
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Performance Evaluation of a Green Scheduling

Algorithm for Energy Savings in Cloud Computing

Author(s)
Duy, Truong Vinh Truong; Sato, Yukinori;

Inoguchi, Yasushi

Citation

2010 IEEE International Symposium on Parallel &

Distributed Processing, Workshops and Phd Forum

(IPDPSW): 1-8

Issue Date 2010-04

Type Conference Paper

Text version publisher

URL http://hdl.handle.net/10119/9575

Rights

Copyright (C) 2010 IEEE. Reprinted from 2010 IEEE

International Symposium on Parallel & Distributed

Processing, Workshops and Phd Forum (IPDPSW), ,

2010, 1-8. This material is posted here with

permission of the IEEE. Such permission of the

IEEE does not in any way imply IEEE endorsement

of any of JAIST's products or services. Internal

or personal use of this material is permitted.

However, permission to reprint/republish this

material for advertising or promotional purposes

or for creating new collective works for resale

or redistribution must be obtained from the IEEE

by writing to pubs-permissions@ieee.org. By

choosing to view this document, you agree to all

provisions of the copyright laws protecting it.

Description

Performance Evaluation of a Green Scheduling Algorithm
for Energy Savings in Cloud Computing

Truong Vinh Truong Duy
Graduate School of Information Science

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan

duytvt@jaist.ac.jp

Yukinori Sato and Yasushi Inoguchi
Center for Information Science

Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa, 923-1292 Japan

[yukinori, inoguchi]@jaist.ac.jp

Abstract— With energy shortages and global climate change
leading our concerns these days, the power consumption of
datacenters has become a key issue. Obviously, a substantial
reduction in energy consumption can be made by powering
down servers when they are not in use. This paper aims at
designing, implementing and evaluating a Green Scheduling
Algorithm integrating a neural network predictor for
optimizing server power consumption in Cloud computing. We
employ the predictor to predict future load demand based on
historical demand. According to the prediction, the algorithm
turns off unused servers and restarts them to minimize the
number of running servers, thus minimizing the energy use at
the points of consumption to benefit all other levels. For
evaluation, we perform simulations with two load traces. The
results show that the PP20 mode can save up to 46.3% of
power consumption with a drop rate of 0.03% on one load
trace, and a drop rate of 0.12% with a power reduction rate of
46.7% on the other.

Keywords- energy savings; green scheduling; neural
predictor; Cloud computing; datacenters

I. INTRODUCTION
Cloud computing [1] has emerged as a new business

model of computation and storage resources based on on-
demand access to potentially significant amounts of remote
datacenter capabilities. As the field matures together with the
nonstop growth of the Internet and the world’s businesses, it
is expected that more Cloud providers will appear and
provide a more diverse selection of different resources and
services. However, the deployment of datacenters in Clouds
has put more and more computers in use each year,
increasing energy consumption and negative pressure on the
environment. Research shows that running a single 300-watt
server during a year can cost about $338, and more
importantly, can emit as much as 1,300 kg CO2, without
mentioning the cooling equipment [2]. A recent report has
estimated the datacenters in the US consumed approximately
1.5% of the total electricity consumption in 2006 and this
number is projected to double in 2011 [3]. It is even said that
the costs to operate servers will exceed the costs to purchase
server hardware by 2015 [4].

The existing techniques for energy savings in the area of
enterprise power management at a server farm can roughly
be divided into two categories: dynamic voltage/frequency

management inside a server and shutting down servers when
not in use. In the former, power savings are gained by
adjusting the operating clock to scale down the supply
voltages for the circuits. Although this approach can provide
a significant reduction in power consumption, it depends on
the hardware components’ settings to perform scaling tasks.
On the other hand, the latter promises most power savings,
as it ensures near-zero electricity consumed by being-turned-
off servers. However, previous works which took this
approach had difficulties to assure service-level agreement
due to the lack of a reliable tool for predicting future demand
to assist the turning off/on decision- making process.

In this paper, we aim to design, implement and evaluate a
Green Scheduling Algorithm integrating a neural network
predictor for optimizing server power consumption in Cloud
computing environments by shutting down unused servers.
The neural network predictor which we had developed
earlier has been proven to have a highly accurate prediction
ability with low overhead to fit in dynamic real time settings
[5]. The use of this predictor is thought to help the algorithm
cleverly make appropriate turning off/on decisions, and to
make the approach more practical. As virtual machines are
spawned on demand to meet the user's needs in Clouds, the
neural predictor is employed to predict future load demand
on servers based on historical demand.

Our scheduling algorithm works as follows. According to
the prediction, the algorithm first estimates required dynamic
workload on the servers. Then unnecessary servers are
turned off in order to minimize the number of running
servers, thus minimizing the energy use at the points of
consumption to provide benefits to all other levels. Also,
several servers are added to help assure service-level
agreement. The bottom line is to protect the environment and
to reduce the total cost of ownership while ensuring quality
of service.

To evaluate the algorithm, we perform simulations with
four different running modes and parameters. Evaluation
results show that in the optimal mode, the power
consumption reduction rate can be significantly achieved, up
to 72.2% compared to the conventional mode, without
affecting performance. The prediction mode can save energy
even more, up to 79.5%, although the drop rate is quite high.
Lastly, the mode running prediction plus 20% additional
servers offers the best combination: a drop rate of 0.03% and
a power reduction rate of 46.3%.

978-1-4244-6534-7/10/$26.00 ©2010 IEEE

The remainder of this paper is organized as follows.
Section 2 introduces background information and related
work. The power consumption of servers is examined in
Section 3. Section 4 presents the system model, the neural
predictor and the algorithm. Section 5 analyzes simulator
descriptions and simulation results. Finally, we conclude our
study in Section 6.

II. RELATED WORK
Many papers have studied the dynamic voltage/frequency

scaling technique for managing energy and server resources
in clusters and data/hosting centers [6, 7, 8]. The work in [6]
has mainly focused on a single server setting and its energy
consumption is reduced by adaptive algorithms for frequency
scaling. In [7], a cluster-level power controller has been
proposed, although the actual power reduction is gained at
processor level also by adjusting their frequency. An
intensive work was introduced in [8] to find the specific
relationship between power and frequency for optimal power
allocation at the level of server farms. Even though
frequency scaling technique offers substantial power savings,
it relies on the settings of hardware components to perform
scaling tasks.

A recent trend is to define special states of servers which
can provide energy savings while being able to perform
some pre-defined tasks. In [9], PowerNap was proposed as
an approach to energy conservation, where the server moves
rapidly between an active state and a near-zero-power idle
state, called “nap” state, in response to load. Another special
state of server, called “Somniloquy”, was presented in [10]
to augment network interfaces and enable a server to respond
to network traffic such as remote desktop and VoIP in the S3
state for saving energy. [11] introduced a similar barely-alive
state, that allows remote accesses to a server’s main memory
even when many of its other components have been turned
off. This approach has a downside, however, as it requires
additional specially designed hardware to implement the
special state.

We believe that a software-based approach that takes
advantage of currently available server’s states would be
more cost-efficient and easier for datacenters deployment. To
this end, workload concentration and temporary server
turnoff promise the most power savings. A power aware

request distribution scheme for server clusters was
introduced in [12], where energy reduction is obtained by
turning off some servers when the current load can be served
by fewer servers. Health et al. [13] designed servers for a
heterogeneous cluster that employs modeling and
optimization to minimize energy consumption. Recently, the
energy-aware consolidation problem for Clouds was
investigated in [14] to show the performance-energy trade-
offs and the existence of an optimal point. In this paper, we
design a green scheduling algorithm that also concentrates
workload on a subset of servers and then turns off the others.
In contrast to previous work, we employ a highly accurate
neural network predictor for predicting user’s demand to turn
on/off servers, considering the predicted demand and
server’s restart delay.

Neural networks have been applied to modeling
nonlinear time series in various areas, for example, stock
market [15], sports results [16], road surface temperature
[17], and scheduling problems [18]. Neural networks have
many important advantages over the traditional statistical
models, most notably the nonlinear generalization ability.
With this remarkable ability, they can learn from data
examples and capture the underlying functional relationships
between input and output values. In [18], a NARX neural
network based load prediction was presented to define data
mappings appropriate for dynamic resources with the aim of
improving the scheduling decision in grid environments.

There are several major differences between their
approach and our approach. First, it utilized a recurrent
network while our neural predictor employed feedforward
networks for the purpose of ensuring both high performance
and low overhead. Second, and more important, their work,
as well as other previous works, merely focused on
performance, in particular the execution time of application
running in the proposed method. In contrast, not only did we
improve the performance, but we also considered the cost,
namely the cost for training, validating and testing, to
examine if such a neural network based solution is feasible in
dynamic real-time settings. This is very important because
the solution may not be applicable for real-time applications
if it takes hours or days for training.

Figure 1. CPU utilization and power consumption.

Figure 2. State transition of the Linux machine.

III. UNDERSTANDING POWER CONSUMPTION
Understanding the relationship between power

consumption, CPU utilization and the transition delay
between different server’s states is essential to design
efficient strategies for energy savings. We examined this
relationship by measuring power consumption of typical
machines in different states. The machines we used include a
Linux machine with AMD Phenom™ 9500 Quad-Core
Processor 2.2GHz, and a Windows machine with AMD
Athlon™ 64 X2 Dual-Core Processor 5000+ 2.6GHz. They
were connected to a System Artware SHW3A watt-hour
meter at the power plug to record power consumption of the
whole machines.

Figure 1 shows power consumption of the two machines
in the idle state and different CPU utilization levels, ranging
from 10% to 100%. In the Linux machine, the CPU load is
generated using the lookbusy load generator to attempt to
keep the CPUs at a chosen utilization level, while in the
Windows machine, load is generated by a simple loop
written in C#. To obtain more accurate data, the CPU
utilization is maintained at a stable state for 5 minutes, and
the average recorded power consumption over the period is
reported. The power consumption appears to be almost linear
with CPU utilization. An increase of 10% in CPU utilization
leads to an increase of approximately 6.5% and 3% in power
consumption in the quad-core and dual-core machines,
respectively. Besides, we observe that the idle state
consumes a substantial amount of energy, as much as 62%,
in case of the quad-core machine, and 78% in the case of the
dual-core machine, of the peak power. This observation
implies that there is room for power conservation and hence,
a large power reduction can be achieved by sending idling
servers to a lower power state.

We also measured power consumption of pre-defined
low power states, including shutdown, hibernate, suspend-to-
disk, suspend-to-RAM, power-on-suspend with the Linux
machine, and shutdown, hibernate, standby with the
Windows machine. Figures 2 and 3 display the power
consumption of these states in the Linux and Windows
machines respectively, alongside transition delays from the
idle state to each state and vice versa (in seconds), and the
peak power incurred over the transition period. In the Linux
machine, suspend-to-RAM seems to be the best state, in

terms of both power consumption and transition delay, as it
needs only 10 seconds to come to this state from the idle
state, and 20 seconds for the opposite direction. The peak
power incurred during the transition is equivalent to roughly
30% CPU utilization. Similarly, the standby state is a good
candidate to replace the idle state for saving energy in
Windows machines. It consumes only 3.7W, and takes as
little as 5 and 10 seconds for transition delays.

IV. THE SYSTEM MODEL, THE NEURAL PREDICTOR AND
THE ALGORITHM

A. The System Model
Figure 4 depicts the system model that we consider in

this paper. Actually, it represents a simple architecture of
Cloud computing, where a Cloud provider, consisting of a
collection of Datacenters and CISRegistry (Cloud
Information Service Registry), provides utility computing
service to Cloud users/DCBrokers. The Cloud users in turn
use the utility computing service to become a SaaS provider
and provide web applications to their end users.

A request from a Cloud user is processed in several steps
as follows.

① Datacenters register their information to the CIS
Registry.

② A Cloud user/DCBroker queries the CISRegistry for
the datacenters’ information.

③ The CISRegistry responds by sending a list of
available datacenters to the user.

④ The user requests for processing elements through
virtual machine creation.

⑤ The list of available virtual machines is sent back for
serving requests from end users to the services
hosted by the user.

A datacenter is composed of a set of hundreds to
thousands of processing servers. In addition, it has several
controllers which have four main functions: (1) registering
the datacenter’s information to the CISRegistry, (2)
accepting requests from Cloud users, (3) distributing load
among virtual machines and recording the load as historical
data for prediction, (4) running the green scheduling
algorithm for making decision on creation and destruction of
virtual machines in servers, and turning servers off/on for

Figure 3. State transition of the Windows machine.

Figure 4. The system model.

energy savings. A server is responsible for managing virtual
machines it is hosting. A server can host multiple virtual
machines at the same time, but one virtual machine can be
hosted in only one server. Virtual machines appear as
processing elements from the viewpoint of Cloud users.

B. The Neural Predictor
A three-layer neural network predictor in operation with

a time series input is plotted in Figure 5. The network has 4
network inputs where external information is received, and 1
output layer C with one unit where the solution is obtained.
The network input and output layers are separated by 2
hidden layers: layer A with 4 units and layer B with 3 units.
The connections between the units indicate the flow of
information from one unit to the next, i.e., from left to right.

Each node has the same number of inputs as the number
of nodes in the preceding layer. Each connection is modified
by a weight, and each node has an extra input assumed to
have a constant value of 1. The weight that modifies this
extra input is called the bias. When the network is run, each
layer node performs the calculation in the following equation
on its input, and transfers the result Oc to the next layer.

where Oc is the output of the current node, n is the number of
nodes in the previous layer, xc,i is an input to the current node
from the previous layer, wc,i is the weight modifying the
corresponding connection from xc,i, and bc is the bias. In
addition, h(x) is either a sigmoid activation function for
hidden layer nodes, or a linear activation function for the
output layer nodes.

In order to make meaningful predictions, the neural
network needs to be trained on an appropriate data set.
Basically, training is a process of determining the connection
weights in the network. Examples of the training data set are
in the form of <input vector, output vector> where input
vector and output vector are equal in size to the number of
network inputs and outputs, respectively. The final goal is to
find the weights that minimize some overall error measure
such as the sum of squared errors or mean squared errors.

We have developed a neural predictor and performed
experiments to prove its highly accurate prediction ability
with low overhead to fit in dynamic real time settings similar
to this system model [5]. For example, the 20:10:1 network
with a learning rate of 0.3 has reduced the mean and standard
deviation of the prediction errors by approximately 60% and
70%, respectively. The network needs only a few seconds to
be trained with more than 100,000 samples, and then makes

Network
Inputs

Layer A
Units

Layer B
Units

Output
Layer C

Unit

Figure 5. A three-layer network predictor.

Inputs: list of servers in the datacenter and their current
state; TRESTARTING: delay necessary for a server to come to
ON from OFF; C: server capacity.

Output: decision for ON/OFF and updated list of
servers.

Periodically do at each time unit t (Evaluation phase)
Ask the predictor to predict loads from time t to time t +

TRESTARTING based on the collected historical loads during
the period of [0, t - 1]

Find the peak load Lp from time t to time t + TRESTARTING
Find the number of necessary servers at time t: Nt = Lp

div C
Assume Nc = number of servers in ON state
If Nt = Nc: no action
Else if Nt > Nc: choose (Nt - Nc) servers in OFF state and

signal them to restart
Else if Nt < Nc: choose (Nc - Nt) servers in ON state with

free processing cores and signal them to shutdown.

Figure 6. Pseudo-code of the algorithm.

Figure 7. The modified communication flow.

()
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+=

⎟
⎠

⎞
⎜
⎝

⎛
+=

−

=
∑

nodelayeroutputifx

nodelayerhiddenif
exhwhere

bwxhO

x

c

n

i
icicc

1
1

1
,,

tens of thousands of accurate predictions within a second,
without the need of being trained again.

This predictor will be employed in the green scheduling
algorithm to predict future load demand from Cloud users
based on historical demand recorded during the collection
phase. In the evaluation phase, the algorithm uses its
prediction in the turning off/on decision making process after
performing dynamic workload concentration on the servers.
The latest loads, for example the 30 latest loads for the
network of 30:10:1 and 20 latest loads for the network of
20:10:1, are fed into the neural predictor to perform the
prediction.

C. The Green Scheduling Algorithm
The green scheduling algorithm, described in Figure 6, is

a key component in determining which servers should be
turned off/on. It will turn on servers when the load increases
and vice versa, turn off servers when the load decreases.
However, as it takes some time for a server to come to full
operation, it must be turned on before it is actually needed.
Hence, the number of running servers at time t must be
sufficient to tolerate the peak load until more servers are
ready to share. Also, to assure service-level agreement, each
server must not be loaded more than its capacity C, and one
processing core should be allocated to only one virtual
machine.

A server can be in one of the following four states: OFF,
RESTARTING, ON, and SHUTTING. Initially all servers
are in the OFF state, which is actually a selected low-power
state to send a server to for energy savings. For instance,
OFF state may refer to “suspend-to-RAM” in a Linux
machine and, “standby” in a Windows machine in Section 3.
Upon receiving a “restarting” signal, the server moves from
OFF to RESTARTING. It will stay in this state for
TRESTARTING seconds before coming to ON. The ON state
implies that the server is idling, waiting for a user’s request
or processing it. Likewise, when a server is signaled to turn
off, it will move and stay in the SHUTTING state for
TSHUTTING seconds before completely changing its state to

OFF. The power consumptions in OFF, RESTARTING, ON,
and SHUTTING are POFF, PRESTARTING, PON, and PSHUTTING
watts, respectively.

V. EXPERIMENTAL EVALUATION

A. Simulator Description
We performed simulations using the CloudSim and

GridSim toolkits [19, 20]. Certain considerable custom
modifications were made to meet our needs, notably:

① We added a new dimension to the toolkits, the
energy dimension, to calculate power consumption,
to enable the server’s different states, to shutdown
and restart servers, etc.

② New classes were added to implement the neural
predictor.

③ We implemented the green scheduling algorithm.
In addition, we modified the original CloudSim

communication flow to another one shown in Figure 7. First,
each datacenter registers itself with the CISRegistry. The
datacenter broker queries the CISRegistry for a list of
datacenters which offer services matching the user’s
application requirements on behalf of users. The broker then
deploys the application with the matching datacenter for
processing. The simulation ends after this process has been
completed in the original flow. Therefore, we added a new
entity, called User Workload Generator, to periodically
impose load on the system for N steps (time unit = second).
As can be seen from the Figure, virtual machines are created
and destroyed at each step without paying attention to virtual
machine migration because client’s requests are supposed to
be completely processed within the step.

The workload is defined as the number of requests from
end users. The loads are generated in the same shapes as the
traces containing all requests to NASA and ClarkNet web
servers [21]. In the generated traces, timestamp is
compressed to 5 second resolution and the peak load is
normalized to the total capacity of all processing cores in the

Figure 8. The NASA and ClarkNet load traces.

datacenters in the simulations. Two days of these traces are
plotted in Figure 8. The NASA trace has a mean request of
3.7, a standard deviation of 2.7, a maximum request of 22
and a minimum request of 0. Compared to the NASA trace,
the ClarkNet trace has much higher corresponding values,
with a mean request of 14.9, a standard deviation of 9.2, a
maximum request of 80 and a minimum request of 0. Both
traces, however, exhibit typical workload characteristics of
web servers: heavily loaded during daytime and lightly
loaded during nighttime. As a result, we use the first day as
the collection phase in order to record historical loads for
training the neural predictor, with the hope that it can capture
the self-similarity. The second day is used as the evaluation
phase for performance evaluation, where we predict next
loads using the latest loads’ information.

Each server in the data center is simulated to have a
capacity C of 1000 requests/second for one processing core.
Three types of servers are considered: single-core servers,
dual-core servers and quad-core servers. Server’s total
capacity is assumed to be linear with the number of
processing cores. The number of requests that exceed its
capacity is considered as drops. Based on the results in
Section 3, we assume that states of OFF, RESTARTING,
ON, and SHUTTING consume 7W, 150W, 140W, and
150W, respectively. Also, transition delays TRESTARTING and
TSHUTTING are set to 20 seconds and 10 seconds respectively.

In addition, we develop four different running modes in
the simulations for performance comparison among them.
① Normal mode (NM): the traditional mode where all the

servers are kept running all the time regardless of load.
This mode acts as a base for calculating the power
reduction rate in other modes.

② Optimal green mode (OP): future load is exactly known
in advance and the number of necessary servers at each
step can be correctly identified.

③ Prediction green mode (PR): future load is predicted by
the predictor and the number of necessary servers at
each step is identified based on the predicted load. The
predictor is employed as two networks of 20:10:1 and
30:10:1, with a constant learning rate of 0.3.

④ Prediction plus additional servers (PP): similar to the
PR mode, and a given number of servers are added to
assure service-level agreement in case the requested
load is more than the capacity of the predicted servers.
For example, if the predictor predicts 5 servers and we
use 2 additional servers, we will actually use 5 + 2 = 7
servers instead of only 5 to reduce the drop rate. In the
simulations, this PP mode is run with approximately
10% and 20% of the total number of available servers
as additional servers and the 20:10:1 network.

Finally, the simulations are run in the following process.
The system is modeled to run in two days, with the workload
imposed by the User Workload Generator entity. During the
first day, the green scheduling algorithm in all running
modes, except the NM mode, is responsible for collecting the
loads and storing them as historical data to provide to the
neural predictor. Basically there is almost no difference
among these modes, as they are required to run in the same
way as the NM mode. At the end of the day, when all
historical data have been stored, they will be fed into the
neural predictor to start its training phase. The training phase
is performed online as it is expected to be completed in just
one minute. Then, the predictor will make load predictions
for the second day based on what it has learned. In the

 TABLE I. SIMULATION RESULTS ON NASA WITH THE BEST OF EACH CASE DISPLAYED IN BOLDFACE

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop

32 Single-
Core Servers

NM 108 0% 0%

16 Dual-
Core

Servers

NM 54 0% 0%
OP 37 65.7% 0% OP 20 63.0% 0%

PR20 26.9 75.1% 19% PR20 15.6 71.1% 10.2%
PR30 27.4 74.6% 17.2% PR30 13.6 74.8% 18.1%
PP10 40.3 62.7% 2.36% PP10 20.3 62.4% 2.28%
PP20 47.6 55.9% 0.83% PP20 27.8 48.5% 0.18%

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop

8 Quad-Core
Servers

NM 27 0% 0%

512 Single-
Core

Servers

NM 1721 0% 0%
OP 11 59.3% 0% OP 572 66.8% 0%

PR20 8.7 67.8% 6.9% PR20 496.7 71.1% 10.2%
PR30 7.5 72.2% 13.4% PR30 389.2 77.4% 26.5%
PP10 11.8 56.3% 0.94% PP10 557 67.6% 6%
PP20 14.4 46.7% 0.12% PP20 804.2 53.3% 0.35%

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop

256 Dual-
Core Servers

NM 861 0% 0%

128 Quad-
Core

Servers

NM 431 0% 0%
OP 287 66.7% 0% OP 144 66.6% 0%

PR20 213.6 75.2% 19% PR20 102.3 76.3% 22.5%
PR30 214.6 75.1% 19.1% PR30 114.7 73.4% 15.2%
PP10 292.3 66.1% 4.5% PP10 147 65.9% 4.1%
PP20 355.6 58.7% 1.26% PP20 187.1 56.6% 0.89%

second day, the algorithm in PR and PP modes will turn off
unused servers and turn on them according to the predictions.
The power consumption and drop rate are also recorded for
this day.

This running process can be repeated if the system is
simulated to run in a longer period. For each day, the actual
workload imposed on the system during the day is collected
to provide the neural predictor with the most up-to-date
training data. The training phase can take place regularly on
a daily basis, once a day at the time of light load, at midnight
for instance. In doing so, the neural predictor is thought to be
able to sufficiently adapt to workload changes over time.

B. Results
The simulations were conducted on SGI Altix XE nodes

having configuration: Intel Quad-Core Xeon, 8GB RAM,
Linux OS, and JDK 1.6. The number of servers in the
datacenters was varied from 32, a representation for small-
size datacenters, to 512, for medium-size datacenters, each
datacenter with three types of servers. The simulation results
on NASA and ClarkNet load traces are presented in Tables I
and II, where PR20 and PR30 represent PR mode with
networks of 20:10:1 and 30:10:1, respectively. Similarly,
PP10 stands for PR20 mode plus 10% additional servers,
and PP20 stands for PR20 mode plus 20% additional servers.

The results suggest that the performance, which is
represented by the drop rate, on ClarkNet is higher than that
on NASA in most cases. Drop rate is the ratio of the number
of requests that exceed servers’ capacity to the total number
of requests. The results are perhaps due to a more self-
similarity of the ClarkNet load trace that leads to more
accurate predictions.

We also note an obvious relationship between the power
reduction rate and the drop rate in the simulations. The
reduction rate is always inversely proportional to the drop
rate, except for the OP mode, where the drop rate is
maintained at 0%. In this mode, a significant power
consumption reduction rate can be achieved, up to 66.8% on
NASA and 72.2% on ClarkNet compared to the conventional
NM mode, without affecting performance as the drop rate is
0%. The reduction rate appears to be inversely proportional
to the number of cores in a server: the fewer cores the server
has, the higher the power reduction rate is, since it is more
flexible to turn off/on servers with fewer cores. Nevertheless,
the difference is trivial with a high number of servers. On
NASA, the reduction rate is 65.7% in the case of 32 single-
core servers in comparison to 59.3% in the case of 8 quad-
core servers, but it stands at 66.8% and 66.6%, not much
difference, in the cases of the 512 single-core and 128 quad-
core servers. This tendency also appears on ClarkNet, where
a difference of 4.6% in the reduction rates in cases of 32
single-core servers and 8 quad-core servers decreases to
only 0.2% in cases of 512 single-core servers and 128 quad-
core servers.

The OP mode is optimal, and is impractical too, since it
seems that there is no way to exactly know in advance the
future workload. In contrast, the PR mode is practical
because it applies a prediction mechanism to historical loads
for predicting future loads, and then makes decision based on
them. On NASA, it can save energy up to 77.4%, with the
30:10:1 network for 512 single-core servers. This power
reduction rate is even higher on ClarkNet, up to 79.5%, with
the 30:10:1 network for 256 dual-core servers. However, the
cost is quite high, as the lowest drop rates that it can offer
stays at as much as 6.9% and 3.7% on NASA and ClarkNet,

TABLE II. SIMULATION RESULTS ON CLARKNET WITH THE BEST OF EACH CASE DISPLAYED IN BOLDFACE

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop

32 Single-
Core Servers

NM 108 0% 0%

16 Dual-
Core

Servers

NM 54 0% 0%
OP 31.4 70.9% 0% OP 16.5 69.4% 0%

PR20 24.2 77.6% 13.6% PR20 13.6 74.8% 7.6%
PR30 24 77.8% 14% PR30 13.3 75.4% 8.8%
PP10 40 63.0% 0.41% PP10 19.6 63.7% 0.64%
PP20 49.2 54.4% 0.07% PP20 26.3 51.3% 0.05%

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop

8 Quad-Core
Servers

NM 27 0% 0%

512 Single-
Core

Servers

NM 1721 0% 0%
OP 9.1 66.3% 0% OP 478.1 72.2% 0%

PR20 7.9 70.7% 3.7% PR20 390.2 77.3% 12.5%
PR30 7.2 73.3% 6.3% PR30 398 76.9% 11.4%
PP10 10.9 59.6% 0.29% PP10 542.5 68.5% 1.64%
PP20 14.5 46.3% 0.03% PP20 751.2 56.4% 0.12%

Datacenter Mode Power (KWH) Reduction Drop Datacenter Mode Power (KWH) Reduction Drop

256 Dual-
Core Servers

NM 861 0% 0%

128 Quad-
Core

Servers

NM 431 0% 0%
OP 240 72.1% 0% OP 120.8 72.0% 0%

PR20 191.3 77.8% 14.1% PR20 100.9 76.6% 10.6%
PR30 176.8 79.5% 21.1% PR30 101 76.6% 10.5%
PP10 279.7 67.5% 1.36% PP10 138.4 67.9% 1.4%
PP20 344.7 60.0% 0.3% PP20 175.1 59.4% 0.31%

respectively. Both networks of 20:10:1 and 30:10:1 exhibit
similar performance behavior.

Lastly, the PP mode proves to be the most practical
solution. The more additional servers we have, the more we
reduce the drop rate. In the case of 8 quad-core servers with
approximately 20% = 2 additional servers, it provides a drop
rate of 0.12%, and a power reduction rate of 46.7% on
NASA, and a drop rate of as low as 0.03% with a power
reduction rate of 46.3% on ClarkNet. It is expected that the
drop rate can be reduced further, to a near-zero level, when
more additional servers are added.

VI. CONCLUSION
This paper has presented a Green Scheduling Algorithm

which makes use of a neural network based predictor for
energy savings in Cloud computing. The predictor is
exploited to predict future load demand based on collected
historical demand. The algorithm uses the prediction in
making turning off/on decisions to minimize the number of
running servers. In order to demonstrate the algorithm, we
have performed simulations with different parameters and
running modes. From the results, we have concluded the best
configuration is the prediction plus 20% additional servers
for assuring service level. It can offer 46.3% power reduction
while maintaining the drop rate at as low as 0.03% on
ClarkNet, and a power reduction rate of 46.7% with a drop
rate of 0.12% on NASA.

In future work, we plan to compare the algorithm with
other power management schemes which employ different
load prediction mechanisms. The system model should be
extended to deal with a more diversity of workloads and
application services, as well as architectures of datacenters
for a better simulation of cloud environments. A deployment
of the algorithm in real server farms to show its efficiency in
a real setting is also worth considering.

ACKNOWLEDGMENT
We would like to thank Prof. Rajkumar Buyya and his

group at The University of Melbourne for generously
providing the CloudSim and GridSim toolkits with the
associated source, examples and documents, on which these
experiments were based.

REFERENCES
[1] M. Armbrust et al., “Above the Clouds: A Berkeley View of

Cloud computing”, Technical Report No. UCB/EECS-2009-
28, University of California at Berkley, 2009.

[2] R. Bianchini and R. Rajamony, “Power and energy
management for server systems,” IEEE Computer, vol. 37, no.
11, pp. 68–74, 2004.

[3] EPA Datacenter Report Congress, http://www.
energystar.gov/ia/partners/prod_development/downloads/EPA
_Datacenter_Report_Congress_Final1.pdf.

[4] Microsoft Environment – The Green Grid Consortium,
http://www.microsoft.com/environment/
our_commitment/articles/green_grid.aspx.

[5] T.V.T. Duy, Y. Sato, and Y. Inoguchi, “Improving Accuracy
of Host Load Predictions on Computational Grids by

Artificial Neural Networks”, Proc. of the 11th Workshop on
Advances in Parallel and Distributed Computational Models,
held in conjunction with the 23rd IEEE International Parallel
and Distributed Processing Symposium, 2009.

[6] V. Sharma, A. Thomas, T. Abdelzaher, and K. Skadron,
“Power-aware QoS Management in Web Servers”, Proc. of
the Real-Time Systems Symposium, 2003.

[7] X. Wang and M. Chen, "Cluster-level feedback power control
for performance optimization", Proc. of the IEEE 14th
International Symposium on High Performance Computer
Architecture, 2008.

[8] A. Gandhi, M. Harchol-Balter, R. Das, and C. Lefurgy,
"Optimal Power Allocation in Server Farms", Proc. of
SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, 2009.

[9] D. Meisner, B. T. Gold, and T. F. Wenisch, “PowerNap:
Eliminating Server Idle Power”, Proc. of ASPLOS, 2009.

[10] Y. Agarwal et al., “Somniloquy: Augmenting Network
Interfaces to Reduce PC Energy Usage”, Proc. of NSDI, 2009.

[11] V. Anagnostopoulou, S. Biswas, A. Savage, R. Bianchini, T.
Yang, and F. T. Chong, “Energy Conservation in Datacenters
Through Cluster Memory Management and Barely-Alive
Memory Servers", Proc. of the Workshop on Energy-Efficient
Design, 2009.

[12] K. Rajamani and C. Lefurgy, "On Evaluating Request-
Distribution Schemes for Saving Energy in Server Clusters",
Proc. of IEEE International Symposium on Performance
Analysis of Systems and Software, 2003.

[13] T. Heath, B. Diniz, E.V. Carrera, W. Meira Jr., and R.
Bianchini, “Energy Conservation in Heterogeneous Server
Clusters”, Proc. of the 10th Symp. on Principles and Practice
of Parallel Programming, pp. 186-195, 2005.

[14] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy Aware
Consolidation for Cloud Computing”, Proc. of the Workshop
on Power-Aware Computing and Systems, 2008.

[15] B. W. Wah, and M. L. Qian, “Constrained formulations and
algorithms for predicting stock prices by recurrent FIR neural
networks”, International Journal of Information Technology
& Decision Making, Vol.5, No. 4 (2006), pp. 639-658.

[16] B. G. Aslan, and M. M. Inceoglu, “A Comparative Study on
Neural Network based Soccer Result Prediction”, Proc. of
The Seventh International Conference on Intelligent Systems
Design and Applications, 2007.

[17] F. Liping, H. Behzad, F. Yumei, and K. Valeri, “Forecasting
of Road Surface Temperature Using Time Series, Artificial
Neural Networks, and Linear Regression Models”,
Transportation Research Board 87th Annual Meeting, 2008.

[18] J. Huang, H. Jin, X. Xie, and Q. Zhang, “Using NARX Neural
Network based Load Prediction to Improve Scheduling
Decision in Grid Environments”, Proc. of The Third
International Conference on Natural Computation, 2007.

[19] R. Buyya, R. Ranjan and R.N. Calheiros, “Modeling and
Simulation of Scalable Cloud Computing Environments and
the CloudSim Toolkit: Challenges and Opportunities”, Proc.
of the 7th High Performance Computing and Simulation
Conference, 2009.

[20] R. Buyya and M. Murshed, “GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing”, The
Journal of Concurrency and Computation: Practice and
Experience (CCPE), Volume 14, Issue 13-15, Wiley Press,
2002.

[21] Traces in the Internet Traffic Archive,
http://ita.ee.lbl.gov/html/traces.html

