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Abstract

This thesis proposes an approach for extracting concurrent execution sequences from concurrent

objects. Recently, object-oriented development methods have played an important role in the

domain of practical software engineering and have been adapted into developments of real-time

systems. However, while object-oriented technologies have been maturing as a diagrammatical

description language of systems, less technical tools and supports have been developed for

analysing or verifying real-time properties of systems.

This thesis aims to clarify a logical foundation for analysing significant information for a

real-time property: ’How many and what kind of threads are concurrently executed in a system’.

A thread here means a execution sequence in a system; and since real systems usually have strict

physical constraints on the number of CPUs, real-time performance of a system greatly depends

on the number of concurrent threads are being executed in the system. Therefore, for analysing

the real-time properties of a system it is important to obtain such information. However, existing

object-oriented development methodologies do not give enough support to obtain threads from

object-oriented models.

This thesis presents a solution of this problem; a transformation method from an object-

oriented model into a thread-based model. In our approach, we clearly define two kinds of

model. One is the concurrent object model which represents a typical object-oriented behaviour

model based on concurrent state machines. The other is the concurrent thread model that is

modelled as a set of explicit threads. It is easy to obtain information about the number of con-

current threads from the latter model. Then, we provide a method for transforming a concurrent

object model into a concurrent thread model. This approach is formalised by using Basic Con-

current Regular Expressions (BCREs), which are an extension of regular expressions. There

are two extending operators that represent concurrency and communication of concurrent state

machines. As a logical base for the transformation method, we propose and use an axiom sys-

tem for equivalent transformation of BCREs. It is then confirmed that this system is both sound

and complete. We present our transformation procedure based on the equivalent transforma-

tion of BCREs. By using our axiom system, we also prove that our method is both sound and

terminating.
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Chapter 1

Introduction

1.1 Motivation

A number of software development methods have been proposed, with object-oriented devel-

opment methods recently playing an important role in the domain of practical software engi-

neering. Object-oriented technologies have been widely adopted, not only for large enterprise

software but also for real-time embedded software because the complexity of recent embedded

systems has dramatically advanced. There are a number of tools and environments that sup-

port object-oriented analysis, design and implementation. However, the current object-oriented

methods still do not pay enough attention to the verification of real-time software. Little is

known on how to guarantee the correctness of real-time software through object-oriented devel-

opments. The concern with this problem domain has been growing for a decade and a number

of researchers have come to work on it.

Our research is concerned with object-oriented real-time system development. There are

some earlier research that handles real-time constraints in object-oriented developments. For

example, Real-Time UML[10], which is known as an extension of UML[13] can denote real-

time constraints in object-oriented models. Some methods for real-time software developments

have also been proposed[3, 4, 5]. However, these methods are roughly defined in a natural lan-

guage. To verify real-time properties of systems, much knowledge and experience is needed.

Because of the lack of a systematic way to check the properties, it is not possible to support

verification efforts for computer systems; thus, there is not a way to avoid human errors and

mistakes. This is a significant problem for the current object-oriented development methodolo-

gies, and it needs to be solved to acheive more dependable real-time software developments.

This thesis aims to clarify a logical foundation for analysing properties of object-oriented

real-time software. We focus on the issue of information of concurrency: ’How many and
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what kind of threads are concurrently executed in a system’. A thread here means an execution

sequence in a system. Such information is essential because real-time properties of a system

greatly depend on the number of simultaneous threads. A concurrent system is generally imple-

mented as a set of concurrent threads. Logically speaking, all threads in a system are executed

concurrently. However, real systems are often implemented in a different way; some threads are

allocated to a single or a few CPUs, and then are executed under time-sliced context switching.

In such a pseudo concurrent execution, CPU resources are shared by multiple threads. There-

fore performance of a system slows down relative to the number of threads. It is thus important

for analysing real-time properties to clarify how many and which threads are executed at the

same time in a system.

1.2 Concurrent Thread Model

To obtain the information of concurrency, this thesis focuses on the concurrent thread model,

which consists of a set of threads and a global automata shown in Figure 1.1. In this model, a

global automata controls global execution timing of concurrent threads. In Figure 1.1, a dotted

arrow denotes a thread. A set of threads is assigned to each of the states of the global automata.

When the system is in a particular state, threads assigned to that state are executed concurrently.

The model in Figure 1.1 denotes the following behaviour. The system begins with the state0

and a single thread named A is executed in this state. The system state is changed to the next

state after the all assigned threads are terminated. When the thread A terminates in the state 0,

the state is changed to states 1 or 2 (non-deterministic). We here assume that the state has been

changed to state 2. Then, in state 2, threads D,E and F are executed concurrently. Then, the

state is changed to state3 when all threads assigned to state2 are stopped, and then threads in

the state3 wake up executed, and ..., the execution is then continued in a similar way. Using the

concurrent thread model, it is clear that how many and which threads are executed concurrently

with respect to states of a system.

In system design, using a concurrent thread model is a reasonable way when there is a need

to analyse real-time properties because information of concurrency is clear in the model. How-

ever, the problem is that analysis models generally used in a object-oriented development have

quite different architecture from the concurrent thread model. Unfortunately, it is very compli-

cated to extract concurrent threads from an object-oriented model. Although an object is also

considered as a concurrent entity like a thread, there generally is not a one-to-one relationship

between an object and a thread. Let us consider that a system consists of many objects. Since

there is a limit on the number of CPUs, performance may become very slow if all objects are

3



state0

state1state2

state3
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D

E

F
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H

Figure 1.1: Concurrent thread model

mapped to concurrent threads. A typical design is to construct each thread according to a group

of objects or part of objects that will never be executed concurrently.

A reasonable way to identify an object group for a thread is along a communication sequence

between objects. Figure 1.2 depicts a system that has three objects: A, B and C. In this figure, a

round square represents an object. The enclosing box around objects are the boundary between

the inside and the outside of the system. A dotted arrow represents the communication between

objects. Communication here means an abstraction of an event or a method invocation. A

number next to an arrow line represents the order of occurrence of the communication. For

example, once event 1 reaches from the outside of the system, event 1.1 occurs. Then, event 1.2

occurs and goes out of the system. In the same manner, the event sequence � � ��� � ��� �

��� occurs for the incoming event 2. For event 3, � � ��� � ��� occurs. A group of objects is

constructed through such a sequence. From the system depicted in Figure 1.2, three groups are

obtained. The objects A and B are grouped from a sequence for event 1. The objects A, B and C

are for event 2 and, the objects B and C are for event 3. Each thread is implemented sequentially

as a procedure for executing objects of a group . For example, a thread for responding to event

1 is implemented as a procedure that invokes objects A then B. The whole system behaviour

can be modelled as a set of threads.

4
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Figure 1.2: Object and Thread

Some object-oriented development methods for embedded systems, for example, SES approach[3]

and OCTOPUS method[4] adopt a thread-based model as their design model for a system. Since

an object-oriented model is adopted as their analysis model, it is necessary to obtain a concur-

rent thread model from an analysis model at the beginning of the design phase. However, these

methods do not propose any systematic way of grouping objects and constructing threads from

an object-oriented model. Therefore, developers need to extract threads by their heuristics;

however, this is inefficient and there is also some risk of human mistakes. Moreover, if a large

number of objects are given, it is almost impracticable to exhaust all possible threads by hand.

1.3 Approach

The objective of this work is to propose a systematic way to transform an object-oriented model

called a concurrent object model to a concurrent thread model. This objective is accomplished

according to the following approach.

1. We formalise the concurrent object model and the concurrent thread model using Basic

Concurrent Regular Expressions(BCREs).

2. We propose a complete axiom system �� for BCREs. This axiom system can prove the

5



equivalence of BCREs.

3. We present a method of how to transform a concurrent object model to a concurrent thread

model. The axiom system �� is used to prove that our method preserves the behaviour of

a target system between before and after the transformation.

1.4 Thesis outline

This thesis is organised into 8 chapters as follows. In Chapter 2, the definition of Basic Con-

current Regular Expressions is introduced. In Chapter 3, a complete axiom system �� is given.

Equivalence of BCREs can be proven utilizing this system. Chapter 4 describes how to for-

malise the concurrent object and thread models using BCREs. In Chapter 5, a transformation

method from a concurrent object model to a concurrent thread model is proposed. Chapter 6

describes some transformation examples using our transformation method. Chapter 7 compares

our work to some related researches. Chapter 8 presents some conclusions and future directions

for our work.
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Chapter 2

Basic Concurrent Regular Expressions

In this chapter we define the syntax and semantics of Basic Concurrent Regular Expressions

(BCREs), which is a behaviour description language for concurrent systems. It is based on

Concurrent Regular Expressions (CREs)[2] that is an extension of Regular Expressions. There

are four extending operators in CREs: interleaving, alpha-closure, synchronous composition

and renaming. The interleaving operator represents concurrency between a finite number of

state machines. The alpha-closure operator denotes concurrency between an infinite number

of state machines. The synchronous composition operator represents communication between

state machines. The renaming operator can rename transition labels in state machines. In this

thesis, we adopt the interleaving and synchronous composition operators. We do not adopt

the other two operators as they are not essential for modelling our software in the remaining

chapters of the thesis.

Before giving the exact definition of BCREs, let us look at an example expression.

��� � ������ � � ���������	�

�
 �
 � � � are symbols. The operator �, � and � are similar to the ones of regular expressions.

The operator � represents a sequence of action and � a choice of actions. The operator �,

called closure, means zero or more iteration. The operators � and � � are to describe concurrent

behaviours. The expression ��� means that � and � occur concurrently. On the other hand, the

operator � � represents not only concurrency but also communication. � � � � is interpreted as

that � and � occur concurrently and communicate with each other.

7



2.1 Syntax

Let us define the syntax of BCREs. We assume that  is a finite set of symbols and use �
 �
 � � �

to range over . Then, the syntax of BCREs on  is defined as follows.

DEFINITION 2.1 (Syntax)

1. � �  � � is a BCRE.

2. Assume that � and � are BCREs. Then, � � �, ���, ��, � � �, � � � � � and ��� are also

BCREs

where � is a set of actions (� � ). The symbol � is a special character that means an empty

word. The operator � is called interleaving and � � � is called synchronous composition. The

only difference between BCREs and the standard regular expressions is that these two operators

exist. The other operators �,� and � are similar to the ones in regular expressions.

2.2 Semantics

The semantics of BCREs are defined as a set of sequences on symbols. Such a set is also called

the language of BCREs. � is used as a projection from a BCRE to its language. The definition

of �, that is the semantics of BCREs, is as follows.

DEFINITION 2.2 (Language of BCREs)

Let � be in , � and � are BCREs on  and, �
 �� and �� be sequences on . Then,

1. ���� � �, ���� � ��	, ���� � ��	

2. ������ � ��� � �� 
�� � ����
 �� � ����	

3. ��� � �� � ���� � ����

4. ����� �
�
������������

��

5. ������ � ����

6. ��� � �� � �� 
�� � ����
 �� � ����
 � � �������
 ���	

7. ��� � � � �� � �� 
� � ���� � �����
 ������ � �� � ����
 ������ � �� � ����	

where ���� is defined as follows.

� ������
 �� � ������
 �� � ��	
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� ������ � ��
 � � ��� � �� � � 
� � �������
 � � ���	 � �� � � 
� � ������ � ��
 ���	

� represents a set of all sequences on , ��� is a set of all the symbols that appear in ����

and � is an empty word (a zero length sequence).

� � � � � � � � � follows for all �. ��means a � times sequence of �:

�� � �
 �� � �
 �� � ��
 �� � ���
 � � �

For � � , ��� means a restriction of � over �. Any symbol not in � is removed from �. For

instance,

� � � � � � ����
 �	 � � � �

��� � � if � contains no symbol in �. In the remainder of this thesis, we omit some parenthesis

around a restricting operation if it does not make the expression ambiguous. For example, we

denote �� � ������ � ��� instead of ��� � �������� � ����.

2.3 Modelling behaviour

In this section we illustrate some brief examples of software behaviour and explain an intuitive

meaning of BCREs, what behaviour is, and what systems can be modelled with BCREs.

2.3.1 Action

We use the term action as the atomic behaviour of a system. An action can be considered as an

atomic behaviour of a system such as an event, a method invocation, a line of source code and

so on. We do not discuss in depth what is an appropriate relationship between an action and its

implementation. A real program instance corresponds to an action that can be settled according

to a design decision that is different among various software developments. An action in this

thesis is a kind of abstract concept

and is loosely defined as an atomic behaviour that is considered as a fragment of behaviour

that can not be divided into any smaller actions.

Syntactically, an action is described as a string that is an identifier for a single action. We

denote an action as a string with lower-case characters. Such a string sometimes has subscripts.

For example, �
 �
 �, ��
 ��
 ���
 ��
 ��	�
 ����	
 ���� and �	� are used as denotations of an action.

2.3.2 Action sequence

Every possible behaviour of a system is regarded as a sequence of actions. Let us consider a

system whose behaviour is defined by a state machine shown in Figure 2.1.
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s0 s1 s2 s3

open

read

write

close

Figure 2.1: State Machine Example

This state machine begins with the initial state ��. After the action ��	� occurs, its state

changes to ��. Then after the action �	�� or ����	, the system reaches the state ��. Finally, the

action ����	 occurs and the system reaches the final state ��. Such behaviour can be denoted as

action sequences ��	� � �	�� � 	��� or ��	� � ����	 � 	���.

2.3.3 Behaviour

Whole behaviours of a system can be defined as a set of action sequences. Figure 2.2 depicts a

state machine with a loop of transition. The initial state �� is also a final state. The behaviour

s0 s1 s2

open

read

write

close

Figure 2.2: State Machine with loop

of state machine of Figure 2.2 is that

��	� � �	�� � 	���


��	� � ����	 � 	���


��	� � �	�� � 	��� � ��	� � �	�� � 	���
 � � �

��	� � ����	 � 	��� � ��	� � �	�� � 	���
 � � �

� � �

If a system has infinite repetitions of behaviour, infinite action sequences may be observed. It

is impossible to write such a set of infinite sequences directly as a set of sequences. To describe

10



such behaviour, a higher notation that can handle infinity is required. The closure operator (*)

can be used as such notation. The expression �� represents an arbitrary time repetition of �.

It is easy to define behaviour of a single state machine as a BCRE. In a similar way, to

transform a state machine to a regular expression, we can obtain a BCRE that corresponds to

a state machine. All actions are mapped to symbols of BCREs. For example, the behaviour of

the state machine shown in Figure 2.2 can be described by the regular expression:

���	����	�� � ����	������	��

The set of action sequences that this expression means is its language:

�����	����	�� � ����	������	���

2.3.4 Concurrency

Concurrent behaviour can be denoted by using the � operator of BCREs. In the semantics of

BCREs, concurrency is modelled by interleaving semantics. Interleaving means a serialization

of concurrent sequences. With interleaving semantics, concurrent behaviour is not distinguished

from a choice of their possible serialization. For example, ��� is not distinguished from a choice

of �� and ��. ����� is not distinguished from a choice among ����, ����, ����, ����, ���� and

����. The following definition ���� is a projection from concurrent sequences to an interleaving

sequence.

� ������
 �� � ������
 �� � ��	

� ������ � ��
 � � ��� � �� � � 
� � �������
 � � ���	 � �� � � 
� � ������ � ��
 ���	

The following is an example of a state machine with internal concurrency. There are two

sub state machines inside the round square. They are executed concurrently after the action

��	� is completed. Thus actions �	�� and ����	 are executed concurrently, then action ����	 is

executed. This state machine can be denoted by BCREs as follows.

��	����	�������	������	

The behaviour is

����	����	�������	������	� � ���	� � �	�� � ����	 � ����	
 ��	� � ����	 � �	�� � ����		

11



open

read

write

close

Figure 2.3: State Machine with Concurrency

2.3.5 Communication

Assume that there is a system that consists of two concurrent state machines, and � and � are

defined as the behaviour of these machines, respectively. Suppose that these state machines are

executed concurrently and communicate with each other. Then, the behaviour of this system

can be defined as � � � �.

The operation � � represents both communication and concurrency. If there is no commu-

nication between � and �, � � � � has the same language as ���. In the expression � � � �, the

same symbols appearing in both � and � are called communication symbols. These symbols

mean actions for synchronous communication between � and �. Synchronous communication

is a communication that satisfies the rule that all participants are blocked until the end of the

communication and that communications never fail.

Figure 2.4 depicts two concurrent state machines. These two state machines can be defined

open read close

open write close

Figure 2.4: Concurrent State Machines with Communication

as ��	� � �	�� � ����	 and ��	� � ����	 � ����	. ��	� and ����	 are communication symbols

between them. If these state machines are executed concurrently without communication, the

behaviour of this system can be represented with a set of fully interleaved sequences as follows.

� ��	� � �	�� � ����	 � ��	� � ����	 � ����	
 ��	� � �	�� � ��	� � ����	 � ����	 � ����	


��	� � �	�� � ��	� � ����	 � ����	 � ����	
 ��	� � ����	 � ��	� � �	�� � ����	 � ����	
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��	� � ����	 � ��	� � ����	 � �	�� � ����	
 ��	� � ����	 � ����	 � ��	� � �	�� � ����	


��	� � ��	� � �	�� � ����	 � ����	 � ����	
 ��	� � ��	� � �	�� � ����	 � ����	 � ����	


��	� � ��	� � ����	 � �	�� � ����	 � ����	
 ��	� � ��	� � ����	 � ����	 � �	�� � ����	 	

Some of these sequences violate the rule of synchronous communication. If a sequence has

a communication symbol that does not adjoin with the corresponding communication symbol,

such a sequence is regarded as violating the rule of synchronous communication. For example,

��	� � ��	� � �	�� � ����	 � ����	 � ����	

does not violate the rule but the following does.

��	� � �	�� � ��	� � ����	 � ����	 � ����	

If communication succeeds, there must be no other symbols between two corresponding com-

munication symbols in a sequence. The latter sequence represents the behaviour where the

communication ��	� did not block until the end of the communication. There is an action

�	�� between two communication symbols ��	�. This sequence shows a behaviour where

��	���	�������	 performs the action �	�� before ��	������	�����	 finishes ��	�. In other

words, ��	���	�������	 performs �	�� without waiting for ��	� of ��	������	�����	. Such

behaviour clearly violates synchronous communication.

The � � operation eliminates such sequences from its language. Only the following two

sequences are left as behaviour of ��	���	�������	 � � ��	������	�����	

���	� � ��	� � �	�� � ����	 � ����	 � ����	
 ��	� � ��	� � ����	 � �	�� � ����	 � ����	 	

It is clear in the set above that once ��	� occurs, the neighbour symbol is also ��	�. The � �

operation eliminates such redundancy. ��	����	� is replaced with a single ��	� and ����	�����	

is replaced with ����	. Thus, the exact language is as follows.

���	� � �	�� � ����	 � ����	
 ��	� � ����	 � �	�� � ����	 	

According to the rule of synchronous communication, communications never fail. However,

we can write expressions that never satisfy this rule. For example, let us consider ����� � � �����.

The second occurrence of � in ����� fails to communicate with ����� because ����� has only one

occurrence of �. There is no other sequence that satisfies the rule of communication, and so the

whole behaviour of such a system becomes an empty set, that is, ������� � � ������ � �
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2.4 Abbreviations

In the remainder of this thesis, we use some abbreviations to describe more precise expressions.

Firstly, the sequential operator (�) is omitted unless this makes the expression ambiguous. For

example, ��� will be simply denoted as ��.

We will omit some redundant parenthesis according to the binding power of the operators.

The following is a list of operators in order of their ascending binding power.

� � � � � � �

So we can denote

��� � � � ����	

as

������� � � � ��������	��

According to the associative property of the operator (�), that is �������� � ��������, we

will omit some parenthesis. For example, we simply write ��� instead ����� or �����. Since

� and the � � operator are also associative, we will omit parenthesis in a similar way unless it

makes the expression ambiguous.

Especially for a series of � operations, the following summation symbol is used.

DEFINITION 2.3 (Summation)

Let ��
 � � � 
 �� be BCREs. Then,

��
���

�� � �� � �� � � � �� ��

where
��

���

� �� for � � �

2.5 Summary

In this chapter, we presented the concept of Basic Concurrent Regular Expressions and gave

a concrete definition of the syntax and semantics of BCREs, which are an extension of the

regular expressions known so far. There are two extending operators � and � � � . The former

represents concurrency and the latter represents communication between state machines. In

the semantics of BCREs, concurrency is modelled by interleaved semantics between, and can

be represented by, BCREs. Synchronized communication is assumed for the semantics of the
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� � � operator. Such a definition of semantics for concurrent systems is almost similar to that in

process algebra. We will discuss on the relationship between process algebra and our BCREs

in Chapter 7.

We also illustrated how to define the behaviour of software by using BCREs with some

brief examples. By using BCREs, we can define the behaviour of a concurrent system as an

expression that represents a set of observable action sequences from concurrent state machines.
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Chapter 3

Complete Axiom System

In this chapter we introduce the axiom system �� that provides a systematic way to prove the

language equivalence of BCREs. We also show that our axiom system �� is complete, that

is, a proof always is derivable in �� if two BCREs have the same language. According to

the completeness, we can check equivalences between any BCREs systematically. The main

purpose of introducing the system �� is that we use �� as a logical base to ensure the correctness

of our thread extraction method realized as an iterative equivalent transformation process of

BCREs in Chapter 5.

3.1 Axiom system ��

The axiom system �� consists of 21 axioms and two inference rules. Each axiom denotes an

atomic relationship between two expressions in terms of language equivalence. All axioms are

formed in a schema � � �, and ���� � ���� holds for every axioms. The table 3.1 is a list

of all axioms in the system ��. In this table �
 �
 � � � are BCREs and �
 �
 � � � are symbols. The

axiom  � to  �� are known as algebraic properties of regular expressions. They are originally

from the axiom system � �
� proposed by A.Salomma in [6]. The inference rules of �� are also

the same as � �
�:

� R1 (Substitution). Assume that � � � and � � Æ. Then one may infer the equation

������ � Æ where ������ is the result of replacing an occurrence of � in � by �.

� R2 (Solution of equations). Assume that � does not possess an empty words prop-

erty(e.w.p.). Then one may infer the equation � � ��� from the equation � � ��� �.

where it is stated that � possesses an e.w.p. if and only if � � ����. We simply write  � � �

if an equation � � � can be derivable in ��.
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 � � � �� � �� � �� � �� � �

 � ����� � �����

 � � � � � � � �

 � ��� � �� � �� � ��

 � �� � ��� � �� � ��

 � � � � � �

 � ��� � �

 	 �� � �

 
 � �� � �

 �� �� � �� � ���

 �� �� � ��� � ���

�� � � � �� � �

�� � � � ��� �

����
���
� if ��� � � � �

� otherwise.

�� � � � � � � � � � ��

�� �� � � � !� �

�������������
������������

��� � � � ��	 � �� if � � !

��� � � � !�� if � �� !
 � �� ��� � �
 ! � ��� � �

��� � � � !�� � !��� � � � �� if � �� !
 � �� ��� � �
 ! �� ��� � �

� if � �� !
 � � ��� � �
 ! � ��� � �

�� �� � �� � � � � � � � � � ���� � ���� � � � � � � � ���� � ���� � �

�� � �� � �

�� � ��� � �

�	 � � � � � ��

�
 �� � !� � ��� � !�� � !��� � ��

��� �� � �� � � � � � � � � � �

Table 3.1: The axioms in ��
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3.2 Soundness

An equation � � � is said to be valid if and only if ���� � ���� holds. The axiom system ��

is said to be sound if and only if all derivable equations are valid.

THEOREM 3.1

The axiom system �� is sound.

PROOF

It is obvious that the axioms  � to  �� are valid and the rule R1 preserves validity. It is well

known that if a regular expression � does not possess an e.w.p, then � � �� � � has only one

solution � � ��� (cf. [7] or [8]). Therefore, "� also preserves validity. As for �� to ���, new

in the system ��, they are also valid. Thus the Theorem 3.1 follows. �

See the Appendix for detailed validity proof for �� to ���.

3.3 Completeness

It is stated that �� is complete if and only if  � � � can be derivable for any � and � which

satisfies ���� � ����. This section proves the completeness of ��.

In the reminder of this section, a proof is described in three parts. First, in the Section 3.3.1,

we set out some important definitions and lemmas that are referred from other parts. Then

in the Section 3.3.2, we prove that all BCREs are equationally characterized as Theorem 3.2.

Finally, in Section 3.3.3, we prove that the system �� is complete if the BCREs are equationally

characterized (Theorem 3.3).

3.3.1 Preliminary

The following lemma describes the basic properties of BCREs.

LEMMA 3.1

Suppose that �
 �
 � and Æ are BCREs, then the following holds.

1.  � � �

2.  �� � �� and  � � �, if  � � �

3.  � � �, if  � � � and  � � �

4.  � � � � � � Æ and  �� � �Æ, if  � � � and  � � Æ
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5.  �� � �

6.  ��� � �

7.  ������ � �, if  � � �

It is easy to show that these are derivable in �� by using the rules "�, "� and the axioms  � to

 ��. In the remainder of this section, we use the above equations and the substitution rule "�

without explicitly referring to them.

DEFINITION 3.1

Let # be a finite set of BCREs: # � ���
 ��
 � � � 
 ��	 for some natural number �. $�#� is defined

as follows.

$�#� �

�
��

���

�� ��
 ���
 �� � #
 �� �� �� for all � �� %�

�

where � � �,� � � � � and � � % � �. For example,

$���
 �
 �	� � �� � � � �
 �� � � �
 � � � � �
 � � � � �
 � � � � �
 � � � � �	

DEFINITION 3.2

Let # be a finite set of BCREs and # �� �, then &�#� is defined as the following.

&�#� �
�
� � � $�	�
 	 � ��

	

LEMMA 3.2

Assume that # is a non-empty finite set of BCREs. Then # � &�#�.

PROOF

Let � be a BCRE that belongs to #. Such a BCRE always exists because # is non-empty

(by hypotheses). It follows that the set ��	 belongs to the power set of # (i.e., ��	 � ��),

and � � $���	�. By the definition of &, it follows that � � &�#�. Therefore, # � &�#� thus

completing the proof. �

LEMMA 3.3

Suppose that # � ���
 � � � 
 ��	 and � � $�#�, then,

 � �
��

���

��
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PROOF

According to the definition of $, some ��
 � � � 
 �� � # exist and, � � �� � � � �� �� where

�� �� �� for all � �� %. Therefore, all ��
 � � � 
 �� are � numbers of BCREs being different from

each other. Since # has just � number of elements, ��
 � � � 
 �� can be obtain by properly sorting

��
 � � � 
 ��. Hence, by  � and  
,

 � � �� � � � �� �� � �� � � � �� ��

�

LEMMA 3.4

Let #� and #� be non-empty finite sets of BCREs and, assuming �� � $�#�� and �� � $�#��.

Then, some �� exists, �� � $�#� � #�� and

 �� � �� � ��

holds.

PROOF

1. Suppose that #� � #�, then, some � exists and #� � #� � ���
 � � � 
 ��	. By lemma 3.3,

 �� � �� � �� �
��

���

��

Hence,  �� � �� � �� holds obviously.

2. Suppose #� �� #�. Let us prove the lemma from the following three cases.

(a) In the case #� � #�, there are some ' and � such that

#� � ���
 � � � 
 ��	
 #� � ���
 � � � 
 ��
 ��
 � � � 
 ��	

holds. By lemma 3.3,

 �� �
��
���

��
  �� � �� �
��
���

�� �
��

���

��


Therefore,

 �� � �� �
��
���

�� �
��

���

�� � ��

(b) Suppose that #� � #�. By using a similar approach to case (a), it is easy to prove

that  �� � �� � ��
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(c) In another case, let ��
 � � � 
 �� � #� � #�, then, some ' and � exist and

#� � ���
 � � � 
 ��
 ��
 � � � 
 ��	
 #� � ���
 � � � 
 ��
 ��
 � � � 
 ��	

holds. Hence, by lemma 3.3,

 �� �
��
���

�� �
��

���

��
  �� �
��

���

�� �
��

���

��
  �� �
��
���

�� �
��

���

�� �
��

���

��


Therefore  �� � �� � ��.

From 1 and 2, the lemma clearly holds.

�

LEMMA 3.5

Let # be a finite set of BCREs and �� and �� be in &�#�. Then, there is some �� � &�#� and

 �� � �� � �� holds.

PROOF

By the definition of &, there are some 	�
	� � �� such that �� � $�	�� and �� � $�	��

holds. By the Lemma 3.4, some �� � $�	� � 	�� exists and  �� � �� � �� holds. Be

reminded that 	� � 	� � �� because both 	�
	� � �� by a property of power sets. According

to the definition of &, $�	� � &�#� holds for all 	 � ��. Therefore, �� � &�#�. �

LEMMA 3.6

Assuming that # is a finite set of BCREs on . Suppose that for all � � # and � � &�#� some

��
 ��
 � � � 
 �� �  exist such that

 � �
��

���

��� � Æ���

holds. Then, for all �� � &�#� some � � � &�#� exists and

 �� �
��

���

���
� � Æ���

PROOF

Assume that for all � � #, some � � &�#� and ��
 ��
 � � � 
 �� �  exist and

 � �
��

���

��� � Æ���
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holds, and assume that �� � &�#�. By the definition of &, there are some ��
 � � � 
 �� � # such

that �� �
��
���

�� holds. By the assumption, some �� exists for all ���� � � � �� that satisfies

 �� �
��

���

���� � Æ����. Thus,

 �� �
��
���



� ��
���

���� � Æ����

�
 �

��
���

��
���

���� �
��
���

Æ����

Be reminded that Æ is defined as � or ��, 
��
���

Æ���� � � ���� holds. Hence, we can replace

��
���

Æ���� with Æ����. Therefore,

 �� �
��
���



� ��
���

����

�
� Æ���� �

��
���

��

�
��
���

��

�
� Æ����

holds. Since �� � &�#� holds for all �, by the Lemma 3.4, There is some � � � &�#� and


��
���

�� � � � holds. Thus,

 �� �
��

���

���
� � Æ����

�

LEMMA 3.7

Suppose that ��
 � � � 
 �� and ��
 � � � 
 �� are BCREs on , � �� and ��
 � � � 
 �� � . Then, the

following holds.


��

���

���� � � �
��

���

���� �
��

���

����

where �� � &�#�� for � � % � � and, #� is a finite set defined as follows

#� � ��� � � � �� 
 � � % � �
 � � ( � �
 � � �		

� ��� � � � ���� 
 � � % � �
 � � ( � �
 � � �		

� ����� � � � �� 
 � � % � �
 � � ( � �
 � � �		

� ��	

PROOF

By the axiom �� and ��, some ��� exists for all % � �
 � � � 
 � and ( � �
 � � � 
 � such that


��

���

���� � � �
��

���

���� �
��

���

��
���

����� � ��� � �����
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By the axiom ��, some ���� exists for all % � �
 � � � 
 � and ( � �
 � � � 
 � such that

 ���� � ��� � ���� �

�����������������
����������������

����� � �
�
�� � ��� ��

����� � �
�
�� � ����� ��

������� � �
�
�� � ��� ��

����� � �
�
�� � ����� � ������� � �

�
�� � ��� ��

�

By the axiom  	 and  
, any terms including � can be added. Thus,

 ���� � ��� � ���� �

�����������������
����������������

����� � �
�
�� � ��� � ��� ��

����� � �
�
�� � ����� � ��� ��

���� ������� � �
�
�� � ��� ��

����� � �
�
�� � ����� � ������� � �

�
�� � ��� ��

���� ���

Therefore, some ���
 )�� � #� exist for all % � �
 � � � 
 � and ( � �
 � � � such that

 ���� � ��� � ���� � ����� � ��)��

holds. Hence,


��

���

��
���

����� � � � ����� �
��

���

��
���

������ � ��)��� �
��

���

��
��

���

���� � )���

By the Lemma 3.2, ���
 )�� � &�#�� holds since ���
 )�� � #�. Then, by the Lemma 3.4,

��� � &�#�� exists for all % � �
 � � � 
 � and ( � �
 � � � 
 � such that  ��� � )�� � ���. Hence,


��

���

��
��

���

���� � )��� �
��

���

��
��

���

���

therefore,


��

���

���� � � �
��

���

���� �
��

���

����

where �� �
��

���

���. �
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3.3.2 Equationally characterized
DEFINITION 3.3

It is stated that the expression � is equationally characterised if there is a finite number of the

symbol ��
 � � � 
 �� and the expression ��
 � � � 
 �� such that � � �� and,

 �� �
��

���

����� � Æ���� (3.1)

where Æ���� � � or Æ���� � �� for all � and, for each � and % there is some ( �� � ( � �� such

that ��� � ��.

THEOREM 3.2

All BCREs are equationally characterized.

PROOF

We will prove this lemma by induction of the syntax of BCREs. The first step of the proof

is for the base case. By  � to  
,

 � �
��

���

��� ��

 �� � ���� � � �� ���
� � � � �� �� �� �� � � � ��

 �� �
��

���

��� ���

Therefore, �
�� and �� �� � �
 � � � 
 �� are equationally characterized.

The next step is the induction. Assume that � and � are BCREs and equationally charac-

terized. That is, assume that ��
 ���
 �� and ��
 ���
 �� exist for some finite numbers ' and �.

� � �� and � � ��. Then,

 �
 �
��

���

���
� � Æ��
� (3.2)

 �� �
��

���

����� � Æ���� (3.3)

holds for all * � �
 � � � 
 ' and + � �
 � � � 
 � where �
� � �
 and ��� � �� for all % � �
 � � � 
 �.

Then, we prove that � � �, ��, ��, � � � � � and ��� are equationally characterized.

(1) PROOF FOR � � �

Let # be a finite set of BCREs as follows.

# � ��
 � �� 
 � � * � �
 � � + � '	
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Assume that � � #, then by (3.2) and (3.3), some * and + exist such that

 � �
��

���

����
� � ���� � Æ��
� � Æ����

Because we have

 � �� � �
  � ��� � �� �� � �
  �� ��� � ��

we obtain for all � � #,

 � �
��

���

����
� � ���� � Æ���

where Æ��� � � or Æ��� � �� and all of the expressions �
� � ��� are in #. Since � � � �

�� � �� � #, this implies that �� � is equationally characterized.

(2) PROOF FOR ��

Let # be a set of regular expressions.

# � ��
� � ��� � � � �� ��� 
 � � * � �
 
 � ,
 � � +� - +� - � � � - +� � '	

Assume that � � #, that is, there is some *, , and +�
 � � � 
 +� such that � � �
��
��

���

��� . Since

�
 and ��� are equationally characterized, by  � to  �,

 � �



� ��
���

���
� � Æ��
�

�
 � �

��
���



� ��
���

������ � Æ�����

�


�
��

���

��

�
�
�� �

��
���

����

�
� Æ��
�� �

��
���

Æ����� (3.4)

where Æ��
� � � or ��, and Æ����� � � or �� for all �. Suppose first that Æ��
� � �. Then

Æ��
�� � � holds. Hence by (3.4) and  
,

 � �
��

���

��

�
�
�� �

��
���

����

�
� Æ��� (3.5)

where Æ��� � � or ��. On the other hand, if Æ��
� � ��, by (3.4),

�
��

���

��

�
�
�� �

��
���

����

�
�

��
���

����� � Æ���� �
��

���

Æ�����

Therefore,

 � �
��

���

��

�
�
�� � ��� �

��
���

����

�
� Æ��� (3.6)
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where Æ��� � � or ��. (3.5) and (3.6) implies that there is some �� � # and  � �
��

���

���
� �

Æ��� holds for all � � #. Since �� � ��� � #, it is concluded that �� is equationally

characterized. �

(3) PROOF FOR ��

Since � � �� is equationally characterized,

 � �
��

���

����� � Æ���

Hence by  	 or  ��,

 �� �



� ��
���

�����

�


�

Then by  ��,

 �� �



� ��
���

�����

�



� ��
���

�����

�


�

��� �
��

���

������
� ��� (3.7)

Let # be a set of regular expressions.

# � ���
� � � � �� �
���
� 
 � � ,
 � � *� - *� - � � � - *� � �	

Assume that � � #. Then some , exist such that � �

�
��

���

�
�

�
��. Suppose that

��
���

�
� does

not possess an e.w.p. Then,

 � �
��

���



� ��
���

���
�� ��

�
�� �

��
���

��

�
��
���

�
���
�

�
�� (3.8)

If
��

���

�
� possesses an e.w.p., we obtain

 � �
��

���

��
��
���

�
���
� � ��

�
��

���

��
��
���

�
���
� �

��
���

������
� ���

�
��

���

��

�
��� �

��
���

�
��

�
�� ��� (3.9)

By (3.7), (3.8) and (3.9), it follows that for all � � # � ���	, some �� � # � ���	 exists and

� �
��

���

���
� � Æ���

where Æ��� � � or ��. Hence it is concluded that �� is equationally characterized. �
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(4) PROOF FOR � � � � �

#�
 ���
 #� are finite sets of BCREs defined as follows.

#� � ��
 � � � �� 
 � � * � '
 � � + � � ��� � � �		

#� � ����
 � � � �� 
 � � * � '
 � � + � �
 � � % � � ��� � � �		

#� � ��
 � � � ���� 
 � � * � '
 � � + � �
 � � % � � ��� � � �		

#� � ��
 � � ��
�
 � � * � '
 � � �		

#� � ��� � � � ��
 � � + � �
 � � �		

#� � ��
 
 � � * � '	

#� � ��� 
 � � + � �	

where  is a finite set of symbols.

First, we prove the following: if � � #� �� � � � ��, then some ��
 � � � 
 �� � &�#��� � ��#��

exist and

 � �
��

���

���� � Æ���

Assume that � � #�, by the definition of #�, some *
 + and � exists such that � � �
 � � � �� holds.

Since � and � are equationally characterized, �
 and �� are also equationally characterizedfor

every * and +. Hence, the following holds.

 �
 � � � �� �



� ��
���

���
� � Æ��
�

�
 � � �



� ��
���

����� � Æ����

�


By the axioms �� and ��, the following equation can be derived.

 �
 � � � �� � .� � .� � .� � .�

where

.� �
��

���

���
� � �� �
��

���

�����

.� �
��

���

���
� � �� � Æ����

.� � Æ��
� � �� �
��

���

�����

.� � Æ��
� � �� � Æ����

and ��
 � � � 
 �� � �	. Then, for .�, by the Lemma 3.7, some ��� � #� exists (Assuming that #�

here is the same as the one in the Lemma 3.7) and it follows that

 .� �
��

���

���
� � �� �
��

���

����� �
��

���

����� (3.10)
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According to the definition of #�
 � � � 
 #�, it clearly follows that #� � #� � #� � #�. Hence, by the

Lemma 3.2, ��� � &�#� � #� � #��.

For .�, by the axiom �� to ��,

 .� �
��

���

���
� � �� � Æ���� �

�����
����
� �/ Æ���� � �
��

���

���
�

� �/ Æ���� � ��

where ��

� � � if �� � ��, otherwise ��


� � �
� � � ��
�. By the axioms  � and  	,

 � �
��

���

� �
��

���

���

Hence,

 .� �
��

���

����� (3.11)

where ��� � #� � ��	 holds for all % � �
 � � � 
 �. The following also holds in the similar way to

(3.11):

 .� �
��

���

����� (3.12)

where for all % � �
 � � � 
 �, ��� � � or ��� � #� � ��	.

For .�, by the axiom ��-��,

 .� � Æ��
� � �� � Æ���� �

����
���
�� �/ Æ��
� � Æ���� � ��

� ��,	����	

Hence, Æ can be defined for all * � �
 � � � 
 �, + � �
 � � � 
 � and �� as follows.

 .� � Æ��
 � �� � ���

�� can be replaced with � since �� does not effect the definition of Æ. Hence,

 .� � Æ��
 � � � ��� (3.13)

By (3.10), (3.11), (3.12) and (3.13),

 �
 � � � �� � .� � .� � .� � .�

�
��

���

����� �
��

���

����� �
��

���

����� � Æ��
 � � � ���

�
��

���

�� ���� � ��� � ���� � Æ��
 � � � ���
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where Æ��
 � � � ��� is �� if Æ��
� � Æ���� � ��. Otherwise, �. Since ���
 ���
 ��� � &�#� �

� � � � #� � ��	� and by the Lemma 3.5, There is some �� � &�#� � � � � � #� � ��	� such that

 ��� � ��� � ��� � ��

holds for all % � �
 � � � 
 �. Hence,

 � �
��

���

���� � Æ��� (3.14)

Assume that � � #�, that is, � � ���
 � � � �� � #�. Since �� is equationally characterized,

it follows that

 � � ���
 � � �



� ��
���

����� � Æ����

�


By the axiom ��, there are some �� and �� such that

 ���
 � � �



� ��
���

����� � Æ����

�
 � .� � .�

where

.� � ���
 � �� �
��

���

�����

.� � ���
 � �� � Æ����

For .�, suppose that �
� � �
 for % � � and �
� � � for % �� �.Then,

 .� � ���
 � �� �
��

���

����� �
��

���

���
� � �� �
��

���

�����

By the Lemma 3.7, some ��� � #� exists and


��

���

���
� � �� �
��

���

����� �
��

���

����� (3.15)

holds．e reminded that #� � #� � #� � #�, and by the Lemma 3.2,

��� � &�#� � � � � � #��

holds.

For .�, by using a similar process in the proof for � � #�, ��� � &�#�� � ��	 exists for all

% � �
 � � � 
 � such that

 .� �
��

���

����� (3.16)
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By (3.15) and (3.16),

 � �
��

���

����� �
��

���

����� �
��

���

������ � ����

Since ��� � &�#��#��#�� and ��� � &�#�����	, it follows that ���
 ��� � &�#��� � ��#����	�.

By the Lemma 3.3, �� � &�#��� � ��#����	� exists for all % � �
 � � � 
 � such that  ������� �

�� holds. Thus �� � &�#� � � � � � #� � ��	� exists such that

 � �
��

���

����

for every � � #�. By the axiom  
,

 � �
��

���

���� � Æ���

where Æ��� � �.

Assume that � � #�. Then, for all � � #�, some �� � &�#� � #� � #� � ��	� exist and

 � �
��

���

���� � Æ��� also holds where Æ��� � �. This can be proved following the same

approach as the proof for � � #�.

Next, let us consider � � #�. Since �
 is equationally characterized, we have

 � �
��

���

���
� � Æ��� � � ��
� �



� ��
���

���
� � � ��
�

�
� Æ��� � � ���

According to ��-��,


��

���

���
� � � ��
� �

��
���

���
�

�

 Æ��� � � ��� � �� �� �

where ��

� � � if �� � ��, otherwise ��


� � �
� � � ��
�. Hence, it follows that some �� �

#����	 exists and � �
��

���

���� � Æ��� holds. In a similar way it is easy to show that the same

equation follows for � � #� and �� � #�.

Finally, in the case of � � #�
 #�, since �
 and �� are equationally characterized, it is clear

that

 �
 �
��

���

���
� � Æ��
�
  �
 �
��

���

���
� � Æ��
�

30



where �
� � #� and �
� � #�.

Thus, according to the results of the discussion above for � � #� � � � #�, it is proved that

�� � &�#� � � � � � #� � ��	� exists such that

 � �
��

���

���� � Æ���

for � � #��� � ��#����	. By the Lemma 3.6, this also follows for all � � &�#��� � ��#����	�.

Therefore, every � � &�#��� � ��#����	� can be characterized with finite number of equations.

Thus, all � � &�#��� � ��#����	� are equationally characterized. By � � � � � � �� � � � �� � #�

and #� � &�#� � � � � � #� � ��	�, it follows that � � � � � � &�#� � � � � � #� � ��	�. Hence,

� � � � � is equationally characterized.

(5) PROOF FOR ���

Assume that � and � are equationally characterized. Then (���� and (���) hold and, ��
 � � � 
 ��

exist for some ��
 � � � 
 ��, ��
 � � � 
 �� such that

 ��� �



� ��
���

���
� � Æ��
�

�
 �



� ��
���

����� � Æ����

�


Given that

#� � ��
���
� � * � '
 � � + � �	

#� � ����
���
� � * � '
 � � + � �
 � � % � �	

#� � ��
�����
� � * � '
 � � + � �
 � � % � �	

Then, in the same way as the proof for � � � � �, the following can be derived for all � � #� �

#� � #� � ��	 that �� � &�#� � #� � #� � ��	� exists such that  � �
��

���

���� � Æ���

holds. Therefore, every � � &�#� � #� � #� � ��	� are equationally characterized. Since

��� � ����� � &�#��� � ��#����	�, it clearly follows that ��� is equationally characterized.

According to the proofs (1) to (5), the induction is completed and it can be concluded that

all BCREs are equationally characterized. �

3.3.3 Proof for Completeness

In the reminder of this section, we prove that  � � � is always derivable if � and � are

equationally characterized and � � � is valid. Since all BCREs are equationally characterized,
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the same proof strategy in the completeness theorem for Regular Expression can also be used.

The proof shown in this section is based on the proof in A. Salomaa’s completeness theorem[6].

We start with the following two lemmas (Lemma 3.8,3.9). Then we prove the completeness

theorem (Theorem 3.3).

LEMMA 3.8

Let � be a natural number and assume that for all � � �
 � � � 
 �

 �� �
��

���

����� � �� (3.17)

 �� �
��

���

����� � �� (3.18)

where none of ��� possess an e.w.p. Then,  �� � �� for all � � �
 � � � 
 �.

PROOF

The proof is by induction on the number �. If � � �, then (3.17)(3.18) has the form:

 �� � ����� � ��
  �� � ����� � ��

Hence By "�,

 �� � �����
��� � ��

Assuming that � � � and that the lemma holds for the numbers �
 � � � 
 � � �. Given that

(3.17)(3.18) holds for � � �, then it clearly follows that

 �� �
����
���

����� � ����� � ��

 �� �
����
���

����� � ����� � ��

By applying the rule "�,

 �� � �����
�



�����

���

����� � ��

�
 (3.19)

 �� � �����
�



�����

���

����� � ��

�
 (3.20)

According to (3.19)(3.20), �� can be eliminated from (3.17) and, �� so is from (3.18). Then,

for all � � �
 � � � 
 �� �

 �� �
����
���

����� � ��������
�



�����

���

����� � ��

�
� ��

 �� �
����
���

����� � ��������
�



�����

���

����� � ��

�
� ��
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By applying the axioms  � to  �, it holds for all � � �
 � � � 
 �� � that

 �� �
����
���

���� � ��������
������� � �

�
�

 �� �
����
���

���� � ��������
������� � �

�
�

where ��
� � �� � ��������

���. It is obvious that ��� � ������������ does not possess an e.w.p.

By the induction hyp.,

 �� � ��

it follows for all � � �
 � � � 
 �� �. Hence, by (3.19) and (3.20),

 �� � ��

This completes the induction and also the proof of the lemma. �

LEMMA 3.9

Assuming that � and � are BCREs, � � � is valid and

 � �
��

���

���� � Æ���
 (3.21)

 � �
��

���

���� � Æ���
 (3.22)

where Æ��� � � or Æ��� � �� and, Æ��� � � or Æ��� � ��. Then Æ��� � Æ��� and �� � ��

for all % � �
 � � � �.

PROOF

Assume that � � � is valid and, (3.21) and (3.22) hold. It is clear that
��

���

���� and
��

���

����

do not possess an e.w.p. Hence,

1. If � and � possess an e.w.p, it follows that Æ��� � Æ��� � ��.

2. If � and � do not possess an e.w.p, it follows that Æ��� � Æ��� � �.

3. If either � or � possesses an e.w.p, it contradicts that � � � is valid.

Therefore, Æ��� � Æ��� always holds.

Now, assume that some % exists such that �� �� ��. Then, by the definition of �, the sets

������� for % � �
 � � � 
 � are disjoint. In other words, for all % � �
 � � � 
 � and ( � �
 � � � 
 �,
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������� � ������� � � holds if % �� (. The same holds with �������. This implies the

following:
��

���

���� ��
��

���

����

This contradicts that � � � is valid. Hence, �� � �� for all % � �
 � � � 
 �. �

Now, we can show the completeness of the axiom system ��. The following proof is similar

to A.Salomaa’s completeness proof [6].

THEOREM 3.3

�� is complete.

PROOF

Assume that � and � are BCREs and � � � is valid. By the theorem 3.2 � and � are

equationally characterized. Hence, for some ��
 � � � 
 �� and ��
 � � � 
 ��, (3.2) and (3.3) hold

where � � �� and � � ��. Then, by the lemma 3.9,

 � � �� �
��

���

���
�
� � Æ���

 � � �� �
��

���

���
�
� � Æ���

where for all ��� and ��� , some ( and � exist such that ��� � �� and ��� � �. By the lemma 3.9

again, for all % � �
 � � � 
 �,

 ��� �
��

���

���
�
� � Æ��

�
��


 ��� �
��

���

���
�
� � Æ��

�
��


where for all ��� and ��� , some ( and � exist such that ��� � �� and ��� � �. This procedure is

carried on until no new pair of ��� and ��� appears. Thus, there is some * � '� and �� and ��

for � � �
 � � � 
 * can be defined as follows.

 �� �
��

���

���
�
� � ��

 �� �
��

���

���
�
� � ��

where for all ��� and ���, some ( � * and � � * exist such that ��� � �� and ��� � � holds.

Since we have  �� � �, for all � � �
 � � � 
 *,

 �� �

�

���

����
� � ��
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 �� �

�

���

����
� � ��


where for each � and %, either ��� � � or ��� � ��� � � � � � ��� for some � � + and � � %� -

� � � - %� � �. Thus, none of the expressions ��� possess an e.w.p. This implies, by the lemma

3.8,

 �� � �� �� � �
 � � � 
 *�

In particular, we have  � � � for � � �. Thus, the theorem 3.3 follows. �

The next theorem follows immediately from the completeness of ��.

THEOREM 3.4

If � is a BCRE, then there is at least one expression � that does not contain the � � � and �

operators, and  � � � follows.

PROOF

It is obvious by the semantics of BCREs that their language class is equivalent to that of

regular expressions. Therefore, for every BCRE � there is a regular expression � that does not

contain � � � and �, and ���� � ���� holds. Then by the completeness of ��, it is derivable that

 � � �. �

3.4 Theorems

This section describes some important equivalence relationships of BCREs as theorems. We

omit the proof here but detailed proofs for each of the theorems can be seen in the thesis ap-

pendix .

THEOREM 3.5 (Associative Law)

Assume that ��� � ��� � �� � � �� and ��� � ��� � �� � � �� then

� � � �� � � �� � �� � � �� � � �

Note that associative law on the � � operator does not generally follow. For example, 

�� � � �� � � ��� ��� � ��� but  �� � � �� � � ��� �� � ����� � � ��� �� � �

THEOREM 3.6 (Associative Law (2))

Assume that � � ���� � ���� � ���� � ���� � ���� � ���� then

� � � � �� � � � �� � �� � � � �� � � � �
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This theorem means that if a common set of communication symbols � is used over the entire

system, then associative law is followed.

THEOREM 3.7 (Operator swapping)

 � � � � � � � � � �/ ��� � ��� � � � �

This theorem illustrates the condition where we can exchange the � � � and � operators. We can

do so even if there is no communication symbol between � and �.

THEOREM 3.8 (Extraction)

 ����� � � � ��!Æ� � �� � � ����� � � � !Æ�

where �
 ! � ����� � �!Æ�� � � and ������ � �� � ��� � ���!Æ� � �� � ��� � �

This theorem means that if � and ! are communication symbols and, � and � do not possess

communication symbols, then � and � can be extracted as concurrent threads �� � � ��. Note

that  �� � � �� � ��� holds by the Theorem 3.7since � and � has no communication symbols.

3.5 Summary

This chapter presented the axiom system �� for the language equivalence of BCREs and proved

that �� is sound and complete. As a result of the soundness and completeness, with our system

we can prove equivalence for any two expressions if the expressions have the same language;

that is, they represent the same behaviour. In the last section, we proved some important theo-

rems in respect to BCREs.
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Chapter 4

Modelling Concurrent Systems

In this chapter, we formally define a model of concurrent system in two different ways. One is

a concurrent object model that is defined as a set of concurrent objects. The other is a concur-

rent thread model that is constructed by a global state machine and sets of concurrent threads

assigned to a state in the global state machine.

4.1 Concurrent object model

The concurrent object model is a behaviour model which represents composite behaviour of

concurrent objects. Assume that there are � number of objects for some � � �. Then, the

concurrent object model for these objects is defined as follows.

�� � �� � ��� � �� � �� � � ����� � ���� ���� � � ��� (4.1)

where �� is a set of communication symbols between �� and the composition of ����
 � � � 
 ��.

Note that if we omit ��; that is, if �� � � is given, the language of the resulting concurrent object

model is the same as that if we define

�� � ���� � ����� � ���� � ����� � ���� � �� � � ����� � ���� ���� � � ����

Behaviour represented by the concurrent object model is sensitive of the order of object

occurrence ��
 � � � 
 ��. For example, let us consider three objects; �, � and � � �. Then

 � � � �� � � ��� ��� � � � � � � ��� while  ��� �� � � �� � � �� � ��� �� � � ����� � �.

Now, we show an example model of an auto-locking door system. This system consists of

three objects: Card-Reader, Door and Timer as depicted in Figure 4.1,4.2 and 4.3

This model can be formalised as follows.

�*�������� � ����	��������� � � ����*������ � � ������������ �	���
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te
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Figure 4.1: Door

ca

un

lo

Figure 4.2: Card Reader

tb

tc

te

to

Figure 4.3: Timer

Note that some of the parenthesises for the binding priority of � � are omitted because � �

operators in this context satisfy the associative law according to theorem 3.5.

4.2 Concurrent thread model

We begin this section with an intuitive explanation of a concurrent thread model. Then, we

provide the definition of a concurrent thread model, which is a model of a concurrent system

that focuses on a switching set of concurrent threads according to the transitions of a global

state in a system. A concurrent thread model is constructed with a global state machine and sets

of threads assigned to each state. Figure 4.4 depicts an example of a concurrent thread model.

In this Figure, there is a global state machine with some threads assigned; one or more threads

can be assigned to a state. For example, the ’state1’ in Figure 4.4 contains two threads that are

executed concurrently.

An expression representing a concurrent thread model in Figure 4.4 can be obtained as

follows. First, we define a global state machine using BCREs. Although there is no transition

labels in the global state machine in Figure 4.4, state identifiers can be used as transition labels

and so it is easy to obtain an expression for the global state machine in Figure 4.4 as follows.

�����	�������	� � ����	�������	��
� (4.2)

Then we define a state as a BCRE that represents threads that are allocated in each state. It is

clearly obtained from Figure 4.4 that

����	� � �����

����	� � ������ � �	�/ � ���

����	� � �,����

����	� � % (4.3)

By substituting (4.3) to (4.2), it is derived that

������������ � �	�/ � ��� � �,������%��
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Figure 4.4: Concurrent Thread Model

This is an expression of the model in Figure 4.4.

Syntactically, the concurrent thread model is defined as an expression that has no � � � op-

erator. However, such a definition with respect only to syntax is over-simplified. We should

focus on a concurrent thread model that correctly corresponds to a concurrent object model,

and also on a semantic level. Some additions to the definition are needed to illustrate what the

correspondence is. The following is a definition of a concurrent thread model that corresponds

to a concurrent object model. Informally, a concurrent thread model is an expression that has

1. no � � � operator

2. no interleaving expression

3. no over-concurrency

An interleaving expression is an expression that contains any interleaving of symbols from

two or more different objects. For example, assume that there are two objects defined by the
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expressions �� and �� respectively. Then the concurrent object model for these objects are

defined as �� � � ��. In this case, the corresponding concurrent thread model is exactly �����;

however there are some other equivalent expressions such as ��� � �����������, and ���� � ���

����� ����� ���� � ��. In these expressions, some of concurrent behaviour between �� and ��

is serialised. Such sequences are called interleaving expressions. Be reminded that the purpose

of focusing on the concurrent thread model is to clarify the essential concurrency in a system. If

there is any interleaving expression, it means that some information of the concurrent behaviour

is lost. On the other hand, the over-concurrent expression indicates internal concurrency of an

object that is not allowed in concurrent object models. For example, there is an object defined

with an expression �� � ��; by the semantics of BCREs, it is equivalent to ���. However, we

should not consider ��� as a concurrent thread model for ����� because there is no concurrency

in the original �����. A concurrent thread model should not contain any excess of concurrency

that is not implied in the corresponding concurrent object model.

We now define the concurrent thread model in a formal way. We begin by clarifying which

symbols belong to which objects. The following definition is a projection from a symbol to an

object to which the symbol belongs.

DEFINITION 4.1

Assume that there are � number of objects ��
 � � � 
 �� and a concurrent object model defined

as �� � �� � ��� � �� � �� � � ����� � ���� ���� � � ���. Then, for a single symbol �

0��
 �� �
��
���

���
� � ����	

and,

� 0��
 ��� � 0��
 ��

� 0��
 ���� � 0��
 �� �� � 0��
 ��� � 0��
 �� � 0��
 ��

For example, assume that�� � ��! and�� � !1. Then 0��
 �� � ���	
 0��
 !� � ���
 ��	

and 0��
 1� � ���	.

Next, we formalise interleaving expressions as 2��� that denotes a set of all possible sets of

interleaving expressions of �. Note that by this definition of 2���, an expression that possesses

one or more interleaving expressions as its sub-expressions is also regarded as an interleaving

expression.

DEFINITION 4.2 (Interleaving Expressions)

Assume that � is a concurrent object model. Then a set of interleaving expressions 2��� is

defined as follows.

2��� � ��� 
 0��
 �� � 0��
 �� � � or � � 2��� or � � 2���	 �
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��� 
 � � 2���	 �

�� � � 
 � � 2��� or � � 2���	 �

�� � � 
 � � 2��� or � � 2���	

For example, if � � �� � ���, 0��
 �� � ���	 and 0��
 !� � ���	 then, �! and � � ! are

interleaving expressions.

On the other hand, a set of all the possible over-concurrent expressions of � can be defined

as follows. Notice that by the definition of 3���, an expression which possesses one or more

over-concurrent expressions is also an over-concurrent expression.

DEFINITION 4.3 (Over-concurrent Expressions)

Suppose that � is a concurrent object model. Then a set of over-concurrent expressions 3���

is defined as follows.

3��� � ���� 
 0��
 �� � 0��
 �� �� �	 �

��� 
 � � 3���	 �

��� 
 � � 3��� �� � � 3���	 �

�� � � 
 � � 3��� �� � � 3���	

For example, ��� is in 3��� for � � �� � �� because 0��
 �� � 0��
 �� � ��	

Now, we finally define the concurrent thread model.

DEFINITION 4.4 (Concurrent Thread Model)

For any concurrent object model �, an expression 4 ��� is a concurrent thread model of � if

1. 4 ��� has no � � � operator.

2. ��4 ���� � ����

3. 4 ��� �� 2��� �3���

For example, assume that � � �� � ���, �� � ��� and �� � �!�. Then ����!�� and

���! � !��� are equivalent to �. However, ���! � !��� is not a concurrent thread model of

� because 0��
 �� � ���	 and 0��
 !� � ���	 hence �! � !� � 2���. On the other hand,

����!�� is exactly a concurrent thread model of �.
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4.3 Summary

In this Chapter we presented how to model concurrent object and concurrent thread models

using BCREs. The semantics of these models are given as the language of BCREs. We also

defined the correspondence between these models based on language equivalence. In the next

Chapter we focus on the method of how to transform a concurrent object model into a concurrent

thread model.
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Chapter 5

Extracting Threads

Let � be an object model and let 4 ��� be a thread model of �. If � and 4 ��� represent the

same system behaviour, ���� � ��4 ���� holds. Here we are concerned with transforming an

object model to a thread model, that is, to derive 4 ��� from � in a systematic way. According

to the completeness of our axiom system,  � � 4 ��� can always be proved. If 4 ��� is

known, a derivation path of  � � 4 ��� can always be obtained. However, our problem here

is different. The problem is how to derive a unknown 4 ��� from �. It is not a trivial problem,

and is more complex than proving  � � 4 ��� with the axiom system. In this chapter, we

propose a systematic way to solve the problem. First, we define the idea of thread-extractable

form. Then we prove that any object model can be transformed to thread-extractable form.

Finally, we present a way of transforming a thread model from a thread-extractable form.

5.1 Thread-extractable form

Consider an expression that begins with a sequence of non-communication symbols, succeeded

by a communication symbol. Thread-extractable form is a set of such expressions defined as

follows.

DEFINITION 5.1 (Thread-extractable form)

Let ���
 � � � 
 ��	 be a set of symbols. Then, it is stated that � is thread-extractable if following

there are some ��
 � � � 
 �� for �1�
 � � � 
 1��	 � ���
 � � � 
 ��	. It is also stated that �� is a thread-

extractable form of �.

 �� �
�����
���

5���
 %�1���
 %�6���
 %� � 5���
 
� (5.1)

where  � � ��, and there are some (�� � ( � �� for all � and % such that �� � 6���
 %� holds.

,���� is a natural number decided by ��. 5���
 %� � � and 1���
 %� � �1�
 � � � 
 1��	 � � for % �
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 � � � 
 ,���� � is a set of expressions, and it follows that 5 � � implies �1�
 � � � 
 1��	��5� � �

for any expression 5. That is, � is a set of expressions that do not contain any symbol in

�1�
 � � � 
 1��	. Note that � and �� are also in �

Now, let us show that any expression is thread-extractable if the expression has no � � � and

� operators. In the remainder of this chapter, we use the axiom  � to  �� in proofs without it

being explicitly referred to.

THEOREM 5.1

All BCREs are thread-extractable.

PROOF

We will prove the theorem by induction on the syntax of BCREs. Let ���
 � � � 
 ��	 be a set

of symbols and assuming �1�
 � � � 
 1��	 is an arbitrary subset of ���
 � � � 
 ��	. We start with the

base step.

1. Base step

It clearly follows that�, �� and any symbol �� � ���
 � � � 
 ��	 are thread-extractable according

to the following equations.

 � � ��� ��

 �� � ��� ���

 �� � �����
� �� �/ �� � �1�
 � � � 
 1

�
�	

 �� � ��� � �� �/ �� �� �1�
 � � � 
 1
�
�	

Next, suppose that � and � are thread-extractable then we will prove that �� �, �� and ��

are thread-extractable.

2. For � � �

By induction hypothesis, � is thread-extractable; therefore (5.1) holds. There are some ��
 � � � 
 ��,

 � � �� and

 �� �
�����
���

5���
 %�1���
 %�6���
 %� � 5���
 
� (5.2)
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holds for all � � �
 � � � 
 ' where 5��
 %� � � and 6��
 %� is among ���� � � � '�. By (5.1)

and (5.2), it follows that

 �� � �
�����
���

5���
 %�1���
 %�6���
 %� �
�����
���

5���
 %�1���
 %�6���
 %� � 5���
 
� � 5���
 
�

�
��������

���

���� � ��
 %� � 5��� � ��
 
� (5.3)

where ,��� � ��� � ,���� � ,����, 5��� � ��
 
� � 5���
 
� � 5���
 
�, and � is defined as

follows.

���� � ��
 �� � 5���
 ��1���
 ��6���
 �� /�� � � � � ,����

���� � ��
 % � ,����� � 5���
 %�1���
 %�6���
 %� /�� � - % � ,����

The structure of the form (5.3) is similar to the definition of the thread-extractable form such

as (5.1). Hence, it is concluded that � � � is thread-extractable.

3. For ��

By induction hypothesis, � is thread-extractable. Thus by (5.1), it follows for all �� �� �  � ��

that

 ��� �
�����
���

5���
 %�1���
 %�6���
 %�� � 5���
 
��

�
�����
���

5���
 %�1���
 %�6���
 %�� �
�����
���

5���
 
�5���
 %�1���
 %�6���
 %� � 5���
 
�5���
 
�

Since 6���
 %� is among ��
 � � � 
 ��, 6���
 %�� is also among ���
 � � � 
 ���. Therefore, the struc-

ture of the above expression is similar to (5.1). Hence, ��� is thread-extractable. Considering

that  �� � ���, it is concluded that �� is thread-extractable.

4. For ��

By induction hypothesis, � is thread-extractable; therefore, there are some ��
 ����� such that

 � � �� and ����� holds. Hence,

 �� � �� � ���

� �� �
�����
���

5���
 %�1���
 %�6���
 %��
� � 5���
 
��

� (5.4)

It also follows for � � � � � that

 ���
� �

�����
���

5���
 %�1���
 %�6���
 %��
� � 5���
 
��

� (5.5)
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By (5.4) and the rule "�, it is proved that

 �� �
�����
���

�5����
 
��
�5���
 %�1���
 %�6���
 %��

� � �5����
 
��
� (5.6)

where 5���
 
� � 5��
 
� if � �� ��5���
 
��. Otherwise 5���
 
� is an expression such that

 5��
 
� � 5���
 
� ��� and � �� ��5���
 
�� holds. By substituting (5.6) to (5.5),

 ���
� �

�����
���

5���
 %�1���
 %�6���
 %��
�

�
�����
���

5���
 
��5
����
 
��

�5���
 %�1���
 %�6���
 %��
�

� 5���
 
��5
����
 
��

�

Since 6���
 %� is among ��
 � � � 
 ��, 6���
 %��� is also among ����
 � � � 
 ���
�. Therefore, the

structure of the expression above is similar to (5.1). Thus, it is clear that ���� is thread-

extractable. According to this result, it is also proved that the structure of (5.6) is likewise

similar to (5.1). Hence, �� is thread-extractable.

From what has been discussed above, it is concluded that all expressions without � � � and

� operators are thread-extractable. By this result, the rest of the proof is mostly clear. By the

semantics of BCREs, there are some equivalent expressions without � � � and � operators for

any BCRE. By the completeness of our axiom system, we can always derive such an expression.

It is already proved that all expressions without � � � and � operators are thread-extractable.

Hence any expression with � � � and � operators are also thread-extractable. �

5.2 Transformation method

In this section, we present a systematic way of how to transform a concurrent object model

into a concurrent thread model. This method is defined as a procedure with three steps. First,

a concurrent object model is transformed into a thread-extractable form without interleaving

and over-concurrent expression. Next, the thread-extractable form is transformed into a BCRE-

labeled automata. Finally, a BCRE-labeled automata is transformed into a concurrent thread

model. We describe the details of these steps in the following sections.

5.2.1 Object model to thread-extractable form

We begin with a method for transforming an object model that consists of two objects into a

thread-extractable form. It has already been shown that any concurrent object model � � � � � is
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a thread-extractable form. However, such a thread-extractable form may have some interleaving

or over-concurrent expressions which should not appear in a concurrent thread model. In this

section, we will show a way of transformation from an object model into a thread-extractable

form without interleaving or over concurrent expressions.

LEMMA 5.1

Let � be an arbitrary concurrent object model. Assume that there are some thread-extractable

forms for each � and � such that �
 � �� 2����3��� holds. Then there is a thread-extractable

form for � � � � � which is not in 2��� �3���.

PROOF

By the semantics of BCREs, it clearly follows that  � � � � � � � � ���� � ���� � � � �.

Thus in the remainder of this proof, we assume that ��� � ��� � � instead of using an

arbitrary �.

Assume that there is a thread-extractable form for each � and � such that �
 � �� 2��� �

3��� holds. Therefore ����� and ����� holds for �1�
 � � � 
 1�	 � �. Thus, it follows for all

� � * � � and � � + � ' that

 �
 � � � �� �



������

���

4 ��

 %� � 5��

 
�

�
 � � �



������

���

4 ���
 %� � 5���
 
�

�


where 4 ��

 %� � 5��

 %�1��

 %�6��

 %� and 4 ���
 %� � 5���
 %�1���
 %�6���
 %�. Then by

the axioms �� and ��,

�����
���

�����
���

�4 ��

 %� � � �4 ���
 %�� �
�����
���

�4 ��

 %� � � � 5���
 
��

�
�����
���

�5��

 
� � � �4 ���
 %�� � �5��

 
� � � � 5���
 
��

By the theorem 3.7, 3.8 and the axiom ��,

�����
���

�����
���

�5��

 ���5���
 %��1��
 %��6��

 �� � � � 6���
 %�� � �5��

 
��5���
 
�� (5.7)

where 1��
 %� � 1��

 �� if 1��

 �� � 1���
 %�, otherwise 1��
 %� � �. Since �
 and �� are

thread-extractable, 6��

 �� � � � 6���
 %� are also among �
 � � � �� �� � * � �
 � � + � '�. By

 �� � �� � � and  � �� � � � � � � (cf.[6]), all 1��
 %� � � can be eliminated from

(5.7). Then the structure of (5.7) is similar to (5.1). Hence all �
 � � � �� are thread-extractable.

By the assumption, and the definition of 2 and3 , 5��

 ��, 5���
 %� and 6��

 �� � � � 6���
 %� are

not in 2����3���. Therefore, it is obvious that (5.7) is not in 2����3���. Hence, �� � � � ��
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is a thread-extractable form for � � � � � and not in 2����3���. Therefore, the lemma follows.

�

The Lemma 5.1 ensures that thread-extractable form for � � � � � as �� � � � �� exists and that

it is not in 2����3���; namely it is neither an interleaving nor an over-concurrent expression.

5.2.2 Transforming function

According to the result of Theorem 5.1 and Lemma 5.1, we can define a systematic transforma-

tion function 7�, which is a morphism from an expression into a closed set of equations as in

the schema � � � that represents equations in a thread-extractable form.

Let � and � be expressions that do not contain � � � and � operators. 1 is a set of symbols.

Let ,��� be a natural number,and 5��
 %� be an expression. 1��
 %� is a member of 1 and 6��
 %�

is an expression. They are obtained from a thread-extractable form of �. In other words, it

follows that

� �
����
���

5��
 %�1��
 %�6��
 %� � 5��
 
� � 7����

Thus for all � � % � ,���, �5��
 %�� � 1 � � and �1��
 %�� � 1 holds. Now, together with

the above assumptions, 7� can be recursively defined as a minimal set as follows.

1. 7���� � �� � ��� ��	

2. 7���
�� � ��� � ��� ���	 �7����

3. 7���� � �� � ��� � �	 �7���� if � �� 1.

4. 7���� � �� � ����� ��	 �7���
�� if � � 1.

5. 7���� �� � � � � � � 8���� 	 �
����
���

7��6��
 %�� �
����
���

7��6��
 %��

6. 7����� � � �� � 8���� 	 �
����
���

7��6��
 %��� �
����
���

7��6��
 %��

if there is no � such that � � �� holds.

7. 7���
�� � � �� � 8���� 	 �

����
���

7��6��
 %��
�
 1�

8. 7����
�� � � ��� � 8����� 	 �

����
���

7��6��
 %��
�� �

����
���

7��6��
 %��
��
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9. 7��� � � � �� � � � � � � � � 8�� � � � �� 	 �
����
���

����
���

7��6��
 �� � � � 6��
 %��

where 8 is defined as follows.

8�� � �� �
����
���

5��
 %�1��
 %�6��
 %� �
����
���

5��
 %�1��
 %�6��
 %� � 5��
 
� � 5��
 
�

8���� �
����
���

5��
 %�1��
 %�6��
 %�� �
����
���

5��
 
�5��
 %�1��
 %�6��
 %� � 5��
 
�5��
 
�

8���� �
����
���

�5���
 
���5��
 %�1��
 %�6��
 %��� � �5���
 
���

8����� �
����
���

5��
 %�1��
 %�6��
 %��� �
����
���

5��
 
��5���
 
���5��
 %�1��
 %�6��
 %��� �

5��
 
��5���
 
���

8�� � � � �� �
����
���

����
���

�5��
 ���5��
 %��9��
 %��6��
 �� � � � 6��
 %��� �5��
 
��5��
 
��

where 5���
 
� � 5��
 
� if � �� ��5���
 
��. Otherwise 5���
 
� is an expression such that

 5��
 
� � 5���
 
� � �� and � �� ��5���
 
�� holds. 9��
 %� � 1��
 �� if 1��
 �� � 1��
 %�,

otherwise 9��
 %� � �.

Note that the sub 1 of 7� represents a set of communication symbols. If the concur-

rent object model � � � � � is given, the thread-extractable form for � � � � � can be calculated

7��� � � � �� where 1 � ���� � ���� � �.

5.2.3 Thread-extractable form to automata

In this section, we show how to transform a thread-extractable form to an automata representa-

tion called a BCRE-labelled automata. Assume that a thread-extractable form consists of a set

of equations : � ��� � ��
 � � � 
 �� � ��	 such that

�� �
�����
���

5���
 %�1���
 %�6���
 %� � 5���
 
�

Then, a BCRE-labelled automata of :: ;�:� �- <
=
 4
 �
 � > is defined as follows.

1. < � ���
 � � � 
 ��
 0	

2. = � �5���
 %� 
 � � � � �
 
 � % � ,����	

3. 4 � �- ��
 5���
 %�1���
 %�
 6���
 %� > 
 � � � � �
 � � % � ,����	 �

�- ��
 5���
 
�
 0 >	
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α1 α2 ζ

⊥

d*a.x

(b||c)y

d*

Figure 5.1: BCRE-labelled automata

4. � � ��

5. � � �0	

where < represents a set of states, = is a set of labels, � is the initial state and � is a set of

terminal states. 4 is a set of transitions. Each transition is defined as - ��
 �
 �� >: �� is a state

from which the transition leaves, �� is a state to which the transition heads, and � is a transition

label. The following is an example of a thread-extractable form of ����� � ��! � ��� where �

and ! are communication symbols.

: � � �� � ������ � �
�


�� � �� � ��!�� �� 	

where �� � ����� � ��! � ��� and �� � �� � ��!����� � ��! � ���. From this thread-extractable

form by the procedure 5.2.3, the automata for ;�:� can be constructed as follows, and is

depicted in Figure 5.2.3.

< � ���
 �� 0	

4 � �- ��
 �
���
 �� >
 - ��
 �

�
 0 >
 - ��
 �� � ��!
 �� >
 - ��
�
 0 >	

� � ��

� � �0	

5.2.4 Automata to Thread model

Let us begin with transforming a BCRE-labelled automata to a BCRE. We can directly apply a

transformation method from an automata to a regular expression. Since this transformation is a

problem well-known and solved in the automata domain, we are not concerned here with details
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of this transformation. For example, one traditional solution can be seen in [9]. A corresponding

BCRE of BCRE-labelled automata is not uniquely determined. One or more expressions may

be obtained from one BCRE-labelled automata.

For example, ����������!����������� is one such expression obtained from an automata

in Figure 5.2.3. The meaning of the resulting BCRE from the BCRE-labelled automata is clearly

equivalent to the thread-extractable form that the BCRE-labelled automata is based on. Hence

 ����� � ��! � ��� � ����������!�� � � ������� holds.

5.2.5 Transformation Procedure

Assume that � � � � � � � is a concurrent object model. Then, a concurrent thread model 4 ���

can be obtained by the following procedure.

PROCEDURE 5.1

1. Calculate 7���� according to Section 5.2.2 where 1 � ���� � ���� � �.

2. Calculate ;�7����� according to Section 5.2.3.

3. Transform ;�7����� to 4 ��� according to Section 5.2.4

The following theorem guarantees that such a 4 ��� is exactly a concurrent thread model of

�.

THEOREM 5.2

Let 4 ��� be obtained from a concurrent object model � according to procedure 5.1. Then, it

follows that

1. 4 ��� has no � � � operator.

2. ��4 ���� � ���� holds.

3. 4 ��� �� 2��� �3���.

PROOF

First, since there is no � � � operator in each of the objects, it follows that the labelled set of

;�7����� does not contain � � � . Therefore 4 ��� does not have � � � , either. It is fairly obvious

that the language of � is preserved through the transformation procedure. Hence  4 ��� � �.

Finally, it is clear from the definition of 7� that � �� 2��� � 3��� for any � � � � 7����;

thus, it can be proved that the results of the procedure in Section 5.2.3 and 5.2.4 do not contain

any interleaving or over-concurrent expressions. Hence 4 ��� �� 2��� �3���. �
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5.2.6 Transformation for more than three objects

It is possible to adopt our transformation method to a model of more than three objects in the

following way. Assume that �� � �� � �� � �� � � is a concurrent object model. First, obtaining a

thread-extractable form Æ for � � �� � �. Then, calculating a thread-extractable form for Æ � �� � �.

In a similar way, we can obtain a thread-extractable form for any number of concurrent objects.

However, if there are three or more objects, there are cases where a thread-extractable form can

not be obtained. For example,

���� � � �!Æ� � � �!

where � and ! are communication symbols. By transforming ��� � � �!Æ into a thread model,

������!Æ� � � �!

Our method can not transform this expression any more. To handle such an expression, a way

is needed for transforming any expression that possesses � operators; this is part of our future

work.

5.2.7 Terminating Property

Our transformation procedure is always terminated. This is proved easily by the following.

First, since a thread-extractable form consists of a finite number of ��
 � � � 
 ��, a thread-extractable

form can be obtained by finite steps. Second, since a thread-extractable form consists of a finite

number of expressions, then, BCRE-labelled automata can be obtained in finite steps. Hence, it

is obvious that our transformation always terminates in a finite number of steps.

5.2.8 Complexity

This section looks at the complexity of our transformation method by discussing the number of

states and transitions of BCRE-labelled automata generated by our transformation method.

Assume that � and � be expressions which have no � � � and � operators. Then we consider

a BCRE-labelled automata;�7��� � � � ��� where 1 � ������������. There are states less

than 
�
�
�
��� and transitions less than 
�
�
�
��
�
�
�
����. 
�
� is the number of equations

in 7���� and 
�
� is defined as follows


�
� � �


� � �
� � 
��
� � 
�
� � 
�
�


��
� � �
�
�
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where � is a symbol, � and � are expressions. Intuitively, 
�
� is similar to the length of � except

that 
��
� is considered to be twice its length. If there is an � depth of nested closure operators,


�
� is relative to �� times its length in the worst case. For example, 
��������
� � ��
�
�.

Now, we focus on some details. Suppose that 
�
� and 
�
� are a number of equations in

7���� and 7���� respectively. According to (5.3) in Lemma 5.1, the transformation process

ends when it completes exploring all possible 6��
 �� � � � 6��
 %� that are among �
 � � � �� (� �

* � 
�
�, � � + � 
�
�). That is, 7��� � � � �� is a subset of the following set of equations:

7��� � � � �� � � �
 � � � �� � 8��
 � � � ��� 
 �
 � �7����
 �� � �7���� 	

where �7� is a set of L.H.S. of a member of 7� such that

�7���� � �� 
 ���� � � � 7����	

See Lemma C.4 in the Appendix for a proof of this property. Since the number of equations

in a thread-extractable form follows the number of �
 � � � �� being explored, that is clearly less

than 
�
�
�
�. According to the definition of ;, the number of states in ;�7��� � � � ��� is the

same as the number of equations in7��� � � � ��. Hence, it is concluded that the BCRE-labelled

automata also possess less than 
�
�
�
� � � number of states. Note that �� is for the terminal

state that does not appear among ��
 � � � ���.

On the other hand, we discuss the number of transitions in ;�7��� � � � ���. First, lets

consider Figure 5.2 that depicts an equation in 7��� � � � ��. From Figure 5.2, it is clear that

the number of transitions from an each state �
 � � � �
 equals ,��
�,���� � �. Therefore, the

number of transitions in7��� � � � �� is less than the summation of ,��
�,������ for all * and

+, that is
�����

��

�����
���

,��
�,���� � �

Now, we consider the upper-bounds of ,��
� and ,����. According to the definition of 7�, it

is easy to prove the following inequations.

,��� � �

,��� �� � ,��� � ,���

,���� � ,��� � ,���

,���� � ,���

where � is a symbol, � or ��. � and � are expressions. Hence, it is easy to prove that ,��� �


�
 for any �. 
�
 is the length of � defined as follows.


�
 � �
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αu[s]βv η(1,1)
θ(1,1)z(1,1)

θ(0,0)

η(1,2)

η(h(αu),h(βv))

θ(h(αu),h(βv))z(h(αu),h(βv))

among αu[s]βv, 

max  |α|e|β|e patterns

θ(i,j) = θ(αu,i)||θ(βv,j) η(i,j) = η(αu,i)[s]η(βv,j)

θ(1,2)z(1,2)

where and

Figure 5.2: thread-extractable form as a BCRE-labelled automata


� � �
 � 
��
 � 
�
 � 
�



��
 � 
�


The following lemma is useful for analyzing the upper-bound of the length of the expressions.

LEMMA 5.2

Let � and Æ be expressions without � � � and � operators then, for any 1,


Æ
 � 
�
� if Æ � �7���� follows.

See the Appendix for a proof of this lemma.

By Lemma 5.2, it is clear that ,��
�,���� � 
�

�
 � 
�
�
�
�. Therefore, it can be proved

that
�����

��

�����
���

,��
�,���� � � � 
�
�
�
��
�
�
�
� � ��

Hence, it is concluded that the number of transitions in;�7��� � � � ��� is less than 
�
�
�
��
�
�
�
��

��.

5.2.9 Summary

This Chapter presented a method for transformation from a concurrent object model to a con-

current thread model. The method is valid and has a terminating property. The function 7�

in Section 5.2.2 represents the systematic transforming function, which is useful as a logical
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basis for implementation of automatic transformation engines. In the last section, we discussed

the cost of our transformation method with respect to a number of states and transitions in a

resulting BCRE-labelled automata of transformation. In the worst case, our method generates

automata that includes 
�
�
�
��� numbers of states for transforming � � � � � where 
�
� is the

number of equations in a thread-extractable form of �.
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Chapter 6

Examples

In this chapter we demonstrate our approach with three examples.

1. A media player

2. An automatic locking door

3. A PCM device driver

These three examples have different characteristics. The first, Media player, is an example

of the equivalent transformation of BCREs by the axiom system ��. In the second, the Auto-

matic locking door example, the transformation is performed by the method shown in Chapter

5. The third example, the PCM device driver, demonstrates that it is possible to derive real

implementation from our concurrent thread model. We show a heuristic mapping from the con-

current thread model to C implementation. The detailed transformation way is omitted in this

example.

6.1 Media player

This example begins by obtaining a concurrent object model from scenarios, then deriving a

concurrent thread model.

6.1.1 Modelling objects

Let us begin with the scenarios that represent requirements of a simple video and audio player;

they are smaller than the behaviour of real software, but adequate for showing the essence of

our transformation.

56



Scenario 1. Playing a video file with audio data.
 The following actions should be performed when the media player
 receives a play request for a file that contains both video and audio data.
 A) The Main Thread creates instances of Audio and Video Threads.
 B) Video Thread and Audio Thread play video and audio synchronously.
 C) The Main Thread deletes the instance of the Audio and Video Threads.

Scenario 2. Playing a video file without audio data.
The following actions should be performed when a video file without audio
 data is given to the media player.
 A) The Main Thread creates instances of Audio and Video Threads.
 B) The Audio Thread confirms that no audio data exists in the target file. 
    Then it should send NO_AUDIO events to The Main Thread and the Video Thread. 
 C) The Main Thread deletes the instance of the Video Thread. The Video Thread
    plays the video data. The Main Thread should also play dummy sound data.
 D) The Main Thread deletes the instance of the Video Thread when
    the Video Thread finishes playing.

Scenario 3. Playing an audio file without video data.
  The following actions should be performed when an audio file without video
  data is given to the media player.
  A) The Main Thread creates instances of Audio and Video Threads.
  B) The Video Thread confirms that no video data exists and it should send 
     NO_VIDEO events to the Main and Audio Threads.
  C) The Main Thread deletes the instance of the Video Thread. The Audio Thread
    plays the audio data. The Main Thread should also play dummy video data.
  D) The Main Thread deletes the instance of the Audio Thread when
    it finishes playing.

Table 6.1: Example scenarios

Figure 6.1 shows the sequence diagrams obtained from the scenarios in Figure 6.1. There

are 3 objects in the scenarios; Main Thread, Video Thread and Audio Thread. In this figure,

?���, @ ��	�,  *��� are the representations for each of the objects, respectively.

Since any communication between objects is synchronised, The directions of the communi-

cations are ignored when we turn these diagrams into BCREs. However, in Figure 6.1, arrows

are used to help understanding.

In our approach, all communications between objects are defined by event symbols, such as

CREATE AUDIO, SYNC PLAY in Figure 6.1. The meaning of events is shown in Table 6.2.

We can systematically transform the sequence diagrams in Figure 6.1 into state machines.

First, we extract the behaviour of an object as a BCRE from each sequence diagram. The

extraction procedure is as follows.

1. Collect all events directed from/to the object in the sequence diagram.

2. Join the events with ’.’ operators in the order of event occurrence in the sequence diagram.

For example, the following expressions are obtained as a set of partial behaviours of object

MAIN.

� �� ����A��A� (obtained from the scenario 1)
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MAIN VIDEO

CREATE_VIDEO

AUDIO

CREATE_AUDIO

DELETE_AUDIO

DELETE_VIDEO

SYNC_PLAY

The sequence diagram for Scenario 1.

MAIN VIDEO

CREATE_VIDEO

AUDIO

PLAY_AUDIO

CREATE_AUDIO

DELETE_VIDEO

DELETE_AUDIO

NO_VIDEO NO_VIDEO

DUMMY_PICTURE

The sequence diagram for Scenario 2.

MAIN AUDIO

CREATE_VIDEO

VIDEO

PLAY_VIDEO

CREATE_AUDIO

DELETE_AUDIO

DELETE_VIDEO

NO_AUDIO NO_AUDIO

DUMMY_SOUND

The sequence diagram for Scenario 3.

Figure 6.1: Sequence diagrams
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CREATE_VIDEO  Create Video Thread.
CREATE_AUDIO  Create Audio Thread.
DELETE_VIDEO  Delete Video Thread.
DELETE_AUDIO  Delete Audio Thread.
SYNC_PLAY     Play video and audio data with synchronize.
PLAY_AUDIO    Play audio data.
PLAY_VIDEO    Play video data.
NO_AUDIO      An event which represents no audio data exists
NO_VIDEO      An event which represents no video data exists
DUMMY_VIDEO   Play dummy video data.
DUMMY_SOUND   Play dummy sound data.

Table 6.2: Event Descriptions

� �� ����<� �A� �A� �A� (from the scenario 2)

� �� ����<��A��A��A� (from the scenario 3)

where each symbol; �� , ��, A�,� � � denotes abbreviations of CREATE VIDEO, CRE-

ATE AUDIO, DELETE AUDIO,� � �, respectively.

Then, we define the behaviour of the object MAIN as a summation of these sequences. The

state machine for MAIN can be generated by connecting all the expressions with the � operator,

that is,

�� ����A��A� � �� ����<� �A� �A� �A� � �� ����<��A��A��A�

The state machine represented by this expression has non-deterministic transitions with re-

spect to �� ���. To remove such transitions, we use the distributive property of the operation

� of a regular expression such as the axioms  � and  �. Then, the above expression can be

turned into the following expression by applying the axiom.

�� �����A��A� �<� �A� �A� �A� �<��A��A��A� �

The state machines for VIDEO and AUDIO can be obtained in a similar way. Table 6.3

shows the expressions for all objects and Figure 6.2 shows the corresponding state machines.

6.1.2 Transformation

Returning to the state machines in Figure 2.1. The concurrent object model for our Media

Player is defined as

? 2< � � �@ 2AB� � � CA2��
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? 2< � �� �����A��A� �<� �A� �A� �A� �<��A��A��A� �

@ 2AB� � �� ���� �<� �<��D� ��A�

 CA2� � ������ �<� �<� �D���A�

Table 6.3: Expressions for Each Objects

CV

CA

DA

DV

DV

DP

NV

DA

DA

DS

NA

DV

CV

NA

SPNV

PV

DV

CA

NV

SPNA

PA

DA

MAIN VIDEO AUDIO

Figure 6.2: Objects

where ? 2< , @ 2AB� and  CA2� are defined as in Table 6.3. Note that the order of the

composite pairing does not effect the result because Theorem 3.5 holds in this case; that is,

? 2< � � �@ 2AB� � � CA2�� � �? 2< � �@ 2AB�� � � CA2�

holds.

Now, we begin by first transforming �@ 2AB� � � CA2��.

 @ 2AB� � � CA2� � �� ���� �<� �<��D� ��A� � ������� �<� �<� �D���A�

By Theorem 3.8

� ��� ��������� �<� �<��D� ��A� � � ��� �<� �<� �D���A��

By Axiom  �,

� ��� �������� �A� � �<� �<��D� ��A� � � ��� �<� �<� �D���A��

By Axiom ��,

� ��� ��������� �A� �<�
 <� � ��� �<� �<� �D���A�� �

��<� �<��D� ��A� ��� � ��� �<� �<� �D���A���

60



By Axiom ��,

� ��� ��������� �A� �<�
 <� ��� �A�� � ��� �A� ��� 
 <�
 <� �<��A�� �

��� �A� ��� 
 <�
 <� �<� �D��A��� � ��<� �<��D� ��A� ��� � ��� �<� �<� �D���A���

By Axiom ��,

� ��� ��������� ��A� ��� 
 <�
 <� �A�� �� ��� �

��<� �<��D� ��A� ��� � ��� �<� �<� �D���A���

By theorem 3.8,

� ��� �������� ��A� �A�� �

��<� �<��D� ��A� ��� � ��� �<� �<� �D���A���

By the Axiom  �,

� ��� �������� ��A� �A�� �

�<� �A� �<��D� �A� ��� ��� �A� �<��A� �<� �D��A���

By Axiom ��,

� ��� �������� ��A� �A�� �

��<� �A� ��� 
 <� ��� �A� �<��A� �<� �D��A��� �

��<��D� �A� ��� 
 <� ��� �A� �<��A� �<� �D��A����

By Axiom ��, �� and ��,

� ��� �������� ��A� �A�� � �<� �A� ��� 
 <� �<� �D��A�� �

�<��D� �A� ��� 
 <� �<��A���

By Axiom ��,

� ��� �������� ��A� �A�� � �<� ��A� ��� 
 <�
 <� �D��A��� �

�<���D� �A� ��� 
 <�
 <� �A���

By Axiom �� and the Theorem 3.8,

� ��� �������� ��A� �A�� � �<� ��A� �D��A��� � �<���D� �A� �A���
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Figure 6.3: Concurrent Thread Model of Media Player

Then, we can also compose ? 2< and �@ 2AB� � � CA2�� in a similar way. The

following expression can be derived from ? 2< � � �@ 2AB� � � CA2��.

�� ������� �A��A� �<� ��A� �A� �D���A� �<���A��A� �D� ��A� �

Since there is no interleaving expression or over-concurrent expression, this expression repre-

sents a concurrent thread model of ? 2< � � �@ 2AB� � � CA2��. Figure 6.1.2 depicts the

model represented by this expression.

6.2 Automatic locking door system

In this section, we show an example of our transformation method that was described in a

previous chapter.
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6.2.1 Modelling objects

The target model is an automatic locking door system, which consists of three objects: a Key-

card Reader(��), a Door(��) and a Timer(��) The behaviour of each object is depicted as in

Figure 6.4. Table 6.5 represents the behaviour of each object defined by BCREs and 6.4 has

brief descriptions of the symbols.

This door system behaves as follows. The door is open after the key-card object is inserted

to the Key-card Reader object. Then, the door is locked once the door is open and closed. If a

timeout event comes from the Timer object before the door is open, then the door is automati-

cally locked.

un
tb

te

to

lo

op

cl

tb

tc

te+to

ca

un

lo

Keycard Reader

Door

Timer

Figure 6.4: Concurrent objects in the automatic locking door system

6.2.2 Transformation

Let us begin by transforming �� � ���. Note that in the remainder of this section,  � � � �

� �� � � is used without being referred to to eliminate � in the expressions.

In a thread-extractable form on a set of communication symbols � � �*�
 ��	 that are

between �� and �� is derived as follows. By Theorem 5.1,  �� � ���*����
��� � �� where

 ��
� � ������ � ����	�������. Since it clearly follows that  ��

��� � ������� � ����	�����������,

a thread-extractable form of �� is derived as

��� � ��*����� ���
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�� Key-card is inserted

*� Unlock the door

�� Lock the door

�� Start Timer

�� Timeout

�	 Stop Timer

�� Timer Clock

�� Open the door

�� Close the door

Table 6.4: Symbol Descriptions

�� � �*�������� � ����	���������

�� � ����*������

�� � ����������� � �	���

Table 6.5: Object definitions in BCREs

��� � ������ � ����	�����������

where  �� � ���. In a similar way,a thread-extractable form between �� and �� it can be

found that

��� � ���*����� ���

��� � ���������

where  �� � ���. Next, we calculate a thread-extractable form of �� � ���. Assume that

� � �*�
 ��	, then it follows that

 �� � ��� � ��� � � ����

� ����*����� � � � ���*������

���� � � � ���*������

�����*����� � � ��
��

���� � � ����
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� ���*������ � � ����� ���

In a similar way, it is derived that

 ��� � � ���� � ������ � ����/������������ � � �����

It is obvious that ��� � � ���� and ��� � � ���� are thread-extractable forms of �� � ���.

Now, we derive a thread-extractable form of �� � ��� and �� from a set of communication

symbols: �� � ���
 ��
 �		 By Lemma 5.1, a thread-extractable form of �� � ��� is easy to

obtain as D� as follows.

D� � ���*�����D� ���

D� � ������D� � ����	�D�

D� � ������*�����D� � ��

D� � ���������*�����D� � �����

Similarly, a thread-extractable form of �� can be derived as ���:

��� � ��������� ���������� ���

��� � ����������

��� � �����	����

Then according to Lemma 5.1, a thread-extractable form of ��� � ���� � ��� � D� � �
� ���� can

be derived as follows.

 D� � �
� ���� � ���*������D� � �

� �����

����*������D� � � ����� ���

 D� � �
� ���� � ��

������D� � �
� �����

 D� � �
� ���� � ����������	��D� � �

� �����

 D� � �
� ���� � ������*������D� � �

� �����

�������*������D� � �
� ����� � ��

 D� � � ���� � ���������*������D� � �
� �����

����������*������D� � �
� ����� � �����

By applying Procedure 5.1, the state machine as in Figure 6.5 can then be obtained. The lan-

guage of this state machine is

���*��������������� � ����������	������ �

��������������*���� � ����������	����������*�������
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P1[S’]O31

P2[S’]O32 P3[S’]O31

P2[S’]O33 P4[S’]O31

ca.un.tb

ca.un.tb cl.lo

lo

((tc)*||op).te

(tc)*.to

cl.lo.un.to

lo.un.to

lo.un.to

cl.lo.un.to

F

Figure 6.5: Thread-extractable form of ��� � ���� � ���

; this is a concurrent thread model. By applying our axiom system for compaction of the state

machine, it is then represented by

����*������������ � ����������	���������

Figure 6.6 depicts a concurrent thread model corresponding to this expression.

6.3 PCM device driver

In this section we show a PCM device driver development to ascertain how our approach works

in the development of a real application. We also set out how to map a concurrent thread model

into real source code in C. The mapping process is heuristic; however, it illustrates that an actual

implementation based on a concurrent thread model is a reality.

The target driver is a synthesiser of a PCM data stream. It synthesises some PCM data on the

fly so that some PCM channels can be played through just a single digital to analog converter

called a DAC or D/A converter. The PCM channel is an abstraction of a PCM data stream in

which the volume and frequency can be controlled.

6.3.1 Environment

It is assumed that the target system for this driver has the following hardware.

- A single CPU
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tc
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tc
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Figure 6.6: Concurrent Thread Model for ��� � ���� � ���

- A hardware clock oscillator

- A digital to analog converter (DAC)

In addition, it is assumed that an operating system that has at least the following functions is

running on the system.

- I/O function

This is used to write values from the driver to the DAC.

- Interrupt handler

This function is used to notify an event from the hardware clock to software.

- Semaphore

This is used to implement the mutual exclusion of threads in the driver software.

We implement this driver in C language.

67



6.3.2 Specification

The requirement specification for the PCM driver software is as follows.

- It can play and stop up to 3 PCM channels concurrently.

- The frequency can be changed for each channel.

- The volume can be changed for each channel.

- Both frequency and volume can be changed on the fly.

The application interface (API) of the driver is shown in Table 6.6

Entry Function Arguments

D� E Start playing Number of channel,

The top address of PCM data,

The end address of PCM data

�4�D Stop playing The number of a channel

�"B: Change frequency The number of a channel, Frequency

@ �� Change volume The number of a channel, Volume

Table 6.6: Application Interface for the PCM driver.

6.3.3 Analysis

In the analysis phase, we define the classes and behaviours of objects in the system. Then we

define the behaviour of objects with a concurrent object expression. We start by defining the

classes.

Class definition

First, we analysed the system and defined some classes as follows.

These classes cover the following part of the system.

� API is a class for API entry of the driver. Each method in API directly corresponds to a

driver entry.
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API

+play
+stop
+freq
+vol

Channel

+play
+stop
+freq
+vol

3

Clock

SynthD/A

Synchronize

Write
+write

+calc

Get data

Figure 6.7: Class Diagram

� Channel is a class for each channel. Methods play, stop, freq and vol mean start playing,

stop playing, change frequency and change volume for the corresponding channel. calc is

a method for calculating the output value of the channel. Once calc is called, it generates

the output for 1 clock time.

� D/A is an abstraction of Digital to analog converter. ’write’ is a method for writing a

value to the D/A converter. The real output of D/A follows the value.

� Synth is a synthesizer for 3 channels and Clock is a class for a hardware clock. Synth is

synchronised with clock signals. Each time it synchronises, it synthesises an output value

from the output values of all channels. Then, it writes the synthesised value to the D/A

converter.

� Clock directly corresponds to the hardware clock.

Behaviour definition

The behaviour of each objects is defined as in Table 6.7. API, SYN, CLK, DAC in the Table

6.7 are instances of class API, Synth, Clock and D/A. The driver plays 3 PCM channels concur-

rently, so three instances of class Channel are required. Object CH�,CH� and CH�, respectively,

represent these instances.
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Each action represents the following functions.

� ���!
 ����
 /�	F�+�� in API correspond to API entries.

� ��
 ��
 /�
 +� corresponds to ���!
 ����
 /�	F
 +��, respectively, methods of CH�.

� ���� is an action that means communication between CH�,CH�,CH�. In this action, ob-

jects CH�,CH�,CH� calculate their output values using these 3 values, �E < prepares its

output value for D/A.

� ��( corresponds to the event from the clock.

� ����	 corresponds to the write method of class D/A.

Object name Behaviour definition in BCREs

 D2 ����!���� � �� � ��� � �������� � �� � ����

/�	F��/� � /� � /�� � +����+� � +� � +���
�

�3� ��� � �� � /� � +� � �����
�

�3� ��� � �� � /� � +� � �����
�

�3� ��� � �� � /� � +� � �����
�

�E < ���(����������	��

��G ��(�

A � ����	�

Table 6.7: Behaviour of objects

The expression in Table 6.7 represents the following behaviour of the object.

� Object  D2 invokes an appropriate channel after one of the API entries is called. For

example, one of play methods of the channel objects (��
 �� or ��) is called after an API

entry PLAY(���!) is called.

� Objects�3�
 �3�
 �3� repeatedly start playing, stop playing, change frequency, change

volume or calculate their output value.

� �E < synchronises with a clock event (��() from the hardware clock, then calculates the

output value (����) and sends it to the D/A converter using the ����	 method.
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� ��G repeatedly generates a clock event.

� A � repeatedly accepts the ����	 action from �E < .

clk calc

write

play

stop

freq

vol

p0+p1+p2
s0+s1+s2

f0+f1+f2

v0+v1+v2

API

SYN

p0+s0+v0+f0+calc

CH0

p1+s1+v1+f1+calc

CH1

p1+s1+v1+f1+calc

CH2

clk

CLK

write

DAC

Figure 6.8: Concurrent object model for PCM device driver

Analysis Model

The design model for the PCM device driver is defined as the following concurrent object

expression.

 D2 � ��3� � ��3� � ��3� � ��E < � ���G � �A �

where we use the name of an object as an abbreviation of an actual expression. For example,

��G � �A � simply means ����(� � �����	�.

6.3.4 Design and implementation

The first thing to do after the analysis phase is to derive a concurrent thread model from the

concurrent object model of our PCM device driver. We omit details of the transformation here.
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A concurrent thread model for a PCM device driver can be obtained as follows.

����!����������������������������/�	F��/��/��/���+����+��+��+���
� � ���(����������	��

Figure 6.3.4 depicts this concurrent thread model.

clk calc

write

play

stop

freq

vol

p0+p1+p2
s0+s1+s2

f0+f1+f2

v0+v1+v2

Figure 6.9: Concurrent thread model for PCM device driver

Next, we implement our PCM device driver based on this concurrent thread model. Before

we implement C code, we divide the concurrent thread model into some fragments that can be

directly mapped into C source code.

Extracting �-threads

�-threads is a fragment of a concurrent thread model that can be directly mapped into functions

in C. In this development, �-thread is roughly defined as follows.

�-threads

� �-thread is a pair of an action initiated by an external event and an succeeding action

sequence that does not contain any external events.
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� �-threads are executed exclusively if they belong to the same thread.

where an external event is an action that indicates an incoming event from outside of the soft-

ware.

We extracted �-threads from the concurrent thread model as 6.8. The method of how to

extract �-threads is heuristic, as follows. First, we obtain �-threads from

����!���� � �� � ��� � �������� � �� � ��� � /�	F��/� � /� � /�� � +����+� � +� � +���
�

In this thread ���!
 ����
 /�	F
 +�� are the external events because these actions clearly corre-

spond to the API interface of the PCM device driver. All occur when one of the API entries

is called from a client of the driver software. According to the definition of �-threads, we can

extract 4 �-threads D� E
 �4�D
 �"B:
 @�� as shown in Table 6.8.

Name Expression

D� E ���!���� � �� � ���

�4�D �������� � �� � ���

�"B: /�	F��/� � /� � /��

@ �� +����+� � +� � +��

��G ��(����������	

Table 6.8: �-threads

Then, on the other hand, for thread ���(����������	��, the action ��( is regarded as the

outside event. Since ��( corresponds to an event from the hardware clock, it comes from outside

the driver. We can extract only one sub-thread ��G as shown in Table 6.8

Now, we can directly implement 5 �-threads as in the Table 6.8 as C functions. See the

Appendix to view the actual implementation in C code. The names of functions in the code are

the same as the names of threads in Table 6.8.

Interface for external event

Since �-thread is always invoked by an external event, there must be an interface that receives

the external event on the �-thread.

Since �-threads D� E
 �4�D
 �"B: and @ �� correspond to API entries, function en-

tries themselves are regarded as the interface for external events. Then the arguments of these
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functions are implemented according to the API specification. For example, API @ �� has two

arguments. One is the number of channels and the other is the amount of volume. The definition

of function @ �� is as follows.

void VOL(int ch, int value);

�-thread ��G is synchronised with hardware clock signals from the object ��G. We

suppose that the hardware clock interrupts the operating system and the function corresponding

to �-thread ��G is called by the operating system. The address of ��G is registered as an

interrupt handler for the hardware clock event when the driver is initialised. (Note that this

initialisation code is omitted in the sample source code.)

Implement the body of �-threads

The inside of the functions should be implemented considering the meaning of the �-threads.

Each function is filled with proper code that realizes the behaviour of �-threads.

For example, @ �� is a thread that behaves as +����+� � +� � +��. We implement the body

of the function as follows.

void VOL(int ch, int value)

{

volume[ch] = value;

}

The variable ’volume’ is an array that stores the volume of 3 channels. This code represents

the behaviour of �+� � +� � +�� but the code may seem to be different from the behaviour of

�+� � +� � +��. volume[ch] = value is regarded as an abbreviation of the following code.

switch(ch){

case 0:

volume[0] = value;

break;

case 1:

volume[1] = value;

break;

case 2:

volume[2] = value;
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break;

default:

/* ERROR */

break;

}

This code intuitively corresponds to �+� � +� � +��.

Implement the mutual exclusion

According to the concurrent thread model, threads D� E
 �4�D
 �"B: and @ �� should

not be executed concurrently. However, we implement these 4 � threads as functions so they

are capable to be executed concurrently if the external events come again before the functions

finish their process. To prevent such a situation, a binary semaphore can be used to make certain

�-threads are executed exclusively.

Some code for handling semaphores is added to the functiosn D� E
 �4�D
 �"B: and

@ �� as follows. ENTER(sem) is inserted at the beginning of the function and LEAVE(sem) is

also inserted at the end of function. sem is a binary semaphore. ENTER is a function that turns

the semaphore up and the caller thread of this function enters the critical section. LEAVE is also

a function turns the semaphore down and the caller thread leaves the critical section. Only one

thread can enter the critical section; so a thread is blocked if the semaphore is up when it enters.

The thread waits until the semaphore is down. For instance, function @ �� is implemented as

follows.

void VOL(int ch, int value){

ENTER(sem);

volume[ch] = value;

LEAVE(sem);

}

Similarly, ENTER and LEAVE are added to D� E
 �4�D and �"B: functions. Finally,

D� E
 �4�D
 �"B: and @ �� are always exclusively executed. Then, the implementation

is finalised and the driver correctly follows the behaviour represented by the concurrent thread

model.
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Chapter 7

Related Works

This section compares our research with works from two points of view. First, as an object-

oriented design method, we compare our approach with two real-time embedded software de-

velopment methods: OCTOPUS method[4] and the SES (synchronized execution sequences)

approach[3], which use thread-based models as their software design model. Second, as a log-

ical basis for concurrent systems, we compare our BCREs with CREs[2] and several process

theories[14, 15, 17, 16]

7.1 OCTOPUS Method

The OCTOPUS method[4] is a development method for real-time software. Similar to our trans-

formation method, it proposes a way to extract concurrent components from an object-oriented

software analysis model. However, there are many differences between the two approaches .

An overview of OCTOPUS’s procedure of extracting concurrent components follows.

1. It specifies all possible communication between objects and makes a communication

graph of the objects.

2. It specifies as synchronous or asynchronous all communications in the graph.

3. It divides all objects into object groups, in which each group can involve objects related

with synchronous communications with each other, but not asynchronous ones.

Then, the groups obtained by the above procedure are mapped into the task, thread or processes

provided by operating systems, and then they are concurrently executed in the real software.

Note that the groups deduced by this procedure are not deterministic. Further, a high level of

skill is required of the developer for deciding the object groups.
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7.2 SES approach

The SES approach is a software design method based on the SES model for real-time embedded

software. A SES model consists of a global automata and some SESs. The SES is a sequence of

internal actions of the system. The global automata controls the timing of the execution of SESs

mapped to each of the states of the automata. As well, the SES model satisfies the following

properties

� No SESs have a blocking operation.

� Any state transition in the global automata must be initiated when all executing SESs are

terminated.

This architecture of the SES model is almost similar to our concurrent thread model; the only

difference is that any state transition in the SES model is performed by deterministic events,

while there is no explicit transition events in our concurrent thread model.

7.3 Concurrent Regular Expressions

As we discussed in Chapter 2, our BCREs are based on Concurrent Regular Expressions (CREs).

The difference between BCREs and CREs can be summarized as below.

� BCREs do not have alpha-closure and renaming operators.

� The semantics of the synchronous composition operator is different.

CREs were proposed as a description language of the behaviour of Petri nets[12]. Since an

infinite number of concurrent sequences are observable from Petri nets, there is an operator

called alpha-closure that can handle infinite concurrency. As well, CREs have a operator that

renames any symbols in CREs. In the definition of BCREs, these two operators are omitted for

the following reasons. For the interleaving closure operator, we assumed that a real system can

be modelled with a finite number of objects or threads. Therefore we decided to eliminate the

alpha-closure from our BCREs. For the renaming operator, this can be used for hiding symbols

and observing partial behaviour of a system. We do not take this operator into BCREs in order

to simplify our transformation method. Although renaming is not supported, our concurrent

object and thread models can be described as set out in Chapter 4. However, we are undecided

whether the renaming operation is actually necessary for modelling concurrent object or thread

models. To clarify this problem, we will need more application examples of BCREs through
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real system developments. We will add this operator to BCREs if it should become apparent

that renaming is a useful or essential idea.

As for the difference of semantics, the following is the definition of synchronous composi-

tion in CREs.

��� � � �� � �� 
 ����� � �
 ����� � �	

where ��� denotes a set of symbols in �. �� denotes the restriction of the sequence � to the

symbol of . (Note that more precisely, �� � ���� � ����� is required as a condition.) On

the other hand, the synchronous composition in BCREs is defined as follows.

��� � � � �� � �� 
 ����� � � � �
 ����� � � � �	

The difference between these two definitions is that � � is not distributive. Namely, it does not

follow that

 �� � �� � � � � �� � � �� � �� � � ��

whereas the � � � operator is distributive, that is,

�� � �� � � � � � � � � � ���� � ���� � � � � � � � ���� � ���� � �

follows as seen as Axiom ��. Distributiveness is very important for complete axiomatisation

of BCREs. Hence, we proposed a different definition for synchronous composition. We under-

stand that complete axiom systems for CREs have never been studied.

7.4 Process Theory

A number of theories for concurrent systems have been proposed, for example, CSP[14], CCS[15],

.-calculus[17] and ACP[16]. They are called process calculi. Strictly speaking an ACP is called

process algebra since its semantics are based on an algebraic method by a set of axioms. In this

thesis, we simply call these approaches process theory.

Process theory handles several kinds of equivalence in concurrent systems. Equivalence of

BCREs is similar to the language equivalence of automata. In process theory, such equivalence

is called trace equivalence. It seems possible to define our model and transformation method

based on process theory. However, there is no process theory that is sufficient to treat our model

and transformation method. They are suitable to denote our concurrent object model but not

for our concurrent thread model due to some limitations in their syntax. Moreover, even if we

choose the process theory, they could not be used as an immediate solution of our transformation
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problem. No systematic method, similar to our model transformation method in Chapter 5, has

been discussed in process theory. Thus, in this paper we have solved the problem with BCREs.

In the remainder of this section, we explain in more detail why BCREs are preferred as our

formalism instead of process theory. The reasons why we chose BCREs follow.

1. BCREs consist of simple syntax and semantics based on trace equivalence.

2. The syntax of BCREs is appropriate for our concurrent thread model.

3. BCREs explicitly discriminate concurrent behaviour with communication from that with-

out communication utilizing the operators � and � � � .

In respect of the first reason, we defined consistency between concurrent objects and con-

current threads based on trace equivalence, which is similar to language equivalence. Internal

states in a system are ignored under this equivalence; thus, in our approach, we do not need

to explicitly model states of a system. However, in process theory, a system is generally mod-

elled by a set of processes where each process explicitly represents a state in a system. Such

state-aware modelling is redundant in our approach.

Readers may think it is possible to define consistency between concurrent objects and

threads based on an another style of equivalence, for example, the strong or weak bisimulality

of process theory. Such could be the case, however, in here we have adopted trace equivalence

as the first step to challenge the model transformation problem, since trace equivalence is basic

and the most simple equivalence of behaviour, and thus satisfactory for tackling the problem.

In respect of the second reason, we defined a concurrent thread model to obtain information

of how many, when, and what kind of threads are executed concurrently. Let us consider a

BCRE ����!�1��F���. In accord with this expression, it is easily understood that the following

actions are executed concurrently.

1. � or ! is executed, then 1 is executed.

2. Iteration of F occurs after �.

Then, finally � is executed. In contrast, it is difficult to model the system with explicit denotation

of such information using the general syntax of process calculus. We see that the following

processes define behaviour similar to ��� � !�1��F��� in the manner of CCS or .-calculus.

D� � D�
D�

D� � ��D� � !�D�

D� � ��D� � ��D�
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D� � 1�D�

D� � F�D� � ��D�

D� � ��Æ

where Æ denotes a terminating process. D�
D� represents concurrent process with D� and D�.

It is hard to obtain information like (a) and (b) from this process definition. According to the

syntax of CCS and .-calculus, any successive process or action is not allowed for concurrent

processes. D�
D� should appear at the end of right-hand side in a definition of process. As for

CSP, whose syntax is little different from CCS in several areas, there is also no way to denote

successive actions after a concurrent process definition. Therefore, neither CCS, .-calculus nor

CSP can denote a explicit process or action that is executed just after concurrent processes, like

���!�1 in BCREs. Furthermore, loop or iteration of actions are denoted as recursive processes;

thus, it is difficult to understand which set of processes is considered as a set of closed processes

t constituting the loop or iteration. On the other hand, BCREs have the closure (�) operator for

loops of actions so that loop behaviour can also be denoted as simply as a sequence. Compared

with the other process theories, ACP is based on a reasonably different syntax closer to BCREs.

It allows a notation like ���!�1 similar to BCREs but it does not have a closure operation. (Note

that there is a system BPA* [18] that is a subset of ACP with an extending closure operation.

A complete axiom system for strong equivalence of BPA* has been presented[11]. However,

BPA* has no algebraic operator for concurrency and communication.)

In respect of the third reason; it is very important for our approach to distinguish concur-

rency between objects from between threads. In BCREs, these two types of concurrency can be

handled separately by � � � and �, respectively. Give the grace of such separation, our transfor-

mation method has been precisely defined as a procedure that eliminates all � � � operators and

replaces these with equivalent expressions defined with the � operator. By contrast, CCS and

.-calculus use the operator � for concurrent processes without regard to communication. As for

ACP, there are two different operations called ’free merge’ and ’merge with communication’;

The latter is for concurrent processes with communication and the former is for the other pro-

cesses. However, the operation ’merge with communication’ is defined as an extension of ’free

merge’ so two different operators cannot be used simultaneously. CSP has the operator � for

concurrency with communication, and the operator 


 for concurrency without communication.
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Chapter 8

Conclusion and Future Work

In this thesis, we investigated how to obtain information about concurrency: ‘How many and

what kind of thread are executed concurrently’ from an object-oriented behavioural model. We

presented the two orthogonal models for object-oriented and concurrent sequence-based as-

pects; the concurrent object model and the concurrent thread model, respectively. Then we pro-

posed a systematic method for transformation from a concurrent object model to a concurrent

thread model. Since the concurrent thread model explicitly represents information of concur-

rency, by using our transformation method it is possible to systematically obtain information of

concurrency from object-oriented models.

In Chapter 2, we presented basic concurrent regular Expressions (BCREs); which are an

extension of two operators to the regular expressions for handling communication and concur-

rency. In Chapter 3, we described an axiom system �� for BCREs. We also proved that the

axiom system was sound and complete. Language equivalence of BCREs can be proved by

this system. In Chapter 4, we formalised the concurrent object and concurrent thread models

using BCREs. In Chapter 5, we proposed a method of how to transform a concurrent object

model to a concurrent thread model. This method is sound; that is, any behaviour represented

in a model is preserved after transformation. Moreover, we proved that our transformation

method can handle any concurrent object model that consists of two objects. An issue with

this method is that some models that contain more than three objects cannot be transformed

by our method. For completeness of transformation, we hope to extend our method to more

than three object models. In Chapter 6, we demonstrated our transformation of three example

models: a media player, an auto-locking door and a PCM device driver system. All models in

these examples were successfully transformed . Especially in the PCM device driver system

example, we showed a heuristic mapping from the concurrent thread model to C source code.

This result showed that it is possible to implement real software that is based on our concurrent
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thread model.

Future work will include completing a model transformation method for three or more ob-

jects. We plan to implement a system for automatic transformation because it is hard to perform

the transformation manually.

We also plan to introduce specific real-time information into our concurrent thread model

so that we can discuss the satisfiability problems of real-time constraints.
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Appendix A

Proof for Soundness of ��

This appendix provides the proof for soundness of ��. It is enough for proving soundness to

show all the axioms in �� are valid. However, here we only prove that the axioms �� and �� are

vaild. For the other axioms, it is easy to prove straightforward from the semantics of BCREs,

therefore we omit the detailed proofs for them. In this appendix, We begin with some lemmas

that are useful in the succeeding proofs. Then, we provide the proofs for �� and ��.

A.1 Preliminary

LEMMA A.1

� ���� � ��� � ��� if ���� �� � and ���� �� �

� �� � �� � ��� � ���

��� means a set of symbols which occur in ����. It is almost clear from the definition of  and

�. We omit a detailed proof. In the remainder of this section, we will use this lemma without

explicit reference to.

LEMMA A.2

Assume that ������ � � � � ���� where � and � are sets of symbols, � is a BCRE and � is a

sequence. Then � � ��� � � implies ����� � � � � � ����� � �.

PROOF

�� ��� � �means that � has no symbol among �. Hence, � will not effect the result of the

restriction of �. Then the lemma clearly holds. �
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LEMMA A.3

����	 � ��� � � � ���� implies � �� ��� or � � ���. where � is a symbol, � is a set of

symbol, � is a BCRE and � is a sequence.

PROOF

Assume that ����	������ � ����. If � � �����	 � ��� � �� then �����	 � ��� � �� �

��� clearly holds. Hence, � � ���. On the other hand, if � �� �����	 � ��� � ��, then it

is obvious that � �� ���.Therefore, Lemma A.3 holds. �

LEMMA A.4

����� � � � !��� � ���� � � � !�� where � �� ! and � �� ��� � �.

PROOF

Assume that � �� !, � �� ����� and � � ����� � � � !���. Then, according to the definition

of �, some �� exists such that � � ��� such that

�� � ���� � �!����
 (A.1)

������ � � � ����
 (A.2)

����!�� � � � ��!�� (A.3)

It clearly follows by (A.1) that

��� � ����� � �!���� (A.4)

Assume that � � ����. Then By (A.1), it clearly holds that � � ��� � ���. By the assump-

tion, � �� ��� holds. Thus � � ��� and this implies �����	 � ��� � � � ������ � �. In

opposite, assume that � �� ����, it is clear that �����	����� � � ������� �. Accordingly,

by (A.2), �����	 � ��� � � � ���� follows. Therefore,

�������� � � � ����� (A.5)

By the assumption, it is obvious that � �� �!�� � �. Therefore, ���!�� � � is a empty word.

Accordingly, by (A.3),

�����!�� � � � ��!�� (A.6)

By (A.4), (A.5) and (A.6), ��� � ���� � � � !��. This implies

����� � � � !��� � ���� � � � !�� (A.7)

�
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A.2 Axiom ��

We prove that the axiom �� is vaild through the following four cases.

��� �� � � � �� � ��� � � � ��	 � ��

��� �� � � � !� � ��� � � � !�� if � �� !
 � �� ��� � �
 ! � ��� � �

��� �� � � � !� � ��� � � � !�� � !��� � � � �� if � �� !
 � �� ��� � �
 ! �� ��� � �

��� �� � � � !� � � if � �� !
 � � ��� � �
 ! � ��� � �

Proof for ���

Let � be in ���� � � � ���. Then by the definition of �, it follows that

� � ����� � ������
 (A.8)

������ � � � �����
 (A.9)

������ � � � ����� (A.10)

By (A.9) and (A.10), it is obvious that the first symbol of � is �. Hence, � � ��� for some

��. Since ������ � � � � so �������� � � � �������� � �� � �����. Therefore,

������� � � � ����. In the same way, it follows that ������� � � � ����. Thus

������ � ��	 � � � ���� (A.11)

������ � ��	 � � � ���� (A.12)

By (A.8), ��� � ���	 � ��� � �����. Hence, �� also in ���	 � ��� � �����. Assume that

� � ��� � ��� then �� � ���� � ����� clearly follows. On the other hand, in the case

where � �� ��� � ���, assume that � � ����. Then, it contradict with (A.11) and (A.12).

Therefore, � �� ����. This implies,

�� � ���� � ����� (A.13)

By (A.11), (A.12), (A.13), according to the definition of �,

�� � ��� � ��	 � � � ��

Thus � � ��� � ����� � ��	 � � � �� follows. Therefore, it follows that

���� � � � ��� � ����� � ��	 � � � ��� (A.14)

85



Next, let � be in ����� � � � ��	 � ���. Then � � ��� for some �� and

�� � ���� � ����� (A.15)

������ � � � ��	 � ���� (A.16)

������ � � � ��	 � ���� (A.17)

By (A.15),

��� � ���	 � ��� � ����� (A.18)

By (A.16) and the definition of �, �������� � � � ��	� � �����. Therefore, since ����� �

� � ��	 � �, it follows that

������� � � � ��	 � ����� (A.19)

In the same way,

������� � � � ��	 � ����� (A.20)

By (A.18)(A.19) and (A.20), and the definition of �, ��� � ���� � � � ��� follows. Therefore,

����� � � � ��	 � �� � ���� � � � ��� (A.21)

By (A.14) and (A.21),

��� � � � ��	 � �� � �� � � � ��

that is, ��� is valid. �

Proof for ���

Assume that � �� !, � �� ��� � � and ! � ��� � �. Let � be in ���� � � � !��, that is,

� � ����� � �!����
 (A.22)

������ � � � �����
 (A.23)

���!�� � � � ��!�� (A.24)

Suppose that the first symbol of � is !. Then ,by the assumption ! � ��� � �, the first symbol

of ����� � � is !. It contradict with  ���. Hence, the first symbol of � is not !. If the first

symbol of � is not �, it also contradict with  ���. This implies that some �� exist such that

� � ��� holds.
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From (A.23), ������	������ � ����� holds. According to the definition of �, �����	�

��� � � � ����. By (A.23) and Lemma A.3, � �� ���� or � � ���. In the both cases, it

clearly follows from (A.23) that

������ � � � ���� (A.25)

Since � �� ! and � �� ��� � � by the assumption, ���!�� � � is an empty word. Hence,

�����!�� � � � ����!�� � �������!�� � �� � ����!�� � �. Then by (A.24)

����!�� � � � ��!�� (A.26)

Be reminded again that � �� ���� or � � ��� holds. Then it is clear from (A.22) that

�� � ���� � �!���� (A.27)

By (A.25), (A.26), (A.27) and the definition of �, �� � ��� � � � !�� holds. Therefore, ��� �

����� � � � !���. Hence, ���� � � � !�� � ����� � � � !���. On the other hand, by the as-

sumption and Lemma A.4, ����� � � � !��� � ���� � � � !�� clearly holds. Consequently,

����� � � � !��� � ���� � � � !�� follows. �

Proof for ���

Assume that � �� !, � �� ��� � �, ! �� ��� � � and � be in ���� � � � !��. Then, suppose that

� is the first symbol of �. In the same way of the proof for ���, it follows that

� � ����� � � � !���

On the other hand, assuming that ! is the first symbol of �, then in the similar way to the proof

for ���, it is easy to see:

� � ��!��� � � � ���

Thus � � ����� � � � !��� � ��!��� � � � ��� follows. According to the definition of �,

����� � � � !���� ��!��� � � � ��� � ����� � � � !�� � !��� � � � ���

Therefore,

���� � � � !��� � ����� � � � !�� � !��� � � � ��� (A.28)
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Now, assume that � �� !, � �� ��� � � and ! �� ��� � � again. According to the definition

of �,

����� � � � !�� � !��� � � � ��� � ����� � � � !��� � ��!��� � � � ���

Then, by Lemma A.4,

����� � � � !��� � ���� � � � !��

By �� and Lemma A.4 again,

��!��� � � � ��� � ���� � � � !��

Hence,

����� � � � !�� � !��� � � � ��� � ���� � � � !�� (A.29)

By (A.28) and (A.29),

����� � � � !�� � !��� � � � ��� � ���� � � � !��

�

Proof for ���

It is almost obvious from the definition of � that ���� � � � !�� � �. Therefore the axiom is

valid.

A.3 Axiom ��

This section proves the validity of the axiom ��. Assume that � � ���� � �� � � � ��. Then by

the definition of �,

� � ���� � ��� � ����� (A.30)

����� � ��� � � � ��� � �� (A.31)

����� � � � ���� (A.32)

By (A.31), ����� � ��� � � � ���� or ����. We consider by first for the case where

����������� � ����. Since ������� � �������������, we have �����������

���� � � � ����. Then by Lemma  �� for all � � ��� � ���, � �� ��� or � � ���. By

the assumption it is obvious that � �� ��� because � � ��� � ���. Thus, only just � �� ���
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holds. This implies that ������������� � �, therefore ������������� � ��� holds.

Since ��� � ����������� by (A.30), thus ��� � ���� ��������� � �������

follows. Therefore,

� � ���� � ����� (A.33)

Now, considering the following equation:

����� � ��� � � � ����� � ����� � ���� � ���� � ����� � �

� ����� � ����� � ���� � ���� � ���� � ���� � �

� ����� � ���� � ��� � ���� � ���� � ��� � ���� � �

Remind that ��� � ���� � ���� � �, it is clear that ��� � ���� � ��� � ���� is also �.

Therefore by Lemma A.2

����� � ���� � ��� � ���� � ���� � ��� � ���� � �

� ����� � ���� � ��� � ���� � �

� ����� � ���� � ���� � �

Hence, ������ ���� � � ������ ����� ����� � follows. This and by (A.31) we have

����� � ���� � ���� � � � ���� (A.34)

Since ��� � �� � ���� � ���, ����� � � � ����� � �� � ���� � � for any set of

symbols �. Hence by (A.32),

����� � ���� � ���� � � � ���� (A.35)

By (A.33), (A.34), (A.35) and the definition of �, � � ��� � � � ���� � ���� � �� holds.

On the other hand, for the case where ����� � ��� � � � ����, then in the similar

way to the proof above, it is easy to see that � � ��� � � � ���� � ���� � ��. Thus � �

���� � � � ���� � ���� � ��� � ���� � � � ���� � ���� � ���. Hence,

���� � �� � � � �� � ���� � � � ���� � ���� � ��� � ���� � � � ���� � ���� � ��� (A.36)

Next we look at the case where � � ��� � � � ���� � ���� � ��. By this assumption, we

have

� � ���� � ����� (A.37)

����� � ���� � ���� � � � ���� (A.38)

����� � ���� � ���� � � � ���� (A.39)
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From (A.37), we can obtain

� � ���� � ��� � ����� (A.40)

By (A.37), ��� � ��� � ��� follows. Hence, ��� � ���� � ��� � ���� � � clearly

holds. Therefore, by Lemma A.2

����� � ���� � ���� � � � ����� � ���� � ��� � ���� � �

� ����� � ���� � ��� � ���� � ���� � ��� � ���� � �

� ����� � ���� � ���� � �

� ����� � ��� � �

Thus by (A.39), ����� � ��� � � � ����. Since ���� � ��� � ��, it follows that

����� � ��� � � � ��� � �� (A.41)

Since ��� � ���� � ���� � ���, then by (A.39),

����� � � � ���� (A.42)

Therefore by (A.40),(A.41) and (A.42),

� � ���� � �� � � � ��

In the similar way, the above equation also follows where � � ��� � � � ���� � ���� � ��.

Therefore,

��� � � � ���� � ���� � �� � ��� � � � ���� � ���� � �� � ���� � �� � � � �� (A.43)

Then by (A.36) and (A.43),

���� � � � ���� � ���� � ��� � ���� � � � ���� � ���� � ��� � ���� � �� � � � ��

From the definition of �, this clearly implies

���� � � � ���� � ���� � �� � �� � � � ���� � ���� � ��� � ���� � �� � � � ��

�
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Appendix B

Proofs for Section 3.4

This appendix provides the proofs for theorems in Chapter 3 and the lemmas which required

for proving those theorems. Since our axiom system �� is complete, it is possible to prove these

theorems utilizing the derivation rules of ��. However, in this section, we prove the theorems

directly based on the semantics of BCREs in order to make our proofs precise.

B.1 Preliminary

Preceding to the theorems, we prove some lemmas which are required to prove the theorem in

the next section. The following Lemma B.1 represents the basic properties of restriction. Note

that in the reminder of this appendix we use these properties without being explicit referred to.

LEMMA B.1

Let �
 � and * be a set of symbols, � be an BCRE and � be a sequence.

1. ����� � ��� � �

2. ����� � �����

3. ����� � ��� if � � �

4. ��� � * � ��� � * if ��� � ���

5. ����� � � if � � ����

6. � � �� if � � ���

It is easy to prove these properties. We omit the proof here. �
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The next Lemma B.2 and B.3 also represent simple properties between restriction and the

language of BCREs.

LEMMA B.2

1. � � ��� � ����� implies ��� � ����.

2. ����� � � � ���� implies ����� � ����.

PROOF

It is obvious from the definition of � and restriction. �

.

LEMMA B.3

����� � ��� � ����� �/ � � ���� � ����� ��� ��� � ��� � �

PROOF

Assuming that � � ���������� and ������� � �. Then assume that ��������� ��

�����. By this assumption, there is some � in � such that � �� ��� and � � ���. By the

assumption � � ���� � �����, � � ���� � ����. Hence by � �� ���, it follows that

� � ���. Therefore � � ��� � ���. However, ��� � ��� � � clearly holds from the

assumption. and clearly contradicts � � ��� � ���. Hence it is concluded as proof by

contradiction that ����� � ��� � �����. �

LEMMA B.4

Assume that �� ��� � ������, � �� ���, �� has only one � and the � is at the end of ��. Then

�� � �����.

PROOF

Suppose that

�� � �� � �� � � ��� � � � �� � � � ��

where �� � � ��� � �� � and �� � � � �� � ��=�. Then let us consider the following three cases.

1. if �� � �� � � ��� � � then � � �����.

2. if �� � �� � � ��� �
 � ( � �� then �� � �. It contradicts � �� � �.

3. if �� � �� � � ��� � � � �� � � � �� �
 � ( � '� then �� � �. It contradicts the assumption

where �� has a single �.

92



Therefore, it is concluded that �� � �� � � ��� � � � ����� and the lemma holds. �

LEMMA B.5

Let �
 � and � be BCREs. Then � � ���� � ����� if � � ���� � �����, ����� � ����

and ��� � ���.

PROOF

Assume that � � ����������, ����� � ���� and ��� � ���. Since ����� � ����,

����� � ��������� holds. Then by ��� � ���, ����� � ����� follows. Hence, �

does not have a symbol in ��� � ���. Since � � ����� �����, it follow that � � ������

����� ���� � ������ � ����������������. It is clear that ���������������� �

���� � �����. Thus � � ���� � ����� and the lemma holds. �

B.2 Theorem 3.5 (Associative Law (1))

Assume that ��� � ��� � �� � � �� and ��� � ��� � �� � � �� then

� � � �� � � �� � �� � � �� � � �

Proof

Assume that ������� � �� � � ��, then �� � � �� � ������� holds since it is clear that

��� � ��� � �� � � ��. From this and the semantics of BCREs, it follows that

��� � � �� � � ��� � ��
 � � ���� � ��� � �����


����� � ����


����� � ��� � ��� � � ��	

By the semantics again,

��� � � �� � ��
 � � ���� � �����


����� � ����


����� � ����	

Thus it follows that

��� � � �� � � ��� � ��
 � � ���� � ��� � �����
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����� � ����


����� � ��� � ���� � �����

����� � ������� � ����


����� � ������� � ����	

It is clear that the condition ����� � ��� � ���� � ����� at the third line in the above

equation holds for every �. Therefore it can be eliminated from the above conditions. Moreover,

it follows for all � and � that ����� � ������� � �����. Hence,

��� � � �� � � ��� � ��
 � � ��� � ��� � ���


����� � ����


����� � ����


����� � ����	 (B.1)

In the similar way, it is also proved that ���� � � �� � � �� equals (B.1) by assuming ���� �

���� � ��� � � ��. Thus the theorem follows. �

B.3 Theorem 3.6 (Associative Law (2))

Assume that ���� � ���� � ���� � ���� � ���� � ���� � � then,

� � � � �� � � � �� � �� � � � �� � � � �

Proof

Let us prove that ��� � � � �� � � � ��� � D where

���� � ���� � ���� � ���� � ���� � ���� � �

and

D � � � 
 � � ���� � ��� � �����
 (B.2)

����� � � � ����
 (B.3)

����� � � � ����
 (B.4)

����� � � � ���� 	 (B.5)
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Assume that ����������������������������� � � and � � ��� � � � �� � � � ���.

Then, from the definition of �, it is easy to show that

��� � � � �� � � � ��� � � � 
 � � ���� � �� � � � ����
 (B.6)

����� � � � ����
 (B.7)

���� � � � �� � � � ���� � �����


���� � � � �� � ����� � � � ����
 (B.8)

���� � � � �� � ����� � � � ���� 	

Now, we consider the following two cases:

1. Assume that �� � � � �� � ���. It is obvious that �� � � � �� � � � ��� � �. Then it

follows that ���� � � � �� � ����� � � � ����� � �. Therefore by (B.8),

����� � � � ����

2. Assume that �� � � � �� � ���.

Since � � ���� � �� � � � ����, it follows that � � ����� � �� � � � �� Therefore,

���� � � � �� � �

� ����� � �� � � � ����� � � � �� � �

� ������ � �� � � � ��� � ��� � � � �� � ��

� ���� � � � �� � ���� � ��

� ���� � � � �� � ���� � ����� � ���� � ���� � ���� � ���� � ���� � ����

� ���� � � � �� � ���� � ���� � ���� � ���� � ���� � ��� (B.9)

where �� is a set of symbols such that

� � ���� � ���� � ���� � ���� � ���� � ���� � ���

holds. In the similar way, it also follows that

����� � �

� ����� � �� � � � ������ � �

� ������ � ���� � ��� � � � �� � ���� � ���� � �� � � � ��� � ��

Since �� � � � �� � ���, �� � � � �� � ��� � �� � � � �� and according to the assump-

tion of �,

���� � �� � � � ��� � �
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� ���� � �� � � � ��� � ����� � ���� � ���� � ���� � ���� � ���� � ���

� ���� � ��� � ���� � ���� � ��� � ���� �

���� � ��� � ���� � ���� � ��� �

��� � � � �� � ��� � ���� � ��� � � � �� � ��� � ���� �

��� � � � �� � ��� � ���� � ��� � � � �� � ���

� ���� � ���� � ���� � ��� � ���� �

���� � ���� � ���� � ��� �

��� � � � �� � ���� � ��� � � � �� � ���� �

��� � � � �� � ��� � ���� � ��� � � � �� � ���

� ���� � ���� � ���� � ���� � ���� � ��� �

��� � � � �� � ���� � ��� � � � �� � ���

Therefore,

������ � ���� � �

� ������ � ���� � �� � � � �� � ����� � �� � � � ��� � ��

� ���� � � � �� � ���� � ���� � ���� � ���� � ���� � ���

By (B.9),

����� � � � ���� � � � �� � �

Hence by (B.8), ����� � � � ����.

Accordingly, it follows from the cases 1 and 2 that

����� � � � ���� (B.10)

In the similar way, it can be proved that

����� � � � ���� (B.11)

By (B.6), it clearly follows that

� � ���� � ��� � ����� (B.12)

Then by (B.7), (B.10), (B.11) and (B.12), � � D holds. Therefore it is concluded that

��� � � � �� � � � ��� � D (B.13)
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Now, on the other hand, we start with assuming � � D , namely, (B.2) to (B.5) follow. Then

since ��� � ��� � ���, it follows that ����� � � � ����� � ��� � ����� � �. Hence

by (B.4),

����� � ��� � ����� � � � ���� (B.14)

In the similar way, it follows from (B.5) that

����� � ��� � ����� � � � ���� (B.15)

By (B.4) and (B.5), it can be proved that

����� � ��� � � � ���� � ����� (B.16)

Then by (B.14),(B.15), (B.16) and the definition of �, we can obtain that

����� � ��� � � � ��� � � � �� (B.17)

By (B.16), it is obvious that ����� � ��� � � � ����� � ���. Therefore, By (B.17),

����� � ��� � ��� � � � �� (B.18)

By (B.2),(B.18) and Lemma B.5

� � ���� � �� � � � ���� (B.19)

By (B.17) again, ����������� � �������������� � � � �� � ���� � � � �� holds.

Thus,

���� � � � �� � ��� � � � �� (B.20)

Assume that � �� �� � � � ��. Then by (B.17) and �� � � � �� � ��� � ���, � clearly has no

symbol in � � �� � � � ��. Hence, ���� � � � �� � ���� � � � �� � � holds. On the other hand,

if we suppose that � � �� � � � ��, it is obvious that ���� � � � �� � ���� � � � �� � �. Then

by (B.20),

���� � � � �� � � � ��� � � � ��

Accordingly, by the definition of �,

���� � � � �� � � � ���� � ����� (B.21)

���� � � � �� � ����� � � � ���� (B.22)

���� � � � �� � ����� � � � ���� (B.23)
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By (B.3), (B.19), (B.21), (B.22), (B.23) and the definition of�, it holds that � � ��� � � � �� � � � ���.

Hence,

D � ��� � � � �� � � � ��� (B.24)

By (B.11) and (B.24), it is proved that D � ��� � � � �� � � � ���.

In the similar way, it also can be proved that D � ���� � � � �� � � � ���. We omit a detailed

proof since it is just a symmetry of the proof for D � ��� � � � �� � � � ���. It is thus concluded

that ���� � � � �� � � � ��� � ��� � � � �� � � � ��� and the theorem holds. �

B.4 Theorem 3.7

 � � � � � � � � � if ���� � ���� � � � �

Proof

Assuming that ���� � ���� � � � �, then in such case the axiom �� to �� are regarded as

�� � � � �� � �

�� � � � ��� � �

�� � � � � � � � � � ��

�� �� � � � !� � ��� � � � !�� � !��� � � � ��

�� ��� �� � � � � � � � � � � � � � � � �

Then by comparing this to the axiom �� to ���,

�� ��� � �

�� ���� � �

�	 ��� � ���

�
 ���!� � ����!�� � !������

��� �� � ���� � ��� � ���

it is obvious that they can simulates each other by replacing � with � � � or vice versa. Since

the �� is complete, we can say that all possible equivalent relationship on � � � and � operation
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can be represented only with these axioms. This implies that we can swap � � � � � to � � � or

vice versa in any expressions if ��� � ��� � � � �. Hence the lemma follows. �

B.5 Theorem 3.8 (Extraction)

 ����� � � � ��!Æ� � �� � � ����� � � � !Æ�

where �
 ! � ����� � �!Æ�� � � and ������ � �� � ��� � ���!Æ� � �� � ��� � �

This theorem means that if � and ! are communication symbols and, � and � does not

possess communication symbols, then � and � can be extracted as concurrent threads, namely

�� � � ��.

Proof

Assume that �
 ! � ������ �!Æ��� � and ������� ��� ��� � ���!Æ�� ��� ��� � �.

Then let us consider the following two cases.

1. Assume that � � ���� � � ����� � � � !Æ��. Then it is clear that

� � ������ � ��!Æ��� (B.25)

According to the definition of �, there are some �� and �� such that �� � ��� � � ���,

�� � ���� � � � !Æ� and � � �� � �� hold. By the definition of �, it follows from �� �

��� � � �� that ������ � ����. By the assumption, ������ � �� � ��� � �. Thus by

Lemma B.3, �������� � � � ������. Hence,

�������� � � � ���� (B.26)

In the similar way, it is proved that

�����!Æ� � � � ���� (B.27)

By the definition of � and �� � ���� � � � !Æ�, �� � ��������Æ��� and ��������� �

����� follows. Hence by Lemma B.3, ������ � ���� � � � ������� � � holds.

Therefore,

�������� � � � ����� (B.28)

99



holds. In the similar way, it also follows that

�����!Æ� � � � ��!Æ� (B.29)

By (B.26),(B.27),(B.28) and (B.29),

������� � � � ��������� � �� � ��������� � �� � ������ (B.30)

�����Æ� � � � �������Æ� � �� � �������Æ� � �� � ����Æ� (B.31)

By (B.25),(B.30) and (B.31), � � ����� � � � �!Æ�. Hence it is concluded that

���� � � ����� � � � !Æ�� � ����� � � � �!Æ� (B.32)

2. Assume that � � ����� � � � �!Æ�. If � �� ! is assumed it is obvious from the definition

of �,

����� � � � �!Æ� � ���� � � ����� � � � !Æ�� � �

Hence in the remainder of this proof we only focus on the case where � � ! holds. Then

the definition of �, it is obvious that

� � ������ � ���Æ��� (B.33)

������� � � � ������ (B.34)

�����Æ� � � � ����Æ� (B.35)

By (B.34) and the definition of �, there are some �� and �� such that

� � �� � �� (B.36)

�������� � � � ����� (B.37)

�������� � � � ���� (B.38)

�������� � � (B.39)

holds where ������� means the last symbol of the sequence �. Then by (B.35) and

(B.36),

�� � ������Æ� � � � ����Æ� (B.40)

By the assumption ������ � �� � � � �, it follows that � �� ����. Hence by Lemma

B.4, (B.39) and (B.40),

������Æ� � ����� (B.41)
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Accordingly, there is some ��
� such that �� � ��

� � � and ��
� � �����Æ� � �����. Thus

by Lemma B.2, it is easy to prove that ��
�����Æ� � ����. Hence, by Lemma B.2,

��
����� � ���� (B.42)

In the similar way, it follows that ��
������� � ���� since ��

� � ������� � ����� by

(B.37). Thus by Lemma B.2,

��
����� � ���� (B.43)

By (B.42) and (B.43)

�� � ��� � � �� (B.44)

Now, it is clear that � � ��
� � � � �

�
� and there is no � in ��. Then by (B.33), (B.34) and

(B.35), it can be proved that

� � ��
� � ����� � ��Æ���

� � ��
������ � � � �����

� � ��
����Æ� � � � ���Æ�

Therefore, by the definition of �,

� � ��
� � ���� � � � �Æ� (B.45)

Since � � ��
� � � � ��, By (B.44), (B.45) and the assumption of � � !,

� � ���� � � ����� � � � !Æ��

Hence,

����� � � � �!Æ� � ���� � � ����� � � � !Æ�� (B.46)

By (B.32) and (B.46),

����� � � � �!Æ� � ���� � � ����� � � � !Æ��

Hence, it is concluded that

����� � � � �!Æ� � ���� � � ����� � � � !Æ��

and the theorem holds. �
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Appendix C

Proof for Lemma 5.2

C.1 Preliminary

In this section, we assume that 1 is a set of symbols and ,��� and 6��
 %� is from R.H.S. of the

member of 7���� such that

� �
����
���

5��
 %�1��
 %�6��
 %� � 5��
 
� � 7����

We also use a set �7� to obtain L.H.S. of a member of 7�.

�7���� � �� 
 ���� � � � 7����	

LEMMA C.1

6��
 %� � �7���� for � � % � ,���.

PROOF

It is obvious from the definition of7� that7��6��
 %�� � 7���� for all %. Thus7��6��
 %�� �

7����. Then it is also clear by the definition of 7� that � � �7����. Therefore, 6��
 %� �
�7��6��
 %�� � �7����. �

LEMMA C.2

7����� � ���� � 8����� 
 �� � �7���� 	 �
����
���

7��6��
 %��

where 8����� is defined in the definition of 7�.

102



PROOF

Let ���
 � � � 
 ��	 � �7���� for some � and �� � �. According to the definition of 7�, for

all � � * � �,

7���
�� � ��
� � 8��
��	 �
�����
���

7��6��

 %��� �
����
���

7��6��
 %��

Since 6��

 %� � ���
 � � ���	 � �7���� by Lemma C.1, we can obtain the following equations.

7���
�� � ��
� � 8��
��	 �
�����
���

7���
��� �
����
���

7��6��
 %��

where �
� � ���
 � � ���	. According to the definition, 7���
� is a minimal set. Thus it is

obvious that

7���
�� � ���� � 8����� 
 � � % � �	 �
����
���

7��6��
 %��

and the lemma holds. �

LEMMA C.3

7����
�� � � � ��� � 8�� ���� 
 � � � �7���� � �7���� 	

where 8�� ���� is according to the definition of 7�.

PROOF

Suppose that �7���� � ���
 � � � 
 ��	 and �7���� � ���
 � � � 
 ��	where � � �� and � � ��.

Then by the definition of 7�, it follows for all � � * � � and � � + � ' that

7���
�
�� � ��
�

� � 8��
��	 �
����
���

7��6��
 %��
�� �

�����
���

7��6��

 %��
��

7�����
�� � ����

� � 8�����	 �
����
���

7��6��
 %��
�� �

�����
���

7��6���
 %��
��

Since 6��

 %� � ���
 � � � 
 ��	 and 6���
 %� � ���
 � � � 
 ��	 by Lemma C.1,

7���
�
�� � ��
�

� � 8��
��	 �
�����
���

7������
�� �

�����
���

7���
��
��

7�����
�� � ����

� � 8�����	 �
�����
���

7������
�� �

�����
���

7������
��

103



where �
� is among ���
 � � � 
 ��	 and ��� is among ���
 � � � 
 ��	. By the definition of 7�, 7�

is a minimal set, therefore it follows that

7�����
�� � ����

� � 8����
�� 
 � � % � �	 �

����
� � 8����

�� 
 � � % � '	

for all � � + � '. Remind that 7����
�� � 7�����

��. Thus the lemma follows. �

LEMMA C.4

7��� � � � �� � � �� � � � � � � 8��� � � � � �� 
 �� � �7����
 �
� � �7���� 	

PROOF

Suppose that �7���� � ���
 � � � 
 ��	 and �7���� � ���
 � � � 
 ��	where � � �� and � � ��.

Then by the definition of 7�, it follows for all � � * � � and � � + � ' that

7���
 � � � ��� � ��
 � � � �� � 8��
 � � � ��� 	 �
�����
���

�����
���

�6��

 %�� � � � 6���
 %��

Since 6��

 %� � ���
 � � � 
 ��	 and 6���
 %� � ���
 � � � 
 ��	 by Lemma C.1,

7���
 � � � ��� � ��
 � � � �� � 8��
 � � � ��� 	 �
�����
���

�����
���

��
�� � � � ����

where �
� is among ���
 � � � 
 ��	 and ��� is among ���
 � � � 
 ��	. By the definition of 7�, 7�

is a minimal set, therefore it follows that

7���
 � � � ��� � ��� � � � �� � 8��� � � � ��� 
 � � % � �
 � � ( � '	

�

C.2 Lemma 5.2

Let � and Æ are expressions without � � � and � operators then, for any 1,


Æ
 � 
�
� if Æ � �7���� follows.

PROOF
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In this proof, we assume ,���, 5��
 %� and 6��
 %� are expressions such that

� �
����
���

5��
 %�1��
 %�6��
 %� � 5��
 
� � 7����

Then we prove this lemma by induction on the structure of BCREs. As the base step, it is

obvious by the definition of 7� that the lemma holds for � � �, � � �� and � � � (� is a

symbol). Next, as induction steps, assume that the lemma holds for � � � and � � � and then

let us consider the following cases.

1. Suppose that Æ � �7��� � ��. Then, from the definition of 7�, it follows that Æ � � � �,

Æ � �7��6��
 %�� or Æ � �7��6��
 (��. It is clear that 
� � �
 � 
� � �
�. By induction

hypothesis and7��6��
 %�� � 7���� for all � � % � ,���, 
Æ
 � 
�
� if Æ � �7��6��
 %��.

In the similar way, it can be proved that 
Æ
 � 
�
� if Æ � �7��6��
 %��. Thus, it is

concluded that Æ � �7��� � �� implies that 
Æ
 � 
� � �
� and the lemma holds for

� � � � �.

2. Assume that Æ � �7�����. Then by Lemma C.2, Æ � ��� or Æ � �7��6��
 %�� where

�� � �7���� and � � % � ,���. By induction hypothesis, 
��
 � 
�
� clearly holds.

Hence, if Æ � ��� then, 
Æ
 � 
���
 � 
��
 � 
�
 � 
�
� � 
�
 � 
�
� � 
�
� � 
��
�

follows (Note that it immediately follows by the definition that 
�
 � 
�
� for any �). On

the other hand, if Æ � �7��6��
 %�� then, it is clear that Æ � �7����. Thus by induction

hypothesis, 
Æ
 � 
�
� � 
��
� holds. Therefore it is conluded that 
Æ
 � 
��
� in the all

cases.

3. Suppose that Æ � �7����
��. Then by Lemma C.3, Æ � � ��� where � � � �7���� � �7����

If � � � �7���� then by induction hypothesis, 
� �
 � 
�
�. Therefore 
Æ
 � 
� ���
 �


� �
 � 
�
 � 
�
� 
�
 � 
��
�.

4. Suppose that Æ � �7���
��. Then by the definition of 7�, Æ � �� or Æ � �7��6��
 ��
 %��

�� � % � ,����. If Æ � ��, it is obvious that 
Æ
 � 
��
�. On the other hand, if

Æ � �7��6��
 ��
 %��
��, we can prove that 
Æ
 � 
��
� in the similar way to 3.

By 1 to 4, the lemma clearly holds. �
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Appendix D

A PCM device driver implementation

/* Clock Frequency (Hz) */

#define INPUT_CLOCK 50000

#define CH_MAX 3

static int f[CH_MAX], v[CH_MAX];

static short *start_adr[CH_MAX];

static short *current_adr[CH_MAX];

static short *end_adr[CH_MAX];

static double counter[CH_MAX];

static double counter_step[CH_MAX];

static int playflag[CH_MAX];

static Semaphore sem=0;

/* play.(p_0+p_1+p_2) */

void PLAY(int ch, short *start, short *end){

ENTER(sem);

playflag[ch] = 1;

start_adr[ch] = start;

end_adr[ch] = end;

LEAVE(sem);

}

/* stop.(s_0+s_1+s_2) */

void STOP(int ch){

ENTER(sem);

playflag[ch] = 0;

LEAVE(sem);
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}

/* freq.(f_0+f_1+f_2) */

void FREQ(int ch, int value){

ENTER(sem);

f[ch] = value;

counter[ch] = 0.0;

counter_step[ch] = f[ch]/INPUT_CLOCK;

LEAVE(sem);

}

/* vol.(v_0+v_1+v_2) */

void VOL(int ch, int value){

ENTER(sem);

v[ch] = value;

LEAVE(sem);

}

/* clock.calc.write */

void CLK(){

short mix = 0;

int i;

for(i=0;i<3;i++) {

if(playflag[i]) {

/* calcurate the address counter */

counter[i] += counter_step[i];

if(counter[i]>=1.0) {

counter[i]-=1.0;

current_adr[i]++;

}

/* check the end of data */

if(current_adr[i]==end_adr[i])

playflag[i] = 0;

mix += (*(current_adr[i]) * v[i]) >> 4;

}

}

/* I/O Access */

DAC_WRITE(mix);
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}
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