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Abstract

In this thesis, we study semisimplicity, amalgamation property and finite embeddabil-
ity property of residuated lattices. We prove semisimplicity and amalgamation property
of residuated lattices which are of purely algebraic character, by using proof-theoretic
methods and results of substructural logics. On the other hand, we show the finite model
property (FMP) for various substructural logics, including fuzzy logics as a consequence
of the finite embeddability property (FEP) of corresponding classes of residuated lattices.
Thus all of our studies are attempts at bridging gaps between algebras and logics.

The first topics of our thesis is finite embeddability property (FEP) of various classes
of integral residuated lattices. A class of algebras has the FEP if every finite partial sub-
algebra of a member of the class can be embedded into a finite member of the same class.
W. Blok and C. J. van Alten showed that the class of all partially ordered biresiduated
integral groupoids has the FEP. This implies that the variety of all integral residuated
lattices (IRL) has the FEP. The FEP of a given variety of IRL implies the finite model
property (FMP) for the corresponding logic. We prove the FEP for various classes of the
variety IRL. From this the FMP follows for various substructural logics including fuzzy
logics.

Next, we study the semisimplicity of free FLw-algebras. An algebra is semisimple
if it has a subdirect representation with simple factors. V. N. Grǐsin proved that every
free CFLew-algebra is semisimple. To show this Grǐsin introduced a new sequent system
which is equivalent to CFLew and showed that the cut elimination theorem holds for the
sequent system. Later, T. Kowalski and H. Ono proved that every free FLew-algebras
is also semisimple using Grǐsin’s idea. By using this, they proved that the variety of all
FLew-algebras is generated by it finite simple members. By using the similar technique, we
show that every free FLw-algebras is semisimple. We will introduce a new sequent system
FL+

w which is equivalent to FLw and for which cut elimination theorem holds. Using
proof-theoretic properties of FL+

w , we show the semisimplicity of free FLw-algebras.
Lastly, we discuss the amalgamation property (AP) of commutative residuated lattices.

Kowalski showed the AP for the variety FLew of all FLe-algebras. The result is obtained
by the fact that (1) the logical system FLew has the Craig’s interpolation property (CIP),
and (2) the variety of FLew has the equational interpolation property (EIP). A. Wroński
proved that the EIP of a variety implies the AP. Therefore the variety FLew has the
AP. We show that Kowalski’s proof of the AP works well also for the variety CRL of
all commutative residuated lattices. To show this result, we introduce a sequent for
commutative residuated lattices and show the CIP, and using them we prove that the
variety CRL has the EIP. By considering filters on residuated lattices, we can show that
many important subclasses of CRL has the AP. Moreover, we can show that if L is a logic
which is an extension of FLe with the CIP and K is the variety which is corresponding
to L, then K has the EIP, from which the AP of K follows.
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Chapter 1

Introduction

In this thesis, we study semisimplicity, amalgamation property and finite embeddability
property of residuated lattices. We prove semisimplicity and amalgamation property
of residuated lattices which are of purely algebraic character, by using proof-theoretic
methods and results of substructural logics. On the other hand, we show the finite model
property for various substructural logics, including fuzzy logics as a consequence of the
finite embeddability property of corresponding classes of residuated lattices. Thus all of
our studies are attempts at bridging gaps between algebras and logics.

In this chapter, we will give a short review of residuated lattices and substructural
logics in Section 1.1. Also we will give a survey of contents of this thesis in Section 1.2.

1.1 Residuated lattices and substructural logics

Residuated Lattices

A residuated lattice is an algebraic structure which consists both lattice and monoid
structures, and has binary operations called residuations. Residuation is a fundamental
concept of ordered structures and categories.

In 1930s, residuated lattices were studied by M. Ward and R. P. Dilworth[12, 46, 47].
They investigated that the general properties of ideals of rings. The structure theory of
residuated lattices were studied by K. Blount and C. Tsinakis [9]. There are many studies
of residuated lattices. For examples, the word problems of various classes of residuated
lattices and researches about cancellative residuated lattice were investigated by P. Jipsen
and C. Tsinakis[22], and N. galatos[16].

We give a precise definition of a residuated lattice. An algebraic structure A =
〈A,∧,∨, ·, 1, \, /〉 is called a residuated lattice if it satisfies the following conditions:

(1) 〈A,∧,∨〉 is a lattice, (2) 〈A, ·, 1〉 is a monoid, (3) \ and / are binary
operations which satisfy that a · b ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c hold for all a, b, c
in A.

Operations \ and / are called left and right residuations, respectively. Note that terms
in a residuated lattice, multiplication · has priority over the residuations \, /, which have
priority over the lattice operations ∧,∨.
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We introduce some of the important subclasses of residuated lattices.

(1) Commutativity: xy = yx.

(2) Integrality: x ≤ 1.

(3) Increasing-idempotency: x ≤ x2.

(4) Cancellativity: xz = yz =⇒ x = y, and zx = zy =⇒ x = y.

(5) Distributivity: (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

Substructural logics

Basic substructural logics are defined as sequent systems obtained from either LK for
classical logic or LJ for intuitionistic logic by deleting some or all substructural rules. We
say that substructural logics are extensions of these basic substructural logics when they
are formalized in sequent system.

The basic FL-systems are extensions of the FL which are obtained FL by adding with
some or all structural rules defined by the following.

Γ, α, β, ∆ ⇒ θ

Γ, β, α, ∆ ⇒ θ
(e ⇒) : exchange

Γ, α, α, ∆ ⇒ θ

Γ, α, ∆ ⇒ θ
(c ⇒) : contraction

Γ, ∆ ⇒ θ

Γ, α, ∆ ⇒ θ
(w ⇒) Γ ⇒

Γ ⇒ θ
(⇒ w) : weakening

Many non-classical logics including linear logic, many-valued logics, Hájeck’s basic logic
(BL), relevant logics are regarded as substructural logics which are originated from differ-
ent motivations. The study of substructural logics will give us a uniform framework for
investigating various kinds of non-classical logics. In the following we introduce various
systems of basic substructural logics. We will express those by adding the corresponding
letters e, c and w to FL as subscripts. Here, we define ¬φ by φ → 0.

FLe = FL + exchange = LJ − {w, c}.
FLw = FL + weakening = LJ − {e, c}.
FLc = FL + contraction = LJ − {e, w}.
FLew = FL + exchange + weakening = LJ − {c}.
CFLe = LK − {w, c} = FLe +[¬¬φ → φ]
CFLew = LK − {c} = CFLe + weakening (Grǐsin’s logic)

A logic L is one of the FL-systems (CFL-systems) if L is defined as sequent systems
obtained from LJ (LK) for intuitionistic logic (classical logic) by deleting some or all
substructural rules.
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Residuated lattices and substructural logics

It is well known that for each substructural logic, there exists a class of residuated lattices
as an algebraic semantics for the logic. we introduce various classes of residuated lattices
which are algebraic semantics for substructural logics.

In the usual way, we can give an interpretation of formulas in an FL-algebra. An
FL-algebra A is a residuated lattice with fixed, but arbitrary element 0 in A. An FL⊥-
algebra is an FL-algebra with bottom element ⊥. In this case, an FL⊥-algebra has the
four constants, 1, 0,⊥,�.

Let A be an FL-algebra. A valuation v on A is any mapping from the set of all
propositional variable to the set A. We can extend each valuation v to a mapping from
the set of all formulas to A inductively as follows. We use the same symbols for logical
connectives and constants as those for corresponding algebraic operations and constants,
respectively.

v(1) = 1 and v(0) = 0,
v(�) = � and v(⊥) = ⊥, when the language has � and ⊥ and A is bounded.
v(α ∧ β) = v(α) ∧ v(β),
v(α ∨ β) = v(α) ∨ v(β),
v(α ∗ β) = v(α) · v(β),
v(α\β) = v(α)\v(β),
v(α/β) = v(α)/v(β).

A formula α is valid in A if v(α) ≥ 1 for any valuation v on A. Also a given sequent
α1, · · · , αm ⇒ β is said to be valid in A iff the formula (α1 ∗ · · · ∗ αm) → β is valid in A
or v(α1) · · · v(αm) ≤ v(β) holds for any valuation v on A.

We can show the following completeness theorem for basic substructural logics, by
using the standard argument on Lindenbaum algebras.

Completeness theorem For any provable sequent S in FL iff it is valid in all FL⊥-
algebras. This holds also for other basic substructural logics and corresponding classes of
FL-algebras.

The following we give algebras for the logics FLe, FLw, FLc, FLew, and FLec.

FLe-algebra : FL⊥-algebra + Commutativity.
FLw-algebra : FL⊥-algebra + Integrality + [⊥ = 0].
FLc-algebra : FL⊥-algebra + Increasing-idempotency.
FLew-algebra : FLe-algebra + Integrality + [⊥ = 0].
FLec-algebra : FLe-algebra + Increasing-idempotency.

Algebraic approaches are quite useful to obtain general results on substrucrural logics.
Therefore we study residuated lattices to investigate the structure of substructural logics.
In this thesis, we will show that the finite model property for various substructural logics
to prove the finite embeddability property for corresponding classes of residuated lattices.
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On the other hand, proof-theoretic methods are also powerful to analyze the structure
of residuated lattices. In this thesis, we will show the semisimplicity of every free FLw-
algebras using proof-theoretic methods, the amalgamation property for CRL using proof-
theoretic results.

1.2 Contents of this thesis

In this thesis, we study finite embeddability property, semisimplicity and amalgamation
property of residuated lattices.

We will show the finite embeddability property of various classes of integral residuated
lattices which implies that the finite model property for various substructural logics.
Moreover, we will show semisimplicity and amalgamation property of residuated lattices
which are purely algebraic properties, using proof-theoretic methods and results.

Our main results are as follows:

• Let A be an algebra which is FLw-algebras with adding some or all of the following
axiom schemes: commutativity, Wconl (Wconr), classic, representation. Then A
has the FEP.

• Every free FLw-algebras is semisimple.

• The variety CRL has the AP.

• Let L be a logic which is an extension of FLe with the CIP and K be the variety of
all L-algebras. Then K has the EIP. Therefore, K has the AP.

All of our researches can be considered as the bridges between algebras and logics.

Finite embeddability property

In Chapter 4 and 5, we will consider the finite embeddability property (FEP) for various
classes of residuated lattices and the finite model property (FMP) for various substructural
logics including fuzzy logics.

A class of algebras has the FEP if every finite partial subalgebra of an algebra in
the class can be embedded into a finite algebra in the same class. This notion was first
introduced and studied by T. Evans. He also investigated the relationship between the
FEP and the word problem of a given algebra.

It is known that the FMP is quite powerful method to show the decidability in the
study of modal logics. It is well-known argument by Harrop that the decidability follows
from the FMP and the finite axiomatizability. However, it is also known that it is hard
to show the FMP of substructural logics and we do not have any powerful method like
the filtration method in modal logic yet.
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Studies of the FMP of substructural logics were made by R.K. Meyer in 1972, R.K.
Meyer and H. Ono in 1994, W. Buszkowski in 1996 and also C.J. van Alten and J.G.
Raftery in 1999. All of these studies (except W. Buszkowski’s work) are implicational
fragment of substructural logics. Studies of other fragments of substructural logics were
made by Y. Lafont in 1997. He proved that each of the CFL-systems except CFLc has the
FMP. and also M. Okada and K. Terui in 1999. They proved that each of the FL-systems
except FLc has the FMP. Therefore, they showed the FMP of most basic substructural
logics, but they used cut elimination theorem to show the FMP. That means, to show the
FMP is much harder than to show decidability.

In Chapter 4, we will consider the FEP for integral residuated lattices. The idea of this
chapter is mainly due to W. Blok and C. J. van Alten’s papers [6, 7]. First, we introduce
the FEP and consider the relationships among the FEP, the FMP, and the strong finite
model property (SFMP). We can show that if a class of algebras K has the FEP then K
has the FMP. Hence, the FEP is one of the algebraic methods to show the FMP. Next, we
introduce the Blok-Alten’s construction. The original construction introduced by W. Blok
and C. J. van Alten is for the structure, called partially ordered biresiduated groupoids,
however our interests are not so general setting, we only focus the residuated lattices.
Thus, we modify their construction to the residuated lattices. Lastly, we will show that
the FEP for integral residuated lattices.

In Chapter 5, we will consider the FEP for various classes of residuated lattices and
the FMP for various substructural logics including fuzzy logics. First, we consider the
full left (right) integral residuated lattices which is obtained by deleting right (left) resid-
uation from residuated lattices. Second, we will prove that the FEP for various classes
of integral residuated lattices. Next, we summarize the FMP for various substructural
logics including fuzzy logics. Lastly, we consider some classes of residuated lattices that
are failure of the FEP.

Semisimplicity

In Chapter 6, we will investigate subdirect irreducibity, simplicity and semisimplicity of
residuated lattices. Moreover we will show that every free FLw-algebra is semisimple.

We say that an algebra is semisimple if it is isomorphic to a subdirect product of
simple algebras. We can characterize that an algebra A is semisimple iff the intersection
of a set of all maximal members in Con(A) is equal to the least congruence of A. Using
the fact that the relationship between filters and congruences in residuated lattices, we
can say that a residuated lattice A is semisimple iff the intersection of a set of all maximal
filters of A is equal to the smallest filter of A.

In[18], V. N. Grǐsin proved that every free CFLew-algebra is semisimple. V. N. Grǐsin
introduced a new sequent system which is equivalent to CFLew and using the fact that
the cut elimination theorem holds for the sequent system to show the semisimplicity of
every free CFLew-algebras by using proof-theoretic methods.
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In [26], T. Kowalski and H. Ono show that variety of FLew-algebras is generated
by its finite simple members. The result is obtained by first showing that every free
FLew-algebra is semisimple and then showing that every variety generated by a simple
FLew-algebra is generated by a set of finite simple FLew-algebras. They used Grǐsin’s
idea in [18] to show the semisimplicity of every free FLew-algebras. They introduced a
sequent system SFL+

ew such that

1. algebras for SFL+
ew are exactly equal to FLew-algebras,

2. cut elimination theorem holds for SFL+
ew.

Then, using proof-theoretic properties of SFL+
ew, the semisimplicity of every free FLew-

algebras is obtained.

Our result is also based on Grǐsin’s idea and Kowalski-Ono’s technique. We will
introduce a new sequent system, FL+

w which is equivalent to FLw. Using the fact that
cut elimination theorem holds for FL+

w and using proof-theoretic properties of FL+
w , the

proof of the semisimplicity works also for free FLw-algebras. It is very interesting to see
how nicely proof-theoretic methods work to bring about purely algebraic consequence.

Those results make an interesting contrast with the case of Heyting algebras. In the
case of Heyting algebras, it is easy to see that every simple Heyting algebra is a two valued
Boolean algebra. Hence any semisimple Heyting algebra is a Boolean algebra. Thus, any
free Heyting algebra can never be semisimple.

Amalgamation property

In Chapter 7, we will study the amalgamation property of various classes of commutative
residuated lattices. In particular, we will prove that the amalgamation property (AP)
for the variety CRL of all commutative residuated lattices and the variety FLe of all
FLe-algebras. Moreover, we will show that the following.

Let L be a logic which is an extension of FLe with the CIP and K the variety of all
L-algebras. Then K has the EIP. Therefore, K has the AP.

In[24], T. Kowalski showed that the amalgamation property (AP) for the variety FLew

of all FLe-algebras, The result is obtained by showing that

1. the logical system FLew has the Craig’s interpolation property (CIP),

2. the variety of FLew has the equational interpolation property (EIP).

We will show that Kowalski’s proof of the AP works well also the variety of CRL and
FLe We use the CIP of the logic FLe and FLe with only constant 1, denoted by FL−

e to
show that the AP for FLe and CRL. Therefore our result is obtained by using the proof
theoretical results. It is very interesting to see how nicely proof-theoretic results (CIP)
work to bring about algebraic consequences (AP).
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For a class of algebra K, there is a natural problem that how member of K can be
glued together to obtain a larger member of K. One of the answers to this problem is
called the amalgamation property (AP). The AP is the following property.

If A, B1 and B2 are in K, f1 is an embedding of A into B1 and f2 is an embedding of A
into B2, then there exists C ∈ K and embeddings g1 of B1 into C and g2 of B2 into C
such that g1f1 = g2f2 holds.

The AP is studied in model theory but no satisfactory criterion is known. Some well
known structures satisfy the AP, for example, the class of all groups, commutative groups,
field, partially ordered sets, lattices and Boolean algebras has the AP. On the other hand,
it is known that the class of rings and semigroups do not have the AP.

In 1957, W. Craig proved that the following theorem.

If A → B is provable in classical logic then there exists a formula C such that both A → C
and C → B are provable, and every propositional variables in C appears both A and B.

Now, we call the above theorem Craig’s interpolation theorem. We say that such
a formula C is an interpolant of A → B. Craig’s interpolation theorem is one of the
important theorems in mathematical logic. The same result holds also for the intuitionistic
logic. We say that a logic L has the Craig’s interpolation property (CIP) if the statement
holds for L. The CIP was proved in many important logics. For example, L. Maksimova
proved the CIP of modal logics, H. Ono and Y. Komori proved the CIP of substructural
logics. In particular, L. Maksimova proved the striking result that the CIP holds for only
7 logics between the intuitionistic logic and the classical logic.

The connection between the AP and the CIP was studied by B. Jónsson and A.
Daigneault independently. This connection was further studied by D. Pigozzi. It is
known that th AP is equivalent to the CIP in many classes of algebras. For example, L.
Maksimova proved that a normal modal logic with a single unary modality has the Craig’s
interpolation property iff the corresponding class of algebras has the super-amalgamation
property, and also that the intuitionictic logic has the CIP iff the variety of Heyting
algebras has the super-amalgamation property.

In Chapter 7, we will use proof-theoretic results, the CIP holds for both FLe and FL−
e

to prove the AP for the variety of FLe and CRL. It is an interesting connection to see
how nicely proof-theoretic results work to show the algebraic property. Lastly, we will
show that if L is a logic which is an extension of FLe with the CIP and K is the variety
of all L-algebras then K has the EIP. Therefore, K has the AP. Thus, we can show most
of important classes of commutative residuated lattices have the AP.

Organization of this thesis

In Chapter 2, We will introduce algebraic preliminaries of this thesis. First, we will
summarize the basic facts of ordered structures, lattices and basic concepts of algebras.
Next, we will introduce residuated lattices and its basic results.

7



In Chapter 3, we will introduce substructural logics its basic results.

In Chapter 4,5, we will study the finite embeddability property for various classes of
integral residuated lattices. Moreover we will study the finite model property for various
substructural logics.
In Chapter 6, we will study subdirect irreducibility, simplicity and semisimplicity of resid-
uated lattices. Lastly, we will show the semisimplicity of free FLw-algebras.

In Chapter 7, We will study the amalgamation property (AP) of various classes of com-
mutative residuated lattices. First, we will intoroduce the AP and the CIP. Next we will
show that the CIP holds for the logic FL−

e which is the logic for commutative residuated
lattices. Lastly, we will prove that the variety CRL has the AP. Moreover we will prove
that the following. Let L be a logic which is an extension of FLe with the CIP and K be
the variety of all L-algebras. Then K has the EIP. Therefore, K has the AP.

Lastly, in Chapter 8, we will summarize this thesis and state further studies.

8



Chapter 2

Algebraic Preliminaries

In this chapter, we will introduce the preliminaries of this thesis. First, we will summarize
the basic facts of universal algebra. Next, we will introduce residuated lattices and their
basic results.

2.1 Basics of algebra

Order and lattice theory

A structure 〈X,≤〉 is a poset if X is a set and ≤ is a reflexive, transitive and antisymmetric
relation (order relation) on X. An order relation ≤ on X gives rise to a relation < of a
strict order defined as follows: x < y iff x ≤ y and x �= y. A poset 〈X,≤〉 is a chain if
for all x, y ∈ X, either x ≤ y or y ≤ x, i.e., any two elements of X are comparable. A
poset 〈X,≤〉 is an antichain if x ≤ y in X only if x = y, i.e., any two elements of X are
incomparable.

Let 〈X,≤〉 be a poset and A a nonempty subset of X. An element a ∈ A is said to
be minimal (maximal) in A if for any x ∈ X, x < a(x > a) implies x /∈ A. An element
a ∈ A is the least (greatest) element in A if a ≤ x(x ≤ a) for all x ∈ A. An element x ∈ X
is an upper bound (a lower bound) for A in X if a ≤ x(a ≥ x) for all a ∈ A. The least
upper bound, which is also called the supremum of A and denoted by sup A. Similarly,
the greatest lower bound is also called the infimum of A and denoted by inf A.

Let X and Y be posets. A mapping f from X to Y is said to be monotone (or
order-preserving), if for all x, y ∈ X such that x ≤ y implies f(x) ≤ f(y).

Let X be a poset. A map f : X → X is called residuated if there exists a map
f ∗ : X → X such that f(x) ≤ y ⇐⇒ x ≤ f ∗(y) for all x, y ∈ X. We say that f ∗ is the
residual of f . Let X be a poset. A map c : X → X is called a closure operator on X
if it satisfies that (1) x ≤ c(x), (2) x ≤ y implies c(x) ≤ c(y), (3) c(c(x)) = c(x) for all
x, y ∈ X. An element x ∈ X is called closed if c(x) = x. A map i : X → X is called an
interior operator on X if it satisfies that (1) i(x) ≤ x, (2) x ≤ y implies i(x) ≤ i(y), (3)
i(i(x)) = i(x) for all x, y ∈ X.

9



Note that for a residual pair f, f ∗, the composition f ∗f is a closure operator and ff ∗

is an interior operator.

A poset L is called a lattice iff for every a, b ∈ L both sup{a, b} (denoted by a ∨ b) and
inf{a, b} (denoted by a ∧ b) exist in L. A lattice is bounded if it has both the greatest
element 1 and the least element 0. Obviously these two elements satisfy that BL1 :
x ∧ 0 = 0 and x ∨ 1 = 1. A lattice L is distributive if it satisfies a distributive law, D1 :
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). It is known that a lattice is distributive iff it satisfies D2
: x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z). A poset X is complete is for every subset A of X both
sup A and inf A exist in X denoted

∨
A and

∧
A. A lattice is a complete lattice if it is

complete as a poset.

Universal algebra

A finitary operation on a set A is an n-ary operation which is a function from An into
A for some natural number n. A type is a set F of function symbols. A non-negative
integer n which is called arity is assigned to each member f of F . Then we say f is an
n-ary function symbol. Fn denotes the set of all n-ary function symbols in F .

Definition 2.1.1 (Algebra) An algebra A of type F is a pair 〈A, F 〉 where A is a
nonempty set and F is a family of finitary operations on A indexed by the type F

For each n-ary function symbol f in F there is an n-ary operation fA on A. The set
A is called the universe of A and fA’s are called the fundamental operations of A.

A subuniverse of A is a subset B of A which is closed under the fundamental oper-
ations of A, i.e., if f is a fundamental n-ary operation of A and a1, · · · , an ∈ B then
f(a1, · · · , an) ∈ B. Let A and B be two algebras of the same type. B is a subalgebra of A
if B ⊆ A and every fundamental operations of B is the restriction of the corresponding
operation of A.

Let F be a type of algebra and G a subset of F . 〈A, G〉 is called reduct of an algebra
A and a subalgebra of 〈A, G〉 is called subreduct of an algebra A.

Examples of Algebras

(1) A group G is an algebra 〈G, ·, −1, 1〉 which satisfies that G1 : x · (y · z) = (x · y) · z,
G2 : x · 1 = x = 1 · x and G3 : x · x−1 = 1 = x−1x. A group G is called commutative if it
satisfied also G4 : x · y = y · x.

(2) A semigroup is a groupoid 〈G, ·〉 which satisfies that G1.

(3) A monoid M is an algebra 〈M, ·, 1〉 which satisfies that both G1 and G2.

(4) A Boolean algebra is an algebra 〈B,∨,∧,
′
, 0, 1〉 which satisfies that B1 : 〈B.∨,∧〉 is a

distributive lattice, B2 : x ∨ 1 = 1 and x ∧ 0 = 0, B3 : x ∨ x
′
= 1 and x ∧ x

′
= 0.
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(5) An algebra 〈H,∨,∧,→, 0, 1〉 is a Heyting algebra if it satisfies that 〈H,∨,∧〉 is a
distributive lattice, 0 and 1 are the least and greatest elements of this lattice, and the
following condition holds: z ≤ x → y ⇐⇒ z ∧ x ≤ y for all x, y, z ∈ H .

Definition 2.1.2 (Congruence) Let A be an algebras of type F and θ a equivalence
relation on A. Then θ is a congruence on A if θ satisfies the following condition:
For each f ∈ Fn and ai, bi ∈ A, if aiθbi holds for 1 ≤ i ≤ n then fA(a1, · · · , an)θfA(b1, · · · , bn)
holds.

We denote [a]θ = {b ∈ A : aθb} and A/θ = {[a]θ : a ∈ A}.

Definition 2.1.3 (Quotient algebra) Let θ be a congruence on an algebra A. Then
the quotient algebra of A by θ, written A/θ, is the algebra whose universe is A/θ and
whose fundamental operations satisfy fA/θ([a1]θ, · · · , [an]θ) = [fA(a1, · · · , an)]θ for every
a1, · · · , an ∈ A and for every n-ary function symbol f in Fn.

Note that quotient algebras of A are of the same type as A. We denote Con(A) the
set of all congruence on an algebra A. 〈Con(A),⊆〉 forms a complete lattice. We say that
〈Con(A),⊆〉 is congruence lattice of A.

Definition 2.1.4 (Homomorphism) Suppose A and B are two algebras of the same
type F . A mapping α is called a homomorphism from A to B if αfA(a1, · · · , an) =
fB(α(a1), · · · , α(an)) for each n-ary f in F and a1, · · · , an ∈ A.

If a homomorphism α is surjective then B is said to be a homomorphic image of A
and α is called an epimorphism. If a homomorphism α is injective (bijective) then α is
called a monomorphism or an embedding (isomorphism).

Definition 2.1.5 (Kernel of a homomorphism) Let α : A → B be a homomor-
phism. Then the kernel of α, written ker(α), is defined by ker(α) = {〈a, b〉 ∈ A2 :
α(a) = α(b)}.

Let α : A → B be a homomorphism. Then it is easy to see that the kernel of α, ker(α)
is a congruence on A.

Definition 2.1.6 (Direct product) Let (Ai)i∈I be an indexed family of algebras of the
same type F . The direct product A = Πi∈IAi is an algebra with universe Πi∈IAi and such
that f ∈ F and a1, · · · , an ∈ Πi∈IAi, fA(a1, · · · , an)(i) = fA(a1(i), · · · , an(i)) for i ∈ I,
i.e., fA is defined coordinatewise.

Note that the empty product Π∅ is the trivial algebra {∅}. For each j ∈ I the
projection map πj : Πi∈IAi → Aj is defined by πj(a) = a(j), which gives a surjective
homomorphism from Πi∈IAi onto Aj.
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Definition 2.1.7 (Subdirect product) An algebra A is a subdirect product of an in-
dexed family (Ai)i∈I of algebras if it satisfies (i) A is a subalgebra of Πi∈IAi and (ii)
πi(A) = Ai.

An embedding α : A → Πi∈IAi is a subdirect embedding if α(A) is a subdirect product
of (Ai)i∈I .

Definition 2.1.8 (Subdirect irreducible algebra) An algebra A is subdirectly irre-
ducible if for every subdirect embedding α : A → Πi∈IAi there is an i ∈ I such that
πiα : A → Ai is an isomorphism.

Definition 2.1.9 (Simple algebra) An algebra A is simple if Con(A) = {∆A,∇A}
where ∆A is the diagonal relation, i.e., the least congruence on A and ∇A is the greatest
congruence on A.

Definition 2.1.10 (Semisimple algebra) An algebra is semisimple if it is isomorphic
to a subdirect product of simple algebras.

Let K be a class of algebras of the same type. Define the classes of algebras I(K), S(K),
H(K), P (K) and PS(K) as follows:

I(K) is the class of all isomorphic images of members of K.

S(K) is the class of all isomorphic images of subalgebras of members of K.

H(K) is the class of all homomorphic images of members of K.

P (K) is the class of all isomorphic images of direct products of a nonempty
family of algebras in K.

PS(K) is the class of all isomorphic images of subdirect products of a nonempty
family of algebras in K.

Each of I, S, H , P and PS is called a class operator.

Definition 2.1.11 (Variety) A non-empty class of algebra of type F is called variety if
it is closed under subalgebras, homomorphic images and direct products.

Let K be a class of algebras with same type. V (K) denotes the smallest variety
containing K.

Theorem 2.1.1 (Tarski) If K is a class of algebras then HSP (K) is the variety gener-
ated by K, i.e.,V=HSP.
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Let X be a set of variables and F a type of algebras. The set T (X) of terms of type F
over X is the smallest set such that (i) X

⋃
F0 ⊆ T (X). (ii) If p1, · · · , pn ∈ T (X) and

f ∈ Fn then f(p1, · · · , pn) ∈ T (X).

Let p(x1, · · · , xn) be a term of type F over some set X and A an algebra of type
F . We define a mapping pA : An → A as follows: (1) if p is a variable xi then
pA(a1, · · · , an) = ai for a1, · · · , an ∈ A, i.e., pA is the i-th projection. (2) If p is
of the form f(p1(x1, · · · , xn), · · · , pk(x1, · · · , pn)), where f ∈ Fn then pA(a1, · · · , an) =
fA(pA

1 (x1, · · · , xn), · · · , pA
k (x1, · · · , xn)). In particular, if p = f ∈ F then pA = fA · pA is

the term function on A corresponding to the term p.

We can transform the set T (X) into an algebra in a natural way.

Definition 2.1.12 (Term algebra) Let F be a type of algebras and X a set. If T (X) �=
∅ then the term algebra of type F over X, written T (X), is of the form 〈T (X),F〉 and the
fundamental operations satisfy fT (X) : 〈p1, · · · , pn〉 �→ f(p1, · · · , pn) for f ∈ Fn, pi ∈ T (X)
1 ≤ i ≤ n.

We note that T (∅) exists iff F0 �= ∅.

Definition 2.1.13 (Universal mapping property) Let K be a class of algebra of type
F and U(X) an algebra of type F generated by a set X. If for every A ∈ K and for
every map f : X → A there is a unique homomorphism α : U(X) → A that extends f
(f(x) = α(x) for all x ∈ X) then U(X) has the universal mapping property for K over X,
X is called a set of free generators of U(X) and U(X) said to be freely generated by X.

Let K be a class of algebra of type F and X a set of variables. Define the congruence
θK(X) on T (X) by θK(X) =

⋂
ΦK(X), where ΦK(X) = {φ ∈ Con(T (X)) : T (X)/φ ∈

IS(K)} and define FK(X) the K-free algebra over X by FK(X) = T (X)/θK(X), where
X = X/θK(X). For x ∈ X we write x for x/θK(X), for p = p(x1, · · · , xn) ∈ T (X) we

write p for pFK(X)(x1, · · · .xn).

Theorem 2.1.2 (Birkhoff) Suppose T (X) exists. Then FK(X) has the universal map-
ping property for K over X. Moreover, for K �= ∅, FK(X) ∈ ISP (K), in particular if K
is a variety then FK(X) ∈ K.

Let Σ be a set of identities of type F and define M(Σ) to be the class of algebras A
satisfying Σ. A class K of algebras is an equational class if there is a set of identities Σ
such that K = M(Σ). In this case, we say that K is axiomatized by Σ. It is easy to see
that for any class K of algebras with the same type, all the classes K, P (K), S(K), H(K),
and PS(K) have precisely the same valid equations.

The following theorem is called Birkhoff’s variety theorem which says that a variety can
be characterize the set of equations.

Theorem 2.1.3 (Birkhoff) K is an equational class iff K is a variety.
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Let I be a set. Consider the power set ℘(I) of I. ℘(I) forms a Boolean algebra with
set-theoretical operations. An ultrafilter of ℘(I) is said to ultrafilter over I. Let {Ai}i∈I

be a set of algebra with same type and U be an ultrafilter over I. Then we define the
binary relation θU on the product ΠAi by [ai]i∈IθU [bi]i∈I iff {i ∈ I : ai = bi} ∈ U . We can
prove that the binary relation θU is a congruence on ΠAi. Then we define a ultra-product
ΠAi/U to be ΠAi/θU .

PU(K) denotes the class of all ultraproducts of collections of algebras from a class K.
PU is a class operator of ultraproducts.

Definition 2.1.14 (Quasivariety) A quasi-identity is an identity or a formula of the
form (p1 = q2 ∧ · · · ∧ pn = qn) ⇒ p = q. A quasivariety is a class of algebras closed under
I, S, P , and PU .

Theorem 2.1.4 Let K be a class of algebras. Then the following are equivalent.
(1) K is a quasivariety,
(2) K is closed under ISPPU and contains a trivial algebra.
(3) K can be axiomatized by quasi-identities.

2.2 Residuated lattices

A residuated lattice is an algebraic structure which consists both lattice and monoid
structures, and has binary operations called residuations. Residuation is a fundamental
concept of ordered structures and categories. In this section, we introduce residuated
lattices and investigate their basic results.

Residuated lattices

Definition 2.2.1 (Residuated lattice) A residuated lattice is an algebraic structure
A = 〈A,∧,∨, ·, 1, \, /〉 such that

(1) 〈A,∧,∨〉 is a lattice, (2) 〈A, ·, 1〉 is a monoid, (3) \ and / are binary
operations which satisfy that a · b ≤ c ⇔ a ≤ c/b ⇔ b ≤ a\c hold for all a, b, c
in A. (≤ is a lattice order).

Operations \ and / are called left and right residuation, respectively. If we assume the
commutativity of the monoid operation ·, then these two residuations become identical
and the algebra A is called a commutative residuated lattices. In this case, x\y = y/x
which is sometimes written as x → y. Note that the notation of terms in a residuated
lattice, multiplication · has priority over the residuations \, /, which have priority over
the lattice operations ∧,∨. In the rest of the paper, we write xy instead of x · y. For
example, we write xy/z ∧ v\wu = [(xy)/z] ∧ [v\(wu)].

The following proposition is useful in algebraic properties of residuated lattices. The proof
can be found in [9].
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Proposition 2.2.1 Let A be a residuated lattice. For any a, b, c in A and any subset Y
of A, following conditions satisfy:

(1) a(b ∨ c) = ab ∨ ac, (b ∨ c)a = ba ∨ ca
(2) If

∨
Y exists then a(

∨
Y ) =

∨
{ay : y ∈ Y }, (

∨
Y )a =

∨
{ya : y ∈ Y }

(3) (a ∧ b)/c = (a/c) ∧ (b/c), c\(a ∧ b) = (c\a) ∧ (c\b)
(4) If

∧
Y exists then (

∧
Y )/c =

∧
{y/c : y ∈ Y }, c\(

∧
Y ) =

∧
{c\y : y ∈ Y }

(5) a/(b ∨ c) = (a/b) ∧ (a/c), (b ∨ c)\a = (b\a) ∧ (c\a)
(6) If

∨
Y exists then a/(

∧
Y ) =

∧
{a/y : y ∈ Y }, (

∧
Y )\a =

∧
{y\a : y ∈ Y }

(7) (a/c)c ≤ a, c(c\a) ≤ a
(8) a(c/b) ≤ ac/b, (a\c)b ≤ a\cb
(9) (c/b)(b/a) ≤ c/a, (a\b)(b\c) ≤ a\c
(10) c/b ≤ (c/a)/(b/a), b\c ≤ (a\b)\(a\c)
(11) b/a ≤ (c/a)\(c/a), a\b ≤ (a\c)/(b\c)
(12) c/b ≤ ca/ba, a\c ≤ ba\bc
(13) (c/a)/b = c/ba, b\(a\c) = ab\c
(14) a\(c/b) = (a\c)/b
(15) c ≤ (a/c)\a, c ≤ a/(c\a
(16) a/1 = a, 1\a = a
(17) a/a ≥ 1, a\a ≥ 1
(18) (a/b)(1/c) ≤ a/cb, (c\1)(b\a) ≤ bc\a
(19) (a/a)a = a, a(a\a) = a
(20) (a/a)2 = (a/a), (a\a)2 = (a\a)

A has the least element, ⊥, then A has also the greatest element, �. In this case, the
following holds. (i) a⊥ = ⊥a = ⊥ for all a ∈ A, (ii) a/⊥ = ⊥\a = � for all a ∈ A, (iii)
�/a = a\� = � for all a ∈ A.

A residuated lattice is bounded if it has the least (also greatest) element.

It is easy to see that a residuated lattice can be also defined by equations for lattices
and monoids, with the following six identities: a = a ∧ ((ab ∨ c)/b) , b = b ∧ (a\(ab ∨ c)) ,
a(b ∨ c) = ab ∨ ac, (b ∨ c)a = ba ∨ ca, (a/b)b ∨ a = a, b(b\a) ∨ a = a,. Therefore, we can
show that the following.

Theorem 2.2.2 The class of all residuated lattices forms a variety.

Subclasses of residuated lattices

We introduce some of the important subclasses of residuated lattices. Some of them are
also important subclasses which have a close relationship to basic substructural logics.

(1) Commutativity: xy = yx.
(2) Integrality: x ≤ 1.
(3) Increasing-idempotency: x ≤ x2.
(4) Cancellativity: xz = yz =⇒ x = y, and zx = zy =⇒ x = y.
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(5) Distributivity: (x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

RL, CRL, IRL, RL2, CanRL, and DRL denote the class of commutative, integral,
increasing-idempotent cancellative, and distributive residuated lattices.

RL : the class of all residuated lattices,
CRL : the class of all commutative residuated lattices.
IRL : the class of all integral residuated lattices.
RL2 : the class of all increasing-idempotent residuated lattices.
CIRL : the class of all commutative integral residuated lattices, i.e., CRL

⋂
IRL.

CanRL : the class of all cancellative residuated lattices.
DRL : the class of all distributive residuated lattices.

It is clear that all of these classes are varieties except CanRL. To see that the class of
CanRL is also a variety, it is necessary to show that the cencellativity can be defined by
identities in a residuated lattice. This can be confirmed as follows [22].

Lemma 2.2.3 A residuated lattice is cancellative iff it satisfies the identities x\xy = y
and yx/x = y.

Examples of Residuated Lattices

There are many examples of residuated lattices[16]. Historically, residuated lattices were
first studied by M. Dilworth and R. P. Ward in 1930s. They investigated properties of
ideals of rings and got a concept of residuated lattices. In the following we introduce some
interesting examples of residuated lattices.

�-groups

An �-groups or lattice ordered group is an algebra G = 〈G,∧,∨, ·, −1, 1〉 , if it satisfies that
(1) 〈G,∧,∨〉 is a lattice, (2) 〈G, ·, −1, 1〉 is a group and (3) x ≤ y implies both xz ≤ yz
and zx ≤ zy. We define the residuations as follows. z/x = z · x−1 and x\z = x−1 · z.
Thus G forms a residuated lattice.

Relational algebras

A relational algebra is an algebra R = 〈R,∧,∨, −, 0, 1, ·, e, ∪〉 such that (1) 〈R,∧,∨, −, 0, 1〉
is a Boolean algebra, (2) 〈R, ·, e〉 is a monoid and (3) (a∪)∪ = a, (ab)∪ = b∪a∪, a(b∨ c) =
ab∨ac, (b∨ c)a = ba∨ ca, (a∨ b)∪ = a∪ ∨ b∪ and a∪(ab)− ≤ b− for all a, b, c,∈ R. Now we
define residuations by a\b = (a∪b−)− and b/a = (b−a∪)−. Then the reduct of relational
algebra 〈R,∧,∨, ·, \, /e〉 forms a residuated lattice.

Quantales

An algebra Q = 〈Q,∧,∨, ·〉 is a quantale if it satisfies that (1) 〈Q,∧,∨〉 is a complete
lattice, (2) 〈Q, ·〉 is a semigroup satisfying (i) (

∨
xi)·y =

∨
(xi ·y), (ii) y ·(

∨
xi) =

∨
(y ·xi).
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If 〈Q, ·〉 is a monoid 〈Q, ·, 1〉 then Q forms a residuated lattice. We can define that
residuations as follows: x\y = max{z : x · z ≤ y}, y/x = max{z : z · x ≤ y}. Then the
structure 〈Q, ,∧,∨, ·, 1, \, /〉 forms a residuated lattice.

Triangular norms in fuzzy logic

The next example comes from fuzzy logic. This structure forms a totally ordered resid-
uated lattice. The interval [0, 1] of real number with max and min forms a complete
lattice. A map T from [0, 1]2 to [0, 1] is a t-norm if it satisfies that the following con-
ditions: (1) 〈[0, 1], ·, 1〉 is a commutative monoid, (2) x ≤ y implies x · z ≤ y · z. Here
we use x · y instead of T (x, y). A t-norm T is said to left-continuous, if it satisfies that
(sup xi) · y = y · (sup xi) = sup(xi · y). The complete lattice [0, 1] with a left-continuous
t-norm forms a quantale and so it can be regarded as a residuated lattice.

Power set of a monoid

The next example is one of the important examples. This tells us how to construct
residuated lattices.

Let M = 〈M, ·, 1〉 be a monoid. For any subsets X and Y of M , we define X · Y =
{x · y : x ∈ X, y ∈ Y }, X/Y = {z : {z} · Y ⊆ X} and X\Y = {z : Y · {z} ⊆ X}. Then
℘(M) = 〈℘(M),∩,∪, ·, \, /, {1}〉 is a residuated lattice.

A closure operator C in a residuated lattice A is said to be a nucleus if it satisfies
C(x)C(y) ≤ C(xy). Let C be a nucleus in a residuated lattice A. An element x in A
is C-closed if C(x) = x holds. We denote C(A) by the set of all C-closed elements of
A. Now consider the structure C(A) = 〈C(A),∩,∪C , ·C, \, /, C(1)〉, where ∪C and ∗C are
defined by x ∪C y = C(x ∪ y), x ·C y = C(x · y). Then we can prove that C(A) is also a
residuated lattice.

Combining this with Power set construction of residuated lattice. The structure C(℘(M)) =
〈C(℘(M)),∩,∪C , ·C, \, /, C({1})〉 is a residuated lattice. For more informations, see [41].

Filters on residuated lattices

Definition 2.2.2 (Filter) A subset F of A is a filter of A if it satisfies that
(1) If 1 ≤ x then x ∈ F ,
(2) If x, x\y ∈ F then y ∈ F ,
(3) If x, y ∈ F then x ∧ y ∈ F ,
(4) If x ∈ F and z ∈ A then z\xz, zx/z ∈ F .

Note that a filter F is a upward closed set, i.e., if x ∈ F and x ≤ y then y ∈ F .
Indeed, suppose x ≤ y, we have 1 ≤ x\y. Thus x\y ∈ F by (1). By (2), we have y ∈ F .
We can show that x\y ∈ F iff y/x ∈ F . Indeed, suppose x\y ∈ F . Use (4), we have
x(x\y)/x ∈ F and we can prove that x(x\y)/x ≤ y/x. Hence y/x ∈ F . Similarly, we can
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show the converse direction. In the case of commutative residuated lattices, the condition
(4) is redundant. Indeed, suppose x ∈ F . Then we have x ≤ z\zx = z\xz. Thus we
have z\xz ∈ F since F is upward closed. We can also show that if x, y ∈ F then xy ∈ F .
Indeed, suppose x, y ∈ F . By (4), we have y\xy ∈ F . Use (2), we have xy ∈ F . In other
case, we can prove similarly.

We prepare the following conditions.

(A) 1 ∈ F ,
(B) If x ∈ F and x ≤ y then y ∈ F ,
(C) If x ∈ F and z ∈ A then z\xz ∧ 1, zx/z ∧ 1 ∈ F ,
(D) If x, y ∈ F then xy ∈ F ,
(E) If x ∈ F then x ∧ 1 ∈ F ,
(F ) If x ∈ F and z ∈ A then (x\z)\z, z(/z/x) ∈ F ,
(G) If x ∈ F and z ∈ A then (x\z)\z ∧ 1, z(/z/x) ∧ 1 ∈ F ,
(H) If x ∈ F and z, w ∈ A then w(z\xz)/w ∈ F ,
(I) If x ∈ F and z, w ∈ A then w(z\xz)/w ∧ 1 ∈ F ,
(J) If x ∈ F and z, w ∈ A then w/(w/(x\z)\z)) ∈ F ,
(K) If x ∈ F and z, w ∈ A then w/(w/(x\z)\z)) ∧ 1 ∈ F .

Then we can show that the following proposition which is a useful characterization of
filters in a residuated lattice.

Proposition 2.2.4 Let A be a residuated lattice and F a nonempty subset of A. Then
the following conditions are equivalent.

1. F is a filter of A,
2. F satisfies (2), (A), (B) and (C),
3. F satisfies (A), (B), (C) and (D),
4. F satisfies (4), (A), (B), (D) and (E),
5. F satisfies (2), (3), (4), (A) and (B),
6. F satisfies (1), (2) and (C),
7. F satisfies (1), (2) and (G),
8. F satisfies (1), (2) and (I),
9. F satisfies (1), (2) and (K),
10. F satisfies (1), (2), (3) and (F ),
11. F satisfies (1), (2), (3) and (H),
12. F satisfies (1), (2), (3) and (J).

For each a in A we define λa(x) = (ax/a)∧ 1 and ρa(x) = (a\xa) ∧ 1. We say that λa, ρa

are right, left conjugation. Using the proposition above we can have the representation
of the filter generated by given nonempty subset of A. Let S be a nonempty subset of A.
Then the filter generated by S is of the form 〈S〉 = {x ∈ A : z ≤ x for some z ∈ ΠΓ∆̄(S)},
where ∆̄, Γ and Π are defined as follows.
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∆̄(S) = {s ∧ 1 : s ∈ S}
Γ(S) = {µu1 · · ·µun(s) : n ∈ N, ui ∈ A, s ∈ S} where µui

∈ {λui
, ρui

}.
Π(S) = {s1 · · · sn : n ∈ N, si ∈ S}

⋃
{1}.

We first remark that λu(x)λu(y) ≤ λu(xy). Indeed, λu(x)λu(y) ≤ (u\xu)(u\yu)∧ 1 ≤
u\xu(u\yu)∧ 1 ≤ u\xyu ∧ 1 ≤ λu(xy). The argument for ρu is similar.

We will show that 〈S〉 is the filter of a residuated lattice A. By Proposition 2.2.4, it is
enough to show that 〈S〉 contains 1, 〈S〉 is an upward closed, closed with respect to the
monoid operation and satisfies that x ∈ 〈S〉 implies both x ∧ 1 and z\xz, zx/z ∈ 〈S〉 for
all x ∈ 〈S〉. It is clear that 〈S〉 contains 1 and 〈S〉 is a upward closed set. By definition of
〈S〉, 〈S〉 is closed with respect to the monoid operation and satisfies that x ∈ 〈S〉 implies
x ∧ 1.

Finally, we need to show that 〈S〉 satisfies that x ∈ 〈S〉 implies z\xz, zx/z ∈ 〈S〉
for all x ∈ 〈S〉. Let x be an arbitrary element of 〈S〉. Then x can be expressed by
x = y1 · · · yk for some yi ∈ Γ∆̄(S). Recall that if z ∈ Γ∆̄(S) then µu(z) is also in Γ∆̄(S),
where µu is λu or ρu. Consider µu(x). Using the inequation considered above, we have
µu(y1) · · ·µu(yk) ≤ µu(y1 · · ·yk) = µu(x). Hence µu(x) ∈ Γ∆̄(S) and so Γ∆̄(S) is the
filter generated by a set S. It is trivial that Γ∆̄(S) is the minimum filter, since any filters
containing S must also contain ΠΓ∆̄(S).

CF(A) denotes the lattice of all congruence filters on A. In the following we introduce the
relationship between filters and congruences on residuated lattices. For more information,
see [41].

Lemma 2.2.5 Let θ be a congruence on A. Put Fθ = {a ∈ A : 1θ(a ∧ 1)}. Then the set
Fθ is a congruence filter on A.

Lemma 2.2.6 Let F be a filter on A. Define a binary relation θF on A by xθF y ⇐⇒
x\y, y\x ∈ F . Then the set θF forms a congruence on A.

Theorem 2.2.7 The lattice of CF(A) of all congruence filter of A is isomorphic to its
congruence lattice Con(A). The isomorphism is given by the mutually inverse maps:
θ → Fθ and F → θF .

The relationship between convex normal subalgebras and congruences are studied by
K. Blount and C. Tsinakis. They showed that there exists a lattice isomorphism between
the lattice of all convex normal subalgebras of A and its congruence lattice Con(A). For
more information, see [9].
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Chapter 3

Substructural Logics

Basic substructural logics are defined as sequent systems obtained from either LK for
classical logic or LJ for intuitionistic logic by deleting some or all substructural rules. We
say that substructural logics are extensions of these basic substructural logics when they
are formalized in sequent systems.

3.1 Substructural logics

Sequent system for substructural logic FL

A sequent of FL is an expression of the form Γ ⇒ θ, where Γ is a finite sequence of
formulas and θ is a formula. Both Γ and θ may be empty. We use capital Greek letters
will denote finite (possibly empty) sequences of formulas.

Initial sequents of FL are of the following forms:

(1) α ⇒ α,
(2) ⇒ 1,
(3) 0 ⇒,
(4) Γ ⇒ �,
(5) Γ,⊥, ∆ ⇒ θ.

Cut rule of FL is the following:

Γ ⇒ α ∆, α, Σ ⇒ θ

∆, Γ, Σ ⇒ θ
(cut)

Rules for constants are the following:

Γ, ∆ ⇒ θ

Γ, 1, ∆ ⇒ θ
(1w) Γ ⇒

Γ ⇒ 0
(0w)

Rules for logical connectives are the following:
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Γ, α, ∆ ⇒ θ Γ, β, ∆ ⇒ θ

Γ, α ∨ β, ∆ ⇒ θ
(∨ ⇒)

Γ ⇒ α
Γ ⇒ α ∨ β

(⇒ ∨1)
Γ ⇒ β

Γ ⇒ α ∨ β
(⇒ ∨2)

Γ, α, ∆ ⇒ θ

Γ, α ∧ β, ∆ ⇒ θ
(∧1 ⇒)

Γ, β, ∆ ⇒ θ

Γ, α ∧ β, ∆ ⇒ θ
(∧2 ⇒)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
(⇒ ∧)

Γ, α, β, ∆ ⇒ θ

Γ, α ∗ β, ∆ ⇒ θ
(∗ ⇒)

Γ ⇒ α ∆ ⇒ β

Γ, ∆ ⇒ α ∗ β
(⇒ ∗)

Γ ⇒ α ∆, β, Σ ⇒ θ

∆, Γ, α\β, Σ ⇒ θ
(\ ⇒)

α, Γ ⇒ β

Γ ⇒ α\β (⇒ \)

Γ ⇒ α ∆, β, Σ ⇒ θ

∆, β/α, Γ, Σ ⇒ θ
(/ ⇒)

Γ, α ⇒ β

Γ ⇒ β/α
(⇒ /)

The basic FL-systems are extension of the FL which are obtained FL adding with some
or all structural rules defined by the following.

Γ, α, β, ∆ ⇒ θ

Γ, β, α, ∆ ⇒ θ
(e ⇒) : exchange

Γ, α, α, ∆ ⇒ θ

Γ, α, ∆ ⇒ θ
(c ⇒) : contraction

Γ, ∆ ⇒ θ

Γ, α, ∆ ⇒ θ
(w ⇒) Γ ⇒

Γ ⇒ θ
(⇒ w) : weakening

Basic substructural logics

Many non-classical logics including linear logic, many-valued logics, Hájek’s basic logic,
relevant logics are regarded as substructural logics those are originated from different mo-
tivations. To study substructural logics will give us a uniform framework for investigating
various kinds of non-classical logics. In the following we introduce various systems of
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basic substructural logics. We will express various basic substructural logics by adding
the corresponding letters e, c and w to FL as subscripts. Here, we define ¬φ by φ → 0.

FLe = FL + exchange = LJ − {w, c} (Intuitionistic linear logic).

FLw = FL + weakening = LJ − {e, c}.
FLc = FL + contraction = LJ − {e, w}.
FLew = FL + exchange + weakening = LJ − {c}.
CFLe = LK − {w, c} = FLe +[¬¬φ → φ].

CFLew = LK − {c} = CFLe + weakening (Grǐsin’s logic).

We say that a logic L is one of the FL-systems (CFL-systems) if L is defined as sequent
systems obtained from LJ (LK) for classical logic by deleting some or all substructural
rules.

Examples of Substructural Logics

Lambek calculus

In 1958, T. Lambek introduced that the formal system which is later called Lambek
calculus for analyzing the mathematical property of English sentences (categorial gram-
mar). Later, J. van Benthem and W. Buszkowski further studied. This formal system is
equivalent to the logic without substructural rules.

Logics without contraction rule

The logics without contraction rule were studied by V. Grǐsin in 1970’s. He pointed out
that the native set theory based this logics never causes the Russell paradox. In 1980’s
H. Ono and Y. Komori further studied these logics and introduced both Kripke type
semantics and algebraic semantics. Now these logics can be regarded as a fundamental
substructural logics.

Relevant logics

Relevant logics were studied from philosophical motivations. The relevant logics are
roughly the logics without weakening rules. One of the motivations of relevant logic
is to exclude paradoxes of classical implication. It is known that there are two classes of
paradoxes (paradox of relevance and paradox of consistency).

Linear logic

Linear logic is a substructural logic only with exchange rule which was introduced by J.
Y. Girard. This logic gives great influence not only logic but also to theoretical computer
science. It is known that the classical (intuitionistic) logic can be embedded into the full
linear logic[17].
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Many valued logic and Fuzzy logics

There are many logics for fuzzy inference and fuzzy reasoning. These logics can be consid-
ered the family of many-valued logics which was introduced by �Lukasiewicz and algebraic
studied by C. C. Chang. Monoidal logic (ML) in fuzzy logic is exactly equal to FLew. The
fundamental logic in fuzzy logic is called Hájek’s basic logic (BL) which is an extension
of FLew. Later, we will give precisely definition of fuzzy logics around BL.

Algebras for basic substructural logics

It is well known that for each substructural logic, there exists a class of residuated lattices
as an algebraic semantics for the logic. we introduce various classes of residuated lattices
which are algebraic semantics for substructural logics.

In the usual way, we can give an interpretation of formulas in an FL-algebra. An
FL-algebra A is a residuated lattice with fixed, but arbitrary element 0 in A. An FL⊥-
algebra is an FL-algebra with bottom element ⊥. In this case, an FL⊥-algebra has the
four constants, 1, 0,⊥,�.

Let A be an FL-algebra. A valuation v on A is any mapping from the set of all
propositional variable to the set A. We can extend each valuation v to a mapping from
the set of all formulas to A inductively as follows. We use the same symbols for logical
connectives and constants as those for corresponding algebraic operations and constants,
respectively.

v(1) = 1 and v(0) = 0,

v(�) = � and v(⊥) = ⊥, when the language has � and ⊥ and A is bounded.

v(α ∧ β) = v(α) ∧ v(β),

v(α ∨ β) = v(α) ∨ v(β),

v(α ∗ β) = v(α) · v(β),

v(α\β) = v(α)\v(β),

v(α/β) = v(α)/v(β).

We say that a formula α is valid in A if v(α) ≥ 1 for any valuation v on A. Also a given
sequent α1, · · · , αm ⇒ β is said to be valid in A iff the formula (α1 ∗ · · ·∗αm) → β is valid
in A or v(α1) · · · v(αm) ≤ v(β) holds for any valuation v on A.

We can show the following completeness theorem for basic substructural logics, by
using the standard argument on Lindenbaum algebras.

Theorem 3.1.1 (Completeness theorem) For any provable sequent S in FL if and
only if it is valid in all FL⊥-algebras. This holds also for other basic substructural logics
and corresponding classes of FL-algebras.
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The following we give algebras for the logics FLe, FLw, FLc, FLew, and FLec.

FLe-algebra : FL⊥-algebra + Commutativity.

FLw-algebra : FL⊥-algebra + Integrality + [⊥ = 0].

FLc-algebra : FL⊥-algebra + Increasing-idempotency.

FLew-algebra : FLe-algebra + Integrality + [⊥ = 0].

FLec-algebra : FLe-algebra + Increasing-idempotency.

3.2 Cut elimination theorem

Cut elimination theorem

Gentzen proved the theorem which is called cut elimination theorem for sequent systems
both classical logic (LK) and intuitionistic logic (LJ). The cut elimination theorem is
one of the most important theorems in proof theory formalized by sequent calculus.

Theorem 3.2.1 (Gentzen) Let S be a provable sequent in LK. Then S has a proof
without using the cut rule. This holds also for LJ.

A proof is called a cut-free proof if it has no applications of the cut rule. We say that
a sequent system L is a cut-free system if the cut elimination theorem holds for L. By
modifying the proof of the cut elimination theorem for LK and LJ, we can have the cut
elimination theorem for some basic substructural logics.

Note that the cut elimination theorem for substructural logics without contraction rule is
easier than for the logic which has contraction rule. Gentzen proved the cut elimination
theorem for LK and LJ using Mix-elimination. We can prove that the cut elimination for
contraction-free substructural logics by using double induction of the grade (the complex-
ity for the cut formula which is equal to the number of occurrences of logical connectives)
and the length of a proof without using Mix-elimination.

Theorem 3.2.2 (Cut elimination) Cut elimination theorem holds for FL, FLe, FLw,
FLew, FLec, and FLecw(= INT ). It holds also for CFLe, CFLew, CFLec, and CFLecw(=
CL).

On the other hand, it is known that the logic FLc and FLcw fail to the cut elimination
theorem proved by Bayu Surarso and Ono[5]. They proved the following

Theorem 3.2.3 Let L be a logic FLc (FLcw) or its implicational fragment. Then there
exists a sequent which is provable in L but there is no cut-free proof of the sequent.

Note that the logic FLcw is equivalent to the intuitionistic logic (INT). But the cut
elimination theorem does not hold for FLcw. We can show that the cut elimination
theorem holds for FLec to modify the contraction rule, called global contraction.
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Some consequences of cut elimination theorem

Subformula property

A proof in a sequent system L has the subformula property if it contains only formulas
which are subformulas of some formulas in its end-sequent. A sequent system L has
the subformula property if for any provable sequent S in L has a proof of S with the
subformula property.

In the case of basic substructural logics, we can show that the following theorem.

Theorem 3.2.4 Subformula property holds for FL, FLe, FLw, FLew, FLec, and FLecw(=
INT ). It holds also for CFLe, CFLew, CFLec, and CFLecw(= CL).

Disjunction property

A logic L has the disjunction property when for any formulas α and β, if α∨β is provable
in L then either α or β is provable in L We note that the classical logic does not have the
disjunction property, but the intuitionistic logic has this property.

In the case of basic substructural logics, we can show that the following theorem.

Theorem 3.2.5 The sequent systems FL, FLe, FLw, FLew, FLec, FLecw(= INT ),
CFLe, and CFLew have the disjunction property

Craig’s interpolation theorem

In 1957, W. Craig proved that the following theorem.

Theorem 3.2.6 (Craig) If A → B is provable in classical logic then there exists of a
formula C such that both A → C and C → B are provable, and every propositional
variables in C appears both A and B.

Now, the above theorem called Craig’s interpolation theorem. A formula C in the
theorem is an interpolant of A → B. The same result holds also for the intuitionistic
logic. A logic L has the Craig’s interpolation property (CIP) if the statement holds for L.

It is known that the relationship among Beth’s definability theorem, Robinson’s con-
sistency theorem and Craig’s interpolation theorem. It is known that the all of these three
properties are equivalent in classical logic and intuitionistic logic [11].

In 1977, after 20 years Craig’s interpolation theorem, L. Maksimova proved the fol-
lowing amazing result[30].

Theorem 3.2.7 (Maksimova) There are only 7 logics which have the CIP among the
intermediate logics between the intuitionistic logic and the classical logic.
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Maksimova’s theorem is striking, because it is shown that there are uncountable many
intermediate logics between the intuitionistic logic and the classical logic. But the CIP
holds for only 7 logics among them.

There are many way to prove the CIP. Original proof of Craig is obtained by using a
semantical method. In 1960’s, S. Maehara succeeded to show the CIP for classical logic
follows from the cut elimination theorem [29]. This technique is called now Maehara’s
method.

In the following we will explain that what Maehara proved using the intuitionictic
logic (INT). Let LJ+ be the sequent system obtained from LJ by adding propositional
constants � and ⊥ and initial sequents for these constants as follows: → � and → ⊥. It
is easy to see that the cut elimination theorem holds for LJ+ and LJ+ is a conservative
extension of LJ.

For any sequent Γ of formulas, 〈Γ1, Γ2〉 of (possibly empty) sequences of formulas Γ1

and Γ2 is said to partition of Γ if the multiset of Γ1 and Γ2 is equal to Γ. The CIP for
LJ+ is the following

Theorem 3.2.8 (Maehara) Let Γ ⇒ α be a provable sequent in LJ+. and 〈Γ1, Γ2〉 be
any partition of Γ. Then there exists a formula β such that both Γ1 ⇒ β and β, Γ2 ⇒ α
are provable in LJ+, and moreover that V (β) ⊆ V (Γ1)∩V (Γ, α), where V (A) denotes the
variables occurring in a formula A.

Maehara’s method can be applied also to both FL-systems and CFL-systems except
FLc and CFLc. In the case of CFL-systems, it is necessary to modify the definition of
partition. A sequent in CFL-systems is of the form, Γ → ∆, where both Γ and ∆ are
arbitrary finite sequence of formulas. We say that 〈(Γ1, ∆1); (Γ2, ∆2)〉 is a partition of
Γ → ∆ where multiset union of Γ1 and Γ2 (∆1 and ∆2, respectively) is equal to Γ (∆,
respectively) as a multiset of formulas.

Most of basic substractural logics enjoy cut elimination theorem. Thus, by using
Maehara’s method, we can show the CIP for basic substractural logics both FL-systems
and CFL-systems except FLc and CFLc.

Theorem 3.2.9 Craig’s interpolation theorem holds for substructural logics FL, FLw,
FLe, FLew, FLec, CFLe, CFLew and CFLec.

It is necessary to modify the definition of partitions to show the CIP for substructural
logics without exchange rule. Suppose Γ → D is any sequent (of FL, or FLw). Then
〈Γ1, Γ2, Γ3〉 is a partition of Γ, if the sequence Γ1, Γ2, Γ3 is equal to Γ without exchanging
the order of formulas.

There are other consequences of the cut elimination. It is known that Maksimova’s prin-
ciple of variable separation and variable sharing property are important consequences of
the cut elimination. For more information, see [37].
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Some extensions of FLe and fuzzy logics

Some axioms for extensions

The following axioms are for typical extensions of FLe.

C (contraction) : (α → (α → β)) → (α → β),
W (weakening) : α → (β → α),
EM (exclusive middle) : α ∨ ¬α,
DN (double negation) : ¬¬α → α,
Wcon (weak contraction) : (α → ¬α) → ¬α equivalently, ¬α2 → ¬α,
P (Peirce’s law) : ((α → β) → α) → α,
WP (weak Peirce’s law) : (¬α → α) → α,
Lin (linearity) : (α → β) ∨ (β → α),
Dis (distributive) : (α ∧ (β ∨ δ)) → ((α ∧ β) ∨ (α ∧ δ)).

Note that Wcon and WP are obtained from Con and P by replacing β by 0.

We write FLe[X] for the logic an extension of FLe with a set of axioms X. In usual con-
vention, we use FLew FLec and FLewc = INT instead of FLe[W ], FLe[C] and FLe[W, C].

Fuzzy logics and many valued logic

The fundamental logic in fuzzy logic is called Hájek’s basic logic (BL) which is defined by
the following axioms and modus ponens which is only deduction rule for BL.

BL1: (α → β) → ((β → γ) → (α → β))
BL2: (α ∗ β) → α
BL3: (α ∗ β) → (β ∗ α)
BL4: (α ∗ (α → β)) → (β ∗ (β → α))
BL5a: (α → (β → γ)) → ((α ∗ β) → γ)
BL5b: ((α ∗ β) → γ) → (α → (β → γ))
BL6: ((α → β) → γ) → (((β → α) → γ) → γ)
BL7: 0 → α

The family of fuzzy logics, called BL (Hájek’s basic fuzzy logic), MTL (monoidal t-norm
logic), �L (�Lukasiwicz’s logic), PL (product logic), and other logics related fuzzy logic
which can be defined by the following as extensions of substructural logics. Note that
ML (monoidal logic) is precisely the same FLew. We can also show that the many valued
logic and Gödel’s logic can be consider the extensions of substructural logics.

MTL : FLew[Lin].

IMTL : FLew[Lin, DN ] = MTL + DN .

SMTL : FLew[Lin, Wcon] = MTL + [α ∧ ¬α → 0].

WMTL : MTL + Wcon (= FLew[Lin, Wcon] = SMTL).
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ΠMTL : MTL + [α ∧ ¬α → 0] + [¬¬β → [((α ∗ β) → (γ ∗ β)) → (α → γ)]].

BL : FLew[Lin] + [α ∧ β → α(α → β)].

SBL : BL + [α ∧ ¬α → 0].

PL : BL + [α ∧ ¬α → 0] + [¬¬β → [((α ∗ β) → (γ ∗ β)) → (α → γ)]].

Moreover, we can characterize that many valued logic (�L) which is introduced by �Lukasiewicz
and Gödel’s logic (G) as extensions of basic substructural logics and also can be regarded
as extensions of fuzzy logics.

�L : FLew[Lin] + [α ∧ β → α(α → β)] + DN = BL + DN .

G : FLecw + Lin = INT + Lin.
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Chapter 4

Finite Embeddability Property I

In this chapter, we will consider the finite embeddability property (FEP) for integral resid-
uated lattices. The idea of this chapter is mainly due to W. Blok and C. J. van Alten’s
papers [6, 7]. First, we introduce the FEP and consider the relationships among the FEP,
the strong finite model property (SFMP) and the finite model property (FMP). We can
show that if an algebra has the FEP then it has the FMP. Hence, the FEP is one of the
algebraic methods to show the FMP. Next, we introduce the Blok - van Alten’s construc-
tion. The original construction introduced by W. Blok and C. J. van Alten is for the
structure, partially ordered biresiduated groupoids, but our interests are not so general
setting, we only focus the residuated lattices. We modefy their argument and proofs to
the residuated lattices. Next, we shall prove that the FEP for integral residuated lattices.
Lastly, we consider some classes of residuated lattices that are failure of the FEP.

4.1 Finite embeddability property

Let A be an algebra of the form 〈A, 〈fA
i : i ∈ I〉〉 of finite type and any nonempty

subset B ⊆ A, the partial subalgebra B of A with domain B is the partial algebra
〈B, 〈fB

i : i ∈ I〉〉, where for i ∈ I, fi is n-ary function symbol, and b1, · · · , bn ∈ B

fB
i (b1, · · · , bn) =

{
fA

i (b1, · · · , bn) fA
i (b1, · · · , bn) ∈ B

undefined fA
i (b1, · · · , bn) �∈ B

Definition 4.1.1 (Finite embeddability property) A class of algebras K has the fi-
nite embeddability property (FEP ) if every finite partial subalgebra of a member of K can
be embedded into a finite member of K.

It is known that if also a class of algebras K is finitely axiomatizable then its universal
theory is decidable.

This notion, FEP was introduced and studied for varieties by T. Evans [15] which
is closely related the word problem. Indeed T. Evans proved that if finitely presented
algebra A in a variety V has the FEP, then the word problem is solvable for A.
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Historically, J. C. C. McKinsey and A. Tarski studied the same concepts before T.
Evans and proved that the variety HA of all Heyting algebra has the FEP.

Next, we define the algebraic version of the finite model property (FMP) and the
strong finite model property (SFMP). In the following, K denotes a class of algebras and
KF denotes the class of finite algebras in K.

Definition 4.1.2 (Finite model property) A class of algebras K has the finite model
property (FMP) if every identity that fail to hold in K can be refuted in a finite member
of K.

In other word, the FMP is the same as the following: A class K has the finite model
property (FMP) if KF |= s = t implies K |= s = t for all identity s = t. It is also
equivalent to the condition K ⊆ HSP (KF ).

Definition 4.1.3 (Strong finite model property) A class of algebras K has the strong
finite model property (SFMP) if every quasi-identity that fail to hold in K can be refuted
in a finite member of K.

In other word, the SFMP is the same as the following A class K has the strong finite
model property (SFMP) if KF |= σ implies K |= σ for all quasi-identities σ. It is also
equivalent to the condition K ⊆ ISPPU(KF ).

A class of algebra K is said to locally finite if every finitely generated subalgebra is
finite. It is easy to see that a class of algebra K is locally finite then K has the FEP.
Indeed, for any A ∈ K and any finite partial subalgebra B of A, the algebra gen(B)
generated by B is finite algebra in K. Hence B can be embedded into gen(B).

It is also easy to see that if a quasivariety K has the FEP then K has the SFMP.
Indeed, let K be a quasivariety. Then K satisfies that K = ISPPU(K). Let K satisfy the
FEP and KF be the class of finite algebra in K. Then for any quasi-identity σ, K satisfies
that KF |= σ =⇒ K |= σ, Hence, K ⊆ ISPPU(KF ), and so K has the SFMP.

To the end of this section, we remark the following.

(1) If a class of algebras K has the locally finite then K has the FEP.

(2) If a class of algebras K has the FEP then K has the SFMP.

(3) If a class of algebras K has the SFMP then K has the FMP.

4.2 The Blok - van Alten’s construction

In this section we introduce the construction by Blok - van Alten [6]. Their original con-
struction is for the structure called partially ordered biresiduated groupoids which is much
general setting for our attention. Therefore we introduce the construction for residuated
lattices.
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Let A be an integral residuated lattice and B be a partial subalgebra of A. We shall
sometimes omit the multiplicative symbol ·. Let M be the submonoid of A generated by
B. If X, Y ⊆ M and a ∈ M then XY denotes {ab : a ∈ X, b ∈ Y }, Xa denotes X{a} and
aX denotes {a}X. For each x, y ∈ M and b ∈ B, define (x : y � b] = {c ∈ M : xcy ≤ b}.
This set is a downward closed subset of M . Note that (∅ � b] = {a ∈ M : a ≤ b}. Define
D = {(x : y � b] : x, y ∈ M, b ∈ B}. D = {

⋂
Ξ : Ξ ⊆ D}. There is a closure operator C on

subset M associated with D. For X ⊆ M , C(X) =
⋂
{(x : y � b] ∈ D : X ⊆ (x : y � b]}.

Define for all X, Y ⊆ M ,

X ·D Y = C(XY )

X\DY = {a ∈ M : Xa ⊆ Y }
X/DY = {a ∈ M : aX ⊆ Y }

D∧
i∈I

Xi =
⋂
i∈I

Xi

D∨
i∈I

Xi = C(
⋃
i∈I

Xi)

1D = M

0D =
⋂

D

.

Theorem 4.2.1 The structure D(A, B) = 〈D, ·D, \D, /D,∧D,∨D, 1D〉 is an integral resid-
uated lattice.

To prove the theorem, we prepare some lemmas,

Lemma 4.2.2 If X ⊆ M and Yi ⊆ M for i ∈ I then X\D
⋂

i∈I Yi =
⋂

i∈I(X\DYi) and
X/D

⋂
i∈I Yi =

⋂
i∈I(X/DYi).

Proof. For any a ∈ M , Xa ⊆
⋂

i∈I Yi ⇔ Xa ⊆ Yi for each i ∈ I. This follows the first
statement. The second case is similar to prove.

Lemma 4.2.3 If X ⊆ Mand Y ⊆ D then X\DY, X/DY ∈ D.

Proof. We first show that for X ⊆ M, x, y, c ∈ M and b ∈ B, X\D(x : y � b] =⋂
{(xc : y � b] : c ∈ X}, (x : y � b]/DX =

⋂
{(x : cy � b] : c ∈ X}. Note that

is c ∈ X then (xc : y � b] ∈ D since X ⊆ M . Hence, the first equation imply that
X\D(xc : y � b] ∈ D. To see the equation is satisfied,

d ∈ X\D(x : y � b] ⇔ cd ∈ (x : y � b]

⇔ xcdy ≤ b

⇔ d ∈ (x : cy � b]
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for each c ∈ X. Since Y ∈ D, Y can be expressed of the form Y =
⋂
{(xi : yi � bi] : i ∈ I}.

By the Lemma 1, we can get X\DY = X\D
⋂

((xi : yi � bi]) =
⋂

(X\D(xi : yi � bi]).
Thus, X\DY ∈ D. The proof that X/DY ∈ D is similar to prove.

Lemma 4.2.4 The operator C satisfies that the following additional condition which is
related monoid operation ·. C(X)C(Y ) ⊆ C(XY ), for all X, Y ⊆ M .

Proof. Let X, Y, Z ⊆ M .

XY ⊆ C(XY ) ⇔ Y ⊆ X\DC(XY )

⇒ C(Y ) ⊆ X\DC(XY )

⇔ XC(Y ) ⊆ C(XY )

⇔ X ⊆ C(XY )/DC(Y )

⇒ C(X) ⊆ C(XY )/DC(Y )

⇔ C(X)C(Y ) ⊆ C(XY )

Note that 1D is an identity element of D(A, B). Indeed, let X ∈ D. Since X is
downward closed, X ⊇ XM(MX), and since 1 ∈ M we also have X ⊆ XM(MX),
so X = XM = MX. We claim that the operations \D, /D and

∧D are closed under
the operation C. Indeed, to see the operation /D is closed under C. We need to show
that C(X/DY ) ⊆ X/DY , since the converse direction is always hold. Let X, Y be in
D. Then X ·D C(X/DY ) = C(X) ·D C(X/DY ) ⊆ C(X · (X/DY ) ⊆ C(Y ) = Y . This
implies that C(X/DY ) ⊆ X/DY . In the case of the operation \D can be similar to prove.
Next, to show that

∧D is closed under C. Let Xi(i ∈ I) be in D. We need to show
that C(

∧D Xi) ⊆
∧D Xi, since the converse direction is always hold. For each i ∈ I,∧D Xi =

⋂D Xi ⊆ Xi ⇒ C(
⋂D Xi) ⊆ C(Xi) = Xi. Thus C(

∧D Xi) ⊆
∧D Xi.

Proof of Theorem 4.2.1
The operation ·D is monoid operation. It is easy to see the associativity of ·D. Indeed,
let X, Y, Z ∈ D. Then (X ·D Y ) ·D Z = C(C(XY )Z). By Lemma 21, C(C(XY )Z) =
C(C(XY )C(Z)) ⊆ C(C((XY )Z)) = C((XY )Z). Since C is a closure operator, we have
C((XY )Z) ⊆ C(C((XY )Z)). Hence (X ·D Y ) ·D Z = C((XY )Z). Similarly, we have
X ·D (Y ·D Z) = C(X(Y Z)). Since M is a monoid, we have (XY )Z = X(Y Z)), hence ·D
is associative on elements of D. We have shown that D is closed under the operations /D

and \D. The lattice operations ∧D and ∨D can be defined by set theoretic inclusion ⊆.
Thus, the things we need to prove is the residuations. For any X, Y, Z ∈ D, we can show
that XZ ⊆ Y ⇔ Z ⊆ X\DY by the definition of \D, and also Y is closed with respect to
the operation C. Hence, X ·D Z ⊆ Y ⇔ XZ ⊆ Y . Therefore \D satisfies the condition of
the left residuation. The operation /D is similar to prove.

Theorem 4.2.5 If A is an integral residuated lattice and B is a partial subalgebra of
A, then B can be embedded, as a partial subalgebra, into the integral residuated lattice
D(A, B).
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Proof. We define an embedding from B to D(A, B) by b → (∅ � b]. To show the theorem
we need to prove that all operations \, /,∧,∨, · and constants 1, 0 in B preserve into
D(A, B) by this embedding.

(1) Suppose a\Ab ∈ B. To see (a\Ab] = (a]\D(b]. We need to show that {c ∈ M :
ac ≤ b} = {c ∈ M : (a]c ⊆ (b]}. From left to right direction, let c ∈ M such that
ac ≤ b and d ≤ a. Then dc ≤ ac ≤ b. Thus, dc ∈ (b]. The converse direction, suppose
(a]c ⊆ (b]. Then ac ≤ b. The operation / is similar to prove. (2) Suppose ab ∈ B. We
need to show that (ab] = (a] ·D (b]. From left to right direction, ab ∈ (a](b] ⊆ (a] ·D (b].
The converse direction, take c ≤ a, d ≤ b. Then cd ≤ ac and so (a](b] ⊆ (ab]. Thus,
C((a](b]) = (a] ·D (b] ⊆ (ab]. (3) Suppose ai ∈ B and

∧
ai exists in A and also

∧
ai ∈ B.

It is clear that (
∧

ai] =
⋂

(ai] =
∧D(ai]. (4) Suppose ai ∈ B and

∨
ai exists in A and

also
∨

ai ∈ B. We need to show that (
∨

ai] =
⋂

(ai] =
∨D(ai]. From left to right

direction, (ai] ⊆ (
∨

i∈I ai] ⇒
⋃

i∈I(ai] ⊆ (
∨

i∈I ai] ⇒ C(
⋃

i∈I(ai]) =
∨D(ai] ⊆ (

∧
i∈I ai].

The converse direction, let (x : y � d] ∈ D such that
⋃

i(ai] ⊆ (x : y � d]. Then
ai ∈ (x : y � d] ⇒ xaiy ≤ d ⇒

∨
xaiy ≤ d ⇒ x

∨
aiy ≤ d. Thus,

∨
ai ∈ (x : y � d].

Therefore
∨

i ai ∈
⋂
{(x : y � d] ∈ D :

⋃
i(ai] ⊆ (a : y � d]} = C(

⋃
i(ai]) =

∨
i(ai].

(5) Suppose 1A ∈ B. Then (1A] = M = 1D. (6) Suppose 0A ∈ B. Then (x : y � b] is
downward closed set. Thus 0A ∈ (x : y � b] and so 0A ∈

⋂
D. (0A] = {0A} ⊆

⋂
D ⊆ (0A].

So (0A] = 0D. This completes the theorem

Well-quasi order and Higman’s theorem

In this section we discuss well-quasi order and Higman’s theorem. For more information,
see [48].

Well-quasi order

Let ≤ be a quasi order on a set X. An infinite sequence (xn : n ∈ N) in X is called
good if there are indices i and j such that i < j and xi ≤ xj , otherwise it is called a bad
sequence. We write x < y to abbreviate x ≤ y ∧ y �≤ x.

We say that ≤ is well-behaved if every infinite sequence is good.

Definition 4.2.1 (Well-quasi order) A well-behaved quasi order is called a well-quasi
order.

For the sake of convenience, we will say that a quasi order ≤ is well-founded if it has
no infinite strictly descending > sequence.

Lemma 4.2.6 Every well-quasi order ≤ is well-founded.

Proof. Suppose ≤ is a well-quasi order on a set A. Take an infinite sequence (xn : n ∈ N)
in A such that xn > xn+1 for all n ∈ N. By the transitivity of ≤, xn ≥ xn+m holds.
Moreover we have xn �≤ xn+m. Indeed, suppose xn ≤ xn+m. We also have xn+1 ≥ xn+m.
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Thus, xn ≤ xn+1. But it is a contradiction. Since ≤ is a well-behaved by the assumption,
there exists some indices i, j > 0 such that i < j and xi ≤ xj . But this is contradiction.

Let (xn : n ∈ N) in a set X be an infinite sequence. Then we say that (yn : n ∈ N)
is an infinite subsequence of (xn : n ∈ N) if there exists an injective monotone mapping
f from N to N such that yn = xf(n) for all n ∈ N. We also say that an element xi in an
sequence (xn : n ∈ N) is terminal if there is no index j with j > i such that xi ≤ xj .

Theorem 4.2.7 Let ≤ be a quasi order on a set X. Then the following conditions are
equivalent.
(1) ≤ is a well-quasi order.
(2) ≤ is a well-founded and every antichain in X is finite.
(3) Every infinite sequence (xn : n ∈ N) in X contains an infinite subsequence (xf(n) : n ∈
N) such that xf(n) ≤ xf(n+1) for all n ∈ N.

Proof. (1) ⇒ (2). Suppose ≤ is a well-quasi order on X. Then ≤ is a well-founded by
Lemma. We need to show that every antichain in X is finite. Assume that (xn : n ∈ N)
is an infinite antichain. This means that any pair of distinct elements in (xn : n ∈ N)
are incomparable. But we assume that ≤ is a well-quasi order, i.e., well-behaved. This is
contradiction. Therefore every antichain in X is finite.
(2) ⇒ (1). Suppose ≤ is a well-founded and there exists a bad sequence (xn : n ∈ N) in X.
By well-foundedness of 〈X,≤〉, there exists m1, for any n ≥ m1 such that xm1 �> xn. Since
(xn : n ∈ N) is bad, xm1 �≤ xn for all n > m1. Consider {xn}n>m1 . By well-foundedness of
〈X,≤〉, we can take m2 > m1 such that xm2 �> xn for any n ≥ m2. Now, xm1 �> xm2 and
xm2 �≤ xm2 , so both xm1 and xm2 are imcpmparable. Next, consider {xn}n>m2 and iterate
the same argument. Finally, we can get the set {xmi

}i∈I which is a infinite antichain in
X.

(1) ⇒ (3). Suppose ≤ is a well-quasi order on X. Let (xn : n ∈ N) be an infinite sequence
in X. It is easy to see that the number of the terminal element in (xn : n ∈ N) is finite.
Otherwise, the infinite sequence of terminal elements in it is a bad sequence (because if
the sequence of terminal elements are good, then we have xi ≤ xj which contardicts the
fact that xi is terminal), and this contradicts the fact that ≤ is a well-quasi order. Hence
there exists some m > 0 such that xi is not terminal for every i ≥ m. Define an injective
monotone mapping f as follows. f(0) = m, and for any n ≥ 0 f(n+1) is the least integer
such that xf(n) ≤ xf(n+1) and f(n + 1) > f(n). Then we can construct the sequence
(xf(n) : n ∈ N) as required.
(3) ⇒ (1) is trivial by the definition of a well-quasi order.

It is known that the direct proof of (2) ⇒ (3) is given by using the infinite version of
Ramsey’s theorem. In the following is due to I. Hodkinson [20]. Let S be a set and κ a
cardinal. Then [S]κ is the set of subset of S of size κ.

Theorem 4.2.8 (Ramsey’s theorem) If f : [N]n → k, where n, k ∈ N, then there is
infinite I ⊆ N such that f |[I]n is constant.
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We give a sketch of the direct proof of (2) ⇒ (3). Assume (2). Let f : [N]2 → {≤, >,⊥}
be a function such that xif(i, j)xj for all i < j. Here a⊥b means a and b are incomparable.
By Ramsey’s theorem, there exists an infinite set X ⊆ N such that f |[X]2 is constant.
Supposing (2) the constant value must be ≤ and so (3) holds.

Next, we will show that the products of natural numbers N
k is well-quasi order. To see

that we first show the case k = 2. Let 〈A,≤A〉 and 〈B,≤B〉 be well-quasi order. Consider
the structure 〈A × B,≤〉, where ≤ is a product order on A × B. Take an arbitrary
infinite sequence 〈(an, bn) : n ∈ N〉 of A × B. Then 〈an : nN〉 is an infinite sequence
of A. By Theorem 4.2.7, there exists an infinite subsequence 〈ag(n) : nN〉 such that
ag(n) ≤A ag(n+1) for all n. Then 〈bg(n) : nN〉 is also an infinite sequence of B. By Theorem
4.2.7, there exists m1 and m2 such that g(m1) < g(m2) and bg(m1) ≤B bg(m2). Now g is a
monotone, thus m1 < m2. Hence ag(m1) ≤A ag(m2). Therefore we have g(m1) < g(m2) and
(ag(m1), bg(m1)) ≤ (ag(m2), bg(m2)). To repeat this argument, we have the following result.

Proposition 4.2.9 (Nk,≤) is well-quasi order.

Higman’s theorem

Let A be an algebra of type Σ. A given quasi order ≤ on Σ is called a precedence ordering
of operation symbols.

Definition 4.2.2 (Divisibility order) Let A be an algebra of type Σ and ≤ is a prece-
dence ordering on Σ. A quasi order � on A is called a divisibility order based on ≤ if
for all operation symbols σ, τ and all elements a, a1, · · · , am, b1, · · · , bn in A, the following
conditions are satisfied
(1) If a � ai for some 1 ≤ i ≤ m, then a � σA(a1, · · · , am),
(2) If σ ≤ τ and ai � bji

for 1 ≤ i ≤ m and some j1, · · · , jm with 1 ≤ j1 < j2 < · · · <
jm ≤ n, then σA(a1, · · · , am) � τA(b1, · · · , bn).

Divisibility orders have a very important property. G. Higman proved that the follow-
ing theorem.

Theorem 4.2.10 (Higman’s Theorem) Let A be an algebra of type Σ. Assume that
A is equipped with a divisibility order which is based on a well-quasi order on Σ. If
the divisibility order restricted to any generating set of A is a well-quasi order, then the
divisibility order on A is already a well-quasi order.

4.3 Finite embeddability property for integral resid-

uated lattices

Let F(k) be the free monoid with identity element 1 on k generators x1, · · · , xk. Each
element of F (k) is assumed to be reduced, i.e., each element contains no 1’s.
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Define a relation ≤ on F (k) by s ≤ t iff some instances of variables in s can be replaced
by 1’s in such a way that it reduced to t. It is obvious that the relation ≤ is partially
order. For example, x1x2x1x3 ≤ x1

2x3. Indeed, we replace x2 by 1. Then the left hand
side is equal to the right hand side.

Lemma 4.3.1 On the structure 〈F(k),≤〉, we can define the left and right residuations.

Proof. It is enough to consider the case of left residuation \. Define the left residuation
by the following. Let s, t be elements in F (k). Then (1) If s ≤ t then s\t = 1. (2) If
s �≤ t but s ≤ t1 where t1 is maximal decomposition of t, i.e., t = t1t2 then s\t = t2. (3)
If s �≤ t and s �≤ t1 for any decomposition of t then s\t = t. Then, it is easy to see that \
is the left residuation on F (k).

A quasi ordered set has the finite basis property if every downward closed set is the
downward closure of a finite set which is equivalent to a quasi order is well-quasi ordered.
For convenience in our setting, we consider dual quasi order. Moreover, we can consider
the condition of divisibility order the following, since type Σ of algebra in our case has
only one type, monoid operation.

Give an algebra, a quasi order ≤ on a set A is called divisibility order if it satisfies the
following conditions.
(1) Each operation of A is order-preserving in each its argument.
(2) If fA is an n-ary operation of A and a1, · · ·an ∈ A then fA(a1, · · · , an) ≤ ai for each
i = 1, · · · , n.

Then we can prove the following theorem using the Higman’s theorem.

Theorem 4.3.2 An algebra of a finite type Σ has the finite basis property in a divisibility
order if any generating set has.

Theorem 4.3.3 The order ≤ on the algebra F(k) has the finite basis property.

Proof. First, to see that ≤ is divisibility order on F(k). The algebra F(k) has only one
operation (without constant) which is monoid operation ·. It is easy to see that monoid
operation satisfies the conditions (1) and (2). Next, consider that a generating set of F(k)
has the finite basis property. This is trivial since a quasi order on a finite set {x1, · · · , xk}
always satisfies the finite basis property.

As an important consequence of the theorem, let X be a subset of F(k) and we write
Max(X) the maximal elements of X. Then it is easy to see that (X] is equal to (Max(X)]
by the definition of ≤ on F(k). Indeed, each larger element has fewer number of symbols.
By the finite basis property, (Max(X)] is the downward closure of a finite set, hence
Max(X) must be finite. This is also obtained that ≤ is well-quasi order since the set
Max(X) is clearly an antichain.

Lemma 4.3.4 If A is an integral residuated lattice and B is a finite partial subalgebra
of A then D(A, B) is finite.
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Proof. Let B = {b1, · · · , bk}. Recall that F (k) be the free monoid on k generators
{x1, · · · , xk}. The map that takes xi to bi for each i ∈ {1, · · · , k} extends naturally to a
map h from F (k) to A that preserves the monoid operation. Consider the h−1((b]) which
is a subset of F (k). We denote Crit(b) the set of all maximal elements in h−1((b]). Then
Crit(b) is a finite set.

Put Z =
⋃

b∈B

⋃
z∈Crit(b)[z), where [z) is the upward closure of {z}. It is obvious that

[z) is finite since each larger element has fewer number of symbols. Thus B, each Crit(b)
and each [z) is finite. Hence Z is also finite.

Let b ∈ B, a, c ∈ M . We show that h−1((a : c � b]) = (Y ] for some Y ⊆ Z. Let
x, z ∈ F (k) such that h(x) = a, h(z) = c. Then

y ∈ h−1((a : c � b]) ⇔ h(y) ∈ (a : c � b]

⇔ ah(y)c ≤ b

⇔ h(x)h(y)h(z) ≤ b

⇔ h(xyz) ≤ b

⇔ xyz ∈ h−1((b])

⇔ xyz ≤ w, (∃w ∈ Crit(b))

⇔ y ≤ x\(w/z), (∃w ∈ Crit(b))

Therefore y ∈ h−1((a : c � b]) ⇔ y ≤ x\(w/z) for some w ∈ Crit(b). Put Y = {x\(w/z) :
w ∈ Crit(b)} which is a subset of Z. Then h−1((a : c � b]) = (Y ]. Since h is surjective
on M ((a : c � b]) = h(Y ]. Since Z is finite, therefore there is only finitely many distinct
(a : c � b]. Hence D(A, B) is finite.

Then we have the following results.

Theorem 4.3.5 The variety IRL of all integral residuated lattices has the FEP.

These arguments above work also well in the case of commutative integral residuated
lattices. Then we have the following corollary.

Corollary 4.3.6 The variety CIRL, FLw and FLew have the FEP.

Next, considering the corresponding logical systems, we have the following.

Theorem 4.3.7 The logical systems FLw and FLew have the FMP, and hence both are
decidable.

Of course the decidability of both FLw and FLew can be proved without showing the
FEP for algebras related those logics, since cut elimination theorem holds for both of
them. And both FLw and FLew have the FMP were proved by M. Okada and K. Terui.
However they proved the FMP by using cut elimination theorem.
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Failure of finite embeddability property

Residuated lattices and FLe-algebras

M. Okada and K. Terui proved that the logical system FL-systems except FLc has the
FMP, hence equational theory of these corresponding algebras are decidable. Otherwise,
we can show that universal theory of FL-algebras and FLe-algebras does not have the
FEP, moreover both are undecidable. In [22], P. Jipsen and C. Tsinakis proved that the
quasi-equational theory of residuated lattices is undecidable.

Thus, we can show the FLe-algebras does not have the FEP, moreover its universal
theory is undecidable. P. Lincoln, J. Mitchell, A. Scedrov and N. Shankar studied decision
problems for propositional linear logic. They showed that the undecidability of the full
system of linear logic. By analyzing their proof carefully, H. Ono pointed out that the
undecidability of the deducibility relation of FLe follows from it. The same argument was
mentioned by W. Blok and C. J. van Alten. It follows that the quasi-equational theory
of FLe-algebras is undecidable, and hence the SFMP doesn’t hold in FLe-algebras. They
also give a simple direct proof of this fact[6].

Cancellative residuated lattices

Next, example is cancellative residuated lattices. We can show that a class of cancellative
residuated lattices does not have the FEP. It is easy to see that if a cancellative residuated
lattice has the bottom element 0 then 0x = x0 = 0. Hence a cancellative residuated lat-
tice with 0 is only trivial algebra. Furthermore, we can show that a variety of cancellative
residuated lattices does not have the FEP. Indeed, without loss of generality, we only
consider the 0-free cancellative residuated lattices Suppose 0-free cancellative residuated
lattices A has the FEP. By assumption, for any finite partial subalgebra B can be em-
bedded into a finite algebra F. Take x ∈ B which is not equal to 1. By the finiteness of
F, there exists a natural number k such that xk = xk+1. Using the cancellative law iter-
atively, we can get x = 1. This contradicts the assumption. Therefore we conclude that
the variety CanRL does not have the FEP. Hence any non-trivial cancellative residuated
lattice is infinite. For more information about cancellative residuated lattices, see [22].

To the end of this chapter, we summarize that the relationship between the FMP and
the FEP in FL-systems and CFL-systems as follows. Note that in 2004, van Alten and
Raftery proved the FEP for the variety of FLec-algebras [2].

FL FLe FLw FLc FLec FLew INT
FMP © © © ? © © ©
FEP × × © ? © © ©

CFL CFLe CFLw CFLc CFLec CFLew CL
FMP © © © ? © © ©
FEP × × © ? © © ©
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Chapter 5

Finite Embeddability Property II

In this chapter, we will consider the finite embeddability property (FEP) for various classes
of residuated lattices and finite model property (FMP) for various substructural logics
including fuzzy logics.

Using the idea of previous chapter, we will show that the FEP for various classes of
integral residuated lattices which are closely related to the substructural logics. Next,
we summarize the FMP for various substructural logics including fuzzy logics. Lastly, we
consider some classes of residuated lattices that are failure of the FEP.

The FMP is quite powerful method to show the decidability in the study of modal
logics, since the decidability follows from the FMP and the finite axiomatizability. It is
well known argument by Harrop. But It is known that it is hard to show the FMP of
substructural logics and we do not have any powerful method like the filtration method in
modal logic yet.

Studies of the FMP of substructural logics were made by R.K. Meyer in 1972, R.K.
Meyer and H. Ono in 1994, W. Buszkowski in 1996 and also C.J. van Alten and J.G.
Raftery in 1999. All of these studies (except W. Buszkowski’s work) are implicational
fragment of substructural logics. Studies of other fragments of substructural logics were
made by Y. Lafont in 1997. He proved that each of the CFL-systems except CFLc has the
FMP. and also M. Okada and K. Terui in 1999. They proved that each of the FL-systems
except FLc has the FMP. Therefore, they showed the FMP of most basic substructural
logics, but they used cut elimination theorem to show the FMP. That means, to show the
FMP is much harder than to show decidability.

First, we consider full left (right) integral residuated lattices which is obtained by
deleting right (left) residuation from integral residuated lattices. Second, we will prove
that the FEP for various classes of integral residuated lattices. Lastly, we summarize the
FMP for various substructural logics including fuzzy logics.
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5.1 Finite embeddability property for full left (right)

integral residuated lattices

We say that a reduct of residuated lattice which is obtained by deleting right (left) resid-
uation, full left residuated lattice. In this case we can show that the variety of full left
(right) integral residuated lattices has the FEP using the argument of previous section
stating with A is a left residuated lattice.

Theorem 5.1.1 The variety of full left (right) integral residuated lattices has the FEP.

We note that a full left residuated lattice is also obtained by left residuated lattice
with the following conditions.

(1) x ≤ y implies both xz ≤ yz and zx ≤ zy,
(2) (y ∨ z)x = yx ∨ zx.

Both conditions holds in a residuated lattice. C. J. van Alten and J. G. Raftery
pointed out that if it drops the condition (2), there exists a counter example that a left
integral residuated lattice cannot be embedded into an integral residuated lattice and so
Blok-van Alten’s construction does not work in this case.

C. J. van Alten and J. G. Raftery show that the following.

Let A be a left integral residuated lattice with additional conditions (1) and (2)
mentioned above and S be the set of subset of A that are downward closed and closed
under joins. Define operations on S as follows. Let X, Y be elements of S.

X ·S Y = ({xy : x ∈ X, y ∈ Y }, ]
X\SY = {a ∈ A : Xa ⊆ Y },
X/SY = {a ∈ A : aX ⊆ Y },

X
S∧

Y = X
⋂

Y,

X

S∨
Y = ({x ∨ y : x ∈ X, y ∈ Y }],

1S = (1A].

Then S with these operations form the integral residuated lattice, and also A can be
embedded into S by the map a → (a].

C. J. van Alten and J. G. Raftery also pointed out that the condition (2) of the
identities of a full left integral residuated lattice is crucial. If we drop this condition then
there is no guarantee that Y/SX is closed under join. They showed also the counter
example that the structure left integral residuated lattice without the condition (2) can
not be embedded into an integral residuated lattice.
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5.2 Finite embeddability property for various classes

of FLw-algebras

FLw-algebras with Com

We first note that FLw-algebras with commutativity (Com) has the FEP. This algebraic
structure is exactly equivalent to FLew-algebras.

Theorem 5.2.1 The variety of FLew-algebras has the FEP.

FLw-algebras with Wcon

In FLew, the weak-contraction (Wcon) is of the form (α → ¬α) → ¬α which is a special
case of contraction (Con): α → (α → β) → (α → β), which is equivalent to α → α2. We
can get Wcon from Con to replace β by 0. The condition Wcon is equivalent to the form
¬α2 → α which can be considered as a contrapositive of contraction rule. In FLw, we
can consider two types of Wcon, α2\0 = α\0 (Wconl) and 0/α2 = 0/α (Wconr).

An FLw-algebra A is called FLw-algebra with Wconl (Wconr, respectively) if it sat-
isfies that x2\0 = x\0 (0/x2 = 0/x) for all x ∈ A. When FLw-algebra is commutative,
i.e., FLew-algebra, both Wconl and Wconr coincide with Wcon: �= x2 = �= x.

Theorem 5.2.2 The variety of FLw-algebra with Wconx, x ∈ {l, r} has the FEP.

Proof. First we claim that Wconl is equivalent to the condition (x\0) ∧ x = 0. Let A be
an FLw-algebra with Wconl and B is a finite partial subalgebra of A. By Lemma 4.3.4,
D(A, B) is a finite FLw-algebra, thus it is enough to show that D(A, B) also satisfies
X\0D ∧D X = {0} for any X ∈ D(A, B). Take x ∈ X\0D ∧D X. By the definition of
X\0, x2 = 0. Thus x2\0 = x\0 = 1. Therefore x = x ∧ 1 = x ∧ x\0 = 0. We conclude
that X\0D ∧D X = {0}. The proof that Wconr is similar to prove.

Classical FLw-algebras

An FLw-algebra A is classical if it satisfies the equation (0/x)\0 = x = 0/(x\0). When
FLw-algebra is commutative, i.e., FLew-algebra, there is only one negation, thus we call
this condition DN: (x → 0) → 0.

Theorem 5.2.3 The variety of classical FLw-algebra has the FEP.

Proof. In this case, small modification is necessary to construct the new structure. Let A
be a classical FLw-algebra and B a finite partial subalgebra of A. Let B+ = B

⋃
B

′ ⋃
B

′′
,

where B
′
= {b\0 : b ∈ B}，B

′′
= {0/b : b ∈ B}. It is trivial to see that B+ is a finite

partial subalgebra of A. Let D(A, B+) be an algebra, constructed by B+, instead of
B. By Lemma 4.3.4, D(A, B+) is a finite FLw-algebra, thus it is enough to show that
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D(A, B+) is also a classical FLw-algebra. Take any element X ∈ D(A, B+), X is of the
form

⋂
i(xi : yi � bi], where xi, yi ∈ M, bi ∈ B+．Suppose x ∈ (0D/X)\0D, i.e., for

any element w ∈ M(wX = {0} =⇒ wx = 0) · · · (1). Take any element z ∈ X, by the
definition of X then xizyi ≤ bi, for each i, (0/bi)xizyi ≤ (0/bi)bi ≤ 0. We can get z ≤
[(0/bi)xi]\(0/yi). Hence 0/([(0/bi)xi]\(0/yi)) · z ≤ 0 and so 0/([(0/bi)xi]\(0/yi)) · X ≤ 0.
By the assumption (1), 0/([(0/bi)xi]\(0/yi)) · x ≤ 0. Using the classical in A, we have
proved that (0D/X)\0D ⊆ X. Note that the converse direction always holds in D(A, B+).
Thus, we conclude (0D/X)\0D = X. The equation 0D/(X\0D) = X is similar to prove.

Representable FLw-algebras

A residuated lattice is representable if its subdirectly irreducible members are totally
ordered. A representable residuated lattice is characterized by adding the following
identity[1].

(x\y) ∨ ([w(z\((y\x)z))]/w) = 1

In the case of commutative residuated lattices, the condition representable is called
linearity (Lin) which is of the form, (x → y) ∨ (y → x) = 1. The condition Lin is also
called prelinearity. H. Ono proved that for any subdirectly irreducible FLew-algebra A,
Lin is valid in A if and only if A is totally ordered.

To prove the FEP of the representable FLw-algebras, we use the following algebraic
property [8].

Lemma 5.2.4 A variety V has the FEP if and only if Vsi has the FEP, where Vsi is the
class of subdirectly irreducible members of V.

Proof. Note that the only-if part is trivial, so we prove the if part. Let B be a partial
subalgebra of A and Πi∈ICi be a subdirect decomposition of A. Then each i-th projection
of B is a subset of Ci. By the assumption Vsi has the FEP, i-th projection of B can be
embedded in some finite algebra Di. Therefore B can be embedded in Πi∈IDi. We write
b(i) for the i-th component of the image of b by this embedding, for each b ∈ B. If a and
b are distinct in B then there exists i such that a(i) �= b(i). Let iab be the one of these i
and define the subset Io of I by Io = {iab : a, b ∈ B, a �= b}. Then Io is finite and B can
be embedded into finite algebra Πi∈IoDi.

Now, turn to the FEP of representable FLw-algebra.

Theorem 5.2.5 The variety of representable FLw-algebras has the FEP.

Proof. By Lemma 5.2.4, it is enough to consider subdirectly irreducible algebras in the
variety of FLw-algebras. Let A be a subdirectly irreducible FLw-algebra and B a finite
partial subalgebra of A. Then A is totally ordered. Since each element of D is a downward
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closed subset of A, hence each element of D is totally ordered and in this case D and D
coincide. Therefore it is obvious that D is also totally ordered.

In the case of FLew-algebra with some or all conditions mentioned above are also
proved by H. Ono[39].

Simple FLew-algebras

Recall, we say an algebra is simple if it has only two congruences. We will discuss sim-
plicity of residuated lattices in Chapter 6. In the case of FLew-algebras, simple algebra is
characterized as follows.

An FLew-algebra A is simple iff for any x(< 1) in A there exists a positive integer m such
that xm = 0.

Using this characterization, we can prove that the FEP for simple FLew-algebras.

Theorem 5.2.6 The variety of simple FLew-algebras has the FEP.

Proof. Let A be a simple FLew-algebra and B a finite partial subalgebra of A. Construct
the structure D(A, B). By Lemma 4.3.4, D(A, B) is a finite. Thus, it is enough to show
that D(A, B) is also a simple FLew-algebra. By the assumption for each x ∈ A, there
exists n ∈ N such that xn = 0. Let M be the submonoid of A generated by B. Recall that
for any element of D(A, B) is a downward closed subset of M. Then for any X ∈ D, the
set Max(X) of is finite, since D(A, B) is well-quasi order. Now we write k = |Max(X)|.
For all xi ∈ Max(X) there exists ni ∈ N such that xni

i = 0. Since Max(X) is finite there
exists max{ni}. It is obvious that Xk·max{ni} = 0D for any X. We conclude that D(A, B)
is also simple.

T. Kowalski and H. Ono proved that the following.

Theorem 5.2.7 The variety of FLew-algebras is generated by its finite simple members.

To show the theorem above, they first proved the semisimplicity of free FLew-algebras,
we will discuss in chapter 6, and next showed that the variety of all simple FLew-algebras
has the FEP. They proved the FEP for the variety of all simple FLew-algebras in different
way. For more information, see [25]

Finite model property for substructural logics

In this section, by the considerations of the FEP for various extensions of residuated
lattices, we can show that the FMP for various substructural logics.

There are many extensions of basic substructural logic FL. It is shown that FL-
algebra and FLe-algebra do not have the FEP. Thus, it is natural to start with FLw,
whose corresponding algebras are FLw-algebras. We have already showed that the variety
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of all FLw-algebras has the FEP. In Chapter 4.1, we show that if the given subvariety of
IRL has the FEP then the corrsponding logic has the FMP.

First we summarize our results of the FMP. The following result is the FMP for
extensions of FLw-algebra.

Theorem 5.2.8 Let L be a logic which is an extension of FLw by adding some or all of
axiom schemes, commutativity (Com), Wconl (Wconr), classical, representable. Then L
has the FMP, and hence L is decidable.

Recall that the FEP for a given variety of IRL implies the FMP for the corresponding
logic. The following axioms are typical extensions of FLew.

(1) EM (exclusive middle) : α ∨ ¬α,

(2) DN (double negation) : ¬¬α → α,

(3) Con (contraction) : (α → (α → β)) → (α → β),

(4) Wcon (weak contraction) : (α → ¬α) → ¬α = ¬α2 → ¬α,

(5) P (Peirce’s law) : ((α → β) → α) → α,

(6) WP (weak Peirce’s law) : (¬α → α) → α,

(7) Lin (linearity) : (α → β) ∨ (β → α).

Corollary 5.2.9 Let L be a logic which is an extension of FLew by adding some or all
of axiom schemes, (1) ∼ (7). Then L has the FMP, and hence L is decidable.

Note that the following is the FMP for fuzzy logics.

Corollary 5.2.10 Fuzzy logics MTL, IMTL, and SMTL (= WMTL) have the FMP,
and hence decidable.
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Chapter 6

Semisimplicity

In this chapter, we investigate subdirect irreducibility, simplicity and semisimplicity of
residuated lattices. In the study of algebras, Birkhoff’s subdirect representation theorem
is one of the fundamental theorems which says that every algebra is isomorphic to a subdi-
rect product of subdirectly irreducible algebras. We characterize subdirect irreducibility,
simplicity and semisimplicity of residuated lattices by using Birkhoff’s theorem. Lastly,
we show that every free FLw-algebra is semisimple.

In[18] V. N. Grǐsin proved that every free CFLew-algebra is semisimple. To show that
Grǐsin introduced new sequent system which is equivalent to CFLew and using the fact
that the cut elimination theorem holds for the sequent system.

In[26], T. Kowalski and H. Ono show that variety FLew of all FLew-algebras is gener-
ated by its finite simple members. The result is obtained by first showing that every free
FLew-algebras is semisimple and then showing that every variety generated by a FLew-
algebra is generated by a set of finite simple FLew-algebras. To show the former, based
on Grǐsin’s idea in [18]. They introduced a sequent system SFL+

ew such that

1. algebras for SFL+
ew are exactly equal to FLe- algebras,

2. cut elimination theorem holds for SFL+
ew.

Then, using proof-theoretic properties of SFL+
ew, the semisimplicity of every free FLew-

algebra is obtained.

Our result is also based on Grǐsin’s idea and and Kowalski-Ono’s technique. We will
introduce a new sequent system, FL+

w which is equivalent to FLw. Using the fact that
cut elimination theorem holds for FL+

w and using proof-theoretic properties of FL+
w , we

show that the proof of the semisimplicity works also for every free FLw-algebra. It is
very interesting to see how nicely proof-theoretic methods work to bring about purely
algebraic consequence.

Those results are interesting contrast in the case of Heyting algebras. In the case of
Heyting algebras, it is easy to see that there is the only simple Heyting algebra which
is exactly the two valued Boolean algebra. Hence any semisimple Heyting algebra is a
Boolean algebra.
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6.1 Subdirect irreducibility, simplicity and semisim-

plicity of residuated lattices

In this section, we study subdirect irreducibility, simplicity, and semisimplicity of residu-
ated lattices.

Subdirect irreducibility of residuated lattices

Suppose A and Bi for each i ∈ I are residuated lattices. We say that a subdirect repre-
sentation of A with factors Bi if there is an embedding ı : A → Πi∈IBi such that each
fi defined by fi = πi ◦ ı is onto Bi for each i ∈ I, where πi is the i-th projection. A
residuated lattice is subdirectly irreducible if it is non-degenerate and for any subdirect
representation f : A → Πi∈IBi, there exists a j such that fj is an isomorphism of A onto
Bj.

The following theorem gives us a useful characterization of subdirectly irreducible
algebras [10].

Theorem 6.1.1 A non trivial algebra A is a subdirectly irreducible iff A has the second
smallest congruence relation Con(A).

The next theorem is called Birkhoff’s subdirect representation theorem it follows that
every algebra has a subdirect representation with subdirectly irreducible algebras with
same type [10].

Theorem 6.1.2 (Birkhoff) Every algebra A is isomorphic to a subdirect product of
subdirectly irreducible algebras each of which is a homomorphic image of A.

From Birkhoff’s subdirect representation theorem, every residuated lattice has a sub-
direct representation with subdirectly irreducible residuated lattices. By Theorem 2.2.7
and 6.6.1, we can see that a residuated lattice A is subdirectly irreducible iff it has the
second smallest filter.

Proposition 6.1.3 A residuated lattice A is subdirectly irreducible iff there exists an
element c( �≥ 1) such that for any x �≥ 1 there exists an element z ∈ ΠΓ∆̄(x) for which
z ≤ c.

Proof. Suppose that A is subdirectly irreducible. By Theorem 6.1.1, there exists the
second smallest filter F0 which contains the smallest filter {a ∈ A : 1 ≤ a} properly.
Then, we can take an element c( �≥ 1) in F0. Let Gx be a filter generated by x �≥ 1. Then
Gx = {u ∈ A : z ≤ u for some z ∈ ΠΓ∆̄(x)}. Since F0 is the minimal filter containing
{a ∈ A : 1 ≤ a}. Thus, F0 ⊆ Gx. Therefore z ≤ c holds. Conversely, suppose that c( �≥ 1)
is the element which satisfies the condition. Consider the filter Fc generated by c which
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is not the smallest filter. Then Fc = {x ∈ A : z ≤ x for some z ∈ ΠΓ∆̄(c)}. Let F be a
arbitrary filter but not the smallest one. Then for any w ∈ F ΠΓ∆̄(w) ⊆ F holds. By
assumption, there exists an element z ∈ ΠΓ∆̄(x) for which z ≤ c. Since F is a filter,
c ∈ F . Hence, Fc ⊆ F and Fc is the second smallest filter. We have A has the second
smallest filter. Therefore A is subdirectly irreducible by Theorem 6.1.1.

In the following results are due to T. Kowalski and H. Ono [26].

Lemma 6.1.4 Let A be a subdirectly irreducible FLew-algebra. If x ∨ y = 1 then either
x = 1 or y = 1 holds.

Proof. We will prove that taking the contraposition. It is sufficient to show that x, y < 1
implies x ∨ y < 1. Since A is subdirectly irreducible, there exists an element a < 1 such
that for any z < 1 there exists a positive integer k satisfying zk ≤ a. We can take some
positive integers m, n both xm ≤ a and yn ≤ a hold. Put s = max{m, n} and t = 2s − 1.
Then xs ≤ a and ys ≤ a hold. By the distributivity of · and ∨, we have the following

(x ∨ y)t =
t∨

i=0

xi · yt−i.

It is easy to see that either i ≥ s or t − i ≥ s. In the former case,

xi · yt−i ≤ xi ≤ xs ≤ a

and the latter case,
xi · yt−i ≤ yt−i ≤ ys ≤ a.

Hence, in either case, we have (x ∨ y)t ≤ a. Therefore, x ∨ y < 1.

An element a in an FLew-algebra A is called coatom if it is maximal among elements
in A\{1}. Then we have the following result from the above lemma.

Corollary 6.1.5 Every subdirectly irreducible FLew-algebra has either the single coatom
or no coatom.

The following result is essentially due to T. Kowalski[23]. That is a characterization
an FLew-algebra has the unique coatom which is interesting contrast with Lemma 6.1.4.

Lemma 6.1.6 An FLew-algebra A has the unique coatom iff there exists an element
a(< 1) and a positive integer m such that xm ≤ a holds for any x < 1.

Proof. To show the only-if part, it is clear to take the coatom for a and 1 for m. To show
conversely, suppose that there exists an element a < 1 and m ≥ 1 such that xm ≤ a for
any x < 1. Then A is clearly subdirectly irreducible. Take any such a and also smallest
number k among such ms for a. If k = 1 then a is the unique coatom of A. Suppose
k > 1. By assumption, there exists an element b such that bk−1 �≤ a and bk ≤ a. Put d by
d = bk−1 → a. Note that d < 1. Take any y(< 1) and z = d∨ y. Then d, y ≤ z and z < 1
by Lemma. Since bk ≤ a, we have b ≤ bk−1 → a = d ≤ z. By z < 1, we have zk ≤ a.
Hence, y ≤ z ≤ zk−1 → a ≤ bk−1 → a = d. Therefore y ≤ d and d is the coatom.
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Simplicity and semisimplicity of residuated lattices

Recall that an algebra A is simple if it has only two congruences on A. Let A be a
residuated lattice. Then A is simple iff it has only two filters. It is easy to see that
for any filter F of a residuated lattice A the quotient algebra A/F is simple iff F is a
maximal filter.

We have the following characterization that a bounded residuated lattice is simple.

Lemma 6.1.7 A bounded residuated lattice A is simple iff for any x( �≥ 1) in A, ⊥ ∈
ΠΓ∆̄({x}).

In the case of commutative bounded residuated lattices, there is a nice characterization
that A is simple. The following result is essentially due to T. Kowalski and H. Ono who
proved that the case of FLew-algebras.

Corollary 6.1.8 A commutative bounded residuated lattice A is simple iff for any x( �≥ 1)
in A there exists a positive integer m such that (x ∧ 1)m = ⊥.

Recall that an algebra A is semisimple if it has a subdirect representation with simple
factors. It is known that an algebra A is semisimple iff the intersection of a set ΩA of
all maximal members in Con(A) is equal to the least congruence ∆A (i.e., the diagonal
relation) of A[32]. Indeed, suppose that

⋂
ΩA = ∆A. Consider ΠA/θ, where θ ∈ ΩA.

Then each A/θ is simple algebra. It is easy to see that ΠA/θ is a subdirect represen-
tation of A. Conversely, suppose that

⋂
ΩA �= ∆A. Then Πθ∈ΩA

A/θ is not a subdirect
representation of A. On the other hand, by Birkhoff’s subdirect representation theorem,
there exists a set Φ of congruence on A such that Πθ∈ΦA/θ is a subdirect representation
of A. Hence, there exists a congruence ϑ ∈ Φ such that A/ϑ is not simple. Therefore A
is not semisimple.

Then we have the following.

Theorem 6.1.9 An algebra A is semisimple iff the intersection of the set of all maximal
members in Con(A) is equal to the least congruence i.e., the diagonal relation of A.

Let Φ be the set of all maximal filters of a residuated lattice A. Define the radical
RadA of A by RadA =

⋂
F∈Φ F . Then, the following can be easily shown by Theorem

6.1.9 and the connections between congruences and filters by Theorem 2.2.7.

Lemma 6.1.10 For any residuated lattices, A is semisimple iff RadA = {a ∈ A|1 ≤ a}.

Corollary 6.1.11 For any integral residuated lattices, A is semisimple iff RadA = {1}.

Proposition 6.1.12 Let A be a commutative bounded residuated lattice. For any x( �≥ 1)
in A, x ∈ RadA iff for any n ≥ 1 there exists m ≥ 1 such that ∼ (∼ xn ∧ 1)m = �, where
∼ x = x → ⊥.
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Proof. (⇐) Assume that for any n ≥ 1 there exists m ≥ 1 such that ∼ (∼ xn ∧ 1) = �.
Suppose x �∈ RadA. Then there exists a maximal filter F such that x �∈ F . Since F is
maximal, there exists k ≥ 1 such that ∼ xk ∈ F and so ∼ xk ∧ 1 ∈ F . Now we take n for
k and m for l. Then ∼ (∼ xk ∧ 1)l = � by assumption. Hence (∼ xk ∧ 1)l = ⊥ ∈ F . It
contradicts F is maximal filter. Therefore x ∈ RadA.

(⇒) To show the other direction, we take the contraposition. Suppose there exist n ≥ 1
such that ∼ (∼ xn∧1)m �= � for any m ≥ 1. If (∼ xn∧1)m = ⊥ then ∼ (∼ xn∧1)m = �.
Thus, (∼ (xn))m > ⊥ for any m ≥ 1. Let z =∼ (xn) and H be the filter generated by z.
Clearly H is proper as zm > ⊥ for any m ≥ 1. By Zorn’s lemma, there exists maximal
filter G such that F ⊆ G. Suppose x ∈ G. Then xn ∈ G for any n ≥ 1. But this
contradicts z =∼ (xn) ∈ G Hence x �∈ G, Therefore x �∈ G.

In[25], T. Kowalski and H. Ono proved that the necessary and sufficient condition for
x ∈ A to be a member of RadA for FLew-algebra as follows.

Proposition 6.1.13 Let A be an FLew-algebra. For any x in A, x ∈ RadA iff for any
n ≥ 1 there exists m ≥ 1 such that m̃(xn) = 1, where m̃(x) = ¬(¬x)m.

Corollary 6.1.14 An FLew-algebra A is semisimple iff for every a ∈ A\{1} there exists
an N ≥ 1 such that for any m ≥ 1, we have m̃(aN) < 1.

Corresponding to Proposition 6.1.12, we can show the following result, which, however
gives only a necessary condition for an element x in a bounded residuated lattice A to be
a member of RadA.

Proposition 6.1.15 Let A be a bounded residuated lattice. If an element x �≥ 1 is in
RadA then for any n ≥ 1 there exist d1, · · · , dt ∈ Γ∆(∼ xn) such that d1 · · ·dt = ⊥, where
∼ x stands for either x\⊥ or ⊥/x.

Proof. It is easy to see that it is enough to show that if x �≥ 1 is in RadA then ⊥ ∈
ΠΓ∆(¬xn) for any n ≥ 1. Taking the contraposition, suppose that there exists n ≥ 1
such that ⊥ �∈ ΠΓ∆(¬xn). This means that the filter H generated by {¬xn} is proper.
By Zorn’s lemma, there exists a maximal filter G including H . If x ∈ G then xn ∈ G. On
the other hand, ¬xn ∈ G since G includes H . This contradicts the fact that G is proper.
Thus x �∈ G. Hence x �∈ RadA.

6.2 Semisimplicity for free FLw-algebras

Sequent system FL+
w

In this section we show that every free FLw-algebra is semisimple, using the sequent
system FL+

w introduced below. Our proof proceeds similarly to Grǐsin[18] and [25].

49



Similarly to the sequent system SFLew introduced in [25], we introduce a sequent
system, which we call FL+

w as follows. A sequent is of the form Γ → α where Γ is a finite
sequence of formulas:

1. initial sequents

(1) Γ, p, ∆ ⇒ p where p is a propositional variable,
(2) Γ, 0, ∆ ⇒ α.

2. rules of inference

Γ ⇒ α ∆, α, Σ ⇒ θ

∆, Γ, Σ ⇒ θ
(cut)

Γ, α, ∆ ⇒ θ Γ, β, ∆ ⇒ θ

Γ, α ∨ β, ∆ ⇒ θ
(∨ ⇒)

Γ ⇒ α
Γ ⇒ α ∨ β

(⇒ ∨1)
Γ ⇒ β

Γ ⇒ α ∨ β
(⇒ ∨2)

Γ ⇒ α Γ ⇒ β

Γ ⇒ α ∧ β
(⇒ ∧)

Γ, α, ∆ ⇒ θ

Γ, α ∧ β, ∆ ⇒ θ
(∧1 ⇒)

Γ, β, ∆ ⇒ θ

Γ, α ∧ β, ∆ ⇒ θ
(∧2 ⇒)

Γ ⇒ α ∆, β, Σ ⇒ θ

∆, Γ, α\β, Σ ⇒ θ
(\ ⇒)

α, Γ ⇒ β

Γ ⇒ α\β (⇒ \)

Γ ⇒ α ∆, β, Σ ⇒ θ

∆, β/α, Γ, Σ ⇒ θ
(/ ⇒)

Γ, α ⇒ β

Γ ⇒ β/α
(⇒ /)

Γ1 ⇒ α1, · · · , Γm ⇒ αm

Γ1, · · · , Γm ⇒ α1 ∗ · · · ∗ αm
(⇒ ∗) Γ, α1, · · · , αm, ∆ ⇒ θ

Γ, α1 ∗ · · · ∗ αm, ∆ ⇒ θ
(∗ ⇒)

Here, we assume that in each application of rules (⇒ ∗) and (∗ ⇒), none of αi must be
fusion formulas, i,e, formulas whose outermost logical connective is the fusion ∗.
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Basic Results

The reason why we need the system FL+
w will be explained by the following Lemma,

which can be shown in the same way as [25].

Lemma 6.2.1 Cut elimination holds for FL+
w.

It is easy to see that our sequent system FL+
w is equivalent to FLw. It suffices to show

that any application of (⇒ ∗) and (∗ ⇒) not satisfying the condition mentioned above in
a given cut-free proof can be replaced by one with the condition. We have the following
lemma.

Lemma 6.2.2 A sequent Γ ⇒ C is provable in FLw if and only if it is provable in FL+
w.

Using the equivalence between FL+
w and FLw. Thus, we have the following.

Lemma 6.2.3 Free FLw-algebras are precisely Lindenbaum algebras of FL+
w.

Semisimplicity for free FLw-algebras

To show the semisimplicity for free FLw-algebras, we prepare the notations as follows.

Let a formula α be given. In the following, ¬α denotes either α\0 or 0/α. Also Γ(α)
and Π(α) denote sets of formulas which are defined in the same way as those defined in
Section 2, though in the present case, ∗, \ and / denote logical connectives. For each
formula α, let �(α) denote the length of α as a sequence of symbols. For a sequence Γ of
formulas α1, · · · , αm, the lengh �(Γ) is defined by �(Γ) = �(α1) + · · ·+ �(αm).

Also we need to introduce some notations for our main lemma. The expression {αN}m

stands for the sequence αN , · · · , αN with m times, where αN is of the form α ∗ · · · ∗ α (N
times). Let β be any member of ΠΓ(α). Then β is of the form γ1 ∗ · · · ∗ γn where each
γi is of the form µδ1i

· · ·µδmii
(α) for some formulas δ1i, · · · , δmii. Define the rank r(β) by

r(β) =
∑n

i=1 mi. For each nonempty multiset X of ΠΓ(α), where X is β1, · · · , βk, define

r(X) and |X| by r(X) =
∑k

j=1 r(βj) and |X| = k, respectively.

To show that any free FLw-algebra A is semisimple, Corollary 6.1.11 says that it is enough
to show that the radical RadA of any Lindenbaum algebra of FL+

w is equal to {1} , where
1 is the greatest element of a given Lindenbaum algebra. Since the element 1 consists of
all provable formulas. By Lemma 6.2.2 and 6.2.3, this follow from the following lemma.

Lemma 6.2.4 (Main Lemma) Suppose that a formula α is not provable in FL+
w and

that N > �(α). For any sequent Γ1, · · · , ΓK+1 ⇒ σ such that �(Γ, σ) ≤ �(α), where Γ is
equal to Γ1, · · · , ΓK+1 and any nonempty multisets X1, · · · , XK of Γ(¬αN), if Γ1, X1, · · · , Xk, ΓK+1 ⇒
σ is provable in FL+

w then Γ1, · · · .ΓK+1 ⇒ σ is provable in FL+
w.

The following is the contrapositon of Proposition 6.1.15 in the case of FLw-algebras.
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Corollary 6.2.5 Let A be an FLw-algebra and x ∈ A. If there exists n ≥ 1 such that
for any d1, · · · , dt ∈ Γ(¬xn), d1 · · · dt �= ⊥ then x �∈ RadA, where ¬x stands for either x\0
or 0/x.

Clearly, the sequent system FL+
w is consistent, i.e., the sequent ⇒ 0 is not provable.

Let δ1, · · · , δn be arbitrary formulas in Γ(¬αN ). Then the sequent δ1, · · · , δn ⇒ 0 is not
provable in FL+

w . For, otherwise, ⇒ 0 is provable in FL+
w by Lemma 6, which is a

contradiction. Recall here that any formula β in ΠΓ(¬αN ) is of the form δ1 ∗ · · · ∗ δn for
some δ1, · · · , δn ∈ Γ(¬αN). Thus, we have the following.

Proposition 6.2.6 Let α be any formula which is not provable in FL+
w. Then there exists

N ≥ 1 such that for any δ1, · · · , δn ∈ Γ(¬αN ), δ1, · · · , δn ⇒ 0 is not provable in FL+
w.

Thus, for any β in ΠΓ(¬αN), β ⇒ 0 is neither provable in FL+
w.

In the term of Lindenbaum algebra A of FL+
w , the above proposition says that if

[α] �= [1] in A then [0] �∈ ΠΓ([¬αN ]) for some N ≥ 1, where [γ] denotes the equivalence
class, to which a given formula γ belongs. Thus, using Proposition 6.2.6, we have the
following theorem.

Theorem 6.2.7 Every free FLw-algebra is semisimple.

The proof of our main lemma also work well in the case of FLew-algebras. Thus, we
have the following corollary which is first proved by T. Kowalski and H. Ono [25].

Corollary 6.2.8 Every FLew-algebra is semisimple.

Proof of Main Lemma

Proof. The proof will be given by using double induction on the total rank of multisets
Xi’s and �(Γ, σ), where Γ is Γ1, Γ2, · · ·Γk+1. We note first that without loss of generality,
it is enough to consider the case for ¬α is α\0. Therefore our proof will be given by using
double induction on 〈

∑K
i=1 r(Xi), �(Γ, σ)〉. When

∑K
i=1 r(Xi) = 0, i.e., every Xi consists

only of the formula αN\0, the proof goes essentially the same as one in [25], as shown
in the following and therefore our lemma can be regarded as an extension of the one for
commutative case.

(1) Suppose that the given sequent Γ1, X1, · · · , XK , ΓK+1 ⇒ σ is an initial sequent. In
this case, either σ is a propositional variable which occurs also in some Γi, or 0 occurs in
some Γi. It is clear that Γ1, · · · .ΓK+1 ⇒ σ is provable in either case.

(2) Suppose next that the given sequent Γ1, X1, · · · , Xk, ΓK+1 ⇒ σ is the lower sequent
of an inference rule I. By Lemma 6.2.1, this sequent has a cut-free proof P . We need
to consider two possibilities. The first case is that the principal formula of I is either in
some Γi or in σ, and the second case is that the principal formula of I is one of an element
in Xi.
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Consider the first case. Since the proof P is a cut-free proof, it is easily seen that the
length of each of the upper sequent of a given inference is smaller than that of the lower
sequent by subformula property. Thus, we can use the hypotheses of induction and apply
the same inference rule I, we conclude that Γ1, · · · , ΓK+1 ⇒ σ is provable.

Consider the second case. The principal formula of the inference rule I is one of the
element γ in Xi. In this case, there two possibilities that (i) r(γ) = 0 or (ii) r(γ) > 0.

(i) In this case the given sequent of the form that Γ1, X1, · · · , X l
i , γ, Xr

i , · · ·ΓK+1, where
X l

i , γ, Xr
i is equal to Xi. So the inference rule I is of the form that;

Π2, X
l
i ⇒ αN Π1, 0, X

r
i , Π3 ⇒ σ

Π1, Π2, X
l
i , α

N\0, Xr
i , Π3 ⇒ σ

or

X l1
i ⇒ αN Π1, Π2, X

l2
i , 0, Xr

i , Π3 ⇒ σ

Π1, Π2, X
l
i , α

N\0, Xr
i , Π3 ⇒ σ

where Π1, Π2 is equal to Γ1, Xi, · · · , Γi, and Π3 is equal to Γi+1, Xi+1, · · · , ΓK+1. and also
X l

i is equal to X l1
i , X l2

i .

Since the proof goes essentially in the same way, we consider only the first case.
Consider the proof R of the left upper sequent Π2, X

l
i ⇒ αN . We will trace back branches

of R, which consists of sequents having αN in the conclusion, to the places where this αN

is introduced. Note that αN is introduced at one place in each branch of R. It is easy to
see that each αN is introduced either as an initial sequent, or by (⇒ ∗) rule. We will show
that any αN is introduced only as an initial sequent. Suppose that at least one place ,
αN is introduced by (⇒ ∗), whose lower sequent is of the form ∆ ⇒ αN . We assume here
that α is of the from D1 ∗ · · · ∗ Dw and none of Dj are fusion-formulas. Then, I must
have N · w upper sequents, each of which is of the form ∆i ⇒ Dni

, where 1 ≤ ni ≤ w
and the list ∆1, · · · , ∆N ·w is equal to ∆. For each j such that 1 ≤ j ≤ w, there exists
exactly N sequents with the conclusion Dj among those sequents. We enumerate them as
Sj

1, · · · , S
j
N . Next, for each h such that 1 ≤ h ≤ N , take S1

h, · · · , Sw
h for upper sequent and

apply (⇒ ∗) rule to them. Then we can have a sequent of the form Σh ⇒ α for 1 ≤ h ≤ N
and the list of Σ1, · · · , ΣN is equal to ∆. Now �(∆) ≤ �(Π2) ≤ �(Γ, σ) ≤ �(α) < N . If
we assume that Σi > 0 for any i such that 1 ≤ i ≤ N then �(∆) ≥ N , which is a
contradiction. Therefore, Σi must be empty for some i. But this means that ⇒ α is
provable. This contradicts the assumption that α is unprovable. Hence, we conclude that
at any place αN is introduced by initial sequent of the form Π, 0, Λ ⇒ αN .

We will modify the proof R of Π2, X
l
i ⇒ αN as follows. We replace every se-

quent Θ ⇒ αN in a branch which we have traced in R, including initial sequent of
the form Π, 0, Λ ⇒ αN mentioned above, by the sequent Π1, Θ, Π3 ⇒ σ, which is
equal to Γ1, X1, · · · , X l

i , Γi+1, · · · , ΓK+1 ⇒ σ. Then we will have the proof whose end
sequent is Π1, Π2, X

l
i , Π3 ⇒ σ. This sequent has the smaller length than the original
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sequent Γ1, X1, · · · , , ΓK+1 ⇒ σ. Hence, by hypothesis of induction, we conclude that
Γ1, · · · , ΓK+1 ⇒ σ is provable. We note that the above proof (i) works well also for the
case when

∑K
i=1 r(Xi) = 0, i.e., each Xi consists only of the formula αN\0. Hence, the

above proof assures us that the base step of the induction of our proof holds.

(ii) The rank r(γ) is greater than 0. In this case the principal formula γ is of the
form µβ1 · · ·µβm(¬αN) with m > 0, where µ is either ρ or λ operator and β1, · · · , βm are
formulas. There are two possible cases. The first case is that µβ1 is ρβ1, and the second
case is that µβ1 is λβ1. We give here only a proof of the first case. In the following, we
let χ denote µβ2 · · ·µβm(¬αN ). Thus, γ is β1\χ ∗ β1. In this case, the inference rule I is
either of the following form;

Π2, X
l
i ⇒ β1 Π1, χ ∗ β1, X

r
i , Π3 ⇒ σ

Π1, Π2, X
l
i , β1\χ ∗ β1, X

r
i , Π3 ⇒ σ

or

X l1
i ⇒ β1 Π1, Π2, X

l
i , χ ∗ β1, X

r
i , Π3 ⇒ σ

Π1, Π2, X
l
i , β1\χ ∗ β1, X

r
i , Π3 ⇒ σ

where (1) Π1, Π2 is equal to Γ1, X1, · · · , Γi, (2) Π3 is equal to Γi+1, Xi+1, · · · , ΓK+1 , (3)
Xi is equal to X l

i , β1\χ ∗ β1, X
r
i and (4) X l

i is equal to X l1
i , X l2

i .

We consider the first case. In this case, the right upper sequent of the inference rule
I implies the provability of Π1, χ, β1, X

r
i , Π3 ⇒ σ. Taking the left upper sequent and

Π1, χ, β1, X
r
i , Π3 ⇒ σ, and applying the cut rule, as shown below,

Π2, X
l
i ⇒ β1 Π1, χ, β1, X

r
i , Π3 ⇒ σ

Π1, χ, Π2, X
l
i , X

r
i , Π3 ⇒ σ

We can see the sequent
Π1, χ, Π2, X

l
i , X

r
i , Π3 ⇒ σ

is provable. In this sequent
∑

j �=i r(Xj) + r(χ) <
∑

i=1 r(Xi). Hence, by hypothesis of
induction, we conclude that Γ1, · · · , ΓK+1 ⇒ σ is provable. Similarly, we can show this in
the second case. This completes the proof of our lemma.
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Chapter 7

Amalgamation Property

In this chapter, we study the amalgamation property (AP) of various classes of commu-
tative residuated lattices.

In[24], T. Kowalski showed that the AP for the variety FLew of all FLew-algebras, The
result is obtained by showing that

1. the logical system FLew has the Craig’s interpolation property (CIP),

2. the variety of FLew has the equational interpolation property (EIP).

We will show that his proof of the AP works well also the variety of FLe and CRL.

In this section, first we introduce that the AP and related algebraic properties. In
particular, we study the relationship between the EIP and the AP. Next, we introduce
the CIP and prove that the CIP for FLe with only constant 1 which is exactly equal to
commutative residuated lattices. Lastly, we prove that the variety of all commutative
residuated lattices CRL has the EIP, hence it has the AP. By considering filters on
residuated lattices, we show that many important subvarieties of commutative residuated
lattices has the AP. Moreover, we show that if L is a logic which is an extension of FLe

with the CIP and K be the variety which is corresponding to L, then K has the EIP.
Therefore, K has the AP.

7.1 Amalgamation property and Craig’s interpola-

tion property

Amalgamation property

First, we introduce the amalgamation property (AP) and other related properties.

The AP was first considered by O. Schreier. He researched the AP for groups. In a
general form of the AP was formulated by R. Fraisse in connection with certain embed-
ding properties. The strong amalgamation property was introduced by B. Jónsson who
developed general investigation of the AP
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Definition 7.1.1 (Amalgamation property) A class of algebra K has the amalgama-
tion property iff if A,B1,B2 ∈ K, f1 : A → B1, f2 : A → B2 are embeddings then there
exist an algebra C ∈ K and embeddings g1 : B1 → C, g2 : B2 → C such that g1f1 = g2f2.

We say that a class of algebras K has the strong amalgamation property if it satisfies
that the condition of the AP and, moreover, g1(B1) ∩ g2(B2) = gifi(A) for i = 1, 2. A
class of algebras K has the super-amalgamation property if it satisfies that the condition
of th AP and, moreover, satisfies the following additional condition: For any b ∈ Bi and
c ∈ Bi (i ∈ {1, 2}), if gi(b) ≤ gj(c) in C, then there exists d ∈ A such that b ≤ fi(d) in Bi

and fj(d) ≤ c in Bj hold.

The AP is studied in model theory but no satisfactory criterion is known. Some of
well known structures satisfy the AP. For example, the class of all groups, commutative
groups, fields, partially ordered sets, lattices and Boolean algebras have the AP. Moreover
the class of lattices has the strong amalgamation property. On the other hand, it is known
that neither the class of rings nor semigroups have the AP.

The AP of algebraic structures related to some fragments of substructural logics were
studied by many researchers. For instance, K. Iseki proved the AP for the class of all BCK-
algebras [21]. A. Wroński proved that an algebraic version of interpolation theorem holds
for the class of all BCK-algebras and also proved that the strong amalgamation property
for the class of all BCK-algebras [51]. The fact that the variety of MV-algebras which is
equivalent to BL-algebras +DN has the AP was proved by D. Mundici [34]. However it
is not even known whether the variety of all commutative BCK-algebras enjoys the AP,
though it fails to have the strong amalgamation property.

The concept of the connection between the AP and Craig’s interpolation property was
first studied by B. Jónsson and A. Daigneault independently. This connection was further
studied by D. Pigozzi[44] and many other researchers. It is shown by L. Maksimova that
a normal modal logic with a single unary modality has the Craig’s interpolation property
iff the corresponding class of algebras has the super-amalgamation property [31], and also
that intuitionictic logic has the CIP iff the variety of Heyting algebras has the super-
amalgamation property [30].

Next, we define an algebraic version of the interpolation property which is called
equational interpolation property.

Definition 7.1.2 (Equational interpolation property) A variety V has the equa-
tional interpolation property (EIP ) iff for all finite sets Σ, Γ ∪ {δ} of identities in the
language of V the following holds: if V satisfies the quasi-identity

∧
(Σ ∪ Γ) ⇒ δ and

the set of terms over V (Σ) ∩ V (Γ ∪ {δ}) is non-empty, then there exists a finite set ∆ of
identities over V (Σ) ∩ V (Γ ∪ {δ}) such that:

(1) V |=
∧

Σ ⇒
∧

∆, and

(2) V |=
∧

(∆ ∪ Γ) ⇒ δ.
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The EIP was introduced by A. Wroński and the similar concepts were investigated by
B. Jónsson, D. Pigozzi and P. D. Bacsich.

The following theorem is crucial to prove the AP in our argument. The proof is
essentially due to A. Wroński[50]. We will give a proof below for the sake of completeness.

Theorem 7.1.1 If a variety V has the equational interpolation property (EIP) then V
has the amalgamation property (AP).

Proof. Let α : A → B1 and β : A → B2 be embeddings. Take a set X of variables
as enough as we can define an epimorphism φA : T (X) → A, where T (X) is a term
algebra over X in V (the existence of such X is assured by considering to take X as for
instance, a universe A of A). Next, we take sets Y and Z of variables such that X ⊆ Y, Z,
X = Y ∩ Z. Define an epimorphism φB1 : T (Y ) → B1 such that φB1(p) = α(φA(p)) for
any p ∈ T (X), and for any p �∈ T (X), φB1(p) is a suitable element of B1. Also define an
φB2 : T (Z) → B2 such that φB2(p) = α(φA(p)) for any p ∈ T (X), and for any p �∈ T (X),
φB1(p) is a suitable element of B2.

Put ΦB1 = {p = q : 〈p, q〉 ∈ ker(φB1)} and ΦB2 = {p = q : 〈p, q〉 ∈ ker(φB2)}. Consider
the term algebra T (Y ∪ Z) and define a binary relation θ on T (Y ∪ Z) by

〈p, q〉 ∈ θ ⇐⇒ V |=
∧

(ΦB1

⋃
ΦB2) ⇒ p = q

Then, we can show that θ is a congruence. Define the algebra C by T (Y ∪ Z)/θ.

Define γ : B1 → C and δ : B2 → C with γ(b1) = [p]θ and δ(b2) = [q]θ for any b1 ∈ B1,
b2 ∈ B2, where p ∈ φ−1

B1
(b1), q ∈ φ−1

B2
(b2) and [a]θ is the equivalence class by θ. Then, it is

easy to see that both γ and δ are homomorphisms.

Next, we will see γα = δβ. Take a ∈ A, p ∈ φ−1
B1

(α(a)) and q ∈ φ−1
B2

(β(a)). It is

enough to show that 〈p, q〉 ∈ θ. Since φB1(p) = α(a) there exists p
′ ∈ T (X) such that

φB1(p) = φB1(p
′
), i.e., 〈p, p′〉 ∈ ker(φB1). Since φA(p

′
) = α−1(φB1(p)) = α−1(φB1(p

′
)) = a,

we have φB2(q) = β(a) = β(φA(p
′
)) = φB2(p

′
). Hence 〈p′

, q〉 ∈ ker(φB2). Therefore,
〈p, q〉 ∈ ker(φB1) ∪ ker(φB2) ⊆ θ.

Finally, we will see both γ and δ are embeddings. Assume δ(c) = δ(c
′
) for some

c, c
′ ∈ B2. Take q, q

′ ∈ T (Z) such that q ∈ φ−1
B2

(c) and q
′ ∈ φ−1

B2
(c

′
) and 〈q, q′〉 ∈ θ.

Then V |=
∧

(ΦB1

⋃
ΦB2) ⇒ q = q

′
. By compactness theorem, there exist finites sets

Φ
′
B1

(⊆ ΦB1) and Φ
′
B2

(⊆ ΦB2) such that V |=
∧

(Φ
′
B1

⋃
Φ

′
B2

) ⇒ q = q
′
. By the EIP, there

exists a finite set ∆ of identities over X such that (1) V |=
∧

(Φ
′
B1

) ⇒
∧

∆, and (2)

V |=
∧

(∆ ∪ Φ
′
B2

) ⇒ q = q
′
. Thus, V |=

∧
(ΦB1) ⇒

∧
∆, and V |=

∧
(∆ ∪ ΦB2) ⇒ q = q

′
.

We can take ∆ is a subset of ΦB1 and we will show that ∆ ⊆ ΦB2 . Indeed ker(φB1|T (X)) ⊆
ker(φA) ⊆ ker(φB2). Hence, (2) can be reduced that V |=

∧
(ΦB2) ⇒ q = q

′
. Therefore

〈q, q′〉 ∈ ker(φB2) and so c = φB2(q) = φB2(q
′
) = c

′
. We can show that γ is an embedding

similarly. This completes the theorem.

Next, we glimpse the relationship the EIP and other related topics.
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A class of algebras has the congruence extension property iff for every congruence Φ on a
subalgebra B of A in the class there exists a congruence Θ on A such that Θ|B = Φ.

It is known that both the class of abelian groups and the class of distributive lattices
have the CEP, but the class of groups and the class of lattices does not have the CEP. In
particular, it is easy to see that the variety CRL of all commutative residuated lattices
has the CEP.

Definition 7.1.3 (Transferable injections) A variety V has transferable injections iff
for every embedding α : A → B1 and homomorphism β : A → B2 where A,B1,B2 ∈ V,
there exist C ∈ V, a homomorphism γ : B1 → C and an embedding δ : B2 → C such
that γα = δβ.

P. D. Bacsich was studied the relationship among the AP, the CEP and the TI [3, 4].

Theorem 7.1.2 (Bacsich) A variety V has the TI iff V has both the AP and the CEP.

A. Wroński also investigated the relationship among the AP, the CEP and the EIP.
He proved the following theorem[50]. Precisely, Wroński proved the equivalence the EIP
and the TI.

Theorem 7.1.3 (Wroński) A variety V has the EIP iff V has both congruence extension
property (CEP ) and amalgamation property (AP ).

Craig’s interpolation property

In chapter 3, we discuss Craig’s interpolation property (CIP) for basic substructural logics.
Recall that A logic L has the CIP if the following statement holds for L.

If A → B is provable in L then there exists of a formula C such that both A → C and
C → B are provable, and every propositional variables in C appears both A and B.

Now, we prove that the CIP holds for FLe with only constant 1, denoted by FL−
e . Note

that algebras for FL−
e are precisely commutative residuated lattices.

For any formula A, V (A) denotes the set of all propositional variables appearing in A.
When Γ is a sequent of A1, · · · , An, denotes V (Γ) = V (A1) ∪ · · · ∪ V (An).

Theorem 7.1.4 Craig’s interpolation theorem holds for FL−
e .

To see the theorem above, we prepare the lemma.

Lemma 7.1.5 Let Γ → C is provable in FL−
e and 〈Γ1, Γ2〉 is any partition of Γ. Then

there exists a formula D such that both Γ1 → D and D, Γ2 → C are provable in FL−
e and

moreover V (D) ⊆ V (Γ) ∩ V (C).
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Proof. The proof is shown by the induction on the length n of a cut-free proof P of
Γ → C. In this proof we omit exchange rule for simplicity’s sake, when no confusions will
occur. When n is equal to 1 then the sequent Γ → C is an initial sequent. In this case
we must check the two cases.

(i) Γ → C is of the form A → A.
Case 1. Γ1 = A. Then we can take A as an interpolant. Indeed, we take A as the

formula C, then we have A → A and A → A. Both are initial sequents, which are trivially
provable.

Case 2. Γ2 = A. Then we can take 1 as an interpolant. Indeed, we take 1 as the
formula C, then we have → 1 and 1, A → A. → 1 is an initial sequent, trivially provable
and 1, A → A can be proved by the following inference rule,

A → A
1, A → A

(ii) Γ → C is of the form → 1.
Then we can take 1 as an interpolant. Indeed, we take 1 as the formula C, then we have
1 → 1 and → 1. Both are trivially provable.

Next, we consider the case n > 1. Then that the cut-free proof P of Γ → C has at
least one inference rule. We denote the last inference rule in P by I.

(1) I is of the form,
A, Γ → D

A ∧ B, Γ → D

Case 1. Consider the partition 〈A, Γ1; Γ2〉 of A, Γ. Then by the induction of hypothesis,
there exists a formula C such that both A, Γ1 → C and C, Γ2 → D are provable. Then,

A, Γ1 → C
A ∧ B, Γ1 → C

Hence, both A ∧ B, Γ1 → C and C, Γ2 → D are provable. Moreover, the formula C
satisfies the condition of variables, V⊥(C1) ⊆ V⊥({A∧B}∪Γ1)∩V (Γ2 ∪ {D}). Therefore
we can take the formula C as an interpolant.

Case 2. Consider the partition 〈Γ1; A, Γ2〉 of A, Γ. We can prove similarly.

(2) I is of the form,
B, Γ → D

A ∧ B, Γ → D

We can prove similarly in the case of (1).

(3) I is of the form,
Γ → A Γ → B

Γ → A ∧ B
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Then by the induction of hypothesis, there exist formulas C1 and C2 such that all Γ1 → C1,
C1, Γ2 → A, Γ1 → C2 and C2, Γ2 → B are provable. Then,

Γ1 → C1 Γ1 → C2

Γ1 → C1 ∧ C2

and

C1, Γ2 → A
C1 ∧ C2, Γ2 → A

C1, Γ2 → B
C1 ∧ C2, Γ2 → B

C1 ∧ C2, Γ2 → A ∧ B

Thus, both Γ1 → C1 ∧ C2 and C1 ∧ C2, Γ2 → A ∧ B are provable. Moreover, all
formulas C1, C2, C1 ∧ C2 satisfy the condition of variables. Therefore we can take the
formula C1 ∧ C2 as an interpolant.

(4) I is of the form,
A, Γ → D B, Γ → D

A ∨ B, Γ → D

Case 1. Consider the partition 〈Γ1; Γ2, A ∨ B〉. Then by the induction of hypothesis,
there exist formulas C1 and C2 such that all Γ1 → C1, C2, Γ2, A → D, Γ1 → C2 and
C2, Γ2, B → D are provable. Thus, both Γ1 → C1 ∧ C2 and C1 ∧ C2, Γ2, A ∨ B → D
are provable. Moreover, all formulas C1, C2, C1 ∧ C2 satisfy the condition of variable.
Therefore we can take the formula C1 ∧ C2 as an interpolant.

Case 2. Consider the partition 〈Γ1, A ∨ B; Γ2〉. We can prove similarly.

(5) I is of the form,
Γ → A

Γ → A ∨ B

Then by the induction of hypothesis, there exists a formula C such that both Γ1 → C
and C, Γ → A are provable. Thus, both Γ1 → C and C, Γ → A ∨ B are provable. The
formula C satisfies the condition of variables. We can take C as an interpolant.

(6) I is of the form,
Γ → B

Γ → A ∨ B

We can prove similarly in the case of (5).

(7) I is of the form,
Γ1 → A B, Γ2 → D

A ⊃ B, Γ → D

Consider the partition 〈Γ1, A ⊃ B; Γ2〉. Then by the induction of hypothesis, there exist
formulas C1 and C2 such that all Γ11 → C1, C1, Γ12 → A, B, Γ21 → C2 and C2, Γ22 → D
are provable, where Γ1 = Γ11, Γ12 and Γ2 = Γ21, Γ22. Thus, A ⊃ B, Γ1, ∆1 → C1 ⊃ C2 and

60



C1 ⊃ C2, Γ2, ∆2 → D are provable. Moreover, all formulas C1, C2 and C1 ⊃ C2 satisfy the
condition of variables. Therefore we can take the formula C1 ⊃ C2 as an interpolant.

Consider the partition 〈Γ1; A ⊃ B, Γ2〉.

(8) I is of the form,
A, Γ → B

Γ → A ⊃ B

Then by the induction of hypothesis, there exists a formula C such that both Γ1 → C
and C, Γ2, A → B are provable. Thus, both Γ1 → C and C, Γ2 → A ⊃ B are provable.
Moreover, C satisfies the condition. We can take a formula C as an interpolant.

(9) I is of the form,
A, B, Γ → D
A ∗ B, Γ → D

Case 1. Consider the partition 〈Γ1, A∗B; Γ2〉. Then by the induction of hypothesis, there
exists a formula C1 such that both Γ1, A, B, ∆1 → C1 and C1, Γ2, ∆2 → D are provable.
Thus, Γ1, A ∗ B, ∆1 → C1 and C1, Γ2, ∆2 → D are provable. Moreover, C1 satisfies the
condition of an interpolant.

Case 2. Consider the partition 〈Γ1; Γ2, A ∗ B〉. We can prove similarly.

(10) I is of the form,
Γ1 → A Γ2 → B

Γ → A ∗ B

Then by the induction of hypothesis, there exist formulas C1 and C2 such that Γ11 → C1,
C1, Γ12 → A, Γ21 → C1 and C2, Γ22 → D are all provable, where Γ1 = Γ11, Γ12 and
Γ2 = Γ21, Γ22. Thus, Γ1, ∆1 → C1 ∗ C2 and C1 ∗ C2, Γ2, ∆2 → A ∗ B are provable.
Moreover all variables C1, C2 and C1 ∗C2 are satisfy the condition of variables. Therefore
we can take a formula C1 ∗ C2 as an interpolant.

(11) I is of the form,
A, B, Γ → D
B, A, Γ → D

Then by the induction of hypothesis, the CIP holds for any partition of Γ, A, B. Then it
is also a partition of Γ, B, A, hence the CIP holds for B, A, Γ → D.

(12) I is of the form,
Γ → D

Γ, 1 → D

Then by the induction of hypothesis, there exists a formula C such that both Γ1 → C
and C, Γ2 → D are provable. Hence Γ1 → C and C, Γ2, 1 → D are provable. Moreover C
satisfies the condition of variables. Therefore we can take a formula C1 as an interpolant.
This completes the lemma.
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The above lemma is crucial that a proof of the AP for the variety CRL of all commu-
tative residuated lattices. The same argument can be considered some other restricted
constants in substractural logics.

7.2 Amalgamation property for CRL and FLe

In this section, we prove the AP for the variety CRL of all commutative residuated lattices
and the variety FLe of all FLe-algebras.

In[24], T. Kowalski showed that the AP for the variety FLew of all FLew-algebras, The
result is obtained by showing that

(1) the logical system FLew has the CIP, and

(2) showing that the variety of FLew has the equational interpolation property (EIP).

To show the EIP for the variety of all FLew-algebras, T. Kowalski proved the following
lemma and theorem.

Lemma 7.2.1 (Kowalski) The variety FLew of all FLew-algebras satisfies a quasi-identity
τ = 1 ⇒ σ = 1 iff there exists a positive integer N such that FLew satisfies a identity
τN → σ = 1.

Theorem 7.2.2 (Kowalski) The variety FLew has the EIP, hence it has the AP.

We will show that his proof of the AP also works well the variety of FLe and CRL.

It is easy to see that for any identity s = t can be translated τ∧1 = 1 for some term τ , and
also a finite set of identities into a single identity. In the following we use an inequality
τ ≥ 1 instead of an identity τ ∧ 1 = 1 for simplicity.

Lemma 7.2.3 The variety CRL of all commutative residuated lattices satisfies the quasi-
identity τ ≥ 1&σ ≥ 1 ⇒ δ ≥ 1 iff there exist natural numbers n and m with n + m ≥ 1
such that CRL satisfies the identity (τ ∧ 1)n(σ ∧ 1)m → δ ≥ 1.

Proof. It is enough to show that the following are equivalent.

(1) CRL |= τ ≥ 1&σ ≥ 1 ⇒ δ ≥ 1

(2) CRL |= (τ ∧ 1)n(σ ∧ 1)m → δ ≥ 1 for some n, m.

(1) ⇒ (2): Suppose CRL �|= (τ ∧ 1)n(σ ∧ 1)m → δ ≥ 1 for any n, m. Thus for each (n, m)
there exists a commutative residuated lattice Anm such that Anm �|= (τ ∧ 1)n(σ ∧ 1)m →
δ ≥ 1. Then, there is a vector �anm = 〈anm,0, · · · , anm,k−1〉 of elements from Anm such that
(τ ∧ 1)n[�anm](σ ∧ 1)m[�anm] �≤ δ[�anm]. Take A = Π0<n,m<ωAnm and put �a = 〈〈anm,i : 0 <
n, m < ω〉 : 0 ≤ i ≤ k − 1〉. It is obvious that A is a commutative residuated lattice and
also we have (τ ∧ 1)n[�a](σ ∧ 1)m[�a] �≤ δ[�a] for every n, m in A. Consider the filter F of A
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generated by τ [�a] and σ[�a]. It is clear that δ[�a] �∈ F . Suppose θ is a congruence associated
with F . Then, in the algebra A/θ which is trivially a commutative residuated lattice, we
have τ(�a/θ), σ(�a/θ) ≥ 1 but δ(�a/θ) �≥ 1. Therefore, A/θ does not satisfies (1).

(2) ⇒ (1): Suppose FLe |= (τ ∧ 1)n(σ ∧ 1)m → δ ≥ 1 for some n, m. Take any algebra A
in FLe and any vector �a ∈ A such that (τ)[�a], (σ)[�a] ≥ 1. Since (2) holds in A, we can
have 1n+m → δ[�a] ≥ 1 and so 1 ≤ δ(�a).

Theorem 7.2.4 The variety CRL of all commutative residuated lattices has the EIP.
Therefore, CRL has the AP.

Proof. Suppose CRL satisfies the quasi-identity
∧

(Σ∪ Γ) ⇒ ε. Since we have a constant
1, the set of terms over V (Σ)∩V (Γ∪{ε}) is non-empty. It is necessary to show that there
exists a finite set of identities ∆ which satisfies (1) and (2) of the definition of the EIP.

Recall that any identity can be represented of the form τ ∧ 1 = 1 for some term τ .
Moreover, any finite set of identities can be also represented τ ∧ 1 = 1 for some term τ .
We write τΣ, τΓ for the set of identities Σ and Γ. In particular, we assume that ε is of the
form σ ∧ 1 = 1.

Then, CRL satisfies the quasi-identity (τΣ ∧ 1 = 1)&(τΓ ∧ 1 = 1) ⇒ (σ ∧ 1 = 1). By
Lemma 7.3.3, we have CRL |= (τΣ ∧ 1)n(τΓ ∧ 1)m → σ ≥ 1 for some n + m ≥ 1. It is also
equivalent that CRL |= (τΣ ∧ 1)n → [(τΓ ∧ 1)m → σ] ≥ 1.

Since the logic FL−
e has the CIP. And algebras for FL−

e are exactly equal to commu-
tative residuated lattices, there exists a term δ over V ((τΣ ∧1)n)∩V ((τΓ ∧1)m → σ) such
that

(i) CRL |= (τΣ ∧ 1)n → δ ≥ 1,

(ii) CRL |= δ → ((τΓ ∧ 1)m → σ) ≥ 1.

By Lemma 7.3.3, in the case m = 0, (i) is equivalent to CRL |= τΣ ≥ 1 ⇒ δ ≥ 1. This
is also equivalent to CRL |=

∧
Σ ⇒ δ ≥ 1. This proves (1) of the definition of the EIP

with ∆ being {δ ∧ 1 = 1}.
Next, we will show (2) of the EIP. Let A be any algebra from CRL and �a a vector

from A such that A |=
∧

(∆ ∪ Γ)[�a]. This means that (δ)[�a], (τΓ)[�a] ≥ 1 by considering
the representation for ∆ and Γ. By (ii), we have (δ ∧ 1) → ((τΓ ∧ 1)m → σ) ≥ 1. Thus,
1 → (1 → σ) ≥ 1 and so σ ∧ 1 = 1. Hence we have A |= (σ ∧ 1)[�a]. This shows that
A |=

∧
(∆ ∪ Γ) ⇒ σ ≥ 1. This completes the proof.

Corollary 7.2.5 The variety FLe of all FLe-algebras has the EIP. Therefore, FLe has
the AP.

Moreover, by considering filters of residuated lattices, we can show that the following
result.
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Theorem 7.2.6 Let L be a logic which is an extension of FLew with the CIP and K the
variety which is corresponding to L. Then K has the EIP. Therefore, K has the AP.

Therefore, we can show the following important subclasses of commutative residuated
lattices have the EIP, and hence these have the AP.

(1) The variety FLew of all FLew-algebras,

(2) The variety FLec of all FLec-algebras,

(3) The variety CFLe of all FLe-algebras,

(4) The variety CFLew of all CFLew-algebras,

(5) The variety CFLec of all CFLec-algebras,

(6) The variety CRL2 of all increasing-idempotent commutative residuated
lattices,

(7) The variety CCRL of all classical commutative residuated lattices,

(8) The variety CIRL of all commutative integral residuated lattices,

(9) The variety CCIRL of all classical commutative integral residuated lat-
tices,

(10) The variety CCRL2 of all increasing-idempotent classical commutative
residuated lattices.

Some remarks

We consider the AP for class of all noncommutative residuated lattices. To show the
AP for CRL, we use the CIP and prove the EIP. A. Wroński showed that the EIP
is equivalent to both the AP and the CEP. It is known that the variety CRL of all
commutative residuated lattices has the CEP [16]. It is also known that there exists an
noncommutative residuated lattice which does not have the CEP. The following is an
example that does not have the CEP.

Let A be a totally ordered integral residuated lattice whose universe is A = {1, a, b, c, d}
with 1 > a > b > c > d. Put a = a2, b = b2 = ab = ba, c = ca = cb and other multipli-
cations = d and the residuations in A are easy to define. Moreover, it is easy to see that
A is simple. Now, we can show that B = {1, a, b} forms a subalgebra of A and B has a
non trivial filter {1, a}. Thus A does not hold for the CEP. In the term of congruence,
{{1, a}, {b}} is a congruence on B, however, there exists no congruence on A such that
its restriction is equal to {{1, a}, {b}}, since A is simple.

Next counter example comes from FLw-algebras. Let A be an FLw-algebra whose
universe is A = {1, x, y, z, w, 0}, and 1 > x > y > z > w > 0. Define the multiplication
on A by x = x2, y = y2 = xy = yx, z = zx = zy and w = xz = yz = z2 = wz = zw =
wx = xw and w2 = 0. Residuations in A are easy to define. Moreover, we can show that
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A is simple. Now, we can show that B = {1, x, y, 0} is a subalgebra of A. It is easy to
see that {1, x} is a non trivial filter of B. Thus A does not hold for the CEP.

Hence, our technique works only well in the class of residuated lattices which has the
CEP. On the other hand, the CIP work well also for substructural logics without exchange
rule, like FL and FLw.
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Chapter 8

Conclusion and Further Works

In this thesis, we study semisimplicity, amalgamation property and finite embeddability
property of residuated lattices. In Chapter 5, we discuss the finite embeddability prop-
erty for various classes of integral residuated lattices. As a consequence of these result,
we show that the finite model property for various substructural logics including fuzzy
logics. In Chapter 6, we study subdirect irreducibility, simplicity and semisimplicity of
residuated lattices. Lastly, we prove the semisimplicity for free FLw-algebras by using
proof-theoretical methods. In Chapter 7, we prove the amalgamation property of the
variety CRL and FLe. Moreover we show that if L is a logic which is an extension of
FLe with the CIP and K is the variety which is corresponding to L, then K has the EIP.
Therefore, K has the AP.

We mention below a number of problems that are for further studies.

(1) Which other varieties of residuated lattices have the FEP or the AP ?

(2) Which varieties of residuated lattices have the joint embeddability property
(JEP) ?

(3) Which varieties of residuated lattices have the super (strong) amalgama-
tion property ?

(4) Are there cut-free sequent systems for distributive or cancellative residu-
ated lattices in the sense of the corresponding logics ?

(5) To investigate further the relationship between residuated lattices and
substructural logics by studying algebraizable logics in the sense of Blok and
Pigozzi.
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