
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
Co-Z Addition Formulæ and Binary Ladders on

Elliptic Curves

Author(s)
Goundar, Raveen Ravinesh; Joye, Marc; Miyaji,

Atsuko

Citation
Lecture Notes in Computer Science, 6225/2010: 65-

79

Issue Date 2010

Type Journal Article

Text version author

URL http://hdl.handle.net/10119/9597

Rights

This is the author-created version of Springer,

Raveen Ravinesh Goundar, Marc Joye and Atsuko

Miyaji , Lecture Notes in Computer Science,

6225/2010, 2010, 65-79. The original publication

is available at www.springerlink.com,

http://dx.doi.org/10.1007/978-3-642-15031-9_5

Description

Cryptographic Hardware and Embedded Systems, CHES

2010 12th International Workshop, Santa Barbara,

USA, August 17-20, 2010. Proceedings



Co-Z Addition Formulæ and Binary Ladders on
Elliptic Curves

(Extended Abstract)

Raveen R. Goundar1, Marc Joye2, and Atsuko Miyaji1

1 Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
raveen.rg@gmail.com,miyaji@jaist.ac.jp

2 Technicolor, Security & Content Protection Labs
1 avenue de Belle Fontaine, 35576 Cesson-Sévigné Cedex, France

marc.joye@technicolor.com

Abstract. Meloni recently introduced a new type of arithmetic on elliptic
curves when adding projective points sharing the same Z-coordinate. This
paper presents further co-Z addition formulæ for various point additions
on Weierstraß elliptic curves. It explains how the use of conjugate point
addition and other implementation tricks allow one to develop efficient
scalar multiplication algorithms making use of co-Z arithmetic. Specifi-
cally, this paper describes efficient co-Z based versions of Montgomery
ladder and Joye’s double-add algorithm. Further, the resulting implemen-
tations are protected against a large variety of implementation attacks.

Key words: Elliptic curves, Meloni’s technique, Jacobian coordinates, reg-
ular binary ladders, implementation attacks, embedded systems.

1 Introduction

Elliptic curve cryptography (ECC), introduced independently by Koblitz [16]
and Miller [23] in the mid-eighties, shows an increasing impact in our every-
day lives where the use of memory-constrained devices such as smart cards
and other embedded systems is ubiquitous. Its main advantage resides in a
smaller key size. The efficiency of ECC is dominated by an operation called
scalar multiplication, denoted as kP where P ∈ E(Fq) is a rational point on an
elliptic curve E/Fq and k acts as a secret scalar. This means adding a point P on
elliptic curve E, k times. In constrained environments, scalar multiplication is
usually implemented through binary methods, which take on input the binary
representation of scalar k.

There are many techniques proposed in the literature aiming at improv-
ing the efficiency of ECC. They rely on explicit addition formulæ, alternative
curve parameterizations, extended point representations, extended coordinate
systems, or higher-radix or non-standard scalar representations. See e.g. [1] for
a survey of some techniques.



In this paper, we target the basic operation, namely the point addition. More
specifically, we propose new co-Z addition formulæ. Co-Z arithmetic was intro-
duced by Meloni in [22] as a means to efficiently add two projective points
sharing the same Z-coordinate. The initial co-Z addition formula proposed by
Meloni greatly improves on the general point addition. The drawback is that this
fast formula is by construction limited to Euclidean addition chains. The effi-
ciency being dependent on the length of the chain, Meloni suggests to represent
scalar k in the computation of kP with the so-called Zeckendorf’s representa-
tion and proposes a “Fibonacci-and-add” algorithm. The resulting algorithm is
efficient but still slower than its binary counterparts. We take a completely dif-
ferent approach in this paper and consider conjugate point addition [11, 19]. The
basic observation is that the addition of two points, R = P + Q, yields almost
for free the value of their difference, S = P − Q. This combined operation is
referred to as a conjugate point addition. We propose efficient conjugate point
addition formulæ making use of co-Z arithmetic and develop a new strategy
for the efficient implementation of scalar multiplications. Specifically, we show
that the Montgomery ladder [24] and its dual version [14] can be adapted to
accommodate our new co-Z formulæ. As a result, we get efficient co-Z based
scalar multiplication algorithms using the regular binary representation.

Last but not least, our scalar multiplication algorithms resist against certain
implementation attacks. Because they are built on highly regular algorithms,
our algorithms inherit of their security features. In particular, they are naturally
protected against SPA-type attacks [17] and safe-error attacks [26, 27]. Moreover,
they can be combined with other known countermeasures to protect against
other classes of attacks. Finally, we note that, unlike [5, 9, 13, 21], our version of
the Montgomery ladder makes use of the complete point coordinates and so
offers a better resistance against (regular) fault attacks [4].

2 Preliminaries

Let Fq be a finite field with characteristic , 2, 3. Consider an elliptic curve E
over Fq given by the Weierstraß equation y2 = x3 + ax + b, with discriminant
∆ = −16(4a3 + 27b2) , 0. This section explains how to get efficient arithmetic
on elliptic curves over Fq. The efficiency is measured in terms of field multi-
plications and squarings. The cost of field additions is neglected. We let M and
S denote the cost of a multiplication and of a squaring in Fq, respectively. A
typical ratio is S/M = 0.8.

2.1 Jacobian coordinates

In order to avoid the computation of inverses in Fq, it is advantageous to make
use of Jacobian coordinates. A finite point (x, y) is then represented by a triplet
(X : Y : Z) such that x = X/Z2 and y = Y/Z3. The curve equation becomes

E/Fq : Y2 = X3 + aXZ4 + bZ6 .



The point at infinity, O, is the only point with a Z-coordinate equal to 0. It is
represented by O = (1 : 1 : 0). Note that, for any nonzero λ ∈ Fq, the triplets
(λ2X : λ3Y : λZ) represent the same point.

It is well known that the set of points on an elliptic curve form a group under
the chord-and-tangent law. The neutral element is the point at infinity O. Let
P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points on E, with P,Q , O. The
inverse of P is −P = (X1 : −Y1 : Z1). If P = −Q then P + Q = O. If P , ±Q then
their sum P + Q is given by (X3 : Y3 : Z3) where

X3 = R2 + G − 2V, Y3 = R(V − X3) − 2K1G, Z3 = ((Z1 + Z2)2
− I1 − I2)H

with R = 2(K1 − K2), G = FH, V = U1F, K1 = Y1 J2, K2 = Y2 J1, F = (2H)2,
H = U1−U2, U1 = X1I2, U2 = X2I1, J1 = I1Z1, J2 = I2Z2, I1 = Z1

2 and I2 = Z2
2 [7].†

We see that that the addition of two (different) points requires 11M + 5S.
The double of P = (X1 : Y1 : Z1) (i.e., when P = Q) is given by (X(2P) :

Y(2P) : Z(2P)) where

X(2P) = M2
− 2S, Y(2P) = M(S − X(2P)) − 8L, Z(2P) = (Y1 + Z1)2

− E −N

with M = 3B + a N2, S = 2((X1 + E)2
− B − L), L = E2, B = X1

2, E = Y1
2 and

N = Z1
2 [2]. Hence, the double of a point can be obtained with 1M + 8S + 1c,

where c denotes the cost of a multiplication by curve parameter a.
An interesting case is when curve parameter a is a = −3, in which case

point doubling costs 3M + 5S [6]. In the general case, point doubling can be
sped up by representing points (Xi : Yi : Zi) with an additional coordinate,
namely Ti = aZi

4. This extended representation is referred to as modified Jacobian
coordinates [7]. The cost of point doubling drops to 3M + 5S at the expense of a
slower point addition.

2.2 Co-Z point addition

In [22], Meloni considers the case of adding two (different) points having the
same Z-coordinate. When points P and Q share the same Z-coordinate, say
P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z), then their sum P + Q = (X3 : Y3 : Z3) can
be evaluated faster as

X3 = D −W1 −W2, Y3 = (Y1 − Y2)(W1 − X3) − A1, Z3 = Z(X1 − X2)

with A1 = Y1(W1−W2), W1 = X1C, W2 = X2C, C = (X1−X2)2 and D = (Y1−Y2)2.
This operation is referred to as the ZADD operation. The key observation in
Meloni’s addition is that the computation of R = P + Q yields for free an
equivalent representation for input point P with its Z-coordinate equal to that
of output point R, namely

(X1(X1 − X2)2 : Y1(X1 − X2)3 : Z3) = (W1 : A1 : Z3) ∼ P .

† Actually, Cohen et al. in [7] reports formulæ in 12M + 4S. The above formulæ in
11M + 5S are essentially the same: A multiplication is traded against a squaring in the
expression of Z3 by computing Z1 · Z2 as (Z1 + Z2)2

− Z1
2
− Z2

2. See [2, 18].



The corresponding operation is denoted ZADDU (i.e., ZADD with update)
and is presented in Algorithm 1. It is readily seen that it requires 5M + 2S.

Algorithm 1 Co-Z point addition with update (ZADDU)
Require: P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z)
Ensure: (R,P) ← ZADDU(P,Q) where R ← P + Q = (X3 : Y3 : Z3) and P ← (λ2X1 :
λ3Y1 : Z3) with Z3 = λZ1 for some λ , 0

function ZADDU(P,Q)
C← (X1 − X2)2

W1 ← X1C; W2 ← X2C
D← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
X3 ← D −W1 −W2; Y3 ← (Y1 − Y2)(W1 − X3) − A1; Z3 ← Z(X1 − X2)
X1 ←W1; Y1 ← A1; Z1 ← Z3

end function

3 Binary Scalar Multiplication Algorithms

This section discusses known scalar multiplication algorithms. Given a point P
in E(Fq) and a scalar k ∈ N, the scalar multiplication is the operation consisting
in calculating Q = kP — that is, P + · · · + P (k times).

We focus on binary methods, taking on input the binary representation of
scalar k, k = (kn−1, . . . , k0)2 with ki ∈ {0, 1}, 0 6 i 6 n − 1. The corresponding
algorithms present the advantage of demanding low memory requirements
and are therefore well suited for memory-constrained devices like smart cards.

A classical method for evaluating Q = kP exploits the obvious relation that
kP = 2(bk/2cP) if k is even and kP = 2(bk/2cP)+P if k is odd. Iterating the process
then yields a scalar multiplication algorithm, left-to-right scanning scalar k.
The resulting algorithm, also known as double-and-add algorithm, is depicted in
Algorithm 2. It requires two (point) registers, R0 and R1. Register R0 acts as an
accumulator and register R1 is used to store the value of input point P.

Algorithm 2 Left-to-right binary method
Input: P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈N
Output: Q = kP

1: R0 ← O; R1 ← P
2: for i = n − 1 down to 0 do
3: R0 ← 2R0

4: if (ki = 1) then R0 ← R0 + R1

5: end for
6: return R0

Algorithm 3 Montgomery ladder
Input: P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈N
Output: Q = kP

1: R0 ← O; R1 ← P
2: for i = n − 1 down to 0 do
3: b← ki; R1−b ← R1−b + Rb

4: Rb ← 2Rb

5: end for
6: return R0



Although efficient (memory- and computation-wise), the left-to-right binary
method is subject to SPA-type attacks [17]. From a power trace, an adversary
able to distinguish between point doublings and point additions can easily
recover the value of scalar k. A simple countermeasure is to insert a dummy
point addition when scalar bit ki is 0. Using an additional (point) register, say
R−1, Line 4 in Algorithm 2 can be replaced with R−ki ← R−ki + R1. The so-
obtained algorithm, called double-and-add-always algorithm [8], now appears as a
regular succession of a point doubling followed by a point addition. However,
it also becomes subject to safe-error attacks [26, 27]. By timely inducing a fault
at iteration i during the point addition R−ki ← R−ki + R1, an adversary can
determine whether the operation is dummy or not by checking the correctness
of the output, and so deduce the value of scalar bit ki. If the output is correct
then ki = 0 (dummy point addition); if not, ki = 1 (effective point addition).

A scalar multiplication algorithm featuring a regular structure without
dummy operation is the so-called Montgomery ladder [24] (see also [15]). It is de-
tailed in Algorithm 3. Each iteration is comprised of a point addition followed by
a point doubling. Further, compared to the double-and-add-always algorithm,
it only requires two (point) registers and all involved operations are effective.
Montgomery ladder provides thus a natural protection against SPA-type at-
tacks and safe-error attacks. A useful property of Montgomery ladder is that its
main loop keeps invariant the difference between R1 and R0. Indeed, if we let
Rb

(new) = Rb + R1−b and R1−b
(new) = 2R1−b denote the registers after the updat-

ing step, we observe that Rb
(new)

− R1−b
(new) = (Rb + R1−b) − 2R1−b = Rb − R1−b.

This allows one to compute scalar multiplications on elliptic curves using the
x-coordinate only [24] (see also [5, 9, 13, 21]).

Algorithm 4 Right-to-left binary method
Input: P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈N
Output: Q = kP

1: R0 ← O; R1 ← P
2: for i = 0 to n − 1 do
3: if (ki = 1) then R0 ← R0 + R1

4: R1 ← 2R1

5: end for
6: return R0

Algorithm 5 Joye’s double-add
Input: P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈N
Output: Q = kP

1: R0 ← O; R1 ← P
2: for i = 0 to n − 1 do
3: b← ki

4: R1−b ← 2R1−b + Rb

5: end for
6: return R0

There exists a right-to-left variant of Algorithm 2. This is another classical
method for evaluating Q = kP. It stems from the observation that, letting k =∑n−1

i=0 ki 2i the binary expansion of k, we can write kP =
∑

ki=1 2iP. A first (point)
register R0 serves as an accumulator and a second (point) register R1 is used
to contain the successive values of 2iP, 0 6 i 6 n − 1. When ki = 1, R1 is
added to R0. Register R1 is then updated as R1 ← 2R1 so that at iteration i
it contains 2iP. The detailed algorithm is presented in Algorithm 4. It suffers
from the same deficiency as the one of the left-to-right variant (Algorithm 2);



namely, it is not protected against SPA-type attacks. Again, the insertion of
a dummy point addition when ki = 0 can preclude these attacks. Using an
additional (point) register, say R−1, Line 3 in Algorithm 4 can be replaced with
Rki−1 ← Rki−1 + R1. But the resulting implementation is then prone to safe-error
attacks. The right way to implement it is to effectively make use of both R0 and
R−1 [14]. It is easily seen that in Algorithm 4 when using the dummy point
addition (i.e., when Line 3 is replaced with Rki−1 ← Rki−1 + R1), register R−1
contains the “complementary” value of R0. Indeed, before entering iteration i,
we have R0 =

∑
k j=1 2 jP and R−1 =

∑
k j=0 2 jP, 0 6 j 6 i − 1. As a result, we have

R0 + R−1 =
∑i−1

j=0 2 jP = (2i
− 1)P. Hence, initializing R−1 to P, the successive

values of 2iP can be equivalently obtained from R0 + R−1. Summing up, the
right-to-left binary method becomes

1: R0 ← O; R−1 ← P; R1 ← P
2: for i = 0 to n − 1 do
3: b← ki; Rb−1 ← Rb−1 + R1
4: R1 ← R0 + R−1
5: end for
6: return R0

Performing a point addition when ki = 0 in the previous algorithm requires one
more (point) register. When memory is scarce, an alternative is to rely on Joye’s
double-add algorithm [14]. As in Montgomery ladder, it always repeats a same
pattern of [effective] operations and requires only two (point) registers. The
algorithm is given in Algorithm 5. It corresponds to the above algorithm where
R−1 is renamed as R1. Observe that the for-loop in the above algorithm can be
rewritten into a single step as Rb−1 ← Rb−1+R1 = Rb−1+(R0+R−1) = 2Rb−1+R−b.

4 New Implementations

In [22], Meloni exploited the ZADD operation to propose scalar multiplications
based on Euclidean addition chains and Zeckendorf’s representation. In this
section, we aim at making use of ZADD-like operations when designing scalar
multiplication algorithms based on the classical binary representation. The cru-
cial factor for implementing such an algorithm is to generate two points with
the same Z-coordinate at every bit execution of scalar k.

To this end, we introduce a new operation referred to as conjugate co-Z
addition and denoted ZADDC (for ZADD conjugate), using the efficient caching
technique as described in [11, 19]. This operation evaluates (X3 : Y3 : Z3) =
P + Q = R with P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z), together with the value
of P −Q = S where S and R share the same Z-coordinate equal to Z3. We have
−Q = (X2 : −Y2 : Z). Hence, letting (X3 : Y3 : Z3) = P−Q, it is easily verified that
X3 = (Y1 + Y2)2

−W1 −W2 and Y3 = (Y1 + Y2)(W1 −X3)−A1, where W1, W2 and
A1 are computed during the course of P + Q (cf. Algorithm 1). The additional
cost for getting P−Q from P+Q is thus of only 1M+1S. Hence, the total cost for
the ZADDC operation is of 6M + 3S. The detailed algorithm is given hereafter.



Algorithm 6 Conjugate co-Z point addition (ZADDC)
Require: P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z)
Ensure: (R,S) ← ZADDC(P,Q) where R ← P + Q = (X3 : Y3 : Z3) and S ← P − Q =

(X3 : Y3 : Z3)

function ZADDC(P,Q)
C← (X1 − X2)2

W1 ← X1C; W2 ← X2C
D← (Y1 − Y2)2; A1 ← Y1(W1 −W2)
X3 ← D −W1 −W2; Y3 ← (Y1 − Y2)(W1 − X3) − A1; Z3 ← Z(X1 − X2)
D← (Y1 + Y2)2

X3 ← D −W1 −W2; Y3 ← (Y1 + Y2)(W1 − X3) − A1

end function

4.1 Left-to-right scalar multiplication

The main loop of Montgomery ladder (Algorithm 3) repeatedly evaluates the
same two operations, namely

R1−b ← R1−b + Rb; Rb ← 2Rb .

We explain hereafter how to efficiently carry out this computation using co-Z
arithmetic for elliptic curves.

First note that 2Rb can equivalently be rewritten as (Rb + R1−b) + (Rb −R1−b).
So if T represents a temporary (point) register, the main loop of Montgomery
ladder can be replaced with

T ← Rb − R1−b
R1−b ← Rb + R1−b; Rb ← R1−b + T .

Suppose now that Rb and R1−b share the same Z-coordinate. Using Algorithm 6,
we can compute (R1−b,T) ← ZADDC(Rb,R1−b). This requires 6M + 3S. At this
stage, observe that R1−b and T have the same Z-coordinate. Hence, we can
directly apply Algorithm 1 to get (Rb,R1−b) ← ZADDU(R1−b,T). This requires
5M + 2S. Again, observe that Rb and R1−b share the same Z-coordinate at the
end of the computation. The process can consequently be iterated. The total cost
per bit amounts to 11M+5S but can be reduced to 9M + 7S (see § 4.4) by trading
two (field) multiplications against two (field) squarings.

In the original Montgomery ladder, registers R0 and R1 are respectively
initialized with point at infinity O and input point P. Since O is the only point
with its Z-coordinate equal to 0, assuming that kn−1 = 1, we start the loop
counter at i = n− 2 and initialize R0 to P and R1 to 2P. It remains to ensure that
the representations of P and 2P have the same Z-coordinate. This is achieved
thanks to the DBLU operation (see § 4.3).

Putting all together, we so obtain the following implementation of the Mont-
gomery ladder. Remark that register Rb plays the role of temporary register T.



Algorithm 7 Montgomery ladder with co-Z addition formulæ
Input: P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈Nwith kn−1 = 1
Output: Q = kP

1: R0 ← P; (R1,R0)← DBLU(R0)
2: for i = n − 2 down to 0 do
3: b← ki

4: (R1−b,Rb)← ZADDC(Rb,R1−b)
5: (Rb,R1−b)← ZADDU(R1−b,Rb)
6: end for
7: return R0

4.2 Right-to-left scalar multiplication algorithm

As noticed in [14], Joye’s double-add algorithm (Algorithm 5) is to some extent
the dual of the Montgomery ladder. This appears more clearly by performing
the double-add operation of the main loop, R1−b ← 2R1−b + Rb, in two steps as

T ← R1−b + Rb; R1−b ← T + R1−b

using some temporary register T. If, at the beginning of the computation, Rb and
R1−b have the same Z-coordinate, two consecutive applications of the ZADDU
algorithm allows one to evaluate the above expression with 2 × (5M + 2S).
Moreover, one has to take care that Rb and R1−b have the same Z-coordinate at
the end of the computation in order to make the process iterative. This can be
done with an additional 3M.

But there is a more efficient way to get the equivalent representation for Rb.
The value of Rb is unchanged during the evaluation of

(T,R1−b)← ZADDU(R1−b,Rb); (R1−b,T)← ZADDU(T,R1−b)

and thus Rb = T − R1−b — where R1−b is the initial input value. The latter
ZADDU operation can therefore be replaced with a ZADDC operation; i.e.,

(R1−b,Rb)← ZADDC(T,R1−b)

to get the expected result. The advantage of doing so is that Rb and R1−b have
the same Z-coordinate without additional work. This yields a total cost per bit
of 11M + 5S for the main loop.

It remains to ensure that registers R0 and R1 are initialized with points
sharing the same Z-coordinate. For the Montgomery ladder, we assumed that
kn−1 was equal to 1. Here, we will assume that k0 is equal to 1 to avoid to
deal with the point at infinity. This condition can be automatically satisfied
using certain DPA-type countermeasures (see § 5.2). Alternative strategies are
described in [14]. The value k0 = 1 leads to R0 ← P and R1 ← P. The two
registers have obviously the same Z-coordinate but are not different. The trick
is to start the loop counter at i = 2 and to initialize R0 and R1 according the bit
value of k1. If k1 = 0 we end up with R0 ← P and R1 ← 3P, and conversely if



k1 = 1 with R0 ← 3P and R1 ← P. The TPLU operation (see § 4.3) ensures that
this is done so that the Z-coordinates are the same.

The complete resulting algorithm is depicted below. As for our implementa-
tion of the Montgomery ladder (Algorithm 7), remark that temporary register T
is played by register Rb.

Algorithm 8 Joye’s double-add algorithm with co-Z addition formulæ
Input: P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈Nwith k0 = 1
Output: Q = kP

1: b← k1; Rb ← P; (R1−b,Rb)← TPLU(Rb)
2: for i = 2 to n − 1 do
3: b← ki

4: (Rb,R1−b)← ZADDU(R1−b,Rb)
5: (R1−b,Rb)← ZADDC(Rb,R1−b)
6: end for
7: return R0

It is striking to see the resemblance (or duality) between Algorithm 7 and
Algorithm 8: they involve the same co-Z operations (but in reverse order) and
scan scalar k in reverse directions.

4.3 Point doubling and tripling

Algorithms 7 and 8 respectively require a point doubling and a point tripling
operation updating the input point. We describe how this can be implemented.

Initial Doubling Point We have seen in Section 2 that the double of point P =
(X1 : Y1 : Z1) can be obtained with 1M+8S+1c. By setting Z1 = 1, the cost drops
to 1M + 5S:

X(2P) = M2
− 2S, Y(2P) = M(S − X(2P)) − 8L, Z(2P) = 2Y1

with M = 3B + a, S = 2((X1 + E)2
− B − L), L = E2, B = X1

2, and E = Y1
2. Since

Z(2P) = 2Y1, it follows that

(S : 8L : Z(2P)) ∼ P with S = 4X1Y1
2 and L = Y1

4

is an equivalent representation for point P. Updating point P such that its
Z-coordinate is equal to that of 2P comes thus for free. We let (2P, P̃)← DBLU(P)
denote the corresponding operation, where P̃ ∼ P and Z(P̃) = Z(2P). The cost
of DBLU operation (doubling with update) is 1M + 5S.

Initial Tripling Point The triple of P = (X1 : Y1 : 1) can be evaluated as
3P = P + 2P using co-Z arithmetic [20]. From (2P, P̃) ← DBLU(P), this can
be obtained as ZADDU(P̃, 2P) with 5M + 2S and no additional cost to update P
for its Z-coordinate becoming equal to that of 3P. The corresponding operation,
tripling with update, is denoted TPLU(P) and its total cost is of 6M + 7S.



4.4 Combined double-add operation

A point doubling-addition is the evaluation of R = 2P + Q. This can be done
in two steps as T ← P + Q followed by R ← P + T. If P and Q have the same
Z-coordinate, this requires 10M + 4S by two consecutive applications of the
ZADDU function (Algorithm 1).

Things are slightly more complex if we wish that R and Q share the same
Z-coordinate at the end of the computation. But if we compare the original Joye’s
double-add algorithm (Algorithm 5) and the corresponding algorithm we got
using co-Z arithmetic (Algorithm 8), this is actually what is achieved. We can
compute (T,P) ← ZADDU(P,Q) followed by (R,Q) ← ZADDC(T,P). We let
(R,Q) ← ZDAU(P,Q) denote the corresponding operation (ZDAU stands for
co-Z double-add with update).

Algorithmically, we have:

1: C′ ← (X1 − X2)2

2: W′

1 ← X1C′; W′

2 ← X2C′

3: D′ ← (Y1 − Y2)2; A′1 ← Y1(W′

1 −W′

2)
4: X′3 ← D′ −W′

1 −W′

2; Y′3 ← (Y1 −Y2)(W′

1 −X′3)−A′1; Z′3 ← Z(X1 −X2)
5: X1 ←W′

1; Y1 ← A′1; Z1 ← Z′3
6: C← (X′3 − X1)2

7: W1 ← X′3C; W2 ← X1C
8: D← (Y′3 − Y1)2; A1 ← Y′3(W1 −W2)
9: X3 ← D−W1 −W2; Y3 ← (Y′3 −Y1)(W1 −X3)−A1; Z3 ← Z′3(X′3 −X1)

10: D← (Y′3 + Y1)2

11: X2 ← D −W1 −W2; Y2 ← (Y′3 + Y1)(W1 − X2) − A1; Z2 ← Z3

A close inspection of the above algorithm shows that two (field) multiplications
can be traded against two (field) squarings. Indeed, with the same notations,
we have:

2Y′3 = (Y1 − Y2 + W′

1 − X′3)2
−D′ − C − 2A′1 .

Also, we can skip the intermediate computation of Z′3 = Z(X1 − X2) and obtain
directly 2Z3 = 2Z(X1 − X2)(X′3 − X1) as

2Z3 = Z
(
(X1 − X2 + X′3 − X1)2

− C′ − C
)
.

These modifications (in Lines 4 and 9) require some rescaling. For further op-
timization, some redundant or unused variables are suppressed. The resulting
algorithm is detailed hereafter (Algorithm 9). It clearly appears that the ZDAU
operation only requires 9M + 7S.



Algorithm 9 Co-Z point doubling-addition with update (ZDAU)
Require: P = (X1 : Y1 : Z) and Q = (X2 : Y2 : Z)
Ensure: (R,Q) ← ZDAU(P,Q) where R ← 2P + Q = (X3 : Y3 : Z3) and Q ← (λ2X2 :
λ3Y2 : Z3) with Z3 = λZ for some λ , 0

function ZDAU(P,Q)
C′ ← (X1 − X2)2

W′

1 ← X1C′; W′

2 ← X2C′

D′ ← (Y1 − Y2)2; A′1 ← Y1(W′

1 −W′

2)
X̂′3 ← D′ −W′

1 −W′

2

C← (X̂′3 −W′

1)2

Y′3 ← [(Y1 − Y2) + (W′

1 − X̂′3)]2
−D′ − C − 2A′1

W1 ← 4X̂′3C; W2 ← 4W′

1C
D← (Y′3 − 2A′1)2; A1 ← Y′3(W1 −W2)
X3 ← D −W1 −W2; Y3 ← (Y′3 − 2A′1)(W1 − X3) − A1

Z3 ← Z
(
(X1 − X2 + X̂′3 −W′

1)2
− C′ − C

)
D← (Y′3 + 2A′1)2

X2 ← D −W1 −W2; Y2 ← (Y′3 + 2A′1)(W1 − X2) − A1; Z2 ← Z3

end function

The combined ZDAU operation immediately gives rise to an alternative
implementation of Joye’s double-add algorithm (Algorithm 5). Compared to
our first implementation (Algorithm 8), the cost per bit amounts to 9M + 7S
(instead of 11M + 5S).

Algorithm 10 Joye’s double-add algorithm with co-Z addition formulæ (II)
Input: P ∈ E(Fq) and k = (kn−1, . . . , k0)2 ∈Nwith k0 = 1
Output: Q = kP

1: b← k1; Rb ← P; (R1−b,Rb)← TPLU(Rb)
2: for i = 2 to n − 1 do
3: b← ki

4: (R1−b,Rb)← ZDAU(R1−b,Rb)
5: end for
6: return R0

Similar savings can be obtained for our implementation of the Montgomery
ladder (i.e., Algorithm 7). However, as the ZADDU and ZADDC operations
appear in reverse order, it is more difficult to handle. It is easy to trade 1M
against 1S. In order to trade 2M against 2S, one has to consider two bits of
scalar k at a time so as to allow to have the ZADDC operation performed prior
to the ZADDU operation. The two previous M/S trade-offs can then be applied.



5 Discussion

5.1 Performance analysis

Table 1 summarizes the cost of different types of addition and doubling-addition
formulæ on elliptic curves. Each type of formula presents its own advantages
depending on the coordinate system and the underlying scalar multiplication
algorithm. Symbols J and A respectively stand for Jacobian coordinates and
affine coordinates.

Table 1. Performance comparison of addition and doubling-addition formulæ

Operation Notation System Cost

Point addition:
− General addition [2] ADD (J ,J)→ J 11M + 5S
− Co-Z addition [22] ZADD (J ,J)→ J 5M + 2S
− Co-Z addition with update [22]a ZADDU (J ,J)→ J 5M + 2S
− General conjugate addition [19] ADDC (J ,J)→ J 12M + 6S
− Conjugate co-Z addition (Alg. 6) ZADDC (J ,J)→ J 6M + 3S

Point doubling-addition:
− General doubling-addition [18] DA (J ,J)→ J 13M + 8S
−Mixed doubling-addition [20] mDA (J ,A)→ J 11M + 7S
− Co-Z doubling-addition with update (Alg. 9) ZDAU (J ,J)→ J 9M + 7S

a See also Algorithm 1.

For the sake of comparison, we consider the typical ratio S/M = 0.8. Similar
results can easily be derived for other ratios. We see that the co-Z addition
(with or without update) improves the general addition by a speed-up factor of
56%. Almost as well, our conjugate co-Z addition formula improves the general
conjugate addition by a factor of 50%. For the doubling-addition operations, our
co-Z formula (including the update) is always faster; it is even faster than the
best mixed doubling-addition formula. It yields a respective speed-up factor of
25% and of 12% compared to the general doubling-addition and to the mixed
doubling-addition. In addition to speed, our new formulæ are also very efficient
memory-wise. See [12, Appendix A] for detailed register allocations.

Table 2 compares the performance of our co-Z implementations with previ-
ous ones. Our improved right-to-left co-Z scalar multiplication algorithm (i.e.,
Algorithm 10) requires 9M + 7S per bit of scalar k. An application of Joye’s
double-add algorithm with the best doubling-addition (DA) formula [18] re-
quires 13M + 8S per bit. Hence, with the usual ratio S/M = 0.8, our co-Z version
of Joye’s double-add algorithm yields a speed-up factor of 25%.

Furthermore, our left-to-right co-Z algorithm (i.e., Algorithm 7 as modified
in § 4.4) offers a speed competitive with known implementations of Montgomery



Table 2. Performance comparison of scalar multiplication algorithm

Algorithm Operations Cost per bit

Joye’s double-add algorithm [14]: R→ L
− Basic version DA 13M + 8S
− Co-Z version (Algorithm 10) ZDAU 9M + 7S

Montgomery ladder [24]: L→ R
− Basic version DBL and ADD 14M + 10Sa

− X-only version [5, 9, 13] XDBL and XADD 9M + 7Sb

− Co-Z version (Algorithm 7) ZADDC and ZADDU 9M + 7Sc

a The cost assumes that curve parameter a is equal to −3. This allows the use of the
faster point doubling formula: 3M + 5S instead of 1M + 8S + 1c; cf. Section 2.

b The cost assumes that multiplications by curve parameter a are negligible; e.g., a = −3.
It also assumes that input point P is given in affine coordinates; i.e., Z(P) = 1. See [12,
Appendix B] for a detailed implementation.

c With the improvements mentioned in § 4.4. The direct implementation of Algorithm 7
has a cost of 11M + 5S per bit.

ladder for general† elliptic curves. It only requires 9M + 7S per bit of scalar k.
Moreover, we note that this cost is independent of the curve parameters.

5.2 Security considerations

As explained in Section 3, Montgomery ladder and Joye’s double-add algorithm
are naturally protected against SPA-type attacks and safe-error attacks. Since
our implementations are built on them and maintain the same regular pattern
of instructions without using dummy instructions, they inherit of the same
security features. Moreover, our proposed co-Z versions (i.e., Algorithms 7, 8
and 10) can be protected against DPA-type attacks; cf. [1, Chapter 29] for several
methods.

Yet another important class of attacks against implementations are the fault
attacks [3, 4]. An additional advantage of Algorithm 7 (and of Algorithms 8 and
10) is that it is easy to assess the correctness of the computation by checking
whether the output point belongs to the curve. We remark that the X-only
versions of Montgomery ladder ([5, 9, 13]) do not permit it and so may be subject
to (regular) fault attacks, as was demonstrated in [10].

6 Conclusion

Co-Z arithmetic as developed by Meloni provides an extremely fast point ad-
dition formula. So far, their usage for scalar multiplication algorithms was con-
fined to Euclidean addition chains and the Zeckendorf’s representation. In this
† Montgomery introduced in [24] a curve shape that nicely combines with the X-only

ladder, leading to a better cost per bit. But this shape does not cover all classes of elliptic
curves. In particular, it does not apply to NIST recommended curves [25, Appendix D].



paper, we developed new strategies and proposed a co-Z conjugate point ad-
dition formula as well as other companion co-Z formulæ. The merit of our
approach resides in that the fast co-Z arithmetic nicely combines with certain
binary ladders. Specifically, we applied co-Z techniques to Montgomery ladder
and Joye’s double-add algorithm. The so-obtained implementations are effi-
cient and protected against a variety of implementation attacks. All in all, the
implementations presented in this paper constitute a method of choice for the
efficient yet secure implementation of elliptic curve cryptography in embedded
systems or other memory-constrained devices.

As a side result, this paper also proposed the fastest point doubling-addition
formula.

Acknowledgments The authors would like to thank Jean-Luc Beuchat, Fran-
cisco Rodrı̀guez Henrı̀quez, Patrick Longa, and Francesco Sica for helpful dis-
cussions. We would also like to thank the anonymous referees for their useful
comments. In particular, we thank the referee pointing out that the cost with
the Montgomery ladder can be reduced to 9M + 7S per bit for general elliptic
curves.

References

1. R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren.
Handbook of Elliptic and Hyperelliptic Curve Cryptography. CRC Press, 2005.

2. D. J. Bernstein and T. Lange. Explicit-formulas database. http://www.

hyperelliptic.org/EFD/jacobian.html.
3. I. Biehl, B. Meyer, and V. Müller. Differential fault attacks on elliptic curve cryptosys-

tems. In M. Bellare, editor, Advances in Cryptology − CRYPTO 2000, volume 1880 of
LNCS, pages 131–146. Springer, 2000.

4. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the importance of eliminating errors
in cryptographic computations. Journal of Cryptology, 14(2):110–119, 2001. Extended
abstract in Proc. of EUROCRYPT ’97.

5. E. Brier and M. Joye. Weierstraß elliptic curves and side-channel attacks. In D. Nac-
cache and P. Paillier, editors, Public Key Cryptography (PKC 2002), volume 2274 of
LNCS, pages 335–345. Springer, 2002.

6. D. V. Chudnovsky and G. V. Chudnovsky. Sequences of numbers generated by
addition in formal groups and new primality and factorization tests. Advances in
Applied Mathematics, 7(4):385–434, 1986.

7. H. Cohen, A. Miyaji, and T. Ono. Efficient elliptic curve exponentiation using mixed
coordinates. In K. Ohta and D. Pei, editors, Advances in Cryptology−ASIACRYPT ’98,
volume 1514 of LNCS, pages 51–65. Springer, 1998.

8. J.-S. Coron. Resistance against differential power analysis for elliptic curve cryp-
tosystems. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems (CHES ’99), volume 1717 of LNCS, pages 292–302. Springer, 1999.

9. W. Fischer, C. Giraud, E. W. Knudsen, and J.-P. Seifert. Parallel scalar multiplica-
tion on general elliptic curves over Fp hedged against non-differential side-channel
attacks. Cryptology ePrint Archive, Report 2002/007, 2002. http://eprint.iacr.
org/.



10. P.-A. Fouque, R. Lercier, D. Réal, and F. Valette. Fault attack on elliptic curve Mont-
gomery ladder implementation. In L. Breveglieri et al., editors, Fault Diagnosis and
Tolerance in Cryptography (FDTC 2008), pages 92–98. IEEE Computer Society, 2008.

11. S. Galbraith, X. Lin, and M. Scott. A faster way to do ECC. Presented at 12th
Workshop on Elliptic Curve Cryptography (ECC 2008), Utrecht, The Netherlands,
Sept. 22–24, 2008. Slides available at URL http://www.hyperelliptic.org/tanja/
conf/ECC08/slides/Mike-Scott.pdf.

12. R. R. Goundar, M. Joye, and A. Miyaji. Co-Z addition formulæ and binary ladders on
elliptic curves. Cryptology ePrint Archive, Report 2010/353, 2010. http://eprint.
iacr.org/.

13. T. Izu and T. Takagi. A fast parallel elliptic curve multiplication resistant against
side channel attacks. In D. Naccache and P. Paillier, editors, Public Key Cryptography
(PKC 2002), volume 2274 of LNCS, pages 280–296. Springer, 2002.

14. M. Joye. Highly regular right-to-left algorithms for scalar multiplication. In P. Pail-
lier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems −
CHES 2007, volume 4727 of LNCS, pages 135–147. Springer, 2007.

15. M. Joye and S.-M. Yen. The Montgomery powering ladder. In B. S. Kaliski Jr. et al.,
editors, Cryptographic Hardware and Embedded Systems − CHES 2002, volume 2523 of
LNCS, pages 291–302. Springer, 2003.

16. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–
209, 1987.

17. P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In M. Wiener, editor,
Advances in Cryptology−CRYPTO ’99, volume 1666 of LNCS, pages 388–397. Springer,
1999.

18. P. Longa. ECC Point Arithmetic Formulae (EPAF). http://patricklonga.

bravehost.com/Jacobian.html.
19. P. Longa and C. H. Gebotys. Novel precomputation schemes for elliptic curve

cryptosystems. In M. Abdalla et al., editors, Applied Cryptography and Network Security
(ACNS 2009), volume 5536 of LNCS, pages 71–88. Springer, 2009.

20. P. Longa and A. Miri. New composite operations and precomputation for elliptic
curve cryptosystems over prime fields. In R. Cramer, editor, Public Key Cryptography
− PKC 2008, volume 4939 of LNCS, pages 229–247. Springer, 2008.

21. J. López and R. Dahab. Fast multiplication on elliptic curves over GF(2m) without
precomputation. In Ç. K. Koç and C. Paar, editors, Cryptographic Hardware and
Embedded Systems (CHES ’99), volume 1717 of LNCS, pages 316–327. Springer, 1999.

22. N. Meloni. New point addition formulæ for ECC applications. In C. Carlet and
B. Sunar, editors, Arithmetic of Finite Fields (WAIFI 2007), volume 4547 of LNCS,
pages 189–201. Springer, 2007.

23. V. S. Miller. Use of elliptic curves in cryptography. In H. C. Williams, editor, Advances
in Cryptology − CRYPTO ’85, volume 218 of LNCS, pages 417–426. Springer, 1985.

24. P. L. Montgomery. Speeding up the Pollard and elliptic curve methods of factoriza-
tion. Mathematics of Computation, 48(177):243–264, 1987.

25. National Institute of Standards and Technology. Digital Signature Standard (DSS).
Federal Information Processing Standards Publication, FIPS PUB 186-3, June 2009.

26. S.-M. Yen and M. Joye. Checking before output may not be enough against fault-
based cryptanalysis. IEEE Transactions on Computers, 49(9):967–970, 2000.

27. S.-M. Yen, S. Kim, S. Lim, and S.-J. Moon. A countermeasure against one physical
cryptanalysis may benefit another attack. In K. Kim, editor, Information Security and
Cryptology − ICISC 2001, volume 2288 of LNCS, pages 414–427. Springer, 2002.


