
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Generalized RC4 Key Collisions and Hash

Collisions

Author(s) Chen, Jiageng; Miyaji, Atsuko

Citation
Lecture Notes in Computer Science, 6280/2010: 73-

87

Issue Date 2010-09

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/9596

Rights

This is the author-created version of Springer,

Jiageng Chen and Atsuko Miyaji, Lecture Notes in

Computer Science, 6280/2010, 2010, 73-87. The

original publication is available at

www.springerlink.com,

http://dx.doi.org/10.1007/978-3-642-15317-4_6

Description

Security and Cryptography for Networks, 7th

International Conference, SCN 2010, Amalfi,

Italy, September 13-15, 2010. Proceedings

Generalized RC4 Key Collisions and Hash
Collisions

Jiageng Chen ? and Atsuko Miyaji??

School of Information Science,
Japan Advanced Institute of Science and Technology,

1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
{jg-chen, miyaji}@jaist.ac.jp

Abstract. In this paper, we discovered that RC4 can generate colliding
key pairs with various hamming distances, other than those found by
Matsui (with hamming distance one), and by Chen and Miyaji (with
hamming distance three). We formalized RC4 colliding key pairs into two
large patterns, namely, Transitional pattern and Self-Absorbing pattern,
according to the behavior during KSA. The colliding key pairs found in
the previous researches can be seen as either subsets of the Transitional
pattern or of the Self-Absorbing pattern. We analyzed both patterns and
clarified the relations among the probability of key collision, key length
and hamming distances which yield the colliding key pairs. Also we show
how to make use of the RC4 key collision patterns to find collisions of
RC4-Hash function which was proposed in INDOCRYPT 2006. Some
concrete experimental results (RC4-Hash collision and RC4 colliding key
pairs) are also given in this paper.

1 Introduction

The stream cipher RC4 is one of the most famous ciphers widely used in real
world applications such as Microsoft Office, Secure Socket Layer (SSL), Wired
Equivalent Privacy (WEP), etc. Due to its popularity and simplicity, RC4 has
become a hot cryptanalysis target since its specification was made public on
the Internet in 1994 [5]. Various general weaknesses of RC4 have been discov-
ered in some previous works including [6–8], etc. Another popular cryptanalysis
direction of RC4 is in the WEP environment. Such works include [9–12], etc.

Our paper focuses on RC4 key collisions, especially the existence of secret
key pairs that generate the same initial states after key scheduling algorithm.
This is a serious flaw for a stream cipher from the cryptographic point of view,
since two encryptions will become the same under two different secret keys.
The study of “colliding keys” of RC4 can be dated back to 2000. Grosul and
Wallach [1] first pointed out that RC4 can generate near collisions when the key
size is close to the full 256 bytes. In [2] first colliding key pairs with hamming

? This author is supported by the Graduate Research Program, JAIST.
?? This work is supported by Grant-in-Aid for Scientific Research (B), 20300003.

distance one were discovered, where hamming distance one means that the two
keys differ from each other at one position. Later in [3], other colliding key pairs
with hamming distance three were found. Note that these researches can also
generate “near colliding keys” of RC4, that generate initial states with small
hamming distances after key scheduling algorithm. In a sense, these researches
mean that we can control key scheduling algorithm. Recently, a new type of
attack, which uses such two initial states with small hamming distances, has
been proposed [4].

In this paper, we further analyzed the RC4 colliding key behavior, and we
discovered that more colliding key pairs with various hamming distances exist in
RC4, in addition to the ones found in [2] and [3]. We also found that all currently
known RC4 colliding key pairs can be organized into two patterns, according to
the behavior during KSA. We analyze these two generalized patterns and for-
malize the RC4 key collisions. Collision probability is estimated, and we point
out that it is mainly affected by key length and hamming distances between the
two keys. By making use of the RC4 key collision, we can also find collisions for
RC4-Hash, which is built from RC4 [14] using KSA as a compression function.
Structure of the paper. In Section 2, we briefly describe the RC4 algorithm,
followed by some previous works on RC4 key collisions. Section 3 shows the
formalized RC4 colliding key patterns and how they work. The probability eval-
uation is given in Section 4, followed by the RC4-Hash Collisions in Section 5.
Some experimental results on RC4-Hash Collisions and RC4 key collisions are
given in Section 5 and Appendix.

2 Preparation

2.1 Description of RC4

The internal state of RC4 consists of a permutation S of the numbers 0, ..., N−1
and two indices i, j ∈ {0, ..., N −1}. The index i is determined and known to the
public, while j and permutation S remain secret. RC4 consists of two algorithms:
The Key Scheduling Algorithm (KSA) and the Pseudo Random Generator Al-
gorithm (PRGA). The KSA generates an initial state from a random key K of k
bytes as described in Algorithm 1. It starts with an array {0, 1, ..., N − 1} where
N = 256 by default. At the end, we obtain the initial state SN−1. Once the
initial state is created, it is used by PRGA. The purpose of PRGA is to generate
a keystream of bytes which will be XORed with the plaintext to generate the
ciphertext. PRGA is described in Algorithm 2. In this paper, we focus only on
KSA.

Algorithm 1. KSA
1: for i = 0 to N − 1 do
2: S[i]← i
3: end for
4: j ← 0
5: for i = 0 to N − 1 do
6: j ← j + S[i] +K[i mod l]
7: swap(S[i], S[j])
8: end for

Algorithm 2. PRGA
1: i← 0
2: j ← 0
3: loop
4: i← i+ 1
5: j ← j + S[i]
6: swap(S[i], S[j])
7: keystream byte zi = S[S[i] + S[j]]
8: end loop

2.2 Previous Research on RC4 key collisions

Three important previous studies on RC4 key collisions are [1], [2] and [3]. In [1],
the authors pointed out that it’s possible for two secret keys with length close
to 256 bytes to generate similar internal state after KSA, and thus they will
generate similar hundred byte output during PRGA. The reason for this is that
for two keys K1,K2, if we assume K1[i] = K2[i] except when i = t, then when
t is close to 255, the two internal states will be substantially similar. However,
this idea cannot generate strict key collisions, and this result only works for key
lengths close to 256.

In [2], RC4 key collision was first discovered. The key pattern is almost the
same as in [1], namely, two keys differ at only one byte position (K1[i] = K2[i]
except i = t) and the value difference is 1(K1[t] = K2[t] − 1). The intuition
behind the collision is that from the first time i touches the different position
t, the pattern ensures that there are always only two differences in the internal
state as the key scheduling process continues. The difference is absorbed when i
touches t for the last time. Please refer to [2] for the detailed description.

In [3], colliding key pairs with hamming distance three were first discovered.
The key pattern is totally different from [1] and [2], namely, K1[d] = K2[d] −
t,K1[d+ 1] = K2[d+ 1] + t,K1[d+ t+ 1] = K2[d+ t+ 1]− t. This key pattern
shows us a more flexible way in which the two keys can differ from each other.

3 Generalized RC4 colliding key pairs

We found out that RC4 can generate many other colliding key pairs with different
key relations, other than those found in [2] and [3]. We formalize all the currently
known colliding key pairs into two patterns. We describe them in the following
section by first giving the key relations, and then explaining how the two keys
with these relations can achieve collisions.

3.1 Notation

– K1,K2: a secret key pair with some differences between them.
– S1,i, S2,i: S-Boxes corresponding to the secret key pair at time i.
– i, j1,i, j2,i: internal states of RC4. When j1,i = j2,i, we use ji to denote.

– d: the first index of the key differences.
– h: hamming distances between the two keys (number of different positions

where two keys differ from each other).
– k: the lengths (bytes) of the secret keys.
– n: the number of times the key differences appear during KSA. n = b 256+k−1−d

k c.
– l1, ..., lh−1: the intervals between two consecutive key difference indices.

– l: interval between the first and last key difference indices, l =
∑h−1

i=1 li.
– Γ : the set of indices at which two keys differ from each other, |Γ | = h,
Γ = {γ1, ..., γh} and d = γ1.

3.2 Transitional Pattern

Key relations in Transitional pattern: Let K2[i] = K1[i]+1, i ∈ Γ , namely,
two keys differ from each other at h places, and the value differences at these
positions all equal 1.

Transitional pattern has the property that after the first internal state dif-
ferences are generated, which is due to the key difference, the internal state dif-
ferences are transferred to the later indices of the S-Box, and these differences
exist before the last key difference comes into play during KSA.

Fig. 1: Transitional Pattern

Figure 1 illustrates the case in which the secret keys are short, so they will
appear several times during KSA. When i first touches the key difference, j
difference and two S-Box differences are generated. Notice that Transitional
pattern requires that one j equal i. Thus the two S-Box differences generated
at the beginning are located next to each other, and meanwhile, we require that
S-Box value differences also be one. The dotted line area in the figure shows the
three internal state differences generated by the first key difference. The next two

j return to the same value, due to the effects of previous j difference (N) and one
S-Box difference(F). Meanwhile, the S-Box difference (F) is transferred to the
next key difference index, and this transfer will repeat each time when i touches
the next key difference index. The situation for the last appearance of the key is
a little bit different. In order to achieve collision, we require that the two S-Box
differences �,F be in consecutive positions just before the last key difference
index. The two S-Box differences are absorbed by each other and generate a j
difference(N). Finally, the last key difference is there to absorb the previous j
difference and the internal states become the same.

The colliding key pairs found in [2] demonstrate a special case of this pattern,
where the hamming distance between two keys can only be one (|Γ | = h = 1).
In our generalized Transitional pattern, two keys can have various hamming
distances as the probability allows. Here we give a more detailed example of
a 128-byte colliding key pair with hamming distance three, to show how key
collision can be achieved. Two keys differ from each other at indices 1, 4 and 8.

Table 1: Transitional Pattern, h = 3, n = 2(k = 128)

Internal State Difference

i K1[i]/K2[i] j1,i/j2,i 0 1 2 3 4 5 6 7 8 ... 129 130 131 132 133 134 135 136

0 K1[0] * 1 2 Same
K2[0] = K1[0] * 1 2

1 K1[1] 1 1 2 j, S-Box
K2[1] = K1[1] + 1 2 2 1

2 K1[2] 4 1 2 S-Box
K2[2] = K1[2] 4 2 1

4 K1[4] 8 1 2 S-Box
K2[4] = K1[4] + 1 8 2 1

8 K1[8] 129 1 2 S-BoX
K2[8] = K1[8] + 1 129 2 1

129 K1[1] 132 1 2 S-Box
K2[1] = K1[1] + 1 132 2 1

132 K1[4] 135 1 2 S-Box
K2[4] = K1[4] + 1 135 2 1

134 K1[6] 1 1 2 S-Box
K2[6] = K1[6] 1 2 1

135 K1[7] 135 1 2 j
K2[7] = K1[7] 134 1 2

136 K1[8] * 1 2 Same
K2[8] = K1[8] + 1 * 1 2

The S-Box in Table 1 denotes the state after the swap. Notice that when
i = 134, the other S-Box difference should be swapped to the index 134, but not

necessarily from index 1, as shown in the example. The first S-Box difference
can be touched by j before 134, to be swapped to other positions. As long as
this S-Box difference appears in index 134 when i = 134, the pattern works.

3.3 Self-Absorbing Pattern

In addition to the above Transitional pattern, we investigate that some of the
other RC4 colliding key pairs have the following properties: the internal state
differences are generated and absorbed within one key appearance, namely, the
differences will not be transferred to the later parts of the S-Box. We can further
divide this pattern into two sub-patterns, which are shown in Figures 2(a) and
2(b). Due to the self absorbing property, only one key appearance needs to be
illustrated, since the others are the same. The ones found in [3] show a special
case of Self-Absorbing pattern 1 (|Γ | = h = 3).

(a) Self-Absorbing Pattern 1 (b) Self-Absorbing Pattern 2

Fig. 2: Self-Absorbing Pattern

Key relations in Self-Absorbing pattern 1: K2[d] = K1[d] + t, K2[d+ 1] =
K1[d+ 1]− t and K2[i] = K1[i] + t for i ∈ Γ \ {γ1, γ2}. The value difference t is
the same for all h different positions.

Figure 2(a) illustrates the case of hamming distance 4 (h = 4) and t = 2.
The first key difference generates three internal differences (dotted line area).
In this illustration, the key value difference is t = 2, so the interval between
two S-Box differences is also required to be t. The second key difference is there
to absorb the previous j difference. The third key difference makes the S-Box
difference(F) jump to the index just before the last key difference within this
key appearance. S-Box difference � should be swapped to the index two intervals
fromF when i touches that index. Then when i touches the S-Box differenceF,
two S-Box differences absorb each other and generate a j difference (solid line
area). Finally the last key difference is there to absorb the previous j difference,
so that the internal states become the same. Table 2 is one example of 128-byte
colliding key pair with hamming distance 4. Two keys differ from each other at
indices 1, 2, 3 and 8.

Table 2: Self-Absorbing Pattern 1, h = 4, n = 2(k = 128)

Internal State Difference

i K1[i]/K2[i] j1,i/j2,i 0 1 2 3 4 5 6 7 8 ... 129 130 131 132 133 134 135 136

0 K1[0] * 1 3 Same
K2[0] = K1[0] * 1 3

1 K1[1] 1 1 3 j, S-Box
K2[1] = K1[1] + 2 3 3 1

2 K1[2] * 1 3 S-Box
K2[2] = K1[2]− 2 * 3 1

3 K1[3] 7 1 3 S-Box
K2[3] = K1[3] + 2 7 3 1

5 K1[5] 1 1 3 S-Box
K2[5] = K1[5] 1 3 1

7 K1[7] 7 1 3 j
K2[7] = K1[7] 5 1 3

8 K1[8] * 1 3 Same
K2[8] = K1[8] + 2 * 1 3

129 K1[1] 129 129 131 j, S-Box
K2[1] = K1[1] + 2 131 131 129

130 K1[2] * 129 131 S-Box
K2[2] = K1[2]− 2 * 131 129

131 K1[3] 135 129 131 S-Box
K2[3] = K1[3] + 2 135 131 129

133 K1[5] 129 129 131 S-Box
K2[5] = K1[5] 129 131 129

135 K1[7] 135 129 131 j
K2[7] = K1[7] 133 129 131

136 K1[8] * 129 131 Same
K2[8] = K1[8] + 2 * 129 131

Key relations in Self-Absorbing pattern 2: K2[d] = K1[d] + t, K2[d+ 1] =
K1[d + 1] − t, K2[i] = K1[i] + t for i ∈ Γ \ {γ1, γ2, γh−1, γh}, K2[γh−1] =
K1[γh−1]− t′ , K2[γh] = K1[γh] + t

′′
. For the previous h− 2 different positions,

the value difference t is the same. The last two value differences t
′

and t
′′
, which

are determined by the specific key values, can be different values other than t.

Self-Absorbing pattern 2 is almost the same as Self-Absorbing pattern 1,
except that in addition to using S-Box differences themselves, it also depends
on key differences to absorb the S-Box differences (shown in solid line area in
Figure 2(b)) at the final stage. This will allow a more flexible way of how the
key value difference can vary, namely, the value difference can choose different
values instead of a fixed value, as in the Transitional pattern and Self-Absorbing
pattern 1. Table 3 shows a 128-byte colliding key pair example with hamming
distance 5. The two keys differ from each other at indices 1, 2, 3, 5 and 6.

Table 3: Self-Absorbing pattern 2, h = 5, n = 2(k = 128)

Internal State Difference

i K1[i]/K2[i] j1,i/j2,i 0 1 2 3 4 5 6 ... 129 130 131 132 133 134

0 K1[0] * 1 3 Same
K2[0] = K1[0] * 1 3

1 K1[1] 1 1 3 j, S-Box
K2[1] = K1[1] + 2 3 3 1

2 K1[2] * 1 3 S-Box
K2[2] = K1[2]− 2 * 3 1

3 K1[3] 5 1 3 S-Box
K2[3] = K1[3] + 2 5 3 1

5 K1[5] 5 1 3 j
K2[5] = K1[5]− 2 1 1 3

6 K1[6] * 1 3 Same
K2[6] = K1[6] + 4 * 1 3

129 K1[1] 129 129 131 j, S-Box
K2[1] = K1[1] + 2 131 131 131

130 K1[2] * 129 131 S-Box
K2[2] = K1[2]− 2 * 131 129

131 K1[3] 133 129 131 S-Box
K2[3] = K1[3] + 2 133 131 129

133 K1[5] 133 129 131 j
K2[5] = K1[5]− 2 129 129 131

134 K1[6] * 129 131 Same
K2[6] = K1[6] + 4 * 129 131

4 Probability Evaluation

In this section, we evaluate the existence probabilities of RC4 colliding key pairs,
and give approximate statistics on the scale and distribution of these keys.

4.1 Transitional Pattern

From the previous analysis, we know that colliding key pairs have the property
that the key value difference is fixed at one, and the hamming distance can vary.
We divide the whole process into three phases as shown in Figure 1, namely, the
starting phase (first appearance of the key), the ending phase (last appearance
of the key) and the repeating phase (middle repeating parts).
Starting Phase. First, before i touches d, j can not touch d or d + 1 with
probability (254

256)d. When i touches d, j1 = d and j2 = d + 1 with probability
1

256 . For each of the other key difference indices, we will pay the probability
1

256 each, totally (1
256)h−1. When i is between two consecutive key difference

indices, the pattern requires that j does not touch the later key difference in-
dex, otherwise i will never be able to touch the later S-Box difference again.

This will add (255
256)l1−2(255

256)l2−1 · · · (255
256)lh−1−1(255

256)k−l−1 = (255
256)k−h−1 to the

total probability cost. Thus, the totally probability in the starting phase is
(1
256)h(254

256)d(255
256)k−h−1.

Repeating Phase. Key will appear n−2 times during the repeating phase. For
each key, the procedure is as follows. When i touches one key difference index,
1

256 probability will be paid, (1
256)h in total. When i is between two difference

indices, it is not allowed to touch the later one (same as starting phase), this
will add probability (255

256)k−h in the repeating phase. Thus, the probability that
one key appearance must pay is (1

256)h(255
256)k−h. Since the key will repeat n− 2

times, the total probability is (1
256)h(n−2)(255

256)(k−h)(n−2).
Ending Phase. We need probability (1

256)h−1 for the key difference indices ex-
cept for the last one, and when i touches the index two intervals before the last
key difference, the other S-Box difference needs to be swapped here with proba-
bility 1

256 . When i touches the index before the last key difference, we need two
S-Box differences to swap with each other with probability 1

256 . And as in the re-
peating and starting phases, j can not touch the later key difference index when i
is between the two. In the ending phase, this probability can be easily calculated
as (255

256)l1−1(255
256)l2−1 · · · (255

256)lh−1−1 = (255
256)l−h+1. Thus the total probability in

the ending phase is (1
256)h+1(255

256)l−h+1. By multiplying the probabilities in the
three phases, we get the following theorem.

Theorem 1. The probability of two keys with relations in Transitional pattern
forming a colliding key pair, Prob(trans), is given as follows:

Prob(tran) =

(
1

256

)h×n+1(
254

256

)d(
255

256

)(k−h)×(n−3)+l−h

≈ O

((
1

256

)h×n
)

4.2 Self-Absorbing Pattern 1

We only need to evaluate the probability of one key appearance, the other parts
just repeat the first key appearance procedure. The value difference t is the same
for all different positions in Self-Absorbing pattern 1.

Before i touches index d, we need Sd[d] + t = Sd[d + t] with probability
255
256×(254

256)d−1+ 1
256 (Refer to [3] for the proof). When i touches d, we require jd =

d with probability 1
256 . Then for i between d+ 1 and d+ t−1, index d+ t should

not be touched with probability (255
256)t−1. Then we need one of the differences

(F in Figure 2) to appear at indices Γ
⋃
{γh−1}\{γ1, γ2, γ3, γh} when i touches

them, and j cannot touch the later key difference position when i is between the
consecutive two of them. The probability can be calculated in the same way as in
the repeating phase in Transitional pattern, namely, (1

256)h−3(255
256)l−t−h+3. Also

we need the S-Box difference (�) to be at position d+ l− t− 1 and it cannot be
touched when i is between d+ l− t and d+ l− 1. So this will give us probability
1

256 (255
256)t−1. Finally, when i touches index d+ l− 1, we need jd+l−1 = d+ l− 1

with probability 1
256 . By multiplying them together, we get the probability of one

key appearance (1
256)h(255

256)l+t−h+1(255
256 (254

256)d−1 + 1
256). Raise this probability to

the power of n due to the n times appearance of the key during KSA, we get
the following theorem for the total probability of Self-Absorbing pattern 1.

Theorem 2. The probability of two keys with relations in Self-Absorbing pattern
1 forming a colliding key pair, Prob(self1), is given as follows:

Prob(self1) =

(
1

256

)h×n(
255

256

)n×(l+t−h+1)
(

255

256

(
254

256

)d−1

+
1

256

)n

≈ O

((
1

256

)h×n
)

4.3 Self-Absorbing Pattern 2

Self-Absorbing pattern 2 behaves very similarly to Self-Absorbing pattern 1,
except at the final stage. Recall Figure 3, which shows that the S-Box differences
are absorbed by both key differences and S-Box itself. So in this pattern, we don’t
need the S-Box difference (�) to be t intervals from another difference (F) in the
final part. So we only need to cut off the probability for � to be transferred to
the corresponding position in the final stage in Self-Absorbing pattern 1, namely,
1

256 (255
256)t−1. So the total probability for Self-Absorbing pattern 2 is as follows.

Theorem 3. The probability of two keys with relations in Self-Absorbing pattern
2 forming a colliding key pair, Prob(self2), is given as follows:

Prob(self2) =

(
1

256

)(h−1)×n(
255

256

)n×(l−h)
(

255

256

(
254

256

)d−1

+
1

256

)n

≈ O

((
1

256

)(h−1)×n
)

We can conclude that the probabilities of both Transitional pattern and Self-
Absorbing patterns are mainly affected by hamming distance h and length of the
secret key. The probability decreases as the hamming distance h becomes larger
or the key length k becomes shorter (n becomes larger). Table 4 and 5 gives
the probability data for different key lengths and hamming distances according
to Theorems 1,2 and 3. According to the previous analysis, we know that Self-
Absorbing pattern 1 requires h ≥ 3, and Self-Absorbing pattern 2 requires h ≥ 5.

5 Application to RC4-Hash Collisions

In INDOCRYPT 2006, a new hash function name “RC4-Hash” based on RC4 was
proposed. It followed the “wide pipe” hash function design principle proposed
by Lucks [13] and it was claimed to be as efficient as some widely-used hash

Table 4: Probabilities of colliding key
pairs in Transitional pattern

HH
HHHn(k)

h
1 2 3 4 5

8(32) 2−64 2−128 2−192 2−256 2−320

4(64) 2−32 2−64 2−96 2−128 2−160

2(128) 2−16 2−32 2−48 2−64 2−80

1(256) 2−8 2−16 2−24 2−32 2−40

Table 5: Probabilities of colliding key
pairs in Self-Absorbing pattern 1 (Self-
Absorbing pattern 2)

HH
HHHn(k)

h
3 4 5

8(32) 2−192(−) 2−256(−) 2−320(2−256)

4(64) 2−96(−) 2−128(−) 2−160(2−128)

2(128) 2−48(−) 2−64(−) 2−80(2−64)

1(256) 2−24(−) 2−32(−) 2−40(2−32)

functions, such as SHA-family and MD-family, while also ruling out all possible
generic attacks against those famous hash functions. First hash collision was
found in [16] by exploiting the idea of Finney States [15]. We show in this section
that totally different from [16], collisions can also be found by making use of
previous key collision pattern. First we briefly describe the RC4-Hash algorithm,
and then we give the collision analysis. For a more detailed description of the
hash function, please refer to [14].

5.1 RC4-Hash

{0, 1}<264 denotes the set of all messages whose length is at most 264 − 1. l is
the output length of the RC4 hash function, 16 ≤ l ≤ 64. RC4-Hash function
can be described as {0, 1}<264 → {0, 1}8l.
Padding Rule: pad(M) = bin8(l)||M ||1||0k||bin64(|M |) = M1|| · · · ||Mt, where
Mt is the last 512-bit block. bin64(|M |) is the 64-bit binary representation of the
number of bits of M . k is the least non-negative integer such that 8 + |M |+ 1 +
k + 64 ≡ 0 mod (512) and |Mi| = 512.
Iteration Phase: Let (S0, j0) = (SIV , 0) be an initial value. The compression
function C is invoked iteratively as follows:

(S0, j0)
M1→ (S1, j1)

M2→ · · · (St−1, jt−1)
Mt→ (St, jt)

where (S, j)
X→ (S∗, j∗) denotes C((S, j), X) = (S∗, j∗).

Post-Processing: Let (St, jt) be the internal state after the classical iteration.
Compute St+1 = S0◦St and jt+1 = jt. Then compute HBGl(OWT (St+1, jt+1)).

C((S, j), X)
for i = 0 to 255

j ← j + S[i] +X[r(i)]
Swap(S[i],S[j]);

Return (S,j)

OWT ((S, j))
Temp1 = S
for i = 0 to 511

j ← j + S[i]
Swap(S[i], S[j])

Temp2 = S
S = Temp1 ◦ Temp2 ◦ Temp1
Return (S, j)

HBGl((S, j))
for i = 1 to l

j ← j + S[i]
Swap(S[i], S[j])
Out = S[S[i] + S[j]]

◦ denotes the composition of the permutations. Function r : [256]→ [64] re-
orders the 64-byte message block. There are four r mapping functions(r0, r1, r2, r3)
corresponding to the four iteration processes for each message block. In other
words, each message block is reordered three times (r0 is the identity permuta-
tion) during one iteration process. Refer to appendices for SIV and ri.

5.2 Collisions for RC4-Hash Function

Let’s look at the iteration phase carefully. After message is padded, it is cut into
64-byte blocks, and each block is processed by the compression function C four
times. The compression function C is actually the KSA in RC4, and the input
message block can be seen as a 64-byte secret key, except for two differences.
First, the message block is reordered by using ri functions three times (instead
of using the same 64-byte key which appears 4 times during KSA) and second,
instead of the identity permutation used at the beginning of KSA, a shuffled S-
Box SIV is used as the initial S-Box. The similarities between the compression
function and KSA gave us the intuition that we could make use of the RC4 key
collision to find collisions for RC4-Hash. Now let’s take a look at how these two
differences can affect our search. In both Transitional pattern and Self-Absorbing
pattern, when i touches the first different position, we need Sd[d] + t = Sd[d+ t].
This is very easy to achieve when the initial S-Box is an identity permutation (j
does not touch index d or index d+ t before i touches index d). But still we can
make this happen with SIV (Several candidates are available by checking SIV

carefully, and we use one of them in the following example). For the transitional
pattern, the reordering of the message will not have much effect on finding
collisions, because even though the different positions between the two messages
change three times, we do not have to pay extra probabilities because there
are no restrictions among these different message positions. Thus it works just
the same as finding key collisions in the Transitional pattern. However, there
are strict relations between the different positions in Self-Absorbing pattern
(Self-Absorbing pattern 1: K2[d] = K1[d] + t, K2[d + 1] = K1[d + 1] − t and
K2[i] = K1[i] + t for i ∈ Γ \ {γ1, γ2}), and the reordering of the message breaks
those relations at the later rounds in the compression function, thus making it
difficult to find a collision by using this pattern.

Here we give a concrete collision example by making use of the Transitional
pattern. Since the initial S-Box SIV is not an identity permutation, we need
to first make two consecutive indices have the value difference one. There are
several candidates we can use, by examining the SIV carefully, we choose to let
SIV [24] = 53 appear in index 27 when i touches it, and SIV [28] = 54 should
not be touched by j before. Then we have two values, 53 and 54, next to each
other at indices 27 and 28 when i touches index 27. The four iterations of the
64-byte message block during the compression function C can be seen as a KSA
procedure with a 64-byte key. Since the message will be reordered three times,
we need to check the mapping function ri to identify the different positions. Ac-
cording to the Transitional pattern, in order to achieve a collision, two messages

should differ from each other at index 27, and the value difference should be one.
According to r1, r2 and r3, the differences between two messages will appear at
indices 125, 179 and 213. After i touches 213, the two internal states become
the same. Figure 4 describes the above collision by using Transitional pattern
during one compression function C (63-byte message plus one padded byte).

From the above analysis, we know the complexity is equal to the key collision
complexity in Transitional pattern, which is approximately equal toO((1

256)h×n).
In RC4-Hash with k = 64(n = 4), we can find a collision with the smallest com-
plexity O(232) when two messages have the smallest hamming distance h = 1.
Notice that our method results in higher complexity than in [16], where com-
plexity is O(29).

Fig. 3: RC4-Hash collision using Transitional Pattern

Here is the collision pair we found by using the RC4 key collision Transitional
pattern with one day computation on an Intel Core i7 CPU PC (only one core
was used). Messages and hash outputs are represented in Hexadecimal form. In
our example, we set the output length l to be 16 bytes.
Message1(Message2): d8 4b be e4 ac c5 e3 c6 59 16 db b1 c2 7a de c2 62 5e
40 91 2c 7e de 4a f3 55 8b(8c) 2c 8f 96 f0 50 f7 54 78 3a 35 f5 ee 7e 76 72 35 83
0a e3 26 b5 06 7f 3b 1e b5 41 1c 1b ec 4e 80 c2 ba 64 9b
Hash Output: 76 54 b9 c6 65 f9 99 83 1b 66 c8 af 5f 0c 68 fa

5.3 Discussion

From the above analysis, we can see that the design of the compression function
by modifying KSA using SIV and mapping function ri cannot eliminate the
KSA collision property. Here we propose one method to mitigate the attack
by redesigning SIV carefully. Recall in the previous collision example, we need
two values with value difference one to be next to each other when i touches the
smaller one (Values 53 and 54 at indices 27 and 28 when i touches index 27). If we
can prevent this from happening, then we can eliminate the collision. That is to
say, if the index of value 54 is greater than 63 in SIV , our Transitional pattern will
not work. Generally speaking, design SIV satisfies |SIV [i]−1− (SIV [i] + 1)−1| ≥
64−MIN(SIV [i]−1, (SIV [i] + 1)−1) (Transitional pattern) for 0 < i < 64, where
v−1 denotes the index of value v. This will eliminate the collisions caused by the
RC4 key collision patterns we found.

6 Conclusion

In this paper, we have shown that RC4 can generate many other colliding key
pairs with various hamming distances. We analyzed the behavior of these col-
liding key pairs and formalized them into two patterns, which include the newly
discovered colliding key pairs we found, and also the ones found in previous re-
search. We further estimated the collision probabilities for all the RC4 colliding
key pairs, and clarified the relations among collision probability, key length and
hamming distance. Finally, we showed how the RC4 key collision patterns can
be used to find collisions for RC4-Hash which was proposed at INDOCRYPT
2006. We leave how to use the mitigating methods proposed in this paper and
[16] to construct secure RC4-Hash function as future work.

References

1. Grosul, A.L., Wallach, D.S.: A Related-Key Cryptanalysis of RC4. Tech-
nical Report TR-00-358, Department of Computer Science, Rice Univer-
sity (2000), http://cohesion.rice.edu/engineering/computerscience/tr/ TR Down-
load.cfm?SDID=126

2. Matsui, M.: Key Collisions of the RC4 Stream Cipher. In: Dunkelman, O., Preneel,
B. (eds.) FSE 2009. LNCS, vol. 5665, pp. 1.24. Springer, Heidelberg (2009)

3. Chen, J., Miyaji, A.: A New Class of RC4 Colliding Key Pairs With Greater Ham-
ming Distance. In: Kwak, J., Deng, R., Won, Y., Wang, G. (eds.) ISPEC 2010.
LNCS, vol.6047, pp. 30.44. Springer, Heidelberg (2010)

4. Miyaji, A., Sukegawa, M.: New Analysis Based on Correlations of RC4 PRGA with
Nonzero-Bit Differences. In: IEICE Trans., Fundamentals. vol. E93-A, No.6(2010),
pp. 1066-1077.

5. Anonymous: RC4 Source Code. CypherPunks mailing list (September
9, 1994), http://cypherpunks.venona.com/date/1994/09/msg00304.html,
http://groups.google.com/group/sci.crypt/msg/10a300c9d21afca0

6. Roos, A.: A Class of Weak Keys in the RC4 Stream Cipher (1995),
http://marcel.wanda.ch/Archive/WeakKeys

7. Mantin, I., Shamir, A.: A Practical Attack on Broadcast RC4. In: Matsui, M. (ed.)
FSE 2001. LNCS, vol. 2355, pp. 152.164. Springer, Heidelberg (2001)

8. Paul, S., Preneel, B.: A New Weakness in the RC4 Keystream Generator and an
Approach to Improve Security of the Cipher. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 245.259. Springer, Heidelberg (2004)

9. Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm of
RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp. 1.24.
Springer, Heidelberg (2001)

10. Klein, A.: Attacks on the RC4 Stream Cipher. Designs, Codes and Cryptography
48(3), 269.286 (2008)

11. Tews, E., Weinmann, R.P., Pyshkin, A.: Breaking 104 Bit WEP in Less than 60
Seconds. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp.
188.202. Springer, Heidelberg (2007)

12. Vaudenay, S., Vuagnoux, M.: Passive-Only Key Recovery Attacks on RC4. In:
Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 344.359.
Springer, Heidelberg (2007)

13. Lucks, S.: A Failure-Friendly Design Principle for Hash Functions. In: Advances
in Cryptology - ASIACRYPT 2005. LNCS, vol,.3788,pp.19-35, Springer, Heidelberg
(2005)

14. Chang, D., Gupta, K.C., Nandi, M.: RC4-Hash: A New Hash Function Based on
RC4. In: Progress in Cryptology - INDOCRYPT 2006, LNCS, vol.4329, pp. 80-94,
Springer, Heidelberg (2006)

15. Finney, H.: An RC4 cycle that can’t happen. Newsgroup post in sci.crypt, Septem-
ber 1994.

16. Indesteege, S., Preneel, B.: Collision for RC4-Hash. In: 11th International Confer-
ence on Information Security. LNCS, vol. 5222, pp. 355-366. Springer, Heidelberg
(2008)

A RC4-Hash (ri functions and SIV)

r1 : 0, 55, 46, 37, 28, 19, 10, 1, 56, 47, 38, 29, 20, 11, 2, 57, 48, 39, 30, 21, 12, 3,
58, 49, 40, 31, 22, 13, 4, 59, 50, 41, 32, 23, 14, 5, 60, 51, 42, 33, 24, 15, 6, 61, 52,
43, 34, 25, 16, 7, 62, 53, 44, 35, 26, 17, 8, 63, 54, 45, 36, 27, 18, 9.

r2: 0, 57, 50, 43, 36, 29, 22, 15, 8, 1, 58, 51, 44, 37, 30, 23, 16, 9, 2, 59, 52, 45,
38, 31, 24, 17, 10, 3, 60, 53, 46, 39, 32, 25, 18, 11, 4, 61, 54, 47, 40, 33, 26, 19,
12, 5, 62, 55, 48, 41, 34, 27, 20, 13, 6, 63, 56, 49, 42, 35, 28, 21, 14, 7.

r3 : 0, 47, 30, 13, 60, 43, 26, 9, 56, 39, 22, 5, 52, 35, 18, 1, 48, 31, 14, 61, 44, 27,
10, 57, 40, 23, 6, 53, 36, 19, 2, 49, 32, 15, 62, 45, 28, 11, 58, 41, 24, 7, 54, 37, 20,
3, 50, 33, 16, 63, 46, 29, 12, 59, 42, 25, 8, 55, 38, 21, 4, 51, 34, 17.

SIV :
145, 57, 133, 33, 65, 49, 83, 61, 113, 171, 63, 155, 74, 50, 132, 248, 236, 218, 192,
217, 23, 36, 79, 72, 53, 210, 38, 59, 54, 208, 185, 12, 233, 189, 159, 169, 240, 156,
184, 200, 209, 173, 20, 252, 96, 211, 143, 101, 44, 223, 118, 1, 232, 35, 239, 9,
114, 109, 161, 183, 88, 66, 219, 78, 157, 174, 187, 193, 199, 99, 52, 120, 89, 166,
18, 76, 241, 13, 225, 6, 146, 151, 207, 177, 103, 45, 148, 32, 29, 234, 7, 16, 19,
91, 108, 186, 116, 62, 203, 158, 180, 149, 67, 105, 247, 3, 128, 215, 121, 127, 179,
175, 251, 104, 246, 98, 140, 11, 134, 221, 24, 69, 190, 154, 253, 168, 68, 230, 58,
153, 188, 224, 100, 129, 124, 162, 15, 117, 231, 150, 237, 64, 22, 152, 165, 235,
227, 139, 201, 84, 213, 77, 80, 197, 250, 126, 202, 39, 0, 94, 42, 243, 228, 87, 82,
27, 141, 60, 160, 46, 125, 112, 181, 242, 167, 92, 198, 172, 170, 55, 115, 30, 107,
17, 56, 31, 135, 229, 40, 111, 37, 222, 182, 25, 43, 119, 244, 191, 122, 102, 21, 93,
97, 131, 164, 10, 130, 47, 176, 238, 212, 144, 41, 14, 249, 220, 34, 136, 71, 48,
142, 73, 123, 204, 206, 4, 216, 196, 214, 137, 255, 195, 26, 8, 51, 178, 2, 138, 254,
90, 194, 81, 245, 106, 95, 75, 86, 163, 205, 70, 226, 28, 147, 85, 5, 110.

B RC4 colliding key pairs

B.1 Transitional Pattern, h=3, k=128. K1(K2)

71, 185(186), 1, 63, 192(193), 206, 161, 132, 114(115), 12, 69, 19, 160, 125,
44, 78, 26, 119, 59, 18, 200, 221, 130, 215, 157, 208, 205, 210, 165, 96, 99, 44, 68,
17, 146, 161, 227, 188, 123, 218, 172, 154, 100, 99, 92, 205, 235, 78, 179, 8, 5, 1,
142, 115, 31, 245, 151, 170, 140, 140, 104, 198, 128, 189, 145, 163, 42, 178, 113,
223, 135, 21, 243, 236, 90, 141, 70, 78, 96, 8, 200, 8, 161, 123, 112, 57, 190, 224,
179, 196, 41, 87, 24, 105, 231, 41, 84, 12, 139, 107, 82, 228, 130, 23, 148, 38, 196,
3, 238, 164, 2, 233, 22, 41, 182, 130, 201, 95, 211, 140, 11, 248, 189, 6, 109, 27,
92, 1.

B.2 Self-Absorbing Pattern 1, h=4, k=128. K1(K2)

41, 215(217), 60(58), 197(199), 78, 163, 94, 159, 253(255), 76, 84, 228, 174,
159, 214, 86, 52, 146, 24, 235, 130, 98, 91, 117, 23, 44, 155, 55, 136, 46, 182, 76,
55, 200, 20, 25, 171, 59, 184, 240, 6, 178, 173, 29, 33, 126, 49, 151, 200, 185, 218,
219, 60, 188, 14, 49, 51, 215, 123, 58, 26, 222, 26, 96, 177, 14, 13, 175, 9, 90, 106,
179, 57, 183, 103, 183, 55, 51, 40, 163, 193, 93, 187, 151, 209, 145, 42, 10, 70,
166, 179, 136, 166, 206, 153, 21, 100, 241, 226, 120, 165, 74, 159, 125, 18, 14, 77,
151, 79, 129, 201, 19, 23, 109, 75, 14, 29, 96, 118, 87, 75, 225, 31, 28, 248, 126,
161, 148.

B.3 Self-Absorbing Pattern 2, h=5, k=128. K1(K2)

222, 34(36), 98(96), 157(159), 174, 75(73), 231(235), 9, 221, 154, 135, 215,
175, 166, 27, 58, 91, 226, 252, 225, 7, 164, 124, 198, 65, 132, 222, 132, 205, 184,
196, 21, 86, 41, 124, 121, 115, 138, 108, 2, 26, 137, 55, 224, 46, 92, 109, 63, 15,
156, 104, 144, 101, 3, 41, 224, 98, 15, 185, 198, 152, 226, 148, 111, 2, 136, 35, 69,
159, 211, 250, 47, 130, 40, 200, 19, 97, 205, 250, 226, 34, 243, 45, 120, 86, 175,
52, 157, 145, 214, 138, 107, 182, 50, 247, 20, 121, 20, 144, 40, 172, 236, 150, 77,
196, 200, 158, 198, 44, 206, 73, 90, 169, 64, 152, 1, 82, 163, 192, 235, 246, 24,
121, 185, 234, 158, 48, 200.

