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Adaptive CPG Based Coordinated Control of Healthy and Robotic
Lower Limb Movements

Jae-Kwan Ryu, Nak Young Chong, Bum Jae You, and Henrik Christensen

Abstract—This paper proposes an adaptive CPG based
controller for a lower limb prosthesis consisting of online
trajectory generation and interlimb coordination. The adaptive
CPG can produce multidimensional rhythmic patterns and
modulate their frequency by tuning relevant parameters in
an autonomously way adapting to a changing periodicity of
external signals. Also, to increase the stability of the pros-
thesis, a spring-damper component is attached between the
hip and ankle joints, allowing the absorption of impulsive
ground reaction forces at landing. We verify the validity of the
proposed controller with a simulated humanoid robot through
the investigation of the self-coordination between the healthy
and robotic legs.

I. INTRODUCTION

In recent years, there has been increasing attention paid
to robotic rehabilitation such as limb prostheses and ex-
oskeletons. Particularly, a lower limb prosthesis is not only
important to the functional replacement for an amputated
limb, but also help to restore the dignity of amputees [1].
In this paper, we take inspiration from biology to design
a highly functional prosthesis. Humans and animals are
able to learn and perform skilled movements adapting to
changing conditions quickly and easily. Many researchers
used signals from the human brain to control artificial limb
motions [2], [3], [4]. Likewise, central pattern generators
(CPGs) with coupled neural oscillators appear to be effective
in controlling locomotion [5], [6], [7] and repetitive arm
movements [8]. Notably, a 2D biped was simulated under
unpredicted conditions using neural oscillators in [5].

Toward the application of biologically inspired robotics
to lower limb rehabilitation, this work investigates the use-
fulness of a network of neural oscillators, particularly in
achieving automatic coordination between the healthy and
robotic lower limbs. Neural oscillators synchronize or lock
onto the input signal, and adapt themselves to the dynamics
of the coupled system. However, it is usually difficult to tune
the parameters of an oscillator to ensure that the oscillator
synchronizes to a variety of input signals [9], [10], [11],
[12]. For instance, if the frequency of the input signal
is far away from the oscillators’ intrinsic frequency, the
synchronization between those frequencies will not occur and
also the oscillator’s output pattern will not be maintained.
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Therefore, the parameters that are related to the frequency
of the oscillator need to be adjusted in accordance with the
changes in the input signal frequency. Such a modulation
will enhance the robustness of the oscillator and facilitate
easy determination of parameters for the desired oscillator
signal. Several techniques have been proposed for designing
adaptive oscillators that can lock onto a wider range of time-
varying input signals. Most existing techniques are based on
various learning models [12], [13], [14], a learning rule [9],
and an observer-based method [10].

Our primary concern in this work is how to maintain
synchronization between the healthy and robotic lower limbs.
Specifically, we propose an adaptive CPG based swing
frequency controller for a robotic lower limb that can au-
tomatically adapt to a changing landing periodicity of the
healthy leg. The adaptive CPG can continuously produce a
coordinated multidimensional rhythmic pattern and modulate
its frequency by self-tuning the relevant parameters adapting
to a variety of input signals. In addition, a spring-damper
component is attached between the hip and ankle joints
to absorb the impulsive ground reaction force at landing,
enabling to cope with a lack of structural compliance of the
robotic lower limb. We verify the validity of the proposed
adaptive control architecture using a simulated humanoid
robot HOAP-3.

II. FREQUENCY-ADAPTIVE OSCILLATOR

We present our evolutionary computation method to design
a rule for adapting nonlinear oscillators to varying input
signals and adaptive sensory motor functions for lower limb
coordination. To the best of our knowledge, no previous
evolutionary method for the frequency-adaptive rule of neural
oscillators can be found in the literature.

1) Neural Oscillator: For realizing the adaptive CPG, we
use Matsuoka’s neural oscillator model [18]. This model
is a half-center oscillator consisting of two neurons having
mutually inhibitory interactions. It has been widely applied in
robotics over the past several decades [5], [6], [8], [19]. The
model can be described by the following set of differential
equations:

j=n
Uge — Ue — BVe — wef[uf]+ - Z hj[sj] ey

Tile =
j=1

ToVe = —Ve+ [ue]+ 2)
j=n

T = uop —us — Brg — wreluet — Y hyjls;]7(3)
j=1

122



ToVf —vg + [ug]* @)
vi = [w]t =maz(ui,0), [u]” = min(u;,0)  (5)
Your = [ue]™ +[us]t =we —ys (6)

where ue, Ve, uy, and vy are the internal states of the
oscillator. y,,¢ is the output of the oscillator. 3, w, and h are
the weights of the inter-oscillator and the input signal. s is
an external input to the oscillator. 73 and 7o are the positive
time constants that determine the envelope and frequency
of the oscillator’s output. uge o5 is the positive tonic input
that modulates the output amplitude. To maintain a stable
oscillation, we set the time constant ratio to a value falling
within the range of 0.1-0.5 [8].

2) Frequency Adaptation Rule: Designing a frequency
adaptation rule is very challenging, especially when there
is no a priori knowledge about the oscillator or its network
[15]. In our previous work, we proposed an evolutionary
approach for enabling frequency-adaptive behaviors of Mat-
suoka’s neural oscillator based on an evolutionary searching
and phase-locking behavior [16]. The difference in phase is
tightly locked if the frequency of the input signal is close
to that of the limit-cycle system and the amplitude of the
input signal is large enough. With such phase-locking effect,
we can consider the frequency-adaptive rule of nonlinear
oscillators in the phase plane. The frequency adaptation rule
was assumed to be a linear combination of local variables
in the phase plane, which is dependent on the relation
between the input signal and the state of the phase point that
rotates along the limit cycle [17]. We choose the frequency-
adaptation rule of Matsuoka’s neural model as follows:

1 (t) =  —NSesternal X (’wlue + waVe + W3ufs + wqly

+ Wsle + Wele + Wrlly + ’I.Ugl'/f) @)
m2(t) = m(t)/R ®

where 0 < 1 < 1 is the constant that determines the
learning rate. w; through wg are the weight factors that
describe the relation among the variables. The amplitude of
the input signal Sezternqi is multiplied to affect the frequency
adaptation only when the input signal is activated. The minus
sign is determined by the rotation direction of the oscillator.
R is the pre-determined time constant ratio between 7; and
T2. We encoded only four weight factors (w;,ws,ws, ws)
of the extensor neuron because the extensor neuron and the
flexor neuron have mutually inhibitory connections. In the
evolution process, we set the parameters of the oscillator as
follows: 71, ,,..,=0.3, R=0.5, 3=2.5, h=0.6, wef=w¢=2.5,
upe=uo=1.0, and n=0.01. The external signal is represented
by Seaternal = sinS5t.

We employed a genetic algorithm (GA) for discovering the
relation among the variables of the frequency-adaptive rule.
The real-coded GA was implemented as follows: first, the
initial population is determined. Then, two individuals are
randomly selected to produce offspring fivefold. We used
the UNDX crossover and no mutation. After the production,
the offspring, called the search space, is evaluated by an
objective function. Two best individuals in the offspring
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replace the selected individuals in the population, which is
known as the minimal gap generation (MGG) model. This
process iterates until the termination condition is satisfied.
Each loop of the algorithm is referred to as a generation.
Finally, we can obtain an optimal adaptation rule of the
oscillator.

3) Entrainment property enhancement: Now we verify the
frequency adaptation capability of the proposed oscillator to
a varying input signal as shown in Fig. 1. The sinusoidal
input signal’s frequency, at 5 sec., increases gradually from
5 Hz to 8 Hz as time goes. The frequency-adaptive oscillator
remarkably entrains to the varying input signal keeping a
specific phase difference. This result is encouraging. There-
fore, once the parameters (or the weighting factors of the
frequency adaptation rule) have been tuned, we can have the
CPG cope with a wider range of external uncertainties and
changes in real time and obtain the appropriate parameter
values for a desired periodic signal. To investigate the
convergence and the entrainment capability of the frequency-
adaptive oscillator, we performed simulations with various
input signals. Fig. 2 shows the adaptation of the proposed
oscillator to the input signals of various types.

III. NEURAL CONTROLLER FOR A ROBOTIC LEG

We apply the frequency-adaptive Matsuoka’s neural oscil-
lator to build an adaptive controller for a robotic leg. The
controller consists of the adaptive CPG for the trajectory
generation and the coordination of healthy and robotic legs
with impact absorption as shown in Fig. 3. Sensory feedbacks
such as a touch signal and articulation angles from the
healthy leg are connected directly to the adaptive CPG of
the robotic leg. It allows easy synchronization between both
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Fig. 3. Control architecture for coordinating healthy and robotic limbs (in
red)

legs and provides natural walking motions of the amputee.
The spring-damper landing model reduces impacts when the
robotic leg touches on the ground since the impact may cause
a fracture and uncomfortable wearing feeling.

A. Adaptive Central Pattern Generator

We construct the adaptive CPG that is a network of neural
oscillators with frequency adaptation capability, which can
produce an arbitrary rhythmic patterns for each joint and
keep the rhythmic pattern with a specific phase lag according
to the input signal’s frequency variation by self-modulating

Fig. 4. Structure of neural oscillator network (NON)

the frequency of the CPG.

1) Neural Oscillator Network (NON) Module: Now, we
propose a multi-number neural oscillator system for control-
ling each DOF of the robotic leg by generating multidimen-
sional trajectories (that a single oscillator may not be able to
produce). Our basic idea is to construct a network of 4 oscil-
lators through appropriate connection weights for each DOF,
so that the network can generate arbitrary rhythmic signals
as illustrated in Fig. 4. Each neural oscillator has the same
internal parameters in order to simplify the incorporation of
the feedback pathway into the network and the coupling
process with other modules in the network. We tuned the
connection weights between the oscillators and the offset of
each oscillator’s output using an evolutionary computation
approach: (u/uw , A)-CMA-ES (Evolution Strategy with Co-
variance Matrix Adaptation) [20], enabling the generation
of desired motion trajectories for each DOF. We use a
distributed memory massively parallel MIMD supercomputer
designed by Cray Inc. for computing the fitness of each
individual. Since the evaluation of each individual requires
the simulation of oscillator network module, distributed
computation dramatically improved the performance of our
evolutionary strategy. We used 60 processors to perform the
evaluation of each individual and tune the parameters for
constructing the local oscillator network. The evolutionary
strategy program was built with MPI library.

2) Adaptive NON module: As previously mentioned, if
the input signal frequency is far away from the oscillator’s
intrinsic frequency, the synchronization between those two
frequencies will not occur. Moreover, the oscillator’s output
pattern will not be maintained. Therefore, the oscillator
network module cannot keep its motion trajectory (that has
been tuned by the evolutionary computation strategy) to be
well suited to variations of the frequency difference between
the module’s intrinsic frequency and the input signal. To cope
with this problem, we incorporate the frequency adaptation
rule given in Eqn. 7 with the NON module into the CPG. It
not only enhances the entrainment capability, but also keeps
its desired pattern of the module according to changes in
the input signal’s frequency. To investigate properties of the
adaptive oscillator network module as a CPG, we performed
numerical simulations with various input signal and initial
values as shown in Fig. 5. Fig. 5-(a) shows a target pattern
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Fig. 5. Properties of the adaptive NON

for rolling motion of RLEG_JOINT[2] of HOAP-3. Fig. 5-
(b) is the output of the adaptive NON module optimized
by the evolutionary strategy. The adaptive CPG module’s
output frequency and amplitude can be easily modulated
by controlling some parameters. It has robustness against
transient perturbations because of its limit-cycle property,
which can keep its intrinsic pattern as the input signal varies
in frequency (see Fig. 5-(c, d, e, f)).

3) Structure of adaptive CPG for a biped: We particularly
focus on the pitching and rolling motions of each leg,
considering only 10 DOFs among 28 DOFs. Fig. 6 shows a
schematic view of the humanoid’s kinematic configuration
and the motion pattern generator. We employ the local
oscillator network of 4 oscillators for each DOF as shown
in Fig. 4. Each local network functions as a single oscillator
since the four oscillators have the same internal parameters
yielding the same frequency and amplitude. Note that in
human walking, the legs and arms on the same side swing in
the opposite phase, and the legs and their contralateral arms
swing in the same phase. Therefore, in order to synchronize
the phase difference of the healthy and robotic legs, we
construct a connection to the adaptive CPG from the healthy
leg’s touch signal. Through the overall network, the adaptive
neural oscillator adapts its frequency to the sensory feedback
signal (by self-modulating the time constant), and simul-
taneously transmits the parameter to other local oscillator
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Fig. 6. Schematic view of the proposed CPG for a robotic leg

Fig. 7. Landing model for impact absorption

networks, enabling the global entrainment for healthy and
robotic legs.

B. Landing Model for Impact Absorption

To secure the stability of locomotion, the robotic leg needs
to incorporate sensory feedback from interactions with the
ground. Specifically, we attach a spring-damper component
between the hip and ankle joints to absorb an impulsive
ground reaction force at landing as shown in Fig. 7. Here the
equation for interaction with the ground can be described by
the following equation.

dy(t)

d?y(t
d?;g ) 4 VL ky(t) = )
where y(t) is the displacement of the mass m along the
vertical axis, and Fj is the normal ground reaction force
on the supporting feet. We control properly the damping
factor b and the spring coefficient k£ of the spring-damper
component so that the impact force is minimized. The joint
positions according to the displacement y(t) are calculated
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TABLE I
PHYSICAL PROPERTIES OF HOAP-3

Link | Weight (kg) | Height (m)
Foot 0.349 0.040
Calf 0.328 0.105
Thigh 0.519 0.105
Hip 0.2687 -
Arm 0.8565 0.281
Upper body 4.16 0.35
Total body |  8.8024 0.6

by the following equations.

Or(t) = OF pg(t) +05,(t) (10)
Or(t) = 607 (1) —2054(2) (11)
05(t) = 68..pg(t) + 6%,(2) (12)

where 6} (t), 6%(t), and 67(t) are the pitching angles of the
hip, knee and ankle joints, respectively. 6% epg(®): k. cpg(t)
and 65..p(t) are produced by the adaptive central pattern
generator. 6% ,(t) = arcsin(y(t)/L) is the joint angle com-
pensation induced by the spring-damper component, and L
is the length of the thigh.

IV. SIMULATION RESULTS

We verify the validity of the proposed controller for
achieving automatic synchronization between healthy and
robotic legs using our in-house locomotion simulator running
within the RecurDyn environment, a multi-body dynamic
analysis program. Table I shows the physical parameters
of the HOAP-3 used in the simulation. The analysis took
about 60 sec. for 1 sec. locomotion simulation on a personal
computer (Intel Core2 Duo 3.0 GHz).

We investigate whether a robotic leg can adapt its swing
frequency to the changes in the swing frequency of a healthy
leg. Here the left leg is assumed to be a robotic leg, and the
touch signal of the healthy right leg is fed to the adaptive
CPG of the robotic leg. The right leg was controlled by
preplanned motion trajectories, where the swing frequency
increased to 0.17 Hz from 0.13 Hz. Fig. 8 shows that
the robotic leg can adequately synchronize its trajectories
according to the touch signal of the right leg. Fig. 8-(a) is
the reaction force exerted on the right foot which was fed to
the CPG. Fig. 8-(b) is the switching period of the center of
mass (COM) between the right and left feet. Figs. 8-(c, d,
e, f, g) show the trajectories of each joint of the robotic
leg. It can be observed that the adaptive CPG generated
new but fairly stable trajectories in real-time according to
the changes in the right legs’s swing frequency after 30 sec.
The gray solid lines mean the nominal trajectories generated
from the adaptive CPG tuned by the (u/uw, A)-CMA-ES in
advance. The landing model modulates the pitching motion
of the robotic leg to absorb the impact force as shown in 8-(d,
e, f). Fig. 8-(h) shows the variation of y(t) (see Eqn. 9) when
the ground impact force is exerted on the left leg. Through
the use of adaptive CPG and landing model, the robotic leg
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Fig. 8. Joint angle (rad.) of the robotic leg using the right leg’s touch signal
(The gray lines mean nominal trajectories. At 30 sec., the swing frequency
of the right leg changes to 0.17 Hz from 0.13 Hz.)

can naturally keep its swing frequency in accordance with
the healthy leg and minimize the ground reaction force.

V. CONCLUSIONS

This paper presented an evolutionary approach to finding
the basic rule of a network of nonlinear oscillators for
frequency adaptation under variations of rhythmic behavior.
It enabled the fast and accurate entrainment of the input
signal in a wide variety of ranges and types. Exploiting the
frequency adaptation rule, we constructed an adaptive CPG
that can produce multidimensional rhythmic trajectories,
and adapt its output pattern autonomously to a changing
periodicity of the input signal. The adaptive CPG provides
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an easy and efficient way to coordinate movements of each
individual limb according to the changes in environments,
external requirements, or proprioceptive information. We
applied the proposed adaptive CPG to the coordinated control
of healthy and robotic legs for the purpose of dynamic swing
frequency adaptation. In addition, to increase the stability
of the prosthesis, a spring-damper component was attached
between the hip and ankle joints, allowing the absorption of
impulsive ground reaction forces at landing. Through a series
of rigorous dynamic simulations with a humanoid robot,
our adaptive control architecture has proven very effective
in coordinating lower limb movements. Eventually, the pro-
posed approach can be extended to be applied to coordinating
the healthy and robotic upper and lower limbs in a natural
way. In order to validate the proposed adaptive CPG in real-
world test environments, we are currently implementing this
approach in a real humanoid robot.
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