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Combination of Uncertain Class Membership
Degrees with Probabilistic, Belief, and
Possibilistic Measures

Tru H. Cao and Van-Nam Huynh

Abstract One important issue of uncertain or fuzzy object-oriented models is that
uncertain membership degrees of an object to the classes in a class hierarchy may be
obtained from different sources while they are actually constrained by the subclass
relation. In this paper we present the notion of admissible combination functions
and an algorithm to propagate and combine prior uncertain membership degrees on
a class hierarchy, which are possibly conflicting, in order to produce a tightly consis-
tent uncertain membership assignment. We assume uncertain membership degrees
to be measured by support pairs represented by sub-intervals of [0,1]. The usual
probabilistic interval intersection, Dempster-Shafer, and possibilistic combination
rules are examined and proved to be admissible ones.

1 Introduction

Object-oriented models have been shown to be useful for designing and implement-
ing information and intelligent systems. The uncertain and fuzzy nature of real
world problems has motivated significant research effort in extension of the clas-
sical object-oriented framework to a more powerful one involving uncertain and
fuzzy values [4, 9].

Uncertain and imprecise attribute values lead to partial membership of an ob-
ject to a class. Representing, computing, and reasoning with partial class member-
ship have been one of the key issues in development of uncertain and fuzzy object-
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oriented systems. There were different measures proposed for uncertain class mem-
bership degrees. For instance, [12] defined for each class a membership function on
a set of objects. In [3] linguistic labels were used to express the strength of the link
of an object to a class. In [7] class membership was defined as similarity degrees be-
tween objects and classes. Meanwhile, [2] mentioned different measures, including
probabilistic one, to be used for membership degrees.

However, most of the literature about uncertain and fuzzy object-oriented sys-
tems does not address and deal with the fact that membership degrees of an object
can be obtained from different sources and to different classes in a class hierarchy,
which can also be conflicting to each other. Meanwhile, a membership degree of
an object to a class imposes constraints on membership degrees of the object to the
subclasses and super-classes of that class. Therefore, a posterior membership degree
of an object to a class should be a combination of a prior assigned one and those
constrained and propagated from the subclasses and super-classes of that class.

In this paper we introduce the notion of admissible combination functions for
uncertain membership degrees represented by sub-intervals of [0,1], called support
pairs. The lower and upper bounds of such a support pair can be interpreted as
those of a probability interval, belief and plausibility degrees as in Dempster-Shafer
theory [11], or necessity and possibility degrees as in possibility theory [8]. We then
present an algorithm to propagate and combine membership support pairs, in order
to produce a tightly consistent membership assignment for an object on a whole
class hierarchy. These are refinement and extension of the early proposal in [5].

Section 2 defines the properties of an admissible uncertain class membership
combination function and presents the propagation and combination algorithm. Sec-
tions 3, 4, and 5 particularly examine and prove the admissibility of the usual prob-
abilistic interval intersection, Dempster-Shafer, and possibilistic combination rules.
Finally, Section 6 concludes the paper with some remarks.

2 Combination Functions and Algorithm

Definition 1. Class Hierarchy
A class hierarchy is defined as a pair (C,⊆) where C is a set of classes and ⊆ is the
subclass partial order. Given c1,c2 ∈ C, c1 ⊆ c2 denotes that c1 is a subclass of c2.

From now on, I ([0,1]) denotes the set of all sub-intervals of [0,1].

Definition 2. Uncertain Membership Assignment
Let (C,⊆) be a class hierarchy and O be a set of objects. An uncertain membership
assignment is a function m : C×O → I ([0,1]). For every c ∈ C, o ∈ O, m(c,o)
denotes the uncertain membership degree of o to c; m(c,o) = [] means that there is
inconsistency about the membership of o to c.

The subclass relation imposes a constraint on membership degrees of an object
to classes as stated in the following assumption, which was first proposed in [6].
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Assumption 1

1. If an object is a member of a class with some positive characteristic degree, then
it is a member of any super-class of that class with the same degree.

2. If an object is a member of a class with some negative characteristic degree, then
it is a member of any subclass of that class with the same degree.

For fuzzy truth degrees, for instance, the positive and negative characteristics
could be defined to be true and false characteristics, respectively. For examples,
“(Object #1 is an EAGLE) is very true” entails “(Object #1 is a BIRD) is very true”,
and “(Object #1 is a BIRD) is very false” entails “(Object #1 is an EAGLE) is very
false”, provided that EAGLE⊆BIRD. The assumption here is that, if one can assign
a class to an object with a TRUE-characteristic degree, then one can assign a super-
class of this class to the object with at least the same truth degree (i.e., it is possibly
truer), which is actually the least specific statement subsuming all other possible
statements of the case. Dually, if one can assign a class to an object with a FALSE-
characteristic degree, then one can assign a subclass of this class to the object with
at least the same falsity degree (i.e., it is possibly falser).

Here, uncertainty lower bounds are considered as positive characteristic de-
grees, while uncertainty upper bounds are considered as negative characteristic ones.
Therefore, if an object is a member of a class with a support pair [l,u], then it is a
member of any super-class of that class with the support pair [l,1], and a member of
any subclass of that class with the support pair [0,u]. This is in agreement with [10],
for instance, which states that the membership degree of an object to a class is at
least equal to its membership degree to a subclass of that class.

In this paper, given two support pairs [x1,x2] and [y1,y2], we write [x1,x2] ≤µ
[y1,y2] to denote that x1 ≤ y2, and [x1,x2] ≤τ [y1,y2] to denote that x1 ≤ y1 and
x2 ≤ y2.

Definition 3. Consistent Uncertain Membership Assignment
An uncertain membership assignment m on (C,⊆) and O is said to be consistent
wrt (with respect to) (C,⊆) iff (if and only if):

1. m(c,o) 6= [], for every c ∈ C and o ∈O, and
2. m(ci,o)≤µ m(c j,o), for every ci ⊆ c j ∈ C.

It is called tightly consistent when m(ci,o)≤τ m(c j,o).

This notion of consistency of support pair assignment wrt the subclass rela-
tion constraint on a class hierarchy was first proposed in [6]. Its rational is that,
if m(ci,o)≤µ m(c j,o) then there exist u ∈m(ci,o) and v ∈m(c j,o) such that u≤ v.
The notion of tight consistency added here requires further that both the lower and
upper bounds of m(ci,o) are respectively smaller than those of m(c j,o). One can
observe that≤τ is a partial order, while≤µ is not, and≤τ is stronger than≤µ in the
sense that [x1,x2]≤τ [y1,y2] implies [x1,x2]≤µ [y1,y2].

Due to Assumption 1 above, given a prior uncertain class membership assign-
ment on a class hierarchy, the posterior membership degree of an object to a class is
determined not only by a prior one of the object to that class alone, but also by the
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constrained membership degrees of the object to the super-classes and subclasses of
that class. That is, if ({c1,c2, . . . ,cn},⊆) is the class hierarchy and [ui,vi] is the prior
membership support pair of the object to the class ci, for every i from 1 to n, then the
posterior support pair for the object belonging to the class ck is a combination of the
support pairs in the set {[uk,vk]}∪{[0,vi]|ck ⊆ ci, i 6= k}∪{[u j,1]|c j ⊆ ck, j 6= k}.

An important issue here is that a used combination function should maintain the
consistency of membership degrees of every object on a whole class hierarchy as
expressed in Definition 3. For this, we introduce the notion of admissible functions
as defined below (cf. [5]).

Definition 4. Admissible Combination Function
An uncertain membership combination function⊗ : I ([0,1])×I ([0,1])→I ([0,1])
is said to be admissible if satisfying the following properties as long as not resulting
in the empty interval []:

1. ⊗ is commutative and associative,
2. ⊗ is monotonic: [x1,x2]≤τ [y1,y2]⇒ [x1,x2]⊗ [u,v]≤τ [y1,y2]⊗ [u,v]
3. [x1,x2]⊗ [0,z]≤τ [x1,x2]
4. [y1,y2]≤τ [y1,y2]⊗ [z,1].

The first two properties are desirable for any combination function. Meanwhile,
properties 3 and 4 show that [0,z], as a negative constraint, and [z,1], as a positive
constraint, respectively decreases and increases the support pairs they are combined
with.

Moreover, one has the following derived properties for an admissible combina-
tion function:

5. [x1,x2]⊗ [0,1] = [x1,x2]
6. [x1,x2]⊗ [0,y2]≤τ [x1,1]⊗ [y1,y2]

Property 5 is a direct consequence of properties 3 and 4, due to [x1,x2]⊗ [0,1]≤τ
[x1,x2] and [x1,x2] ≤τ [x1,x2]⊗ [0,1]. Intuitively, since [0,1] denotes an absolutely
uninformative support pair, it should be neutral when combined with another sup-
port pair. Property 6 is a consequence of properties 2, 3, and 4, because [x1,x2] ≤τ
[x1,1] and [0,y2]≤τ [y1,y2] and⊗ is monotonic. Here [x1,1] means “at least x1” and
[0,y2] means “at most y2”, which self-explain the property.

Algorithm 1 below exploits the subclass relation constraint on uncertain mem-
bership to combine and resolve possibly inconsistent prior support pairs of an object
on a class hierarchy. Suppose a class hierarchy is ({c1,c2, . . . ,cn},⊆) and the sup-
port pair of an object o to each class ci is [ui,vi]. The idea of the algorithm is that,
for every i and j from 1 to n, if ci is a subclass of c j, then pass [ui,1] to c j and
[0,v j] to ci, on the basis that the membership degree of o to ci is smaller than to c j
as assumed above. The resulting support pair of o to each class is then obtained as
a conjunction of [ui,vi] and those passed from ci’s subclasses and super-classes. As
such, the computational complexity of this algorithm is O(n2).

The algorithm was first proposed in [6], but for only the interval intersection
function and without any proof for its correctness. We present a proof for it here.
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Algorithm 1 The propagation and combination algorithm
Input: A prior uncertain membership assignment m for an object o wrt a class hierarchy

({c1,c2, . . . ,cn},⊆) and an admissible membership combination function ⊗.
Output: A posterior uncertain membership assignment m′ for an object o wrt

({c1,c2, . . . ,cn},⊆) such that, for every ci ⊆ c j , m′(ci,o)≤τ m′(c j,o), as long as m′(ci,o) 6= []
and m′(c j,o) 6= [].

1: for every i from 1 to n do
2: Si = {[ui,vi] = m(ci,o)}
3: end for
4: for every i from 1 to n−1 do
5: for every j from i+1 to n do
6: if ci ⊆ c j then
7: Si = Si∪{[0,v j]},S j = S j ∪{[ui,1]}
8: else
9: if c j ⊆ ci then

10: Si = Si∪{[u j,1]},S j = S j ∪{[0,vi]}
11: end if
12: end if
13: end for
14: end for
15: return m′(ci,o) = ⊗

[u,v]∈Si

[u,v](1≤ i≤ n).

Proposition 1. Algorithm 1 is correct wrt its input-output specification.

Proof. For simplicity, but without loss of generality, suppose that c1 and c2 are two
arbitrary classes such that c1 ⊆ c2. One has:

1. S1 = {[u1,v1], [0,v2]}∪{[0,v j]|c1 ⊆ c j, j 6= 1,2}∪{[ui,1]|ci ⊆ c1, i 6= 1}.
S2 = {[u2,v2], [u1,1]}∪{[ui,1]|ci ⊆ c2, i 6= 1,2}∪{[0,v j]|c2 ⊆ c j, j 6= 2}.

2. [u1,v1]⊗ [0,v2]≤τ [u2,v2]⊗ [u1,1] (due to Property 6 presented above).
3. {[0,v j]|c2 ⊆ c j, j 6= 2} ⊆ {[0,v j]|c1 ⊆ c j, j 6= 1,2}, because of c1 ⊆ c2. Since

a combination with [0,z] decreases a membership support, due to Property 3 in
Definition 4, the following holds:

[u1,v1]⊗ [0,v2]⊗{ j|c1⊆c j , j 6=1,2} [0,v j]≤τ [u2,v2]⊗ [u1,1]⊗{ j|c2⊆c j , j 6=2} [0,v j]

4. {[ui,1]|ci ⊆ c1, i 6= 1} ⊆ [ui,1]|ci ⊆ c2, i 6= 1,2}, because of c1 ⊆ c2. Since a com-
bination with [z,1] increases a membership support, due to Property 4 in Defini-
tion 4, the following holds:

[u1,v1]⊗ [0,v2]⊗{ j|c1⊆c j , j 6=1,2} [0,v j]⊗{i|ci⊆c1,i 6=1} [ui,1]
≤τ [u2,v2]⊗ [u1,1]⊗{ j|c2⊆c j , j 6=2} [0,v j]⊗{i|ci⊆c2,i 6=1,2} [ui,1]

Therefore m′(c1,o)≤τ m′(c2,o), as long as m′(ci,o) 6= [] and m′(c j,o) 6= [].
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3 Interval Intersection

In this section we examine the common and simple combination function that in-
tersects involved support pairs, which could be interpreted as probability lower and
upper bounds.

Definition 5. Interval Intersection Function
Let ⊗i : I ([0,1])×I ([0,1])→I ([0,1]) be defined by

[x1,x2]⊗i [y1,y2] = [x1,x2]∩ [y1,y2] = [max(x1,y1),min(x2,y2)].

Proposition 2. ⊗i is an admissible uncertain membership combination function.

Proof.

1. It is obvious that ⊗i is commutative and associative, because the min and max
functions are so.

2. [x1,x2]⊗i [u,v] = [max(x1,u),min(x2,v)]
[y1,y2]⊗i [u,v] = [max(y1,u),min(y2,v)]
Since [x1,x2]≤τ [y1,y2], i.e., x1≤ y1 and x2≤ y2, one has max(x1,u)≤max(y1,u)
and min(x2,v)≤min(y2,v), and thus [x1,x2]⊗i [u,v]≤τ [y1,y2]⊗i [u,v].

3. [x1,x2]⊗i [0,z] = [x1,min(x2,z)]≤τ [x1,x2].
4. [y1,y2]≤τ [max(y1,z),y2] = [y1,y2]⊗i [z,1].

Example 1. Suppose the uncertain membership assignment µ for an object wrt the
class hierarchy illustrated in Figure 1. It expresses that it is certain to a degree be-
tween 0.7 and 1 that the object belongs to the class BIRD, and between 0.8 and 1
to the class PENGUIN. Meanwhile, there is inconsistency as the object does not
belong to the class ADULT-BIRD, i.e. with the membership support [0,0], but to its
subclass ADULT-PENGUIN with the membership support [.5, .5]. Also, the mem-
bership support pairs assigned to the classes BIRD and PENGUIN are not tightly
consistent.

Applying Algorithm 1 using the interval intersection function, one obtains the
membership support pair for each class as follows:
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BIRD: [.7,1]⊗i [0,1]⊗i [.8,1]⊗i [.5,1] = [.8,1]
ADULT-BIRD: [0,0]⊗i [.5,1]⊗i [0,1] = []
PENGUIN: [.8,1]⊗i [.5,1]⊗i [0,1] = [.8,1]
ADULT-PENGUIN: [.5, .5]⊗i [0,0]⊗i [0,1]⊗i [0,1] = []
The empty membership support pairs for ADULT-BIRD and ADULT-PENGUIN

are due to the inconsistency of the given membership assignment as noted above.
Except for that, the posterior membership support pairs computed for the classes
BIRD and PENGUIN become tightly consistent.

BIRD [.7,1]

ADULT-BIRD [0,0] PENGUIN [.8,1]

ADULT-PENGUIN [.5, .5]

©©©©©©©©©

HHHHHHHHH

HHHHHHHHH

©©©©©©©©©

Fig. 1 A class hierarchy with an uncertain membership assignment

Proposition 3. Given a prior consistent uncertain membership assignment for an
object wrt a class hierarchy, Algorithm 1 using ⊗i produces a posterior tightly con-
sistent membership assignment for the object wrt the class hierarchy.

Proof. What is to be proved is only that no combination in Algorithm 1 results in
[]. Indeed, for every ci ⊆ c j and the current membership support pairs to ci and
c j being respectively [ui,vi] and [u j,v j], the combinations are only [ui,vi]⊗i [0,v j]
and [u j,v j]⊗i [ui,1]. Meanwhile, [ui,vi] ≤µ [u j,v j], i.e., ui ≤ v j, because the given
membership assignment is consistent. So, for ⊗i, one has:

[ui,vi]⊗i [0,v j] = [ui,min(vi,v j)] 6= []
[u j,v j]⊗i [ui,1] = [max(u j,ui),v j] 6= []

because ui ≤min(vi,v j) and max(u j,ui)≤ v j.

4 Dempster-Shafer Combination

As shown in Example 1, the interval intersection function may result in empty mem-
bership support pairs. Dempster-Shafer combination rule [11] can resolve join of
conflicting support pairs, whose intersection is empty.

We recall that, in Dempster-Shafer theory, a basic probability mass is assigned to
each non-empty subset A of the set of all hypotheses, and denoted by m(A). The joint
mass assignment of two mass assignments m1(A) and m2(A) is defined as follows:
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m(A) = ∑X∩Y=A m1(X).m2(Y )
∑X∩Y 6= /0 m1(X).m2(Y )

This combination function is thus commutative and associative.
In [1], a support pair [x1,x2] for a proposition p is interpreted as the following

mass assignment on the power set of {p,¬p}:

{p} : x1,{¬p} : 1− x2,{p,¬p} : x2− x1

Dempster-Shafer combination of two support pairs [x1,x2] and [y1,y2] for p can be
first performed as the combination of their corresponding mass assignments, yield-
ing the following one:
{p}: K(x1y2 + x2y1− x1y1)
{¬p}: 1−Kx2y2
{p,¬p}: K(x2y2 + x1y1− x1y2− x2y1)

where K = 1/(1 + x1y2 + x2y1 − x1 − y1). Then the combined support pair for p
can be derived as [K(x1y2 + x2y1− x1y1),Kx2y2]. We note that it is always a valid
support pair, i.e., 0≤ K(x1y2 + x2y1− x1y1)≤ Kx2y2 ≤ 1.

Definition 6. Dempster-Shafer Combination Function
Let ⊗ds : I ([0,1])×I ([0,1])→I ([0,1]) be defined by

[x1,x2]⊗ds [y1,y2] = [K(x1y2 + x2y1− x1y1),Kx2y2]

where K = 1/(1+ x1y2 + x2y1− x1− y1).

Proposition 4. ⊗ds is an admissible uncertain membership combination function.

Proof.

1. Since Dempster-Shafer rule of combining probability masses is commutative and
associative, so is ⊗ds.

2. [z1,z2]⊗ds [u,v] = [K(z1v+ z2u− z1u),Kz2v]
where K = 1/(1+ z1v+ z2u− z1−u).
Consider the function f (z1,z2) = K(z1v+ z2u− z1u). One has

∂ f (z1,z2)/∂ z1 = K2[(v−u)(1+ z2u−u)+(1− v)z2u]≥ 0,
∂ f (z1,z2)/∂ z2 = K2u(1−u)(1− z1)]≥ 0.

So f (z1,z2) is increasing wrt both z1 and z2.
Similarly, consider the function g(z1,z2) = Kz2v. One has

∂g(z1,z2)/∂ z1 = K2v(1− v)z2 ≥ 0, and
∂g(z1,z2)/∂ z2 = K2v(1+ z1v− z1−u)

≥ K2v(1+ z1v− z1− v) = K2v(1− v)(1− z1)≥ 0.

So g(z1,z2) is also increasing wrt both z1 and z2.
Hence, [x1,x2]⊗ds [u,v]≤τ [y1,y2]⊗ds [u,v] if [x1,x2]≤τ [y1,y2].



Combination of Uncertain Class Membership Degrees 9

3. [x1,x2]⊗ds [0,z] = [Kx1z,Kx2z], where K = 1/(1+ x1z− x1).
It is easy to check that Kz≤ 1, and thus [Kx1z,Kx2z]≤τ [x1,x2].

4. [y1,y2]⊗ds [z,1] = [K(zy2 + y1− zy1),Ky2], where K = 1/(1+ zy2− z).
It is easy to check that K(zy2 + y1− zy1)≥ y1 and Ky2 ≥ y2, and thus [y1,y2]≤τ
[y1,y2]⊗ds [z,1].

Example 2. Applying Algorithm 1 using Dempster-Shafer combination function on
the class hierarchy and membership assignment as in Example 1, one obtains the
membership support pair for each class as follows:

BIRD: [.7,1]⊗ds [0,1]⊗ds [.8,1]⊗ds [.5,1] = [.97,1]
ADULT-BIRD: [0,0]⊗ds [.5,1]⊗ds [0,1] = [0,0]
PENGUIN: [.8,1]⊗ds [.5,1]⊗ds [0,1] = [.9,1]
ADULT-PENGUIN: [.5, .5]⊗ds [0,0]⊗ds [0,1]⊗ds [0,1] = [0,0]
One can observe that the posterior membership support pairs computed for all

the classes become tightly consistent.

Proposition 5. Using ⊗ds, Algorithm 1 always produces a tightly consistent mem-
bership assignment.

Proof. This is due to a property of Dempster-Shafer combination function that it
never results in the empty interval [] as noted above.

5 Possibilistic Combination

In possibility theory, uncertainty of a proposition p is expressed by a pair [N(p),Π(p)],
where N(p) and Π(p) are respectively called the necessity and possibility de-
grees and satisfy the condition max(1−N(p),Π(p)) = 1. Different combination
rules were proposed for necessity and possibility degrees obtained from various
sources [8]. Here we apply a multiplicative and associative one for combining mem-
bership support pairs as defined below.

Definition 7. Possibilistic Combination Function
Let ⊗p : I ([0,1])×I ([0,1])→I ([0,1]) be defined by

[x1,x2]⊗p [y1,y2] = [1−D(1− x1)(1− y1),Dx2y2]

where D = 1/max((1− x1)(1− y1),x2y2).

Proposition 6. ⊗p is an admissible uncertain membership combination function.

Proof.

1. ⊗p is clearly commutative. The associativity of the function was proved in [8].
2. For the monotonic property, we have to prove that [x1,x2]≤τ [y1,y2]⇒ [x1,x2]⊗p

[u,v] ≤τ [y1,y2]⊗p [u,v]. According to the above-mentioned condition of a
necessity-possibility pair, either u is 0 or v is 1. So we prove this property in
these two cases.
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(a) [x1,x2]⊗p [0,v]≤τ [y1,y2]⊗p [0,v]
Indeed, one has:
[x1,x2]⊗p [0,v] = [1− (1−x1)

max(1−x1,x2v) ,
x2v

max(1−x1,x2v) ] and

[y1,y2]⊗p [0,v] = [1− (1−y1)
max(1−y1,vy2) ,

vy2
max(1−y1,vy2) ]

• x1 = 0 and y1 = 0: [x1,x2]⊗p [0,v] = [0,x2v]≤τ [y1,y2]⊗p [0,v] = [0,vy2],
because x2 ≤ y2.

• x1 = 0 and y2 = 1: [x1,x2]⊗p [0,v] = [0,x2v] ≤τ [y1,y2]⊗p [0,v] = [1−
(1−y1)

max(1−y1,v) ,
v

max(1−y1,v) ], because x2v≤ v≤ v/max(1− y1,v).

• x2 = 1⇒ y2 = 1, 1−x1≤ v⇒ 1−y1≤ v: [x1,x2]⊗p [0,v] = [1− (1−x1)
v ,1]≤τ

[y1,y2]⊗p [0,v] = [1− (1−y1)
v ,1], because x1 ≤ y1.

• x2 = 1⇒ y2 = 1, v≤ 1−x1: [x1,x2]⊗p [0,v] = [0,v/(1−x1)]≤τ [y1,y2]⊗p

[0,v] = [1− (1−y1)
max(1−y1,v) ,

v
max(1−y1,v) ], because max(1− y1,v)≤ (1− x1).

(b) [x1,x2]⊗p [u,1]≤τ [y1,y2]⊗p [u,1]
In this case, one has:
[x1,x2]⊗p [u,1] = [1− (1−x1)(1−u)

max((1−x1)(1−u),x2) ,
x2

max((1−x1)(1−u),x2) ] and

[y1,y2]⊗p [u,1] = [1− (1−u)(1−y1)
max((1−u)(1−y1),y2) ,

y2
max((1−u)(1−y1),y2) ]

• x1 = 0 and y1 = 0, y2 ≤ 1−u⇒ x2 ≤ 1−u:
[x1,x2]⊗p [u,1] = [0,x2/(1− u)] ≤τ [y1,y2]⊗p [u,1] = [0,y2/(1− u)], be-
cause x2 ≤ y2.

• x1 = 0 and y1 = 0, 1−u≤ y2:
[x1,x2]⊗p [u,1] = [1− (1−u)

max(1−u,x2) ,
x2

max(1−u,x2) ] ≤τ [y1,y2]⊗p [u,1] = [1−
(1−u)/y2,1], because max(1−u,x2)≤ y2.

• x1 = 0 and y2 = 1:
[x1,x2]⊗p [u,1] = [1− (1−u)

max(1−u,x2) ,
x2

max(1−u,x2) ] ≤τ [y1,y2]⊗p [u,1] = [1−
(1−u)(1− y1),1], because (1− y1)≤ 1/max(1−u,x2).

• x2 = 1⇒ y2 = 1:
[x1,x2]⊗p [tu,1] = [1− (1− x1)(1− u),1] ≤τ [y1,y2]⊗p [u,1] = [1− (1−
u)(1− y1),1], because x1 ≤ y1.

3. [x1,x2]⊗p [0,z] = [1− (1−x1)
max(1−x1,x2z) ,

x2z
max(1−x1,x2z) ]

• x1 = 0: [x1,x2]⊗p [0,z] = [0,x2z)]≤τ [x1,x2].
• x2 = 1: [x1,x2]⊗p [0,z] = [1− (1−x1)

max(1−x1,z) ,
z

max(1−x1,z) ]≤τ [x1,x2], because 1−
x1 ≤ (1− x1)/max(1− x1,z).

4. [y1,y2]⊗p [u,1] = [1− (1−u)(1−y1)
max((1−u)(1−y1),y2) ,

y2
max((1−u)(1−y1),y2) ]

• y1 = 0: [y1,y2]≤τ [y1,y2]⊗p [u,1] = [1− (1−u)
max(1−u,y2) ,

y2
max(1−u,y2) ], because y2≤

y2/max(1−u,y2).
• y2 = 1: [y1,y2] ≤τ [y1,y2]⊗p [u,1] = [1− (1− u)(1− y1),1], because (1−

u)(1− y1)≤ 1− y1.
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Example 3. In possibility theory, the assigned membership support pairs to the
classes ADULT-BIRD and ADULT-PENGUIN in Example 1 are not valid ones.
Applying Algorithm 1 using the defined possibilistic combination function on only
the classes BIRD and PENGUIN, one obtains the membership support pair for each
class as follows:

BIRD: [.7,1]⊗p [.8,1] = [.94,1]
PENGUIN: [.8,1]⊗p [0,1] = [.8,1]
As such, the posterior membership support pairs computed for these two classes

become tightly consistent.

Proposition 7. Using ⊗p, Algorithm 1 always produces a tightly consistent mem-
bership assignment.

Proof. The normalization factor D in Definition 7 assures that max(D(1− x1)(1−
y1),Dx2y2) = 1. So ⊗p never results in the empty interval [].

6 Conclusion

We have presented an algorithm to propagate and combine uncertain membership
support pairs on a class hierarchy. As proved, given a prior membership assignment
from various sources for an object to the classes in the hierarchy, the algorithm
produces a tightly consistent posterior membership assignment for that object to
the classes. As such, it also resolves possibly conflicting prior membership support
pairs. The algorithm is based on an admissible combination function whose proper-
ties have been defined and membership constraints due to the subclass relation.

Three specific combination functions, namely, the interval intersection, Dempster-
Shafer, and possibilistic ones have been examined and proved to be admissible.
We have also proved that interval intersection produces a tightly consistent pos-
terior membership assignment if the prior assignment is consistent. Meanwhile,
Dempster-Shafer and possibilistic combination functions always produce a tightly
consistent one.

The results can be applied for computation and reasoning in object-oriented or
ontology-based systems involving uncertainty, in particular one of class member-
ship. Moreover, the framework of uncertain membership combination presented
here could be adapted for other belief or uncertainty measures as well. These are
among the topics we are investigating.
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