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SUMMARY

We investigated and identified the conditions necessary for
stable dynamic gait generation in biped robots from the
mechanical energy balance point of view. The equilibrium
point at impact in a dynamic gait is uniquely determined
by two conditions; keeping the restored mechanical energy
constant and settling the relative hip-joint angle to the
desired value before impact. The generated gait then
becomes asymptotically stable around the equilibrium point
determined by these conditions. This is shown by a simple
recurrence formula of the kinetic energy immediately before
impact. We verified this stability theorem using numerical
simulation of virtual passive dynamic walking. The results
were compared with those for a rimless wheel and an inherent
stability principle was derived. Finally, we derived a robust
control law using a reference mechanical energy trajectory
and demonstrated its effectiveness numerically.

KEYWORDS: Gait generation; Biped robot; Asymptotic
stability; Mechanical energy balance; Virtual passive
dynamic walking.

1. Introduction

Elucidating the stability of a dynamic gait is a basic problem
in the study of limit cycle walkers. Passive-dynamic walkers1

exhibit stable dynamic walking without any control, but
it is unclear how gait stability is achieved. Analyzing and
understanding the stability of limit cycles with impacts is
difficult because of the complexity of the nonlinear hybrid
dynamical system. It has been empirically shown that a stable
dynamic gait with impacts can be synthesized by adjusting
the parameters of walking system.

Several earlier studies took limit cycle stability into
account.2−4 Doing so required precise design of the desired
trajectories or adjustment of the system parameters. Several
approaches to stability analysis have more recently been
taken. Goswami et al. used the Poincaré return map to analyze
the stability of passive compass gaits.5 They numerically
calculated the Jacobian matrix of the return map using four
simulation tests. Asano et al. adopted this approach and

* Corresponding author. E-mail: fasano@jaist.ac.jp

reduced the dimension of the return map to three.6 With these
approaches, however, the existence of a stable one-periodic
gait must be assumed. Garcia et al. analytically discussed the
basin of attraction using the simplest walking model.7 Their
approach, however, is limited to walking models for which
the leg mass can be neglected.

Several methods for analyzing stability without assuming
a stable limit cycle have been proposed. Hosoe et al.8 and
Grizzle et al.9 investigated the stability of the planar dynamic
bipedal gait by using the Poincaré return map. They reduced
the number of the degrees of freedom (DOF) in the walking
system by using high-gain feedback or deadbeat control, so
the walking system could be regarded as a one-link rigid
body. They needed at least two numerical simulation tests
for drawing the approximated return map. Ikemata et al.
investigated the limit cycle stability of the simplest walking
model using the reduced Poincaré return map and showed
that the generated gait is always asymptotically stable if
the impact posture is fixed.10 A related result was also
reported by Wisse et al.,11 and they observed that the stability
mechanism is equivalent to that of a rimless wheel. Although
a constraint condition on the impact posture is common to all
these works, the results differed, and the reason has not been
clarified.

We have investigated the gait stability of limit cycle
walkers from the viewpoint of mechanical energy balance.
Dynamic walking cycles are generated by restoring
mechanical energy lost by heel strikes,6 and the magnitude
of the restored energy converges to that of the dissipated
energy in a steady gait. In other words, balanced mechanical
energy creates a stable dynamic gait. We identified the
conditions necessary to systematically achieve this energy
balance and clarified their physical meanings. We then
developed a simple planar compass-like biped model and
trajectory tracking control for the hip-joint angle and, using a
simple recurrence formula of the kinetic energy immediately
before impact, we demonstrated asymptotic stability around
the equilibrium point. The validity of this approach was
proven for gait generation using a virtual passive dynamic
walking.6 Only one simulation test was required to detect
whether the gait was stable or not. Although there is an
alternative approach to generating stable gaits based on
mechanical energy considering global stability,12 we focused
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Fig. 1. Rimless wheel model.

on forward dynamic walking. The generated gait was shown
to be essentially as stable as a virtual rimless wheel.

2. Two Simple Walking Models

Before discussing the main problem, this section introduces
two simple walking models to clarify the key mechanisms of
asymptotic stability.

2.1. Rimless wheel model
Figure 1 shows a model of a rimless wheel. We assume that
this model has a point mass of M (kg) at the central position
and consists of massless legs whose length is l (m). We
also assume that the impact of each leg with the ground is
inelastic without sliding or slipping. Given a suitable initial
condition, the rimless wheel rolls down a slope, and the
rolling pattern converges to one-periodic stable limit cycle if
the next collision always occurs. This stability mechanism is
explained as follows.

Let θ (rad) be the angular position of a leg contacting
the ground with respect to the vertical direction as shown
in Fig. 1. We assume that it switches to the next contacting
leg after impact. The angular velocity relationship between
immediately before and immediately after impact is given by

θ̇
+ = cos α · θ̇

−
, (1)

where α (rad) is the interleg angle, as shown in Fig. 1. The
kinetic energy then has the following simple relationship
between immediately after and immediately before impact:

K+ = 1

2
Ml2(θ̇

+
)2 = 1

2
Ml2(cos α · θ̇

−
)2 = cos2 α · K−

(2)

The energy-loss coefficient ε (-), which is defined as

ε := K+

K− = cos2 α, (3)

is kept constant. The restored mechanical energy during one
step �E (J) is also kept constant

�E = 2Mgl sin
α

2
sin φ. (4)

Since the (i + 1)th kinetic energy immediately before
impact is determined by the sum of the ith kinetic energy
immediately after impact and the restored mechanical energy,
we can obtain the recurrence formula

K−[i + 1] = K+[i] + �E, (5)

where i is the number of steps. For all i, the relationship

K+[i] = εK−[i] (6)

holds, and, by substituting this into Eq. (5), we get

K−[i + 1] = εK−[i] + �E. (7)

This is a function of K− only. ε and �E are constants. We
can thus solve Eq. (7) for K−[i], i.e. the general term

K−[i] = �E

1 − ε
+ εi

(
K−[0] − �E

1 − ε

)
. (8)

This leads to

K−
∗ := lim

i→∞
K−[i] = �E

1 − ε
, (9)

which proves asymptotic stability. This mechanism was also
investigated by Tazaki and Imura.13 In addition, Coleman
also analyzed the mechanism in detail from the viewpoints
of Poincaré return map and energetics.14 He did not use the
simple recurrence formula of kinetic energy, but succeeded
in the approximate proof of asymptotic stability.

2.2. Simplest walking model
The simplest walking model, shown in Fig. 2, is a planar
compass-like biped model7 consisting of three point masses.
The hip mass is sufficiently larger than the leg mass (mH �
m), and the leg masses are positioned at the tips of the legs.
The dynamic equation and transition equation are thus very
simple, and the swing-leg motion immediately before impact
does not affect the angular velocity immediately after impact.
The Poincaré return map is also simplified and can be defined
as a function of the angular velocity immediately before
impact of the stance leg and the relative hip angle.

Fig. 2. Simplest walking model.
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Ikemata et al. used this model to investigate the stability
principle and showed that the generated dynamic gait is
always asymptotically stable if the relative hip angle is kept
constant.10 They derived the eigenvalues of the Poincaré
return map for when the relative hip angle at impact is
constant. If α (rad) is the relative hip angle at impact, the
eigenvalues yield cos2 α and 0. The same result was also
found by Wisse et al.11 who also observed that the simplest
walking model follows the same stability principle as the
rimless wheel model. This is because the stance leg exchange
in this walking model is performed in the same manner, so
the energy-loss coefficient and restored mechanical energy
are inherently constant in accordance with the relative hip
angle at impact if every impact posture is the same. In other
words, the simplest walking model discretely behaves in the
same manner as the rimless wheel model if α is constant.
In this sense, the results by Ikamata et al. and Wisse et al.
are obvious, and provide a new understanding of the results
of Tazaki and Imura.13 See the Appendix for a detailed
analysis.

Here, we describe a more general case of a biped model
regarding its leg mass.

3. Problem Formulation

3.1. Model of compass-like biped robot
As shown in Fig. 3, the model of a planar, fully-actuated,
compass-like biped robot with flat feet has two joint torques
u1 and u2 that can be exerted at the ankle joint and hip
joint. As we described in a previous paper,15 semicircular
feet are well suited for energy-efficient and high-speed biped
locomotion, but full actuation is necessary to satisfy the
conditions necessary for stable gait generation, as described
later. Let θ = [θ1 θ2]T be the generalized coordinate vector,
where θ1 and θ2 are the angular positions of the stance and
swing legs with respect to vertical. The dynamic equation

Fig. 3. Model of planar, fully actuated, compass-like biped robot.

Fig. 4. Configuration at instant of heel strike.

then yields

M(θ )θ̈ + C(θ , θ̇)θ̇ + g(θ ) = Su =
[

1 1

0 −1

] [
u1

u2

]
. (10)

These matrices are described in detail elsewhere.6 If we
assume inelastic collisions for the stance-leg exchange and
set suitable values for the physical parameters, the robot can
exhibit passive dynamic walking on a gentle slope. Let E

be the total mechanical energy of the robot, and relationship
Ė = θ̇

T
Su between the mechanical energy and the control

inputs holds.
The modeling of an inelastic collision is briefly described

here. A more detailed explanation is given elsewhere.15 We
extended the configuration as shown in Fig. 4. We define the
stance and swing legs immediately before impact as “Leg 1”
and “Leg 2” and derive their dynamic models independently.
We define qi = [xi zi θi]T as the extended coordinate vector
for Leg i and define q = [qT

1 qT
2 ]T as that of the whole system.

The inelastic collision model is then derived as

M̄(q)q̇+ = M̄(q)q̇− − J I (q)TλI , (11)

where M̄ ∈ R
6×6 is the inertia matrix corresponding to q, and

superscripts “+” and “−” respectively stand for immediately
after and immediately before impact. The J I (q) ∈ R

4×6 is
the Jacobian matrix derived from the geometric constraint
conditions at the instant of heel strike; it should satisfy
the following velocity constraint condition immediately after
impact:

J I (q)q̇+ = 04×1. (12)

The detailed derivation of J I (q) and λI ∈ R
4 as the Lagrange

undetermined multiplier vector representing the impact force
is described elsewhere.15

3.2. Constraint control of impact posture
Previous methods for gait stability analysis simplified
the walking system by assuming a contact robot posture
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immediately prior to every heel strike.8−10 Reducing the
number of DOF or regarding the robot dynamics to be that of a
one-link rigid body facilitates analysis of the walking system.
For the compass-like biped model in Fig. 3, this condition is
achieved by simply adjusting the relative hip-joint angle,
θH := θ1 − θ2, to the desired one, θ∗

H, immediately prior
to each heel strike. As described later, we achieve this
condition by introducing a time-dependent desired trajectory
for the hip-joint angle. We further assume that this control
is always completed before the heel strikes. A compass gait
with this constraint control on the impact posture is termed
as “constrained compass gait.” It is described in detail in
Section 6.

4. Definitions and Theorem for Asymptotically Stable

Gait

This section defines the basic parameters, terms, and
their notations used for generating an asymptotically
stable bipedal gait. It also introduces the theorem for an
asymptotically stable gait.

4.1. Basic definitions
Definition 1. Time interval T (s), which is the interval from
the instant of one stance-leg exchange to the next, is called
the “step period.”

Definition 2. The robot starts walking from the impact
posture shown in Fig. 4 at 0 (s); this is defined as the zeroth
collision. The next heel-strike collision is the first collision,
and the motion between the zeroth and the first collisions is
called the “first step”. The subsequent collisions and steps
are contextually counted.

Definition 3. Let Tset (s) be the desired settling-time for
trajectory tracking control of the hip joint. We assume that
T ≥ Tset holds in successful walking. This is called the
“settling-time condition.”

Definition 4. Let �E := E(T −) − E(0+) (J) be the restored
mechanical energy by control inputs during one cycle. It is
called the “restored mechanical energy.”

4.2. Theorem of asymptotically stable gait
We need to consider two lemmas before discussing the main
theorem.

Lemma 1. If the following two conditions hold, the
equilibrium points of the constrained compass gait are
systematically determined.

Condition 1 �E is constant for every step.

Condition 2 The next heel-strike collision occurs under the
settling-time condition.

Lemma 2. The energy loss coefficient remains constant
given Condition 2.

Then the following theorem holds.

Theorem 1. A generated constrained compass gait is
asymptotically stable under Conditions 1 and 2.

We give the proof of Lemmas 1 and 2 in the following
sections.

5. Generation of Equilibrium Points Based on

Mechanical Energy Balance

This section describes the mechanism of mechanical energy
balance in a dynamic gait and discusses how the equilibrium
points in a dynamic gait are systematically generated.

5.1. Dissipated energy
We define the total energy dissipated by heel strikes as

�Ehs := 1

2
(q̇+)T M̄(q)q̇+ − 1

2
(q̇−)T M̄(q)q̇− ≤ 0, (13)

which is equal to dissipated kinetic energy because the
potential energy does not change at the instant of a heel
strike. This equation can be rearranged as follows. Equations
(11) and (12) show that the velocity immediately after impact
q̇+ yields q̇+ = Y q̇−, where

Y := I6 − M̄−1 JT
I

(
J I M̄−1 JT

I

)−1
J I . (14)

The relationship q̇− = H θ̇
−

holds for the velocity
immediately before impact. By using this relationship, we
can simplify �Ehs

�Ehs = −1

2
(θ̇

−
)T N θ̇

− ≤ 0, (15)

N := HT JT
I

(
J I M̄−1 JT

I

)−1
J I H . (16)

The details of matrices H ∈ R
6×2 and N ∈ R

2×2 are
described later. They are simply function matrices of the
hip-joint angle θ∗

H at the instant of a heel strike in a
constrained compass gait. If K is the kinetic energy, �Ehs =
K+ − K− ≤ 0, i.e. K+ ≤ K−. This is because kinetic energy
always dissipates in inelastic collisions.

5.2. Condition of mechanical energy balance
Let the restored mechanical energy �E be constant. It is then
equal to the magnitude of the dissipated energy, and

�E = 1

2
(θ̇

−
)T N(θ∗

H)θ̇
− = −�Ehs (17)

holds. This is an ellipse in the configuration space of the
angular velocities immediately before impact, the θ̇

−
1 –θ̇

−
2

plane. It is expressed as

N11(θ̇
−
1 )2 + 2N12θ̇

−
1 θ̇

−
2 + N22(θ̇

−
2 )2 = 2�E, (18)

where Nij is the (i, j ) component of matrix N .

N(θ∗
H) =

[
N11 N12

N12 N22

]

N11 = �N (1 + β2 + (2β2 − 2β + 3)γ + γ 2

− (1 + γ + (β + γ )2) cos(2θ∗
H))

N12 = �N (1 − β)(−1 − 2(1 − β)γ + cos(2θ∗
H)) cos θ∗

H

N22 = �N (1 − β)2(1 + 2γ − cos(2θ∗
H))

�N = ml2/(1 + 2β2 + 2γ − cos(2θ∗
H)),
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Table I. Parameter settings for walking system.

m 5.0 (kg) φ 0.02 (rad)
mH 10.0 (kg) θ∗

H 0.40 (rad)
l 1.00 (m) kd 100 (s−1)
a 0.50 (m) kp 2500 (s−2)

where β := a/l (-) is the location of leg’s CoM position,
and γ := mH/m is the mass ratio. The shape of the ellipse is
uniquely determined by the restored mechanical energy �E

and desired hip-joint angle θ∗
H. Figure 5 shows the ellipse

when �E = 1.50 (J) and the robot’s physical parameters are
set as shown in Table I. If constraint control of impact posture
is achieved or condition θ̇

−
1 = θ̇

−
2 holds, the equilibrium

points are uniquely and systematically determined.
By substituting θ̇

−
1 = θ̇

−
2 = θ̇

−
∗ into Eq. (18), we obtain

θ̇
−
∗ = ±

√
2�E

N11 + 2N12 + N22
. (19)

Here, we deal only with the equilibrium point in the first
quadrant, i.e. the case of walking forward. That in the third
quadrant implies walking backward with the same motion.
The ellipse enlarges with an increase in �E, i.e. the walking
speed increases as �E is increased.

6. Asymptotic Stability

This section describes the asymptotic stability of a
constrained compass gait and discusses its similarity to that
of a rimless wheel.

6.1. Energy loss coefficient
If θ−

H = θ∗
H is achieved by constraint control of the

impact posture, the following relationship for the velocities

Fig. 5. Ellipse of angular velocities immediately before impact and
equilibrium points determined by mechanical energy balance and
constraint on impact posture, where �E = 1.50 (J).

immediately before impact holds:

q̇− = H θ̇
− = H

[
1

1

]
θ̇

−
1 (20)

The angular velocity vector immediately before impact can
then be simply expressed using θ̇

−
1

θ̇
+ =

[
0 0 0 0 0 1

0 0 1 0 0 0

]
Y H

[
1

1

]
θ̇

−
1 =: ξ θ̇

−
1 , (21)

where H = H(θ∗
H) ∈ R

6×2 and ξ = ξ (θ∗
H) ∈ R

2 are function
matrices.

H(θ∗
H) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

l cos
θ∗

H

2
−l cos

θ∗
H

2

−l sin
θ∗

H

2
−l sin

θ∗
H

2
0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)

ξ (θ∗
H) =

⎡
⎣ −2(β(1−β)−(β+γ ) cos θ∗

H)
1+2β2+2γ−cos(2θ∗

H)
γ−2β(β2+γ )−2(1−β)β cos θ∗

H+(2β+γ ) cos(2θ∗
H)

(1−β)(1+2β2+2γ−cos(2θ∗
H))

⎤
⎦

(23)

Note that ξ does not depend on the leg length or mass. The
inertia matrix of a compass-like biped on the other hand is

M(θ) =
[

mHl2 + ma2 + ml2 −mbl cos θH

−mbl cos θH mb2

]
, (24)

and this can be considered equivalent to M = M(θH).
Using these matrices and vectors, we can express the

kinetic energy immediately after impact as

K+ = 1

2
ξT M(−θ∗

H)ξ (θ̇
−
1 )2 =:

1

2
M̄+(θ̇

−
1 )2 (25)

and that immediately before impact as

K− = 1

2

[
1

1

]T

M(θ∗
H)

[
1

1

]
(θ̇

−
1 )2 =:

1

2
M̄−(θ̇

−
1 )2. (26)

Note that M(θ∗
H) = M(−θ∗

H). Using these equations, we
define the energy loss coefficient as

ε := K+

K− = M̄+

M̄− . (27)

Both M̄+ and M̄− depend only on θ∗
H, so ε is constant. This is

a dimensionless quantity, and we can find 0 < ε < 1 because
0 < K+ < K−.

6.2. Asymptotic stability
If �E is constant, the following recurrence formula for the
kinetic energy at impact between the (i + 1)th and the ith
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steps holds:

K−[i + 1] = K+[i] + �E. (28)

The relationship K+[i] = εK−[i] holds for all i, and, by
substituting it into Eq. (28), we obtain a simple recurrence
formula for K−,

K−[i + 1] = εK−[i] + �E, (29)

which shows that the walking system is asymptotically stable
in the same manner as a rimless wheel. As such, the generated
bipedal gait should be termed the “virtual rimless wheel gait.”
From Eqs. (26) and (29), we obtain the recurrence formula
for θ̇

−
1 [i]:

θ̇
−
1 [i + 1] =

√
ε
(
θ̇

−
1 [i]

)2
+ 2�E

M̄− . (30)

The equilibrium point of Eq. (30) θ̇
−
∗ is also found to

be asymptotically stable from the geometric relationship
between the parabola and the 45◦ line. This is described
in detail in the next section.

Here we deal only with a simple compass-like biped for
simplicity. Nevertheless, the obtained results are applicable
to all biped robots, regardless of their DOF, that have the
same posture as a 1-DOF rigid body under the two constraint
conditions previously mentioned.

7. Validation Using Virtual Passive Dynamic Walking

Now that we have clarified the conditions necessary for
asymptotically stable gait generation, we can validate
Theorem 1 using a virtual passive dynamic walking model
that satisfies Condition 1 for a given θ∗

H.

7.1. Theorem 1 validation
The simplest way to uniquely determine �E for a given θ∗

H
is to use a virtual passive dynamic walking (VPDW) model,6

which is used to generate a level gait with virtual gravity
as the driver. The following relationship between the total
mechanical energy and the X-position of CoM, Xg , holds in
VPDW:

∂E

∂Xg

= Mg tan φ, (31)

where M := mH + 2m (kg) is the robot’s total mass, and
φ (rad) is the virtual slope angle. Taking into account Ė =
θ̇

T
Su, we can expand Eq. (31)

Ė = θ̇1u1 + θ̇Hu2 = Mg tan φẊg. (32)

We then face the problem of how to determine u1 and u2

for gait generation in real time. Using Eq. (32) to determine
the control inputs, we obtain the restored mechanical energy
yield constant

�E = Mg tan φ�Xg = 2Mlg tan φ sin
θ∗

H

2
, (33)

where �Xg := Xg(T −) − Xg(0+) (m) is the change in Xg

for one step.
We first synthesize the desired trajectory for the hip-joint

angle. To obtain smooth hip-joint motion, we developed a
fifth-order time-dependent function

θHd(t) =
{
a5t

5 + a4t
4 + a3t

3 + a0 (0 ≤ t < Tset)
θ∗

H (t ≥ Tset)
. (34)

The coefficients ai are set so that the following boundary
conditions are satisfied:

θ̈Hd(0) = 0, θ̇Hd(0) = 0, θHd(0) = −θ∗
H,

θ̈Hd(Tset) = 0, θ̇Hd(Tset) = 0, θHd(Tset) = θ∗
H.

They are given by

⎡
⎢⎣

a5

a4

a3

⎤
⎥⎦ =

⎡
⎢⎣

T 5
set T 4

set T 3
set

5T 4
set 4T 3

set 3T 2
set

20T 3
set 12T 2

set 6Tset

⎤
⎥⎦

−1 ⎡
⎢⎣

2θ∗
H

0

0

⎤
⎥⎦ ; (35)

a0 = −θ∗
H. The desired settling time Tset is chosen empiri-

cally. We assume that the settling-time condition is always
satisfied, as mentioned above.

We synthesize the output following control using hip-joint
torque u2 for u1 = 0. We divide the control input vector in
Eq. (10) to form

Su =
[

1

0

]
u1 +

[
1

−1

]
u2 =: S1u1 + S2u2 (36)

and use θH as the system’s control output. If we set u1 = 0,
the second-order derivative of θH with respect to time is

θ̈H = ST
2 θ̈ = ST

2 M−1(S2u2 − C θ̇ − g). (37)

We can then formulate u2

u2 = (
ST

2 M−1 S2
)−1(

ū + ST
2 M−1(C θ̇ + g

))
, (38)

ū = θ̈Hd + kd(θ̇Hd − θ̇H) + kp(θHd − θH), (39)

where kp and kd are the PD gain, and are positive constants,
respectively.

By substituting u2 determined by Eq. (38) into Eq. (32),
we obtain the ankle-joint torque

u1 = Mg tan φẊg − θ̇Hu2

θ̇1
. (40)

We assume θ̇1 > 0 and the foot length is sufficiently long to
satisfy the zero moment point (ZMP) limitation.

Figure 6 shows the simulation results for VPDW with
constraint control of impact posture and Tset = 0.70 (s) and
φ = 0.02 (rad) for the system parameter settings in Table I.
The robot started walking from the initial conditions with
a steady gait at t = 0−; θ1 = −θ2 = θ∗

H/2; and the angular
velocities θ̇

−
i were set to the value given by Eq. (19). With

the VPDW model, as shown in Fig. 6(d), the total mechanical
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Fig. 6. Simulation results for virtual passive dynamic walking with desired trajectory tracking and constraint control of hip-joint angle,
where Tset = 0.70 (s).

energy was restored during single-support phases, and a
stable dynamic bipedal gait was successfully generated.
Figure 7 shows a stick diagram of a steady gait for one
step with the feet omitted.

We next discuss gait stability. Figure 8 shows a Poincaré
return map of the angular velocity immediately before impact
of the stance leg θ̇

−
1 . Several points of θ̇

−
1 [i + 1] were

numerically calculated starting from θ̇
−
1 [i], which is close

to the equilibrium point. The stable equilibrium point is
indicated at the central position. These results show that

the generated gait was asymptotically stable around the
equilibrium point.

7.2. On ZMP and energy efficiency
Here, we comment on the ZMP limitation and energy
efficiency.

7.2.1. ZMP limitation. Satisfying the ZMP limitation is a
critical problem in applying a control law to a biped robot.
We must determine how the ZMP behaves in accordance
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Fig. 7. Stick diagram for steady gait.

Fig. 8. Poincaré return map around stable equilibrium point.

with the control law prior to implementation. The feet must
be sufficiently long so that the ZMP is not over the tilt-
limitation point. We thus conducted a numerical simulation

to determine how long the feet should be to cover the ZMP
trajectory. We calculated the ZMP using

ZMP = − u1

RZ

, (41)

where RZ (N) is the vertical reaction force from the floor.
Figure 9 shows the results. The ZMP remained in the range
−0.10 to 0.04 (m), indicating that we must make the length
with the heel-side of 0.10 (m) and toe-side of 0.04 (m). This
is sufficiently short compared with the leg length.

7.2.2. Energy efficiency. Let v (m/s) be the average walking
speed and p (J/s) be the average input power. Energy
efficiency can then be evaluated using specific resistance
p/Mgv (-), i.e. the expenditure of energy per unit mass
and per unit length, which is a dimensionless quantity.6 The
question of how to attain energy-efficient biped locomotion
rests on how to increase v while keeping p small. In VPDW,
the relationship p/Mgv ≥ tan φ holds,6 and the minimum
specific resistance is achieved when the equality holds. In the
simulation, we set φ to 0.02 (rad), so the minimum specific
resistance was 0.02 (-). Numerical calculation showed that
it was 0.0333 (-), so energy efficiency was not maximum.
This is because negative input power occurred due to the
trajectory tracking control. Nevertheless, efficiency was still
sufficient.

7.3. Improved gait stability using robust energy control
From our findings, we derived a robust control law that
uses a reference energy trajectory. When the walking
pattern converges to a one-periodic gait, the system’s total
mechanical energy converges to a unique cycle that should
be the reference trajectory for mechanical energy in a steady
gait. It can be expressed as a function of Xg

Ed(Xg) = E0 + Mg tan φXg, (42)

where E0 is the value of the mechanical energy at Xg = 0.
In steady-gait of VPDW, E0 can be analytically determined

E0 = 1

2
M̄+(θ̇

−
∗ )2 + P0(θ∗

H) + Mlg tan φ sin
θ∗

H

2
, (43)

where P0 is the potential energy at the heel strikes. Attracting
mechanical energy to desired trajectory Ed improves the
convergence speed of the generated gait, which indicates that
robust performance of the walking system is also improved.6

Furthermore, if E ≡ Ed is achieved during the stance phase,

Fig. 9. Time evolution of ZMP.
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Fig. 10. Evolution of step periods in virtual passive dynamic walking with desired energy trajectory tracking control for two values of ζ .

all state variables of the constrained compass gait perfectly
converge to steady ones.

We can then consider the following tracking control:

d

dt
(E − Ed) = −ζ (E − Ed) , (44)

where ζ ≥ 0 is the feedback gain. Combining Eq. (44) with
the relationship

d

dt
(E − Ed) = θ̇

T
Su − Mg tan φẊg, (45)

we can formulate robust gait generation as the solution of

θ̇
T

Su = Mg tan φẊg − ζ (E − Ed) . (46)

Moreover, we can solve this equation using the same
algorithm described above. By substituting u2 determined
by Eq. (38) into (46), we obtain the ankle-joint torque:

u1 = Mg tan φẊg − ζ (E − Ed) − θ̇Hu2

θ̇1
. (47)

We must set the PD gains sufficiently large so that the
mechanical energy is set to Ed before heel strikes. Figure 10
shows the evolution of the VPDW step period for ζ = 0.0
and 10.0. The robot started walking from an initial condition
close to the steady value. The effect of robust energy control
is clarified by the results. When ζ was 10.0, the gait perfectly
converged in one step. When it was 0.0, the generated gait
was asymptotically stable.

In this method, the hip-joint torque u2 is used for constraint
control of the impact posture, and the ankle joint is driven

so as to satisfy the necessary conditions for asymptotically
stable gait generation in terms of making the restored
mechanical energy constant. It is thus important to have
enough active joints for gait stability.

8. Conclusion and Future Work

We investigated how equilibrium points are systematically
determined from the mechanical energy balance point of view
and found that an asymptotically stable gait can be generated
based on two constraint conditions using a simple planar
compass-like biped model. A robust control law utilizing
the property of VPDW was derived, and its validity was
confirmed by numerical simulation.

A future task is to clarify the sufficient conditions for the
next impact to occur or for the potential barrier at the mid-
stance to overcome. It is problematic whether or not the
next impact successfully occurs. Figure 11 shows the stable
domain in the Tset–θ∗

H plane for VPDW for φ = 0.02 (rad).
The stable area is narrow and restricted. Finding a suitable
combination of Tset and θ∗

H for a given φ and the physical
parameters is not easy without numerical testing.

We systematically determined the equilibrium points in a
steady gait using two constraint conditions. In this sense,
they are trivial equilibrium points. We plan to investigate the
stability and robustness of general equilibrium points that
are naturally determined without introducing any constraint
conditions.
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Fig. 11. Stable domain in Tset–θ∗
H plane for virtual passive dynamic

walking for φ = 0.02 (rad).
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Appendix: Energy-loss coefficient of simplest walking

model

The energy-loss coefficient of Eq. (27) as a function of θ∗
H,

β, and γ is described in detail as

ε(β, γ, θ∗
H) = Nε(β, γ, θ∗

H)

Dε(β, γ, θ∗
H)

, (A 1)

Nε(β, γ, θ∗
H) = 4β2(β(β − 1) + 1) + 2βγ (β + 1) + γ 2

+ 4β(β − 1)(β + γ ) cos θ∗
H + γ (2β + γ )

× cos(2θ∗
H), (A 2)

Dε(β, γ, θ∗
H) = (2 + 2β(β − 1) + γ + 2(β − 1) cos θ∗

H)

× (1 + 2β2 + 2γ − cos(2θ∗
H)). (A 3)

By setting β = 0 and γ → ∞, we can obtain the value of
the simplest walking model. Only if γ → ∞ is set, however,
does ε uniquely converge to cos2 θ∗

H regardless of β. If α

is constant, the restored mechanical energy �E yields a
constant value of Eq. (4). In addition, in the simplest walking
model, the leg swinging immediately before impact does not
affect the state variables immediately after impact,7 and so
the constraint control of the impact posture is not necessary
to keep ε constant.


