
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Overflow and Roundoff Error Analysis via Model

Checking

Author(s) Ngoc, Do Thi Bich; Ogawa, Mizuhito

Citation
2009 Seventh IEEE International Conference on

Software Engineering and Formal Methods: 105-114

Issue Date 2009-11

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/9549

Rights

Copyright (C) 2009 IEEE. Reprinted from 2009

Seventh IEEE International Conference on Software

Engineering and Formal Methods, 2009, 105-114.

This material is posted here with permission of

the IEEE. Such permission of the IEEE does not in

any way imply IEEE endorsement of any of JAIST's

products or services. Internal or personal use of

this material is permitted. However, permission

to reprint/republish this material for

advertising or promotional purposes or for

creating new collective works for resale or

redistribution must be obtained from the IEEE by

writing to pubs-permissions@ieee.org. By choosing

to view this document, you agree to all

provisions of the copyright laws protecting it.

Description

Overflow and Roundoff Error Analysis via Model Checking

Do Thi Bich Ngoc

School of Information Science
Japan Advanced Institute of Science and Technology

Ishikawa, Japan
dongoc@jaist.ac.jp

Mizuhito Ogawa

School of Information Science
Japan Advanced Institute of Science and Technology

Ishikawa, Japan
mizuhito@jaist.ac.jp

Abstract

This paper proposes a framework for statically analyzing
overflow and roundoff errors of C programs. First, a new
range representation, “extended affine interval”, is proposed
to estimate overflow and roundoff errors. Second, the over-
flow and roundoff error analysis problem is encoded as
a weighted model checking problem. To avoid widening,
currently we focus on programs with bounded loops, which
typically appear in encoder/decoder reference algorithms.
Last, we implement the proposed framework as a static
analysis tool CANA. Experimental results on small programs
show that the extended affine interval is much more precise
than classical interval.

Key words: program analysis, model checking, roundoff
error, overflow error, affine interval.

1. Introduction

In computer algorithms, real numbers are often repre-

sented as floating point numbers. However, hardware typ-

ically uses fixed point number representations for lower cost

and higher speed. Direct transformation from a reference

algorithm to a hardware algorithm with fixed point numbers

often returns different computational results. This causes

serious problems, especially in digital signal processing,

such as in Mpeg decoder and OpenGL libraries.

There have been several works on overflow and roundoff

error (ORE) analysis [2], [6], [8], [4], [5]. These works

mostly focus on analyzing roundoff errors in floating point

systems. In this work, we aim to analyze OREs of fixed

point (reference) algorithms.

Based on abstract interpretation technique [1], OREs are

analyzed by automatically propagating the ranges of variable

values and their roundoff errors. There are two main tech-

niques to propagate ranges. The first method uses classical
interval (CI) [9] to represent possible ranges. This method is

simple but imprecise, because it does not handle correlations

between variables. The second method uses affine interval
(AI) [4], [13], [14], which introduces symbolic manipu-

lations on noise symbols, to handle correlations between

variables. AI arithmetic supplies higher precision, especially

in linear operations (e.g., addition, subtraction). However, for

nonlinear operations (e.g., multiplication, division), AI arith-

metic introduces a fresh noise symbol each time. This leads

to high complexity if there are many nonlinear operations.

This paper proposes a framework for statically analyzing

OREs for C programs with bounded loops.

� First, we propose an extended affine interval (EAI)

by assigning a CI coefficient to each noise symbol of

AI form. Compared to AI arithmetic, EAI arithmetic

does not need to introduce new noise symbols for any

operations.

� Second, ORE analysis is encoded as a weighted model

checking problem [11]. We represent C programs by

weighted transition systems, in which weights are de-

signed using range representations (e.g., CI, AI, EAI).

To avoid widening, currently we focus on programs

with bounded loops only, which typically appear in

encoder/decoder reference algorithms.

� We implement the proposed framework as a static

analysis tool CANA, to analyze OREs of fixed point

algorithms. The backend engine is Weighted PDS li-

brary 1. The input of CANA is C program with nested

loops �64 � 64�, without procedure calls or pointer

manipulations. Experimental results on small programs

demonstrate that EAI is more precise than CI and is

comparable to AI.

The rest of this paper is organized as follows. Section 2

presents ORE problem for fixed point numbers. In Section 3,

we recall the basic notions of CI and AI arithmetics. Then,

we propose a new range representation, EAI, and its arith-

metic. We introduce an abstract domain for ORE problems

in Section 4.

Section 5 shows how to encode ORE analysis as a

weighted model checking problem. Section 6 shows CANA

implementation and its experimental results. Section 7 men-

tions related works, and Section 8 concludes the paper and

indicates future work.

1. http://www.fmi.uni-stuttgart.de/szs/tools/wpds/

2009 Seventh IEEE International Conference on Software Engineering and Formal Methods

978-0-7695-3870-9/09 $26.00 © 2009 IEEE

DOI 10.1109/SEFM.2009.32

105

2009 Seventh IEEE International Conference on Software Engineering and Formal Methods

978-0-7695-3870-9/09 $26.00 © 2009 IEEE

DOI 10.1109/SEFM.2009.32

105

2. Overflow and roundoff error problems

2.1. Fixed point numbers and errors

Fixed point numbers are a simple and easy way to express

real numbers, using a fixed number of bits. Fixed point

numbers are generally used when hardware cost, speed, or

complexity are important issues. We recall some notations

related to fixed point numbers, as follows:

Definition 1 (Fixed point number): A fixed point num-

ber a on base b is represented in the form: a �
sp a1a2 . . . aip �aip�1 . . . aip�fp, where sign part sp� �0, 1�
determines if a is sign or unsign, ak � �0, b � 1� 	k �
�1, ip
 fp�, ip is the width of integer part, and fp is the

width of the fraction part.
A real number x is represented by a pair �xf , xr� where

xf is the fixed point value and xr is the corresponding

roundoff error.

There are two types of fixed point errors (FE): roundoff
error due to the finite fraction part, and overflow error due

to the finite integer part. In programs, one must strike a

balance between overflow and roundoff errors; by scaling

down the data, the occurrence of overflow error is reduced,

but the relative size of the roundoff error is increased. Hence,

we need to consider the largest value of roundoff error and

the largest value of fixed point number. The overflow and

roundoff error (ORE) problems are stated as follows:

Given a program, initial ranges of variables, and fixed
point format, there are some natural questions:

1) Whether roundoff error of a result lies within threshold
bound or not?

2) Whether overflow error may occur? Where?

For clarity, let us illustrate the above problem by a simple

example:

Example 1: Assuming that the input C program as shown

in Figure 1, the inputs of the program satisfy x � �0, 1�,
n � 100, and real variables (x, rst) are represented by using

fixed point format �sp � 1, ip � 7, fp � 8�. The questions

are:

1) Does roundoff error of rst lie within ��0.01, 0.01�?
2) May overflow error occur? Where?

2.2. FE operations

In fixed point arithmetic, the result must be rounded or

truncated to fit the result into the same number of bits as

the operands. The computation of fixed point arithmetic has

roundoff error ε, such that ε � b�fp�2. The roundoff

error of a result is then the sum of ε and the result of

propagating the roundoff error of operands. The roundoff

error of arithmetic on fixed point numbers is computed by

using FE arithmetic, as follows:

/* CANA
CANA ALL sign 7 8
global x range 0 1
global n range 100 100

*/
double x; int n;
int main () {

int i;
double rst;
rst = x; i = 0;
while (i <= n) {

rst = rst + i ; i++; }
rst = rst/10.0f ;
rst = rst - x * x;

return 1;
}

Figure 1. An example of a C program

Definition 2 (FE arithmetic): Let �xf , xr� and �yf , yr�
be representations of x, y, and let ε be a noise symbol

such that ε � b�fp�2. FE arithmetic � � ��,�,�,�� is

defined below.

�xf , xr�� �yf , yr���xf
 yf , xr
 yr�
�xf , xr�� �yf , yr���xf � yf , xr � yr�

�xf , xr�� �yf , yr���xf � yf ,

xr � yf
 xf � yr
 xr � yr
 ε�

�xf , xr�� �yf , yr���xf � yf ,

�xf
 xr� � �yf
 yr� � xf � yf
 ε�

Because of roundoff error, the result of fixed point con-

ditional expression is sometimes different from the result

of real number conditional expression. Therefore, the fixed

point program leads to incorrect results. We define the FE

comparison operations for ORE problems by comparing the

range values of real number representations. For a given

real number representation �xf , xr�, the corresponding range

values are x̃ � �xf � xr, xf
 xr�. The results of FE

comparison operations may be true, false, or unknown.

Unknown means that the result of real number expression

may differ from that of fixed point expression. Formally, FE

comparison operations are defined as follows:

Definition 3 (FE comparison operations): Let �xf , xr�,
and �yf , yr� be representations of two numbers.

�xf , xr� � �yf , yr� �

���
��

true if 	u � x̃ 	v � ỹ.u � v

false if 	u � x̃ 	v � ỹ.u � v

unknown otherwise

106106

�xf , xr� � �yf , yr� �

�����
����

true if �xf � yf � xr � yr � 0�
false if ��u � x̃ �v � ỹ.u � v�

� ��u � x̃ �v � ỹ.u 	 v�

unknown otherwise

where x̃, ỹ are range values of �xf , xr�, �yf , yr� respec-

tively.

Remark 1: Other comparison operations (e.g., 	, ! �)

can be defined using the above operations.

3. Range representations

To estimate ORE of arithmetic on fixed point numbers,

there are two known over-approximations: classical inter-

val [9] and affine interval [13], [14]. In this section, we

describe these two methods. We then propose a new range

representation method, called “extended affine interval”.

3.1. Classical interval

Classical interval (CI) was introduced in the 1960s by

Moore [9] as an approach to putting bounds on rounding

errors in mathematical computations. In CI, each quantity

is represented by the set of all possible values. Formally, CI

is defined as follows:

Definition 4: A classical interval of x is an interval x �

xl, xh� with xl � x � xh. The set of classical intervals is

denoted by R.

The result of CI arithmetic is also a CI that binds all

possible results. In particular, CI arithmetic is evaluated as

follows:

Definition 5: CI arithmetic consists of operations �
�� ,� ,� ,�� on pairs of CIs defined below:

xl, xh� �
yl, yh� �
xl � yl, xh � yh�

xl, xh� �
yl, yh� �
xl � yh, xh � yl�

xl, xh� �
yl, yh� �
min�xlyl, xlyh, xhyl, xhyh�,

max�xlyl, xlyh, xhyl, xhyh��

xl, xh� �
yl, yh� �
xl, xh� �
 1

yh
, 1

ul
� if 0 �
yl, yh�

For x, x1, ..., xn � R, � � , and a constant c, we

denote:

� x1x2 � x1�x2, cx � xc � x �
c, c�,
� c � x �
c, c� �
x�, x � c � x �
c, c�, and

�

�n
i�1 xi � x1 � x2 � � � � � xn.

CI assumes that all intervals are independent, even if their

corresponding quantities are dependent. This assumption

leads to a great loss of precision in a long computation

chain, which is called “error explosion”. The next example

illustrates such a problem.

Example 2: Let b = 10, sp = 1 (sign), ip = 5, and fp

= 3. For an arbitrary number t, the roundoff error is tr �

�10�3�2, 10�3�2�. It is easy to see that:

tr � tr �
�10�3�2, 10�3�2� �
�10�3�2, 10�3�2�
�
�10�3, 10�3�

CI arithmetic assumes the first operand and the second

operand to be independent, while in fact, they represent the

same quantity tr and the result must be
0, 0�.

3.2. Affine interval

Affine interval (AI) was introduced by Stolfi [13], [14]

as a model for self-validated numerical analysis. It was

proposed to address the “error explosion” problem in con-

ventional CI. Unlike CI, in AI, the quantities are represented

as affine combinations (affine forms) of certain primitive

variables, which stand for sources of uncertainty in the data

or approximations made during the computation.

Definition 6: An Affine interval of x is a formula

�x � x0 � x1ε1 � x2ε2 � � � � � xnεn

with x �
x0 �
�n

i �xi�, x0 �
�n

i �xi��. x0 is called the

central value. For each i �
1, n�, εi �
�1, 1� is a noise
symbol, which stands for an independent component of the

total uncertainty. The set of affine interval forms is denoted

by �R.

In AI arithmetic, the results of linear operations (addition,

subtraction) are straightforward operations on AIs. However,

the results of nonlinear operations (multiplication, division)

are not AI forms. Hence, we need to approximate the

nonlinear parts of the results by introducing new noise

symbols.

Definition 7: AI arithmetic consists of operations � �
���, ��, ��, ��� on pairs of AIs as defined below. Let �x �
x0 �

�n
i�1 xiεi and �y � y0 �

�n
i�1 yiεi. AI operations are

as defined below:

�x �� �y � �x0 � y0� �
�n

i�1�xi � yi�εi

�x �� �y � �x0 � y0� �
�n

i�1�xi � yi�εi

�x �� �y � �x0 �
�n

i�1 xiεi� �� �y0 �
�n

i�1 yiεi�

� x0y0 �
�n

i�1�x0yi � xiy0�εi �Bεn�1

where εn�1 �
�1, 1� is a new noise symbol, and B
is the maximum value of �

�n
i�1 xiεi��

�n
i�1 yiεi�. An easy

approximation of B is �
�n

i�1 �xi���
�n

i�1 �yi��

�x �� �y � �x �� � 1
�y �, if 0 �
x0 �

�n
i �xi�, x0 �

�n
i �xi��,

where 1
�y is computed by Chebyshev approximation [13].

AI is more precise than CI for linear operations, as shown

in the following example.

Example 3: Let us consider base, fixed point format, and

number t as in Example 2. Hence, the roundoff error is

107107

�tr � 0 � �10�3�2�ε. It is easy to see that:
�tr �� �tr � �0 � 0� � �10�3�2 � 10�3�2�ε � 0.

This result is the correct result of the subtraction �tr � tr�.

In AI arithmetic, each time we perform a nonlinear opera-

tion, we introduce a new noise symbol, which is problematic

for a program with a large number of nonlinear operations.

3.3. Extended affine interval

To deal with the limits of the above two methods, we

propose a new interval called extended affine interval (EAI).

EAI is extended from AI by assigning for each noise symbol

one CI coefficient, which allows EAI multiplication without
new noise symbols.

Definition 8: An extended affine interval of x is a

formula

�x � x0 �
n�

k�1

xkεk

with x � x0 �
�n

k�1 xk��1, 1	, where εi � ��1, 1	 is a

noise symbol for each i � �1, n	 and xj � R for each j �

�0, n	. The set of extended affine intervals is denoted by �R.

The linear operations of EAI arithmetic are designed

similarly to those of AI arithmetic. For nonlinear operations,

unlike AI, EAI arithmetic does not need to introduce new

noise symbols. The results of nonlinear operations are guar-

anteed to be EAIs by approximating nonlinear parts. For

example, let us consider the multiplication of two EAIs. Let�x � x0 �
�n

i�1 xiεi, �y � y0 �
�n

i�1 yiεi. Without loss of

generality, assume that
�n

k�1 yk��1, 1	 �
�n

k�1 xk��1, 1	.
We have: �x �
 �y � �x0 �

�n
i�1 xiεi� �
 �y0 �

�n
i�1 yiεi�

� x0y0 �
�n

i�1�x0yi � xiy0 � xiB�εi, where B ��n
i�1 yiεi. An easy approximation of B is

�n
k�1 yk��1, 1	.

Formally, EAI arithmetic is defined as follows:

Definition 9: EAI arithmetic consists of operations�� � ���, ��, �
, �� on pairs of EAI as defined below. Let�x � x0 �
�n

i�1 xiεi and �y � y0 �
�n

i�1 yiεi. The EAI

operations are defined below:�x �� �y � �x0 � y0� �
�n

i�1�xi � yi�εi�x �� �y � �x0 � y0� �
�n

i�1�xi � yi�εi�x �
 �y ����
��

x0y0�
�n

i�1�x0yi�xiy0�xi

�n
k�1 yk��1, 1	�εi if�n

k�1 yk��1, 1	 �
�n

k�1 xk��1, 1	
x0y0�

�n
i�1�x0yi�xiy0�yi

�n
k�1 xk��1, 1	�εi otherwise

�x � �y � �x �
 � 1
�y � if 0 � x0 �

�n
k�1 xk��1, 1	 where 1

�y

is computed by Chebyshev approximation [13].

Similar to AI arithmetic, the commutative property holds

for both addition and multiplication; the associative property

only holds for addition; and the distributive property does

not hold.

Although EAI does not introduce new noise symbols, this

does not mean EAI arithmetic is always less precise than AI

arithmetic. AI arithmetic only advances in cases when we

reuse the results of some nonlinear parts. Let us consider

the example below:

Example 4: Let y � x
x, z � y�y and the initial bound

of x be ��1, 1	. The bound of z is computed based on AI

and EAI arithmetics as follows:

� AI arithmetic: �x � ε1, �y � ε1 �
ε1 � ε2 where ε2 is

introduced for multiplication. �z � ε2 ��ε2 � 0
� EAI arithmetic: �x � ε1, �y � ε1�
ε1 � ��1, 1	ε1, �z �
��1, 1	ε1����1, 1	ε1 � ��2, 2	ε1.

The bound of �z, [0,0], lies within the bound of �z, [-2,2]. So,

AI arithmetic is more precise in this case.

However, if we compute the bound of t � x
 x � x

x without reusing the multiplication x
 x, then both AI

arithmetic and EAI arithmetic return the same bound.
�t, �t can be computed in a similar way. We omit the details
of these computations here due to space limitations.

4. Abstract domain for ORE problem

4.1. Abstract domain

The abstract value of a variable aims to cover all of its

possible values at one program location. For the ORE prob-

lem, the abstract value is a pair of fixed point and roundoff

error ranges. We will show three kinds of abstractions based

on CI, AI, and EAI range representations.

Definition 10: Let fxp and rdf be corresponding range

representations of fixed point and roundoff error.

� CI abstract domain Φ � ��fxp, rdf��fxp, rdf � R�
� AI abstract domain �Φ � ��fxp, rdf��fxp, rdf � �R�
� EAI abstract domain �Φ � ��fxp, rdf��fxp, rdf � �R�

For a fresh symbol � (which stands for undefined or

uninitialized), we define Φ� � Φ � ���.

The following example illustrates how to initial EAI

abstract values.

Example 5: Assume that we use fixed point format sp �
1, ip � 7, fp � 8�, base b � 2, x � �0, 2	, and y � �1, 3	.

Since fp � 8, the initial roundoff error of x lies within
the range ��2�9, 2�9	. Let ��xf , �xr�, ��yf , �yr� � �Φ be EAI
abstractions of x and y. We have:
� �xf � �1, 1	 � �1, 1	εfx and �xr � �2�9, 2�9	εrx

� �yf � �2, 2	 � �1, 1	εfy and �yr � �2�9, 2�9	εry

4.2. Abstract arithmetic

Abstract arithmetic aims to propagate both fixed point

ranges and roundoff error ranges of variables.

Definition 11: Replacing �xf , xr�, �yf , yr�, �, and ε in

the definition of FE arithmetic (Definition 2) with

108108

� �xf , xr�, �yf , yr�, � � ��,�,�,��, and ε, we obtain

CI abstract arithmetic,

� ��xf , �xr�, ��yf , �yr�, �� � ���, ��, ��, ���, and �ε, we obtain

AI abstract arithmetic, and

� ��xf , �xr�, ��yf , �yr�, �� � ���, ��, ��, ���, and �ε, we obtain

EAI abstract arithmetic,

where�
ε � �ε � �b�fp�2, b�fp�2�
�ε � �b�fp�2�εr with a fresh noise symbol εr

For example, let ��xf , �xr�, ��yf , �yr� 	 �Φ. The EAI abstract

operations are evaluated as follows:

��xf , �xr� �� ��yf , �yr� � ��xf �
 �yf , �xr �
 �yr�
��xf , �xr� �� ��yf , �yr� � ��xf �� �yf , �xr �� �yr�
��xf , �xr� �� ��yf , �yr� � ��xf �� �yf ,�xf ���yr �
�xr ���yf �
�xr ���yr �
�ε�
��xf , �xr� �� ��yf , �yr� � ��xf � �yf ,

��xf �
�xr����yf �
�yr����xf ��yf �
�ε�
To illustrate how abstract values are evaluated, we show the

following example:

Example 6: Let us consider ��xf , �xr�, ��yf , �yr� as in

Example 5. Then, EAI abstract addition ��zf , �zr� �
��xf , �xr� �� ��yf , �yr� is evaluated as follows:�zf � �xf �
 �yf

� ��1, 1�
 �1, 1�εfx� �
 ��2, 2�
 �1, 1�εfy�
� �3, 3�
 �1, 1�εfx
 �1, 1�εfy

We then get the range of �zf as �1, 5� by replacing

εfx, εfy with ��1, 1�.

Similarly, �zr � �2�9, 2�9�εrx
 �2�9, 2�9�εry , and the

range of �zr is ��2�8, 2�8�.

Therefore the fixed point value of z is bounded by �1, 5�
and the roundoff error of t is bound by ��2�8, 2�8�.

4.3. Abstract comparison operations

Instead of nondeterministic transitions at a conditional

branch, the conditional expression can often be evaluated

by using abstract environment. This is useful in avoiding

unnecessary execution paths. The abstract comparison oper-

ations are defined by using FE comparisons as follows:

Definition 12: Replacing �xf , xr�, �yf , yr�, in the defini-

tion of x̃ in FE comparisons (Definition 3) with

� �xf , xr�, �yf , yr�, we obtain CI abstract comparison
operations � � ��, ��,

� ��xf , �xr�, ��yf , �yr�, we obtain AI abstract comparison
operations �� � ���, ���, and

� ��xf , �xr�, ��yf , �yr�, we obtain EAI abstract comparison
operations �� � ���, ���.

For example, let ��xf , �xr�, ��yf , �yr� 	 �Φ, let x be range of

��xf �
 �xr�, and let y be the range ��yf �
 �yr�.
��xf , �xr� �� ��yf , �yr� is evaluated as follows:

��xf , �xr� �� ��yf , �yr� �

�����
true if �u 	 x �v 	 y.u � v

false if �u 	 x �v 	 y.u � v

unknown otherwise

The following example illustrates how to evaluate EAI

abstract comparison ��.

Example 7: Use ��xf , �xr�, and ��yf , �yr� as in Example 5.

��xf , �xr� �� ��yf , �yr� is evaluated as follows:

� �x � �xf �
 �xr

� �1, 1�
 εfx
 �2�9, 2�9�εrx

The range of �x is x � ��2�9, 2
 2�9�.
� �y � �yf �
 �yr

� �2, 2�
 εfy
 �2�9, 2�9�εry

The range of �y is y � �1
�2�9, 3
 2�9�.

Since x� y � �2
 2�9, 3
 2�9�, we can conclude that

��xf , �xr� �� ��yf , �yr� is unknown.

4.4. Meet operation

At the meet of two paths in a program, we need to

combine the results that are generated from these paths. The

result of the meet must bind all input abstract values. We

first consider how to compute the union of two ranges:

Definition 13: The unions of ranges are:

� CI: �xl, xh���yl, yh� � �min�xl, yl�,max�xh, yh��.
� AI: �u0

�n
i�1 uiεi� �� �v0

�n
i�1 viεi� � �u0�v0

2

�u0�v0�

2 εn�1

�n

i�1 tiεi� where εn�1 	 ��1, 1� is a

new noise symbol and, for each i,

ti �

�
ui if �ui� � �vi�,

vi otherwise.

� EAI: �u0

�n

i�1 uiεi� �� �v0

�n

i�1 viεi� �
�u0 � v0�

�n
i�1�ui � vi�εi.

Then, the result of meet operation is a pair of the union

of fixed point ranges and the union of roundoff error ranges.

Definition 14: The meets in abstract values are:

� CI meet: �xf , xr� � �yf , yr� � �xf � yf , xr � yr�
� AI meet: ��xf , �xr� �� ��yf , �yr� � ��xf �� �yf , �xr �� �yr�
� EAI meet: ��xf , �zr� �� ��yf , �yr� � ��xf �� �yf , �xr �� �yr�

� 	 ��, ��, ��� is extended to Φ� 	 �Φ�, �Φ�, �Φ�� by �
��xf , xr� � �xf , xr�� �� �xf , xr�.

5. ORE analysis as weighted model checking

5.1. Weighted model checking

It has been suggested that the connections between pro-

gram analysis and model checking are intimate [12]. That

109109

is, a program is first encoded into a model (transition
system) by abstraction, and the program analysis problem

then becomes model checking problem on the generated

model.

Weighted model checking computes dataflow (or, an up-

date of environments) by associating a weight to each tran-

sition in the model. It was originally proposed as weighted

pushdown model checking [11]. For our purpose, it is

enough to restrict the underlying pushdown system to a finite

state transition system.

Definition 15: A transition system P is a triplet

�P,Δ, s0� in which

� P is a finite set of states,

� Δ � P � P is a set of transitions, and

� s0 � P is the initial state.

In weighted model checking, the weight domain must

satisfy the conditions of the idempotent semiring.

Definition 16: A idempotent semiring is a quintuple

�D,�,�, 0, 1�, where 0, 1 � D and �, � are binary

operators on D such that, for a, b, c � D,

� �D,�� is a commutative monoid with the unit 0,

� �D,�� is a monoid with the unit 1,

� � distributes over �, i.e., a��b�c� � �a�b���a�c�
and �a� b� � c � �a� c� � �b� c�,

� � is idempotent, i.e., a� a � a, and

� 0 is the zero element of �, i.e., a� 0 � 0 � a � 0.

For program analysis, each element of a bounded idem-

potent semiring is regarded as follows:

� 0 stands for interruption of dataflow,

� 1 stands for the identity function (i.e., no state update),

� � is the composition of two successive dataflows, and

� � merges two dataflows at the meet of two transition

sequences.

The weighted transition system is then defined as a
transition system “plus” a weight domain.

Definition 17: A weighted transition system is a triplet

W � �P, S, f�, where P � �P,Δ, s0� is a transition system,

S � �D,�,�, 0, 1� is a bounded idempotent semiring and

f : Δ 	 D is a map that assigns a weight to each transition.

Denote Δ� be a set of all sequences of transitions. Let

σ �
r1, . . . , rk� � Δ�. We define v�σ� �Δ f�r1� � . . . �
f�rk�. If σ is a transition sequence from a state c to a state

c�, we denote c �σ c�. The set of all such sequences is

denoted by paths�c, c��, i.e.,

paths�c, c�� � σ � c �σ c��

Weighted model checking finds the weight summary of

paths�c, c��, which is the summation �σ�paths�c,c��v�σ�.
If a cycle in a weighted model exists, paths�c, c�� be-

comes infinite. For termination of a weighted model check-

ing, we need an idempotent semiring must be bounded.

Definition 18: An idempotent semiring is bounded if

there are no infinite descending chains wrt �, where a � b
if and only if a� b � a.

5.2. Weight domain for ORE problem

For an ORE problem, we abstract a concrete environment

as an abstract environment by using range representations.

Definition 19: Let V ar be the set of all variables of the

program. An abstract environment at a program location

is the set of functions AbsEnv � V ar 	 Φk
��, where

k � �V ar� and Φ� � Φ�, �Φ�, �Φ��. We define the zero
environment e0 � AbsEnv by e0�x� �� for x � V ar.

Let e, e� � AbsEnv, and environment meet operation is

defined below:

e� e� � λx.e�x� � e��x�

where � � �, ��, ���.
Weight design. The standard definition of a weight domain

has the base set of weights D � AbsEnv 	 AbsEnv. We

then theoretically define the weight domain for D as follows:

Definition 20: The weight domain (bounded idempotent

semiring) S � �D,�,�, 0, 1� with

D � AbsEnv 	 AbsEnv,

1 � λx.x,

0 � λx.e0,

w1 � w2 �

�����
λx.w1�x� � w2�x� if w1, w2 � 0
w1 if w2 � 0
w2 if w1 � 0

w1 � w2 �

�
w2 � w1 if w1, w2 � 0
0 otherwise

where � � �, ��, ���.
However, this does not satisfy the descending chain condi-

tion (boundedness), since intervals are infinitely many (thus

the abstract domain is infinite). To cope with this problem,

we:

� restrict the models to be acyclic,

� fix an initial abstract environment I , and

� generate weight on-the-fly.

In the context of our ORE analysis, the intuition behind

the first two is,

� a target program has bounded loops only; thus after un-

folding loops, abstraction produces an acyclic transition

system, and

� the result of ORE analysis depends heavily on the input

value; we will set a possible range of inputs at the

program entry in advance.

110110

On-the-fly weight generation. We first introduce the aug-

mented weight domain to associate an input abstract envi-

ronment to each weight. “ ” means any input.

Definition 21: The augmented weight domain S� �
�D�,�,�, 0�, 1�� consists of D� � ��W,w� � W �
AbsEnv, w � D	, 0� � � , 0�, 1� � � , 1�, and

w�

1 � w�

2 �

�
�W1, w1 � w2� if W1 � W2

0� otherwise

w�

1 � w�

2 �

�
�W2, w1 � w2� if W1 � w2�W2�

0� otherwise

for w�

1 � �W1, w1�, w
�

2 � �W2, w2� � D�.

Now we are ready to define the on-the-fly weight domain

S�P,I for a transition system P and I � AbsEnv. The

intuition is, starting from the initial abstract environment

I , only reachable instances of weights are computed in on-

the-fly manner.

Definition 22: For a transition system P and I �
AbsEnv, the weight domain S�P,I � �D�

P,I ,�,�, 0, 1� is

a sub semiring of S� with D�

P,I
 D�. D�

P,I is given by�
�W,w�

�σ, σ� � Δ� �c, c� � P . s0 �
σ c �σ�

c�

W � v�σ��I� w � v�σ��

�

In implementation, we will identify D�
 AbsEnv �D
with D�
 AbsEnv �AbsEnv by

�W,w� � �W,w�W ��

for W � AbsEnv, w � D.

5.3. Weighted transition system for ORE problem

The inputs of our analysis are a subclass of C programs

that have bounded loops only. In preprocessing phase, C

programs are transformed into three address codes. Next,

analysis is performed on these three address codes. Basically,

the instructions of three address codes include:

� Assignment: “x � y � z” with � � ��,�, �, �	.
� Conditional instruction: “if x � y then s” where s is

an instruction and � � ��,��,�,��,�, ! �	. If the

condition �x � y� is false, s is not visited; otherwise, s
is visited.

� Control instruction: “return loc”, “goto loc”, “break”,

“continue”. Control moves to the specified location, and

the values of variables do not change.

� While Loop: “while x � y { body }” with � � ��
,��,�,��,�, ! �	. body is repeated as long as the

condition �x � y� holds. Inside body, “break” will exit

from the loop.

In preprocessing phase, the bounded while loops are

unfolded as a sequence of conditional instructions. Thus,

the generated transition system is acyclic.

instruction weight
”x � y � z” �Wi, �xo � yi � zi, vo � vi�v � V ar��x��	
(assignment) where � is the corresponding

abstract arithmetic operation of �
“if x � y then s” 0� if xi � yi � false; 1� otherwise,
(Conditional instruction) where � is the corresponding

abstract comparison of �
Control instructions 1�

Table 1. Weight function of ORE analysis

main {
st1: rst = x; i = 0;
st2: while (i <= n) {
st3: if (!(i<=n)){
st4: break;

}
st5: __cil_tmp3 =(float)i;

rst += __cil_tmp3;
i++;

st6: rst /= 10.0f;
__cil_tmp4 = x * x;
rst -= __cil_tmp4;

st7: return (1); st8: }

Figure 2. CIL code for Example 1

The weight function is defined as follows:

Definition 23: For an acyclic transition system P and I �
AbsEnv, the weight function fP,I : Δ � D�

P,I is given in

Table 1.

As a result, we obtain the weighted transition system:

W � �P,S�P,I , fP,I�

The following example describes how to create the weighted

transition system for the program in Example 1.

Example 8: We use EAI range representation type. The

three address codes and control flow graph (CFG) of the C

program in Example 1 are shown in Figure 2, and in Figure

3. st1, ..., st8 are locations.

The transition system is P � �P,Δ�, where P �
�st1, st2..., st8	, Δ and f is defined in Table 2.

The initial abstract environment Winit at st1 is generated

from initial range values of variables (given in the topmost

comments in Example 1) as:���
��

Winit�x� � ��0.5, 0.5� � �0.5, 0.5�εxf , �2�9, 2�9�εxr�

Winit�n� � ��100, 100�, �0, 0��
Winit�v� � ��0, 0�, �0, 0�� if v � �x, n	

Then, the resulting weighted transition system is W �
�P,S�P,Winit

, f�.

Since the abstraction is an over-approximation, we con-

clude soundness of ORE analysis.

111111

st1

st2

st3

st5 st4

st6

st8

true false

st7

Figure 3. CFG of three address codes in Figure 2

transition weight
(st1,st2) �Winit, �rsto � xinit, io � ��0, 0�, �0, 0��,

vo � vi� v � V ar	�rst, i

�
(st2,st3) 1�

(st3,st5) if ��ii ��ni� � false� 0� else 1�

(st3,st4) if not��ii ��ni� � false� 0� else 1�
(st5,st2) �Wi, � cil tmp3o � ii,

rsto � rsti �� cil tmp3i,
io � ii �� 1,
vo � vi� v � V ar	� cil tmp3, rst, i

�

(st4,st6) 1�

(st6,st7) �Wi, � cil tmp4o � xi ��xi,
rsto � rsti �� 10 �� xi �� xi,
vo � vi� v � V ar	� cil tmp4, rst

�

(st7,st8) 1�

Table 2. Weight function for a CIL code in Example 8

Theorem 1: For a C (CIL) program with bounded loops

only, ORE analysis is sound.

6. Experiments

6.1. Implementation

We have implemented our analysis framework in a tool

C ANAlyzer (CANA). CANA uses two libraries as back-end

engines: CIL library 2 and WPDS library 3.

� CIL (C Intermediate Language) is a high-level repre-

sentation along with tools that permit source-to-source

transformation of C programs. CIL is used to generate

three address codes, information about variables, and

CFG of C program.

� WPDS (Weighted Pushdown System) is a library,

which provides functions to the sets of forward- or

backward- reachable configurations in a weighted push-

down system. Since we exclude procedure calls and

2. http://hal.cs.berkeley.edu/cil/

3. http://www.fmi.uni-stuttgart.de/szs/tools/wpds/

CANA system

CIL library

WPDS library

Roundoff and
overflow errors

C program and
initial ranges of vars

Collect data

Create Fun f

WDomain

Var & Fun Info

WPDS

Create PDS

CFGStm InfoRange arithmetics

Expression library

Figure 4. CANA system

unbounded loops at the moment, we adopt WPDS only

for weighted finite state (and acyclic) transition systems

(i.e., weighted pushdown system with empty stack).

The inputs of CANA are subclass of ANSI C programs

and initial ranges of variables. The outputs of CANA are

roundoff error ranges of variables at each point of the

program, and warning about overflow errors (if they occur).

CANA has six main modules (Figure 4) as follows:

1) Collect data module generates information required

for analysis, including: statement information (Stm

Info), (2) variable and function information (Var and

Func Info), and (3) CFG of C program.

2) Range arithmetics module includes three types of

range arithmetics: CI arithmetic, AI arithmetic, and

EAI arithmetic.

3) Evaluate exps module evaluates the abstract values of

expressions based on types of range arithmetics.

4) Create PDS module generates transition system from

control flow graph of C program.

5) Create Fun f module assigns a weight to each transi-

tion.

6) WDomain module includes two operations: � and �.

6.2. Experimental Results

We have implemented in CANA three types of range rep-

resentations: CI, AI, and EAI. CANA can analyze programs

that have nested loops 64� 64.

Example 9: Figure 5 shows the result of analyzing the

C program in Example 1. This shows that the roundoff

error of rst lies within ��0.007295, 0.007295�. This range

satisfies the condition that the roundoff error of rst lie within

��0.01, 0.01�.

112112

Figure 5. The result of CANA for Example 1

An overflow error may occur for variable rst, because the

fixed point value of rst lies within �504.093750, 505.500000�
where the largest fixed point number which can be repre-

sented must be less than 27 � 128.

In order to compare the efficiency of EAI arithmetic to

CI, and AI arithmetics, we analyzed source codes of three

examples: the first example is a C program that computes

a polynomial of degree 5, the second is a program that

calculates the sine function, and the last is a tiny fragment,

which frequently appears in the mpeg decoder reference

algorithm. Figure 6 shows experimental results of analyzing

these programs. Figure 6a shows results of analyzing the

program that computes P5�x� � 1�x�3x2�2x3�x4�5x5,

where the fraction part fp � 8. The true err row is the

width of roundoff error ranges which are found by testing

method; the CI, AI, and EAI rows are the approximate

widths of roundoff error ranges computed by using CI

arithmetic, AI arithmetic, and EAI arithmetic, respectively.

Our experiments show that EAI is more precise than CI and

is comparable to AI. We get similar results for the program

that computes sine of x shown in Figure 6b, and the part of

mpeg decoder pMpeg�exps� in Figure 6c. All tests run in

less than 2 seconds.

7. Related Work

To our limited knowledge, for ORE problem, there are

not many works on abstract interpretation-based static

analysis in literature. The works most closely related to

ours are papers of Goubault and Putot [4], [5] and Martel

[7], [8].

In [4], Goubault and Putot used AI arithmetic to approx-

imate the roundoff error of ANSI C programs. This work

focused on floating point numbers, not fixed point numbers.

Goubault and Putot [5] introduced an under approximation

method of computations in real numbers by using mean

value theorem. Similar to our method, their method also

does not introduce new noise symbols during computation.

[x] [0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8]
real err 0.01909 0.03 0.03891 0.061588

CI 0.04373 0.0599 0.09172 0.148848

AI 0.0377 0.0406 0.06179 0.104468

EAI 0.03232 0.0356 0.05763 0.100454

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

[0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8]
x range

er
ro

r r
an

ge

true err
CI
AI
EI

a. The analysis result of P5(x)

[x] [0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8]
real err 0.00647 0.0108 0.01049 0.010206

CI 0.0204 0.0208 0.02139 0.022198

AI 0.02035 0.0204 0.02029 0.019976

EAI 0.01759 0.0176 0.01749 0.017184

0

0.005

0.01

0.015

0.02

0.025

[0,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8]
x range

er
ro

r r
an

ge
true err
CI
AI
EI

b. The analysis result of Sin(x)

[exps] [0,30] [30,60] [60,90] [90,120]
real err 1.36309 1.3631 1.36309 1.363086

CI 1.73766 1.7377 1.73766 1.737656

AI 1.63453 1.6345 1.63453 1.634531

EAI 1.63453 1.6345 1.63453 1.634531

0

0.5

1

1.5

2

[0,30] [30,60] [60,90] [90,120]
x range

er
ro

r r
an

ge

true err
CI
AI
EI

c. The analysis result of pMpeg(exps)

Figure 6. The experimental results

113113

However, using mean value theorem requires more compu-

tations than our method. Also, their method aims to find the

under-approximation, instead of over-approximation.

Martel [7], [8] introduced a method to build the roundoff

error function of noise symbols by simply computing the ad-

dition, multiplication, substraction and division of functions.

The procedure will stop whenever the degree of roundoff

error function reaches the bound n. Therefore, roundoff error

function is an nth degree function of noise symbols, while

EAI arithmetic only returns linear function of input noise

symbols.

8. Conclusion

In this paper, we analyzed the overflow and roundoff

errors of C programs. In conclusion, our contributions are

summarized as follows:

� An extended affine interval (EAI) was first proposed

to estimate overflow and roundoff errors. EAI has two

main advantages over current methods. First, EAI is

more precise than CI because EAI can store information

sources of uncertainty, whereas CI cannot. Second, EAI

forms are more compact than AI forms. This is because

EAI arithmetic does not introduce new noise symbols,

while AI arithmetic does.

� We proposed an ORE analysis method based on

weighted model checking. The range representations

(i.e., CI, AI, and EAI) are used to create the set of

weights. Next, the C program is modeled by weighted

transition system (finite transition system + weight

domain), where weight domain is generated in an on-

the-fly manner. Finally, the ORE problem was reduced

to checking reachability properties for the weighted

transition system.

� A static analysis tool CANA for overflow and roundoff

error analysis of subclass C programs was imple-

mented. Although our experiments were performed on

small examples, the result is encouraging that EAI is

more precise than CI and is comparable to AI.

For future work, we plan to consider the following issues:

� Design a widening operator to analyze programs that

have unbounded loops,

� Improve CANA to analyze C programs in practice, e.g.,

the endoder/decoder reference algorithms, and

� Combine our proposed technique with the simulation

technique to improve precision and efficiency of ORE

analysis.

Acknowledgements

This research is partially supported by STARC (Semi-

conductor Technology Academic Research Center). The

authors would like to thank anonymous reviewers, Prof.

Hiroyuki Seki, Dr. Nao Hirokawa, Dr. Xin Li, and Ms. Mary

Ann Mooradian for their valuable comments.

References

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified
lattice model for static analysis of programs by construction or
approximation of fixpoints. In Proc. Intl. Conf. POPL77, pp.
238-252, Los Angeles, 1977.

[2] L. Giraud, J. Langou, M. Rozlonk, J. v. d. Eshof, Rounding
error analysis of the classical Gram-Schmidt orthogonalization
process, Numerische Mathematik, v.101 n.1, pp.87-100, July
2005

[3] D. Gopan. Numeric program analysis techniques with applica-
tions to array analysis and library summarization. PhD Thesis,
University of Wisconsin-Madison, 2007

[4] E. Goubault and S. Putot. Static analysis of numerical algo-
rithms. In SAS’06, pp. 18-34, LNCS 4134, Springer-Verlag
2006.

[5] E. Goubault and S. Putot. Under-approximations of computa-
tions in real numbers based on generalized affine arithmetic. In
Proc. Intl. Conf. SAS’07, pp. 137-152, LNCS 4634, Springer-
Verlag 2007.

[6] C. F. Fang, T. Chen, and R. Rutenbar. Floating-point error
analysis based on affine arithmetic. In Proc. 2003 International
Conf. on Acoustic, Speech and Signal Processing, pp.561-564,
2003.

[7] M. Martel. Propagation of Roundoff Errors in Finite Precision
Computations: A Semantics Approach. In 11th European Sym-
posium on Programming, pp. 194-208, Springer-Verlag 2002.

[8] M. Martel. Semantics of roundoff error propagation in finite
precision calculations. In Higher-Order and Symbolic Compu-
tation, v19(1),pp.7-30, Springer Netherlands 2006.

[9] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

[10] G. C. Necula, S. McPeak, S. P. Rahul, W. Weimer. CIL: Inter-
mediate Language and Tools for Analysis and Transformation
of C Programs, In Proc. Intl. Conf. on Compiler Construction
(CC’02), pp. 213-228, LNCS 2304, Springer-Verlag 2002.

[11] T. Reps, S. Schwoon, S. Jha and D. Melski. Weighted push-
down systems and their application to interprocedural dataflow
analysis. Science of Computer Programming 58, pp. 206-263,
No. 1-2, October 2005.

[12] D. A. Schmidt and B. Steffen. Program analysis as model
checking of abstract interpretations. In Proc. Intl. Conf.
SAS’98, pp. 351380, LNCS 1503, Springe-Verlag 1998.

[13] J. Stolfi. Self-Validated Numerical Methods and Applications.
Ph. D. Dissertation, Computer Science Department, Stanford
University, 1997.

[14] J. Stolfi and L.H. de Figueiredo. An introduction to affine
arithmetic. TEMA Tend. Mat. Apl. Comput., No.4, Vol.3, pp.
297-312, 2003.

114114

