The group (G1) is a collection of logics satisfying the cut elimination theorem. For a
logic in (G2), even if the sequent system for the logic is restricted the cut rule into the
acceptable cut, provable sequents are same in both systems. Therefore, for every logic
L in (G1) and (G2), sequent system S(L) has the subformula property. But in the case
of a logic in (G3), some formulas which are provable in the logic are unprovable in the
restricted systems by such restriction. Indeed, every logic in (G3) lacks the subformula
property. For example, the cut rule of the lowest inference in the following proof can not

be eliminated.

Op = Up Up = Op q=q
= Up, -Up —-Op,Op=q —Up,q=¢q
= Up, 0-0p —Up, UpV q=q

= OOp, O=0p O-0Op, D(Dp \V4 q) = Ogq
O(pV q) = OOp, Oq

Now consider that the cut rule restricted the cut formula into an element of the set
Sub(TUIMTUAUE)UDO-0Sub(TUTUAUY)U-O0Sub(TUITUAUL).

For every logic in (G3), the restricted system is equivalent to the former system. By this
restriction, it can be shown that every proof in S(L) where L is in (G3) consists only
of elements in a finite set of formulas which depends on formulas in the lowest sequent.

Here, extended acceptable cut rule is defined as

F=Ap oll=X%
OLIIT= A%

where ¢ € ), and () is a finite set of formulas which is determined uniformly and effectively
by I', II, A, X. It is called that a sequent system has the extended cut restriction property,
if every proof in the system can be transformed, without changing the end sequent, into
the proof in which every cut rule applied in it is extended acceptable. Then a logic in

(G3) has the extended cut restriction property.
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Chapter 3

Pseudo-Euclidean logics

In the following, to show the inclusion relation Ly O Ls for logics Ly and Ls, we will prove
that any L;-frame is also a Lo-frame, instead. Of course, this is possible only when both
L, and L, are Kripke complete.

In this section, we discuss inclusion relationship among pseudo-Euclidean logics. For
fixed non-negative integers m and n, let Ey be the logic which is obtained from the
smallest normal propositional modal logic K by adding the pseudo-Euclidean axiom
Okp — OmO™p, where k > 0. We will then give a complete description of the inclu-
sion relationship among these logics. By doing so, we can show how semantical method

works effectively.

3.1 Inclusion relationship among pseudo-Euclidean
logics

Inclusion relationships among various propositional modal logics have been found out
since the early works of them. For example, the inclusion relationship among a class of
logics over K45 is shown in [39]. Our work throws light on the power of proof among
pseudo-Euclidean logics.

Throughout this chapter, m and n are fixed non-negative integers. Let Ej be the
logic which is obtained from the smallest normal modal logic K by adding the axiom
Ok — OmO"p, where k > 0. Here, OFp and OF ¢ denote formulas < --- Oy with k
diamonds and O---Op with &’ boxes, respectively. We call any logic of the form FEj, a
pseudo-Euclidean logic. Since each axiom OFp — O™O"p is a Sahlqvist formula, we can
show that the logic Ej is Kripke complete for each k. In fact, let us say that a binary
relation R on a set W is k-pseudo-FEuclidean if for any z,y, 2 € W, xR¥y and t R™z imply
zR"y. Then, it is easy to see that F} is Kripke complete with respect to the class of all
Kripke frames of the form (W, R) with a k-pseudo-Euclidean relation R on W. Note that
when m =n =1, R is 1-pseudo-Euclidean if and only if it is Euclidean. Let P& be the

class of all Kripke frames of the form (W, R), where R is a k-pseudo-Euclidean relation
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on W. Then it is easy to see that E, D FEj if and only if P&, C PE. In the rest of
this chapter, we identify the axiom system FE} with the set of all formulas provable in Ej.
Our main goal of this chapter is to make a through study of when the inclusion relation
E; O E;s holds. Our result is summarized in the following theorem. Note that Ey O Ey

trivially holds when k£ = £’. So, we assume k # k" in the following.

Theorem 3.1 1. Fork >Fk': E, D Ep iff m=0 and k' = n.

2. Fork' >k: 2a. Ifm=0andn=Fk then E;, D E.
2b.  Suppose that either m > 0 and n # k'
If one of the following (1), (2), (3) holds
(1) £ > m+n,
(2) m >k and m > n,
B3y m=n>k>0,
then
Ey, D By iff (k—m—n)]| (k' —m—n).
2c. Otherwise, Ey 2 Fyr.

I.m>n>0 2. m=n>0

10n
8n
6n
4n

2n
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3. n>m>0
K k'

V0 ) T } n

@) m-4+n O n

Figure 3.1: Ej D Ep iff (k,k") in the graphs

3.2 Proof of the theorem

The rest of the chapter will be devoted to an outline of the proof of Theorem 3.1. It is
obvious that Ey = Ej when k = k'. Henceforth, we assume k& # k'. Also, when m = 0
and k' = n, the axiom OF ¢ — O™ becomes O — O™, which is obviously provable

in K. That is, E} coincides with K. Hence, we have the following.
Lemma 3.2 If m =0 and n = k' then E, O Ep = K.

When k > k', the converse of Lemma 3.2 holds as shown below.
Lemma 3.3 If k > k' and either m > 0 or n # k' then Ey 2 Ey.

Proof. Suppose first that £ > m. We define a frame F = (W, R) as follows: W =
{w; | 0 < i < k' 4+ m}, and the binary relation R is defined by 1) w;Rw;_; for each
i=1,---,m, and 2) w;Rw;;; for each i =m,m+1,--- k' +m — 1.

Then, we can show that both wy,R¥ wy i, and wp, R™we hold, while woR™ w4
doesn’t, since either m > 0 or k' # n. Thus, if w; E ¢ only for i = k' + m then
Wy, & Eyr. Therefore F ¢ PE;. On the other hand, for each x € W, there isno y € W
such that zR*y since k > k' and k > m. Therefore F € PE,,.

Suppose next that k& < m. Let us take a frame G = (V,S) defined as follows: V =
{w; | 0 < i <k + 1}, and the binary relation S is defined by 1) wySwy, 2) w;Swy, and
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3) w;Sw;;; for each i = 1,--- k’. Similar to the above, we can show that G € P& but
G & PE. 1

Thus, we have proved the first part of Theorem 3.1. The following lemma holds for
arbitrary k and &'

Lemma 3.4 If E;, O Ej then (k —m —n) ‘ (k" —m —n).

Proof. Suppose that Ey O Ej but (k —m — n) ‘ (k" — m — n) doesn’t hold. Let
a =k —m —n and define a frame F = (W, R) as follows: W = {w; | i € Z/aZ}, and
w;Rw; iff j =i+1 (mod a).

By the assumption, since k' —m # n+ h(k —m —n) for any h € Z,ie. k' —m #n
(mod a), wy, R"wy doesn’t hold. On the other hand, both wyR* wy and wyR™w,, hold.
Thus F ¢ PEp. Next, suppose that w; RFw; and w;R™ws. Then, j —i = k (mod a)
and s —i =m (mod a). Hence j —s =k —m (moda). But k —m =n (mod a)
since a = k—m —n. Thus j —s =n (mod a), i.e. wsR"w;. Hence F € PE). This
contradicts that E, O E. 1

In the following, we will find sufficient conditions by which the converse of Lemma 3.4
holds. We can assume that k&' > k, and moreover that either m > 0 or n # k', by

Lemma 3.2.
Lemma 3.5 Ifk' >k > m+n and (k—m —n) ‘ (k' —m —n) then E, O Ey.

Proof. By the assumption, &' —=m—n = h(k—m—n), that is k' = k+(h—1)(k—m—n),
for a certain number h € Z. Since k' > k and £k — m —n > 0, we can assume that
k'=k+ (h—1)(k —m —n) with h > 1. To show that E; D Ey = Ejyy (h—1)(k—m—n), it is
enough to show that every (W, R) € P&, belongs also to PEyy(h—1)(k—m-—n) for any h > 1.
This can be shown by the induction on h.

The base step, that is the case of h = 2, can be ascertain in similar way of the induction
step. So, we assume that this holds for h. To show that (I, R) belongs to PEynk—m-—n),
we assume that zRFHE=m=m)y and xR™z. Then, for some w € W, xREF(-Dlk—m=n)y,
and wRF"™ "y since k+ (h—1)(k—m—mn) > 0and k—m —n > 0. Since (W, R) belongs

h=1)(k=m=n)y, and xR™z imply

to PEy(h—1)(k—m—n) Dy the hypothesis of induction, zRF+H(
zR™w. Since zR™z, zR"w and wR* ™ "y hold, xRFy. But since (W, R) is in P&y, zR"y.

Thus, we have shown that (W, R) belongs to P& n(k—m—n)- 1
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Lemma 3.6 Suppose that m > k and either 1) m > n or 2) m =n and k > 0. Let
(W, R) be in PEy. Then for any | > 0 and any M > max(m —n — 1,k — 1), if tR"y,
2Rz and 2’ RMx then zR"y.

¢

Figure 3.2:

Proof. We will show by the induction on [. If [ = 0, this is trivial. When [ = 1, we
will divide the case into two. First, suppose that £ > m — n. Then, for some w,u € W,
o' RM-E=Dyy wRF 12, x R™ %1y and uR* ™ ™y, since M > k—1>0, m—k+1 > 0 and
k4+n —m > 0. Since wRF~'z and xRz hold, wR*z. Also, since wR* 'z and zR™ *+1u
hold, wR™u. Since (W, R) is in P&y, uR™z. Then, for some v € W, z' RMHm—k+1-(m=n),
and vR™ "u, since M +m —k+1— (m —n) > 0 and m —n > 0. Since vR™ "u and
uRF+"=my hold, vR*y. Also, since vR™ "u and uR"z hold, vR™z. Therefore zR"y since
(W, R) is in PE&.

g e

Figure 3.3:

When k < m — n, for some w,u € W, ' RM—k=(m=n=k=1y, yR*y and uR™ " %1z,

since M >k+(m—n—k—1),k>0and m —n—k—12>0. Since wRFu, uR™ " k1y
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and zR"*'y hold, wR™y. Since (W, R) is in PE, yR™u. Then, for some v € W, wR™ *v
and vRFy, since m — k > 0 and k¥ > 0. Since vR*y, yR"u, uR™ ™ %1z and Rz hold,
vR™z. Since (W, R) is in P&y, zR™y. Therefore, we have shown, when [ = 1.

Figure 3.4:

Now, we assume that this holds for I. To show for [ + 1, we assume that zR*T+1y,
xRz and 2’RMz. Then, for some y/, 2’ € W, zR"'y/, y'Rly, xRz' and 2z'R'z. Hence
2' R™y' by the result when [ = 1. Since 2’ R™y' and y'R'y hold, 2’ R"*'y. Since 2'RMz and
rR2' hold, 2’ RM*12'. Since 2’ R"*ly, 'Rz, 2’ RM*1y and M +1 > M > max(m — n —
1,k —1), zR"y by the hypothesis of induction. 1

Lemma 3.7 Suppose k' > k and m > k. Moreover suppose that either 1) m > n or 2)
m=mn and k > 0. Then (k —m —n) ‘ (k" —m —n) implies Ey O Ej.

Proof. By the assumption, &' —m—n = h(m+n—k), that is ¥’ = k+(h+1)(m+n—k),
for a certain number h € Z. Since k' > k and m +n — k > 0, we can assume that
K =Fk+ (h+1)(m+n—k) with h > 0. To show that Ey O Ep = Ery(h+1)(m+n—k), it is
enough to show that every (W, R) € P&y belongs also to PE gy (h+1)(m+n—k) for any h > 0.
This can be shown by the induction on h.

If h =0 then &' = m + n. we assume that (W, R) € P&, and also that zR™""y and
xR™z for z,y,z € W. Then, for some w € W, s R¥w and wR™" %y, since m+n—k > 0.
Then zR"w and wR™™ %y by the assumption, so zR™¥+27y_ Then, for some u,v € W,
eR™ *u, uRFz, zR™ *v and vR*"y, since m — k > 0. Since uR™v and uR*z, vR"z. But
by using Lemma 3.6, zR"y by taking [ = n. Hence PE,,1,.

Since the essence in the proof is involved in the base step, we can check the induction

step in the similar way of the base step. 1

Thus, combining Lemma 3.7 with Lemma 3.4 and 3.5 we have the following.
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Figure 3.5:

Corollary 3.8 Suppose that k' > k and that either m > 0 or k' # n. If one of the
following (1), (2), (3) holds

(1) k> m+n

(2) m >k and m >n

(3) m>k, m=nandk >0
then Ex, O Ey iff (k —m —mn) | (k' —m —n).

In the last place, we will show that Ej, O Ej never hold in the remaining cases. So,
we assume that none of (1), (2) and (3) in the above corollary holds.

First, suppose that m > 0. Suppose moreover that £ > m. Note that m +n > k
holds, because (1) of Corollary 3.8 doesn’t hold.

Lemma 3.9 If k' >k and m+n>k >m >0 then Ey, 2 Ey.

Proof. Define a frame F = (W, R) as follows: W = {w; | 0 <i < m +n+ 1}, and
1) w;Rw; for each i = m+1,---,;m+n+ 1, 2) w;Rw;,; for each i = 0,---,m + n, 3)
w;Rw;_1 foreach i =m+2--- m+n+1,4) woRwpini1—k-

First, we will show that F € PE;. If i > 1, wiRkwj and w; R™wj then both w; and
wjr are between Wy, and Wy, 441 since i +k > m+1and ¢ +m > m+1. Thus wy R w;.
If woR*w; and woR™w; then wj R"w; since m +1 < j < m+nand m < j' < m+n.
Hence F € PEj. On the other hand, w,, R"w,, 1,+1 doesn’t hold since m # 0, while both
ngk'meH and woR™w,, hold. (Note here that woRF ' w4y and k41 < k'.) Hence

F ¢ PEy. '

Suppose next that m > k. Because (2) of Corollary 3.8 doesn’t hold, n > m. We

assume first that n > m > 0. Then we have the following.
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Lemma 3.10 If k' >k, m >k >0 andn >m > 0 then Ey 2 Ej.

Proof. If ¥ <m+nthenm+n—k>m+n—Fk" >0,s0 (k—m—n) ‘ (k' —m —n)
doesn’t hold. Thus, we can derive our conclusion by using Lemma 3.4. It is therefore
sufficient to consider the case where &' > m + n. We will divide the case into two.

For n > k + m, we define a frame F = (W, R) as follows: W = {w; | 0 <i < m+n},
and w;Rw; iff |i — j| < 1. Since m +n > n by m > 0, woR"wy,4, doesn’t hold while
both woR™wo and woR* wy,.p hold for k' > m + n. Therefore F ¢ PEr. We will next
show that F € PE;. We first note that w;R'w; holds if and only if |i — j| < ¢t. Now,
suppose that w;RFw; and w;R™ws. Then, |i — j| < k and |i — s| < m. Therefore,
|s —jl <|s—i|+]i —j| <m+k < n. Hence, wsR"w,

For n < k + m, define a frame G = (V, S) as follows (see Figure 3.6): V = {v; | 0 <
i<k+m+1}, and

v;Sv; ¢ either
1) |i—j|<1if0<i,j<k+m+1or
2)j=k+m-n+2ifl1<i<k+m-n+2or
3)j=n—1lifn—1<j<k+m.

»O
Vo U1 ‘ Ulc—l—m';n—}-? 'Un“,il Vk+m Vk+m+1
) T k4= + 1
---------------- k—i—m—l
Figure 3.6:

Note that the frame takes at least n + 1 steps from vy to vgypmy1 by the relation
S. Thus vgS™Vk1m+1 doesn’t hold. But both vak'UHmH and v,,S™vg hold because of
k4+m+1<k +m. Thus G ¢ PEy.

Assume that zS*y and £S™z for any z,y,z € V. Then both y and z must be either
between vy and vgy,, or between v; and vgyp,11, depending on x. For each case, y is

accessible from z by n steps, i.e. 25™y. Therefore G € PE&;. 1

Next, assume that n = m > 0. Since (3) on Corollary 3.8 doesn’t hold, k£ must be

equal to 0. Then, we have the following.
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Lemma 3.11 If k' >k, m=n>0 and k =0 then Ey 2 Ej.
Proof. We define a frame F = (W, R) as follows;

W = {w; |0<i<m+1},

Then woR"w,,,, doesn’t hold while both wy RF wy and w1 R™wy,+1 hold. Hence F ¢
PEr. On the other hand, xR™y implies yR"x since the frame R is symmetric. Thus
F e PEy. I

Finally suppose that m = 0. Then by our assumption, n # k’. Since the condition (1)
k > m+n = n on Corollary 3.8 doesn’t hold, n > k. Then, we have the following.

Lemma 3.12 If k' >k, m=0,n >k and k' # n then Ey 2 Ey.

Proof. Similarly to Lemma 3.10, we can show our lemma easily when k' < n. So,
suppose that &' > n. If k' <2n —k thenn —k > k" —n >0, so (k —n) ‘ (k" —n) doesn’t
hold. This case has been discussed already in Lemma 3.4. It is therefore sufficient to
consider the case k' > 2n — k. Then we define a frame F = (W, R) as follows;

W= {w;|0<i<2n— k),

Since 2n — k > n by n — k > 0, wogR™ws,_; doesn’t hold while woR¥ way, hold,
therefore F ¢ PEp. On the other hand, if xRy then xR"y for any z,y € W, since
n > k. Thus F € P&, ]

3.3 Note

For non-negative integers m and n, we have shown when Ej, O Fj holds. As generalization
of our results, it is interested in what happen if we allow both m and n to change.
More precisely, let E;"" be the logic which is obtained from the smallest normal logic
K by adding the axiom OFp — O™OMp, where k,m,n > 0. Then it is to see when
E™™ 2 EZ™ holds.

The content of this chapter is also discussed in [14], and is compiled as a joint paper

with Y. Hasimoto, which is under submission.
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Chapter 4

Combination of modal logics

Most of studies of modal logics until recent years are concerned with monomodal logics,
i.e. modal logics with a single modal operator. We have already had many of strong and
general results on monomodal logics. On the other hand, it is quite natural and necessary
to introduce modal logics with many modal operators when we want to use modal logics
as frameworks for describing problems in philosophy, linguistics and computer science.
Such modal logics, called now multimodal logics, have been one of most important topics

of modal logics for these 20 years.

Here, we will give two important examples of multimodal logics that have been paid
much attention. The first example is dynamic logic. Dynamic logic is introduced as a
logical framework of verifications of programs. For each “program” 7, [r]p means “p
holds after the execution of 7”. Since 7 runs over programs, dynamic logic is considered
to be a modal logic with infinitely many modal operators. The interdependency between
these modal operators are determined by basic operations of programs.

Multimodal logics in the second example are temporal logics. The basic temporal
logic K; has two operators, past operator [P] and future operator [F], and other temporal
logics are usually defined to be extensions of K;, which sometimes have some additional
operators like “until” and “next time”. The interdependency between [P] and [F] can be
described in an obvious way. That is , the present is a future of any past, and is also a

past of any future.

These two classes of multimodal logics arose from application side, and therefore in-
terdependency of modal operators are determined by their intuitive meaning.

Now let us consider multimodal logics that are obtained from some of modal logics
by combining them, in a general setting. Then, a question is how to combine them. A
natural way of combining modal logics, say L; and Lo, is just to consider the least modal
logic containing both L; and Ly ( assuming that there is no modal operators common
to them ). The logic thus obtained is called the fusion of Ly and Lo, and is denoted by
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L, ® Ly. For instance, take a logic of knowledge and a logic of belief. Then, the fusion of

them becomes a logic of knowledge and belief.

The notion of fusions of modal logics is originally introduced by S. K. Thomason [47].
Then, in the early 90’s M. Kracht and F. Wolter [23] developed an extensive study of
fusions. Among others, they succeeded to show many important preservation theorems,
i.e. to clarify what kind of ( semantical ) properties is preserved by the fusion. In spite of
these strong results on fusions, we have only a little knowledge on combination of modal
logics. When there are some dependency between modal operators even if it is quite weak.

There is another interesting way of combining modal logics. The product of modal
logics L; and L, is defined to be the modal logic characterized by the product of Kripke
frames for L; and those for L,. The study is started by V. Shehtman, and has been
developed mainly by D. Gabbay and V. Shehtman in recent years ( see e.g. [9], [10] ).
A mathematically clearer, but logically a bit more complicated notion of products, called

normal products is introduced and studied by Y. Hasimoto [15].

In this chapter, we will discuss fusions of modal logics. First, we will give a brief survey
of fusions and preservation results mainly by M. Kracht and F. Wolter [23]. In Section 4.2,
as an attempt to develop a study of fusions with some interdependency, we will discuss
the finite model property. As for a fusion with some interdependency, not to mention the
proof-theoretical property, even the finite model property is not so easy. In Section 4.3,
we show our results on cut elimination theorem and consequences of fusion. Moreover,
Section 4.4 discusses the cut elimination theorem for some fusions with an interdependent
axioms. In the last section, we will introduce temporal epistemic logics, the combination
of temporal logic K; and some of epistemic logics, as an concrete example of combinations
of modal logics. Temporal epistemic logics introduced there are fully discussed in the next

chapter.

4.1 Composite of modal logics

In this section, we will explain two important way of combining modal logics. The first
is fusion, and second is products. Then, we will give a brief survey of recent results on

fusions, since this paper mainly discusses multimodal logics obtained by fusions.

Construction of multimodal logics

Let Ly and Ly be two modal ( maybe monomodal ) logics formulated in languages £; and
Lo, respectively. We assume that there is no modal operators common to them. Then
the fusion of L; and Ly, denoted by L; ® Lo, is the least multimodal logic in £ U Lo
containing Ly U Ly. The fusion L; ® Ly ® --- ® L, of n modal logics can be defined in
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the same way, for any natural number n > 2. As an abbreviation, the fusion of logics
Ly, Ly, -+, L, is denoted as @;_, L;. Besides, Kripke type semantics for fusions can be
introduced naturally. For a logic L, F(L) denotes the class of all frames which validate
L. Suppose that (W, Ry,---, R,,) € F(Ly) and (W,Sy,---,S,) € F(L;) are Li- and Lo-
frames, respectively. Then the frame formed (W, Ry,---, R, S1,- -, S,) which satisfies
first-order conditions for each fragment is a frame for the combined modal logic L ® Lo,
that is (W, Ry, -, Ry, S1,-++,S,) € F(L; ® Ly). From this point of view, worlds in
frames for fusions are same as those for fragments. It can be ascertained that all frames
in F(L; ® L) validate the fusion L; ® L, whenever F(L;) and F(L,) determine logics L,
and Ly, respectively.

Here we consider fusions of axiomatizable modal logics L; and L, in £; and F,
respectively. Then we can see that it is not necessary to use formulas containing both
modal operators in L; and L, in the axiomatization of the fusion. In this sense, modal
operators in L; and L, remain independent in the fusion. According to this construction,

the fusion is axiomatizable whenever the fragments are.

Another way of combining modal logics is to introduce a multimodal logic by using
products of modal frames. That is introduced in [9]. This is a natural way of introducing
interactions among modal operators. There have been many applications of products in
computer science, and artificial intelligence and so on since 1980. Here, we introduce only
two-dimensional case of products. The product of a frame Fy = (W, Ry, -, R;,) and
Fy = (V,S1,--+,Sn), denoted by Fy x Fy, is defined as (W x V, Ry, -+, Ry, S, -+, Sh)
where R; = {((z,2), (y,2)) | Ry} and S; = {((2,%), (2,9)) | S;y}. For classes C; and
Cy of frames, their product is the class of C; x Co = {Fy x Fo | F1 € C1, F5 € Cy}. Let
L(C) be the set of all formulas which are valid in every modal frame in C for a class C
of modal frames. Then the product of modal logics L; and Lo, denoted by L; x Ly, are
defined as L(F(L;) x F(Ly)).

In both of fusions and products, while semantical properties for these logics have been
studied considerably, proof-theoretical properties have not been fully discussed yet. In
the following, we first present previous results on fusions briefly. Then we will discuss

proof-theoretical properties of fusions.

Semantical properties of fusions

Fusions of modal logics have been studied since the later half of 20th century. The
first explicit result about fusions was obtained by Thomason [47]. In that paper, it is
shown that fusions of consistent modal logics turn out to be a conservative extensions
of each of monomodal fragments. Many of preservation results under fusions are studied
by M. Kracht and F. Wolter [23], K. Fine and G. Schurz [8], V. Goranko and S. Passy
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[12], etc. All of these papers are technically based on Kripke semantics and prove general
results only on logics which are complete with respect to Kripke frames. For instance,
transfer theorem of decidability and interpolation property of Kripke complete logics is
proved independently in [8] and [23].

A structure (A, A, V), T, L, 0) is a modal algebra if (A, A,V,”, T, 1) is a Boolean
algebra and O is an operator on A satisfying O(a A b) = Oa A Ob and OT = T.
A structure (A, A,V,", T, L, 0O ®) is a bimodal algebra, if both (A, A, Vv, T, 1L, 0) and
(A, A, V), T, L, ®) are modal algebra. Bimodal algebras can be represented by bimodal
general frames (W, Ro, Ru, P), where W is a set, Rn and Ra are binary relations on
W and P C 2" is a system of sets closed under complementation, intersection, and
O0X = {u | Yo(uRgv implies v € X)} and WX = {u | Vo(uRav implies v € X)}. If
P = 2" then (W, Rn, Ru, P) is equivalent to a bimodal frame (W, R, Ra). Let C be
a class of bimodal general frames. Then L is C-persistent if, for all (W, Rn, Ra, P) € C,
(W, Ro, Ru, P) = L implies (W, Ro, Ra) | L.

Proposition 4.1 Suppose that C is a class of general bimodal frames. Let Co and Ca be
sets {(W,Rn, P) | (W, Rn, Ra, P) € C} and {(W, Ra, P) | (W, Ro, Ra, P) € C}, respec-
tively. Then if Ly 1s Co-persistent and Lo is Ca-persistent, L1 ® Ls is C-persistent.

The general frames satisfying the following (GF1), (GF2), (GF3) and (GF4) are called
differentiated, O-tight, B-tight and compact, respectively.

GF1
GF2
GF3
GF4

Vu,v e W(u=v iff VX € Plue X iff v € X))
Vu,v € W(uRgv iff VX € P(u € OX implies v € X))

(GF1)
(GF2)
(GF3) Vu,v € W(uRav iff VX € P(u € BX implies v € X))

(GF4) VX CP,VYCP

(NEX"UY)#0,X Cpin X,V Cpin Y imply N(XUY) #0 )

A bimodal general frame (W, Rq, Ru, P) is called refined if the frame is differentiated,
O-tight and B-tight, and descriptive if the frame is refined and compact. The classes of
refined frames and descriptive frames are denoted by R and D, respectively. Descriptive
frames are frames which are representations of modal algebras; i.e. for any descriptive
frame F, F = (F*),. A frame F is called canonical for L if it is the representation of a
generated L-algebra. A logic L is canonical if it is persistent with respect to its canonical
frames. Then, the following theorem on the persistency and the fundamental properties

is shown in [23].
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Theorem 4.2  Suppose that L & Ly, Ly. Then followings hold.

1) L1 ® Ly is axiomatizable iff both Ly and Lo are aziomatizable.

2) L1 ® Ly is R-persistent iff both L and Lo are R-persistent.

3) L1 ® Ly is D-persistent iff both Ly and Ly are D-persistent.

4

Ly ® Ly 1s canonical iff both Ly and Ly are canonical.

5) L1 ® Ly is complete iff both Ly and Lo are complete.

(1)
(2)
(3)
(4)
(5)
(6)

6) L1 ® Lo has the finite model property iff both Ly and Ly have their finite model

property.

By Theorem 4.2, fusions of axiomatizable modal logics with the finite model property
are decidable. By [23], whenever both modal logics L; and Lo, not containing L, are
complete, the fusion L; ® L, is decidable if both L; and L, are decidable. As shown in

the present section, many of semantical properties are preserved under fusions.

4.2 Finite model property of fusions with some in-
terdependent axioms

Some preservation results on cut elimination and cut restriction properties of the sequent
systems for fusions of modal logics are discussed above. As for multimodal logics with
interdependent axioms, however, it is not so easy to find sequent systems either with cut
elimination property or with cut restriction property. In this section, we make an attempt
to study bimodal logics defined as fusions of monomodal logics by adding interdependent

axioms of the form 7,0 — 0, where both 7; and o; are sequences of modalities for 7 € I.

Proposition 4.3  If both Ly and Ly are canonical monomodal logics, then bimodal log-
ics of the form Ly ® Ly ® {m;p — o;p | i € I}, where both 1; and o; are sequences of their

modalities, are Kripke complete.

For a sequent 7 of modalities, the kth modality from the left is denoted by 7(%). Then
for any frame F = (W, R), the following holds.

F ): T > 0P < VUVU(URU(U 0---0 Ro.(n)v — U‘Rr(l) 0---0 RT(m)U) (Cl)

Interdependent axioms cause a lot of difficulties, and therefore the study of them has not
been developed well. As a small attempt to the study in this direction,we will show the
finite model property of bimodal logics discussed in the above theorem when both L,

and L, are S4. For the logic which is a normal extension of S4, a formula obtained by
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increasing or decreasing some sequences of same modalities is equivalent to the original
one. As an example, S4n ® S4a @ {OOMp — EEOp} = S4, ® S4a @ {OWp — WP},

To show the finite model property, we will use the filtration method. Suppose that a
model (W, Rn, Ru, =) and a finite set ¥(y) of formulas which contains Sub(y) are given.

We define a binary relation ~ on W as follows:
u~wv iff  forany y € U(p), u =y iff v E x.

Clearly ~ is equivalence relation. The set W/ ~ of all equivalence classes with respect
to ~ is finite, since WU(y) is finite. Let [u] denote the equivalence class of u, i.e. [u] =
{r € Wlu ~ z}. Let « € {O,m}. Here, we prove the finite model property by means of

adopting the following coarsest filtration.
Coarsest filtration:  [u]Ss[v] iff for any arp € U(p), u = atp implies v = 1.

Theorem 4.4  Each bimodal logic of the form S4n ® S4w ® {T;p — o;p | i € L}, where

both 1; and o; is sequences of O and M, has the finite model property.

Let L =S4 ® S4a @ {7p — op} where 7 and o are m and n modalities, respectively.
We note that L is complete with respect to the frame (W, Rn, Ra) where both Rn and
Ra are reflexive and transitive and satisfies the condition (C1). Suppose ¢ ¢ L. Then
by the completeness theorem, there exists a L-model (W, Rn, Rua, =) such that for some
uy € W, up & ¢. Now we define ¥U(p) as follows:

Uy = Sub(p),

U, = {00y | Oy € ¥, },
Uy = {mmy | Wy € U},
U, = Sub({ox|rx € ¥1}),
Uy = {rWryp | 7ep € Uy},

It is easily seen that W(¢p) is finite.

[u]Sp[v] iff  for any Oy € ¥(y),u = O implies v = 1),
[u]Sw[v] iff  for any My € U(p),u = Wy implies v = 1),
[l E p it uEp.
Now let us, consider the following model:
(W/ ~,Sa, Su, =¥).
If the number of formulas in ¥(y) is m, then the number of elements of W/ ~ is at most

2™. So W/ ~ is a finite set. Moreover, we can also the following.
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Lemma 4.5 [

O (1) For any u,v € W, uRnv implies [u]Sa[v].
(2) For any u,v € W, uRwv implies [u]Sa[v].
(3) For any u € W, [u]Sa|u]
(4) For any u,v,w € W, [u|Salv] and [v]Sg|w] implies [u]Sa|w].
(5) For any uw € W, [u]Sa[u]
(6) For any u,v,w € W, [u|Sa[v] and [v]Sa[w] implies [u]Sa[w].
(7) For any u,v € W, [u]S,[v] implies [u]S:[v].

Proof. Since we can ascertain that both Sn and Sa are reflexive and transitive easily,
we show here that Sn and Sa satisfy the condition (C1). Assume that uS oy 0---0S_ muv
and, for all 7¢ € ¥(p), u = 1.

The case of 7¢ € Uy. If u |= 79, then u |= o1). By the assumption uS,ay0---0S,m v,
v = 9 since o € Wy.

The case of 79 € W,. This case arises if 7)) = (). If m > n then 7¢ is of the form
o't for a sequence 7' of modalities. Since uS,q) 0---0 S mv and o7'tp € Wy, v | T/9).
Thus v = 1 since both Sy and S are reflexive. If m < n then 79 is of the form 7o

(»=1) or null sequence. If u | T'oay)

where 7' is a sequence of modalities and « is o
then u = oat) by reflexivity of S and Sw. Then u | at since uS,q) o---0 S, mv and

oarp € Wy. Therefore u = ¢ by reflexivity for a. 1
We can see that the model (W/ ~, Sq, Sa, E*) is L-model by Lemma 4.5. Now, the

finite model property of L is derived by combining the following lemma.
Lemma 4.6  If ¢ € U(yp), then for any u € W, u =1 iff [u] E* 1.

Proof. We will prove this by induction on the formation of .
The case where v is a propositional variables is given by the definition of =*. The case
where 1 is of the form y; A x2, X1 V X2 or x1 D X2 is straightforward. The case where
Y = Ox. [ = ] Suppose that u = Oy. If [u]Sp[v] then v = x since Oy € U(p). By the
induction hypothesis v =* x. Hence [u] =* Ox. [ <= | Suppose [u] =* Ox. If uRgv then
[u]Sg[v] by Lemma 4.5 (1). Since [u]Sn[v] and [u] E* Oy, and so [v] E* x. By induction
hypothesis v = x. Thus u | Oy.

The case where ¢y = Bx can be shown in the similar way. This time we use Lemma 4.5
(2) instead of (1). 1

By the above, therefore uy = ¢ iff [ug] E* ¢. Thus, there exists a finite L-model
(W/ ~, Sa, Su, E*) such that for some [ug] € W/ ~, [ug] FE* ©.
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4.3 Cut elimination and cut restriction properties of
fusions

In this section, proof-theoretical properties of Gentzen type sequent systems for fusions
of well-known monomodal logics are discussed.

While semantical studies of fusions have been developed much since the later half of
the 20th century, not so much work have been done for proof-theoretical studies of fusions.
From the point of view of constructing theorem provers and implementing them, proof-
theoretical approach to fusions will be also desirable. As a proof-theoretical approach,
here we will be mainly concerned with Gentzen type sequent systems for fusions. In
the following, we will consider fusions of modal logics with some of axioms T', D, 4, 5
or B. Their sequent systems can be obtained from the sequent system LK for classical
propositional logic simply by adding both of the rules for components of the fusion. For
example, the system S(KD455 ® S5a) consists of rules of LK,

Or, [ = OA ml [= mA
Y :> 76 (5R5)g Y j 7<10

o, '= A
Or = OA, 06 . E[ = EA my (SR2)m

(SR5) and Mo ['= A ,

where © consists of at most one formula. Other sequent systems for fusions can be also
constructed in the similar way. We can show easily that the following Proposition 4.7
holds.

Proposition 4.7  Let Ly and Ly be of the form K& Q where @ C {T, D,4,5, B}. Then

The rest of this section presents the proof-theoretical property for fusions. Then the

following holds.

Theorem 4.8 (cut-elimination theorem for fusions)  Let Ly and Ly be any of K,
K4, K45, KT, S4, KD, KD4 and KDA45. Then the sequent system S(L; ® Ls) for

each fusion of their logics has the cut elimination property.

This theorem can be proved by Gentzen’s method for any logics of them, and similarly
to the case with the each logic since each modality is independent of another one. Some
difficulties occur when a logic contains the axiom 5. The cut elimination theorem for
K45 and KD45 is proved in [41]. The sequent system S(S5) defined above lacks the cut
elimination property, but M. Sato introduced a cut-free Gentzen type sequent system for
the modal logic S5 by means of eliminating the visible cut one by one [38]. As to the

logics K5 and KD5, no cut-free systems are known yet.
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An important consequence of cut elimination theorem for a sequent system S is the
subformula property. That is, if a sequent I' = A is provable in S then it has a proof
which consists only of sequents containing subformulas of formulas in TUA. In fact, most
of outcomes of cut elimination theorem, including decidability, can be derived from the
subformula property. In standard sequent systems, only cut rule violates the subformula
property, i.e. the cut formula in a given application of cut rule may not appear in the
lower sequent. In other words, if we can restrict any application of cut rule to the following

way,

F'=A¢0 pll=X%
[I=AY

where ¢ € Sub(T UTTU A UX)

then we can obtain the subformula property. We call such cut rule, acceptable cut. Takano
succeeded to show that for some of sequent systems for modal logics, including KB, KTB,
KDB, KB4, S5, every provable sequent has a proof in which every rule is acceptable
[42, 43]. In [44], he show the cut restriction property for K5 and KD5 by using extension
of the acceptable cut rule. It is called that the sequent system S(L) has the cut restriction
property, if every proof in S(L) can be transformed, without changing the end sequent,
into the proof in which every cut rule applied in it is acceptable. Note that every system
with the cut elimination property has the cut restriction property. By means of some
method of derivation of the cut restriction property for KB, KTB, KDB, KB4, S5,
K5 and KD5 which was shown by Takano, the following cut restriction theorem can be

shown.

Theorem 4.9 (cut-restriction theorem for fusions) Let Ly and Ly be of the form
K® Q where Q C {T, D, 4,5, B}. Then the sequent system S(Ly ® Lo) for each fusion of
these logics has the ( extended ) cut restriction property, and therefore has the ( extended )

subformula property.

This theorem can be shown through Kripke semantics; i.e. for logics L; and L, which
are of the form K @ @ where Q C {T, D, 4,5, B}, the restricted system for L; ® Ly is
determined by L; ® Lo-frame, and similarly to the case with the each logic since each
modality is independent of another one. As important corollaries of the subformula prop-
erty of sequent systems for modal logics discussed above, we can show Craig’s interpo-
lation property and decidability of them. For Craig’s interpolation property, we can use
Maehara’s method ( see [34] for details ).
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Corollary 4.10 (Craig’s interpolation property) Let Ly and Ly be of the form K&Q
where Q C {T, D, 4,5, B}. If ¢ — 1 is provable in S(L1 ® L), then there exists a formula
X such that

1) ¢ — x and x — 1 are both provable in S(L; ® Ly)

2) V(x) S Vip) nV(y).

Corollary 4.11 (decidability) Let Ly and Ly be of the form K& Q where Q@ C {T, D, 4,
5,B}. Then the system S(Ly ® Ly) is decidable.

These results can be obviously extended to the system S(® ; L;) (n > 2) as long as

each L; is among modal logics discussed above.

4.4 Sequent systems for fusions with some interde-
pendent axioms

Due to T. Shimura’s suggestions, we introduce here sequent systems for fusions with an
interdependent axiom either of the form Oy — By or of the form Oy — MOy and show
cut elimination theorem. Some of the applications to temporal epistemic logics will be
discussed at the end of this section. Here, we consider fusions of modal logics K, KT,

K4 and S4. The next proposition is useful, while it can be easily shown.

Proposition 4.12

1. Let L be a normal bimodal logics L1n @ Low @ {Op — Bp}. If M) — op € L, then
Oy — 4p € L. In other words, if M) — 1) € Lo, then O — 1) € L.

2. Let L be a normal bimodal logics Lin ® Log @ {dp — WO}, If O — ¢ € Ly,
then Cip — MWy € L.

3. Let L be a normal bimodal logics L1n @ Low @ {Op — B}, If Oy — OOy € Ly,

then Oty — MOy € L.

To get cut-free sequent systems for fusions with axioms Oy — By and Oy — WOy,

we introduce following rules.

=I'=0 =80 =0

52 a7 = wo (SHVA 5= a0 S mo (SH3)
o=I'=06 " o=,m"I"'=0 B

o=, mr = mo (Sfl)s 0=, mr - mo (S13)s

0Z,5,7 = © OZ, =, m0T = ©

5= ar = mo (SEDE = ar o mo  (SEIW
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For L € {K,KT,K4,S4}, let S’(La) be the sequent system obtained from S(Lu)
by replacing (SR1)w and (SR3)m in rules of S(La) by (SR1)§ and (SR3)L, respectively,
where I is any of 4, #f and ##f. Then S'(L,n ® Loa) is the sequent system obtained
from the sequent system LK by adding rules for modal operators in both of S(L;5) and
S'(Lyw). For example, the system S* (K4 ® S4a) consists of rules of LK,

Oor,I'= ¢
Ol = O

O=ml,T = ¢
O=, . = Hy

o, I'=A
and Mo ['= A

(SR3)4

)

(SR3)¥ (SR2)a

Y

I. Fusions with Op — WOp

First, we consider normal bimodal logics of the form Lin ® Log ® {Op — BOp}. By

Proposition 4.12 3., we can show the following equivalences.

KT, ® K4a © {Op — B0y} = S45® K4a @ {Op — WOy}

KTy ® S4a & {Dgp — IDQ@} = S4; ® S4a ® {DSO — .DQO}

The next proposition can be shown easily.

Proposition 4.13  Let Ly and Ly be any of K, KT, K4 and S4. Then Lig ® Log ®
{Op — mOp} F 4 iff S¥(Lig ® Lo) F= .

Theorem 4.14 (cut elimination theorem) Let Ly and Ly be any of K, KT, K4
and S4. Then the sequent system S*(Lin ® Lyu) has the cut elimination property.

This theorem can be shown in usual way by Gentzen’s method, which is summarized
in following table. In the table, © means that cut elimination theorem holds, and show

that cut elimination theorem follows from the above equivalence.

Ka | KTa | K4 | S4a
Ko o o o o
KT o) o o o
K4, o) o o o
S44 o o o o
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I1. Fusions with Op — Wy

Next, we consider normal bimodal logics with the axiom Oy — By. By Proposition 4.12,

we can show the following eqivalences.

KTy @ KTa ® {Op —» Bp} = Ko KTa® {Op — By}
KTo® S4a @ {Op — By} = Ko® S4a® {Op — Hy}
KTy @ Ka® {Op — BOp} = S45Q Ka® {Op — By}

KTo @ KTa ® {0p — B0p} = S45 @ KTa @ {Op — Wy}
— K459 KTa ® {Op — Wy}

KTsr® K4a @ {Op — BOp} = S47 Q0 K4a @ {dp — By}

KT ® S4a & {DQO — .D(p} = S47;® S4a & {Dgp — I(p}

Proposition 4.15

1. Let Ly and Ly be any of K and KT. Then, Lig @ Lom @ {Op — Wy} = ¢ iff
S*(Lin ® Low) F=> 1

2. Let Ly be either K or K4. Then, Kdn ® Lig ® {Op — Bp} 1 iff S¥(K4p ®

Theorem 4.16 (cut elimination theorem) Let Ly and Ly be any of K and KT,
and Ls either K or K4. Then, S*(Lin®Lya) and S* (K4n® Lia) have the cut elimination

property.

As for bimodal logics Kg @ K4 @ {Op — By}, KTh ® K4 & {Jp — Bp} and
KTs ® S4a @ {Op — By}, any of sequent systems introduced similarly as above lack
the cut elimination property. Thus, we can summarize these results as shown in the
next table. Here, [1 means that we don’t have cut-free sequent systems with subformula

property for it yet.
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Ka | KTa | K4 | S4a
Ko @ o O --
KT o o O O
K4, o) o) o o
S44 o o o o

As for bimodal logics Lig @ Log @ {dp — Wy, Op — MOp} where Ly, Ly €
{K,KT,K4,S4}, we can show cut elimination property by using rules (SRl)ﬁ.n, (SRl)ﬁ.M,
(SR3)¥ and (SR3)%".

Some interdependent axioms is useful for formalization in many applied fields. Now,
we refer to applications of logics in this section into temporal epistemic logics. As account
in next section, K, and Kz are interpreted as “agent o knows ¢” and “agent 3 knows ¢”,
and [F] is interpreted as “at all future times, ¢”. Then, K, — Kzp means that “agent
[ knows what agent o knows”, and K,p — [F]K,@ says that “in the future agent o will

know always what a knows now”.

4.5 Fusions of temporal and epistemic logics

Among many applications of fusions, epistemic logics incorporated with temporal notions
are useful, since informations ( knowledge or belief ) which an agent possesses change in
the flow of time. These logics are in fact used for formalizing frameworks of various fields
of computer science, in particular of artificial intelligence.

Formalization of multi-agent systems using logical framework has served as an impor-
tant bridge between communities of distributed artificial intelligence; one is the symbolic
logician’s camp and the other is social behavioral camp [48]. As to the former, BDI
model has been studied as modal logics with three modalities for intention, belief and
desire [36, 40, 25]. These logics have been studied especially as models of recognizing
outside world for an agent embedded in a situation [4], and have been applied in situation
( cannel ) theory in information science [1]. If we try to build a computer systems for
multi-agent systems, the most important issue would be how we formalize the change of
states, how we synchronize the actions of agents on linear or branching time, and how we
assure soundness and consistency of their systems. In such a situation, it will be necessary
to consider logics that are obtained by combining two kinds of modal logics; epistemic
logics which are logics of knowledge and belief and temporal logics which handle changes
of time. In this section, we will introduce two temporal epistemic logics. They are logics
of knowledge and belief over the temporal logic K.

To formalize multi-agent models, we need to introduce such modal operators as:
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Ba,Bg,- -+ Dbeliefof o, 3,---
Ko, Kg, -+ knowledge of o, 3, - -
[F] and [P] future and past,

where «, 3 etc. run over agents. When knowledge and belief of one agent do not directly
affect those of the other agents, modal logic of a single agent {B,, K., [F'], [P]} can be easily
extended to that of multi-agents with modal operators {B,,Bg,--,Kqa,Kg, - [F],[P]},
simply adding axioms of different modal operators. Therefore, we will discuss mainly tem-
poral epistemic logic with modal operators {B,, [F], [P]} or {Kq, [F],[P]} in this chapter.

Epistemic logic

Epistemic logics ( logics of knowledge and those of belief ) have been set to work in
philosophy. The aim of employment of their logics was to analyze formal properties of
reasoning about knowledge and belief. The possible world semantics for epistemic logics
originated in Hintikka [17]. For epistemic logics, recently, their semantics using techniques
developed by Kripke [24], that is called Kripke type semantics, is often adopted. Epistemic
logics are usually formulated as normal modal logics. It is natural since every agent is

wanted to have minimum inferential ability.

A finite set of agent identifiers is denoted by Agent. The language of our epistemic
logics consists of propositional epistemic operators B, and Kg where o, 3 € Agent. Epis-
temic formulas, denoted by Greek small letters, o, 1, x, --- , are constructed inductively
from propositional variables, logical connectives and modal operators in the usual way.

Formulas with epistemic operators are read as follows:

By agent a believes ¢
Ksp agent 3 knows ¢

The minimal logic of belief Kz and the minimal logic of knowledge Kk are the least

normal modal logics containing moreover following axioms, respectively:

KB KK
(Abl) Ba(,O — —|Ba—|gp (Akl) Kﬁgo — —lKﬂﬁgp
(Ab2) Bap — BuBay (Ak2)  Kgp — KgKgp
(Ab3) _‘BaSO — Ba_'Ba(p (Ak3) _'Kﬁ(p - Kﬁ_‘Kﬁ(p
(Akd) Kgp = o
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where «, f € Agent. In epistemic logics, axioms (Abl) and (Akl) represent consistency
of belief and knowledge, (Ab2) and (Ak2) positive introspective axioms, (Ab3) and (Ak3)
negative introspective axioms, and (Ak4) correctness of knowledge. In logics of knowledge
with the temporal notion, both (Akl) and (Ak2) follow from (Ak3) and (Ak4) in the least
normal modal logic. Therefore the logic K can be defined also as the least normal modal
logics containing (Ak3) and (Ak4).

Temporal logic

In applying modal logics, reasoning about time is the most natural and intuitive. By
possible world semantics, the flow of time is represented as a frame (W, R), where W
is a set of moments of time and R a binary relation on W. This semantics can easily
represent transitivity, reflexive/irreflexive, connected /non-connected. Here, we adopt two
modal operators, called necessity operators, which are the future operator [F] and the past

operator [P]. These necessity operators in such frames are interpreted in the following.

[Fle at all future times, ¢
[Pl at all past times, ¢

Then the possibility operators, denoted by (F) and (P), are =[F|- and —[P]—, and
represent “some time in the future” and “some time in the past”, respectively. The

minimal temporal logic K; is the least normal modal logics containing following axioms:

(Atl) [Fle — [F][Fle (At3) ¢ — [Fl{P)y
(At2)  [Ple — [P][P]p (Atd) @ — [P|(F)¢

Axioms (Atl) and (At2) represent transitivity of time, (At3) and (At4) conversion of

future and past.

Temporal epistemic logics

Recently, temporal epistemic logics, i.e. epistemic logics with temporal operators, have
been used in the axiomatization and specification of some multi-agent systems. For ex-
ample, AGENTO system, METATEM processes are discussed in [48]. In this section, we
introduced two temporal epistemic logics as Hilbert-type systems, which will serve as

basic systems in formalizing multi-agent systems.
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Syntax of temporal epistemic logics

First, we fix a finite set Agent of agent identifiers. The language of our temporal epistemic

logics consists of

e propositional variables: p,q,r,---;
e logical connectives: A, V, =, = ;

e modal operators: [F], [P], Ba, Ks  ( where o, § € Agent ).

The set of all propositional variables is denoted by Prop. Formulas, denoted by ¢, 1,
X, -+ -, are constructed inductively from propositional variables, logical connectives and
modal operators in the usual way. Formulas (F')p and (P)¢p are abbreviations of =[F]—¢p

and —[P]—p, respectively. The set of all subformulas of a formula ¢ is denoted by Sub(¢p).

Using this language, we can construct such formulas as [P|B,y, Ko (F)1), [F|Bg(P)B,X,
etc. These formulas mean intuitively “in the past, an agent « has always believed that
©”, “an agent o knows that ¢ in some future” and “in the future, an agent § will always
believe that once an agent « believed ¢”, respectively. As an example, consider a temporal
epistemic state described in Figure 4.1, in which we assume that time is linear and discrete.
We will show a difference between [P]B,p and B,[P]p.

past present future

Figure 4.1: Difference in the order of modalities

At each time, the outermost circle represents the set of all propositions, the dotted circle
the belief set of the agent «, and the inside oval the set of facts (i.e. true propositions ),
respectively. Assume that ¢ is a proposition which is always in the belief set of o for
every time(i) when ¢ < 0. Then [P]|B,¢p is true at time 0. On the other hand, when «

realizes that ¢ is not always true ( for example, ¢ is false at time(—1) as in the figure ),
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the proposition B,[P]y becomes false at time 0. The following gives a concrete example
which [P]B,p is true but B,[P]y is not.

a: 1
@ She is faithful to me.

“ T have always believed she is faithful to me. But now that I've seen this

photo I no longer believe she always was. ”

The interpretations of formulas can be not only represented by figures like above but
also discussed explicitly by using mathematical structures like Kripke frames. As is often
the case with mathematical logic, we identify a given logic L with the set of all formulas
which are provable in L. Following this identification, if a set L of formulas satisfies the
following (A1), (A2), (R1) and (R2) for a modal operator O, then L is called a normal

modal logic.

Al
A2
R1
R2

{¢ | ¢ is a propositional tautology } C L
O(p—=4) = (@p =8P el
if p€ Land ¢ — ¢ € L, then y € L  (modus ponens)

(A1)
(A2)
(R1)
(R2)

if p € L, then Op € L (rule of necessitation)

It is natural to assume that temporal and epistemic logics are normal. Each of the minimal
temporal logic K;, the minimal logic Kz of belief and the minimal logic K of knowledge

is defined to be the least normal modal logics containing each of the following axioms,

respectively:
Kt KB KK
(Atl) [Flo — [F][F]e (Abl) Bap — —By—¢p (Ak1) Kgp — =K
(At2) [Plo = [P][P]ly  (Ab2) B,y — BaBap (AK2)  Kgp — KsKgp
(At3) @ = [F)(P)y (Ab3) —Bay — Ba=Bay (Ak3) —Kzp — Ks=Kgp
(Atd) ¢ — [P(F)y (Akd) Kgp — ¢

( Since each of these logics is a normal modal logics, each [F], [P], B, and Kz must satisfy
the above condition (A2). ) Through the next section, we will discus temporal epistemic
logics K; ® K and K; ® K, which are the least normal modal logics containing K; and
Kp, and K; and K, respectively. Next chapter gives us derivations of logical properties

for those temporal epistemic logics.
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4.6 Note

For multimodal logics with interdependent axiom, the general arguments are extremely

complicated. By [23], the following generalization of Sahlqvist’s theorem holds.

Theorem. Let ¢ be a conjunction of formulas of the form 7(¢; — ),
where 7 is a sequence of modalities, v; is positive, and 9, is obtained from
propositional variables and constants in such a way that no positive occurrence
of a variable is in a subformula of the form ; V ¢y or & ;10 within the scope
of some O;. Then K & {¢} is D-persistent.

This theorem gives a general result on Kripke completeness of modal logics with in-
terdependent axioms. On the other hand, we don’t have such general results yet on the
finite model property and the decidability. Section 4.2 is a trial towards the finite model

property for multi modal logics with more general interdependent axioms.

In Section 4.4, we considered proof-theoretical property for fusions with interdepen-
dent axioms. Though we discussed the cut elimination theorem for fusions with one of
interdependent axioms Oy — By and Op — WO in that section, we can show that with
both of their interdependent axioms.

Let L; be either K or KT, and L, either K4 or S4. Then we can not construct sequent
systems with subformula property, for L1 ® Lom @ {0p — B} and L5 ® Low @ {0p —
BOyp}. For their logics, constructing sequent systems with subformula property is left
as future work. As one of methods to do so, cut-free sequent systems for them will be

required.
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Chapter 5

Temporal epistemic logics as
combined systems

In this chapter, for temporal epistemic logics defined in previous section, we show their
completeness, finite model property, Craig’s interpolation theorem and decidability. Key
method for derivation of each properties is construction of sequent systems with their
subformula property. In discussion of decidability, we will give an efficient proof-search
procedure, which not only decide the provability of a given formula but also give a proof
when it is provable.

This chapter is organized as follows. In Section 5.1, we introduce a Kripke type
semantics for temporal epistemic logics. Sequent systems for those logics are introduced
in Section 5.2. They are naturally obtained from Hilbert-style systems in previous Section.
But, cut elimination theorem, from which we usually derive the decidability, does not hold
for either of them. Instead of looking for cut-free sequent systems for them, we modify
original sequent systems in such a way that the subformula property holds, by restricting
cut rule and rules for temporal operators. In Section 5.3, we show the completeness of
these restricted systems in a stronger form. That is, any formula which is not provable
in one of our sequent systems is not valid in a finite model for it. Since the subformula
property holds in these systems, we can show Craig’s interpolation theorem for them in
Section 5.4 by using Maehara’s method. Then we give a proof-search procedure for these

logics in Section 5.5. In Section 5.6, some concluding remarks will be given.

5.1 Kripke semantics for temporal epistemic logics

Let Agent be a set with n elements. A Kripke model for logics of belief with a temporal
notion is defined as a n + 4-tuple (W,{Rg, | « € Agent}, Rp, Rp, =), where W is a
non-empty set, and Rg_, Rp and Rp are binary relations on W for a € Agent, i.e.
Rg.,,Rp,Rp CW x W, and = is defined inductively as follows:
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ulE@eAY iff uEygandu Y

ulEeVYy iff upEgporulEY

ulE@—1 iff ulE ¢ implies u =1

u = iff upe

u = Bayp iff for all v € W, uRg,_ v implies v = ¢
ulE[Fle iff forallve W, uRpv implies v = ¢
u = [Ple iff forallv € W, uRpv implies v = ¢

S Ot

7

EEE=EE=EE
IS8 EEEE

Since the number of agents doesn’t play an essential role in the following discussions, we
consider only the case where there is a single agent in the rest of the present chapter.
Therefore we can take a model for the logic K; ® Kp as a quintuple (W, Rg_, Rp, Rp, ).
A Kripke model for temporal logic K; ® K of knowledge (W, Rk, Ry, Rp, =) is defined
similarly. In this case, it suffices to replace (M5) with the following (M5)':

(M5) ulE=Kyp iff forallv e W, uRk v implies v = ¢

For O € {B,,K.}, a formula ¢ is true in model M = (W, Rn, Rp, Rp, =), denoted by
M E ¢, if u = ¢ for every u € W. Now, the following hold.

Proposition 5.1 (Correspondence theory) Let M = (W, Rg_, Rp, Rp, =) be a model
for temporal logics of belief. Then the following holds.

(1) M EByp — - Bygp iff Yudv(uRg,v) (CR1)
(2) M EByp — BaBay iff Yu,v,w(uRg,v A vRg,w — uRg, w) (CR2)
(3) M E -Bap = By=Bay iff Vu,v,w(uRp,v AuRg,w— vRg, w) (CR3)
(4) M E[Fle = [F|[Fle iff Yu,v,w(uRpv ANvRpw — uRpw) (CR4)
(5) M E[P]e = [P][Ple iff Vu,v,w(uRpv AvRpw — uRpw) (CR5)
(6) ME@—[F(P)p iff Yu,v(uRpv — vRpu) (CR6)
(1) ME@— [PF)p iff Yu,v(uRpv — vRpu) (CR7)

Proposition 5.1’ (Correspondence theory) Let M = (W, Rx_, Rr, Rp, =) be a model
for temporal logics of knowledge. Then the following holds.

(1)) MEKwp—9 iff Vu(uRg,u) (CR1)
(2)) ME “Kyp = Ko Kop iff Yu,v, w(uRg,v A uRk,w — vRg_ w) (CR2)

If Rg,,, Rr and Rp satisty all of conditions from (CR1) to (CR7) for M = (W, Rg,,, Rp,
Rp, E), M is called a K;+ Kg-model. If Rk, , Rr and Rp satisfy all of conditions (CR1)’,
(CR2)" and from (CR4) to (CR7) for M = (W, Rk, Rr, Rp, =), M is called a K; + K-

model.
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By Proposition 5.1 (6) and (7), Rp is a converse relation of Rp and thus it is enough
to take either of Rr and Rp. Hence, by taking Rr = Rp, a model for temporal epistemic
logics can be defined as a quadruple (W, Rn, Ry, ) for O € {B,, K.}, where |= is defined
by replacing (M6) and (M7) with (M6)" and (M7)’, respectively.

(M6)" u=[Fl|e iff forallve W, uRpv implies v = ¢
(M7)" u=[Ple iff forallve W, vRyu implies v = ¢

It is not hard to show the completeness theorem for L € {K; ® Kp, K; ® Kg}.

Proposition 5.2  Let L be any of K; ® K and K; @ K. For any formula ¢, ¢ € L
iff  there exists L-model M such that M ¥ .

In fact, soundness and completeness can be proved by induction on the length of the proof

figure and by constructing the canonical model, respectively.

5.2 Sequent systems for temporal epistemic logics
and their restricted systems

In this section, we introduce sequent systems for temporal epistemic logics discussed in
the previous section. Cut elimination theorem holds for neither of them and therefore
subformula property doesn’t hold. But we restrict our rules without changing the prov-
ability so that subformula property holds in restricted systems. This enables us to show
the decidability of these logics, since the subformula property is essential in the decidabil-
ity proof. In the following, uppercase Greek letters I', A, I, 3, © and = denote finite sets
of formulas, and OI' denotes {0y | ¢ € I'} for O € {[F], [P], B,, Ks}. Also, Sub(I'), I,
and A* denote U{Sub(v)) | » € T}, AN{o | ¢ € T} and \V{p | ¢ € A}, respectively.

The sequent system S(K; ® Kp) is obtained from the sequent system LK for the

classical propositional logic by adding the following three rules:

(B) BaS.T=BuA6 oy FISE= (P PO.¢
BaE = BaA, Ba@ [F]E = [P]A7 @7 [F]g@
o) (PSS = [FIA[FI6,

[P1E = [F]A, ©,[Ple

where O in the rule (B) contains not more than one formula. The sequent system S(K; ®

Kk) is obtained from LK by adding the following four rules:
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28 = A FIS, S = [P]A, [P]O, ¢
KD Kos =i N I ES TR
(K2) Kgk = Kgh, ¢ (T2) [P]S, % = [F]A,[F]O, ¢

KX = KgA, Kgp [P]T = [F]A, O, [Py

Rules (T1) and (T2) are introduced by Nishimura in [31].
Proposition 5.3 For L€ {K; @ Kp, K; @ K}, I, = A*e Liff S(L) - ' = A.

The sequent system S(L), however, lacks the cut-elimination property for L € {K; ®
Kp,K; ® Ki}; i.e. there exists a S(L)-provable sequent which is not provable in S(L)
without cut rule. For example, a sequent p = [F|=[P]-p is provable as shown below, but

the sequent is not provable without applying the cut rule.

[P]=p = [P]-p
= [P]=p,=[P]-p
= —p, [F|=[Pl=p =p,p=
p = [F]=[P]=p

To overcome the difficulty, we will use Takano’s method introduced in [42]. In the paper,
Takano discussed the standard sequent system for modal logic S5, which was introduced
by Ohnishi-Matsumoto [32, 33]. It is known that cut elimination theorem doesn’t hold
for this sequent system. On the other hand, Takano proved that in this sequent system,
it is possible to restrict cut rule in such a way that any of cut formula is a subformula
of a formula in the lower sequent. From this, it follows that if a sequent I' = A is
provable in S5 then it has a proof with the subformula property, i.e. a proof in which
every formula is a subformula of a formula in I' = A. On the other hand, a sequent
system for KD45 satisfies cut elimination theorem [41]. This subformula property has
some important consequences. The first is the decidability, using Gentzen’s method, and
the second is Craig’s interpolation theorem, applying Maehara’s method.

Since our sequent systems S(K; ® Kp) and S(K; ® Kk) are natural extensions of
modal logics KD45 and S5, respectively. So, we can expect that by applying Takano’s
method and restricting cut rule, we have sequent systems with the subformula property.
This is partly true as shown below. But we need to take care also of rules (T1) and (T2),

which apparently disturb the subformula property.

Taking these points into consideration, we will introduce systems S(K; ® Kp)~ and
S(K; ® Kk)~, which is obtained from S(K; ® Kp) and S(K; ® Kk), respectively, by
restricting cut, (T1) and (T2) as follows;
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(AC) E:>A,g0 QO,H:>@
L,II=A,0 where p € Sub(XUAUIIU O),

(T1)  [FIE, X = [PIA[P]O, ¢
[F]X = [P]A, O, [Flp where [P]© C Sub(X U AU {p}),

(T2)"  [P]Z, % = [F]A[F]O, ¢
[P]X = [F]A, 0, [Ply where [F]© C Sub(X U AU {p}).

It is clear that, for L € {K; ® K, K; ® K}, every sequent which is provable in S(L)~
is provable in S(L). The restricted cut rule is sometimes called acceptable cut (AC). In
any of (AC), (T1)" and (T2)’, we can see easily that every formula occurring in upper
sequents consists of a subformula of a formula in lower sequent by conditions attached to
these rules. This thesis is first restricting (T1) and (T2) introduced by H. Nishimura into
rules (T1)" and (T2)'. The novelty of our system is to extend the idea of acceptable cut
and to introduce restrictions on all of these three rules, in order to obtain a system with

cut-restriction property.

5.3 Completeness theorem of restricted systems and
some consequences

Now, we should ascertain that the restricted systems S(L)~ is equivalent to S(L), i.e. any
sequent which is provable in S(L) is also provable in S(L)~. Because of Proposition 5.3
and completeness of the logic L, to show this, it is enough to show that the sequent system
S(L)~ is complete with respect to Kripke type semantics for L, that is, for any sequent
[' = A there exists a L-model M such that M = T', — A* if the sequent I' = A is
not provable. Our main Theorem 5.4 states a result stronger than mere completeness.
Our proof of Theorem 5.4 goes as follows. First, the notion of partial valuations will be
introduced. Proposition 5.6 shows a basic result on partial valuations. Using it, we will
show Theorem 5.4 for each of temporal epistemic systems S(K; @ Kg)~ and S(K; @ Kg ).

Theorem 5.4 Let L € {K; ® Kp, K; ® Kg}. If a sequent T' = A is not provable in
S(L)~, then there is a finite L-model M such that M =T, — A*.

Here we will introduce an important notion of partial valuations to prove the above

theorem.

Definition 5.5 (=-partial valuation) Let L € {K; ® Kp, K; @ K}, and = be a set of

formulas which is closed under subformulas. A sequent ¥ = A is a =-partial valuation in
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a system S(L)~, if the following three conditions are satisfied; (1) S(L)~ /¥ = A; (ii)
YUA=Sub(XUA); (iii) Sub(XUA) C =.

That is, ¥ = A is a =Z-partial valuation if and only if ¥ U A is a subset of = which is
closed under subformulas such that ¥ = A is not provable in S(L)~. Z-partial valuations
are denoted by u, v, w, - -, and a(u) and s(u) denote the antecedent of u and succedent
of u, respectively; i.e. a(¥ = A) =¥ and s(¥ = A) = A. Thus both a and s can be
regarded as functions from the set of sequents to the collection of sets of formulas. The

following Proposition 5.6 says a key fact on partial valuations.

Proposition 5.6  Let L be any of K; ® K and K; @ Ki. Suppose that a sequent
¥ = A is not provable in S(L) and = is any set of formulas closed under subformulas,
which includes Sub(XUA). Then there exists a =-partial valuation u such that ¥ C a(u) C
Sub(XUA) and A C s(u) C Sub(XUA).

PROOF. Let x1, x2, X3, - - -, Xn be an enumeration of formulas in the set Sub(X U A).
Now we define ¥j and Ay for 0 < k < n inductively so that 1) ¥, = Ay is unprovable
in S(L)” and 2) ¥ C ¥,y C Yy and A C Apy C Ay for 0 < k < n. First, let
Yo = ¥ and Ag = A. Obviously ¥y = Ay is unprovable. Suppose that ¥; and A; are
already defined and that ¥; = A; is unprovable in S(L)~. Then either 3; = A;, x;41 or
¥, Xi+1 = A; is unprovable in S(L)~. For, if otherwise then both of these sequents are
provable. Moreover, x;11 € Sub(X U A) C Sub(X; U A;). Thus, ¥; = A; is provable in
S(L)~ as shown below. But this is a contradiction. ( Note that y;;; is a subformula of a

formula in ¥; = A;.)

Yi= AN Xiv1 Xt i = Ay

(AC)

When ¥; = Ai, Xi+1 is unprovable in S(L)i, then let Ei-i—l = Y; and Ai—l—l = AzU{XH—l}
Otherwise, let Ei—l—l =3 U {XH—I} and Ai—l—l = Az since EiaXi-l—l = Az is unprovable in
S(L)~. Now let u be ¥, | = A,, ;. Clearly u is a =-partial valuation. 1

I. Proof of Theorem 5.4 for K; ® Kp

We suppose here that I' = A is not provable in S(K; ® Kp) . We define the model
(W, Ry, Rg_, ) for the temporal logic of belief as follows:
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W = {u]|wisa Sub(l'UA)-partial valuation },

uRrv iff  for all ¢, [F|¢ € a(u) implies ( [F]|¢ € a(v) and ¢ € a(v))
and [Py € a(v) implies ( [Pl € a(u) and ¥ € a(u)),

uRg, v iff for all ¢, B, € a(u) implies (B, € a(v) and ¢ € a(v))
and B,y € a(v) implies B,y € a(u),

ukEp iff pé€a(u), where p € Prop.

The set W is non-empty, since by Proposition 5.6 there exists a Sub(I' U A)-partial
valuation as the sequent I' = A is unprovable in S(K; ® Kp)~. Moreover the set W
is finite since Sub(I' U A) is finite. In fact, if the number of formulas in Sub(I' U A) is k,

then the number of elements of W is at most 2.

Proposition 5.7  The model defined above is a K; @ Kg-model.

PROOF. We will give a proof here only (CR1) i.e. Yu3dv(uRg,v), since conditions
from (CR2) to (CR7) are straightforward.
Take an arbitrary u € W. Now define ¥ and A as follows:

Y=A{v | Bay € au)}
A= {1y | Bat) € s(u)}

Then the sequent B,Y, ¥ = B, A is unprovable in S(K; ® Kg)~. Otherwise, by following

proof figure, a(u) = s(u) becomes provable, which is a contradiction.

B.Y. Y = BLA
B.,X = B,A (B)
a(u) = s(u)

Let IT = Sub(B,X UB,A). Then IT C Sub(a(u) U s(u)) C Sub(I'UA). Hence there exists
a Sub(I' U A)-partial valuation v such that B,X UY C a(v) C IT and B,A C s(v) CII by
Proposition 5.6.

Then, we will show that uRg v. If B,y € a(u), then ¢p € ¥ and B,y € B,X.
Hence ¢ € a(v) and Bay € a(v). If Boyp € a(v), then B,y € I, and hence B,y €
Sub(a(u) U s(u)) = a(u) U s(u). If By € s(u), then Bayp € BoA, so By € s(v). This
contradicts B,y € a(v). Therefore B,y € a(u). 1
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Proposition 5.8 The followings hold for every u € W.

If o = € s(u), then ¢ € a(u) and ¢ € s(u).

If ¢ € a(u), then ¢ € s(u).

If Boy € a(u), then for every v € W, uRg_ v implies ¢ € a(v).
If Boy € s(u), then for some v € W, uRg_ v and ¢ € s(v).

)
)
)
)
)
)
)
8) If —~p € s(u), then ¢ € a(u).
)
)
)
)
)
)

PROOF. (1) Suppose that ¢ & a(u) or ¢ & a(u). Since pA) € a(u) C Sub(a(u)Us(u)),
¢ € Sub(a(u) Us(u)) and ¢ € Sub(a(u) U s(u)), so ¢ € a(u) U s(u) and ¢ € a(u) U s(u).
If o & a(u), then ¢ € s(u), so the following proof figure gives us a contradiction since u
is a Sub(I' U A)-partial valuation.

=1
pAY =@
a(u) = s(u)

(A=)

Thus ¢ € a(u). Similarly, we can derive a contradiction if ¢ & a(u). Thus ¢ € a(u).

(2) - (8), (9), (11), (13): In the similar way to (1), we can show (2) - (8) by each of
rules and the definition of Sub(I' U A)-partial valuations. (9), (11) and (13) can be easily
shown by the definition of Rg , Rr and Rp, respectively.

(10) Suppose that B,y € s(u). Define ¥ and A as follows:

Y=A{¢ | Bay € a(u)}
A={¢ |Bapp € s(u)}
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Then the sequent B,X, ¥ = B,A, ¢ is unprovable in S(K; ® Kp)~. For, otherwise we can

derive a contradiction by using the following proof figure.

B.X. Y = B.A o B
B.: = B.A, B,y
a(u) = s(u)

Let IT = Sub(B,X UB,AU{p}). Then IT C Sub(a(u) U s(u)) € Sub(I' U A). Hence there
exists a Sub(I" U A)-partial valuation v such that B,X UX C a(v) C IT and B,A U {p} C
s(v) C II by Proposition 5.6. It is clear that ¢ € s(v).

Now, we show that uRg_ v. If B4Y € a(u), then 1) € ¥ and hence B,y € B,X. Thus
Y € a(v) and Boy € a(v). If Boy € a(v), then By € TI. So Byt € Sub(a(u) U s(u)) =
a(u) U s(u). If Boyp € s(u), then Boyp € ByA, and hence B,t) € s(v). This contradicts
Bat € a(v). Therefore Byt € a(u).

(12) Suppose that [F]¢ € s(u). Define ¥, A and © as follows:

Y=y [ [FlY € a(u)}
A=y [ [Pl € s(u)}
O :={¢ | ¢ € s(u) and [Pl € Sub(EUA U {p})}

Then the sequent [F]X, % = [P]A, [P]O, ¢ is unprovable in S(K; ® Kp)~. For, otherwise
we can derive a contradiction by using the following proof figure. Note here that [P]©

satisfies the condition for applying (7°1)".

PR S .[}’.].A, PlO. ¢
[F]X = [P]A, O, [Fle
a(u) = s(u)

(T1)’

Let IT = Sub([F]X U [P]JA U [P]© U {p}), then II C Sub(a(u) U s(u)) C Sub(l' U A).
Hence there exists a Sub(I' U A)-partial valuation v such that [F]E¥ U X C a(v) C IT and
[PIAU[P]O U {¢} C s(v) CII by Proposition 5.6. It is clear that ¢ € s(v).

We show, next, that uRrv. If [F|¢p € a(u), then ¢ € ¥ and [F|yp € [F]X. Hence
Y € a(v) and [F|y € a(v). If [Pl € a(v), then [Pl € II. So [P,y € Sub(a(u) U
s(u)) = a(u) U s(u). If [P]yp € s(u), then [Plyp € [P]A, and hence [P]y € s(v). This
contradicts [Py € a(v). Therefore [Pl € a(u). If ¢ € s(u), then [Pl € [P]O since
[P € Sub(X U AU {¢}). Thus [P]p € s(v). This contradicts [P]i € a(v). Therefore
[Py € a(u).
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(14) can be proved similarly to (12). 1

Recall that |= is defined by the condition u | p iff p € a(u) for p € Prop. We can

show the following.

Proposition 5.9 Suppose u € W and x € Sub(T' U A).

(0) if p € s(u), then u [= p for every p € Prop
(1) if x € a(u), then u = x ,
(

(2) if x € s(u), then u = x .
PROOF. For (0), if p € s(u), then p & a(u), and hence u ~ p. (1) and (2) can be
proved by simultaneous induction on the length of y, using Proposition 5.8. 1

When I' = A is unprovable in S(K;® Kg)~, there exists a Sub(I'UA)-partial valuation
up such that I' C a(ug) € Sub(T' U A) and A C s(up) € Sub(lUA). If ¢ € T, then
© € a(up), and hence ug = . Therefore ug = T,. If ¢ € A, then ¢ € s(ug), and
hence uy [~ ¢. Therefore uy = A*. Thus uy = I'x — A*. This completes the proof of
Theorem 5.4 for the system S(K; ® Kp)~.

II. Proof of Theorem 5.4 for K; ® Kg

Next we suppose that I' = A is not provable in S(K; ® K)~. Now we define the model
(W, Ry, Rk, E) for the temporal logic of knowledge as follows:

uRk, v < for all ¢, Koy € a(u) iff Kytp € a(v)

The set W is non-empty since there exists a Sub(I"UA)-partial valuation by S(K; ® Kk)~
-unprovability of I' = A, and the set W is finite since Sub(I' U A) is finite set. Similarly

to Proposition 5.7, we have the following.

Proposition 5.10 The model defined above is K; @ Kpg-model.

Proposition 5.11 The followings hold for every u € W.

(1) If Koy € a(u), then for every v € W, uRk, v implies ¢ € a(v).
(2) If Ko € s(u), then for some v € W, uRk v and ¢ € s(v).

PROOF. (1) Suppose that K, € a(u) and uRk,v. Then ¢ € a(v) U s(v) since
Ko € a(v) by definition of Ry, . If ¢ € s(v), then a contradiction follows by the following
proof figure.
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0=
Koap = (K1)

a(v) = s(v)

Therefore ¢ € a(v).

(2) Suppose that K,p € s(u). Define ¥ and A as follows:

Yi={v | Katp € a(u)}
A={y | Katp € s(u)}

Then the sequent K, X = KyA, ¢ is unprovable in S(K; ® Kx)~. Otherwise we have a

contradiction by following proof figure.

KoS = Koh, o
Ko = K A K
a(u) = s(u)

(K2)

Let IT = Sub(K,X UK A U {@}), then IT C Sub(a(u) U s(u)) C Sub(' UA). Hence there
exists a Sub(I' U A)-partial valuation v such that K,X C a(v) C II and K,A U {¢} C
s(v) C II by Proposition 5.6. It is clear that ¢ € s(v).

Next, we show that uRg_ v. If K, € a(u), then K 1 € KX and hence K, € a(v). If
Kot € a(v), then Kytp € I1. Hence Kytp € Sub(a(u) U s(u)) = a(u) U s(u). If Kyp € s(u),
then Koy € K,A and hence K,y € s(v). This contradicts K, € a(v). Therefore
Kot € a(u). 1

Recall the definition of . Similarly to Proposition 5.9, we can show the following by
the induction on the formation of x, using Proposition 5.8 from (1) to (8), from (11) to
(14) and 5.11 (1) and (2).

Proposition 5.12 Suppose u € W and x € Sub(I' U A).

(0) if p € s(u), then u [= p for every p € Prop ,
(1) if x € a(u), then u = x ,
(2) if x € s(u), then u = x .

Thus, Theorem 5.4 for the system S(K;®K )~ can be shown similarly to S(K;®@Kpg) .

Here, we summarize the above results. Our results can be summarized as follows.
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DT, = A ¢L

@ S(L) T = A

® S(L)"¥Ir'=A

(® there is a L-model M s.t. M T, — A*

(® there is a finite L-model M s.t. M T, — A*

|

® — ©®

=

= ©® e 00

Therefore, statements from (1) to (5) are equivalent. From this, the temporal epistemic sys-
tems S(L)~ which has the subformula property is a formal system for temporal epistemic

logic L. Moreover, an important corollary follows.

Corollary 5.13 For L € {K;, ® Kp, K; ® Kg}, the temporal epistemic logic L has the
finite model property; i.e. if ¢ € L, then there exists a finite L-model M such that

M £ p.

As an application of the finite model property which was seen in the above, the decid-

ability for our temporal epistemic logics is follows by using the following Harrop’s theorem
(cf. [11]):

iof a finitely axiomatizable logic has the finite model property, then it is decidable.

It has already known that only of epistemic logics Kz and K and temporal logic K,
has the finite model property. Since both temporal epistemic logics presented in this
chapter are finitely axiomatizable, they are decidable. By [23], moreover, the fusions of
modal logics with finite model property have the finite model property. Besides that, for
complete modal logics L; and L, not containing 1, the fusion L; ® Lo is decidable if
both components L; and L, are decidable. Anyway, the decision procedure by Harrop’s
theorem is extremely inefficient, and not feasible realistically. If a logic has the finite
model property, a finite model which invalidates unprovable formula exists. Therefore, if
finite models are searched effectively, a decision procedure different from the procedure in

this chapter can be obtained.

Decision procedure by using restricted sequent system is more effective procedure.

This is discussed in Section 5.5.
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5.4 Craig’s interpolation theorem of temporal epis-
temic logics

Then the following is another corollary of the diagram in the previous section.

Corollary 5.14 Let L be any of K; ® Kg and K; ® Kg. Then, for any formula ¢,
S(L)Fyiff S(L)” F .

Here, for the sequent system S(L) where L is any of K; ® K or K; ® K, the system
obtained from S(L) by replacing only the cut rule to acceptable cut rule is denoted by
S(L)*. Then, it is clearly that, for any formula ¢, S(L) ¢ = S(L)*F¢ = S(L) k¢

by the definition. By the above corollary, we have therefore, for any formula ¢,
SL)Fyp & S(L)'Fp & S(L) Fop.

In this section, by using system S(L)*, Craig’s interpolation theorem for temporal epis-
temic logics is shown syntactically using Maehara’s method. Usually, Maehara’s method
is application to cut-free sequent systems. But, it can be applied also to sequent systems
with acceptable cut ( see e.g. [42] ). In the following, we will given a outline of proof
of Craig’s interpolation theorem for the temporal epistemic logic K; ® Kg. Craig’s in-
terpolation theorem for the temporal epistemic logic K; ® K can be shown similarly to
K; ® Kp.

For technical reasons, we introduce the constant symbol T, which denotes “true state-
ment” and admit = T as an initial sequent. The notation ({I';; A1}, {T2; Ag}) is called a
partition of sequent I' = A, if I and A are a disjoint union of I'; and I'y, and A; and A,
respectively. The set of all propositional variables which occur in a formula ¢ is denoted
by V().

Lemma 5.15  Suppose that a sequent I' = A is provable in the temporal epistemic
system S(K; @ Kg)*, and also that ({T'1; A1}, {Ta; Ao}y is an arbitrary partition of T =
A. Then there ezists a formula x, called an interpolant, such that

1) both T'y = Ay, x and x,T's = Ay are provable in S(K; @ Kg)*,

2) V(x) CVILTUA)NV(IUAy).

Proof. This lemma is proved by induction on the length of a s proof of I' = A in
which every cut in it is acceptable. We will give a proof only the cases where ' = A is
the lower sequent of one of rules (B), (T1) and (AC)

Case 1. The last inference is




where O in the rule (B) contains not more than one formula.

1.1. The partition is of the form ({B,X1;BaA1, Ba©}, {BaXs; BaAs}). By taking the
partition ({B,X1, X1; BaA1, O}, {BoXs, 39; BoA2}) of the upper sequent and applying the
induction hypothesis to the proof of the upper sequent, there exists an interpolant y such
that both B,X1,3; = B,A1, 0, x and x, B,Ys, ¥y = B, A, are provable in S(K; @ Kp)*.

Then we can obtain following two proofs:

B.Y,. %, = B.AL O, x
=X, BaXi1, 21 = BaA1, O X> BaXa, Yo = BaAy

Ba_'X7 X, Bazl = BaAla © BozzZ; 22 = BaA27 X
BaﬁX, Ba21 = BaAl, Ba® Ba22 = BaAQ, Ba_'X
BaEI = BaAla Ba@a _'Ba_'X _'Ba_'Xa Ba22 = BaAQ

Hence =B,—x serves as an interpolant of the present partition of the lower sequent.

1.2. The partition is of the form ({B,X1;BaA1}, {BaXe; BaAs, B,O}). By taking the
partition ({B,X1, X1; BaA1}, {BaXa, Xo; BoAs, ©}) of the upper sequent and applying the
induction hypothesis to the proof of the upper sequent, there exists an interpolant y such
that both B,X1, 31 = ByAq, x and x, BaXs, X9 = BoAs, B,O are provable in S(K;QKp)*.

Then we can obtain following two proofs:

X Ba22722‘:> BaA27®
BQEI, 21 = BaAl, X BaX, X, BQEQ, 22 = BaAQ, ©
Bazl = BaAh BaX BaX7 BQEZ = BaA27 Ba@

Hence B, x serves as an interpolant of the present partition of the lower sequent.

Case 2. The last inference is

[F]Z, % = [PIA, [P]O, ¢
[F]% = [PIA, O, [Flp

(T1) .

2.1. The partition is of the form ({[F|Xy;[P]A1, O, [Fle}, {[F]X2; [P]A2,O2}). By
taking the partition ({[F]Xy, X1; [P]A1, [P]O1, ¢}, {[F]X2, Xo; [P]Ag, [P]O2}) of the upper
sequent and applying the induction hypothesis to the proof of the upper sequent, there
exists an interpolant y such that both [F]X;, % = [P]A, [P]O1, ¢, x and x, [F]Xs, X =
[P]Asg, [P]©4 are provable in S(K; ® Kp)*. Then we can obtain following two proofs:
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[F]X1, 51 = D‘D:]}\.h [P]O1, ¢, X Ll
=X, [F]El,El = [P]Al, [P]@l,g@ X, [F]EQ,EQ = [P]AQ, [P]@Q

[F]=x, =, [F]E1, 8 = [P]A, [P]Oy, ¢ [F]E2, 3 = [P]Ag, [P]Og, ~x
[F]=x, [F]¥1 = [P]A1, 04, [Flp [F]Xy = [P]Ay, O, [F]-x
[F]S1 = [P]Ay, O4, [Flp, ~[F]-x —[F]=x, [F]22 = [P]As, ©,

Hence —[F|—x serves as an interpolant of the present partition of the lower sequent.

2.2. The partition is of the form ({[F]|Xy; [P]A1, O1}, {[F]|Zs; [P]A2, Oo, [Flp}). By
taking the partition ({[F]X1,X1; [P]A1, [P]O1}, {[F]X2, Xo; [P]A2, [P]O2, ¢}) of the up-
per sequent and applying the induction hypothesis to the proof of the upper sequent,
there exists an interpolant y such that both [F]¥,¥; = [P]A1,[P]©1, x and x, [F]Xs =
[P]Asg, [P]Os, ¢ are provable in S(K; ® Kg)*. Then we can obtain following two proofs:

L o F%, ;L'[P]AQ, [P0y,
[F]%1, %1 = [P]A, [P]O4, X [Fx, X, [F]22, X2 = [P]Ag, [P]O2, ¢
[F]X1 = [P]A1, 04, [Flx [Fx, [F]32 = [P]A2, O, [Flp

Hence [F]y serves as an interpolant of the present partition of the lower sequent.
Case 3. The last inference is

F'=A¢0 pll=X%
[LII=AY

(acceptable cut)

where ¢ € Sub([',II, A, Y). Then the partition is of the form ({T'y,TI;; Ay, X}, {Ts, Ilo;
Ay, Y5}). This is only the case which never happens when the cut-elimination theorem
holds.

3.1. If ¢ € Sub(T',11;,A1,%;), by taking partitions ({I'1; A1, ¢}, {T'2; Ag}) and
({p,1I1; %}, {I1y; 35}) of upper sequents and applying the induction hypothesis to the
proof of the upper sequent, there exist interpolants x; and y» such that all of (1)
[y = Aneoxa, (2) x1,Te = Ay, (3) ¢, 11 = 4, x2 and (4) xo, Iy = X5 are prov-
able in S(K; ® Kp)*. Then we can obtain following two proofs:

I''= Ao ol = 2, x : :
Iy, I = A2 X, Xe X1, 2 = Ay X2, [Io = 2

I I = ALY, xa Voxe X Voxe X1, Do, o = Ao, 3y X2, o, Iy = Ay, ¥y
I I = AL ELxa Voxe X1V x2, e, Iy = Ay, 3

28



Note that the cut of the proof in the left hand is a acceptable by our assumption. Hence

X1 V X2 serves as interpolants of the present partition the lower sequent.

3.2. If o € Sub(T, 115, Ay, ¥s), by taking partitions ({I'1; Ay}, {T'e; Deltas, ¢}) and
({I11; 21}, {p, [I5; 35}) of upper sequents and applying the induction hypothesis to the
proof of the upper sequent, there exist interpolants x; and x, such that all of (1) T'; =
A, x1, (2) x1,Te = Ag g, (3) TI; = X4, x2 and (4) x2, ¢, Iy = X, are provable in
S(K; ® Kp)*. Then we can obtain following two proofs:

X1, T2 = Ao, 0 X2, 0,11y = ¥

F1:>A1,X1 H1:>21,X2 X17F27X27H2:>A2722
Fl,Hl :>A1,21,X1 Fl,HliAl,El,Xg XIAX27F27X1/\X27H2:>A2722
[, I = A X, X A xe X1 A Xas D2, Tl = Ag, 3y

Note that the cut of the proof in the right hand is acceptable by our assumption. Hence

X1 A X2 serves as interpolants of the present partition of the lower sequent. 1

Theorem 5.16 (Craig’s interpolation theorem) [

If ¢ — ) is provable in S(K; ® Kg)*, then there exists a formula x such that
1) ¢ — x and x — 1 are both provable in S(K; ® Kg)*,
2) V(x) € V() NV ().

Proof. Assume that ¢ D 1 is provable in S(K; ® Kp)*. Clearly, the sequent ¢ = 9 is
provable in it. Then by Lemma 5.15, taking ¢ as I'; and ¢ as Ay, there exists a formula
x satisfying 1) and 2) of Theorem 5.16. 1

5.5 Proof-search procedure for temporal epistemic
logics

By our main theorem ( Theorem 5.4 ) of this chapter, it follows that both systems S(L)
and S(L)~ determin the logic L. Different from S(L), the sequent system S(L)~ will
be suitable for implementing a theorem prover for L. In the following, we will give a
decision procedure, using the following subformula property. The next proposition can

be ascertained easily by checking each inference rules.

Proposition 5.17 Sequent systems S(K; @ Kg)~ and S(K;® Kk)~ have the subformula
property, i.e. for L € {K; ® K, K; ® K}, every sequent I' = A provable in S(L)~ has

such a proof P that every formula appearing in P is a subformula of a formula in T' = A.
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In rules (AC), (T1)" and (T2)', all the formulas in their upper sequents consists of a
subformula of a formula in their lower sequents by conditions for applying their rules.

Though, for the sake of brevity, we have defined antecedents and succedents of sequents
as finite sets of formulas in the present chapter, we can also define them as finite sequences
of formulas by introducing both exchange rule and contraction rule. A decision procedure
for L is a concrete finite procedure which decides whether a given formula is provable or
not in a logic L. A sequent I' = A is reduced, if each formula occurs at most three times
in both I' and A. We say that a sequent I' = A is I-reduced if in the antecedent and also
once in the succedent, every formula in it occurs exactly once. We show the decidability

by giving a concrete proof-search procedure.

Suppose I' = A is not ( 1- )reduced. Then a ( 1- )reduced sequent I = A’ can
be obtain from I' = A by using contraction and exchange rules repeatedly. Conversely,
[' = A can be obtained from I = A’ by means of weakening and exchange rules. So, for
any sequent I' = A, there exists a ( 1- )reduced sequent I = A’ such that I" = A’ is
provable in S(L)~ if and only if I' = A is provable in S(L)~. So, it is enough to give a

proof-search procedure for 1-reduced sequents.

Proposition 5.18 Let L € {K;® Kp, K;® K }. Suppose that ' = A is a sequent which
is provable in S(L)~ and that T = A’ is any I1-reduced sequent obtained from I' = A.
Then, there exists a S(L)™ -proof of T' = A’ such that every sequent appearing in it is

reduced.

PROOF. Let P be a S(L)~-proof of I' = A. We prove this proposition by induction
on the length of P. The case that I' = A is an initial sequent is trivial. Suppose that
' = A is the lower sequent of an application of a rule I. When I has two upper sequents,

it must be of the following form:

Yir=A =2 A, ([)
= A

Let ¥{ = A} and ¥, = A} be any l-reduced sequents obtained from ¥; = A; and
Yy = Ay, respectively, by means of contraction and exchange rules. By the induction
hypothesis, each of ¥ = A and ¥, = A/, has a proof consisting only of reduced sequents.
Let ['* = A* be the sequent obtained from ¥} = A} and X} = A} by applying the rule
I. If we can show that ['* = A* is reduced, by using contraction and exchange rules,
we can obtain a l-reduced sequent for I' = A. Clearly, the whole proof consists only of
reduced sequents. Similarly, we can see that the lower sequent is reduced when I consists

of a single upper sequent.
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So, it remains to show that ['* = A* is always reduced. For each inference of LK, the
claim holds ( see e.g. [34] ); i.e. if upper sequents are 1-reduced, then the lower sequent
is reduced. We need to check this for (T1)" and (T2)', since this is clear for other cases.

Consider the case where the inference is (T1)"

[F]X,X = [P]A, [P]O, ¢
[F|¥ = [P]A,©,[Fl¢

Suppose that the upper sequent is 1-reduced, i.e. every formula in the antecedent of
the upper sequent and every formula in the succedent occurs once. If one of formulas
in sequence © is [F|y, then the succedent of the lower sequent contains exactly two
occurrences of [Flep. If the sequence © contains [P]i for a formula ¢» € A, then the
succedent of the lower sequent contains exactly two occurrences of [PJy. Therefore in
either case the lower sequent is reduced. Similarly to this, we can ascertain it for the case
of rule (T2)". 1

Theorem 5.19  The temporal epistemic logics Ky @ Kg and K; ® Ky are decidable. In

fact, a proof-search procedure exists for these temporal epistemic logics.

PROOF. This theorem is shown by giving a concrete proof-search procedure of the
restricted system S(L)~. Suppose that a given sequent I' = A is l-reduced. Here, a
reduced sequent which consists of formulas in Sub(I' U A) is called an suitable sequent. In
searching a proof of the sequent I' = A in S(L)~, it is enough to search a proof which
consists only of suitable sequents. For each sequent ® = ¥ in a proof, if the same sequent
appear above © = Y, then the proof contains redundancies. Therefore every proof can
be transformed into the proof without any repetition of sequents. Here we say “partially
constructed proofs”, inference figures. In inference figure, each rule must be applied in a
correct way,, but uppermost sequents are not necessarily initial sequents. For each 7, let
G; be the the set of all inference figures in which inference rules are applied at most 7 — 1

times. Giving attention to these things, we can obtained the following procedure.

1. G is the singleton set of only I' = A. The figure of only that sequent is a inference
figure.

2. Suppose that G; is already defined. Then, first we put every inference figure in G;
into G; 1. Next, take any inference figure F in G;, and take any uppermost sequent
Y = II of F which is not an initial sequent, if any. Find an inference rule I whose
lower sequent is of the form ¥ = II, and form an inference figure F' by putting
upper sequents of I on this ¥ = II. If this ' has no repetitions of sequents in any
branch of it, then put F' also into G; ;.
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3. If G;11 = G;, that is, no fresh inference figure can be constructed from inference
figures in G;, then this procedure give the output “I' = A is not provable”, and

terminates.

4. Otherwise, check whether or not there exists an inference figure in G;1 — G; such
that every uppermost sequent of it is an initial sequent. If exists, then this procedure
gives the output “I' = A is provable” and terminates. If not, the we add 1 to 7 and
return back the step 2.

Since the set of all the non-repetition inference figures which consist only of acceptable
sequents is finite, and so there must exist a natural number j such that G;;; = G;.

Therefore, the above procedure eventually terminates. 1

Example 1. Here, we will consider the following formula as an example.

—([o]Op A O-p) ([o] € {KasBa})

This is an example taken from [49]. We can represent Oy as [F|p A ¢ by our language.

So the above formula can be represented by

([a]([F]p A p) A ([Fl=p A —p))

First, in the case that [o] is K,, we can obtain a S(K; ® Ky ) -proof of this formula
as follows by a finite procedure. ( See the proof of Theorem 5.19. )

Suppose that If Py is = =(K.([F]p A p) A [F]=p A —=p), then Py € G;.

Ka([Flp Ap) AN [F]=p A —p=

If P2 is s then P2 € gg.
P,
K, ([F]p A p), [Fl-p, ~p =
1tp, is RelZp AP, [Flop, ~p _then Py, € Gu.
Pio
Flp A p, [Fl-p, —=p =
It Py s LAPElP = e g
Pll
Flp A p, —p =
1Py is LIPAPTP = Pl Gra,
P12
—p =
If Pyyis b, P , then Py € Giy.
P13
=
If P15 is P P s then P15 S g15.
P4
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Thus, we have the following proof.

p=p
P, P =
[Flp Ap, —p =
[Flp Ap, [Fl-p,—p =
Ka([Flp A p), [Fl-p,—p =
Ka([FlpAp) A ([F]-p A —p) =
= ~(Ka([Flp A p) A ([F]=p A —p))

The double line in the above represents that applications of A — -rule are omitted.
When [a] is B,, our decision procedure stops in finite steps and tell us that the above

formula is not provable in S(K; ® Kg)~.

Example 2. Next, we will consider the following formula as an example.

[P1=[F]Kap V p

Suppose that If Py is = [P]-[F]K.p V p, then Py € G;.

= [P]-[F]Kap, p
3
= Kaop, [P]2[FKap  Kap = p
Py
If P5; and P55 are = K,p, [P]-[F|K.p and K,p = p, respectively,

If P4 is 5 then P4 € g4.

If P5 is

, then P5 € Gs.

= [F]Kap,—l[F]Kap p=p

then P5'1 P5'2 S gg.
Ps
[FlKap = [F]Kap
Ps p=D
If Pg is = [F]Kap, =[F]Kap, then Ps.1 5 Poz ¢ g,
5
Thus we have the following proof.
[FKap = [F]Kap
= [F]Kap, 2[FIKap  p=p
= Kap, [P]-[F]Kap  Kap = p
[P]-[FlKap, p

=
= [P]=[F]Kap V p
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5.6 Notes and further researches

Temporal logics and epistemic logics are very useful for formalizing various notions which
appear in computer science. Moreover, the development of temporal epistemic logics has
been paid much attention recently. For instance, in [49] M. Wooldridge, C. Dixon and
M. Fisher introduced tableau systems for temporal epistemic logics with the unary “next”
operator () and the binary “until” operator U as temporal operators, and adopted product
of temporal and knowledge/belief as Kripke style possible world semantics. In the paper,
they gave a model-search procedure for these logics; i.e. the procedure which constructs
a model for a given formula whenever it is satisfiable. In contrast with this, our decision
procedure presented here is a proof procedure; i.e. the procedure which gives us a proof of
of a given formula whenever it is provable. The following table shows differences between
[49] and ours.

[49] Ours
Operators o, u [F], [P]
Semantics (t, w) w
product fusion
Output satisfiable provable
! !
model proof

The decidability of both temporal epistemic logics K; ® K and K; ® K is shown by
giving a proof-search procedure in this chapter. This result provides us not only a proof-
search for temporal epistemic logics but also a relatively feasible procedure. Our idea is
to introduce restrictions of applications of inference rules so that the subformula property
holds in sequent systems with these restrictions. In fact, the subformula property, not
the cut elimination theorem itself, is essential in getting a proof-search procedure. In
[29], Mouri implemented a proof-search procedure for modal logic S5, based on Takano’s
result. Indeed, he constructed a proof assistant system xpe (X window system Proof
Editor), and implement a proof-search procedure for S5 system with acceptable cut rules
on xpe. This is enough feasible. The procedure we introduced here still needs to check the
repetition of sequents, which is necessary to make sure the termination of the procedure.
This, of course, causes the inefficiency of the procedure, as we need to check whether each
sequent obtained now appears already or not in the inference figure. So, it is one of most
important problems to find a system for these temporal epistemic logics without checking
the repetition.

It will be also interesting to find an efficient procedure for these logics equipped with

both proof-search ( for provable sequents ) and model-search ( for unprovable sequents, or
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for satisfiable sequents ). In this respect, the approach taken by Mouri [29, 30] for modal
logics S4 and K4 seems to be suggestive.

We have discussed two basic temporal epistemic logics in our thesis. In either case,
we assume no interdependency between epistemic operators and temporal ones. But in
practice, it will be more natural to assume certain dependency between them. While this
will cause some complications and difficulties from a logical point of view, this will be an

interesting and important research subject in future.
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Chapter 6

Concluding remarks

In this chapter, we summarize the results of this thesis and mention further studies.

1. pseudo-Euclidean logics ( Chapter 3 )

For non-negative integers m and n, we gave a complete answer to inclusion relationship
between pseudo-Euclidean logics K @ {OFp — OmO"p}, denoted by Ej,, where k < 0 by
using Kripke type semantics; viz. we showed when Fj, O Fjy holds. As generalization of
our results, it is interested in what happen if we allow both m and n to change. More
precisely, let E;"" be the logic which is obtained from the smallest normal logic K by
adding the axiom OF¢ — O™O"¢, where k, m,n > 0. Then it is to see when E;"" D E,Zf”"’
holds.

2. fusions of modal logics ( Chapter 4 )

We discussed fusions of well-known modal logics. As for these, we attempt to derive

some of both semantical and proof theoretic properties.

e semantical property
If both modal logics Ly and Ly are any of S4and S5, then the finite model property
of fusions with weak interdependent axioms which are of the form 7,0 — ;¢ where

both 7; and o; are sequences of modalities holds.

e proof theoretic property for fusions
Let L; and Ly be of the form K & @ where @ C {7, D, 4,5, B}. If sequent systems
S(Ly) and S(Ly) have a property P, then S(L; ® Lo) has the property, where P is
any of the cut elimination property, the cut restriction property and the extended

cut restriction property.

e proof theoretic property for fusions with interdependent axioms
Let Ly and Lo be of the form K& Q) where @) C {T,4}. Section 4.4 discussed the cut
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elimination theorem for each of L1 ® Low @ {0 — My} and L1 ® Low @ {Op —
EOyp}. We can not construct sequent systems with subformula property, for L5 ®
Low ® Q where Ly € {K, KT}, Ly € {K4,S4} and Q € {Op — B, Op — BOp}.

From the point of view of applications of multimodal logics, fusions with more general

interdependent axioms will be desired.

3. temporal epistemic logics ( Chapter 5 )

The decidability of temporal epistemic logics K; ® Kp and K; ® Kg were shown by
giving a proof search procedure. In order to do this, we restricted the formulas occurring
in the upper sequents of rules cut rule and rules for temporal operators in Section 5.2
to certain subformulas so that the sequent system has subformula property. Then we
showed the decidability in the bottom-up manner. However the procedure given in this
thesis demands the backtracking for the sake of the loop-checking. we would like to give
more efficient algorithm by proof search for temporal epistemic logics.

We discussed logics with axioms constructed independently between epistemic notion
and temporal one. But finding out the logical property for some dependently temporal
epistemic logics will be expected in many applications, which are logics with interdepen-

dent axioms among temporal notions and epistemic notions.
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