
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Privacy-Preserving Data Mining in Presence of

Covert Adversaries

Author(s) Miyaji, Atsuko; Rahman, Mohammad Shahriar

Citation
Lecture Notes in Computer Science, 6440/2010:

429-440

Issue Date 2010

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/9592

Rights

This is the author-created version of Springer,

Atsuko Miyaji and Mohammad Shahriar Rahman,

Lecture Notes in Computer Science, 6440/2010,

2010, 429-440. The original publication is

available at www.springerlink.com,

http://dx.doi.org/10.1007/978-3-642-17316-5_41

Description

Privacy-Preserving Data Mining in Presence of
Covert Adversaries

Atsuko Miyaji and Mohammad Shahriar Rahman

School of Information Science, Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa, Japan 923-1292,

{miyaji,mohammad}@jaist.ac.jp

Abstract. Disclosure of the original data sets is not acceptable due to
privacy concerns in many distributed data mining settings. To address
such concerns, privacy-preserving data mining has been an active re-
search area in recent years. All the recent works on privacy-preserving
data mining have considered either semi-honest or malicious adversar-
ial models, whereby an adversary is assumed to follow or arbitrarily
deviate from the protocol, respectively. While semi-honest model pro-
vides weak security requiring small amount of computation and mali-
cious model provides strong security requiring expensive computations
like Non-Interactive Zero Knowledge proofs, we envisage the need for
‘covert’ adversarial model that performs in between the semi-honest and
malicious models, both in terms of security guarantee and computational
cost. In this paper, for the first time in data-mining area, we build ef-
ficient and secure dot product and set-intersection protocols in covert
adversarial model. We use homomorphic property of Paillier encryption
scheme and two-party computation of Aumann et al. to construct our
protocols. Furthermore, our protocols are secure in Universal Compos-
ability framework.

KeyWords: Privacy-preserving Data Mining, Covert Adversary, Efficiency, Multi
Party Computation

1 Introduction

1.1 Background

Recent advances in information technology has empowered many organizations
to collect large volumes of data through data mining. A key utility of large
databases today is scientific or economic research. However, this data is not
useful if worthwhile information cannot be extracted from it. Privacy is a key
issue that arises in any huge collection of data. The need for privacy is some-
times due to personal interests, law (e.g., for medical databases), or business
interests. However, despite the potential gain, this is often not possible to uti-
lize large databases for scientific or economic research due to the concerns over
privacy infringement while performing the data mining operations. To address

II

this problem, several privacy-preserving distributed data mining protocols using
cryptographic techniques have been suggested. Depending on the adversarial be-
havior assumptions, those protocols can be categorized into two main classes of
adversaries:

Malicious adversaries: These adversaries may behave arbitrarily and are not
assumed to follow a specified protocol. Protocols that are secure in the malicious
model provide a very strong security guarantee as honest parties are ‘protected’
irrespective of an adversarial behavior of corrupted parties.

Semi-honest adversaries: These adversaries correctly follow the protocol spec-
ification, yet may attempt to learn additional information by analyzing the tran-
script of messages received during the execution.

The assumption of semi-honest behavior may be unrealistic in some settings.
In such cases, participating parties may prefer to use a protocol that is secure
against malicious behavior. It is clear that the protocols secure in the mali-
cious model offer more security. Regarding malicious adversaries, it has been
shown that, under suitable cryptographic assumptions, any multiparty proba-
bilistic polynomial time functionality can be securely computed for any number
of malicious corrupted parties. However, these are not efficient enough to be used
in practice. Most of these constructions use general zero-knowledge proofs for
fully malicious multi party computation protocols. The zero-knowledge proofs
have inefficient constructions. These constructions make a non-black-box use of
the underlying cryptographic primitives through the use of trapdoor permuta-
tions[8]. Assuming a trapdoor permutation takes one second to compute, its
circuit implementation contains trillions of gates, thereby requiring the protocol
trillions of second to run. Some middle type of adversary model that accurately
models adversarial behavior in the real world efficiently are thus to be introduced
in data mining.

In this work, we introduce a new adversary model that lies between the
semi-honest and malicious models. To the best of our knowledge, this is the first
attempt to introduce such a model for data mining applications. In many real-
world settings, parties are willing to actively cheat (not semi-honest), but only if
they are not caught (not arbitrarily malicious). This is natural in many business,
financial, and diplomatic settings, where honest behavior cannot be assumed, but
where the companies, institutions and individuals involved cannot afford the
embarrassment, loss of reputation associated with being caught cheating. This
type of covert adversarial behavior explicitly models the probability of catching
adversarial behavior. In particular, it is not assumed that adversaries are only
willing to risk being caught with negligible probability, but rather allow for much
higher probabilities.

Applications of Dot Product and Set-Intersection: K-means clustering is
a simple and very commonly used clustering algorithm in data mining. It starts
with an unclustered dataset with n elements and one attributes and outputs clus-
ter assignments of each data element in the set. It requires prior knowledge of the
number of clusters k [10, 20, 3]. K-means clustering uses dot product and equal-
ity protocols as building blocks. Some recent studies [22, 23] provide privacy-

III

preserving association rule mining algorithms using vertically partitioned data.
These algorithms involve secure dot product computation with inputs of length
n, where n can be arbitrarily large. As for the scure set-intersection, to deter-
mine which customers appear on a ‘do-not-receive-advertisements’ list, a store
must perform a set-intersection operation between its private customer list and
the producer’s list.

1.2 Related Work

Cryptographic techniques have been used to design many different distributed
privacy-preserving data mining algorithms. In general, there are two types of as-
sumptions on data distribution: vertical and horizontal partitioning. In the case
of horizontally partitioned data, different sites collect the same set of informa-
tion about different entities. For example, different credit card companies may
collect credit card transactions of different individuals. Secure distributed pro-
tocols have been developed for horizontally partitioned data for mining decision
trees [17], k-means clustering [15], k-nn classifiers [12]. In the case of vertically
partitioned data, it is assumed that different sites collect information about the
same set of entities but they collect different feature sets. For example, both a
university and a hospital may collect information about a student. Again, se-
cure protocols for the vertically partitioned case have been developed for mining
association rules [22], and k-means clusters [10, 20]. All of those previous pro-
tocols claimed to be secure only in the semi-honest model (we do not consider
the proposals which have not used standard cryptographic notions). In [13], au-
thors present two-party secure protocols in the malicious model for data mining.
They follow the generic malicious model definitions from the cryptographic liter-
ature, and also focus on the security issues in the malicious model, and provide
the malicious versions of the subprotocols commonly used in previous privacy-
preserving data mining algorithms. They use threshold homomorphic encryption
for malicious adversaries, presented by Cramer et.al. [4]. [13] shows that there is
a positive linear relationship between the overall complexity of the subprotocols
and the input size. There has been some other works related to secure two-party
computation [2, 18]. In [2], the protocol has been shown secure assuming that
at least one-party behaves in semi-honest model. However, the protocol requires
both parties to engage in a ‘proof of decryption’ ability (where a sender sends
a set of ciphertexts to the receiver and checks whether the receiver can decrypt
all the ciphertexts or not), which increases the communication overhead. On
the other hand, [18] proposed a two-party protocol to securely evaluate a 2DNF
formula using homomorphic encryption from vector decomposition. But this pro-
tocol has been shown secure only in the semi-honest adversarial model. Recently,
[9] proposed efficient set operations against the malicious adversaries. It is based
on oblivious pseudorandom function evaluation in the standard model. They as-
sume no trusted set up or trusted third party for the multiparty computation,
thus increasing the communication overhead.

IV

1.3 Our Contribution

Considering the problems mentioned above, for the first time in data mining
area, we provide efficient dot product and set-intersection protocols that are
secure in presence of the covert adversaries. While semi-honest model provides
weak security requiring small amount of computation and malicious model pro-
vides strong security requiring expensive computations like Non-Interactive Zero
Knowledge proofs, we envisage the need for ‘covert’ adversarial model that per-
forms in between the semi-honest and malicious models, both in terms of secu-
rity guarantee and computational cost. We use homoprphic property of Paillier
encryption scheme and two-party computation of Aumann et al. to construct
our protocols. Furthermore, our protocols are secure in Universal Composability
framework.

2 Cryptographic Primitives

2.1 Security Model: Universal Composability (UC)

Security in the UC framework implies that any adversary in the real-life model
can be emulated by an adversary in the ideal model. The advantage of this
paradigm is that it is possible to show that anything learned by the real-life ad-
versary during the protocol execution is computationally indistinguishable from
what is learned by an ideal model adversary. Since in the ideal model, any ad-
versary can learn at most the final result and what is implied by the final result,
proving that the real-life model adversary could be simulated by an ideal model
adversary implies that real-life adversary could not learn anything more than
the ideal model adversary. We briefly visit the universal composability model of
[4], a detailed description can be found there.

Ideal Model: Let the set of parties be P1, P2 and I ∈ {0, 1} denote the indices of
the corrupted parties, controlled by an adversary A. An ideal execution proceeds
as follows:

Each party obtains an input; the ith partys input is denoted xi. The adversary
A receives an auxiliary input denoted z. Any honest party Pj sends its received
input xj to the trusted party. The corrupted parties controlled by A may either
abort, send their received input, or send some other input of the same length to
the trusted party. This decision is made by A and may depend on the values xi
for i ∈ I and its auxiliary input z. Denote the vector of inputs sent to the trusted
party by w. If the trusted party does not receive 2 valid inputs, it replies to all
parties with a special symbol and the ideal execution terminates. Otherwise,
The trusted party computes (f1(w), f2(w)) and sends fi(w) to party Pi, for all
i ∈ I (i.e., to all corrupted parties). A sends either continue or halt to the trusted
party. If it sends continue, the trusted party sends fj(w) to party Pj , for all j /∈ I
(i.e., to all honest parties). Otherwise, the trusted party sends to all parties. An
honest party always outputs the message it obtained from the trusted party. The
ideal execution of f on inputs x, auxiliary input z to A and security parameter

V

n, denoted IDEALf,A(z),I(x, n), is defined as the output vector of the honest
parties and the adversary A from the above ideal execution.
Real-life Model: The adversary A sends all messages in place of the corrupted
parties, and may follow an arbitrary polynomial-time strategy. In contrast, the
honest parties follow the instructions of π.

Let f be as above and let π be an two-party protocol for computing f .
Furthermore, let A be a non-uniform PPT machine and let I be the set of
corrupted parties. Then, the real execution of π on inputs x, auxiliary input z to
A and security parameter n, denoted REAL= π,A(z), I(x, n), is defined as the
output vector of the honest parties and the adversary A from the real execution
of pi.

Definition 1. Let f and π be as above. Protocol π is said to securely compute
f with abort in the presence of malicious adversaries if for every non-uniform
PPT adversary A for the real model, there exists a non-uniform PPT adversary
S for the ideal model, such that for every I ⊆ [m], every balanced vector x ∈
({0, 1}∗)2, and every auxiliary input z ∈ {0, 1}∗: {IDEALf,S(z),I(x, n)}n∈N

c

≈
{REALπ,A(z),I(x, n)}n∈N, where

c

≈ indicates computational indistinguishability.

2.2 Homomorphic encryption:

Let Epk(.) denote the encryption function with public key pk and Dsk(.) denote
the decryption function with private key sk. A public key cryptosystem is called
additive homomorphic if it satisfies the following requirements:
(1) given the encryption of plaintexts m1 and m2, Epk(m1) and Epk(m2), there
exists an efficient algorithm to compute the public key encryption of m1 + m2,
such that Epk(m1 +m2) := Epk(m1) +h Epk(m2).
(2) given a constant k and the encryption of m1, Epk(m1), there exists an efficient
algorithm to compute the public key encryption of k·m1, such that Epk(k·m1) :=
k ×h Epk(m1).

We briefly state the Paillier cryptosystem [19] based on composite residuosity
assumption here. A more detailed description can be found in [19].

– Key generation: Let p and q be prime numbers where p < q and p - q− 1.
Set the public key pk to N where N = p · q, and private key sk to (λ,N),
where λ = LCM(p− 1, q − 1).

– Encryption with the public key: Given n, plaintext m, and a random
number r ∈ [1, . . . , N − 1], encryption of the message m: Epk(m) = (1 +
N)m · rN (mod N2). Given any encrypted message, a different encryption
can be computed by multiplying it with some random rN .

– Decryption with the private key: Given N , the ciphertext c = Epk(m),

decrypt as follows: m = (cλ (mod N2))−1
N λ−1, where λ−1 is the inverse of λ in

modulo N .
– Adding two ciphertexts: Given the encryptions Epk(m1) and Epk(m2)

where ∀m1,m2 ∈ ZN , Epk(m1 +m2) can be computed as follows: Epk(m1) ·

VI

Epk(m2) mod N2 = ((1+N)m1rN1)·((1+N)m2rN2) mod N2 = ((1+N)m1+m2 ·
(r1r2)N) mod N2 = Epk(m1 +m2) mod N

– Multiplying a ciphertext with a constant: Given a constant k ∈ N and
the encrypted value Epk(m1), k×Epk(m1) can be computed as: k×Epk(m1)
= Epk(m1)k mod N2 = ((1+N)m1 ·rN)k mod N2 = (1+N)k·m1 ·rkN1 mod N2

= Epk(k ·m1)

Definition 2. Assume the existence of semantically secure Paillier encryption
scheme with errorless decryption. Then, for any k = poly(n) there exists a
secure protocol for computing the parallel string oblivious transfer functional-
ity ((x01, x

1
1), . . . , (x0n, x

n
1), (σ1, . . . , σn)) 7→ (λ, (xσ1

1 , . . . , xσnn)) in the presence of
covert adversaries with ε-deterrent for ε = 1− 1/k.

2.3 Two-party Computation

We use secure multi-party protocol in covert adversarial model proposed in [1].
A two-party protocol problem is cast by specifying a random process that maps
sets of inputs to sets of outputs (one for each party). We refer to such a process
as a functionality and denote it f : ({0, 1}∗)2 → ({0, 1}∗)2, where f = (f1, f2).
The oblivious transfer functionality is denoted by ((x0, x1), σ → (λ, xσ), where
(x0, x1) is the first party’s input, σ is the second party’s input, and λ denotes
the empty string (meaning that the first party has no output).

We use the simulators in the security proofs due to their security properties.
The notion of security is such that the state of the adversary returned by those
simulators is statistically indistinguishable from the state of the adversary in
the real-life model. In the case of an attempted cheat, if the trusted party sends
corruptedi to the honest party and the adversary (an event which happens with
probability ε), then the adversary does not obtain the honest party’s inputs.
Thus, if cheating is detected, the adversary does not learn anything and the re-
sult is essentially the same as a regular abort. In other words, the adversary learns
nothing when it is detected. Since it is always detected, this means that full se-
curity is achieved. We denote the resultant ideal model by IDEALSCεf,S(z),I(x, n)
and have the following definition:

Definition 3. Let f, π be as in Definition 1, and ε : N → [0, 1]. Protocol π is
said to securely compute f in the presence of covert adversaries with ε-deterrent
if for every non-uniform PPT adversary A for the real model, there exists a
non-uniform PPT adversary S for the ideal model such that for every I ⊆ [2],
every balanced vector x ∈ ({0, 1}∗)2, and every auxiliary input z ∈ {0, 1}∗:
{IDEALSCεf,S(z),I(x, n)}n∈N

c

≈ {REALπ,A(z),I(x, n)}n∈N, where
c

≈ indicates com-
putational indistinguishability.

A detailed discussion on the relationship among semi-honest model, malicious
model, and and ε-deterrent covert adversarial model can be found in [1].

VII

3 Our Protocols

3.1 Underlying Idea

In the protocol, P1 sends P2 a number of garbled circuits; denote this number
by l. Then, P2 asks P1 to open all but one of the circuits (chosen at random)
in order to check that they are correctly constructed. This opening takes place
before P1 sends the keys corresponding to its input, so nothing is revealed by
opening the circuits. If the unopened circuit is correct, then this will constitute
a secure execution that can be simulated. With probability 1− 1/l party P1 will
have been caught cheating and so P2 will output corrupted1 if the unopened
circuit is not correct. To do so, it is crucial that the oblivious transfers are run
before the garbled circuits are sent by P1 to P2. This is due to the fact that the
simulator may send a corrupted P2 a fake garbled circuit that evaluates to the
exact output received from the trusted party (and only this output). However,
in order for the simulator to receive the output from the trusted party, it must
first send it the input used by the corrupted P2. This is achieved by first running
the oblivious transfers, from which the simulator is able to extract the corrupted
P2’s input. Moreover, let us consider a corrupted P1 that behaves exactly like
an honest P1 except that in the oblivious transfers, it inputs an invalid key in
the place of the key associated with 0 as the first bit of P2. The result is that
if the first bit of P2’s input is 1, then the protocol succeeds and no problem
arises. However, if the first bit of P2’s input is 0, then the protocol will always
fail and P2 will always detect cheating. Thus, P1’s decision to cheat may depend
on P2’s private input. In order to solve this problem, a circuit that computes
the function g(x1, x

1
2, . . . , x

m
2) = f(x1;⊕mi=1x

i
2), instead of a circuit that directly

computes f . This makes every bit of P2’s input uniform when considering any
proper subset of x12, . . . x

m
2 . This helps because as long as P1 does not provide

invalid keys for all m shares of x2, the probability of failure is independent of
P2’s actual input. This method has been used in [1].

3.2 Efficient and Secure Dot Product Protocol

In a secure dot product protocol, it is required to check whether the final result
is correct. If both parties are trying to cheat, we do not care whether the privacy
of any party is protected or parties get correct results. Assuming that any party
may want to actively cheat without being caught, an efficient protocol can be
constructed.

Require: Two parties P1 and P2 with n bit vector inputs xlj where xlj belongs
to Pl, and 1 ≤ j ≤ n, l ∈ {1, 2}.
Auxiliary input: Both parties have the description of a circuit C for inputs of
length n that computes the function f . The input wires associated with x1 and
x2 are w1, . . . , wn and wn+1, . . . , w2n, respectively.
Ensure: Return res =

∑n
j=1(x1j · x2j)) to P1

VIII

– Parties P1 and P2 define a new circuit C ′ that receives n+1 inputs x1, x
1
2, . . . , x

n
2

each of length n, and computes the function f(x1,⊕ni=1x
i
2). Denote the input

wires associated with x1 by w1, . . . , wn, and the input wires associated with
xi2 by win+1, . . . , w(i+1)n

– Party P2 chooses n − 1 random strings x12, . . . , x
n−1
2 ∈R {0, 1}n and defines

xn2 = (⊕n−1i=1 x
i
2)⊕ x2. The value z2 = x12, . . . , x

n
2 serves as P2’s new input of

length n2 to C ′

– Party P1 chooses two sets of 2n2 random keys by running G(1n), the key

generator for the encryption scheme: (k̂0n+1, . . . , k̂
0
n2+n),(k̃0n+1, . . . , k̃

0
n2+n),

(k̂1n+1, . . . , k̂
1
n2+n),(k̃1n+1, . . . , k̃

1
n2+n)

– P1 and P2 run n2 executions of an oblivious transfer protocol, as follows. In
the ith execution, party P1 inputs the pair ((k̂0n+1, k̃

0
n+1), (k̂1n+1, k̃

1
n+1)) and

party P2 inputs the bit zi2. The executions are run using a parallel oblivious
transfer functionality, as in Definition 2. If a party receives a corruptedi or
aborti message as output from the oblivious transfer, it outputs it and halts.

– Party P1 constructs two garbled circuits G(C ′)0 and G(C ′)1 using inde-
pendent randomness. The keys to the input wires wn+1, . . . , wn2+n in the

garbled circuits are taken from above. Let k̂01, k̂
1
1, . . . , k̂

0
n, k̂

1
n be the keys as-

sociated with P1’s input in G(C ′)0 and G(C ′)1 has analogous keys. Then, for

every i ∈ {1, . . . , n} and b ∈ {0, 1}, party P1 computes ĉbi = Com(k̂bi ; r̂
b
i) and

c̃bi = Com(k̃bi ; r̃
b
i), where Com is a perfectly-binding commitment scheme. P1

sends the garbled circuits to P2 together with all of the above commitments.
The commitments are sent as two vectors of pairs; in the first vector the ith
pair is {ĉ0i , ĉ1i } in a random order, and in the second vector the ith pair is
{c̃0i , c̃1i } in a random order.

– Party P2 chooses a random bit b ∈R {0, 1} and sends b to P1. The following
steps are a single step: P1 sends a message to P2, and P2 carries out a com-
putation.

– P1 sends P2 all of the keys for the inputs wires w1, . . . , wn2+n of the garbled
circuit G(C ′)b, together with the associated mappings and the decommit-
ment values.

– P2 checks the decommitments to the keys associated with w1, . . . , wn, de-
crypts the entire circuit using the keys and mappings that it received, and
checks that it is exactly the circuit C ′ derived from the auxiliary input cir-
cuit C. In addition, it checks that the keys that it received in the oblivious
transfers match the correct keys that it received in the opening. If all the
checks pass, it proceeds to the next step. If not or it does not get any mes-
sage, it outputs corrupted1 and halts.

IX

– If b = 0, then P1 sends P2 the keys and decommitment values (k̃
x1
1

1 , r̃
x1
1

1), . . . ,

(k̃
x1
n

1 , r̃
xn1
1) to P2. Otherwise, P2 sends the (k̂

x1
1

1 , r̂
x1
1

1), . . . , (k̂
x1
n

1 , r̂
xn1
1).

– P2 checks that the values received are valid decommitments to the commit-
ments received above. If not, it outputs abort1. If yes, it uses the keys to
compute C ′(x1, z2) = C ′(x1, x

1
2, . . . , x

n
2) = C(x1, x2), such that

C(x1, x2) = f = eres2 = (Epk(x21)×h x21) +h . . .+h (Epk(x1n)×h x2n)

– P1 calls decrypt protocol to learn Dsk(eres2) = res =
∑n
j=1(x1j · x2j))

The result of data mining algorithm res =
∑n
j=1(x1j · x2j) is evaluated cor-

rectly by at least one party, assuming that at least one party tries to cheat.
Both P1 and P2 have enough information to calculate res. If P2 computes the
same res value as P1 expects, then computations must be correct, because none
of them calculates incorrect res. Therefore, if we securely make sure that any
party fails to cheat successfully with incorrect output value, then the local cal-
culation can be decrypted to reveal res to P1 correctly. In our protocol, party
P1 sends the encrypted inputs along with necessary keys to P2, then party
P2 locally computes its respective eres2 = Epk(res2). For example, P1 gener-
ates a homomorphic key pair and sends the pk to P2 along with the encrypted
vector Epk(x1j) = Epk(x11), (Epk(x12), . . . , Epk(x1n)). Given pk, P2 calculates
ex1j ·x2j

= (Epk(x11) ×h x21) +h (Epk(x12) ×h x22) +h . . . +h (Epk(x1n) ×h x2n)
where x1j is the P1’s string’s j-th component, and sends eres2 to P1. For the
decryption, the P1 and P2 jointly decrypts to reveal res to P1, given that the
computated values are correct.

A note on secure equality protocol: A secure equality protocol requires to
compute whether two data items are equal or not without revealing these items.
It is thus straight forward to construct a secure equality protocol in covert model.
For this reason and due to lack of space, we do not include the equality protocol
here.

3.3 Efficient and Secure Set-Intersection Protocol

The main idea of this protocol construction is that we can represent the sets
owned by each party as a bit vector of size D, and use secure multiplication
property of the homomorphic encryption to give secure set protocols in the
covert model. Let us assume that x0j is set to 1 if P0 has item j in its private set
else it is set to 0 (similarly for x1j for P1). Clearly for calculating set-intersection,
we need to calculate x0j ∧ x1j for each j. Similarly, for set union, we need to
calculate x0j ∨x1j for all j. This can be rewritten as ¬(¬x0j ∧¬x1j). Therefore,
the dot product protocol for set union can be used, too. One important thing
here to note that, unlike the dot product protocol, each parties need to perform
the whole protocol. In other words, each party needs to send its garbled circuits
and the necessary keys to the other party before they compute the joint function.

X

We put the detailes of the protocol in the full version due to lack of space. The
same protocol can be used for two-party set union negating the input and output
bits.

4 Security Analysis

Theorem 1. Let l and m be parameters in the protocol that are both upper-
bound by poly(n), and set ε = (1− 1/l)(1− 2m+1). Let f be any PPT function.
Assume that the Paillier encryption scheme used to generate the garbled circuits
has indistinguishable encryptions, and that the oblivious transfer protocol used
is secure in the presence of covert adversaries with ε-deterrent according to Def-
inition 2. Then, our protocols securely compute dot product and set-intersection
in the presence of covert adversaries with ε-deterrent.

Proof (Sketch): We breifly sketch the idea on the proof due to page limitation.
Our analysis of the security of the protocol is in the (OT, ε)-hybrid model, where
the parties are assumed to have access to a trusted party computing the obliv-
ious transfer functionality following the ideal model of our definition. Thus the
simulator will play the trusted party in the oblivious transfer, when simulating
for the adversary. We separately consider the different corruption cases (when
no parties are corrupted, and when either one of the parties is corrupted). In the
case that no parties are corrupted, the security reduces to the semi-honest case.

Party P2 is corrupted: Intuitively, the security in this case relies on the fact
that P2 can only learn a single set of keys in the oblivious transfers and thus can
decrypt the garbled circuit to only a single value as required. In other words,
A is the PPT adversary who controls P2. The simulator S fixes A’s random-
tape to a uniformly distributed tape. S meets the requirements of our Definition
3. S only needs to send cheat2 due to the oblivious transfer. Thus, if a“fully
secure” oblivious transfer protocol were to be used, the protocol would meet the
standard definition of security for malicious adversaries for the case that P2 is
corrupted.

Party P1 is corrupted: The proof of security in this corruption case is con-
siderably more complex. Intuitively, security relies on the fact that if P1 does
not construct the circuits correctly or does not provide the same keys in the
oblivious transfers and circuit openings, then it will be caught with probability
at least ε. In contrast, if it does construct the circuits correctly and provide the
same keys, then its behavior is effectively the same as an honest party and so
security is preserved. �

5 Efficiency

The efficiency of our protocol is better compared to the best known results for
the malicious adversary model. Our protocol requires only a constant number
of rounds, a single oblivious transfer for each input bit, and has communication
complexity O(n|C|) where n is the security parameter and |C| is the size of the

XI

circuit being computed. Two efficient protocols for general two-party computa-
tion in the presence of malicious adversaries has been presented in [11, 16] re-
cently. The protocol of [11] achieves universal composability under the decisional
composite residuosity and strong RSA assumptions under a common reference
string. The protocol of [16] has been constructed under more general assump-
tions and is secure in the plain model. [11] requires O(|C|) public-key operations
and bandwidth of O(n · |C|). [16] requires symmetric operations and bandwidth
of the order of O(sn|C|+s2k) where k is the input length, n is the computational
security parameter, and s is a statistical security parameter. Thus, our protocol
in covert adversarial model is much more efficient for circuits that are not very
small. On the other hand, it is sufficient for the oblivious transfer protocol to
be secure in the presence of covert adversaries. Hence, a protocol for general
two-party computation with ε = 1/2 is only a constant factor slower than the
original protocol of Yao that is only secure for semi-honest adversaries.

6 Conclusion

In this paper, we have proposed efficient and secure dot product and set-intersection
protocols in covert adversarial model for the first time which are useful for many
practical applications. These protocols can be used in various data mining algo-
rithms as building blocks. We provide sophisticated modifications that lead to
greater efficiency of the privacy-preserving data mining algorithms in more real-
istic settings. The effect of our construction for efficient implementation is huge.
Our protocols are much efiicient than the protocols in malicious models without
requiring expensive zero knowledge proofs, and are slightly expensinve than the
semi-honest models. However, the security of our protocol is much stronger than
that in semi-honest models. We also provide the security model in UC frame-
work. Applying the covert adversarial model in a more efficient way for specific
data mining applications under reasonable assumptions are the open problems.

References

1. Aumann, Y. and Lindell, Y.: Security Against Covert Adversaries: Efficient Pro-
tocols for Realistic Adversaries, TCC’07, LNCS, pp. 137-156. (2007)

2. Boneh, D., Goh,E.G., and Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
TCC’05, LNCS, pp. 325-341. (2005)

3. Bunn, P., and Ostrovsky, R.: Secure Two-Party k-Means Clustering. ACM CCS’07,
pp. 486-497. (2007)

4. Cramer, R., Damgard, I., and Nielsen, J.B.: Multi-party computation from thresh-
old homomorphic encryption. EUROCRYPT’01, LNCS, pp. 280-299. (2001)

5. Damgard, I., Hofheinz, D., Kiltz, E., and Thorbek, R.: Public-Key Encryption with
Non-interactive Opening. CT-RSA’08, LNCS, pp. 239-255. (2008)

6. Damgard, I., Thorbek, R.: Non-interactive proofs for integer multiplication. EU-
ROCRYPT’07, LNCS, pp. 412-429. (2007)

XII

7. Galindo, D., Libert, B., Fischlin, M., Fuchsbauer, G., Lehmann, A., Manulis,
M., and Schroder, D.: Public-Key Encryption with Non-interactive Opening: New
Constructions and Stronger Definitions. AFRICACRYPT’10, LNCS, pp. 333-350.
(2010)

8. Goyal, V., Mohassel, P., and Smith, A.: Efficient Two Party and Multi Party
Computation Against Covert Adversaries. EUROCRYPT’08, LNCS, pp. 289-306.
(2008)

9. Hazay, C., and Nissim, K.: Efficient Set Operations in the Presence of Malicious
Adversaries. Public Key Cryptography - PKC’10, LNCS, pp. 312-331. (2010)

10. Jagannathan, G. and Wright, R.N.: Privacy-preserving distributed k-means clus-
tering over arbitrarily partitioned data. ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 593-599. (2005)

11. Jarecki, S. and Shmatikov, V.: Efficient Two-Party Secure Computation on Com-
mitted Inputs. EUROCRYPT’07, LNCS, pp. 97-114. (2007)

12. Kantarcioglu, M. and Clifton, C.: Privately computing a distributed k-nn classifier.
PKDD’04, LNCS, pp. 279-290. (2004)

13. Kantarcioglu, M., and Kardes, O.: Privacy-preserving data mining in the malicious
model. International Journal of Information and Computer Security, Vol. 2, No. 4,
pp. 353-375. (2008)

14. Lai, J., Deng, R.H., Liu, S., and Kou, W.: Efficient CCA-Secure PKE from Identity-
Based Techniques. CT-RSA’10, LNCS, pp. 132-147. (2010)

15. Lin, X., Clifton, C. and Zhu, M.: Privacy-preserving clustering with distributed
EM mixture modeling. Knowledge and Information Systems, July, Vol. 8, No. 1,
pp. 68-81. (2005)

16. Lindell, Y. and Pinkas, B.: An Efficient Protocol for Secure Two-Party Computa-
tion in the Presence of Malicious Adversaries. EUROCRYPT’07, LNCS, pp. 52-78.
(2007)

17. Lindell, Y. and Pinkas, B.: Privacy preserving data mining, CRYPTO’00, LNCS,
pp. 36-54. (2000)

18. Okamoto,T., and Takashima,K.: Homomorphic Encryption and Signatures from
Vector Decomposition. Pairing-Based Cryptography - Pairing’08, LNCS, pp. 57-
74. (2008)

19. Paillier, P.: Public-key cryptosystems based on composite degree residue classes.
EuroCrypt’99, LNCS, pp. 223-238. (1999)

20. Su, C., Bao, F., Zhou, J., Takagi, T., Sakurai, K.: Security and Correctness Analysis
on Privacy-Preserving k-Means Clustering Schemes. IEICE Trans. Fundamentals,
Vol.E92-A, No.4, pp. 1246-1250. (2009)

21. Top 10 Largest Databases in the World. http://www.worldsbiggests.com/2010/02/top-
10-largest-databases-in-world.html

22. Vaidya, J. and Clifton, C.: Privacy preserving association rule mining in vertically
partitioned data. ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 639-644. (2002)

23. Yang, Z. and Wright, R.N.: Privacy-preserving computation of Bayesian networks
on vertically partitioned data. IEEE Transactions on Knowledge and Data Engi-
neering, Vol. 18, No. 9, pp. 1253-1264.(2006)

24. Yao, A.: How to Generate and Exchange Secrets. In FOCS’86, pp. 162-167. (1986)

