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Abstract— This paper proposes a neural oscillator based 
control to attain rhythmically dynamic movements of a robot 
arm. In human or animal, it is known that neural oscillators 
could produce rhythmic commands efficiently and robustly 
under the changing task environment. In particular, 
entrainments of the neural oscillator play a key role to adapt the 
nervous system to the natural frequency of the interacted 
environments. Hence, we discuss how a robot arm controls for 
exhibiting natural adaptive motions as a controller employing 
the entrainment property. To demonstrate the excellence of 
entrainment, we implement the proposed control scheme to a 
real robot arm. Then this work shows the performance of the 
robot arm coupled to neural oscillators in various tasks that the 
arm traces a trajectory. Exploiting the neural oscillator and its 
entrainment property, we experimentally verify an impressive 
capability of self-adaptation of the neural oscillator that enables 
the robot arm to make adaptive changes corresponding to an 
exterior environment. 

I. INTRODUCTION 
uman and animal surprisingly exhibit adaptive or robust 
behaviours against unexpected disturbances or 

environment changes. This is because that the musculo 
-skeletal system is activated like a mechanical spring by 
means of the central pattern generators (CPGs) and their 
entrainment property [1]-[3]. The CPGs consist in the neural 
oscillator network and produce a stable rhythmic signal. 
Entrainment of the neural oscillator plays a key role to adapt 
the nervous system to the natural frequency of the interacted 
environments incorporating a sensory feedback. Hence, more 
interests on the artificial neural oscillator coupled to robot 
dynamics have been increasing in the field of biologically 
inspired robots to be deployable to real-world environments.  
The neural oscillator in the nervous system offers a potential 
controller, since it is known to be robust and have an 
entrainment characteristic as a general controller. 

Relating these previous works, the mathematical 
description of a neural oscillator was presented in Matsuoka’s 
works [1]. He proved that neurons generate the rhythmic 
patterned output and analyzed the conditions necessary for 
the steady state oscillations. He also investigated the mutual 
inhibition networks to control the frequency and pattern [2], 
but did not include the effect of the feedback on the neural 
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oscillator performance. Employing Matsuoka’s neural 
oscillator model, Taga et al. investigated the sensory signal 
from the joint angles of a biped robot as feedback signals [3], 
[4], showing that neural oscillators made the robot robust to 
the perturbation through entrainment. This approach was 
applied later to various locomotion systems [5]-[7]. In 
addition to the studies on robotic locomotion [8], more efforts 
have been made to implement the neural oscillator to a real 
robot for various applications. Williamson showed the system 
that had biologically inspired postural primitives [9]. He also 
proposed the neuro-mechanical system that was coupled with 
the neural oscillator for controlling its arm [10]. Arsenio [11] 
suggested the multiple-input describing function technique to 
evaluate and design nonlinear systems connected to the 
neural oscillator.  

Even though natural dynamic motions adapting to external 
changes were accomplished by the existing works, 
approaches for a proper behavior generation and complex 
task employing a robotic manipulator were not clearly 
described due to the difficulty of parameter tuning of a neural 
oscillator coupled to a mechanical system. Yang has 
presented simulation and experimental results in controlling 
the robot arm incorporating neural oscillators [12]-[14]. This 
work addresses how to control a real system coupled with the 
neural oscillator for a desired task. For this, real-time 
feedback is implemented to exploit the entrainment feature of 
the neural oscillator against unpredictable disturbances. 

In the following section, a neural oscillator is briefly 
explained and its entrainment property is described. Details of 
dynamic responses and verification of developed 
methodology are discussed in Section III. The experimental 
results are presented in Section IV. Finally, conclusions are 
drawn in Section V. 

II. RHYTHMIC MOVEMENT USING A NEURAL OSCILLATOR 

A. Matsuoka’s Neural Oscillator 
Matsuoka’s neural oscillator consists of two simulated 

neurons arranged in mutual inhibition as shown in Fig. 1. 
[1]-[2]. If gains are properly tuned, the system exhibits limit 
cycle behaviours. The trajectory of a stable limit cycle can be 
derived analytically, describing the firing rate of a neuron 
with self-inhibition. The neural oscillator is represented by a 
set of nonlinear coupled differential equations given 
as
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where xe(f)i is the inner state of the i-th neuron which 
represents the firing rate; ve(f)i represents the degree of the 
adaptation, modulated by the adaptation constant b , or 
self-inhibition effect of the i-th neuron; the output of each 
neuron ye(f)i is taken as the positive part of xi, and the output of 
the whole oscillator as Y(out)i; wij (0 for i≠j and 1 for i=j) is the 
weight of inhibitory synaptic connection from the j-th neuron 
to the i-th neuron, and wei, wfi are also weights from the 
extensor neuron to the flexor neuron, respectively; wijyi 
represents the total input from the neurons inside the network; 
the input is arranged to excite one neuron and inhibit the other, 
by applying the positive part to one neuron and the negative 
part to the other; Tr and Ta are time constants of the inner state 
and the adaptation effect of the i-th neuron, respectively; si is 
the external input, and gi indicates the sensory input from the 
coupled system which is scaled by the gain ki. 

B. Coupling Neural Oscillator to Mechanical Systems 

 
Fig. 2 shows two types of mechanical systems connected to 

the neural oscillator. The desired torque signal to the i-th joint 
can be given by 

,)( iiiviii bk θθθτ &−−=                                                           (2) 
where ki is the stiffness of the joint, bi the damping coefficient, 
θi the joint angle, and θvi is the output of the neural oscillator 
that produces rhythmic commands of the i-th joint. The neural 
oscillator follows the sensory signal from the joints, thus the 
output of the neural oscillator may change corresponding to 
the sensory input. This is what is called “entrainment” that 
can be considered as the tracking of sensory feedback signals 
so that the mechanical system can exhibit adaptive behavior 
interacting with the environment.  

III. TWO-LINK ROBOT ARM CONTROL BASED ON NEURAL 
OSCILLATOR 

In this section, we couple the joints of a two-link robot arm 
to neural oscillators and propose a control method that is 
capable of generating an appropriate motion. The neural 
oscillator is a non-linear system, thus it is generally difficult 
to analyze the dynamic system when the oscillator is 
connected to it. Therefore a graphical approach known as the 
describing function analysis has been proposed earlier [15]. 
The main idea is to plot the system response in the complex 
plane and find the intersection points between two Nyquist 
plots of the dynamic system and the neural oscillator. The 
intersection points indicate limit cycle solutions. However, 
even if a rhythmic motion of the dynamic system is generated 
by the neural oscillator, it is usually difficult to obtain the 
desired motion required by the task.  This is because many 
oscillator parameters need to be tuned, and different 
responses occur according to the inter-oscillator network. 
Hence, we describe below how to tune the parameters of the 
neural oscillator and implement to the real robot system. 

A. Impedance Model 
As shown in Fig. 3 (a), an arbitrary external force is 

measured by force and torque (F/T) sensor attached to the 
wrist joint of the robot arm. The external forces (Fx, Fy) 
applied to the end-effector are transformed into Fx '  and Fy '  
of global Cartesian coordinates using a homogeneous 
transformation. Then the transformed external forces can be 
properly calculated to target trajectories in Cartesian 
coordinates by a virtual impedance model. The impedance 
model equation can be given as follows, 
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where, ωn is the natural frequency of the impedance model. 

B. Two-link robot arm coupled to neural oscillators 
To implement the proposed control scheme for the 

two-link robot arm whose joints are coupled to neural 
oscillators, this subsection describes how to couple the 
dynamics of the robot arm and neural oscillators. The output 
of the neural oscillator drives the joint of the robot arm 
corresponding to the sensory signal input from the actuator. 

 
Fig. 2. Mechanical system coupled to the neural oscillator 

Fig. 1. Schematic diagram of Matsuoka Neural Oscillator 
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The oscillator entrains the input signal so that the robot arm 
can exhibit adaptive behavior even under the unknown 
environment condition.  

The dynamic equation of the robot arm coupled to the 
neural oscillator is given in the following form. 
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where Mi is the inertial matrix, Ci is the Coriolis/centripetal 
vector, and Ki is the spring coefficient for i-th joint (i=1~2). 
Note that θv1 and θv2 are the output of neural oscillators 
coupled to each joint of the two-link robot arm, respectively. 
Kpi is the proportion gain and Kdi is the differential gain for 
i=1~2. KT is the virtual spring coefficient between the first and 
second joint. 

 
C. Control Block Diagram 

 
Fig. 4 illustrates the proposed control block diagram for the 

neural oscillator based two-link robot arm control.  In general, 
the artificial neural oscillator is only applicable to a particular 
motion such as rhythmic motions. In contrast to this, our work 
presents a control method to efficiently yield various motions 
with virtual force constraints. The virtual force constraint 
makes the coupled neural oscillator-robot arm possible to 
perform a given task compensating the reaction forces caused 
by the discrepancy between the desired constraint and the 
displacement of the end-effector. And also assuming that the 
difference between real reaction forces sensed by the F/T 
sensor and virtual forces for a desired motion is an error, e, as 
indicated in Fig. 4, the desired motion modified in terms of 
the impedance model is fed to the control command again. 

Finally since the neural oscillator observes and entrains 
intuitively the changed current status of each joint, a proper 
desired command θv can be send to the robotic system. 

D. Control Stability Analysis 
In general, dynamics of a robot system with n-th DOFs 

could be expressed as   
 

1( ) ( ) ( , ) ( ) ,
2
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&& & &&                               (5) 

 
where, H denotes the n×n inertia matrix of a robot, the second 
term in the right hand side of Eq.(5) stands for coriolis and 
centrifugal force, and the third term is the gravity effect. Then 
a control input for a rhythmic motion of the dynamic system 
shown in Eq. (5) is introduced as follows;   
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where k and ς0 is the spring stiffness and damping coefficient, 
respectively for the virtual components. C0 is the joint 
damping. ko and θv are the stiffness gain and the output of the 
neural oscillator that produces rhythmic commands, 
respectively.  

The control input induced in Eq. (6) consists of two control 
schemes, those are, one is based on Virtual spring-damper 
Hypothesis [16]-[17] and the other is determined in terms of 
the output of the neural oscillator as illustrated in Eq. (4). In 
the control input of Eq. (6), the first term describes a joint 
damping for restraining a certain self-motion which could be 
occurred in a robot system with redundancy, and the second 
term means PD control in task space by using of Jacobian 
transpose, and also a spring and a damper in the sense of 
physics. Appropriate selection of joint damping factors C0, 
stiffness k and damping coefficient ς renders the closed-loop 
system dynamics convergent, that is, x is converged into xd 
and both of x&  and θ&  are become 0 as time elapses. In general, 
the neural oscillators coupled to the joints perform the given 
motion successively interacting with a virtual constraint 
owing to the entrainment property, if gains of the neural 
oscillator are properly tuned [12]-[13]. In the proposed 
control method, the virtual force constraint is considered as a 
virtual guide for generating a desired motion. Also, the 
coupled model enables a robotic system to naturally exhibit a 
biologically inspired motion employing sensory signals 
obtained from each joint under an unpredictable environment 
change. 

    
                                (a)                                              (b) 
Fig. 3. (a) Schematic robot arm model and (b) real robot arm coupled with
the neural oscillator for experimental test 

Fig. 4. The proposed control block diagram 

x 

y 
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Then, closed-loop dynamics with Eq. (5) and Eq. (6) is 
expressed as   
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The inner product between θ&  and the closed-loop dynamics 
of Eq. (7) yields   
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where E stands for the total energy 
 

2 21( , , ) ( )
2 2 2

T okkE x H xθ θ θ θ θ θΔ Δ = + Δ + Δ& & &                  (10) 

 
In Eq. (10), the first term of the quantity E describes the 
kinetic energy of the robot system, the second term means an 
artificial potential energy caused by the error xΔ  in task 
space and the error θΔ  gives rise to an artificial potential 
energy corresponding to the third term in joint space. As it is 
well known in robot control, the energy balance relation of Eq. 
(9) shows that the input-output pair ( , )u θ&  related to the 
motion of Eq. (8) satisfies passivity.  

IV. EXPERIMENTAL VERIFICATIONS 

 

 
 

 
For considering the possibility of the proposed control 

scheme described in Section III, a real robot arm with 6 
degrees of freedom (see Fig. 3 (b)) are employed and a real 
time control system is constructed. This arm controller runs at 
200Hz and is connected via IEEE1394 for data transmission 
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Fig. 7. The trajectories drawn by the end-effector of the real robot arm 

 
(a)                         (b)                        (c) 

Fig. 6. The given tasks of the two-link robot arm. The dashed lines are the 
desired motions. The arrows indicate the direction which an unknown 
external force is applied to the end-effector of the robot arm 

 
Fig. 5. Schematic figure for D-H parameter of the robot arm 
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Motion of the end-effector
caused by an external force
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at 4kHz. ATI industrial automation’s Mini40 sensor was 
fitted to the wrist joint of the arm to detect external 
disturbances. The appropriate parameters in Table I were 
used for the neural oscillator. Also Table I illustrates the 
parameters on the arm dynamics of the real robot. Figure 5 
shows the arm kinematics of the real robot arm. Since the 
desired motions are generated in the horizontal plane, q1 and 
q3 are set to 90°. The initial values of q5 and q6 are set to 0°, 
respectively. q2 and q4, corresponding to θ1 and θ2 in Fig. 3 (a), 
respectively, are controlled by the neural oscillators. We 
performed extensive experiments to evaluate the proposed 
control scheme described in section III. Various tasks in cases 
1 through 3 of Figure 6 (a), (b) and (c) are verified with 
respect to adaptive motion of the arm against arbitrary forces. 

Figure 7 (a) to (c) indicates experimental results on case 1 
to case 3 of Figure 6, respectively. Through these cases, we 
examine whether various desired motions such as motionless 
status, linear and circular motions can be attained or not. 
Basically kinds of these motions were verified from the 
results of Fig. 7. In Figure 7, the dotted lines in the center part 
of the figure show the desired motions and overlapping lines 
illustrate the motion trajectories that are drawn in terms of the 
end-effector of the real robot arm. In addition, we pushed and 
pulled the end-effector along the positive and negative x 
direction as shown in Figure 7 (a). And such conditions were 
also applied to the robot arm along the y direction in order to 
evaluate an adaptive feature of the proposed control method 
under additive external disturbances. It can be verified from 
the experimental result of Fig. 7 (a) that the robot arm is 
moved well according to the direction of the applied force 
(about 10 N and below). If an arbitrary force exists, it follows 
that the end-effector of the robot arm shows a compliant 
motion even in the linear motion and circular motion of the 
robot arm as seen in Figs. 7 (b) and (c).  

The force and torque (F/T) sensor value in the x and y 
direction are added to equation (3). Then, the joint angles 
change according to the direction of the impact of the force 
induced by the collision, which makes the neural oscillators 
entrain the joint angles for biologically inspired motion. 
Hence a change in the output produced intuitively from the 
neural oscillator causes a change in the joint torque. Finally 
the joint angles are modified adequately. Thus, it can be 
confirmed that the proposed neural oscillator based robot arm 
control approach successfully dealt with unexpected 
collisions sustaining desired motions. 

V. CASE STUDY: OPENING AND CLOSING A DRAWER 

A. Experimental System 
Figure 8 conceptually illustrates the objective tasks with 

experimental setup for validation of the proposed control 
scheme. We evaluate the entrainment capability of the neural 
oscillator that enables a manipulator to implement and sustain 
the given task under various environmental changes. Hence, 
in order to verify the possibility of such adaptation 
performance, we apply various circumstances to the coupled 
oscillator-robot arm with the tasks with respect to opening 

and closing a drawer as seen in Fig. 8. A drawer can give the 
constraint condition for performing the given task such as 
opening or closing to the proposed control architecture 
without making a constraint condition by intention. This is 
why we consider the task as the case study of this work in 
order to experimentally verify the neural oscillator based 
control method. 
 

 
We tightly joined the end-effector of the robot arm to the 

drawer. The end-effector’s direction of the robot arm is 
designed in accordance with the direction to open or close the 
drawer under the condition that the drawer is not rotated but 
fixed. In Figs. 8 (b) and (c), the drawer was rotated clockwise 
and counter-clockwise about 12° for considering unknown 
environmental changes. Then, the end-effector of the robot 
arm brings about various collision problems with the drawer 
due to a different direction between the end-effector of the 
robot arm and the drawer. Consequently, the proposed 
method based on the neural oscillator shows successfully 
adaptive motion against uneven disturbances such as the 
collision. Now, we will examine what happens in the arm 
motion on performing the objective task if additive external 
disturbances exist. Table I describes the parameters set within 
a limit cycle stable range for incorporating the neural 
oscillators to a robotic system [13]-[14]. 

 

 
B. Experimental Results 
Figures 9 and 10 illustrate the experimental results on each 

joint output of the robot arm as the sensory feedback of the 
neural oscillator is turned off and on, respectively. In the first 
case of Fig. 8 (a), the desired motion of robot arm is not 
changed owing that the drawer is immovable during 0s to 20s. 

            (a)                               ( b)                                  (c) 
Fig. 8. Schematic figure on the experiments that robot arm opens and closes
a drawer repeatedly. (a) fix the drawer in accordance with the robot arm 
motion, (b) rotate the drawer clockwise about 12°, (c) rotate the drawer
counter-clockwise about 12° 

TABLE I 
PARAMETERS OF THE NEURAL OSCILLATOR & ROBOT ARM MODEL 

Initial parameters 
Neural oscillator(1) 
Inhibitory weight (w1)   1.7 
Time constant (Tr1)        0.68 
(Ta1)        1.36 
Sensory gain  (k1)           3.1 
Tonic input   (s1)            1.0 

 
Neural oscillator(2) 
Inhibitory weight (w2)   1.7 
Time constant (Tr2)        0.7 

(Ta2)        1.4 
Sensory gain  (k2)         15.6 
Tonic input   (s2)            1.0 

Robot Arm Model 
Mass 1 (m1), Mass 2 (m2) 
Inertia 1 (I1), Inertia 2 (I2) 
Length 1 (l1), Length 2 (I2) 

 
2.347kg,     0.834kg 
0.0098kgm2,  0.0035kgm2 
0.224m,      0.225m 
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The first joint (q2) and the second one (q4) are actuated to 
move to the distance corresponding to an external force using 
Eq. (3) as explained in above section III. Hence, if the drawer 
rotates about +12° and -12° as illustrated in Figs. 8 (b) and (c) 
during 20s to 40s and 40s to 60s, the robot arm’s motion is 
autonomously altered. In Figs. 9 and 10, the blue lines 
indicate the desired trajectories produced by means of the 
neural oscillators for the joints 1 and 2. The red dotted lines 
are the output of the joints 1 and 2 that is changed in terms of 
forces applied when the drawer is rotated. Comparing the 
result of Fig. 9 with the neural oscillator based control (see 
Fig. 10), if the sensory information is fed again, it can be 
observed that the outputs of each joint and neural oscillator 
are changed whenever unknown disturbances are induced 
into the robot arm. Such the effect could be accomplished 
owing that the oscillator based control reproduces the desired 
joint input entraining the joint motion coupled with the neural 
oscillator through sensory feedback. Figure 11 shows the 
snap shots of the robot arm controlled by impedance control. 
The snap shots in Fig. 12 show the motion of the robot arm 
implementing the proposed control approach based on the 
neural oscillator, where we can observe that the end-effector 
traces the rotated drawer direction. 

 

 

 

(a) 

(b) 

(c) 
Fig. 11. Snap shots of the robot arm motions when sensory information 
isn’t fed again in cases of 0° (a), -12° (b) and 12° (c) rotation of the drawer
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Fig. 9. The outputs of each joint and neural oscillator as the sensory 
feedbacks of the neural oscillators are turned off. 
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Fig. 10. The outputs of each joint and neural oscillator as the sensory 
feedbacks of the neural oscillators are turned on. 

(a) 

(b) 

(c) 
Fig. 12. Snap shots of the robot arm motions when sensory information is 
fed again in cases of 0° (a), -12° (b) and 12° (c) rotation of the drawer 
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As shown in Figs 13 and 14, the end-effector of the robot 

arm draws the trajectories corresponding to the desired 
motion for opening and closing the drawer. The straight 
dotted lines indicate the desired trajectories of the robot arm 
generated by simulation. The blue lines show the trajectories 
measured at the end-effector of the robot arm in experiments 
related with Figs. 11 and 12. In Fig. 13, movements of the 
robot arm are identical with the expected performance 
although there are inefficient motions due to unknown 
disturbances. This is because that the desired input of each 
joint is modified adequately by the impedance model (see Fig. 
4) measuring external forces with the F/T sensor even though 
sensory information of the neural oscillators isn’t fed again. 
In comparison with this, the individual trajectories drawn by 
the robot arm in figure 14 are completely consistent with the 
rotated direction of the drawer. Thus, the robot arm coupled 
with the neural oscillator exhibits the superior potential in 
adaptive motion exploiting the sensory feedback of the neural 
oscillator for the capability of entrainment. From experiment 
results of Figs 10, 12 and 14, the measured trajectories and 
movements of real robot arm imply that the neural oscillator 
enables the robot arm to exhibit the self-adapting motion to 
enhance adaptive motion sustaining the objective task and 
motion stability. 

For showing the superiority of the biologically inspired 
control approach, we perform more complex task employing 
6-DOF motion of the robot arm. Fig. 15 shows the behavior of 
the robot arm with respect to opening a door. In the same 
manner, the task can be attained simply regardless of the 
desired motion generation for each joint of 6-DOF robot arm 
coupled with neural oscillators. Because the arm is so 
compliant, the tracking error is absorbed in the arm 
compliance. Thus, the robot can open the door easily even in a 
imprecise desired motion by the mechanical constraint 
between the door and the end-effector of the robot arm as seen 
in Fig. 15. In addition, though a desired task changes 
unexpectedly, the entrainment function of the neural 
oscillator adjusts the control commands in an adaptive way so 
as to maintain given movements. 

 

VI. CONCLUSION 
We have presented an example of human-like behavior of a 

planar robot arm whose joints were coupled to neural 
oscillators. In contrast to existing works that were only 
capable of rhythmic pattern generation, our approach allowed 
the robot arm to trace a trajectory correctly through 
entrainment. For achieving this, we proposed that the robot 
arm model coupled with neural oscillators can exhibit natural 
rhythmic motions, which entrains unknown disturbances with 
sensory information. This causes appropriate desired motions 
irrespective of precisely modelling with respect to external 
disturbances. For such reason, it was observed from 
experimental results of the coupled robotic system that the 
novel adaptive motions corresponding to an external force 
measured by the FT sensor values clearly appear. This 
approach will be extended to a more complex behavior in 

Fig. 15. Snap shops of 6-DOF robot arm motion in experiment of opening a 
door 

Fig. 14. Trajectories of the end-effector of the robot arm in case that the 
sensory feedbacks of the neural oscillator are turned on 

Fig. 13. Trajectories of the end-effector of the robot arm in case that the 
sensory feedbacks of the neural oscillator are turned off 
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three-dimension toward the realization of biologically 
inspired robot control architectures Also, theoretical analysis 
on the coupled oscillator-mechanical system will be extended 
as controllers. 
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