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Abstract— Recently, biologically inspired control approaches 
for robotic systems that involve the use of central pattern 
generators (CPGs) have been attracting considerable attention 
owing to the fact that most humans or animals move and walk 
easily without explicitly controlling their movements. 
Furthermore, they exhibit natural adaptive motions against 
unexpected disturbances or environmental changes without 
considering their kinematic configurations. Inspired by such 
novel phenomena, this paper endeavors to achieve self-adapting 
robotic arm motion. For this, biologically inspired CPG based 
control is proposed. In particular, this approach deals with 
crucial problems such as motion generation and repeatability of 
the joints emerged remarkably in most of redundant DOF 
systems. These problems can be overcome by employing a 
control based on artificial neural oscillators, virtual force and 
virtual muscle damping instead of trajectories planning and 
inverse kinematics. Biologically inspired motions can be 
attained if the joints of a robotic arm are coupled to neural 
oscillators and virtual muscles. We experimentally demonstrate 
self-adaptation motions that that enables a 7-DOF robotic arm 
to make adaptive changes from the given motion to a compliant 
motion. In addition, it is verified with real a real robotic arm 
that human-like movements and motion repeatability are 
satisfied under kinematic redundancy of joints.  

I. INTRODUCTION 
t is well known that the walking mechanism in the nervous 
system by central pattern generators (CPGs) composed of 

neural oscillators and their network is the fundamental 
principle for attaining their natural and robust locomotion [1]. 
Humans or animals exhibit novel natural rhythmic 
movements such as running, swimming, flying, breathing, etc 
and continuous arm motions such as turning a steering wheel, 
rotating a crank, etc. which are dependent upon the 
interaction between the musculo-skeletal system and the 
nervous system. Since the musculo-skeletal system is 
activated like a mechanical spring by means of CPGs and 
their entrainment property [2]-[5], human behavior is 
adaptive or robust against unexpected disturbances or 
environmental changes. Alternate motor commands for the 
muscles are provided in the CPGs, which enables the 
musculoskeletal system to deal with environmental 
perturbations properly afferent feedback of sensory signal 
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[4]–[6]. 
Relating these previous works, Matsuoka presented a 

mathematical description of a neural oscillator [2]. He proved 
that neurons generate a rhythmic patterned output and 
analyzed the conditions necessary for steady-state 
oscillations. He also investigated the mutual inhibition 
networks to control the frequency and pattern [3] but did not 
include the effect of the feedback on the neural oscillator 
performance. Employing Matsuoka’s neural oscillator model, 
Taga et al. investigated the sensory signal from the joint 
angles of a biped robot as feedback signals [4], [5]; they 
showed that neural oscillators made the robot robust to 
perturbations through entrainment. Cao et al. [6] proposed the 
genetic algorithm (GA)-based method to build up desired 
neural oscillator networks. The CPG based approach was 
applied later to various locomotion systems [7]–[11] to show 
that neural oscillators made the robot adaptive to uneven 
terrains through the entrainment property.  

Besides the examples of locomotion, various efforts have 
been made to strengthen the capability of robots from 
biological inspiration. Williamson proposed the neuro- 
mechanical system that was coupled with the neural oscillator 
for controlling rhythmic arm motions [12]. Arsenio [13] 
suggested the multiple-input describing function technique to 
control multivariable systems connected to multiple neural 
oscillators. However, they only interest in attaining natural 
adaptive motions by the coupling between the arm joints and 
neural oscillators. Thus, the correctness of the desired motion 
was not guaranteed. Specifically, robot arms are required to 
exhibit complex behaviors or to trace a trajectory for certain 
type of tasks, where the substantial difficulty of parameter 
tuning emerges. Yang et al. presented simulation and 
experiment results in controlling the robotic arm trajectory 
incorporating neural oscillators for a desired task [14]–[16].  

Apart from such the proposed parameter optimization 
method, we have addressed an intuitive and efficient 
approach of biologically inspired control [17]. In addition, 
this work includes the supplemental method to practically 
enhance the performance with experimental demonstration 
using the developed 7-DOF robotic arm. Contributions of this 
approach can be summarized in the following points. 1)  In 
the CPG based control approach, an imposed task on a 
multi-DOF robotic arm can be attained easily 2) promoting an 
impressive capability such as self-adapting motions against 
an unknown disturbance. 3) Also it is needless to solve 
ill-posedness problems of inverse kinematics and 4) this 
approach can give an insight into a method of guaranteeing 
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motion repeatability of joints  in certain regions of the joint 
space 5) even in redundancy of degrees of freedom (DOFs). 
For technically accomplishing these objectives, virtual force 
constraints in terms of Jacobian transpose and virtual muscle 
damping factors corresponding to the velocity of joints [14] 
are employed simply to the CPG based controller as desired 
torques. 

In the following section, the proposed biologically inspired 
control scheme briefly explained. In Section III, stability of 
the neural oscillator dynamics is described to design the 
parameters of the neural oscillator. Details of dynamic 
responses for the verification of the proposed method through 
experiments are illustrated and discussed in Section IV. 
Finally, conclusions are drawn in Section V. 

II. BIOLOGICALLY INSPIRED ROBOTIC SYSTEMS 

A. Conceptual Model 

 
Figure 1 illustrates a schematic model for a robotic arm 

whose joints are coupled to the neural oscillators. A virtual 
force leads the coupled robotic arm to a given motion. VFI 
such as springs and dampers, which are supposed to virtually 
exist at the target, can be transformed into equivalent torques. 
This causes the end-effector of a robotic arm to draw 
according to the target calculating position error. This shows 
that the ill-posedness of inverse kinematics can be resolved in 
a natural way without introducing any artificial optimization 
criterion [18], [19]. However, even with this method, 
kinematic configurations including redundant joints may not 
be guaranteed, even though the posture of a robotic arm can 
only be set within certain boundaries. 

From this point of view, it is advantageous if neural 
oscillators are barely coupled to each joint of a robotic arm. 
When the oscillators are attached to a robotic arm, they 
provide proper motor commands that consider the 
movements of the joints using sensory signals. Since the 
biologically inspired motions of each joint [17], are attained 
by the intrinsic entrainment property of the neural oscillator 

with its network [20] considering each joint direction, the 
coupled joint can respond intuitively to environmental 
changes or unknown disturbances by performing an objective 
motion. In addition, each neural oscillator can be tuned to 
produce a criterion in terms of the motion limitation of the 
joints by considering the amplitude of the sensory feedback 
signal.  

B. Artificial Neural Oscillator 
Neural motor patterns of vertebrates are obtained from the 

CPG and modified by sensory signals that detect 
environmental disturbances. In order to technically 
accomplish such effects, we used Matsuoka’s neural 
oscillator consisting of two simulated neurons arranged in 
mutual inhibition, as shown in Fig. 2. If gains are properly 
tuned, the system exhibits limited cycle behavior. We now 
propose the control method for dynamic systems that closely 
interacts with the environment by exploiting the natural 
dynamics of Matsuoka’s oscillator. 

 
 
 
 

 
 (1) 

  
 

 
where xei and xfi indicate the inner state of the ith neuron for i 
= 1, 2,…, n, which represents the firing rate. Here, the 
subscripts e and f denote the extensor and flexor neurons, 
respectively. ve(f)i represents the degree of adaptation, and b is 
the adaptation constant or self-inhibition effect of the ith 
neuron. The output of each neuron ye(f)i is taken as the positive 
part of xi, and the output of the oscillator is the difference in 
the output between the extensor and flexor neurons. wij is the 
connecting weight from the jth neuron to the ith neuron: wij is 
0 for i ≠ j and 1 for i = j. wijyi represents the total input from 
neurons arranged to excite one neuron and inhibit the other. 
These inputs are scaled by the gain ki. Tr and Ta are the time 
constants of the inner state and adaptation effect, respectively, 
and si is an external input with a constant rate. we(f)i is the 

Fig. 1. Conceptual figure of biologically inspired control for a robotic 
arm/hand 

 
Fig. 2.  Schematic diagram of Matsuoka Neural Oscillator
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weight of the extensor neuron or flexor neuron, and gi 
indicates the sensory input from the coupled system that is 
scaled by the gain ki. 

C. Coupling mechanical systems to neural oscillators 
Figure 3 shows a simple mechanical system coupled to the 

neural oscillator that is simplified by mimicking neuro- 
musculo-skeletal model. The desired torque signal to the i-th 
joint can be given by 

 

( ) ,i oi i odi i ik q q b qτ = − − − &                                                                  (2) 
 

where koi is the stiffness of the joint, bi the damping 
coefficient, qi the joint angle, and qodi is the output of the 
neural oscillator that produces neural commands of the i-th 
joint. The neural oscillator follows the sensory signal from 
the joints, thus the output of the neural oscillator may change 
corresponding to the sensory input. This is what is called 
“entrainment” that can be considered as the tracking of 
sensory feedback signals so that the mechanical system can 
exhibit adaptive behavior interacting with the environment.  
 

 

III. STABILITY ANALYSIS OF THE NEURAL OSCILLATOR 
All of the neural models suggested have the common 

feature of neurons being connected so that one neuron’s 
excitation suppresses another’s excitation. Matsuoka 
developed a more general model with the viewpoint that each 
neuron is capable of receiving different external stimulus and 
synaptic weights. However, it is difficult to clearly predict the 
dynamic responses of the artificial neural oscillator 
incorporated in Matsuoka’s work according to specific 
conditions, where the oscillation, saturation (or convergence), 
or divergence occur within a certain range. Also, since 
Matsuoka neural oscillators have nonlinearities such as max(x, 
0) and min(x, 0), as described in (1), it is difficult to analyze 
their nonlinear behavior. In this section, we discuss the 
existence of singular points and their stability and use the 
neural oscillator in time domain analysis to investigate 
equilibrium states.  

Equation (1) of the neural oscillator gives  

( , , , ), ( , , , )

( , , , ), ( , , , )

e e
e e e f f e e e f f

f f
f e e f f f e e f f

dx dv
g x v x v f x v x v

dt dt
dx dv

g x v x v f x v x v
dt dt

= =

= =

                      (3) 

 
where ge, fe, gf, and ff are nonlinear functions of xe, ve, xf, and vf, 
respectively. Equation (3) can be rewritten as 
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The solutions of (4) should be geometrically similar to those 
of (3). We assumed the solution of (4) to be in the form 
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                                                                               (5) 

 
where Xe, Ve, Xf, Vf, and λ are constants. Substituting (5) into 
(4) leads to the eigenvalue problem 
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                            (6) 

 
The eigenvalues λ1, λ2, λ3, and λ4 can be found by solving the 
characteristic equation of (6) as 
 

2
1 2 3 4

1, , , ( 4 )
2

p p qλ λ λ λ = ± −                                                    (7) 

 
Fig. 3.  Neuro-musculo-skeletal model and a simplified biologically inspired 
mechanical system coupled to the neural oscillator 
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The stability of the neural oscillator is determined by the 
nature of the eigenvalues of the state matrix. The various 
combinations of eigenvalues for the matrix of (6) give various 
characterizations of the equilibrium of the related nonlinear 
trajectories in the phase plane. The following then holds: 1) if 
(p2 – 4q) < 0, the motion is oscillatory; 2) if (p2 – 4q) > 0, the 
motion is aperiodic; 3) if p > 0, the system is unstable; and 4) 
if p < 0, the system is stable. Depending on the eigenvalues in 
(7), singular or equilibrium points can be classified. Hence, 
investigating the stability on the inner dynamics of the neural 
oscillator requires the consideration of possible four 
conditions:  

A. Analysis through various cases 
1) xe > 0 and xf > 0 (δe = δf = 1) 

We can obtain the eigenvalues (λ1, λ2, λ3, and λ4) as 
described in (7) 
 

2
1,2

2
1 1 1

1 1( (1 ) ) ( (1 ) ) 4( 1 )
2 2

1     ( ( ) 4 )
2

r a r a r a
r a r a

T w T T w T b w T T
T T T T

p p q

λ

α

= − + − ± + − − + −

= ± − −

                        (8) 
2

3,4

2
2 2 2

1 1( (1 ) ) ( (1 ) ) 4( 1 )
2 2

1     ( ( ) 4 )
2

r a r a r a
r a r a

T w T T w T b w T T
T T T T

p p q

λ

α

= − + + ± + + − + +

= ± − −

                       (9) 
 

where p1 = −(Tr+(1−w)Ta), q1 = (b+1− w)TrTa, p2 = 
−(Tr+(1+w)Ta), q2 = (b+1+w)TrTa and α = 1/(TrTa). 

- Case 1. The eigenvalues (λ1, λ2, λ3, and λ4) are real and 
distinct (p2 > 4q) 

In general, the condition for a root of the equation to have 
positive values in (8) and (9) is  
 

2 2 2 2 22( ) 2 4 0a a r a a r a r r aT w T T T w T T T T bT T± − + + − − >          (10) 
 
To satisfy (10), the following condition needs to hold: 
 
( )2 4a r r aT T bT T− >                                                                       (11) 

 
Under condition (11), the type of motion depends on whether 
λ1, λ2 and λ3, λ4 are of the same or opposite sign. q1, q2 > 0 and 

p1, p2 < 0 such that λ1, λ2 and λ3, λ4 have the same sign. In q1 
and q2 > 0, (b+1–w)TrTa > 0 and (b+1+w)TrTa > 0. Then, b > 
w–1 and b > –w–1 (∵TrTa > 0). The equilibrium when λ1 < λ2 
< 0 and λ3 < λ4 < 0 (when λ1, λ2 and λ3, λ4 are real and negative 
or p1 and p2 < 0) then becomes stable since p1 and p2 < 0, 
−(Tr+(1−w)Ta) < 0, and −(Tr+(1+w)Ta) < 0. After rearranging 
these, w < Tr/Ta +1, w > −Tr/Ta −1. Thus, if b > max(−w−1, 
w−1) and −Tr/Ta−1 > w < Tr/Ta+1, the neural oscillator is 
asymptotically stable and converges to a equilibrium point.  

On the other hand, if q1, q2 > 0 and p1, p2 > 0, the 
eigenvalues have the same positive sign (λ1 > λ2 > 0 and λ3 > 
λ4 > 0), i.e., b > max(−w−1, w−1), −(Tr+(1−w)Ta) > 0, and 

−(Tr+(1+w)Ta) > 0. This condition gives w < −Tr/Ta −1 and 
Tr/Ta +1 > w. The origin is then at an unstable equilibrium. If 
λ1, λ2 and λ3, λ4 are real but of opposite signs (q1 and q2 < 0 
irrespective of the sign of p1 and p2), one solution tends to the 
origin while the other tends to infinity. This is a saddle point 
with two unstable and two stable manifolds. 

Therefore, the stable equilibrium condition can be written 
as follows: 
 
b > max(− w −1, w − 1) and −Tr/Ta−1 > w < Tr/Ta+1         (12) 
 
The unstable equilibrium condition can be written as:  
 
b > max(− w −1, w − 1) and w < −Tr/Ta −1 and w > Tr/Ta +1(13) 
 
Finally, the condition with a saddle point corresponding to 
unstable equilibrium is written as: 
 
b < w–1 and b < –w–1                                                                   (14) 
 

- Case 2. The eigenvaues (λ1, λ2, λ3 and λ4) are real and 
equal, respectively.  (p2 = 4q) 

If p1 and p2 < 0 (λ1 < 0 and λ2 < 0), the trajectories are 
straight lines passing through the origin, and the equilibrium 
points are stable. Otherwise (p1 and p2 > 0), the origin is 
unstable. Thus, the stable condition is  
 
−Tr/Ta−1 > w < Tr/Ta+1                                                                 (15) 
 
In Case 2, the unstable equilibrium condition can be 
expressed as  
 
w < −Tr/Ta −1 and w > Tr/Ta +1                                                    (16) 
 

- Case 3. The eigenvaues (λ1, λ2, λ3 and λ4) are complex 
conjugates (p2 < 4q).  

In this case, the stability of motion is determined in terms 
of the criterion illustrated in Case 1. Hence, Case 3 has the 
same stable and unstable equilibrium conditions.  
 
2) xe > 0 and xf < 0 (δe = 1 and δf = 0) or xe < 0 and xf > 0 (δe = 
0 and δf = 1) 

Both conditions incur similar results. Thus, the eigenvalues 
are the same if xe is exchanged for xf. The eigenvalues of (6) in 
this condition can be obtained as 
 

1 2
1 1,
a rT T

λ λ= − = −                                                                 (17) 

2
3,4

2
2 2 2

1 1( ) ( ) 4 ( 1)
2 2

1     ( ( ) 4 )
2

r a r a r a
r a r a

T T T T T T b
T T T T

p p q

λ

α

= − + ± + − +

= ± − −

     (18) 

 
where p2=−(Tr+Ta) and q2=TrTa(b+1) and α = 1/(TrTa).
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- Case 1. The eigenvaues (λ3 and λ4) are real and distinct 
(p2 > 4q) 

In condition (17), λ1 and λ2 always have a negative sign 
since Tr and Ta > 0. These eigenvalues are stable. Therefore, 
by investigating λ3 and λ 4, the status of the stability can be 
analyzed. If q2 < 0, then the equilibrium is unstable as a saddle 
point irrespective of the sign of p since (b+1)TrTa < 0, b < –1. 
In q2 > 0, the system’s stability is stable. By rearranging these 
conditions, the stable equilibrium condition is as follows: 
 
b > − 1                                                                                             (19) 
 
while the condition for a saddle point corresponding to 
unstable equilibrium is given as: 
 
b < –1                                                                                              (20) 
 

- Case 2. The eigenvaues (λ3 and λ4) are real and equal (p2 
= 4q) 

This case satisfies the stable condition since p2 < 0 and λ1, 
λ2 always have negative signs.  

- Case 3. The eigenvaues (λ3 and λ4) are complex 
conjugates (p2 < 4q).  

These are stable and unstable equilibrium conditions 
identical to Case 1. 
 
3) xe < 0 and xf < 0 (δe = 0 and δf = 0)  

The eigenvalues λ1, λ2, λ3, and λ4 can be obtained by solving 
the characteristic equation of (6) as  
 

(21) 
 
The equilibrium is always stable since all eigenvalues are real 
and negative. Therefore, all of the trajectories converge to 
this equilibrium point, and the system does not oscillate. 

B. Discussion through analysis  
If the origin of the equation is unstable or has no stable 

stationary state, then every solution must be oscillatory (not 
necessarily periodic) due to the boundedness of the solution. 
The uniqueness and boundedness of the solution for a neural 
oscillator was proved by Matsuoka [2], [3] assuming that the 
total input s from the outside of the network is positive and 
constant with time. If a root of the equation has a positive real 
part, the stationary solution is unstable. The basic mutual 
inhibition network consists of a pair of neurons that 
reciprocally inhibit each other’s excitation.  

Thus, with the above cases analyzed in subsection A, 
oscillations in the neural oscillator are generated by the 
mutual inhibition condition between n neurons with 
adaptation. Adaptation plays a key role in oscillation 
generation [3]. If there was no adaptation effect, oscillation 
would only occur in networks with special structures. In 
contrast, if a network has strong adaptation, it can easily 
generate stable oscillation. When the conditions are satisfied, 

the networks produce and sustain oscillation (not necessarily 
periodic) for any initial state and any temporary disturbance.  

 
In conclusion, based on the analysis of the conditions 

illustrated in subsection A, the conditions for stable 
oscillation are 
 
w > Tr/Ta +1 and b > w−1                                                              (22) 
 
Thus, if the final condition of (22) is satisfied and the synaptic 
weight w is large enough (though it must be small compared 

(a)                                                      (b) 

(c)                                                      (d) 

(e)                                                      (f) 

(g)                                                      (h)  

(i)                                                      (j)  
Fig. 4. Plots for analysis of the oscillator dynamics: each row plot is the result
when the parameters were sequentially set to w = 10, 10, 10, 15, 100, b = 10, 
100, 8.5, 20, 100, and Tr/Ta = 10, 10, 10, 10, 10, respectively: (a), (c), (e), (g) 
and (i) phase planes of the extensor neuron (b), (d), (f), (h) and (j) the total 
outputs of the neural oscillator 

1,2 3,4
1 1,
r aT T

λ λ= − = −
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with b, the network continues oscillating for any large 
disturbances. Strictly speaking, the system of the differential 
equations has no stable equilibrium state for the above 
situation, only strong mutual inhibition.  

Based on the above condition (22), various simulations 
were carried out to verify the theoretical analysis illustrated in 
subsection A. As shown in Fig. 4, the analysis was verified as 
achievable. Solutions for the neural oscillator exist within the 
asymptotically stable region, according to the results shown 
in Figs. 4(a) to (d). These results were obtained by employing 
parameters to incur a Case 1 stable equilibrium state in 1). In 
the results for Figs 4(a) to (d), the frequency and amplitude of 
the output of the neural oscillator became higher and smaller 
with increasing b compared to the result shown in Fig. 4(d) 
due to the adaptation effect. The saddle point condition 
induced a stable stationary state for the neural oscillator, as 
shown in Figs. 4(e) and (f). As seen in Figs. 4(g) to (j), which 
were obtained from condition (22) in subsection A, the 
oscillation generated in the neural oscillator was verified to be 
explicitly present in its unstable condition owing to mutual 
inhibition between the oscillators. In addition, by comparing 
the result shown in Figs. 4(g) and (h) with that shown in Figs. 
4 (i) and (j) appearances such as the frequency and amplitude 
exposed from these results is similar at significant points with 
respect to b, which was revealed when Figure 4(a) and (b) 
was compared with Fig. 4(c) and (d). 

IV. VERIFICATION WITH A REAL 7-DOF ROBOTIC ARM 

 
In this section, we confirm that the neural oscillator and 

VFI enable the robotic arm to exhibit biologically inspired 
motion, which enhance its adaptive property sustaining 
motion stability. Also, in the control scheme, the networks 
among the oscillators were designed and applied to the 
proposed approach. The joints q1, q4 and q6 were connected 
with the excitatory condition of the neural oscillator. There 
are similar connections to satisfy the condition at the joints q2, 
q5 and q3, q7, respectively. This is helpful in avoiding the 
ill-posdness and improving adaptability of the proposed 
control approach. The proposed control approach (see 
Appendix) is incorporated to a 7-DOF robotic arm developed 
by the Korea Institute of Science and Technology (KIST), as 
seen Figs. 1 and 5. Then, we verify whether or not it is 
possible to generate a desired movement and adapt to 

unknown disturbances while maintaining the repeatability of 
each joint motion.  

 

 

 
Figure 6 shows the experimental result for the circular 

motion performed with the real 7-DOF robotic arm. The VFI 
drives the arm to move according to the given trajectory, and 
each joint of the robotic arm depends on the outputs generated 
in the neural oscillator. As expected, the correctness of the 
arm motion is demonstrated through the result shown in Fig. 
6. When controlling a multi-DOF robotic system, if only 
VFI-based control is considered without using neural 
oscillators, the repeatability problem for each joint is incurred, 
as shown in Figs. 7 and 9(a) in contrast with Figs. 8 and 9(b). 
In Figure 9, the red and blue lines indicate the joint motion 

 
Fig. 5. Geometrical relation of a 7-DOF robotic arm 

Fig. 8. Snapshots of the experimental results for the 7-DOF robotic arm with 
respect to the circular motion when sensory feedback of the neural oscillators 
was turned on 

Fig. 7. Snapshots of the experimental results for the 7-DOF robotic arm with 
respect to the circular motion when sensory feedback of the neural oscillators 
was turned off. 

Fig. 6. Trajectory drawn by the end-effector of the 7-DOF robotic arm with 
respect to the given circular motion in simulation 
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and output of the neural oscillator, respectively. As shown in 
Fig. 9(b), no alternation of individual joint motions emerged 
during the circular movement, even in redundant joints, 
which is in contrast to Fig. 9(a). The joints of the 7-DOF 
robotic arm were subject to the coupled neural oscillators 
corresponding to each joint. In Fig. 9(a), the blue line can be 
ignored because sensory feedback was not fed again. The 
graph was merely drawn to observe how the neural oscillator 
was activated. Similar results are shown in Figs. 7 and 8. 
These figures are the snap shots corresponding to Figs. 9(a) 
and (b), respectively. Despite the same circular motion being 
performed in both experiments, the motion in Fig. 7 failed as 
time went by. In addition, there was an impressive capability 
for self-adapting motions against unknown disturbance and 
ill-posedness of inverse kinematics due to the redundant 
degrees of freedom (DOFs) such as a 7-DOF robotic arm was 
solved, while the motion repeatability of the joints was 
sustained.  

 
Figure 10 illustrates compliant responses that sustained the 
behaviors carrying out the objectives given to the 7-DOF 
robotic arm even under unknown disturbances. The red arrow 
denotes the direction of the applied force. From these results, 
it is confirmed that the neural oscillator enables the coupled 

joint to exhibit a biologically inspired motion to enhance 
adaptive property sustaining motion stability. 

 

V. CONCLUSION 
This work mainly addresses how to achieve human-like 

behavior of multi-DOF robotic arms employing a biologically 
inspired control scheme. In order to embody the objective of 
this work, a neural oscillator and VFI (spring and damper) 
with a muscle damper are incorporated to the proposed 
control approach. We first focused on robotic behavior to 
trace a trajectory correctly with virtual components that make 
it possible to imposed tasks without considering the 
ill-posedness even in redundant systems. With this, if the 
joints of multi-DOF robotic systems are coupled to the neural 
oscillators as CPGs, the biologically inspired system enables 
robotic behavior to naturally set kinematic configurations 
with redundancy and guarantee motion repeatability. The 
effectiveness of such results was exposed in the experiments 
on the 7-DOF robotic arm. In addition the robotic arm was 
demonstrated to adapt in response to environmental changes 
during the experiments keeping the imposed task. 

APPENDIX 
In general, dynamics of a robot system with n-th DOFs could be 

expressed as   
 

1( ) ( ) ( , ) ( ) ,
2

H q q H q S q q q g q u⎧ ⎫+ + + =⎨ ⎬
⎩ ⎭

&&& & &                                   (23) 

 
where, H denotes the n×n inertia matrix of a robot, the second term 
in the right hand side of (23) stands for coriolis and centrifugal force, 
and the third term is the gravity effect. Then a control input for a 
rhythmic motion of the dynamic system shown in (23) is introduced 
as follows;   
 

0 ( ) ( ),T
ou C q J k x kx k q g qς= − − Δ + − Δ +& &                                         (24) 

 
where  

0 1 2diag( ,  , , )nC c c c= L , 
dx x xΔ = − , 

odq q qΔ = −  

     (a) 

     (b) 
Fig. 9. Individual joint responses acquired during the circular movement in 
simulation of the 7-DOF robotic arm (a) without coupling to the neural 
oscillators and (b) with coupling; J1–J7 correspond to each joint in the 
robotic arm. 

Fig. 10. Snapshots of experimental results for the 7-DOF robotic arm when 
external disturbances were applied arbitrarily during the circular movement

Oscillator output Joint output 
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where k and ς0 is the spring stiffness and damping coefficient, 
respectively for the virtual components. C0 is the joint damping. ko 
and qodi are the stiffness gain and the output of the neural oscillator 
that produces rhythmic commands, respectively.  

The control inputs as seen in (24) consist of two control schemes. 
One is based on Virtual spring-damper Hypothesis [18], [19] and the 
other is determined in terms of the output of the neural oscillator as 
illustrated in (2). In the control input of (24), the first term describes 
a joint damping for restraining a certain self-motion which could be 
occurred in a robot system with redundancy, and the second term 
means PD control in task space by using of Jacobian transpose, and 
also a spring and a damper in the sense of physics. Appropriate 
selection of joint damping factors C0, stiffness k and damping 
coefficient ς render the closed-loop system dynamics convergent, 
that is, x is converged into xd and both of x&  and q&  are become 0 as 
time elapses. In general, the neural oscillators coupled to the joints 
perform the given motion successively interacting with a virtual 
constraint owing to the entrainment property, if gains of the neural 
oscillator are properly tuned [15], [16], [19].  

Then, closed-loop dynamics with (23) and (24) is expressed as   
 

0
1( ) ( ) ( , ) ( ) 0
2

T
oH q q H q S q q C q J k x kx k qς⎧ ⎫+ + + + Δ + + Δ =⎨ ⎬

⎩ ⎭
&&& & & & (25) 

 
The inner product between q&  and the closed-loop dynamics of Eq. 
(25) yields   
 

0
1( ) ( ) ( , ) 0
2

T T T
oq H q q H q S q q C q J k x J kx k qς⎡ ⎧ ⎫ ⎤+ + + + Δ + + Δ =⎨ ⎬⎢ ⎦⎩ ⎭⎣

&& && & & & (26) 

And 
 

0 0,T Td E q C q x k x
dt

ς= − − ≤& & & &                                                       (27) 

 
where E stands for the total energy 
 

2 21( , , ) ( )
2 2 2

T okkE q x q q H q q x qΔ Δ = + Δ + Δ& & &                          (28) 

 
In (28), the first term of the quantity E describes the kinetic energy 
of the robot system, the second term means an artificial potential 
energy caused by the error xΔ  in task space and the error qΔ  gives 
rise to an artificial potential energy corresponding to the third term 
in joint space. As it is well known in robot control, the energy 
balance relation of (27) shows that the input-output pair ( , )u q&  
related to the motion of (26) satisfies passivity.  
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