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ABSTRACT
This paper proposes a counterexample-guided narrowing ap-
proach, which mutually refines analyses and testing if (pos-
sibly spurious) counterexamples are found. A prototype tool
CANAT for checking roundoff errors between floating point
and fixed point numbers is reported with preliminary exper-
iments.

1. INTRODUCTION
Machine representations of real numbers are typically float-

ing point numbers. Our targets are digital signal processing
(DSP), such as mpeg4 decoders. Their implementations on
chips or in embedded systems often use fixed point num-
bers for lower cost and higher speed. However, the direct
floating-point-to-fixed-point conversion from their reference
algorithms frequently causes visible overflow and roundoff
errors (OREs).

Several ORE analyses have been proposed; for OREs of
floating point numbers [2, 3, 5], and for OREs of fixed point
numbers [1, 6]. We adopt an ORE analyzer CANA [6], which
combines an abstraction to extended affine interval (EAI) [3,
6] and weighted model checking on an acyclic model. Note
that CANA focuses on programs with bounded loops and
arrays with fixed length, which typically appear in DSP en-
coder/decoder reference algorithms.

Due to the over approximation, CANA may report spu-
rious counterexamples. Fortunately, we can compute exact
roundoff errors (REs) between the floating point and fixed
point numbers. Further, the result of CANA clarifies: (1)
the variables irrelevant to the RE, (2) the variables most
influential to the RE, and (3) the ranges of inputs that are
most likely to maximize the RE. These observations effec-
tively narrow the focus of test data generation.

This paper proposes a new testing refinement loop, called
counterexample-guided narrowing, by combining CANA and
testing. They are composed as a prototype tool CANAT, in
which the analysis results are used not only for RE estima-
tion, but also for finding dominant RE factors in inputs. Pre-
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liminary experiments show that the counterexample-guided
narrowing approach considerably improves both testing and
static analysis. We will explain this methodology by a run-
ning example (Example 1), and details have been reported
in [7].

2. EXTENDED AFFINE INTERVAL
A Classical interval (CI) is an interval rl, hs with l ¤ h.

Let rl1, h1s ¤ rl2, h2s if h1 ¤ l2 and |rl, hs| � maxp|l|, |h|q.
For two CIs x, y, and � P t�,�,�u, x � y is the smallest CI
that contain all possible values of x � y for each x P x, y P y
(e.g., rl1, h1s � rl2, h2s � rl1 � h1, l2 � h2s).

Definition 1. ([3]) An Extended affine interval (EAI)px is an expression

px � x0 �
ņ

k�1

xkεk

where εi is a noise symbol and xi is a CI for each ip¤ nq.

Each εi is interpreted as a value in r�1, 1s. In [3], the
operations on EAIs are designed for under approximation.
In [6], we proposed them for over approximation.

Definition 2. EAI arithmetic consists of operations
tp�, p�, p�, p�u on pairs of EAIs. Let px � x0 �

°n
i�1 xiεi,py � y0 �

°n
i�1 yiεi, X �

°n
k�1pxk � r�1, 1sq, and

Y �
°n

k�1pyk � r�1, 1sq. Then,

px p� py � px0 � y0q �
°n

i�1pxi � yiqεipx p� py � px0 � y0q �
°n

i�1pxi � yiqεipx p� py � x0 � y0 �
°n

i�1px0 � yi � xi � y0qεi � Bpx p� py � px p� p 1
py
q if 0 R x0 �

°n
k�1 xk � r�1, 1s

where:

B �

#°n
i�1pxi � Y qεi if Y � X°n
i�1pX � yiqεi otherwise

and 1
py

is computed by Chebyshev approximation [7, 8].

We define the conversion between CI and EAI as follows:

 CI to EAI : Given a CI x � rl, hs, the EAI coercion is
x̂ � l�h

2
� h�l

2
ε.

 EAI to CI : Given an EAI x̂ � x0 �
°n

i�1 xiεi, the
EAI projection is x � x0 �

°n
i�1 xi � r�1, 1s.

3. ORE ANALYSIS
This section briefly reviews the ORE analyzer CANA [6,

7]. Throughout the paper, we focus on the RE only.



Target programs
Our observation on DSP reference algorithms is that their
cores mostly consist of loops with bounded iterations, arrays
with fixed sizes, and pointer manipulations without side ef-
fects. For instance, in mpeg4 decoder, both the size of arrays
and the iterations of loops are mostly 8 � 8, and only the
outermost loop repeats depending on the resolution (Fig-
ure 1). We limit our discussion to a small subclass of C
programs, which have only bounded loops, fixed size arrays,
and no pointer manipulations. Thus, the target model is
acyclic after replacing each array element with a variable
and unfolding bounded loops.

8×8
loop

…

Outermost loop depending on resolution

8×8
loop

8×8
loop

Figure 1: Structure of mpeg4 decoder reference al-
gorithm

Example 1. Throughout Sections 3 and 4, we will ex-
plain using this example C program with annotations below.

/* CANAT

CANAT ALL sign 11 4

P2 x range -1 3

P2 y range -10 10

_test global rst 0.26 */

typedef float Real;

Real rst;

Real P2(Real x, Real y){

(1) if (x>0)

(2) {rst=x*x;}

(3) else rst = 3*x;

(4) rst = rst - y;

(5) return rst; }

The annotations describe the inputs of the ORE problem:

 the fixed point format psp, ip, fpq � p1, 11, 4q with the
base b � 2,

 the initial ranges x P r�1, 3s, y P r�10, 10s, and
 the RE threshold θ � 0.26.

In the first item, sp is the sign bit, ip is the number of bits of
the integer part, and fp is the number of bits of the fraction
part. Then, the ORE problem consists of questions:

 does the RE of rst lie within r�0.26, 0.26s ?
 does an overflow error occur ?

ORE abstraction
OREs are estimated by a pair of EAIs, which describe the
fixed point number range and the roundoff error range. As a
convention, we will refer to those pairs by pxf , pxr and pyf , pyr,
respectively.

Definition 3. For two pairs of EAIs ppxf , pxrq, ppyf , pyrq,
t p̀ , pa, pb, pcu are defined as:

px̂f , x̂rq ˆ̀ pŷf , ŷrq� px̂f �̂ ŷf , x̂r �̂ ŷr �̂ pδq
px̂f , x̂rq â pŷf , ŷrq� px̂f �̂ ŷf , x̂r �̂ ŷr �̂ pδq
px̂f , x̂rq b̂ pŷf , ŷrq� px̂f �̂ ŷf , x̂r �̂ ŷf �̂ x̂f �̂ ŷr �̂

x̂r �̂ ŷr �̂ pδq
px̂f , x̂rq ĉ pŷf , ŷrq� px̂f �̂ ŷf , px̂f �̂ x̂rq �̂ pŷf �̂ ŷrq

�̂ x̂f �̂ ŷf �̂ pδq

where pδ � r�b�fp{2, b�fp{2s.

Roundoff error analysis

Example 2. The input ranges of x and y (in Example 1)
are represented bypxf � r1, 1s � r2, 2sε1 and pxr � r2�5, 2�5sε3,pyf � r0, 0s � r10, 10sε2 and pyr � r2�5, 2�5sε4.

Since fp � 4, the initial REs of x and y lie in r�2�5, 2�5s.
At line (1), since the initial range of x is r�1, 3s, CANA

cannot decide px ¡ 0q. Therefore, it traces both line (2) and
line (3), and later merges their results before line (4).

At lines (2) and (3), the REs of rst are computed by b̂.

xrstp2qr � r�0.031250, 0.031250s � r�0.123091, 0.123091sε1

� r0.059615, 0.065385sε3xrstp3qr � 3 �̂ x̂r � r0.093750, 0.093750sε3

They are merged as:xrstp2,3q

r � r�0.031250, 0.031250s � r�0.123091, 0.123091sε1

� pr0.059615, 0.065385s Y r0.093750, 0.093750sqε3

� r�0.031250, 0.031250s � r�0.123091, 0.123091sε1

� r0.059615, 0.093750sε3

At line (4), we obtain the RE of rst by â:

xrstp4qr � r�0.031250, 0.031250s � r�0.123091, 0.123091sε1 �
r0.059615, 0.09375sε3 � r�0.031250,�0.031250sε4

The RE pr of rst (i.e., xrstp5qr ) coincides with xrstp4qr , and is
bounded by r�0.279341, 0.279341s. We denote

pr � r0 �
4̧

i�1

riεi

and refer to the coefficient CI of εi (in xrstp4qr ) by ri.
Note that, during this analysis, over approximations occur

at the conditional branch (line (1)) with Y and the multipli-

cation (line (2)) with pδ � r�0.031250, 0.031250s.

Observation on RE analysis

The ORE analysis above is over approximate. Thus, there
may be spurious counterexamples.

Example 3. In Example 1, let inputs be x � 3 and y �
10. Then xf � 3, xr � 2�5, yf � 10, yr � �2�5. CANA
detects pr � r�0.06348, 0.279341s � r�0.26, 0.26s, whereas
testing detects REs at most 0.219727 P r�0.26, 0.26s.

Fortunately, the analysis result shows extra information
about the effects of inputs on the RE, since EAI coercions
of input ranges and the RE share common noise symbols.

Example 4. In the analysis result for Example 2:

 Irrelevant noise symbol: Since r2 � r0, 0s, ε2 inpr is an irrelevant noise symbol. Hence, yf (the fixed
point part of y) does not affect the RE of rst.

 Sensitivity of noise symbols: Since |r1| � 0.123091 �
maxt|r1|, . . . , |r4|u, ε1 is the most sensitive, and xf

(the fixed point part of x) affects pr the most.
 Pre-evaluation: For t � pxf , yf , xr, yrq � p1, 5, 0, 0q,

the corresponding values of noise symbols pε1, ε2, ε3, ε4q
are p0, 0.5, 0, 0q. By instantiating them to pr, the RE
for the input t is bounded as r�0.031250, 0.031250s �
r�0.26, 0.26s. Hence, we can exclude t without testing.



4. COUNTEREXAMPLE-GUIDED NARROW-
ING

The counterexample-guided narrowing mutually refines anal-
yses and testing when counterexamples are found.

Assume that there are 2m noise symbols. All combina-
tions of ki-ticks of rli, his (for i ¤ 2m), which are the lattice
points of the grid over the input domain D � rl1, h1s� � � ��
rl2m, h2ms, compose test cases.

Definition 4. For an interval rl, hs and k ¥ 1,

 the k-random ticks are tc1, � � � , cku, and
 the k-periodic ticks are tc, c�∆, � � � , c� pk� 1q∆u,

where ∆ � h�l
k

, and c P rl, l � ∆s, c1, � � � , ck P rl, hs are
randomly generated.

The ki-random ticks and the ki-periodic ticks are used
for random testing and counterexample-guided narrowing,
respectively. For periodic ticks, the offset c is randomly
chosen to avoid overlaps in refinement loops.

Since the number of test data grows to the power of the
2m-th degree, they can easily explode. Based on observa-
tions of Example 4, we optimize test data generation.

 Narrowing test domain: We ignore irrelevant noise
symbols. Further, we can reduce the subdomain if the
coefficient CI of a noise symbol does not contain 0.

 More ticks for more sensitive noise symbols: We
set ticks for each input range proportional to sensitivity
of noise symbols.

 Pre-evaluation: We can avoid test cases if their pre-
evaluations are within the RE threshold bound.

The narrower the input ranges, the more precise the ORE
analysis result. When refining the ORE analysis, we device
the input domain into two by splitting the input range of
the noise symbol εi that has the largest |ri|. Then, the
input subdomains are checked in the breadth-first manner.
Our heuristics firstly tries one that contains the test case
resulting the largest (absolute) RE.

Counterexample-guided narrowing is implemented as a
prototype tool CANAT (C ANAlyzer and Tester) on CANA.
Figure 2 shows the construction of CANAT, in which CIL 1

and Weighted PDS 2 are used as a preprocessor and a back-
end engine, respectively.

Narrowing test domain

Example 5. In Example 4, ε2 is an irrelevant noise sym-
bol. Thus, we can fix the value of yf to 0 (P r�10, 10s).

Lemma 1. If 0   u ¤ v, �u ¤ ru, vs � r�u
v
, u

v
s ¤ u.

Let ri � rui, vis be the coefficient of a noise symbol εi

with ui ¡ 0. Let εi � r�ui
vi

, ui
vi
s. Then, riεi � r�u, us by

Lemma 1. Hence, we can ignore the noise range εi since it
is bounded by the boundary cases εi � �1 and εi � 1.

Example 6. In Example 4, the coefficient CIs r3 and r4

do not include 0. Thus, Lemma 1 enables us to ignore

 ε3 � r� 0.059615
0.09375

, 0.059615
0.09375

s � r�0.63589, 0.63589s,

1http://hal.cs.berkeley.edu/cil/
2http://www.fmi.uni-stuttgart.de/szs/tools/wpds/
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Figure 2: CANAT system

 ε4 � r��0.031250
�0.031250

, �0.031250
�0.031250

s � r�1, 1s.

Let

Dmax � pr1, 1s � r2, 2sε1, 0, r2�5, 2�5sε�3 , r2�5, 2�5sε�4 q
Dmin � pr1, 1s � r2, 2sε1, 0, r2�5, 2�5sε�3 , r2�5, 2�5sε�4 q

where ε�3 � r0.63589, 1s, ε�3 � r�1,�0.63589s, ε�4 � r1, 1s,
and ε�4 � r�1,�1s. They contain test cases that maximize
and minimize REs, respectively. Their EAI projections are

Dmax � pr�1, 3s, 0, r0.019872, 0.03125s,�0.03125q
Dmin � pr�1, 3s, 0, r�0.03125,�0.019872s, 0.03125q

More ticks for more sensitive noise symbols

We will choose ki (the number of ticks in Definition 4) pro-
portional to |ri| (the coefficient of εi) such that the product
of all ki’s is approximately the required number of test data.

Example 7. We focus on Dmax in Example 6. Our heuris-
tics sets the tick frequencies t1 and t3, proportional to |r1| �
0.123091 and |r3| � 0.09375 (in Example 2), respectively.
Thus, if we intend to generate 200 test cases, t1 � |r1| �b

200
|r1|�|r3|

� 16 and t2 � |r3| �
b

200
|r1|�|r3|

� 12.

Narrowing Input Domains for Next Round

Example 8. In Example 7, no test case from Dmax vio-
lates the RE threshold bound. Since ε1 is the most sensitive
symbol in Dmax, the range of xf � r�1, 3s is divided into two
new subranges r�1, 1s and r1, 3s, which compose two subdo-
mains D1

max and D2
max. CANA reports that:

 the REs over D1
max lie in r�0.078914, 0.187500s

 the REs over D2
max lie in r0.017318, 0.250977s

CANA also reports similarly for Dmin.

5. PRELIMINARY EXPERIMENTS
The first column in Table 1 shows the names of 4 pro-

grams, with the following 40 settings for each.



Input CANA and Random test CANAT
program CANA Random test Time (sec) %Checked Analysis Test Time(sec) %Checked
P2 15 11 7 65.00% 20 18 13 95.00%
P5 9 15 14 60.00% 12 19 24 77.50%
Sine 19 7 37 65.00% 21 8 81 72.50%
subMpeg 11 11 65 55.00% 11 19 121 75.00%

Table 1: Experimental results of CANAT

1. P2 (Example 1): The initial range pr�1, 3s, r�10, 10sq,
fp P t7, 8, 9, 10u, and θ P t0.001� 0.002i | 0 ¤ i ¤ 9u.

2. P5 (1�x�3x2�2x3�x4�5x5): The initial range r0, 1s,
fp P t7, 8, 9, 10u, and θ P t0.001� 0.01i | 0 ¤ i ¤ 9u.

3. Sine (by Taylor expansion up to degree 21): The ini-
tial range r0, 1s, fp P t7, 8, 9, 10u, and θ P t0.001 �
0.005i | 0 ¤ i ¤ 9u.

4. subMpeg (a fragment taken from the mpeg4 decoder
reference algorithm, consisting of an 8� 8 loop): The
initial range r0, 30s, fp P t7, 8, 9, 10u, and θ P t0.001�
0.05i | 0 ¤ i ¤ 9u.

Table 1 compares experimental results between

 ORE analysis (CANA) followed by random testing
(Random test) with 200 instances, and

 counterexample-guided narrowing by repeating ORE
analysis (Analysis) and testing (Test) 10 times. Each
test executes 20 instances.

%Checked columns show the percentages (among 40 set-
tings) of correct detections (i.e., either safe or violation).
Although the experiment is just preliminary, it shows con-
siderable improvement. The execution times with Intel(R)
Xeon(TM) 3.60GHz and 3.37GB RAM of whole 40 settings
for each are shown in Time columns.

6. RELATED WORK
We obey the semantics of propagation of REs as shown

in [4]. Affine interval (AI) is proposed in [8]. RE anal-
yses, which over approximate REs between real numbers
and floating point numbers, are designed based on AI [2, 5].
They are implemented as a tool FLUCTUAT. To sandwich
REs from both sides, an RE analysis for under approxima-
tion is proposed based on EAI, the mean value theorem, and
Kaucher arithmetic [3].

For the floating point-to-fixed-point conversion, Fang [1]
proposed an RE analysis based on AI, intended for DSP ap-
plications. We focus on the same problem, but with EAI. We
also adapted sophisticated weighted model checking, whereas
they adapted direct bit-vector encoding. They also applied
probabilistic reduction of the search space.

There are many works on sophisticated floating-point-to-
fixed-point translations, aimed at hard-wired implementa-
tions. A dataflow graph is traced in a backward manner to
propagate the output requirement by CI-based estimation,
to optimize the fixed point number formats [9]. Then, the
translation is verified by testing. Our work is complemen-
tary, and can be a substitute for the final verification.

7. CONCLUSION
The contribution of this paper is twofold:

 Counterexample-guided narrowing, in which RE anal-
yses and testing refine each other.

 A prototype tool, CANAT, and its preliminary experi-
ments. We would like to emphasize that, although our
experiments are still small, the results are encouraging.

For future work, we plan:

 Experiments on more realistic C programs. We hope
that the compositional nature of DSP reference algo-
rithms (Figure 1) would help scalability.

 More sophisticated input domain decomposition strat-
egy, e.g., the use of differences between the RE thresh-
old and the maximum RE during testing.

 Automatic source code correction to reduce REs, e.g.,
exchanging the ordering of arithmetic operations by
associative and distributive laws.
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