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Abstract

Automatic text summarization is the task to produce the most important content
from a given text document to the user in a condensed form and in manner sensitive
to the user’s or application’s need. Cross-language text summarization (CLTS) differs
from mono-language text summarization that a given document will be automatically
summarized to another language than the language of the original document. CLTS task
is attracting a great deal of attention in recently years, due to the rapidly increasing
amount of text information and amount of users in internet who are not familiar with a
specific language. Intuitively, a CLTS system is the combination of a text summarization
and a machine translation engine. If the performance of the machine translation and the
text summarization system are in high quality, then a CLTS system can be established
by simply combining them. Unfortunately, obtaining these systems are now desirable and
challenging tasks, especially it was very difficult for some languages other than English
or Japanese (e.g Vietnamese language). This is the reason why studying CLTS becomes
a very difficult and challenging task.

The main goal of this research is to study an efficient method to achieve a CLTS
system with a high accuracy and low cost in computational times. To obtain this, we
propose statistical machine learning approaches to cross language text summarization in
which Hidden Markov Models, Maximum Entropy Models, and Support Vector Machines
are mainly used in the proposed CLTS. These statistical learning models are estimated
based on the behavior of humans, who are professional in summarizing text document.
The advantage of applying learning methods is that it can achieve a high accuracy with
the minimum human effort in constructing linguistic knowledge.

The proposed system consists of three major tasks: sentence extraction, sentence
reduction, and translation. First, the whole text document will be extracted to a set of
important sentences which are most relevant to the gist meaning of the text document.
After that, each long sentence within these important sentences will be reduced so that
their meanings are unchanged. Finally, these sentences will be translated to the other
language and the summary is obtained by combining the translation outputs. For sentence
extraction, a corpus-based sentence extraction is investigated. In addition, we study a co-
training method based on maximum entropy model which can utilize unlabeled data for
improving the sentence extraction performance. Experiment results show that unlabeled
data are helpful for sentence extraction using machine learning techniques and co-training
method is a suitable one.

In order to reduce a long sentence to a short one, we formulate it as a process of
transforming a syntactic tree of the long sentence (the large tree) to a small tree. The
process is considered as a sequence of actions which transforms the large tree to a small
one and the reduced sentence is obtained by simply generating from the small tree. The
key problem is how to learn a sequence of actions for each syntactic tree. For solving it, we
propose a deterministic sentence reduction and probabilistic sentence reduction methods
which are mainly used statistical machine learning models estimated from the corpus of
long sentences and their reductions. Although any statistical machine learning models
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can be applied to our sentence reduction methods, in this research we investigate the use
of maximum entropy models and support vector machine models to sentence reduction
and experiment them on various test data. Experiment results show that the proposed
methods obtain a better performance in comparison with previous work. The proposed
algorithms are also closer to human manner in reducing sentences than previous works.
In addition, the probabilistic sentence reductions improve the deterministic sentence re-
duction in term of grammticality and the measure of how the gist meaning of the long
sentence retaining.

To adapt machine translation to cross language text summarization, the translation
template learning (TTL) - a variant of example-based machine translation is investigated.
There are two drawbacks of this translation method - one for the learning phase and an-
other for the translation phase. In the learning phase, with the lack of linguistic knowledge
the amount of template rules is large and some of them are redundant rules. To solve this
problem, we propose a novel translation template learning using shallow parsing which
allows incorporating linguistic information to template rules. In the translation phase,
the advantage of the TTL method is that it does not need any complex parsing such as
syntactic parsing or semantic parsing and it overcomes the imperfectness of the rule-based
machine translation. The disadvantages of the method are that a lot of templates can be
matched with an input sentence and some of them cause the translation results are less
confident. In addiction, the previous methods need to evaluate all matching rules for each
input sentence to obtain translation outputs, while much of them are redundant rules.
The exponential calculation problem will arise when an input sentence is long and the
number of template rules is large. For this problem, we present a novel method based on
a HMM model that uses constraints for each input sentence with its matching rules. The
proposed translation method can apply to any pairs of languages, and the application of
it on English and Vietnamese shows that the proposed method improves other methods
in both computational times and the translation accuracy.

We also propose a new algorithm to generate training data for both sentence ex-
traction and sentence reduction task by automatically extracting from rough data which
consist of text documents and their summaries. In final, we develop a cross language text
summarization system to summary English text document to Vietnamese language. The
proposed system is used a fusion of machine translation engine and a mono-language text
summarization.

Key Words: Text summarization, Statistical Machine Learning, Sentence Extrac-
tion, Sentence Reduction, Example Based Machine Translation.
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Chapter 1

Introduction

1.1 Background

Automatic text summarization is the task to produce the most important content from a
given text document to the user in a condensed form and in manner sensitive to the user’s
or application’s need. Many text summarization applications are now widely used, such
as Search Engine Hits (summarizing the information in hit list retrieved by search engine),
Hand-Held Devices (creating a screen size version of a book), and Headline generation on
television [1], [2].

With the rapidly increasing number of text information and amount of users in In-
ternet who are not familiar with a specific language, the multilingual information system
becomes increasingly desirable. Automating the production of multilingual summariza-
tion is therefore widely recognized as a highly challenging task [1]. Among the multilingual
summarizations, cross-language text summarization (CLTS)- the task of producing a sum-
mary in other language than the language of the given text document is very attractive.

Intuitively, a CLTS system consists of two main components, a text summarization
and a machine translation engine. If the performance of the machine translation and the
text summarization system are in high quality, then a CLTS system can be established
by simply combining them. Unfortunately, obtaining these systems are now desirable
and challenging tasks, especially for some languages other than English or Japanese (e.g
Vietnamese language). This is the reason why studying CLTS becomes a very difficult
and challenging task. There have been also some attempts to build a CLTS system [3],
[4], [5], [6], [7], [8], [9]. The major drawbacks of the previous works are likely to treat
CLTS as a translation phase and summarization phase separately. A CLTS system is
established by performing a machine translation before (MT-before) or after summariz-
ing (MT-late). Some studies claim that using machine translation before summarizing
obtained a higher performance than using it after summarizing a given text document,
but the computational times of this strategy is slower than using MT-Late [8], [9]. This
was due to the fact that machine translation are time-consuming tasks and performing
a translation for the whole text document must be slower than a summary document.
In addition, almost every MT engines are designed to deal with an grammatical input
sentence, not for phrases or clauses, while the output of a text summarization does not
often satisfy the grammatical criterion.

The straightforward way to obtain a CLTS system with a high accuracy and low cost
in computational times is that we should not only focus on enhancing the performance
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of the mono-language summarization but also adapt a machine translation engine to text
summarization.

There have been several kinds of mono-language text summarizations. Sentence ex-
tractions aim at extracting a set of important sentences within the given text document,
sentence reduction is the task to reduce long sentences into the short sentences so that the
gist meaning of the short one is the same as that of the original [1]. Sentence reduction
techniques can be also used to improve the performance of sentence extractions. In ad-
ditional contribution to mono-language text summarizations, Jing proposed the cut and
paste text summarization system based on the behavior of professional summarizer[10].
Figure 1.1 shows a kind of mono-language text summarization, the cut and paste text
summarization. This summarization system mainly consists of three components: sen-
tence extraction, sentence reduction, and sentence combination. First, the whole text
document will be extracted to a set of important sentences which are most relevant to
the gist meaning of the text document. After that, each long sentence within the set of
important sentences will be reduced to a condensed form by a sentence reduction method.
Finally, these short sentences are combined to a summary in the same language as that
of the original.

Document

Summary

Sentence

Extraction

Sentence

Reduction

Sentence

Combination

Figure 1.1: The mono-language text summarization: Cut and Paste Text Summarization

To extend a mono-language summarization system to a cross-language text summa-
rization, we incorporate it with a machine translation engine by using a fusion strategy
of machine translation and mono-language text summarization. As shown in Figure 1.2,
the proposed system consists of three major tasks: sentence extraction, sentence reduc-
tion, and translation. After obtaining a set of important sentences and reduced them to
short sentences. These outputs will be translated to the other language and the summary
documents are obtained by simply combining these translation outputs.

Our main goal is to obtain a scalable cross language summarization with a high per-
formance and the minimum human effort in constructing linguistic knowledge. For this
reason, we mainly apply statistical machine learning methods to all components in our
cross-language text summarization system.

As shown in Figure 1.2, there are three main tasks in our CLTS system which includes:

• Sentence Extraction: For this task we propose a statistical learning algorithm using
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Figure 1.2: A cross-language text summarization system

unlabeled data to improve the sentence extraction accuracy.

• Sentence Reduction: We also propose new probabilistic sentence reductions using
statistical machine learning modes estimated from the corpus of long sentences and
their reductions. The proposed algorithms show either a better reduction perfor-
mance or being closer to human manner in reducing sentences in comparison with
previous work.

• Translation: We draw a new perspective for applying statistical machine learning to
example based translation domain. Our translation system improves original works
in both the computational times and the translation accuracy. We also propose
a new algorithm to generate training data for sentence extraction and sentence
reduction automatically from rough data which consist of text document and their
summaries.

In final, an application of this research is to build a text summarization system to sum-
mary English text document to Vietnamese language. Our cross language text summa-
rization system is mainly used statistical machine learning models which are estimated
from training data available.

1.2 Focus of Research

To achieve a useful cross language text summarization system, four efficient tasks; sen-
tence extraction, sentence reduction, translation, and generating training data are nec-
essary. Four tasks in our cross-language text summarization system are defined as follows.

• Sentence Extraction
Osbone [13] proposed a method of applying maximum entropy model (MEM) to
sentence extraction. However, this study has discussed only the advantage of using
MEM in comparison with another method (naive Bayes). There was no discussion
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about selecting features on sentence extraction using MEM. In this paper, we pro-
pose a sentence extraction based on maximum entropy principle, in which these
features are selected carefully. In addition, we propose a co-training version for
MEM which can utilize unlabeled training data to enhance the accuracy of sentence
extraction.

• Sentence Reduction
Several methods have been proposed for sentence reduction in various applications
[14], [15],[16] [17],[18],[19],[20]. Among these methods, the corpus based sentence
reductions have attracted much attention because they provide the good way to
scale up the full problem of sentence reduction using available data.

Knight and Marcu [14] proposed a sentence reduction based on corpus using machine
learning techniques. They discussed a noisy-channel based approach and a decision
tree based approach to sentence reduction which involve the constraint that the
word order of a given sentence and its reduced sentence are the same. Nguyen and
Horiguchi [18], [19] presented a new sentence reduction technique based on a decision
tree model without that constraint. They also indicated that semantic information
is useful for sentence reduction tasks.

The major drawback of previous work on sentence reduction is that those methods
are likely to output “local optimal” results, which may have lower accuracy. This
problem is caused by the inherent sentence reduction model; that is, only a single
reduced sentence can be obtained. As pointed out by Lin [20], the best sentence
reduction output for a single sentence is not approximately best for text summa-
rization. This means that “local optimal” refers to the best reduced output for a
single sentence and the best reduced output for the whole text is “global optimal”.
Therefore, it is very valuable if the sentence reduction task can generate multiple
reduced outputs and select the best one using the whole text document. However,
such a sentence reduction method has not yet been proposed so far.

The aim of this study is to illustrate the potential of statistical machine learning
in enhancing the accuracy of sentence reduction in comparison with previous work.
For this purpose, we developed two statistical learning models including MEMs and
SVMs to sentence reduction.

• Translation
Cicekli and Günivenir [23], [24] proposed a novel machine translation system based
on template translation learning. However, these are two drawbacks in the learning
phase and translation phase of the original system. In the learning phase, with the
lack of linguistic knowledge, the amount of template rules obtained from translation
template learning is large and some of them cause the translation wrong. In addition,
unreliable rules reduce the performance of translation in both accuracy and compu-
tational times. Incorporating linguistic knowledge into template rules is an expected
approach. To solve this problem, we propose a novel translation template learning
using shallow parsing to incorporate linguistic information to template rules. In
the translation phase, previous works on template translation learning are required
evaluating all matching rules for each input sentence to obtain the output results,
while much of them are redundant rules. The exponential calculation problem will
arise when an input sentence is long and the number of template rules is large. To
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solve these problems, we propose a novel method based on a Hidden Markov Model
(HMM).

• Generating training data
Jing [25] proposed generating training data for text summarization as a decompos-
ing human-written summary sentences by using a Hidden Markov Model based on
a set of heuristic rules. However, when humans produce a summary document, they
may use some of their own words or phrases that are coincidentally similar to a word
or a phrase in the original document. In addition, the repetition words occurred
in summary sentences may affect the decomposition accuracy. To cope with these
cases, we use the semantic measure to discover all words in the documents that
have the same meaning as a word within the summary sentences and to reduce the
number of words in the summary, which have no occurrence in the original. The
purpose of the position-checking is to consider whether or not the case in which dis-
tinct words within a summary sentence come from the same position in the original
document can enhance the decomposition accuracy.

The portability is one of the advantages of our CLTS system because the CLTS is built
by automatically estimating from the training data. It is clearly that we can implement
the proposed CLTS system to any domain. The proposed system is scalable as well
as the MT-Late approach and it also has the advantages in comparison with previous
work in reducing sentence and extracting important sentences. In addition, the adaption
of machine translation engine to text summarization could deal with the problem of
translating ungrammatical sentences.

1.3 Outline of The Thesis

This dissertation is organized as follows. Chapter 2 presents previous work on cross-
language text summarization. In addition, we propose a statistical machine learning
approach to cross language text summarization. The proposed system mainly uses statis-
tical machine learning for four specification parts and combining them to a cross language
text summarization system. The propose cross language text summarization includes the
tasks as follows.

• Generating training data for cross language text summarization.

• Sentence extraction.

• Sentence reduction.

• Machine translation in CLTS.

To provide a broader view of statistical machine learning models (SML), we introduce
three models which consist of Hidden Markov Model, Maximum Entropy Models, and
Support Vector Machines. Chapter 3 will overview three SML models which are mainly
applied to all tasks throughout this thesis. The following chapters will introduce statistical
machine learning methods for generating training data, sentence extraction, sentence
reduction, and machine translation in CLTS.
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To build a cross language text summarization based statical machine learning, generat-
ing training data is very essential. The technique for generating training task is described
in Chapter 4.

In Chapter 5, we presents a statistical machine learning model for sentence extraction
in which a maximum entropy model and its version in co-training using unlabeled data
are discussed. The proposed sentence extraction method utilizes the unlabeled training
data to boost the performance of sentence extraction.

Chapter 6 introduces sentence reduction as the process of transforming actions from
the long sentence to the reduced sentence. We present new probabilistic sentence re-
duction methods using statistical machine learning in which support vector machine and
maximum entropy models are used to learn syntactic tree transformation actions for sen-
tence reduction.

Chapter 7 takes into account the uses of statistical learning to example based machine
translation in order to adapt it to CLTS system. We also demonstrate a novel translation
template learning technique using Hidden Markov Model which can both work well in
sentence translation and sentence reduction.

Chapter 8 proposes a cross-language text summarization (CLTS) system for English
and Vietnamese language. Finally, chapter 9 summarizes our contributions and draws
future works.
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Chapter 2

Cross Language Text Summarization

2.1 Mono-Language Text Summarization

2.1.1 Summarization machine

The main goal of a summary is to present the main ideas in a document in less space,
it is clear that if all sentences in a text document were equal importance, producing a
summary would not be very effective, as any reduction in the size of a document would
carry a proportional decrease in its informativeness. Fortunately, information content in
a document appears in burst, and one can therefore distinguish between more and less
informative segments. Identifying the informative segments at the expense of the rest is
the main challenge in summarization.

Two excellent books [1][2] have provided an general view for text summarization, in
which many types of summary have been identified. Figure 2.1 illustrates a summariza-

Figure 2.1: A summarization machine

tion machine which describes an overview of mono-language summarization including the
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input, output, and the type of a summarization. Indicative summaries provide an idea
of what the text is about without conveying specific context, and Informative one pro-
vide some shortened version of content. Query-oriented summaries concentrated on the
reader’s desired topic(s) of interest, whereas Generic summary reflect the author’s point
of view. Extracts are summaries created by using portions (words, sentences, etc.) of the
input text verbatim, while abstracts are created by regenerating the extracted content.
Extraction is the process of identifying important material in the text, abstraction the
process of reformulating it in novel terms, fusion the process of combining extracted por-
tions, and compression the process of squeezing out unimportant material. The need to
maintain some degree of grammaticality and coherence plays a role in all four processes.
The input might single document, multiple document, or users query. A summarization
rate also is an essential parameter in a machine summarization. Figure 2.1 also shows the
summarization size can be 10%, 50% or a headline, very brief, brief, or long summary.
The output of a machine summarization can be extractions or abstraction, or somewhat
that is useful for reader’s point of view.

Figure 2.2 shows a real application of mono-language text summarization. This ex-
ample was obtained online from the website (http://www.vnagency.com.vn/).

Laos, Malaysia sign cooperation deals

05/24/2004 -- 17:39(GMT+7)

Vientiane, May 24 (VNA) -- Laos and Malaysia signed agreements on Culture, Art and Heritage

preservation, a Memorandum of Understanding on youth cooperation, deals on drug control and

labour export.

The signing took place during Malaysian Foreign Minister Syed Hamid Bin Syed Jaafar Albar's visit

to Laos, commencing las Saturdayfor the second session of the Lao-Malaysian Inter-governmental

Cooperation Committee.

At the three-day conference, the two sides reviewed the implementation of their bilateral cooperation

programmes approved at the first session and discussed measures to expand cooperation on

politics, security, economics, trade, investment and tourism in the future.

They also agreed to encourage and create favourable conditions for Lao and Malaysian citizens in

travel, tourism and business operation.

Laos will waive visa requirements for Malaysians who hold ordinary passports from July 1.-Enditem

Vientiane, May 24 (VNA) -- Laos and Malaysia signed agreements on Culture, Art and Heritage

preservation, a Memorandum of Understanding on youth cooperation, deals on drug control and

labour export.

Text document

The summary

Figure 2.2: An example of a mono language text summarization
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2.1.2 Extractions

Among extraction tasks, sentence extractions are used to determine the most important
sentences and clauses in a document or a collection of documents. Previous approaches to
text summarization can be divided to the main categories following: Heuristic approach,
Knowledge base approach, shallow based approach, statistical based approach, and hybrid
approaches.

Heuristic approach

The traditional approach is mainly based on the heuristic methods. We can list some of
heuristic methods as bellow.

• Position-Based: The simple method is based on the assumption that sentences that
occur at the beginning of document are more likely to be important than sentences
that occur in middle or at the end. The simplest way is to build a summary that
always selects the first sentence in a text; or the first k sentences in a text, when
a summarization rate is required. Although the performance of this method varies
significantly with text genre and summarization rate, the position-based method is
usually capable of identifying around 33% of the important sentences in a text[11].

• Title-based method: Edmundson [11] was the first to show that the words in titles
and headings are more likely to be used in important sentence in a text document
than in non-important sentence.

• The cue-phrase method: Cue-phrase-based system capitalize on the observation
that important sentences contains ”bonus phrase” such significantly, in this paper
we show, and in conclusion, while non-important sentences contain “stigma phrase”
such as hardly and impossible. The cue-phrase method yielded the best results
when used to identify important sentence in scientific articles.

• The word-frequency method: The important sentences in a text are those that
contain words that occurs “somewhat” frequently.

• Word-based method: The most straightforward approaches apply Information Re-
trieval technique[12],[26],[27] to compute the similarity between the paragraphs in a
texts. The paragraph that has highest collective similarity to the other paragraphs
are assumed to be central/important to the document belong.

Knowledge based approach

The knowledge based approach concerned to summarize text in a specific domain. This
approach relies on using rich knowledge about the domain to decide which segments in
a given text document should be included in a summary. There have been some text
summarization systems based knowledge approach. Paice used stylistic clues to identify
important concepts in highly structured technical papers [28]. McKeown and Radeve
used the results of information extraction to construct fluent summaries for a cluster
of document using natural language generation technique [29]. The knowledge based
approaches are suited for a specification domain, but it is hard to deploy these methods
to a new domain. This was because it requires understanding text deeply, the performance
of such methods also are not scalable as well.
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Shallow based approach

An alternative to knowledge based approach is using shallow linguistic knowledge. This
approach does not need to understand text as deep as knowledge based approach. Rather,
it utilizes the lexical cohesion and coherent [30], [31], [32], [33] or discourse structure of the
given text[34] to summary the text. Some researchers map texts into description logics
and perform condensation operations on formal representations [35].

Statistical based approach

The statistical approach has been affirmed successfully in many NLP applications, such
as machine translation, information retrieval, and information extraction. Many statis-
tical models are applied to text summarization fields. Earliest works [12]concerned to
use the Vector Space Model in Information Retrieval to measure the similarities between
paragraphs, then extracts important ones. Other works [36] focus on formulating summa-
rization as a statistical classification problem, then deploys some classification algorithms
such as naive Bayes classification[37], Maximum Entropy Models[13], Support Vector Ma-
chine [38], and Weighted Probability Distribution Voting (WPDV)[39] for summarization.
Some variants of statistical model including Hidden Markov Model, noisy channel are also
applied to sentence extraction[40], sentence reduction [14], and web summarization [41].
The advantages of statistical based approach are that the computation times is fast and
the human in constructing linguistic knowledge is not required. It is also easy to apply
for summarization in other domains. The disadvantage is that it require a lot of training
data and the noisy in the data can decrease the performance of text summarization.

Hybrid approach

In practice, a summarization system might combine and use more than one approach.
These methods are refereed as a hybrid approach, for example a shallow approach might
combine with statistical techniques.

2.1.3 Abstraction

Recently, researches have focused on generation problem for text summarization. The
generation technique is treated as the key to obtain a summary with grammatical and
coherent. It overcomes several obstacle problems in extraction as listed following: the
extraneous phrases (Extracted sentences can be very long, containing material that are
not need to be included in a summary), dangling pronouns and noun phrases, misleading
information, and so on. The two main generation techniques for text summarization are
discussed bellow.

Sentence Reduction

To adapt generation techniques to text summarization, several methods have been in-
vestigated. Jing have been proposed cut and paste technique for professional summa-
rization [10], in which some professional operators including reduction, combination, and
paraphrase are used as key techniques for enhancing the radiability of a summary. Jing’s
method prevents the removal of some important phrases that are relative to the surround-
ing context and produces a grammatical sentence. However, while this method exploits a
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simple model for sentence reduction by using statistics computed from a corpus, a better
model can be obtained by using a learning approach.

In an extreme case of cut and paste, Witbrock and Mittal [21] extracts a set of words
from the input sentence and then order the words into sentence using N-gram.

Knight and Marcu also applied a generation method based statistical machine transla-
tion technique for sentence compression [14], in which the reduction process is formulated
as a sequence of rewriting process to transform a long sentence to a shorter one. An
example to illustrate the sentence reduction is shown bellow.

• Long sentence: The files are stored in a temporary directory on the VAX disks ,
where they are converted to VMS Backup format .

• Short sentence: Files are stored in a temporary directory on the VAX disks .

Sentence paraphrasers

A number of researches have studied the type of paraphrase operation employed during
summarization [42][10] and applied them in implemented systems. Generation technique
thus is now considering as a key to enhance the performance of text summarization. For
instance, sentence reduction and information fusion [43] enhance single text summariza-
tion and multiple text summarization, respectively. However, improving their accuracy
are now challenging task. The example bellow shows a sentence can be write an other
sentence using sentence paraphrase.

• Original sentence: The article was warmly discussed, which produced it a high rep-
utation.

• Paraphrase sentence: The paper was hotly debated, causing a fine old uproar.

Headline generators

The vast majority of the work on headline generation has been carried out in a statistical-
based noisy-channel models [44], [45], [46]. Using a large of collections of (text, headline)
tuples, which can be easily collected from the web, we can estimate probability P (wd|wh)
that reflect the likelihood of a word wd occurring in a document when another word wh

occurs in a headline. By treating documents and headlines as bags of words, we can easily
estimate the probability P (D|H) of a document given a headline. Once these parameters
P (H) and P (D|H) are estimated, we can construct document headlines by searching for
sequence of words H that maximize the product P (D|H) × P (H).

2.1.4 Multi-Document Summarization

Summarizing a single text is difficult enough. But summarizing a collection of themati-
cally related documents poses several additional challenges. Various methods have been
proposed to identify cross-document overlaps. SUMMONS [48], a system that covers most
aspects of multi-document summarization, takes an information extraction approach. All
documents are assumed that they are parsed into templates, SUMMONS clusters the tem-
plates according to their contents, and then applies rules to extract items for summarizing.
In contrast, Barzilay et al [43] parse each sentence into a syntactic dependency structure
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(a simple parse tree) using a robust parser and then match tress across documents, using
paraphrase rules that alter the trees as needed.

To determine what additional material should be included, Carbonell et al[49] first
identify the units most relevant to the user’s query and then estimate the marginal rele-
vance of all remaining units using a measure called Maximum Marginal Relevance (MMR).

Multi-document summarization have been much attention in recently, it also is a
major task on the annual competition conference on document understand ( DUC-2001,
DUC-2002, DUC-2003, and DUC-2004).

2.1.5 Evaluation Summaries

Evaluating the quality of a summary has proven to be a difficult problem because there
is no obvious ”ideal” summary. Event for news article, human summarizer tend to agree
only approximately 60% of the time, measuring sentence content overlap.

Two broad classes of metrics have been developed: from metrics and content metrics.
From metrics relies on grammaticality, overall text coherence, and organization and are
usually measured on a point scale [47]. Content is more difficult to measure, we can use
those sentences or fragments generated by humans to compare with the system outputs,
and as in information retrieval, the percentage of important information present in the
system’s summary (precision) and the percentage of important information omitted from
the summary (recall) are recoded. In the Document Understanding Conference (DUC)-01
and (DUC)-02 summarization competitions, NIST used the Summary Evaluation Envi-
ronment (SEE) interface to record values for precision and recall. DUC has shown that
humans are better summary producers than machines and that, for the news article genre,
certain algorithms do in fact better than the simple baseline of picking the lead material.

Automatic summary evaluation is a gleam in everyone’s eye. Clearly, when an ideal ex-
tract has been created by humans, extractive summaries are easy to evaluate. Evaluation
for abstracts are more complex, simply using a variant of the Bilingual Evaluation Under-
study (BLEU)[51] scoring method (based on a linear combination of matching n-grams
between the system output and the ideal summary) developed for machine translation
is promising but not sufficient[52]. Recently, Lin and Hovy developed a new evaluation
scoring, the ROUGE score for text summarization [53]. This scoring system are based on
the BLEU method and it was used to measure the performance of the participated text
summarization systems in DUC-04[54].

2.2 Cross Language Text Summarization

Cross language summarization is a task of summarizing a given text document in one
language to a summary in other language. Intuitively, a cross language text summariza-
tion consists of two main components, a summarization and a translation component.
Figure 2.2 shows an example of a cross language text summarization in real application.
The original document and the the summary is the English news and its summary in
Vietnamese language obtained from the website (http://www.vnagency.com.vn/).

13



Figure 2.3: An example of cross language text summarization

2.2.1 Previous Work

Previous work on cross language summarization have been mainly focused on building a
combination system between a summarization system and a translation system. Hovy and
Lin [3] proposed a SUMMARIST system which extracts sentences from documents in a
variety of languages, and translates the resulting summary. This system has been applied
to Information Retrieval in the MuST system [4] which uses the query translation to allow
a user to search for documents in variety of languages, summarize the document using
SUMMARIST, and translate the summary. Ogden et al [5] proposed the Keizei which uses
query to search Japanese and Korean documents in English, and displays query-specific
summaries focusing on passages containing query terms. Chen and Lin [6] described a
system that combines multiple monolingual news clustering components, a multilingual
news clustering component, and a news summarization component. Their system clusters
news in each languages into topic, then the multilingual clustering component relates the
clusters that are similar to across language. A summary is generated by linking sentences
that are similar to the two languages. The system has been implemented for Chinese
and English. Recently, National Institute of Standards and Technology (NIST) has been
issued several tasks for text summarization, such as single summarization, multi-document
summarization, and multi-lingual summarization. Among them, the task of multi-lingual
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summarization has been issued in this year [54] in which original document in Arabic
language were translated to English document by the IBM machine translator. After
that, English document are then summarized by participated summarization systems and
the outputs will be evaluated by NIST. An alternative approach has been turned out to
incorporate machine translation to internal steps in a mono-lingual summarization system
are described in [7].

The same as that of the evaluation problem in mono-language summarization, it was
very difficult for cross-language summarization. For this reason, using human evaluation
the system’s output are considered as the main evaluation method for cross-language text
summarization [8][9]. Beside, the BLEU and ROUGE scoring method can be also used
to evaluate the performance of a cross-language text summarization, those experiments
described in [8][9] showed that the evaluation results using BLEU and ROUGE agree with
human evaluation.

In summary, there are two main components in a multilingual summarization system
which are a mono-lingual summarization and a machine translation phase. The problem
here is how to incorporate a machine translation into a mono-lingual summarization.
Intuitively, there are three approaches for cross language text summarization as follows.

• MT-late: A given text document is summarized, and the output is then translated
into the desired language using a machine translation system (MT).

• MT-before: This approach summarizes the translated document after performing a
machine translation process on the original text document.

• MT-alternative: The third approach concerned to integrating machine translation
in internal step of a mono-lingual summarization system.

Document

Summary

Translation

Mono-language

summarization

Document

Summary
Translation

Mono-language

summarization

MT-Before MT-Late

Figure 2.4: Machine translation in CLTS

Figure 2.4 shows the comparison of MT-late and MT-before in CLTS summarization.
Some studies claimed that using MT-before improved MT-late in term of performance ac-
curacy but it required much more computational times [8], [9]. To achieve a scalable cross
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language text summarization with a high accuracy, we thus consider the MT-alternative
approach and present a new approach to cross language text summarization in the next
subsection.

2.2.2 Statistical Machine Learning for Cross-Language Text Sum-
marization

Despite encouraging progress in the MT quality over the past years, MT outputs is still,
for the most part, ungrammatical and quite hard to read. Clearly, in the first approach,
performing machine translation on the whole documents costs more computational times
than doing it on a summary document. However, the translation engine was designed to
translate whole sentences, not phrases. It does not perform as well when the input is a
list of separate phrases. In addition, summary outputs of a summarization system are
still in low accuracy. These reasons thus lead us to the tradeoffs between computational
times and accuracy in using MT-before and MT-late for cross language summarization.
Some experiments on headline generation between English and Hindi [8][9] claimed that
MT-before are better than MT-late in term of accuracy.

Our main goal is to obtain a scalable cross language text summarization with a high
performance. Therefore, a MT-alternative approach using an adaption of MT to mono-
lingula text summarization should be applicable to solve this problem. We also try to
improve both the performance of text summarization and machine translation.

Statistical machine learning has been widely used in many Natural Language Process-
ing (NLP) tasks such as pos tagging, text chunking, syntactic parsing, machine transla-
tion, and information retrieval. This is the first time SML models are applied to the field
of cross language text summarization.

Our approach to CLTS including two main points:

• Using statistical machine learning to improve mono-lingual text summarization.

• Adaption of machine translation for mono-lingual summarization.

For the first point, we focus on improving sentence extraction and sentence reduction
performance for mono-lingual text summarization.

For sentence extraction, a corpus-based sentence extraction is investigated. In addi-
tion, we study a co-training method based on maximum entropy model which can utilize
unlabeled data to improve the sentence extraction performance. Experiment results show
that the unlabeled data were helpful for sentence extraction task using machine learning
technique, and co-training methods seem to be suitable for this task. Beside, to reduce a
long sentence to a short sentence, we formulate it as a process of transforming a syntactic
tree of the long sentence (the large tree) to a small tree. The process is considered as
a sequence of actions which transforms the large tree to a small tree and the reduced
sentence is obtained by simply generating from the small tree. The key technique is how
to learn a sequence of actions for each syntactic tree. To solve it, a deterministic sentence
reduction and a probabilistic sentence reduction method are proposed. The proposed
methods are mainly used statistical machine learning models estimated from the corpus
of long sentences and their reductions.

To adapt machine translation to cross language text summarization, the translation
template learning - a variant of example-based machine translation is investigated. There
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Figure 2.5: A cross language text summarization system

are two drawbacks of the translation template learning methods in the learning phase
and the translation phase. In the learning phase, we incorporate shallow information to
overcome the problem of generating a large amount of unreliable template rules due to
the lack of linguistic knowledge. In the translation phase, the advantage of this method is
that it does not need any complex parsing such as syntactic parsing or semantic parsing
and overcome the imperfectness of the rule-based machine translation. The disadvantages
of the method are that a lot of templates can be matched with an input sentence and
some of them cause the translation results are less confident. In addiction, the previous
methods need to evaluate all matching rules for each input sentence to obtain the output
results, while much of them are redundant rules. The exponential calculation problem will
arise when an input sentence is long and the number of template rules is large. Following
that point, we present a novel method based on statistical machine learning models that
use constraints for set of matching rules with each input sentence.

We then divide a CLTS system into three components. The first one concerns to
extract important sentences for a given input text document. The second one aims at
reducing a long sentence into a condensing version, and the last one is the adaptation
of a machine translation engine to a mono-language summarization. We also incorporate
knowledge based with SML models which were estimated from the training data available.
The knowledge based using in the CLTS including WordNet, Comlex, and Translation
Rules database.

Figure 2.5 shows a CLTS system using statistical learning models which are applied
to all the components in the CLTS including sentence extraction, sentence reduction, and
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translation. Figure 2.5 also shows that the statistical learning models are estimated by
learning from the corpus of extraction, reduction, and translation. For adaption machine
translation in the proposed CLTS system, the template learning algorithm is used to
generate template rules from the translation corpus. These template rules along with
translation rules are used to translate a short sentence.

As shown in Figure 2.5, the process of summarizing an input text document is that:
After preprocessing, the text document is extracted to obtain a set of important sentences.
These important sentences are then reduced to condensation forms and their outputs are
translated to another language. In final, the translation outputs are simply concatenated
to obtain a summary.
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Chapter 3

Statistical Machine Learning

Statistical machine learning (SML) is widely applied to various fields on computer science
such as computer vision, imagine processing, and natural language processing (NLP). It
was claimed having the potential to amplify every aspect of working scientist’s progress to
understanding [55]. SML have been also shown the successful in dealing with the hardest
problem - the ambiguous problem in NLP. Many applications including machine transla-
tion, information retrieval, and text mining are applied SML successfully. In this chapter,
we will summary three common SML models including Hidden Markov Models(HMM),
Maximum Entropy Models (MEM), and Support Vector Machine (SVM). The first sec-
tion introduces the Hidden Markov Model, the second one shows the maximum entropy
model, and the final section summaries the SVM model.

3.1 Hidden Markov Model

3.1.1 HMM

Hidden Markov Models (HMMs) are a generalization of Markov Models[56]: whereas in
conventional Markov Models the state of the machine at time i and the observed output at
time i are one and the same, in Hidden Markov Models the state and output are decoupled.
More specifically, in an HMM the automaton generates a symbol probabilistically at each
state; only the symbol, and not the identity of the underlying state, is visible. Figure 3.1
shows an example of HMM for text classification problem. To illustrate, suppose that a
person is given a text document and is asked to classify it into either business categorical,
sports, scientists, the weather, or politics. At first, the person read a first paragraph and
see some words including shares, bank, investor; in all likelihood the text seems to be a
business category. In the next paragraph they showed some words such as front, showers
and rain, which is likely a weather category. Figure 3.1 shows an HMM corresponding
to this process – the state corresponds the words in text document from that category.
According to the values in the figure, the word taxes accounts for 2.2 percent of the words
in news category, and 1.9 percent of the words in business category. Seeing the word taxes
in the text document does not by itself determine the most appropriate labelling for the
text.
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news sports

weather

business

P(President)=0.072

P(taxes)=0.022

P(bank)=0.0001

….

P(overcast)=0.03

P(rain)=0.029

P(NASDAQ)=0.004

….
P(NASDAQ)=0.02

P(taxes)=0.019

P(overcast)=0.009

….

P(football)=0.11

P(rain)=0.0008

….

Figure 3.1: An example of HMM

3.1.2 HMM definition

An HMM is specified by a five-tuples (O,S,A,B, Π), where S and O are the set of states
and the output alphabet, and Π, A,B are the probabilities for the initial state, state
transition, and symbol emission, respectively.

3.1.3 Three Problems

There are three fundamental questions for a HMM model:

• Given a model µ = (A,B, Π), how do we efficiently compute how likely a certain
observation is, that is P (O|µ)?

• Given the observation sequence O and a model µ, how do we choose a state sequence
(X1, X2, ..., XT+1) that best explains the observations?

• Given an observation sequence O, and a space of possible models found by varying
the model parameters µ = (A,B, Π), how do we find the model that best explains
the observed data?

Probability calculation

Given the observation sequence O = (o1, o2, ..., oT ) and a model µ = (A,B, Π), we wish
to know how to efficiently compute P (O|µ)- the probability of the observation given the
model. This process is often referred to as decoding.

For any sequence of states X = (X1, ..., XT+1), the probability P (O|X,µ) can be
calculated as follow:
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P (O|X,µ) =
T∏

t=1
P (ot|Xt, Xt+1,µ)

=bX1X2o1bX2X3o2 ...bXT XT+1oT

(3.1)

and,
P (X|µ) = πX1aX1X2aX2X3 ...aXT XT+1

(3.2)

Since,
P (O,X|µ) = P (O|X,µ)P (X|µ) (3.3)

Therefore,

P (O,X|µ) =
∑
X

P (O|X,µ)P (X|µ)

=
∑

X1...XT+1

πX1

T∏
t=1

aXT XT+1
bXT XT+1oT

(3.4)

To avoid the combinatorial explosion the P (O,X|µ) the dynamic algorithm can be
used by using the forward procedure and the backward procedure.
The forward procedure
Let αi(t) = P (o1o2...ot−1, Xt = i|µ) is a forward variable at t step. The forward variable
αi(t) is stored at (si, t) in the trellis and expresses the total probability of ending up in
state si at time t (given that the observations o1...ot−1 were observed). This variable is
summed by probabilities for all incoming arcs at a trellis node.

• Initialization
αi(1) = πi, 1 ≤ i ≤ N

• Induction

αj(t + 1) =
N∑

i=1

αi(t)aijbijot , 1 ≤ t ≤ T, 1 ≤ j ≤ N

• Total

P (O|µ) =
N∑

i=1

αi(T + 1)

This algorithm requires only 2N2T multiplication.
The backward procedure
Let a backward variables are the total provability seeing the rest of the observation se-
quence given that we were in state si at time t. We define it as the formula bellow.

βi(t) = P (otot+1...oT , Xt = i|µ)

The backward procedure computes backward variables which are defined by a recur-
sive procedure as follows:

• Initialization
βi(T + 1) = 1, 1 ≤ i ≤ N
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• Induction

βi(t) =
N∑

j=1

βj(t + 1)aijbijot , 1 ≤ t ≤ T, 1 ≤ i ≤ N

• Total

P (O|µ) =
N∑

i=1

πiβi(1)

Combining them
We can use any combination of forward and backward caching to work out the probability
of an observation sequence.

P (O,Xt = i|µ) = P (o1...oT , Xt = i|µ)
=P (o1...ot−1, Xt = i, ot...oT |µ)
=P (o1...ot−1, Xt = i|µ) × P (ot...oT |o1o2...ot−1, Xt = i, µ)
=P (o1...ot−1, Xt = i|µ) × P (ot...oT |Xt = i, µ)
=αi(t)βi(t)

Therefore,

P (O|µ) =
N∑

i=1

αi(t)βi(t) 1 ≤ t ≤ T + 1 (3.5)

Decoding

Commonly we want to find the most likely states that best explains for the given observed
sequences O. This problem is equivalent to finding the arg max︸ ︷︷ ︸

X

P (X|O, µ). Since the se-

quence O is given, the problem is equivalent to finding arg max︸ ︷︷ ︸
X

P (X,O, µ). The algorithm

to do this problem is the Viterbi algorithm [57].
Define:

γj(t) = max︸ ︷︷ ︸
X1...Xt−1

P (X1...Xt−1, o1...ot−1, Xt = j|µ)

• Initialization
γj(1) = πj, 1 ≤ j ≤ N

• Induction

γj(t + 1) = maxγj(t)aijbijot , 1 ≤ j ≤ N

• Store backtrace

ψj(t + 1) = arg max︸ ︷︷ ︸
1≤i≤n

γi(t)aijbijot , 1 ≤ j ≤ N
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• Backtracking. The most likely state sequence is worked out from the right back-
wards:

X∗
T+1 = arg max︸ ︷︷ ︸

1≤i≤N

γi(T + 1)

X∗
T = ψX∗

T+1
(t + 1)

P (X∗
T ) = max︸ ︷︷ ︸

1≤i≤N

γi(T + 1)

In practical application, one can to work out not only the best state sequence but
the n−best sequence or graph of likely paths. In order to do this people often store
the m < n best previous states at a node.

Parameters Estimation

We turn out to the third problem for HMM model. Given a certain observation sequence,
the model µ = (A,B, Π) is need to find so that it is best explain for the given observation
sequence. To solve this, Maximum Likelihood Estimation methods are used. It means
that we want to find the values that maximize P (O|µ) :

arg max︸ ︷︷ ︸
µ

P (Otraining|µ) (3.6)

It could not to choose µ s.t (9) by analytic method, however we can locally maximize
it by an iterative hill-climbing algorithm namely Baum-Welch or Forward-Backward al-
gorithm [58]. This algorithm is a special case of Expectation Maximization algorithm. It
can be summarized as follow:
Having an initial model (e.g randomly chosen), we can work out the probability of the
observation sequence to revise model. We can see which state transition and symbol
emission were used the most. The revised model is chosen by increasing the probability
of those so that it gives a higher the probability to the observation sequence.

Let pt(i, j), 1 ≤ t ≤ T, 1 ≤ i, j ≤ N be the probability of traversing a certain arc at
time t given observation sequence O (see Figure 3.2).

pt(i, j) = P (Xt = i,Xt+1 = j|O, µ)

=P (Xt=i,Xt+1=j|O,µ)
P (O|µ)

=
αi(t)aijbijotβj(t+1)

N∑
m=1

N∑
n=1

αm(t)amnbmnotβn(t+1)

(3.7)

Therefore, if summing over the time index, it gives us expectations:
Let expected number of transitions from state i to j in O be Eij and Let expected number
of transitions from state i in O be Ei. We obtain:

T∑
t=1

γi(t) = Ei

T∑
t=1

pt(i, j) =Eij
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Figure 3.2: The probability of traversing an arc. Given an observation sequence and a
model, we can compute the probability that the Markov process went from state si to
state sj at time t

With the initial model µ ( chosen randomly, or preselected), we then run O through
the current model to estimate the expectation of each model parameter. The model then
is changed to maximize the values of the paths that are used a lot. This process will
be repeated to obtain an optimal values for the model parameters µ. The re-estimation
formulas are as follows:

π∗
i = γi(1)

a∗
ij = Eij

Ei
=

T∑
t=1

pt(i,j)

T∑
t=1

γi(t)

b∗ijk =
Eijk

Eij
=

∑
{t:Ot=k,1≤t≤T} pt(i,j)

T∑
t=1

pt(i,j)

(3.8)

Therefore, the model µ = (A∗, B∗, Π∗), is derived from the model µ = (A,B, Π), and
as proved by Baum, we have: P (O|µ∗) ≥ P (O|µ), the process will be repeat until it is
satisfied the termination condition.

3.2 Maximum Entropy Model

3.2.1 The Principle of Maximum Entropy

The maximum entropy concept has a long history. Laplace enunciated the underling idea
of the maximum entropy models in the principal of insufficient reason. This principle
states that equal probabilities must be assigned to each competing assertion if there is
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no positive reason for assigning them different probabilities. Jaynes [59] summarized the
principle of maximum entropy very condensed following.

... in making inferences on the basic of partial information we must use that prob-
ability distribution which has maximum entropy subject to whatever is known. That is
the only unbiased assignment we can make; to use any other would amount to arbitrary
assumption of information which by hypothesis we do not have.

With having only partial information about the possible outcomes, one should choose
the probabilities to maximize the uncertainty about the missing information and one
should be as uncommitted as possible about missing information.

Assume that we are given a set of all possible distribution P and M constraints fi.
By applying the principle of maximum entropy, the most uniform distribution subject to
the satisfaction of the given constraints is obtained. These constraints is used to select a

mode p lie on the subset of P, that satisfied Epfi = E∼
p
fi for i = 1,M . Where

∼
p is a prior

distribution observed from data. Since the uniform of a distribution p can be measure by
its entropy, the best distribution p∗ is the one with maximum entropy H(p).

The appeal of maximum entropy principles are applied in many fields such as imagine
processing, natural language precessing (NLP), etc. Many applications in NLP have been
employed maximum entropy model such as machine translation, text summarization,
and word sense disambiguation, etc. The following sections will lead the readers to the
typical of maximum entropy, the conditional maximum entropy model and the answer
why implying maximum entropy for NLP application are success.

3.2.2 Learning Maximum Entropy Models

Most problems in NLP can be considered as classification problems, in which the goal is
to predict the class label a ∈ A with some linguistic context c ∈ C. This can be solved
by using a conditional probability p(a|c). Although the co-occurrence of a and c can be
extracted from a very large corpus, the probability p(a|c) can not be calculated from it
because the contexts are distributed sparely on NLP data. Maximum entropy models are
one of the best ways to solve the problem.

Definition

Let T = {(a1, c1), (a2, c2), ..., (ai, ci), ...(aN , cN)} be a training data set, where the action
and context pair (ai, ci) is referred as an example and N is the number of examples in the
training data. Let a feature be a function f :

f : A × C → {0, 1} (3.9)

A feature f(a, b) captures an information in b that might be useful for predicting a.

Suppose that
∼
p(a, c) is the observed probability of the pair (a, c) in the training data set,

f1, f2, ..., fk are features in the training data, and E∼
p
fj is the observed expectation of

feature fj:

E∼
p
fj =

∑
a,c

∼
p(a, c)fj(a, c) (3.10)
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The model probability p∗ is designed so that it is consistent with the observed expecta-
tion and likely to generalize well to unseen data. Using the principle of maximum entropy
the model p∗ with the highest entropy over the set of those models that are consistent
with the expectation is recommended. As described in [60], the model p∗ satisfies the
following condition:

p∗ = arg max︸ ︷︷ ︸
p∈P

H(p)

P =
{
p|Epfj = E∼

p
fjj = 1...k

}
Epfj =

∑
a,c

∼
p(c)p(a|c)fj(a, c)

H(p) = −∑
a,c

∼
p(c)p(a|c) log p(a|c)

(3.11)

Suppose that α1, α2,...αk are the parameters of model (αk > 0 and associated with fk).
By using a Largraian representation, we obtained the form of the solution p∗ described
as follows:

p∗(a|c) = 1
Z(c)

k∏
j=1

α
fj(a,c)
j

Z(c) =
∑

a∈A

k∏
j=1

α
fj(a,c)
j

(3.12)

Here, Z(c) is a normalization factor.
Let L(p) be the log-likelihood of the training set according to the model p.

L(p) =
∑
a,c

p̃(a, c) log p(a|c) (3.13)

Because in the maximum entropy model, p∗ will not assume anything beyond the
evidence, and p∗ will have a close fit to the observed data. Thus, we obtain an interesting
relationship between maximum likelihood estimates of models from (3.13) and maximum
entropy models. That is:

p∗ = arg max︸ ︷︷ ︸
q∈Q

L(q)

Q = {p|p(a|c) = 1
Z(c)

k∏
j=1

α
fj(a,c)
j }

(3.14)

The details of the maximum entropy framework and its duality with maximum likeli-
hood estimates are discussed in [60].

Estimating Parameters

The simplest method for estimating maximum entropy model is the Generalized Iterative
Scaling (GIS) algorithm.

Define Ki = E∼
p
fi the optimal αi can be found by iteratively updating the model

distribution p. Algorithm 2 shows the behavior of the GIS algorithm. It starts with
arbitrary value of αi. At each iteration, the algorithm updates αi by comparing the
expectation of fi under the current p to the target value Ki. Then, the distribution p is
re-estimate with the new value of αi. The process is iterated until p converges.
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Algorithm 1 The GIS Algorithm

1: Set t = 1
2: while p not converges do
3: Compute Ki = E∼

p
fi for each fi;

4: Update αi according to the formula bellow
αt+1

i = αt
i + log Ki

Kt
i

5: Define the next estimate function based on the new αi

pt(a|c) = 1
Zt(c)

exp(
k∏

i=1
αt

ifi(a, c))

Zt(c) =
∑

a∈A
exp(

k∏
i=1

αt
ifi(a, c))

6: end while

The problem of the GIS algorithm is at computation time. It might takes a lot of
times when the training data is big. For this reason, there were some other algorithms
to estimate the maximum entropy mode including: the Improved Iterative Scaling (IIS)
algorithm [60], and the Limited Memory BFGS algorithm (L-BFGS)[61], which is faster
than GIS and IIS algorithm [62].

3.3 Support Vector Machine

Support Vector Machines are strong learning methods in comparision with decision tree
learning and other learning methods. This was because their ability to generalize in
high-dimensional spaces. The appeal of SVMs is based on their strong connection to the
underlying statistical learning theory. That is, an SVM is an approximate implementation
of the structural risk minimization (SRM) method [63]. For several natural language
processing problems, SVMs have already been shown to provide a better generalization
performance than traditional techniques [64].

Support vector machine (SVM)[63] is a technique of machine learning based on statis-
tical learning theory. The main idea behind this method can be summarized as follows.
Suppose that we are given l training examples (xi, yi), (1 ≤ i ≤ l), where xi is a feature
vector in n dimensional feature space, yi is the class label {-1, +1 } of xi. SVM finds a
hyperplane w.x + b = 0 which correctly separates training examples and has maximum
margin which is the distance between two hyperplanes w.x + b ≥ 1 and w.x + b ≤ −1.
The optimal hyperplane with maximum margin can be obtained by slowing the following
quadratic programming.

min 1
2
‖w‖ + C0

l∑
i

ξi

s.t. yi(w.xi + b) ≥ 1 − ξi

ξi ≥ 0

(3.15)

where C0 is the constant and ξi is called a slack variable for the non-separable case. In
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Figure 3.3: Overview of Support Vector Machine

final, the optimal hyperplane is formulated as follows:

f(x) = sign

(
l∑
1

αiyiK(xi, x) + b

)
(3.16)

where αi is the Largrange multiple, and K(x′, x′′) is called a kernel function, it calculates
similarity between two arguments x′ and x′′. For instance, the Polynomial kernel function
is formulated as follow:

K(x′, x′′) = (x′.x′′)p (3.17)

SVMs estimate the label of an unknown example x whether sign of f(x) is positive or
not.

There are two advantage in using SVMs for classification as follows:

• High generalization performance in high dimensional feature space. SVMs opti-
mize the parameter w and b of the separate hyperplane based on maximum margin
strategy. It also grantees theoretically the low generalization error for an unknown
example in high dimension feature [63].

• Learning with combination of multiple features is possible by virtue of polynomial
kernel functions. SVMs can deal with non-linear classification.

SVMs are discriminative classifiers, and not generative multi classification models
and probabilistic models like naive Bayes classifier or maximum entropy models. For
this reason, there have been several attempts for extending SVMs to multi classification
and to probabilistic models. Such models are experimented on several tasks and shows
competitive in comparing with other multi class classification and probabilistic models.

3.4 Training Data in Statistical Machine Learning

Generating training data are very essential for many applications using statistical machine
learning models. Training data can be generated by manually annotated or automatically.
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For many natural language precessing tasks, a larger size amount of training data can be
ensured its performance in term of high accuracy. For example, with using the big cor-
pus e.g the Pentree Bank data for training, these tasks including pos-tagging, chunking
and parsing have been showed a quite high performance. However generating training
data by manually are cost and consuming time. For this reason, several attempts have
been made in order to automatically generate training data for statistical machine learn-
ing approaches to natural language processing. The tasks of generating training data
for machine translation were described in [65][66] and generating training data for text
summarization were also presented in [10],[67],[68]. The next chapter will introduce the
generating training data for our proposed text summarization system.
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Chapter 4

Generating Training Data Using
Decomposition Human-Written
Summary Corpus

4.1 Introduction

The task of creating reliable data in support of the automatic text processing system is
essential in several natural language processing. For this reason, several recent publica-
tions have focused on automatically creating training data from rough data, as described
in [10], [65], [66], [67], [68].

When humans summarize text documents they generally use one of two approaches. In
the first approach, they try to understand the text documents, then generate a summary
in their own words. In the second approach, they reuse the original document and apply
a cut and paste method. A sentence in the document might be reduced to a shorter
sentence while its principal meaning is unchanged; other sentences might be selected for
combining into one sentence.

Professional summarizers often use the second approach to summarize documents.
Jing and McKeown [10] modelled a cut and paste automatic text summarization system.
One important aspect in constructing a cut and paste summarization system is the de-
composition human-written process. This process relies on aligning summary sentences
with the original document and creating training data automatically from documents and
the summary of documents for the automatic text summarization.

Marcu [67] presented an approach to automatically constructing of large-scale corpora
for summarization research. This approach is essentially aligning the summary sentence
with a semantically equivalent sentence in the document. It adopted an Information
Retrieval-based approach coupled with discourse processing.

Brown et al. [65] and Gale and Kenth [66] both reported aligning sentences in a parallel
bilingual corpus. They applied a Hidden Markov Model solution to bilingual corpora align-
ment. Jing and McKeown [68] initially addressed the decomposition of human-written
summary sentences as the process of mapping summary sentences back to the original
document. First, they considered that each summary word within the summary docu-
ment would come from a word among a set of its occurrences in the original document.
Second, they assumed that two consecutive words within the summary document should
come from two nearby positions in the original document. With those assumptions, they
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modelled the task of decomposing human-written summary sentences as a Hidden Markov
Model based on a set of heuristic rules that they observed from human text-reusing prac-
tices. Afterwards, a dynamic programming technique, the Viterbi algorithm [57] was used
to efficiently find the most likely document position for each word in the summary sen-
tence and finally obtain the best decomposition for the summary document. Their work
addresses an efficient method for the decomposition problem.

However, when humans produce a summary document, they may use some of their
own words or phrases that are coincidentally similar to a word or a phrase in the original
document. Moreover, summary documents usually have at least two repetition words,
so the most likely document position may have two or more positions the same in the
original document. To cope with these cases we extend Jing and McKeown’s method by
adding a semantic measure and checking the position of each word within a summary
document. We use the semantic measure described in [69] to discover all words in the
document that have the same meaning as a word within the summary sentences and to
reduce the number of words in the summary which have no occurrence in the original.
The purpose of the position-checking is to reduce the number of cases in which distinct
words within a summary sentence come from the same position in the original document.

Therefore, we have to find the best sequence of word positions that minimizes the
total number of repetition words.
In Section 4.2, we first mathematically formulate the summary sentence decomposition
problem and then extend the HMM model in formulating the problem. Section 4.3 shows a
position-checking algorithm for solving the case where the summary document has at least
two repetition words. Section 4.4 presents a template HMM model using a suffix array
for the human written decomposition problem. Section 4.5 discusses the performance of
the decomposition of human-written summaries. Section 4.6 presents our conclusions and
discusses some outstanding problems.

4.2 Decomposition Algorithm Using HMM

Jing and Mckeown [68][10] originally formulated the decomposition problem for human-
written summary sentences. We have extended their formula by using a semantic measure
[70][71][73][72] to solve the case in which a word in the summary document comes from a
similar word in the original document.

4.2.1 Formulation

Let a summary document be represented as a word sequence: {I1, I2...IN}, where Ij is
the jth word in N words of the summary document. Lj is defined as a set of features of
the word Ij in the original document; Mj is defined as a number of features in Lj and
Lj[t] be the tth feature in Lj .

Each word within the summary document may occur in the original document or be
similar to a word in the original document. We denote the position of each word within
the original document by the sentence position and the word position within this sentence.
Multiple occurrences of a word Ij in the document can be represented by a set of word
positions:

{(sj1 , wj1), (sj2 , wj2)...(sjk
, wjk

)...(sjm , wjm)} (4.1)
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Where sjk
is the sentence position of word Ij in the document and wjk

is the word position
within the sentence that has position sjk

in a document and m is the total number of
occurrences.

We use a semantic distance to define which words in the summary document are
similar to a word in the original. The maximum of the semantic distance between two
words is equal to 1 if they are the same. To define the semantic distance between two
words we use the WordNet database with the method described in [70].

Let the multiple similarity occurrence of a word in the summary document be all its
similar words in the original document. Thus, the multiple similarity occurrence of a word
Ij in the document is expressed by:

{(sj1 , wj1 , dj1), (sj2 , wj2 , dj2)...(sjm , wjm , djm)}. (4.2)

Each feature (sjm , wjm , djm) consists of a sentence position sjm , a word position wjm and a
semantic distance djm between word Ij and the word in the document that has sentence
position sjm and word position wjm . The value of djm is always greater than a constant.
The value to be defined in our experiments is that djm = 1 if a word at position (sjm , wjm)
is an occurrence of Ij otherwise djm < 1.

Using these notations, the decomposition problem can be formulated as follows:

Given a word sequence {I1, I2, .., Ij, ...IN} and multiple similar occurrences of word Ij

{(sj1 , wj1 , dj1), (sj2 , wj2 , dj2)...(sjm , wjm , djm)}, determine the most likely feature for each
word in the sequence.

Figure 4.1 shows an example of the decomposition problem when considering the
document “WSJ870702-0104” from DUC2001 training data and its summary document.
This figure shows the task of choosing the most likely feature of each word in the sequence:
an intellectual leader of. The multiple similar occurrence of the word “an” had 11 features
as shown in the figure: {(99,23,1),(20,4,1),(129,21,1)}.

an

(99,23,1)

(20,4,1)

(28,13,1)

.....

(78,8,1)

.....

(129,21,1)

intellectural

(24,19,1) (99, 25,1)

leader of

(0,18,1)

(2,3,1)

(2,30,1)

(4,18,1)

(99,26,1)

(73,6,1)

Total: (11x5x1x60)=3,300

Most likely feauture should be

{(99,23,1),(99,24,1),(99,25,1),(99,26,1)}

(49,9,1)

(99,24,1)

.....

.....

Figure 4.1: An example of decomposition problem

The most likely feature of the word “an” is (99, 23, 1). Similarly, the words intellec-
tual, leader, of has 5 occurrences, 1 occurrence, 60 occurrences respectively. There are
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3300 ways to generate the summary sentence “an intellectual leader of” from the original
document. The dotted lines from “an” to “of” shows sequences of features. The con-
tinuous line shows the most likely feature sequence. To define the most likely document
feature we extend the HMM from [68] based on heuristic rules and apply the Viterbi
algorithm [57] to that HMM.

4.2.2 Heuristic rules

The question: “How does a word depend on the positions of the words surrounding it in
the document?” emerges when humans summarize documents. Jing [68] pointed out the
following heuristic rules:
(H1) Two adjacent words in a summary are most likely to come from two adjacent words
in the document.
(H2) Adjacent words in a summary are highly likely to come from the same sentence in
the document, retaining their relative precedent relation.
(H3) Adjacent words in a summary are highly likely to come from the same sentence in
the document but in the reverse of their relative orders.
(H4) Adjacent words in a summary can come from nearby sentences in the document and
retain their relative order.
(H5) Adjacent words in a summary can come from nearby sentences in the document and
reverse their relative orders.
(H6) Adjacent words in a summary are not likely to come from sentences far apart.

Let X and Y be two word positions in a document: (s1, w1); (s2, w2), respectively, and
F (X|Y ) be a transition function between (s1, w1) and (s2, w2). Using the heuristic rules
(H1-H6) F (X|Y ) is defined in Table 4.1, where the value of P1 through P6 are parameters
and to be estimated manually.

4.2.3 HMM Solution

Let Prob(Ii(si, wi, di)|Ij(sj, wj, dj)) be the probabilistic transition between two features
(si, wi, di) and (sj, wj, dj) of two words Ii and Ij separately. Since two words in the sum-
mary document should come from two words in the original document, the probabilistic
transition is expressed by

Prob(Ii(si, wi, di)|Ij(sj, wj, dj)) (4.3)

= F ((si, wi)|(sj, wj)) × di × dj.

Using the heuristic rules described in Table 4.1 we can calculate F ((si, wi)|(sj, wj)). Thus,
two important aspects of defining the HMM model are as follows:
1) The state of the HMM is a feature that consists of sentence position, word position and
semantic distance.
2) The probabilistic transitions between two features are defined in (1).
Using the Bigram model, the probabilistic transition function is defined as,

Prob(I1, I2, ...IN) =
n−1∏
i=1

Prob(Ii+1|Ii). (4.4)

The task of finding the maximal likelihood of word sequence I : {I1, I2...IN} is equivalent
to defining a feature of each word within a sequence that maximizes (4.4).
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Table 4.1: Transition function table
Rule 1:
if ((s1 = s2) and (w1 = w2 − 1) then

F (X|Y ) = P1(the maximal value)
end if
Rule 2:
if ((s1 = s2)) and (w1 < w2 − 1) then

F (X|Y ) = P2 (the 2nd highest value )
end if
Rule 3:
if ((s1 = s2) and (w1 > w2) then

F (X|Y ) = P3 (the 3rd highest value )
end if
Rule 4:
if ((s2 − CONST < s1 < s2) then

F (X|Y ) = P4( the 4th highest value )
end if
Rule 5:
if (s2 < s1 < s2 + CONST ) then

F (X|Y ) = P5 (the 5th highest value)
end if
Rule 6:
if (|s2 − s1| >= CONST ) then

F (X|Y ) = P6 (the smallest value)
end if

4.2.4 Parameters Estimating

Jing and MacKewon [68] estimated the values of P1 through P6 by manually selecting
the values that give the best performance in the decomposition task. In the interest of
speed, it is important to be able to define these values of P1 through P6 automatically.
To define the values of P1 through P6 automatically, we use a GA algorithm, in which the
objective function is the difference between outputs of the sequence of features using the
Virterbi algorithm with the gold-standard sequence of features. The Viterbi algorithm
uses P1 through P6 as parameters and then defines the values P1 through P6, thus the
probability function (4.3) can be calculated directly. The semantic distance of two similar
words was defined by using the WordNet database and the measures described in reference
[70][71][72][73].

4.2.5 Position-checking algorithms

The position-checking algorithm solves the problem of finding a sequence of features that
maximizes both position-checking and formula (4.4). The complexity of this problem
is NP-Hard. To solve it we propose two heuristic algorithms. The first is an inside
checking algorithm which integrates the position-checking with a dynamic programming
algorithm (the Viterbi algorithm). The second is an outside position-checking algorithm.
The Viterbi algorithm was modified to find the best sequences of features. The position-
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checking algorithm was then used to select the sequence with the smallest possible number
of repetition positions.

Inside position-checking algorithm

The inside position checking algorithm integrates a position-checking function during the
running time of the Viterbi algorithm at each dynamic step. The algorithm tries to find
a maximal likely subsequence of features while avoiding the case in which two identical
features appear inside that sequence in each dynamic step. We describe some important
aspects of the algorithm as follows:

Let [i, j],Seq[i, j], and SCORE[i, j] be an index of a feature Li[j], a like sequence
of features at [i, j], and a maximal accumulated probabilistic value for Seq[i, j], respec-
tively. BACK[i, j] is used by the backtracking process to the likely sequence Seq[i, j].
BACK[i, j] = k if and only if SCORE[k, j − 1] × Prob(Ij = Lj[i]|Ij−1 = Lj−1[k]) is
maximal.
Using this definition, we describe the Viterbi algorithm for decomposition of human writ-
ten summary sentences as described in Algorithm 2.

There are three steps in the Viterbi algorithm for the decomposition problem: initial-
ization, iteration and sequence identification. The algorithm is explained more detail by
Viterbi [57].

To integrate a position-checking function during the runtime of the Viterbi algorithm,
we modify it by performing position checking after each step of the dynamic programming
algorithm.

If the summary document has at least two words the same, then the sequence of likely
features may also have at least two positions the same. If the output sequence of likely
features has two positions the same, then exist an index [i, j] satisfies Seq[i, j] has two
features the same. Thus, the position-checking function is equivalent to the process of
checking whether or not the sequence Seq[i, j] has some features which are the same. To
understand this, assume that Im, In, and Ik are three repetition words in the summary
document and consider the example in Figure 4.2.

(m, p) (n, p) (k, p)

mL
nL kL

Figure 4.2: An example of repetition position problem.
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Algorithm 2 The Viterbi algorithm

Input: Given a word sequence I1, I2, .., Ij , ..., IN , and a list of possible template features Lj of
each word Ij and Bigram probabilities.

Output: the most likely sequence of features
P [1], P [2]..P [j]..P [N ] with (j, P [j]) is position of word Ij .
{Initialization Step}

1: for i = 1 to M1 do
2: SCORE[i, 1] = 1; BACK[i, 1] = 0;
3: end for
4: for j = 1 to N do
5: Sort each list Lj follow increasing of position
6: end for

{Iteration Step}
7: for j = 2 to N do
8: if Lj is not empty then
9: for i = 1 to Mj do

10: SCORE[i, j] = max(SCORE[k, j − 1] × Prob(Ij = Lj[i]|Ij−1 = Lj−1[k]) with
k = 1,Mj−1

11: BACK[i, j] =index of k that gave the max
12: end for
13: else
14: for i = 1 to Mj−1 do
15: SCORE[i, j] = SCORE[i, j − 1]
16: BACK[i, j] = j − 1
17: end for
18: end if
19: end for

{Sequence Identification Step}
20: P [N ] = i that maximizes SCORE[i, N ]
21: for i = N − 1 to 1 do
22: P [i] = BACK[P [i + 1], i + 1]
23: end for
24: for j = 1 to N do
25: if Lj is empty then
26: P [j] =empty
27: end if
28: end for
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Figure 4.2 shows three identical features which are blue circles, suppose that they are
indexed in Lm, Ln, and Lk as (m, p), (n, p), and (k, p), respectively. The task of inside
position-checking is to avoid the appearing of (m, p), (n, p), and (k, p) in the likely sequence
of features. To check the sequence Seq(k, p), the naive algorithm has to back up to all
positions j where words Ij and Ik are repetitions, while the efficient algorithm only backs
up to the position j where Ij and Ik are repetitions and j is the first position before k.
Let K(j) be a set of elements i satisfying Ii = Ij; i < j and K(j)[t] be the tth element ;
|K(j)| is the total number of elements in K(j).

Algorithm 3 A naive checking position algorithm

1: u = i; v = j;
2: while v >= K(j)[1] do
3: u = BACK[u, v];
4: if u in K(j)and Lj[i] = Lv[u] then
5: return true;
6: end if
7: v = v − 1;
8: end while
9: return false;

Algorithm 3 shows a naive algorithm for position-checking. There are three steps from
the line 3 to the line 7 in the Algorithm 3, thus it takes 3(j −K(j)[1]) steps in the worst
case .

To reduce the total number of steps, an efficient algorithm using stack operations was
considered as follows.
Let STw[i][t] be a stack corresponding to Lj[i] with Ij = w at a step t . The number of
steps for position checking of a word w will be the number of occurrences of w within the
summary sentence.

Algorithm 4 An efficient checking position algorithm

Input: i,j,t
Output: repetition or not
1: v = j ;

u = i;
{back to previous repetition }

2: while v >= K(j)[|K(j)| − 1] do
3: u = BACK[u, v];
4: v = v − 1;
5: end while{copy elements}
6: STw[i][t] = STw[u][t − 1];
7: if Found Lj[i] in STw[i][t − 1] then
8: return true;
9: end if

10: Push Lj[i] into stack STw[i][t];
11: return false;

In Algorithm 4, the efficient algorithm only backs to the first repetition position and
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finds all the elements in the stack at that position to check whether it is a repetition
or not. Afterward, all elements will be stored in the current stack, for checking the
following position. Thus, we only backtrack to j − K(j)[|K(j)|] for position-checking
at (i, j). From the line 3 to the line 4 the algorithm takes two steps and one step for
the line 6. Note that the stacks are sorted and using binary searching (line 7) it takes
log(|K(j)|) steps, since the number of elements in the stack STw[i][t] is smaller than
|K(j)|. The worst case in line 10 takes log(|K(j)|) steps. Thus, the total number of steps
is 2(j − K(j)[|K(j)|]) + 2 × log(|K(j)|) + 1. We can say that the Algorithm 4 is always
efficiency than the Algorithm 3 by following expression.

Let TAL2 and TAL3 be the computational steps of Algorithm 3 and Algorithm 4 re-
spectively:

TAL2 = 3(j − K(j)[1]) = j − K(j)[1] (4.5)

+2(j − K(j)[|K(j)|])
+2(K(j)[|K(j)|] − K(j)[1])

TAL3 = 2(j − K(j)[|K(j)|])
+2 × log(|K(j)|) + 1 (4.6)

Since K(j)[|K(j)|] − K(j)[1] > |K(j)| then the equation above is given by.

TAL2 > j − K(j)[1] + 2(|K(j)|)
+2(j − K(j)[|K(j)|]). (4.7)

Since j − K(j)[1] > 0 and 2(|K(j)| > 2(log(|K(j)|) + 1
then the right hand side of (A.3) is expressed by.

j − K(j)[1] + 2(|K(j)|) + (4.8)

2(j − K(j)[|K(j)|])
> 2(j − K(j)[|K(j)|]) + 2log(|K(j)|) + 1.

From (A.3) and (A.4),we have

TAL2 > 2(j − K(j)[|K(j)|]) +

2 × log(|K(j)|) + 1. (4.9)

From (A.2) and (A.5), we obtain TAL2 > TAL3.

Outside position-checking algorithm

The goal of this algorithm is to use position checking on the output from the Viterbi
algorithm. We firstly modify the Viterbi algorithm to obtain the multiple best sequences
of features that satisfy the set of heuristic rules. Afterwards, a sequence among the
multiple best sequences of features whose has the smallest number of repetition features
is selected by a searching algorithm.

Table 4.2 shows an extension of the Viterbi algorithm in order to obtain the best
sequences features. Since we may have multiple sequence of features that SCORE[i, j]
are maximize. We extend the structure of BACK[i, j] in the Viterbi algorithm as an array,
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while it is an element in the original algorithm. The method of obtaining BACK[i, j] is
to add all indices k that maximize SCORE[i, j]. To obtain a feature sequence that has
a small enough number of repetition features we rely on an optimal searching problem.
We use the A* algorithm and a GA algorithm for handling this process with the target
function as the number of repeated features within a sequence.

Table 4.2: Differences between algorithms
Viterbi Algorithm The Modified Algorithm
BACK[i, j] = k that gave BACK[i, j]= Set of all indices k that
SCORE[i, j] maximal gave SCORE[i, j] maximal

Therefore, the main difference between this algorithm and the inside position-checking
algorithm is the use of the position-checking strategy. One uses it during the running time
of the Viterbi algorithm, the other is uses it on the result of the modified Viterbi algorithm.

4.2.6 Template HMM using Suffix Array

Template HMM Model

The HMM model described in Section 4.2 should be extended for the following reasons:
1. To handle the case in which some phrases in a summary document may come from

an occurrence or a paraphrase in the original document.
2. Working on phrases may reduce the total number of repetition positions. In addition,

information from a phrase is preferable to information from a word.
Following these points, each hidden state in the HMM is to be considered as an

occurrence of a phrase within the summary document for a new HMM model. The
position-checking algorithm is then applied to the new HMM model in the decomposition
problem.

We use a suffix array [75] to define all occurrences of a substring within the sum-
mary document in the original document. The execution time is O(w + log N), where
w is the length of substring and N is the length of the original document. Then, the
decomposition problem of the word sequences: {I1, I2, ..., IN} is equivalent to the decom-
position of a “template” sequence: {T1, T2, ..., TN}. Let each template Tk be defined as:
Tk = {{Ik}; {Ik, Ik+1}...; {Ik, Ik+1..., IN}}.
A multiple occurrence of template Tk is all occurrences of each substring that start from
index k and their similar occurrences in the original document. To define a similar occur-
rence of a phrase we used a small data set of our own paraphrases database. Using a suffix
array we are able to define all occurrences of Tk. Thus, the task of finding the likelihood
feature sequence for the word sequences I : {I1, I2...IN} is equivalent to obtaining the
maximum value of Equation (4.10) by the Viterbi algorithm.

Prob(I1, I2, ..IN) =
N−1∏
i=1

Prob(Ti+1|Ti) (4.10)

First, Tk is an interval of position in the original document and the semantic distance
of two words should be extended to the semantic distance between two phrases.
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Second, we design a probabilistic transition between two template states Tk and Tl as
follows:
Assume that Tk and Tl are two intervals in the original document and to be defined as
Tk[(xk, yk), (xk, y

′
k)] and Tl[(xl, yl), (xl, y

′
l)] respectively, in which (xk, yk) is a position as

mentioned in the formula section. The probability Prob(Tk|Tl) depends on the assignment
between two intervals of each element Tk and Tl . Prob(Tk|Tl) will be defined by using a
function F (Tk|Tl) for two intervals Tk and Tl as shown in Table 3.

The values of P1 through P7 can be estimated by using the algorithm described in

Table 4.3: Template transition function table
Rule 1:
if (xk = xl) and (y′

k = yl − 1 ) then
F (Tk|Tl) = P1 (maximal value)

end if
Rule 2:
if (xk = xl) and (y′

k < yl − 1 ) then
F (Tk|Tl) = P2 (the 2nd highest value )

end if
Rule 3:
if (xk = xl) and (yk > yl ) then

F (Tk|Tl) = P3 (3rd highest value )
end if
Rule 4:
if (xl − CONST < xk < xl ) then

F (Tk|Tl) = P4 ( 4th highest value )
end if
Rule 5:
if (xl < xk < xl + CONST ) then

F (Tk|Tl) = P5 (5th highest value)
end if
Rule 6:
if (|xk − xl| >= CONST ) then

F (Tk|Tl) = P6 (small value)
end if
Rule 7:
if (xk = xl )and (yk < yl < y′

k ) then
F(Tk|Tl) = P7 (2nd small value)

end if

Section 4.2.4. This process is similar to the process of estimating parameters for the
normal model. Using the function above, we can calculate the transition probability
Prob(Ti+1|Ti) directly. We assume that all notations in the HMM model have the same
meaning in the template-HMM model.

In Equation (4.10) when Tk is an occurrence of the substring Ik, Ik+1, ...Ik+l then the
following states Tk+1, Tk+2, ...Tk+l should be set to a “special” state because each element
Ik+l cannot appear in two different states. The number of following “special” states is
equal to the length of state Tk. The “special” state will store all the information of its
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previous state and the transition between the “special” state and following state is equal
to the transition between the previous state and the following state. In addition, The
number of “special” states at Lk will be equal to the number of states in Lk−1, which has
an interval length greater than 0 and Prob(Tk|special) = 1.

The Template-Viterbi Algorithm

To satisfy the new requirements of the template model, the Viterbi algorithm is modified
to a new algorithm, a Template-Viterbi algorithm. For the template-viterbi algorithm,
each template feature t will contain two information values that are the len of intervals
and the prev value, they are defined as t.len and t.prev respectively . The prev value is
pointed to the previous feature during the dynamic process.

Algorithm 5 The Template-Viterbi algorithm

Input: Given a word sequence I1, I2, .., Ij, ..., IN , and a list of possible template features
Lj of each word Ij and Bigram probabilities.

Output: the most likely sequence of features
P [1], P [2]..P [j]..P [N ] with (j, P [j]) is position of word Ij.
{Initialization Step}

1: The same Viterbi-algorithm
{Iteration Step}

2: for j = 2 to N do
3: if Lj is not empty then
4: num = Mj {number of features}
5: push all elements in Lj−1 has length is greater than 0 into Lj

6: for i = 1 to Mj do
7: if Lj[i].len > 0 and i >= num then
8: Lj[i].len = Lj[i].len − 1

SCORE[i, j] = SCORE[Lj[i].prev, j − 1]
BACK[i, j] = Lj[i].prev

9: else
10: SCORE[i, j] = max(SCORE[k, j − 1] × Prob(Ij = Lj[i]|Ij−1 = Lj−1[k])

with k = 1,Mj−1 and Lj−1[k].len > 0
11: BACK[i, j] =index of k that gave the max
12: end if
13: end for
14: else
15: Push all elements in Lj−1 has length is greater than 0 into Lj

16: for i = 1 to Mj−1 do
17: SCORE[i, j] = SCORE[i, j − 1]
18: BACK[i, j] = j − 1
19: end for
20: end if
21: end for

{Sequence Identification Step}
22: Similar to the Viterbi algorithm

Algorithm 5 described a Template-Viterbi algorithm for the template-HMM model.
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The initialization step and the sequence identification step are similar to the Viterbi al-
gorithm. The difference between two algorithms is at the iteration step. In the Template-
Viterbi algorithm at the step j all elements in Lj−1[k] satisfying Lj−1[k].len > 0 with
k = 1,Mj−1 will be stored into Lj[k] and their length interval will be decreased by 1, as
in line 5, line 7 and line 8. All the other elements in Lj−1 will be used in the finding
maximal process from the line 10 to the line 11.

Example

Assume that the phrase “there is a” comes from the original document at the following
positions {(1,2), (1,3), (1,4)}. The template model includes three elements:
T1 : {[(1, 2), (1, 4)], [(1, 2), (1, 3)], [(1, 2), (1, 2)]}
T2 : {[(1, 3), (1, 4)], [(1, 3), (1, 3)]}
T3 : {[(1, 4), (1, 4)]}
Two sequences for the template model will be:
S1 : {[(1, 2), (1, 4)], special, special}
S2 : {[(1, 2), (1, 3)], special, [(1, 4), (1, 4)]}
In the sequence S1 the states [(1,2),(1,4)] are followed by the “special” state and all its
information is to be stored in the “special” state.
Thus, Prob(S1) = Prob([(1, 2), (1, 4)]|special) ×Prob([(1, 2), (1, 4)]|special) = 1.
In the sequence S2 the state [(1,2),(1,3)] is also followed by the “special”. Thus, Prob(S2) =
Prob([(1, 2), (1, 3)]|special) ×Prob([(1, 2), (1, 3)]|[(1, 4), (1, 4)])
= Prob([(1, 2), (1, 3)]|[(1, 4), (1, 4)]).
Thus, the sequence S1 is preferred to the sequence S2. Although the two likely position
sequences are the same (1,2),(1,3),(1,4), the information stored in the last state of S1 is a
phrase [(1,2),(1,4)] while in the last state of S2, it is just a word [(1,4),(1,4)].

The position-checking algorithm with a suffix array may improve the accuracy because
it inherits the advantages of the position-checking algorithm while additionally working
on intervals. This results in reduced probabilities for exiting repetition features in the
output. The difference between the two algorithms described above is that the position-
checking algorithm is applied in a new style of HMM compared with the old model. Both
the inside and outside position-checking algorithms can be applied to that HMM model
in the decomposition problem.

4.3 Experiments

4.3.1 Experimental environment

For our experiment, we used the entire DUC2001 training data includes 319 pairs of
documents. The average number of words in a summary document was 100. The average
number of words in an original document was 973.7 . The average number of occurrences
of words and the number of repetition words in the original documents was 8.24 and
39.04 respectively. These parameters are large enough for checking-point algorithms. In
the second experiment, we used the telecommunication corpus that we obtained from free
daily news service Communication-Related Headlines provided by Benton Foundation
(http://www.benton.org).
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The original Viterbi algorithm and our modified Viterbi algorithm were tested on a
Pentium III PC, 1,200MHz in a Windows XP environment.

4.3.2 Experiment of parameters estimating

We used the training extract directory in the DUC2001 data to estimate parameters for
our HMM model. This directory contains human-generated extracts for single document
summarization based on the DUC01 training data (total 146 documents). The extracts
are sentence -based and were derived to cover the same information content given in the
DUC01 training abstracts. this set of extracts and summary documents was used to
generate the corresponding sequence of features by applying our decomposition program
with the default parameters (P1 = 0.9, P2 = 0.8..., P6 = 0.3). Afterward, we manually
corrected each sequence of features generated by our decomposition method.

The results became gold-standard data and were used for the training and evaluation
processes. The GA algorithm as described in Section 4.2.4 was used to estimate the
parameters’ values for both the normal model and the template model. The training data
are the set of documents and their summaries which correspond to the gold-standard
sequence of features.

Our population size for the GA algorithm was 200 chromosomes and the number of
generations of GA algorithm was limited to 40. Each gene in our experiment is a vector
and must satisfy a condition that its order is decreased. Parameter values for both the
normal model and the template model were obtained after running the GA algorithm.

4.3.3 Experiment accuracy

We conducted experiments to evaluate the accuracy of the decomposition task as follows.
The corrected outputs of the decomposition task were used to evaluate the accuracy of our
decomposition results. We randomly selected 32 documents and their summaries from the
total of 319 documents. The WordNet database was used to randomly replace words with
their synonyms. We only replaced nouns because the only four main grammatical objects
in the WordNet database are: “noun”, “verb”, “adjective” and “adverb”, and summary
documents are rich in nouns. Finally, corrected decompositions were made for these doc-
uments. Table 4.4 reports the average number of output repetition positions after using

Table 4.4: Repetition output results of algorithms
Algorithms Arg.Repetition Words Execution.time
Baseline 5.24 24.85(second)
Ins.PC 0 29.54(second)
Out.PC 2.60 31.29(second)
Temp.Suff 1.60 36.41(second)

the baseline from [68] along with inside check, outside check, semantic distance and com-
bination between outside position-check algorithm and suffix array indexing algorithms.
The number of output repetition features in the baseline algorithm is 5.24. The total
number of output repetition features is reduced when the position-checking algorithm is
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applied. The inside position-checking algorithm reports zero repetition features because
this method always avoid the case that two same features appear in the process of finding
a best sub-sequence. The result of the outside algorithm is 2.6 because the process of
optimal searching tries to find a sequence that has total repetition features as few as pos-
sible. This number will be reduced if we increase the times for searching. The algorithm
using position-checking with a suffix array has the smallest total number of repetitions
(1.6) because it inherits the advantage of the position-checking algorithm. In addition,
this algorithm uses substrings for indexing so, the probability of exiting with repetition
features in the output is reduced. The execution times in Table 4.4 show that all of the
algorithms are fast enough. Our algorithms are slower than the execution times of the
original algorithm but that difference is acceptable.

Table 4.5: Occurrence words
Parameter.Eval Base Line Semantic Distance
Avg. occurrences 20.82 13.2

The average of the total number of repetition positions that appeared in the output
of a decomposition task for each summary sentence was 5.24. There were no repetition
positions (features) in the output from the decomposition task when using the position-
checking function.

Table 4.5 shows that the average of the total number of words that had no occurrence
in the original document was 20.82, and after applying the semantic distance measure, this
value decreased to 13.2 words. This was because some words in the summary document
corresponded semantically to some words in the original document. We suspect that this
value would be decreased if the semantic distance measure was extended by measuring
words in the summary document against phrases in the original document.

To compare the accuracy of the two methods, we manually produced the correct output
for each document, and evaluated the accuracy for each output of the decomposition task.
We use three measures as follows,

precision =
total correct phrases

total phrases in the output sequence

recall =
total correct phrases

total phrases in the gold-standard sequence

F − measure =
2 × precision × recall

precision + recall

The baseline method does not combine the semantic distance measure and position-
checking function. We tested four methods and tested on the same data in order to
compare their accuracies. We also compared the semantic distance method integrated
with the inside position-checking function and the outside position-checking separately
with the original algorithm.

Table 4.6 shows the decomposition accuracies of four algorithms: Baseline algorithm,
inside position-checking, outside-position checking, and outside position checking on the
template model using suffix array. The algorithm using position-checking on the template
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Table 4.6: Decomposition Accuracy result
Algorithm Precision Recall F-measure
Baseline 0.791 0.700 0.738
Ins.PC 0. 841 0.741 0.785
Out.PC 0. 845 0.745 0.786
Temp.Suffix 0. 873 0.770 0.810

HMM model gave the best accuracy (0.87) because this algorithm inherits the advantage of
a position-checking algorithm and the advantage of defining a subsequence of words within
the summary document in the original document. Therefore, our algorithms ensure both
accuracy and execution speed when compared to the original algorithm. The accuracy is
improved and the execution times are sufficiently fast.

4.3.4 Human Judgments of Decomposition Results

In this portion of the experiment, we re-ran Jing and McKewon’s experiments by using
human judgment for the decomposition task in a telecommunications corpus [68]. We
first selected 50 summaries from a telecommunication corpus and ran the decomposition
program. We then asked humans to judge the decomposition results, in order to compare
our results with the original .

The judge was asked to decide whether the decomposition results were correct. A
result was considered correct when all three questions posed in the decomposition were
correctly answered. The decomposition program needed to define three questions: (1) Is
a summary sentence constructed by reusing the text from the original document? (2) If
so, what phrases in the sentence come from the original document? (3) From what part
of the original document do the phrases come?

The 50 summaries contained a total of 300 sentences. The accuracies of the algorithms
as determined by human judgment are computed by the rate of total correct phrases and
total sentences.

Table 4.7 shows the decomposition results using human judgment of the baseline
method, the inside position-check, the outside position-check, and the template HMM.
Table 4.7 indicates that our algorithms outperformed the baseline algorithm in decom-
posing summary documents. The template HMM archived the best accuracy. The results
of the baseline, the inside position-check and the outside position-check were not so much
differences. This was because in the telecommunication corpus, human prefers use para-
phrases to express meaning of a phrase than use synonyms to express meaning of a word.
The template HMM outperformed other methods in decomposing summary documents
because it can use paraphrase database in defining a subsequence of words within the
summary document in the original document.

4.4 Conclusions

In this paper, an HMM solution was extended for the decomposition problem, to adapt
to the case in which a word within a summary sentence does not appear in the original
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Table 4.7: Human Judgment of Decomposition Results
Baseline Ins.PC Out.PC Template.Suffix
0.913 0.914 0.916 0.943

document. The Viterbi algorithm was modified by adding position-checking to prevent
errors when a likely feature sequence has at least two identical features. The template
HMM model using suffix array which has the advantage of the position-checking algorithm
and also utilizes rich information from phrases was also presented.

The experiment using DUC2001 data and telecommunication corpus showed that our
methods were more accurate than the baseline algorithm for the test data. We believe
that with a good semantic distance measure between two phrases, the decomposition task
will be further improved.

Work on extending the semantic measure for the decomposition task is currently un-
derway. Use of a fixed model compared with the Bigram model shows promise.
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Chapter 5

Sentence Extraction Based
Statistical Learning

5.1 Introduction

Sentence extraction is the task of identifying important sentences in the text. The major-
ity of early extraction research focused on the development of relatively simple surface-
level techniques that tend to signal important passages in the source text. Typically, a
set of features is computed for each passage, and ultimately these features are normalized
and summed. The passages with the highest resulting scores are sorted and returned as
the extract. Early techniques for sentence extraction computed a score for each sentence
based on the features such as positions in the text [77], word and phrase frequencies [79],
key phrases (e.g., “In conclusion...”) [11]. Recent extraction approaches use more sophis-
ticated techniques to determine which sentences to extract; these techniques often rely on
machine learning to identity important features, on natural languages analysis to identify
key passages, or on relations between words rather than bags of words.

The application of machine learning to summarization was pioneered by Kupiec [36].
In this work they developed a summarizer using a Bayesian Classifier to combine features
from a corpus of scientific articles and their abstracts. Aone et al. [76] and Lin [83]
experimented with other forms of machine learning and its effectiveness. Learning indi-
vidual features has been also reported by Lin and Hovy [84]. In these tasks, the affect of
position sentences, important words and phrases to the selection of sentences were inves-
tigated. Some recent works [40] has turned to the use of Hidden Markov Model (HMMs)
and pivoted QR decomposition to reflect the fact that the probability of inclusion of a
sentence in an extract depends on whether the previous sentence has been included as
well. Hirao and Matsumoto [38] applied support vector machines to sentence extraction
and showed an advantage in comparison with earlier sentence extraction methods because
of using high dimension space of features. Osborne [13] proposed an alternative approach
to sentence extraction using a maximum entropy model. The author indicated that with
a set of dependent features, maximum entropy models were not only suitable for sentence
extraction but also outperformed sentence extraction using naive Bayses classifier.

Although using machine learning to sentence extraction is one of the best approaches,
training data for the learning purpose are not much available. For this reason, several
researchers have attempted to produce training data automatically based on text docu-
ments and their summaries [25],[67]. The results for this task are good for some kinds of
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text documents (e.g news), but human corrections are still required.
Co-training are considered as suitable methods in dealing with unlabeled data to en-

hance the performance of a learning task [78]. For example, they have been successful
applied to various natural language processing problems such as word sense disambigua-
tion [85], named entity recognition[86], noun phrase bracketing [87], and statistical parsing
[88]. In this chapter, we will show the potential of co-training method in dealing with
unlabeled data for sentence extraction task. We also propose a co-training version based
on maximum entropy classification so called Co-MEM and indicate that Co-MEM is a
suitable technique for sentence extraction task.

The rest of this chapter is structured as follows. Section 5.2 introduces the sentence
extraction using MEM. Section 5.3 presents Co-training technique for sentence extrac-
tion. Section 5.4 presents implementation and experimental results; Section 5.5 gives our
conclusions and presents some remaining problems to be solved in our future works.

5.2 Sentence Extraction using MEM

As present in Chapter 3, the parametric form a conditional maximum entropy is as follows
[60]

P (c|s) =
1

Z(s)
exp(

∑
i

λifi(c, s)) (5.1)

Z(s) =
∑

c

exp(
∑

i

λifi(c, s)) (5.2)

Here c is a label (from a set of label C) and s is a sentence we are interested in labelling.
C consists of two labels: one indicating that a sentence should be in the summary (’true’)
and another label indicating that the sentence should not be in the summary (’false’).
Using maximum entropy model, the training data for sentence extraction are viewed as a
set of features. For example, a feature captured the idea that the abstract-worthy sentence
contain the words “in conclusion” can be expressed as follows;

fi(c, s) =

{
1 if s contains ”in conclusion” and c = true
0 otherwise

(5.3)

The problem of maximum entropy modes (MEMs) is how to estimate the weight
values which are associated with features. The detail of the maximum entropy model are
discussed in Chapter 3. The key problem of using maximum entropy is how to determine
features and feature selections. The following subsections will present the feature sets and
feature selections for our sentence extractions task.

5.2.1 Features

Feature sets for our maximum entropy are selected based one some methods bellow:

• Location method: Including the position of sentences within documents. These
sentences in the beginning or in the end of a given text document are highly relevant
to the text’s gist meaning.
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• Length method: A short sentence is preferred to be an important sentence. The
length here means the number of words in the sentence. We use there value of the
length sentence, whether a sentence was less than 6 words, whether it was greater
than 20 words, or whether it was between two ranges. The feature encoded whether
a previous sentence was less than 5 words or longer is also used. This was because it
captures the idea that summary sentences tend to follow headings (which are short).

• Relevant to title: These sentences are similar to the title of a given texts are
likely to be an important sentence. We compute the number of words in the title
occurs in the sentence. It was normalized by the length of the sentence. We used
four values: no title, > 0.01, > 0.05, and > 0.1.

• Term frequency and document frequency (tf-idf): Term frequency (freqi),
i.e the number of times a word appears in the document. This is a measure of how
salient the word is with the document. Document frequency (ni) is the number
of documents in which the word a appears. This measures how informative the
words is: If a word appears many times in only one document then it is informative.
Assume that the number of documents in corpus is N, the ratio between the two
frequencies is compared in order to find thematic words:
score(wi) = freqi × log(N) − log(ni)

• Cue phrase: A sentence used some phrases which emphasize the author’s view
can be an important sentence. Such a phrase is called cue phrase. For instance the
phrase “In this paper we...” suggest that the sentence will include the aims of the
paper.

• Distance: Distance of a word within a sentence to its previous occurrence has been
shown useful for sentence extraction. The features are used to recognize the style
of human in writing [39]. We divide the five following values for the features. ≤ 1,
2-3, 4-7, 8-15, and 16+.

• Similar distance occurrences: Distance of a word within a sentence to its pre-
vious similarity. Five values: ≤ 1, 2-3, 4-7, 8-15, and 16+ are used in the similar
distance feature.

• Section Structure: Sentence in section (e.g., Introduction or Conclusion) are
distinguished according to their occurrences. We used three values, occurs in first,
second, or last of paragraph.

• Name Entity: The boolean value ’1’ indicates that a certain Named Entity class
appears in a sentence. There are eight Named Entity classes:
PERSON, LOCATION, ORGANIZATION, ARTIFACT, DATE, MONEY, PER-
CENT, TIME.

• Compound words: Using a list of compound words, a sentence will be decomposed
into a sequence of compound words. They are used a features.

In final, we deleted any feature that occurred less than 4 times.
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5.2.2 Summary Size

A summary size is considered as a number of words or number of sentences in a summary.
Controlling summary size is interested in almost every works on sentence extraction. This
subsection will address a method of using maximum entropy mode to control a size of
sentence extractions. The natural way is that we rank all sentences by decreasing score
obtained from a measure method. We then obtain the top k sentences so as to their
size is equal to the summary size. For a given sentence s, using conditional maximum
entropy we could obtain two scores by the probabilities P (′true′|s) and P (′false′|s). A
sentence obtain a high score P (′true′|s) and a small score P (′false′|s) is likely chosen
as an important sentence. In contrast, the sentence with a high score P (′false′|s) and a
small score P (′true′|s) is likely to be a unimportant sentence. This intuition motivates a
score measure for a sentence s as P (′true′|s) − P (′false′|s).

5.3 Co-Training Sentence Extraction

5.3.1 Co-Training Algorithm

Co-training is one of a weakly supervised learning technique which uses an initial small
amount of labeled data to automatically bootstrap larger sets of automatically training
data. It is in general applied to the problem where there are two distinct views of example
in the data-set. The algorithm learns separate classifiers over each of the view, and
augments a small set of labeled example by incorporating unlabeled example. In the
final, it combines their predictions to decrease classification errors.

Algorithm 6 shows the outline of the co-training algorithm in which the two distinct
views V1 and V2 are selected to learn labeled and unlabeled data. Two classifiers h1 and
h2 over each view are then upgraded incrementally with a few initial labeled examples.
At every iteration, each classifier chooses unlabeled examples and adds them to the set
of labeled examples, L. The selected unlabelled examples are those which each classifier
can determine their labels with the highest confident. After that, the classifier are trained
again using the new labeled examples. The final classifier are obtained by combining of
the two classifiers of the two views. Assume that the probabilities to obtain a class cj

for a given example x of view V1 and V2 are Ph1(cj|x) and Ph2(cj|x), respectively. The
probability of the final model can be then estimated as

P (cj|x) =Ph1(cj|x)Ph2(cj|x) (5.4)

5.3.2 Two Views and Selection Examples

Two Views

The set of features mentioned above are divided into two views as follows:

• Distance feature including all features of a sentence which are relevant to other
sentences such as distance occurrence, and similar distance occurrence.

• Isolated Feature: The single features of a sentence, it includes all information feature
for a sentence.
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Algorithm 6 An outline of the co-training algorithm.

Given L: a set of labeled examples, and U : a set of unlabeled exam-
ples.

while |U | > 0 do
Train classifier h1 on view V1 of L.
Train classifier h2 on view V2 of L.
Allow h1 to determine labels of examples in U
Allow h2 to determine labels of examples in U
Determine U ′ ⊂ U, whose elements are most confidently labelled by h1 and h2.
U = U\U ′

L = L + U ′

end while

Table 5.1: Two views
Feature name Relation views Isolated views
Position N Y
Sentence Length N Y
Named Entity N Y
Section structure N Y
Similar distance Y N
Distance Y N
Tif-dif N Y
Cue phrase Y N
Relevant to title Y N
Compound noun title N Y

We divide a set of features into two views including the relation view and the isolated
view which are as shown in the Table 5.1. A feature which belongs a view was noted ’Y’.
Otherwise, it was noted ’N’.

Using each view to extract features we then have two maximum entropy models cor-
respond with each view.

Example Selection

A unlabeled example is considered to be a training example, if both the maximum entropy
models are highly agreement in labeling or the measure score is greater than a thresh-
old. Since it is difficult to determine the threshold, we use a simple method as follow.
The selected unlabeled examples are those that each classifier can determine their labels
with the highest confident. We sort all unlabeled examples according to their values of
agreement and take the k top ones. In our experiment, k was set to 50.
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5.4 Experiments

To evaluate the performance of the proposed sentence extraction algorithm, we implement
it on C++ with Windows XP environment and test it on the DUC data and the Comp-lang
data [37]. These were 80 conference papers, taken from the Comp-lang preprint achieve,
and converted it to XML format. The XML annotated documents were then additionally
manually marked-up a tags indicating the status of various sentences. Here are some
properties of the documents. On average, each document contained 8 sentences that
were marked as being abstract-worthy. The document on average contained in total 174
sentences. We randomly selected 70 documents to generate training data for our maximum
entropy models in which the average number of examples is 11,077. The remaining 10
documents are used for testing the performance of extraction task.

We used two different experiments as bellow: In the first experiment, we use our Co-
MEM method with a small number of training data and a larger number of unlabeled
data in order to compare with the sentence extraction based maximum entropy using a
larger number of labeled data. In the second experiment, we want to know how unlabeled
data can effectively increase the performance of sentence extraction using a small number
of training data.

For the first experiment, we selected randomly a subset of 6,000 labeled examples
in the total 11,077 examples as a training data. The remaining examples were served
as unlabeled data for the Co-MEM algorithm. With these data, we estimate the MEM
model and Co-MEM for sentence extraction using the GIS training algorithm (See the
chapter 3 for the detail of the algorithm).

Figure 5.1 depicts F-measure scores of the Co-MEM and MEM for sentence extraction
on various summarization sizes. The results show that using a small labeled examples
and larger number of unlabeled examples, we can obtain a comparable results to using
whole labeled data. It shows that using Co-MEM slightly outperforms using MEM for
the whole training data. This was because using Co-MEM we might remove some noisy
examples which are not helpful for maximum entropy models.

For the second experiment we collected training data from DUC corpus by performing
our decomposition program to obtain sentence extraction corpus and sentence reduction
corpus (see Chapter 3). After manually corrected them, we obtained more than 6,000 sen-
tences in which each sentence corresponds to a label that reflects the sentence is important
or not. The remaining data are treated as a set of unlabeled data for the co-training algo-
rithm. We used 20,000 unlabeled data for our experiment. The F-measure score is used
to compare the performance of the MEM and the Co-MEM for sentence extraction.

Figure 5.2 clearly indicates that the precision and recall of using Co-MEM are better
than those of MEM for various summarization size. It also shows that the performance
of MEM for sentence extraction is better than that of the leading based method. This
was because MEM could combine many other useful features than the position features.
These results thus show that using unlabeled data can boost the performance of sentence
extraction in comparison with using only training data.

5.5 Conclusions

In this chapter, we propose a novel sentence extraction using maximum entropy model in
which a new set of features is used to improve the performance on sentence extraction.
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Figure 5.1: The performances of Co-MEM using a part of training data and MEM using
whole data on sentence extraction with various size of summary.

Figure 5.2: The performances of Co-MEM, MEM, and Lead method on sentence extrac-
tion with various size of summary.
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Experiment results on DUC corpus and cmpl corpus show that the proposed method
improved the Lead-based one. We also propose a co-training using maximum entropy
model (Co-MEM) which can utilize the unlabeled data to enhance the performance of
sentence extraction task. Experiment results show that the Co-MEM model outperformed
the conventional maximum entropy model on sentence extraction in term of precision and
recall measures. This clearly indicates that unlabeled data is useful for sentence extraction
using machine learning and co-training is a suitable technique.

In future work, we will focus on testing the Co-MEM on a larger corpus such as DUC-
2002 and DUC-2003. Other week learning techniques than the co-training algorithm are
also considered for applying to sentence extraction problem.
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Chapter 6

Statistical Machine Learning for
Sentence Reduction

6.1 Introduction

Automatic text summarization research has focused on the extraction or identification
of important clauses, sentences, and paragraphs in the given texts. The essence of this
research is sentence reduction, i.e., reducing long sentences to short sentences so that the
gist meaning of the short sentence is the same as that of the original [1].

Several methods have been proposed for sentence reduction in various applications.
Grefenstette [15] proposed a method to remove phrases in sentences to produce a tele-
graphic text that could be used to provide audio scanning services for the blind. Dolan
[16] proposed a method to remove clauses in sentences before indexing the document
for information retrieval. Those methods remove phrases based on their syntactic cate-
gories, without relying on the context of the words, phrases, and sentences around them.
Hence, these methods, which do not exploit semantic information, are unsuitable for text
summarization.

The most popular methods of sentence reduction for text summarization are corpus
based methods. Jing [17] studied a method to remove extraneous phrases from sen-
tences by using multiple sources of knowledge to decide which phrases could be removed.
Those multiple sources include syntactic knowledge, contextual information, and statis-
tics computed from a corpus that consists of examples written by human professionals.
Jing’s method prevents the removal of some important phrases that are relative to the
surrounding context and produces a grammatical sentence. However, while this method
exploits a simple model for sentence reduction by using statistics computed from a corpus,
a better model can be obtained by using a learning approach.

Knight and Marcu [14] proposed a sentence reduction based on corpus using machine
learning technique. They discussed a noisy-channel based approach and a decision tree
based approach to sentence reduction. Their algorithms provide the good way to scale
up the full problem of sentence reduction using available data. However, these algorithms
involve the constraint that the word order of a given sentence and its reduced sentence are
the same and this prevents an efficient text summarization. Nguyen and Horiguchi [18],
[19] presented a new sentence reduction technique based on a decision tree model without
that constraint. They also indicated that semantic information is useful for sentence
reduction tasks.

55



The major drawback of previous work on sentence reduction is that those methods are
likely to output local optimal results, which may have lower accuracy. This problem is
caused by the inherent sentence reduction model; that is, only a single reduced sentence
can be obtained. As pointed out by Lin [20], the best sentence reduction output for a
single sentence is not approximately best for text summarization. This means that local
optimal refer to the best reduced output for a single sentence and the best reduced output
for the whole text is global optimal. Therefore, it is very valuable if the sentence reduction
task can generate multiple reduced outputs and select the best one using the whole text
document. However, such a sentence reduction method has not yet been proposed.

The aim of this chapter is to illustrate the potential of statistical machine learning
in enhancing the accuracy of sentence reduction in comparison with previous works. For
this purpose the statistical learning models including MEMs and SVMs are used in our
sentence reduction algorithms.

Beside, a novel deterministic method for sentence reduction using SVMs and a two-
stage method using pairwise coupling [100] are described. Furthermore, to solve the
problem of generating multiple best outputs, we propose a probabilistic sentence reduction
model, in which a maximum entropy model and a two-stage probabilistic SVMs using
pairwise coupling are discussed.

The rest of this chapter will be organized as follows: Section 6.2 presents the previous
works on sentence reduction and our deterministic sentence reduction using SVMs and
MEMs. We also discuss remained problems of deterministic sentence reduction. Section
6.3 presents a probabilistic sentence reduction using statistical learning to solve this prob-
lem. Section 6.4 presents implementation and experimental results; Section 6.5 gives our
conclusions and presents some remained problems to be solved in our future work.

6.2 Deterministic Sentence Reduction

Several studies have been proposed for sentence reduction [14], [17], [19]. Among these
methods, the corpus based methods described in [14] showed an advantage in comparison
with the others. These methods can provide a good way to scale up the full problem of
sentence reduction, as vast amounts of train data are widely available in the form of docu-
ment/abstract pairs. The sentence reduction model as described in [14] could not deal with
the changeable order problem and did not use semantic information. To overcome these
problems, we extended the sentence compression decision tree model with an assumption
that supporting semantic information will generate action decisions with more accuracy.
To integrate semantic information into our model, the original sentence was parsed into a
syntactic tree using Charniak’s parser[91]. Afterward, the syntax tree was enriched with
semantic information using the WordNet database[92] and a sub-categorization table that
describes the syntactic and semantic role for verbs. The following sections present a sen-
tence reduction technique based on a decision tree model using rich semantic information.

We will now briefly outline the corpus based sentence reduction algorithms and present
a novel deterministic sentence reduction method using SVMs. Furthermore, we discuss
their disadvantages and point out a solution to overcome these problems.
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6.2.1 Problem Description

The problem of sentence reduction is to reduce original sentences into short sentences
while retaining the gist meaning. In the corpus based decision tree approach, a given
input sentence is parsed into a syntax tree and the syntax tree is then transformed into
a small tree to obtain a reduced sentence. The syntax trees follow the phrase structure
grammar. Figure 6.1 shows the syntax tree of the sentence “He is a student”. Each word
is allocated at leaf node and the parent node is the part of speech (Pos) tag for the word.
The intermediate nodes in the syntax tree are labelled by grammar symbols. For example,
the grammar symbol “VP” has a children node “AUX” which is the POS tag of the word
“is”.

Figure 6.1: The syntax tree of the sentence “He is a student”

Let t and s be syntax trees of the original sentence and a reduced sentence, respectively.
The process of transforming syntax tree t to small tree s is called a rewriting process [14].
To transform the syntax tree t to the syntax tree s, some terms and five rewriting actions
are defined.

An Input list consists of a sequence of words subsumed by the tree t where each word
in the Input list is labelled with the name of all syntactic constituents in t. Let CSTACK
be a stack that consists of sub trees in order to rewrite a small tree. Let RSTACK be a
stack that consists of sub trees, which are removed from the Input list in the rewriting
process.

• SHIFT action transfers the first word from the Input list into CSTACK. It is written
mathematically and given the label SHIFT.

• REDUCE(lk,X) action pops the lk syntactic trees located at the top of CSTACK
and combines them into a new tree, where lk is an integer and X is a grammar
symbol.
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• DROP X action moves subsequences of words that correspond to syntactic con-
stituents from the Input list to RSTACK. Both REDUCE and DROP actions are
used to derive the structure of the syntactic tree of the reduced sentence. They are
written as DROPX with X as a grammar symbol.

• ASSIGN TYPE X action changes the label of trees at the top of the CSTACK.
These POS tags might be different from the POS tags in the original sentence.
These actions are written as ASSIGN TYPE X, in which X represents a POS tag.

• RESTORE lk action takes the lkth element in RSTACK to remove that element into
the Input list, where lk is an integer. This action is designed with the assumption
that a sub-tree removed from the input list still affects the current decision.

For convenience, let configuration be a status of Input list, CSTACK and RSTACK.
Let current context be the important information of a configuration. The important
information are defined as a vector of features using heuristic methods as in [14], [18].

We are now summarizing a sentence reduction algorithm based on a decision tree
model. The main idea behind the corpus based decision tree approaches are to automat-
ically learn a set of rules from a corpus, and to apply the rules repeatedly to reduce a
sentence. Here, one rule corresponds to the function that maps the current context to a
rewriting action. These rules are learned automatically from the corpus of long sentences
and their reduced sentences [14], [18]. Algorithm 7 shows that a given input sentence is
parsed and each word in the Input list is matched to the corresponding word in the sen-
tence and the sequence of syntactic constituents beginning with each word. An Input list
and two stacks for a given input sentence are obtained by line 1 and line 2, respectively.
The current context is obtained from line 4. An action and a parameter for that context

Algorithm 7 A sentence reduction algorithm based on decision tree

1: The input sentence is parsed into a syntax tree
2: Create an input list and set CSTACK and RSTACK to empty.

s= Initial configuration
3: while not terminal condition do
4: context=get-context(s);
5: action= get-action(context);
6: parameter=get-parameter(action);
7: switch (action)
8: case SHIFT: SHIFT();
9: case ASSIGN TYPE: ASSIGN-TYPE(parameter);

10: case REDUCE: REDUCE(parameter);
11: case DROP: DROP(parameter);
12: case RESTORE: RESTORE(parameter);

{Obtain a new configuration s}
13: end while
14: Obtain a reduced tree
15: Generate a reduced sentence from the reduced tree

are obtained by using the function get-action in line 5 and get-parameter in line 6. The
functions get-action and get-parameter are used to get action and parameter information
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for performing the action SHIFT, DROP, RESTORE, ASSIGN-TYPE and REDUCE.
The algorithm repeats these actions until the terminal condition is satisfied; that is, when
Input list is empty and there is only one sub-tree in CSTACK with its root node as the
one of the terminal symbols (the symbol to recognize it as a root symbol). Summarily,
Algorithm 7 is a deterministic sentence reduction version, its behavior is illustrated in the
following section.

6.2.2 Example

Figure 6.2 shows an example of applying a sequence of actions to rewrite the input sentence
(a, b, c, d, e), where each character is a word. The original tree t is transformed to the Input
list, in which the square and circle represent the intermediate node and the leaf node of
the syntax tree, respectively. The structure of the Input list, two stacks, and the term
of a rewriting process based on the actions mentioned above are illustrated in Figure 6.2.
For example, in the first row, DROP H deletes the sub-tree with its root node H in the
Input list and stored it in the RSTACK. The Input list is changed to the new status, with
the sub-tree with its root node A as shown in the second line. The reduced tree s can
be obtained after applying a sequence of actions as follows: DROP H; SHIFT; ASSIGN
TYPE K; DROP B; SHIFT; ASSIGN TYPE H; REDUCE 2 F; RESTORE H; SHIFT;
ASSIGN TYPE D; REDUCE 2G. In this example, the reduced sentence is (b, e, a). As
we can see, the SHIFT action and ASSIGN TYPE K action rewrites the POS tag of the
word b in step 2-3; the REDUCE actions modify the skeleton of the tree given as input
in steps 7, 8 and 11. DROP actions delete a sub tree from the Input list and store it into
RSTACK.

6.2.3 Learning Reduction Rules

As mentioned above, the action for each configuration can be guessed by using a learning
rule, which map a context to an action. To obtain such rules, the configuration is repre-
sented by a vector of features with a high dimension. After that, we estimate the training
examples by using several support vector machines to deal with the multiple classification
problem in sentence reduction.

Features

One of the important task in applying SVMs to text summarization is to define features.
In this section, we describe features used in our sentence reduction models.

The features are extracted based on the current context. As it can be seen in Fig-
ure 6.3, a context includes the status of the Input list and the status of CSTACK and
RSTACK. We define a set of features for a current context as follows:

Operation feature
These features reflect the number of trees in CSTACK and RSTACK, and the type of last
five actions. We also used the features represents for the information of two stacks, as
the information denotes the syntactic category of the root nodes of the partial trees built
up to a certain time. We considered the ten last partial trees in CSTACK and RSTACK
for obtaining syntactic category of their root nodes, and the Pos tag of a last word in
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Figure 6.2: An Example of Rewriting Process

CSTACK is also considered as a feature.

Original tree feature
These features denote the syntactic constituents that start with the first unit in the Input
list. For example, in Figure 6.3 the syntactic constituents are labels of the current element
in the Input list from “NP” to the verb “convince”.

Semantic features
The followings are used in our model as semantic information.

• Semantic information about current words within the Input list; these semantic
types are obtained by using the named entities such as LOCATION, PERSON,
ORGANIZATION and TIME within the input sentence. To define these name
entities, we use the method described in [94].

• Semantic information about whether or not a word in the Input list is a head word.

• The word relations such as whether or not a word is in a relation with other words
in the sub-categorization table. These relations and the sub-categorization table are
obtained by using the COMMLEX database [97].
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Figure 6.3: Example of Configuration

Using the semantic information, we are able to avoid deleting important segments within
the given input sentence. For instance, the main verb, the subject and the object are
essential and for the noun phrase, the head noun is essential, but an adjective modifier of
the head noun is not. For example, let us consider that the verb “convince” was extracted
from the COMLEX database as follows.

convince
NP-PP: PVAL (“of”)
NP-TO-INF-OC

This entry indicates that the verb “convince” can be followed by a noun phrase and a
prepositional phrase starting with the preposition “of”. It can be also be followed by a
noun phrase and a to-infinite phrase. This information shows that we cannot delete an
“of” prepositional phrase or a to-infinitive that is the part of the verb phrase.

Two-stage SVMs Learning using the Pairwise Coupling

Using these features we can extract training data for SVMs. Here, a sample in our
training data consists of a pairs of a feature vectors and an action. The algorithm to
extract training data from the training corpus are modified using the algorithm described
in our pervious work [18].

Since the original support vector machine (SVM) is a binary classification method
while the sentence reduction problem is formulated as multiple classification, we have
to find a method of adapting support vector machines to this problem. The multi-class
classification problem refers to assigning each observation into one of k classes. As two-
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class problems are much easier to solve, many authors proposed to use two-class classifiers
for multi-class classification. For multi-class SVMs, one can use the strategies such as
one-vs all, pairwise comparison or DAG graph [102]. In this paper, we use the pairwise
strategy that constructs a rule for discriminating pairs of classes and then selecting the
class with the most winning among two class decisions.

Since the number of class labels in our training data can be large, the cost of using
the pairwise method could be high. Fortunately, for the sentence reduction problem, the
class labels belong to one of five groups: SHIFT, REDUCE, DROP, ASSIGN TYPE and
RESTORE. So, we could boost the training time and the reduction performance by using
a simple method described below.

Suppose that the examples were divided into five groups m1,m2, ...,m5. Let SVMC be
multi-class SVMs using pairwise coupling method and let SVMC-i be multi-class SVMs
for a group mi. The idea of our two-stage strategy for SVMs multiple classification is that
a given example can be recognized by using two stages separately. In the first stage, we
use one SVMC classifier to recognize to which group a given context e should belong.
Assume that e belongs to the group mi. In the second stage, each classier SVMC-i is
used to recognize a specific action for e. The five other classifiers SVMC-1, SVMC-2,...,
SVMC-5 are trained by using those examples which have actions belonging to SHIFT,
REDUCE, DROP, ASSIGN TYPE and RESTORE.

Table 6.1 shows the distribution of examples on five data groups. The SVMC-1,
SVMC-2,..., and SVMC-5 are trained using SHIFT-GROUP, REDUCE-GROUP,..., and
RESTORE-GROUP, respectively.

Table 6.1: Distribution of example data on five data groups
Name Number of examples
SHIFT-GROUP 13,363
REDUCE-GROUP 11,406
DROP-GROUP 4,216
ASSIGN-GROUP 13,363
RESTORE-GROUP 2,004
TOTAL 44,352

6.2.4 Disadvantage of Deterministic Sentence Reductions

The main idea behind Algorithm 7 is that it uses a rule in the current context of the
initial configuration to select a distinct action in order to rewrite an input sentence into
a reduced sentence. After that, the current context is changed to a new context and
the rewriting process is repeated for selecting an action that corresponds to the new
context. The rewriting process is finished when it meets a termination condition. Clearly,
Algorithm 7 only generates a single reduced sentence and it does not approximate the
best text summarization results. It is because that if early steps of Algorithm 7 fail to
select the best actions, then the possibility of obtaining a wrong reduced output becomes
high.

62



One way to solve this problem is to select multiple actions that corresponds to the
context at each step in the process of rewriting. However, the question that emerges
here is how to determine criteria to use in selecting multiple actions for a context. If this
problem can be solved, then multiple best reduced outputs can be obtained for each input
sentence and the best one will be selected by using the whole text document.

We propose a model for selecting multiple actions for a context in sentence reduction
as a probabilistic sentence reduction and present a variant of a probabilistic sentence
reduction in the next section.

6.3 Probabilistic Sentence Reduction Using Statisti-

cal Learning

6.3.1 The Probabilistic Models

Let A be a set of k actions

A = {a1, a2...ai, ..., ak} (6.1)

and C be a set of n contexts
C = {c1, c2...ci, ..., cn} (6.2)

A probabilistic model α for sentence reduction will select an action a ∈ A for the
context c with probability pα(a|c). The pα(a|c) can be used to score action a among
possible actions A depending on the context c that is available at the time of decision.
There must be several methods to estimate such scores. We called these probabilistic
sentence reduction methods. The conditional probability pα(a|c) are estimated using a
variant of probabilistic support vector machine, which is described in following sections.

6.3.2 Maximum Entropy Learning

We used the same feature set as mention above for maximum entropy estimation. The
contextual predicates of an action a are used to encode the derivation in the corpus of
long sentences and reduced sentences. The algorithm to extract training events from the
training corpus was modified using the algorithm described in our pervious work [18].
Here is the summary of the extraction training events algorithm. First, we parse all long
sentences and their corresponding reduced sentences into syntactic trees [91]. We then
use the larger tree and small tree to find the sequence of actions in order to rewrite the
larger tree into the small tree. At each action, the training event is extracted based on
the current context information, namely the Input list, and two stacks. The training
events are already defined as (a, c) in section 3.2.1. Here, each (a, c) represents an action
a and is encoded as (a, cp1, cp2, ...cpl), where cp1...cpl are contextual predicates such that
cpi(c) =true, for 1 ≤ i ≤ l, and c is the context in which action a occurred. After obtaining
training events from the manual corpus of long sentences and reduced sentence, feature
selection and parameter estimation are used to obtain the maximum entropy model for
sentence reduction. Feature selection task and parameter estimation are described in the
following sections.
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6.3.3 Features Selection and Parameter Estimation

Let F be a set of features that occurred on the training data. Feature selection is the
process of choosing a useful subset of features F from a set of all possible features to be
used in the maximum entropy. There are several feature selection methods [106]. Among
them, the simplest uses a count cutoff technique [103]. This method is useful for some
tasks such as part of speech tagging [103] and NP chunking [105]. Choosing the best
selection feature method for a sentence reduction task is out of the context of this paper.
We will address this problem in future articles. In our framework, we use the count cutoff
technique which can described as follows:

F = {f |f(a, c) =

{
1 if cp(c) = true && a = a′

0 otherwise
where cp ∈ CP and a′ ∈ A ,

∑
a,c

f(a, c) ≥ 4}

The training set data is used to estimate the parameters of a probability model p.. Each
feature fj corresponds to parameter αj. The parameters {α1, α2, ..., αk} are found by
using the Limited Memory BFGS algorithm (L-BFGS) [61], which is faster than GIS and
IIS algorithm [62], to estimate the maximum entropy model.

6.3.4 Probabilistic SVM Models using the Pairwise Coupling

For convenience, we denote uij = p(a = ai|a = ai ∨aj, c). Given a context c and an action
a, we assume that the estimated pairwise class probabilities rij of uij are available. Here
rij can be estimated by some binary classifiers. For instance, we could estimate rij by
using the SVM binary posterior probabilities as described in [99]. Then, the goal is to
estimate {pi}k

i=1 , where pi = p(a = ai|c), i = 1, 2, ..., k. For this propose, a simple estimate
of these probabilities can be derived using the following voting method:

pi = 2
∑
j:j �=i

I{rij>rji}/k(k − 1)

where I is an indicator function and k(k − 1) is the number of pairwise classes. However,
this model is too simple; we can obtain a better one with the following method.

Assume that uij are pairwise probabilities of the initial model subject to the condition
that uij = pi/(pi + pj). In [100], the authors proposed to minimize the Kullback-Leibler
(KL) distance between the rij and uij

l(p) =
∑
i�=j

nijrijlog
rij

uij

(6.3)

where rij and uij are the probabilities of a pairwise ai and aj in the estimated model and
in our model, respectively, and nij is the number of training data in which the classes are
ai or aj.

To find the minimize of equation (6.3), they first calculate

∂l(p)

∂pi

=
∑
i�=j

nij(−rij

pi

+
1

pi + pj

).
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Thus, letting ∆l(p) = 0, they proposed to find a point satisfying

∑
j:j �=i

nijuij =
∑
j:j �=i

nijrij,
k∑

i=1
pi = 1, pi > 0, i = 1, ..., k.

Such a point can be obtained by using Algorithm 8. Algorithm 8 converges to these

Algorithm 8 An estimation algorithm

1: Start with some initial pi > 0 and uij=pi/(pi + pj)
2: while not terminal condition do

3: α =

∑
j:j �=i

nijrij∑
j:j �=i

nijuij

4: uij = αuij

αuij+uji
, uji = 1 − uij

5: pi = αpi

6: end while

probabilities of actions and context that we need. The detail of Algorithm 8 was described
elsewhere in [100]. It is applied to obtain a probabilistic SVM model for sentence reduction
using a simple method as follows. Assume that our class labels belong to l groups:

M = {m1,m2...mi, ...,ml}

where l is a number of groups and mi is a group e.g., SHIFT, REDUCE ,..., ASSIGN
TYPE. Then the probability p(a|c) of an action a for a given context c can be estimated
as follows.

p(a|c) = p(mi|c) × p(a|c,mi) (6.4)

where mi is a group and a ∈ mi. In this chapter, p(mi|c) and p(a|c,mi) are estimated by
using Algorithm 8.

6.3.5 Probabilistic sentence reduction algorithm

After obtaining a probabilistic model p, we then use this model to define function score,
by which the search procedure ranks the derivation of incomplete and complete reduced
sentences. Let d(s) = {a1, a2, ...ad} be the derivation of a small tree s, where each action
ai belongs to a set of possible actions. The score of s is the product of the conditional
probabilities of the individual actions in its derivation.

Score(s) =
∏

ai∈d(s)

p(ai|ci) (6.5)

where ci is the context in which ai was decided. The search heuristic tries to find the best
reduced tree s∗ as follows;

s∗ = argmax︸ ︷︷ ︸
s∈tree(t)

Score(s) (6.6)

where tree(t) are all the complete reduced trees from the tree t of the given long sentence.
Assume that for each configuration the actions {a1, a2, ...an} are sorted in decreasing or-
der according to p(ai|ci), in which ci is the context of that configuration. Algorithm 9
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shows a probabilistic sentence reduction using the top K-BFS search algorithm. The idea
of this algorithm is close to the breadth-first search algorithm (BFS) but it is extended
by the following strategy. The heuristic algorithm uses a breadth-first search which does
not expand the entire frontier, but instead expands at most the top K scoring incom-
plete configurations in the frontier; it is terminated when it finds M completed reduced
sentences, or when all hypotheses have been exhausted. A configuration is completed if
and only if the Input list is empty and there is one tree in the CSTACK. Note that the
function get-context(hi, j) obtains the current context of the jth configuration in hi. This
function is the same as the get-context in Algorithm 7. The function Insert(s,h) ensures
that the heap h is sorted according to the score of each element in h. Essentially, in im-
plementation we can use a dictionary of contexts and actions observed from the training
data in order to reduce the number of actions to explore for a current context.

Algorithm 9 A probabilistic sentence reduction algorithm

1: M=20
2: K=20
3: Q=0.95
4: CL={Empty}
5: i = 0
6: h0={ Initial configuration}
7: while |CL| < M do
8: if hi is empty then
9: break;

10: end if
11: u =min(|hi|, K)
12: for j = 1 to u do
13: c=get-context(hi, j)

14: Select m so that
m∑

i=1
p(ai|c) < Q is maximal

15: for l=1 to m do
16: parameter=get-parameter(al);
17: Obtain a new configuration s by performing action al with parameter
18: if Complete(s) then
19: Insert(s, CL)
20: else
21: Insert(s, hi+1)
22: end if
23: end for
24: end for
25: i = i + 1
26: end while

6.4 Evaluation

We implemented the sentence reduction based on support vector machines in the Pentium
IV, 2.6GHz on Windows XP environment and executed the experiments.
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To evaluate sentence reduction algorithms, we randomly selected 32 pairs of sentences
from our parallel corpus, which is refereed to as the test corpus. We used the same corpus
as described in [14], which includes 1,035 sentence pairs for training our model and decision
trees. The training corpus of 1,035 sentences extracted 44,352 examples, in which each
training example is associated to an action. The SVM tool, LibSVM tool [101] is applied
to train our model. The training examples were divided into SHIFT, REDUCE, DROP,
RESTORE, and ASSIGN groups. To train our support vector model in each group, we
used the pairwise method with the polynomial kernel function, in which the parameter p in
(3.17) and the constant C0 in equation (3.15) are 2 and 0.0001, respectively. The L-BFGS
algorithm [61] are used to train the maximum entropy model for sentence reduction.

Figure 6.4 shows sentence reduction accuracy as a function of the number of rounds
(steps) of the L-BFGS algorithm on reduction training data. A new model is obtained
after one round of the L-BFGS algorithm. Using this model we are able to define the
accuracy of predicting a given event by comparison with its correspond action in the
training data. The accuracy is computed as the percent of the total correct actions on
the training events. It seems that the training algorithms using L-BFGS converge and
are sufficiently fast. After 900 rounds of L-BFGS algorithm, we obtained an accuracy of
92.510%. We applied the L-BFGS algorithm until convergence and achieved an accuracy
of 94.874% after 8,000 rounds of the L-BFGS algorithm. With the results shown in Figure
6.4, we can say that the L-BFGS algorithm is suitable to generate a maximum entropy
model for sentence reduction.

Figure 6.4: The relation of accuracy and number of rounds of the L-BFGS algorithm on
reduction training data

The algorithms [14] and [18] served as the baseline1 and the baseline2 to compare
with the proposed algorithms. The deterministic sentence reduction using SVM and the
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probabilistic sentence reduction were named as SVM-D and SVMP, respectively. For con-
venience, the 20 top reduced outputs using SVMP is called SVMP-20. We used the same
evaluation method as described in [14] to compare the proposed methods with previous
methods. For this experiment, we presented each original sentence in the test corpus to
three judges who are specialists in English, together with three sentence reductions: the
human-generated reduction sentence, the outputs of the proposed algorithms, and the
output of the baseline algorithms.

The judges were told that all outputs were generated automatically. The order of
the outputs was scrambled randomly across test cases. The judges participated in two
experiments. In the first, they were asked to determine on a scale from 1 to 10 how
well the systems did with respect to selecting the most important words in the original
sentence. In the second, they were asked to determine the grammatical criteria of reduced
sentences.

Table 6.2 shows the results of English language sentence reduction using a support
vector machine in comparison with the baseline methods and with human reduction.
Table 6.2 shows compression rates, and mean and variance results across all judges, for
each algorithm. The results show that the length of the reduced sentences using decision
trees is shorter than using SVMs, and indicate that our new methods outperform the
baseline algorithms in grammatical and importance criteria. We used the t-test at the
p < 0.05( 95% confident) of significant difference for each judger and average scores of
them. Table 6.2 shows that human reduction is statistical significant better than all
sentence reduction methods and the proposed methods are statistical significant better
than the previous methods at the importance criterion but not gramticality.

Table 6.2: Experiment results with Test Corpus
Method Compression Grammaticality Importance
Baseline1 57.19% 8.60 ± 2.8 7.18 ± 1.92
Baseline2 57.15% 8.60 ± 2.1 7.42 ± 1.90
MEM 58.25% 8.70 ± 1.3 7.50 ± 1.50
SVM-D 57.65% 8.76 ± 1.2 7.53 ± 1.53
SVMP-20 59.45% 8.82 ± 1.0 8.13 ± 0.52
MEM-20 60.24% 8.84 ± 1.0 8.14 ± 0.54
Human 64.00% 9.05 ± 0.3 8.50 ± 0.80

Table 6.2 also shows that the first 10 reduced sentences produced by MEM-20 and
SVMP-20 (the SVM probabilistic model) obtained the highest accuracies.

We also compared the computational times of sentence reduction using support vector
machine with that in the previous methods. The results reported in Table 6.3 are the
computational times for performing reduction the test set where the average length of
sentences was 21 words for three methods, baselines (sentence reduction based decision
tree), SVM-D and SVMP-20. Table 6.3 shows that the computational times of SVM-D
and SVMP-20 are slower than that of the baseline.

We also investigated how sensitive the proposed algorithms are with respect to the
training data by carrying out the same experiment on sentences of different genres. We
created the test corpus by selecting sentences from the web-site of the Benton Foundation
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Table 6.3: Computation times of performing reductions on test-set. Average sentence
length was 21 words.

Method Time (sec)
Decision-Tree 138.25
MEM 11.46
SVM-D 212.46
MEM-20 1050.4
SVMP-20 4020.25

(http://www.benton.org). The long sentences in each news article were selected as the
most relevant sentences to the summary of the news. We obtained 32 summary sentences
among 32 news in the web-site and selected 32 long sentences such that each sentences
corresponds to a summary sentence. In addition, we obtained 32 headlines for each item.
The 32 sentences are used as a second test for our methods.

As shown in Table 6.2, the outputs of the twenty top reduced sentences using SVMP-
20 and MEM-20 yield accuracies higher than previous work. However, it is valuable if
a best reduced sentence among these outputs for the whole document can be selected
automatically. For this purpose we use a simple ranking criterion: the more the words
in the reduced sentence overlap with the words in the headline, the more the important
sentence is. We call a sentence satisfying this criteria a relevant candidate.

For a given sentence, we used a simple method, namely SVMP-R to obtain a reduced
sentence by selecting a relevant candidate among the twenty top reduced outputs using
SVMP-20. First, a set of most relevant candidates are obtained from the twenty top
reduced candidates. After that, the reduced output is given by selecting the one with a
highest score computed by SVMP.

Table 6.4 depicts the experiment results for the baseline methods, SVM-D, SVMP-R,
and SVMP-20. The results show that, when applied to sentence of a different genre, the
performance of SVMP-20 degrades smoothly, while the performance of the deterministic
sentence reduction methods (the baselines and SVM deterministic) drop sharply. This
indicates that the probabilistic sentence reduction using support vector machine is more
stable than the deterministic one.

Table 6.4 shows that the performance of SVMP-20 is also close to the human reduc-
tion outputs and better than previous work. In addition, the performance of SVMP-R
outperforms the deterministic sentence reduction algorithms and the differences between
SVMP-R’s results and those for SVMP-20 are small. This indicates that we can obtain
reduced sentences which are relevant to the headline, while ensuring the grammatical and
the importance criteria compared to the original sentences.

Currently, our method works well in the sentence reduction task, but the larger number
of labeled examples is still required. In future work, we will investigate a method which
can utilize unlabeled examples to enhance the performance of sentence reduction. Use of
a co-training method therefore with shows promise.

Figure 6.5 shows some examples of SVM reduction against reduction by the decision-
tree method. In sentence 1, the reduction based on the SVM seems better than decision-
tree reduction, and the results of SVM and decision-tree reduction are the same in sen-
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Table 6.4: Experiment results with Benton Corpus
Method Compression Grammaticality Importance
Baseline1 54.14% 7.61 ± 2.10 6.74 ± 1.92
Baseline2 53.13% 7.72 ± 1.60 7.12 ± 1.90
SVM-D 56.64% 7.86 ± 1.20 7.23 ± 1.53
SVMP-R 58.50% 8.35 ± 0.90 7.64 ± 0.65
SVMP-20 59.65% 8.70 ± 0.95 8.01 ± 0.61
Human 64.00% 9.01 ± 0.25 8.40 ± 0.60

tences 2 and 3.

Figure 6.5: Examples of sentence reduction using statistical machine learning and decision
tree

To see the impression on the reduction results of multiple candidates and a single
candidate, we show an example of 10 reduction outputs obtained by SVM-20 and a single
reduction obtained by SVM as shown in Figure 6.6. This example shows that Output6 is
better than the output of SVM.
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Figure 6.6: Examples of multiple sentence reduction output using statistical machine
learning

6.5 Conclusions

We have presented a new sentence reduction approach that enables a long sentence to be
rewritten into reduced sentences based on statistical machine learning in which SVM and
MEM are used. The reduction sentence using SVM and MEM achieves better performance
when compared with earlier methods. The proposed reduction approach can generate
multiple best outputs. This enhances the performance of text summarization since it can
use the whole text document to select the best reduced sentence among multiple reduction
outputs. Experiments showed that the running time required to reducing sentences is
reasonable and the top 20 reduced sentences returned by the reduction process might
yield accuracies dramatically higher than previous work. In addition, using a simple
ranking method with a global information of full text document to the top 20 reduced
sentences showed an encouraging results. We suspect that a good selection method for
the output of our probabilistic sentence reduction might achieve a better result.

Work on integrating the proposed sentence reduction with a text summarization sys-
tem is underway.
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Chapter 7

Machine Translation in Cross
Language Text Summarization

This chapter introduces an example based machine translation method with the use of
shallow information obtained from a chunking process. The proposed translation method
can be applied for both translation and reduction in a CLTS system. We call this adaptive
translation in CLTS, or chunking based example based machine translation(CEBMT).

7.1 Introduction

As described in chapter 2, the problem of cross language text summarization is how to
combine a translation engine with a mono-language summarization system. Meanwhile,
the translation engine is designed to translate whole sentences, not phrases. It does not
perform as well when the input is a list of separate phrases, while summary outputs in a
summarization system can often be in the form of a list of phrases. Our main idea here is
with developing a translation engine which can be applicable applied for both the whole
sentences and a list of sperate phrases. We also investigate the use of this method for
reducing an input sentence that does not need any parsers. For this reason, we focus on
using example based machine translation method in CLTS.

For convenience, let us summary the idea of example based machine translation
(EBMT) as follow. EBMT originally proposed by Nagao [107], is one of the main ap-
proaches of corpus-based machine translation. Following Nagao’s original proposal, sev-
eral methods based on EBMT were presented [108], [109], [110], [111]. The excellent
review paper of EBMT [112] described the main idea behind EBMT as follows. A given
input sentence in a source language is compared with the example translations in the
given bilingual parallel text to find the closet matching examples so that they can be used
in the translation of that input sentence. After finding the closest matching for the sen-
tence in the source language, parts of the corresponding sentence in the target language
are constructed using structural equivalences and deviances in those matches.

One of the approaches which applied successful to translation from English to Turkish
is the translation template learning method (TTL)[113][23]. This algorithm relies on the
technique using the similarity and difference between two translation examples in the
bilingual corpus to build template rules for translation. The advantage of this method is
that it only uses the morphological parsing in the source sentence and the target sentence
for both learning phase and translation phase in the machine translation system. In the
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learning phase, it can generate template rules automatically in a simple way. In the
translation phase, it shows a good translation result using those template rules learned
from a small bilingual corpus as reported in[23].

In this paper, we focus on investigating the use of translation template learning method
to apply for both translation and sentence reduction in CLTS system. We also study the
application of this method to the problem of sentence reduction. Intuitively, when con-
sidering long sentences as a source language and reduced sentences as a target language,
the problem of sentence reduction is equivalent to the translation problem.

Although the translation template system is suitable as well to machine translation,
there are some drawbacks as follows.

In the learning phase, with the lack of linguistic knowledge the amount of template
rules using translation template learning is large and some of them causes the translation
wrong. It is clear that linguistic information is useful for translation. In addition, unreli-
able rules may reduce the performance of translation in both accuracy and computational
times. Incorporating linguistic knowledge into template rules is therefore an expected
approach. However, the problem here is how to obtain linguistic knowledge and how
to incorporate them into translation template learning. The recent study using named
entity information has been shown an improvement of the translation results [114]. But
this work is only used to encode examples for the source language and has not applied to
TTL method.

On the other hand, shallow parsing has been applied successfully to various nature
language processing applications because of their accuracies as well as the easy implement-
ing on other language than English. Many applications on natural language processing
has been used shallow parsing as the way to obtain linguistic information of language.
In this paper, we propose a novel translation template learning using shallow parsing to
incorporate linguistic information to template rules.

In the translation phase, the advantage of this method is that it does not need any com-
plex parsing such as syntactic parsing or semantic parsing and overcome the imperfectness
of the rule-based machine translation. The disadvantages of the method are that a lot of
templates can be matched with an input sentence and some of them cause the translation
results are not confident. To overcome this problem, Öz [115] presents a method which
allows sorting template rules according to their confident factors. The translation results
are sorted using their scores through the value of confident factors. However, this method
needs to evaluate all matching rules for each input sentence to obtain the output results,
while much of them are redundant rules. The exponential calculation problem will arise
when an input sentence is long and the number of template rules is large. Following that
point, we present a novel method based on a HMM model that uses constraints for set
of matching rules with each input sentence. Thus, the translation results of an input
sentence are obtained by finding a set of template rules that is most likely with our HMM
model.

The rest of this chapter is organized as follows. Section 7.2 introduces an architecture
of our chunking-based example-based machine translation system. Section 7.3 presents
a learning phase in the architecture by describing an algorithm of shallow translation
template learning. Section 7.4 gives a template translation learning using shallow pars-
ing. Section 7.5 presents a translation phase that describes the template translation, the
shallow template translation, and the combination of them with HMM model. Section
7.6 introduces the application of CEBMT to sentence reduction. Section 7.7 gives some
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experimental results and section 7.8 shows our conclusions.

7.2 Translation Template Learning

7.2.1 Template Rules

Let SL and TL be the source language and the target language. Let S1S2...Sn ↔ T1T2...Tk

be a template rules, in which Si is a sequence of words or a variables in SL and Ti is a
sequence of words, so called a constant element, or a variables in TL. In addition, each
variable in the left side is aligned with a variable in the right side. A variable in the
left side and a variable in the right side of a template rule can be received a phrase or a
word in SL and TL, respectively. A lexical rule is defined as a template rule that has no
variable inside.

An example of a template rule is shown in Figure 7.1.

Figure 7.1: An example of template rules

7.2.2 Learning Template Rules

This section describes the original translation template learning[24]. Suppose that two
examples Ea and Eb taken from a bilingual parallel corpus. In which, a translation
example E1

a↔E2
a is composed of a pair of sentences, E1

a and E2
a, which are translations of

each other in English and Vietnamese.
Let a similarity between two sentences of a language be a non-empty sequence of

common items (root words or morphemes) in both sentences. A difference between two
sentences of a language is a pair of two sequences (D1, D2) where D1 is a sub-sequence
of the first sentence, D2 is sub sequence of the second sentence, and D1 and D2 do not
contain any common item.

Given two translation examples (Ea, Eb), we first find similarities between the con-
stituents of Ea and Eb and formulated it as a match sequence Ma,b in the following form.

Ma,b = S1
0D

1
0...D

1
n−1S

1
n ↔ S2

0D
2
0S

2
1 ...D

2
m−1S

2
m for n,m ≥ 1 (7.1)

where S1
k represents a similarity (a sequence of common items) between E1

a and E1
b .

Similarly, D1
k : (D1

k,a, D
1
k,b) represents a difference between E1

a and E1
b , where D1

k,a, D
1
k,b

are non-empty differing items between two similar constituents S1
k , S

1
k+1. For example,
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Figure 7.2 shows two translation examples and the values of Ma,b (e.g S1
0 = “I bought

the”, D1
0,a= “book”)

Figure 7.2: Translation examples-Match sequence

After a match sequence is found for two translation examples, we used the two different
learning heuristics to infer translation templates from that match sequence [24]. The two
heuristic algorithms try to locate corresponding differences or similarities in the match
sequence. The first heuristics, the similarity translation template learning (STTL) tries
to locate all corresponding differences and generate a new translation template rule by re-
placing all differences with variables. The second heuristics can infer translation templates
by replacing similarities with variables, if it is able to locate corresponding similarities in
the match sequence. These translation templates are called difference translation tem-
plates learning (DTTL). The STTL and DTTL are combined as the template learning
algorithm. From the corpus, the TTL algorithm tries to infer translation templates us-
ing the two algorithms above. After all translation template rules are learned, they are
sorted according to their specificities based on the simple criterion as follows. Given two
templates, one that has a higher number of terminals is more specific than the other.

7.2.3 Translation using template rules

The original translation method [113] can be summarized as follows: Given an input
sentence e1e2...em (ei is a word) and a set of template rules r1, r2, ..., rd, find all translation
results for each rule ri(i=1, d).

Assuming that the rule ri is defined as S1S2..Sn ↔ T1T2...Tk, the original method
tries to find all possible ways to replace the variables with phrases in SL so that the input
sentence e1e2...em can be produced from this rule. Next, it finds each corresponding phrase
in TL within the set of lexical rules with a phrase in SL, in order to transform the input
sentence into the target language. It is obvious that the process above relied on a recursive
algorithm, in which each variable Sj in a template rule ri may consist of several lexical
rules satisfying the left side of lexical rules are matched with a substring in the input
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sentence. Therefore, with an input sentence we may have several output translations.
The example following illustrates the behavior of the original template translation.

Figure 7.3: An example of translation using template rules

Figure 7.3 shows the number of translation outputs for the given input sentence “It is
likely that two companies will work on integrating multimedia with database technology”

Two phrases “It is likely that” and “will work on” within the input sentence are
matched with the template rule. The reduction algorithm then tries to find all possible
choices to replace variables S2 and S4 using lexical rules. For variables S2 and S4 it
finds all lexical rules whose left side is matched with “two companies” and “integrating
multimedia with database technology”, respectively. Figure 7.3 shows three choices for
S2 and S4, from which we have six translation results. Intuitively, the best translation
output is the sequence of lexical rules L1 and L4.

There are two obstacles when using the original template reduction:

• How to determine the best translation outputs when using template translation.

• Suppose that a template rule has t variables and each variable has l matched lexical
rules, so we have lt choices for translation. How can we deal with this exponential
calculation?

To solve the problems, we develop a HMM-based method described in next sections.

7.3 Statistical Learning for Translation Template Rules

7.3.1 Template Translation Using HMM modelling

The main idea is that instead of considering all lexical rules, we use a dynamic program-
ming algorithm to find a likely sequence of lexical rules for a given input sentence. Suppose
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Table 7.1: Probability table
L4 L5 L6

L1 0.5 0.3 0.2
L2 0.4 0.3 0.3
L3 0.4 0.3 0.3

that the probabilities P (li|lj) between two lexical rules li and lj are given in Table 7.1.
From this table, the likely sequence of lexical rules is (l1, l4), and these lexical rules lead
us obtain the best translation output.

Given an input sentence e1e2...em (ei is a token) and a set of template rules r1, r2, ..., rd.
Our problem here is to find a sequence of lexical rules that their translation results most
explain the given sentence. This problem is equivalent to that of finding all likely trans-
lation results for each rule ri(i = 1, ..., d).

For the rule ri: S1S2...Sj...SN ↔ T1T2...Tj...TK in the above example, each constant
Sj (j = 1, ..., N) can be associated with a phrase in the right side of the rule ri, and each
variable Sj (j = 1, ..., N) within the rule can be associated with set of lexical rules whose
left side is a substring that starts from a possible position within the input sentence.

Consider a lexical rule as a hidden state and a substring in the input sentence as an
observed symbol. The problem of reduction is then equivalent to finding a lexical rule for
each variable. To find the most likely sequence of lexical rules, we must find a sequence
of lexical rules that maximized the probability P (ri|e1e2...em). Since ri : S1S2, ...SN ↔
T1T2...TK and the map between S1S2...SN and ri is one by one, we obtain

P (ri|e1, e2, ..., em) = P (S1S2...SN |e1e2...em) (7.2)

Applying Bayes rule, we have

P (S1S2...SN |e1, e2, ..., em) =
P (e1e2...em|S1S2...SN)

P (e1...em)
× P (S1S2...SN) (7.3)

Since e1e2...em is a sequence of input words, the probability P (e1e2...em) is given, we
need to maximize the following

P (e1e2...em|S1S2...SN) × P (S1S2...SN) (7.4)

Using the Bigram model, P (e1e2...em|S1S2...SN) can be approximated as

P (e1e2...em|S1S2...SN) =
N∏

i=1

P (eji
...eji+l|Si) (7.5)

which eji
...eji+l matches the left side of a lexical rule matching with Si, and ji, ji +

1, ..., ji + l is a sequence of word positions within the input sentence e.
P (S1S2...SN) can be also approximated as

P (S1S2...SN) =
N−1∏
i=1

P (Si+1|Si) (7.6)
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Thus, we get

P (e1e2...em|S1S2...SN) × P (S1S2...SN) =
N−1∏
i=1

P (Si+1|Si) ×
N∏

i=1

P (eji
...eji+l|Si) (7.7)

To find the sequence of lexical rules that maximizes the formula (7.7), the Viterbi
algorithm [57], a kind of dynamic programming, can be used. If the rule has t variables
and each variable consists of l elements then the complexity is l2 × t, while the recursive
way be lt. Thus, each rule can define a translation score, and output translation for the
input sentence can be sorted according to their score values. Therefore, our HMM-based
method can avoid the exponential calculation problem by using dynamic programming.
In addition, it can sort translation results according to the better accuracy without any
complex process on set of template rules. Interestingly, it draws a new perspective for
applying statistical machine learning theory to example based machine translation.

7.3.2 Estimation of HMM model for translation

We will now describe our HMM-based method translation. An HMM is specified by a
five-tuples (O,L,A,B, Π), where L and O are the set of lexical rules and the output
alphabet, and Π, A,B are the probabilities for the initial state, state transition, and
symbol emission, respectively.

The HMM-based method for translation is estimated by using the Baum-Welch learn-
ing [58] described as follows. The corpus of source sentences and target sentences are used
to generate observed sequences. Each input sentence will be translated by using lexical
rules if its translated output is the same with a translated sentence in the corpus. After
obtaining a sequence of lexical rules, a sequence of observed symbols is generated because
each observed symbol is in the left side of a lexical rule. Therefore, using a set of template
rules and the corpus, we can generate a training data Otrain in the form

Ot1Ot1+1...Om1 ↔ lt1lt1+1...lm1

Ot2Ot2+1...Om2 ↔ lt2lt2+1...lm2

....

OtkOtk+1...Omk
↔ ltk ltk+1...lmk

Here OtkOtk+1...Omk
is a sequence of observed symbols associated with a sequence of

lexical rules ltk ltk+1...lmk
.

Denote by C(lj),C(lj, lk) and C(Oj, lk) the number of occurrences of the lexical rule
lj, the number of occurrence of the lexical rule lj following the lexical rule lk, and the
number of occurrences of the observed symbol Oj corresponding to the lexical rule lk,
respectively. With these notations, the initialization algorithm for estimating an HMM
model on the training data above is described in Algorithm 10.

To avoid the data spareness problem, we used a additive smoothing technique [117]
for probabilities in Algorithm 10.

Assume that we are given O′
train is an unlabeled training data which consists of only

a set of observed sequences. After initializing the probabilities of observed symbols and
lexical rules using Algorithm 10 on the training data Otrain, the Baum-Welch learning[58]
is used to estimate the HMM for sentence reduction by maximizing P (O′

train|A,B, Π).
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Algorithm 10 An initialization algorithm

for all lexical rule lj do
for all lexical rule lk do

P (lj|lk) = C(lj ,lk)
C(lj)

end for
end for
for all lexical rule lj do

for all observed symbols Ol do

P (Ol|lj) = C(Ol,lj)
C(lj)

end for
end for

7.4 Chunking Based Example Based Translation

7.4.1 Chunking Based Example Based Translation Architecture

Figure 7.4: The Framework of Chunking Based Example Based Translation

The template translation learning[24] is modified to a new one by incorporating lin-
guistic information by using a shallow parsing. We call the modified algorithm as a shal-
low template translation learning algorithm. This algorithm is considered as the main
component in a chunking based example based machine translation system.

Figure 7.4 shows a chunking-based example-based machine translation system (CEBMT)
which consists of two phases, a learning phase and a translation phase. In the learning
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phase, an alignment process is used to align English sentences with Vietnamese sentences.
They were then edited manually by human expert to obtain bilingual examples. These
bilingual examples were annotated linguistic information by performing a shallow parsing
to chunk each sentence into chunking labels. A shallow temple learning algorithm is then
used to generate template rules from examples. Afterward, a Hidden Markov Model for
the system is established by using the corpus and the template rules. In the translation
phase, an input sentence were chunked by using a shallow parsing, then a variant of the
dynamic algorithm (i.e the viterbi algorithm) is used to find translation outputs for that
input sentence.

7.4.2 Translation Template Learning Based Shallow Parsing

Shallow Parsing

Shallow parsing is the task of dividing sentences into non-overlapping segments on the
basis of fairly superficial analysis. By shallow parsing, a sentence of n words is divided
into m chunking labels. These chunking labels are in the syntactic level such as noun
phrase, verb phrase or in high level description such as named entity types (PERSON,
LOCATION, NAME, DATE. etc). This task has attracted much attention on natural
language processing community in recently and achieve a high performance. For example,
the task of NP chunking obtained a high accuracy (96.29%)[116].

The use of chunking is applied to many tasks including information extraction, text
summarization, and information retrieval. In this section, we investigate the use of it to
generate reliable template rules for template learning. The translation template learning
using shallow parsing is named as shallow translation template learning.

Match Sequence incorporating Linguistic Information

Recall that Ma,b is a match sequence of two examples Ea and Eb in which a segment within
Ma,b is associated with an linguistic information. A similarity is labeled if and only if its
common items is the same type of phrase in both examples. A different segment is labeled
if and only if two components in this segment come from the same type of phrase in both
example. Suppose that, LS1

k is a chunking-symbol associated with a similarity segment
S1

k and LDl
k is a symbol associated with a different segment Dl

k, where k=0, 1, 2,... and
i=0, 1.

Figure 7.5 shows the two examples are chunked using a shallow parsing to obtain a
match sequence and a sequence of chunking-symbols (e.g LD1

0 =NP, LD2
0 =VP, LD3

0=NP,
LD4

0 =PP). After a match sequence is found for two translation examples the template
learning algorithms infer translation templates from that match sequence to obtain tem-
plate rules.

In the following sections, the learning similarity translation template and the learning
difference translation template are manipulated on match sequences. The main goal of
our algorithm is to produce template rules which are associated linguistic information
where each variable in template rules is labeled by using a shallow parsing. Furthermore,
the set of lexical rules can be classified into several classes, which class are part of speeches
or symbols of shallow parsing.
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Figure 7.5: Example of chunking translation template learning.

Learning similarity translation templates using shallow parsing

If there exists only a single difference in both sides of a match sequence, i,e, n = m = 1,
then these different constituents must be the translation of each other. In other words,
we are able to locate the corresponding difference in the match sequence. In this case,
the match sequence must be in the following form.

S1
0X

1S1
1 ↔ S2

0X
2S2

1 if ( X1 ↔ X2) (7.8)

Recall that LD1
0 and LD2

0 are shallow information of two variables X1 and X2 respec-
tively. The template rule above can be expressed as in the form following:

S1
0LD1

0S
1
1 ↔ S2

0LD2
0 if (LD1

0 ↔ LD2
0) (7.9)

Furthermore, the following two lexical translation templates are learned from the cor-
responding differences (D1

0,a, D0,b)1) and (D2
0.a, D

2
0,b)

D1
0,a[LD1

0] ↔ D2
l,a[LD2

0]
D1

0,b[LD1
0] ↔ D2

l,b[LD2
0]

(7.10)

The lexical translation template above explains the chunk label LD1
0 and LD2

0 are as-
sociated with the two lexical rules D1

0,a ↔D2
0,a and D1

0,b ↔D2
0,b, respectively. For example,

since the match sequence contains a single difference in both sides, the following simi-
larity translation template and two lexical translation templates from the corresponding
difference “(the book, the ring) and (mot quyen sach, mot cai nhan)” can be inferred.

“I bought” NP “for John” ↔ “Toi da mua” NP “cho John”
“the book”[NP] ↔ “mot quyen sach”[NP]
“the ring” [NP] ↔“mot cai nhan”[NP]
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If the number of differences are equal on both sides, but more than one, 1 < n = m.
Assume that n−1 corresponding difference in the match sequence were located as follows:
((D1

k1
D1

l1
)...(D1

kn−1
D2

ln−1
))

It means that the ki difference (D1
ki,a

, D1
ki,b

) in the source language corresponds to the lj
difference (D2

lj ,a, D
2
lj ,b) in the target language following the rules below.

D1
ki,a

[LD1
k] ↔ D2

lj ,a[LD2
k]

D1
ki,b

[LD1
k] ↔ D2

lj ,b[LD2
k]

(7.11)

Assume that the unchecked corresponding differences are D1
kn

and D2
ln . Since all

difference elements in the left side of the match sequence aligns with only difference
elements in the right side of the match sequence. Thus, the different element (D1

kn
) has

to align with the different element D2
ln . Therefore, we are able to learn a template rule

for the case of n differences in both sides if at least n − 1 differences were located. From
the match sequence Ma,b we try to replace the difference in both sides with variables, D1

ki

with LD1
ki

and D2
ki

with LD2
ki

respectively. Let Ma,bWDC be a match sequence that all
differences in Ma,b are replaced by chunking labels.

Ma,bDV C = S1
0LD1

0...LD1
n−1S

1
nLD1

n ↔ S2
0LD2

0S
2
1 ...LD2

n−1S
2
nLD2

n for 1 ≤ n
(7.12)

Thus, we get a new template rule by a mathematic induction as follow:

Ma,bDV C if LD1
k1

↔ LD2
l1
...and LD1

kn
↔ LD2

ln (7.13)

In addition, the two lexical translation templates are learned from the last correspond-
ing differences.

D1
kn,a[LD1

kn
] ↔ D2

ln,a[LD2
ln ]

D1
kn,b[LD1

kn
] ↔ D2

ln,b[LD2
ln ]

(7.14)

Therefore, the algorithm of similarity template learning using shallow parsing can be
organized as shown in Algorithm 11.

Learning Shallow Difference translation templates

For convince, let M1
a,b and M2

a,b be the left side and the right side of a match sequence Ma,b

respectively. Let Ma,bWSC is a match sequence in which all similarities were replaced
with their corresponding chunking labels. Suppose that Ma,bWSC are in the following
form.

Ma,bWSC = LS1
0D

1
0...LS1

nD1
n ↔ LS2

0D
2
0, ...LS2

mD2
m for n,m ≥ 1 (7.15)

Since D1
i = (D1

i,a, D
1
i,b) and D2

i = (D2
i,a, D

2
i,b), so we define MaSV C and MbSV C by

following formulas.

MaWSC = LS1
0D

1
0,a...LS1

nD1
n,a ↔ LS2

0D
2
0,a...LS2

mD2
m,a for n,m ≥ 1 (7.16)

MbWSC = LS1
0D

1
0,b...LS1

nD1
n,b ↔ LS2

0D
2
0,b...LS2

mD2
m,b for n,m ≥ 1 (7.17)
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Algorithm 11 The Shallow Similarity Translation Template Learning Algorithm

1: Let the match sequence Ma,b for the pair of translation examples Ea and Eb and a
sequence of chunking symbol be:

S1
0D

1
0S

1
1 ...D

1
n−1S

1
n ↔ S2

0D
2
0S

2
1 ...D

2
m−1S

2
m

and
LS1

0 ,LD1
0,LS1

1 ,...,LD1
n−1,LS1

n ↔ LS2
0 ,LD2

0,LS2
1 ,...,LD2

m−1,LS2
m

1 ≤ n, m

2: if n = m = 1 then
3: Infer the following templates:

S1
0LD1

0 ↔ S2
0LD2

0S
2
1 if LD1

0 ↔ LD2
0

D1
0,a[LD1

0] ↔ D2
0,a[LD2

0]
D1

0,b[LD1
0] ↔ D2

0,b[LD2
0]

4: else
5: if 1 ≤ n = m and n − 1 corresponding differences can be found in Ma,b then
6: Assume that the unchecked corresponding difference is

((D1
kn,a, D

1
kn,b), (D

2
ln,a, D

2
ln,b))

Assume that the list of corresponding differences is
((D1

k1
, D1

l1
), ..., (D1

kn−1
, D2

ln−1
))

7: for each corresponding difference (D1
ki

, D2
li
) do

8: Replace D1
ki

with LD1
ki

and D2
li

with LD2
li

9: Get a new match sequence Ma,bWDC by inferring the following template
Ma,bWDC if LD1

k1
↔ LD2

l1
... and LD1

kn
↔ LD2

ln

D1
kn,a[LD1

k] ↔ D2
ln,a[LD2

k]
D1

kn,b[LD1
k] ↔ D2

ln,b[LD2
k]

10: end for
11: end if
12: end if

If there exits only a single non-empty similarity in both sides of a match sequence
Ma,b, then these similar constituents must be translations of each other. In this case,
each side of the match sequence can contain one or two differences, and they may contain
different number of differences. On the other hand, each side (M1

a,b ↔ M2
a,b) can be one

of the following:
Si

0, D
i
0, S

i
1 where Si

0 is non-empty and Si
1 is empty,

Si
0, D

i
0, S

i
1 where Si

1 is non-empty and Si
0 is empty,

Si
0, D

i
0, S

i
1, D

i
1, S

i
2 where Si

1 is non-empty and Si
2 is empty.

In these cases, we replace the non-empty similarity in M1
a,b a chunking label and separate

difference pairs in the match sequence to get two match sequences with similarity variables,
namely

M1
aWSC ↔ M2

aWSC
M1

b WSC ↔ M2
b WSC

(7.18)

Assume that the number of non-empty similarities in both source language and target
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language are the same and they are equal to n(n ≥ 1). Since in Ma,b the non-empty
similarities in M1

a,b only corresponds with non-empty similarities in M2
a,b. Thus, if n − 1

corresponding non-empty similarities were located in Ma,b,that are:
(S1

k1,a, S
2
l1,a), (S

1
k2,a, S

2
l2,b), ...(S

1
kn−1,a, S

2
ln−1,b) and a unlocated difference is S1

kn
and S2

ln ,
then we can say that S1

k,n is located with S2
ln .. Thus, we can generate template rules for

n case as follows:
MaWSC if LS1

k1
↔ LS2

l1
... and LS1

kn
↔ LS2

ln

MbWSC if LS1
k1

↔ LS2
l1
... and LS1

kn
↔ LS2

ln

In addition, the following atomic translation template is learned from the last correspond-
ing similarities.

S1
kn

[LS1
kn

] ↔ S2
ln [LS2

ln ]
To summary the description mentioned above, we describe a formal description of the

shallow difference TTL algorithm in Algorithm 12.

Algorithm 12 The Shallow Difference Template translation Learning Algorithm

Input: A match sequence Ma,b

1: if the number of similarity M1
a,b = the number of similarity M2

a,b = n ≥ 1 and n − 1
corresponding similarities can be found in Ma,b then

2: Assume that unchecked corresponding similarities are (S1
kn

, S2
ln).

Assume that the list of corresponding similarities is (S1
k1

, S2
l1
)...(S1

ki
, S2

li
)...(S1

kn
, S2

ln)
including unchecked ones.

3: for each corresponding difference (S1
ki

, S2
li
) do

4: Replace S1
ki

with LS1
ki

and S2
li

with LS2
li

to get the new match sequence Ma,bWSV
5: Divide Ma,bWSV into MaWSV and MbWSV by separating differences.
6: Infer the following templates:

MaWSV if LS1
k1

↔ LS2
l1
...,and LS1

kn
↔ LS2

ln

MbWSV if LS1
k1

↔ LS2
l1
...,and LS1

kn
↔ LS2

ln

(LS1
kn

, LS2
ln): S1

kn
↔ S2

ln

7: end for
8: end if

7.4.3 Template Translation Using Shallow Parsing

This translation method is similar to the original method as mentioned in the previous
section. However, it is extended by using the shallow information which are obtained
from a shallow parsing. We summary the ideal behind this algorithm as follows:

The given input sentence e1e2...em was chunked by using the shallow parsing [118].
Assuming that it was chunked into LC1LC2...LCk, in which LCj (j = 1, k) is a chunking
label. Each template rule ri in a set of template rules r1, r2, ..., rd is in the following form:

ri = LS1LS2..LSn ↔ LT1LT2...LTk, Here LSj (j = 1, n) and LTj (j = 1, k) are
chunking labels.

The shallow template translation tries to find all possible ways to replace the variables
with phrases in SL so that the input sentence e1e2...em can be produced from this rule.
This process is the same as that of the template translation algorithm. But for each
variable LSj, a phrase in SL is now a candidate for replacing the variable LSj if its
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chunking label is LSj. Next, it finds each corresponding phrase in TL within the set of
lexical rules with a phrase in SL so that the chunking label of a lexical rule is the same as
that of the variable. Then, the translation results are obtained using these lexical rules.
Therefore, the behavior of template translation using sallow parsing is the same with that
of the original algorithm, so we are able to apply both the original translation template
and the translation template based HMM.

7.4.4 The combination of CEBMT and RBMT

We have developed a Rule Based Machine Translation system (RBMT) for English and
Vietnamese languages namely LVTrans which uses a large of linguistic knowledge encoded
manually by humans and it obtained a good translation performance[119]. However, the
linguistic rules encode by human could not cover almost every cases and using human
manually editing uncovered cases sometime affect to other rules and this tends to obtain
wrong translations for other examples. An sufficient way is to incorporate rule based
translation system with example based machine translation system. A given English
sentence firstly using CEBMT to translate it, we then obtain a translation output together
with its score. If the score given by CEBMT is lower than a threshold obtaining by
experiments, LVTrans will be used to translate it into Vietnamese language. We can also
use the following simple strategy to enhance the performance of LVTrans by enriching
more example translations. An input sentence could not work well in translating using
LVTrans will be considered to enhance its translation performance. Instead of adding or
modifying linguistic rules, we find all relevant examples to that input and using translation
template learning algorithms to generate template rules for CEBMT system.

7.5 Example Based Machine Translation for Sentence

Reduction

7.5.1 Template Learning for Sentence Reduction

Template learning algorithm has been applied to machine translation [23]. In order to
apply the algorithm to sentence reduction, some definitions are described as follows.

Template reduction rules

Although in this paper we consider the sentence reduction problem on one language, we
here discuss the sentence reduction problem in the general case of reducing a sentence
from a source language (SL) to a reduced sentence in a target language (TL). A template
reduction rule is defined in the form S1S2...Si...Sm ↔ T1T2...Tj...Tk in which Si are either
constants or variables in SL, and Tj are either constants or variables in TL. A constant
can be a phrase or a word, while a variable can be substituted by constants. Each variable
Si in the left side of the rule is aligned with a variable Tj in the right side of the rule.

Figure 7.6 depicts an example of a template reduction rule where S1 and T1 are vari-
ables, and the phrase “is very good and includes a tutorial to get you started” is reduced
to the phrase “is very good”.

We call a template reduction rule having no variable as a lexical rule. A lexical rule
can be used as a value of a variable in a template reduction rule in order to reduce a
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is very good and includes a
tutorial to get you started

is very good

1
S

1
T

Figure 7.6: Template reduction rule example

long sentence into a short sentence. For example, if the lexical rule “The document”
↔ “Document” is in the set of template reduction rules, then the input sentence “The
document is very good and includes a tutorial to get you started” can be reduced to the
sentence “Document is very good” by using the template reduction rule in Figure 7.6.

Learning template reduction rules

We apply the TTL algorithm [23] to infer template reduction rules using similarities and
differences between two examples taken from a corpus of pairs of long sentences and their
corresponding reduced sentences.

Formally, a reduction example Ea : E1
a ↔ E2

a is composed of a pair of sentences, E1
a

and E2
a, where E1

a is the original sentence in SL and E2
a is reduced sentence in TL. A

similarity between two sentences of a language is a non-empty sequence of common items
(root words or morphemes) in both sentences. A difference between two sentences of
a language is a pair of sub-sequences having no common items, one is sub-sequence of
the first sentence and the other of the second sentence. Given two reduction examples
(Ea, Eb), our problem is to find similarities between the constituents of Ea and Eb. A
sentence is considered as a sequence of lexical items. If no similar constituents (viewed as
subsequences of lexical items) can be found, then no template reduction rule is learned
from these examples. If there are similar constituents then a match sequence Ma,b in the
following form is generated

Ma,b = S1
0D

1
0...D

1
n−1S

1
nD

1
n ↔ S2

0D
2
0S

2
1 ...D

2
m−1S

2
mD2

m (7.19)

Here n,m ≥ 1, Si
k represents a similarity between Ei

a and Ei
b, and Di

k = (Di
k,a, D

i
k,b)

represents a difference between Ei
a and Ei

b, where Di
k,a and Di

k,b are non-empty subse-
quences of items between two similar constituents. For instance, consider the following
reduction examples:
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(1)
Ea=“The document is very good and includes a tutorial to get you started”
↔ “Document is very good”.
E1

a=“The document is very good and includes a tutorial to get you started”
and E2

a=“Document is very good”.
(2)
Eb=“This paper is very good and includes a tutorial to get you started” ↔
“Paper is very good”. Where E1

b =“This paper is very good and includes a
tutorial to get you started” and E2

b =“Paper is very good”.

For these reduction examples, the matching algorithm obtains the following match
sequence.
Ma,b=(The document, This paper) “is very good and includes a tutorial to get
you started” ↔ (Document, Paper) “is very good”.

That is,
S1

0 = “”, D1
0 = (The document, This paper), D1

0,a = (The document), D1
0,b =

(This paper)
S1

1 = “is very good and includes a tutorial to get you started”,
S2

0 = “”, D2
0 = (Document, Paper), D2

0,a =(Document), D2
0,b=(Paper), S2

1 =
“is very good”

Intuitively, in the above example the similar elements and the different elements in
the left hand side should be aligned with the similar elements and the different elements
in the right hand side, respectively. Thus, in this case “(The document, This paper)” is
aligned with “(Document, Paper)”, and “is very good and includes a tutorial to get you
started” is aligned with “is very good”. We consider “(The document, This paper)” and
“(Document, Paper)” as variables, and we can generate the template reduction rule in
Figure 7.6. We also obtain two lexical rules

D1
0,a ↔ D2

0,a, or “The document” ↔ “Document”
D1

0,b ↔ D2
0,b, or “This paper” ↔ “Paper”.

We have illustrated that the problem of sentence reduction can be solved by using
translation template learning algorithm. The advantage of translation template learning
method is that it does not need to parse the input sentence. Obviously, one can use some
preprocessing techniques such as morphological analysis and shallow parsing to enrich
linguistic information to the given input sentence. For the simplicity of representation, in
this paper we only used the morphological analysis to represent an input sentence.

Figure 7.7 depicts the framework of sentence reduction using template learning. The
corpus of reduction examples is used to generate template rules in the translation template
learning algorithm. In the reduction process, a given long sentence will be represented in
the surface level by preprocessing such as pos tagging, morphological analysis, or chunking,
etc. The reduction using template rules will be then performed in order to generate the
reduced sentence. This process will be presented in next subsections.

87



Learning

Reduction
Examples

Reduction
Templates

Prepossessing

long sentences

Reduction

Long sentences

Reduced sentences

Figure 7.7: Framework of sentence reduction using template learning

7.5.2 Sentence Reduction using Template Rule

The main idea of using template rules for sentence reduction is the same as that of using
it on translation. We summary two algorithms for sentence reduction using template
reduction rules as follows. In the first one, the original method of translation template
learning is applied to reduction problem. In the second algorithm, we proposed a novel
method using Hidden Markov Model that is efficient when the input sentence is long and
the number of template reduction rules is big.

Sentence reduction using template rules

To illustrate the behavior of the sentence reduction using template rules, let us consider
the reduction example of the sentence “It is likely that two companies will work on
integrating multimedia with database technology” using the template rule1 in Figure 7.8.

Two phrases “It is likely that” and “will work on” within the input sentence are
matched with the template rule. The reduction algorithm then tries to find all possible
choices to replace variables S2 and S4 using lexical rules. For variables S2 and S4 it
finds all lexical rules whose left side is matched with “two companies” and “integrating
multimedia with database technology”, respectively. Figure 7.8 shows three choices for S2

and S4, from which we have six reduction results. Intuitively, the best reduction output

1The template rule is learned using two following examples:
It is likely that he will work on through storm. ↔ He will work on through the storm.
It is likely that she will work on this book. ↔ She will work on this book.
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Figure 7.8: Example of reduction based HMM

is “Two companies will work on integrating multimedia with database technology”.
As the problem of translation, there are two obstacles when using the original template

reduction:

• How to determine the best reduced outputs when using template reductions.

• Suppose that a template rule has t variables and each variable has l matched lexical
rules, so we have lt choices for reduction. How can we deal with this exponential
calculation?

To solve the problems, the HMM-based method for template translation as described in
subsection 7.3.1 can be applied. The difference of applying method for sentence reduction
in comparison with machine translation is that of estimating HMM models. We estimated
HMM models for sentence reduction on the reduction corpus which consists of a set of
long sentences and their reductions.

7.6 Experimental Results

7.6.1 Translation results

In order to assert that our method can enhance the translation accuracy with a low
complexity. We implemented an English Vietnamese translation system and tested it
on a corpus of 1,200 bilingual sentences collected manually from some text books and
newspapers. All English sentences within the corpus were chunked by using the shallow
parser [118] and Vietnamese sentences were chunked manually by three annotators.

Figure 7.9 shows the relation of the number of template rules and lexical rules respec-
tively, which are obtained by using the template learning algorithm. The result shows
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how the size of the template rules for a bilingual corpus of English-Vietnamese language
changes.

Figure 7.9: The relation of the number of lexical rules and the number of template rules
with the number of sentences within the corpus.

Figure 7.10: The relation of lexical rules, template rules and unreliable rules with the size
of corpus

The number of sentences for one language in our corpus is from 300 to 1,200 sentences.
The solid line and doted line show the relation between the number of template rules and
the number of lexical rules with the number of sentences within the corpus, respectively.
Figure 7.10 depicts the relation between the number of template rules and lexical rules
when applying the shallow template learning algorithm. It also shows the number of
unreliable rules when performing the shallow template learning algorithm. The unreliable
rules mean those rules has no chunking labels. The frequency of a chunking label which
appears on reliable rules are shown in figure 7.10. This result shows that the number of
NP and VP are the highest in the various sizes of corpus. This motives that recognizing
NP and VP are very important in our chunking based examples translation method. We
suspect that only use of two chunks: NP and VP are enough for CEBMT system. This
problem will be addressed in future work.
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Figure 7.11: The distribution of chunking label in the corpus.

The number of template rules and the number of lexical rules generated by the tem-
plate translation learning is 11,034 rules and 2,287 rules, respectively. Using the template
rules and the data corpus, we obtained a set of observed sequences for estimating HMM
model described in section 7.3.2, then the initialized parameters for the HMM model is
estimated by performing the Algorithm 10 in which the number of hidden states is equal
to the number of lexical rules. In addition, the training data for estimating such HMM
model consists of 1,200 observed sequences, where each of which is a substrings corre-
sponding to a lexical rule. Algorithm 10 is used to initialize HMM mode by using 1,100
observed sequences. After that, the final model are estimated by performing the Forward
and Backward algorithm [58] on the remaining sequences.

The template rules and shallow template rules are trained by using the template trans-
lation learning and shallow template translation learning, respectively. These template
rules are estimated by using the forward backward learning as described in previous sec-
tions. After obtained these template rules, we are now comparing translation results of
the proposed systems and the original systems. We conduct four translation methods
as follows: The original translation method, the translation method using HMM model,
the translation method using the shallow template learning and the combination of using
HMM and shallow template learning.

Finally, we tested the translation accuracy by using the sentences within the corpus
with an evaluation method as follows. The translation accuracy is calculated by the rate
of the number of correct translations among the total translation outputs. This formula
is given bellow.

Accuracy =
X

Y
(7.20)

where X and Y be the number of correct translations and the total translation outputs,
respectively.

Using the formula (7.19), we obtained the results as shown in Table 7.2.
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Table 7.2: Accuracy of four translation algorithm: Translation template learning, Shallow
template translation learning, Template translation learning using HMM, and shallow
translation template learning using HMM.

Method Translation Accuracy
TTL 0.34
STTL 0.52
TTL-HMM 0.81
STTL-HMM 0.87

Table 7.2 shows the translation results of the template translation learning, shallow
template learning, the template learning using HMM and the shallow template learning
combining with the HMM, respectively. The shallow template learning improved the
original algorithm. This was due to the fact that performing a translation in the reliable
rules is better than the original rules. The combining of the shallow template learning and
the HMM model achieved the best result. This indicates that the combined algorithm
inherits the advantage of two algorithms, the shallow template learning and the HMM
model.

7.6.2 Reduction Results

The corpus for sentence reduction is collected from Vietnam agency web-site(http://
www.vnagency.com.vn), these sentences in the corpus are then used to generate template
rules for our reduction methods. The number of template rules and the number of lexical
rules using the translation template learning are 11,034 rules and 2,287 rules, respectively.
Using the template rules and the data corpus, we obtained the training data for estimating
the HMM model for sentence reduction. The training data for estimating the HMM model
consists of 1,500 observed sequences, in which each sequence is correspond to a sequence
of lexical rules. We obtained other 1,200 sentences from the same web-site, in which the
number of sentences which cannot be recognized by the template rules takes 10% percent.
We selected randomly 32 sentences among 1,200 sentences for testing and the remained
sentences are used to extract observed sequences for training the HMM model by the
Forward-Backward algorithm[58].

It is difficult to compare our methods with previous methods using parsing approach.
This is due to the fact that there was no reliable syntax parsing for Vietnamese language.
However, we manually parsed all sentences in our corpus in order to use the decision tree
based reduction described in [14]. After performing the C4.5 training program [98] on the
corpus above, We are able to test the reduction based decision tree model.

We implemented five sentence reduction methods as follows.

• The baseline method is the one that obtains a reduced sentence with the highest
word-bigram score.

• The sentence reduction based decision tree model (Decision-Based).

• The proposed reduction method using TTL algorithm (EBSR).

92



• The reduction method using HMM-based reduction algorithm (EBSR-HMM).

• The EBSR-HMM using the n-best of Viterbi algorithm.

We used the same evaluation as [14] by showing each original sentence in the test
corpus to four judges who are Vietnamese, together with five sentence reductions of it
and compares with human reduction. The judges were told that all outputs were generated
automatically. The order of the outputs was scrambled randomly across test cases. The
judges participated in two experiments. In the first experiment, they were asked to
determine on a scale from 1 to 10 how well the systems did with respect to selecting the
most important words in the original sentence.

In the second experiment, they were asked to determine on a scale from 1 to 10 how
grammatical the outputs were. Table 7.3 shows compression ratios in the first column.
It means that the lower the compression ratio the short the reduced sentence. Table 7.3
also shows mean and standard deviation results across all judges, for each algorithm and
human.

The results show that the reduced sentences produced by both algorithms are more
grammatical and contain more important words than the sentences produced by the
baseline. T-test experiments showed these differences to be statistical significant at 95%
confident interval for average scores across all judges and the performance of the proposed
algorithms are much closer to human performance than the baseline algorithm.

Table 7.3: Experimental Results
Method Compression Grammaticality Importance
Baseline 57.19 4.78 ± 1.19 4.34 ± 1.92
EBRS 65.20 6.80 ± 1.30 6.49 ± 1.80
Decision-Based 60.25 7.40 ± 1.32 7.12 ± 1.73
EBRS-HMM 65.15 7.70 ± 1.20 7.30 ± 1.60
EBRS-HMM (n-best) 68.40 8.20 ± 1.32 7.90 ± 1.45
Human 53.33 9.05 ± 0.30 8.50 ± 0.80

The results shown on Table 7.3 also indicate that the proposed algorithms are closer
to and better than the Decision-Based algorithm in term of the grammaticality and the
importance measure. Especially, the EBSR-HMM using the n-best of Viterbi algorithm
shows the significant improvements in comparison with other algorithms.

Figure 7.12 shows some examples of our reduction methods in testing on Vietnamese
language. Each reduction example is attached an English translation. The left hand side
and the right hand shows the template rules and the reduction results using these tem-
plate rules, respectively. There are three examples for reduction using template rules. The
results of EBSR and EBSR-HMM in the first example are identical and they are closed
to the human reduction. The result of EBSR in the second example is wrong because it
did not used a correct lexical rule. Reduction results of EBSR-HMM are good for both
example 2 and example 3.
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Figure 7.12: Examples of reduction using example-based approach. The template rules
are generated by TTL algorithms. Reduction results are obtained using EBSR and using
EBSR-HMM.

7.7 Conclusions

We have present a chunking based example-based machine translation system. Our ma-
chine translation method is extended from the translation template learning method in
both aspects: The learning phase and the translation phase.

In the learning phase, we present a shallow-translation template learning algorithm
in order to produce the comprehensive and reliable rules. Experiments show that those
comprehensive rules dramatically improved the translation accuracy.

In the translation phase, we propose a translation template using a Hidden Markov
Model which can avoid the exponential calculation problem and efficiently improve the
translation accuracy in comparison with previous work. Interestingly, it draws a new
perspective for applying statistical machine learning theory on example based machine
translation. The use of other statistical machine learning models are discussed in future
work.

We believe that the combination of the proposed system with the rule based machine
translation system is promising since our translation methods are able to evaluate the
translation result by obtaining scores from the HMM model.

Furthermore, we discuss a novel application of our translation methods for sentence
reduction without syntactic parsing. The advantage of the proposed algorithms is that it
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can be implemented for any language without using parsing and achieved acceptable re-
sults in comparison with human reduction. We believe that with the same technique using
both for translation and for reduction, the performance of cross language summarization
could be high.
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Chapter 8

Evaluation of Cross Language Text
Summarization System

In this chapter, we describe a framework of CLTS using statistical machine learning
models which are estimated from training data available. The proposed system consists
of three main parts: Sentence Extractions, Sentence Reduction, and Machine Translation.
To evaluate the performance of the proposed CLTS system we used human evaluation and
ROUGE-evaluation methods in two domains: The scientific domain, and news domain.

8.1 System Architecture

Figure 8.1 shows a framework of cross language text summarization system which de-
scribes the relations of the components in the CLTS system and the process of summa-
rizing a given text document to a summary in other languages.

First, a given text document is parsed into a surface level by using a shallow parsing.
Second, the sentence extraction phase extracts from the original text document a set
of important sentences which mostly reflect the gist meaning of the original. Finally,
each long sentence will be reduced to a shorter ones by the sentence reduction phase
and the short sentence will be then translated to a sentence in another language by
performing the chunking-based machine translation system. All the translation outputs
will be combined in order to obtain a summary in another language. The proposed
CLTS system mainly uses statistical learning models (HMM, MEM, and SVM) which are
estimated automatically on training data. In addition, the CLTS also incorporates with
some knowledge databases including Comlex[97], WordNet[92], and LVTRule [119].

8.2 Implementation

We have developed a full-fledged cross language summarization system using statistical
machine learning models. The program were mostly written in the C++ language. The
main components of the system include:

• Training data Generation The training data generation is an off-line process in
our CTLS system. It is used to generate training data for both sentence reduction
and sentence extraction task.
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Figure 8.1: A framework of cross language text summarization system

• Sentence Extraction The sentence extraction extracts importance sentences from
the original document.

• Sentence Reduction Each importance sentence is then reduced to a shorter sen-
tence so that the gist meaning of the original one is the same as that of the short
sentence. The sentence reduction components used in our implementation are the
sentence reduction using maximum entropy models along with our rule based sen-
tence reduction [19]. We used this combination because it can reduce any long
sentence which it is not similar to those sentences within the training corpus.

• Translation The translation method in our CLTS is the CEBMT method and its
combination with the LVTrans machine translation system [119].

• Fusion of MT and Text Summarization We also propose a fusion strategy
of machine translation and mono-language text summarization to CLTS. The key
technique is that we used the same chunking based template learning for machine
translation and sentence reduction (the details are described in the previous chap-
ter), this leads to a fusion strategy of sentence reduction and translation as follows.
A sentence reduction phases is designed to obtain multiple reduction outputs by us-
ing our probabilistic sentence reduction based on statistical machine learning mod-
els. In implementation, we applied the probabilistic sentence reduction based on
maximum entropy model because its computational times are faster than those of
other methods. After obtaining multiple reduction outputs, the given long sentence
and these outputs are considered as an input for a chunking based example based
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translation and reduction phase. This phase generates all reduction results along
with their scores by firstly translating all short sentences and the long sentence,
then reducing all previously translation outputs. Afterward, the reduction outputs
with highest score are selected as the result for the CLTS system.

For implementation, we also need some other tools for preparing data which in-
clude: The Named Entity Recognition[94], The Chunking Parsing[118], and the syntactic
parsing[91]. Since our chunking-based example based machine translation system is a
part of the LVTrans machine translation system [119], our cross language summarization
also uses the LVTrans software for experiments.

To illustrate, we show an example of our reduction and translation results. Figure 8.2
depicts that a long English sentence will be reduced to a shorter sentence and translated
it into Vietnamese language.

Figure 8.2: An running example of reduction and translation.

Figure 8.3 shows an example from beginning to the end to illustrate how a document
was summarized to another language. The input document was extracted, then reduced to
a shorter sentences. The shorter sentences were translated to the other language. Figure
8.3 also shows three processes of the CLTS system, in which we only extract one sentence
from the original text document then our reduction is used to reduce it to a condensation
form. The short sentence is translated to Vietnamese language, and it is also a result of
the CLTS system.

To this end, Figure 8.4 introduce our cross language text summarization system for
summarizing an English text document to Vietnamese language.
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Figure 8.3: A running example of the cross language text summarization for English and
Vietnamese language.

8.3 Evaluation of the Overall System

Evaluation is the one of the hardest problem in natural language processing. For cross-
language text summarization, there is no consensus on what is good way to evaluate
summaries. Fortunately, cross-language summarization is similar to machine translation
in term of producing outputs in another language than the language of the given text doc-
ument. Thus, we can utilize those evaluation methods available in machine translation for
cross-language text summarization. Among those evaluation methods, human judgments
are commonly applied and it is also used to evaluate the proposed CLTS system.

Recently, some automatic evaluation methods are issued for both machine translation
and text summarization [51], [53]. In fact, these evaluations are more suitable for machine
translation and text summarization system which their languages are English, whilst in
our CLTS system, its target language is Vietnamese and the word orders and function
words are two most often used grammaticality facilities in Vietnamese. Despite of these
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Figure 8.4: A running example of the cross language text summarization for English and
Vietnamese language.

limitations, the ROUGE evaluation is used for evaluating the performance of our CLTS
system.

8.3.1 Human Judgments

We selected 20 documents from DUC and cmlp data to test our text summarization system
in which a subset of 10 text document are used for evaluation our CLTS performance. For
DUC data we obtained the DOC61-J and DOC62-J which consists of 10 text documents to
test. Since there were no manually gist translation of the DUC corpus and the cmlp-corpus
mentioned above, so we could not apply the ROUGE - an automatic text summarization
evaluation to measure the performance of the proposed CLTS. Instead, we used the human
judgments evaluation in order to measure whether or not a summarization result of a given
document performed by CLTS is good. The evaluation is based on the two following
criteria measures:

• Content score gives a good idea of what the articles are about. It can be used to
determine the gist meaning of an article in its summary.

• Clarity score represents the clarity of the summary obtaining from our system. This
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Table 8.1: The performance result of the CLTS system on a test of 10 text documents on
cmlp-data set.

Methods Content score Clarity score Computational times (second)
MT-late-gold 6.0 5.25 10.5
MT-before-lead 4.0 3.25 195.6
CLTS 5.5 5.00 56.5

Table 8.2: The performance result of the CLTS system on a test of 10 text documents of
DUC data DOC61-J and DOC62-J.

Methods Content score Clarity score Computational times (second)
MT-late-gold 5.00 4.25 8.5
MT-before-lead 4.50 3.75 100.5
CLTS 5.25 4.50 39.6

evaluation aim at determining how well structured of a summary itself. It includes
the organization, coherence, and readability of a summary.

Theses scores above are in the scale of 0(poor) to 10(excellent). The evaluation results
for cmlp-data and DUC data are shown in Table 8.1 and Table 8.2, respectively.

We do not compare the performance of our system with another because there was
no cross language summarization system for the language pairs English-Vietnamese other
than our system. Instead, the summary of each document were taken from the corpus
(using gold data) and translated to Vietnamese language by using our LVTrans machine
translation software[119]. This method is called MT-late-gold. The second method so
called MT-before-lead that we use LVTrans to translate the whole English document and
then performing an extraction method to obtain a summary document in Vietnamese lan-
guage. For convenience, we use the Lead-based method (extracting the leading sentences)
to extract a summary in Vietnamese language.

Our CLTS results will be then compared with the translation gold-data (MT-late-
gold) and the translation of the whole text document method (MT-before-lead). The
LVTrans machine translation system [119] have had a good performance in testing on
both conversation data and news data. For the news data, we obtained 9.94% for the
very good translation, 45.22% for understandable, and 12% for understandable with minor
modification. For the conversation data we obtained 78.2% for the very good translation,
18.5% for understandable, and 4.3% for wrong translation.

Table 8.1 and 8.2 show the evaluation score of the proposed system on 20 text doc-
uments. Their average scores show that our system can be produced acceptable results
for summarizing an English document to Vietnamese language. The results also indicate
that even we used the MT-late-gold method, the results also not in high quality. This was
because the performance of MT-software is currently not high. Despite of these problems,
the CLTS achieves an acceptable result in comparison with MT-late-gold and outperforms
MT-before-lead. In fact, the MT-late-gold is based on the assumption that the output
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Table 8.3: The performance result of the CLTS system on a test of 20 text documents
obtained from webs.

Methods ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4
MT-late-gold 0.295 0.082 0.028 0.0090
MT-before-lead 0.138 0.029 0.010 0.0020
MT-EBSR 0.197 0.032 0.013 0.0024
CLTS 0.227 0.053 0.015 0.0030

of a text summarization is perfect since we obtained the summary of each original docu-
ment. This is the reason why the results of CLTS system are slightly smaller than those
of MT-late-gold.

Table 8.1 and 8.2 also show the computational times of three methods in which the
result of the CLTS system is lower than MT-late-gold, but it is efficiently faster than
MT-before-lead.

8.3.2 ROUGE Evaluation

ROUGE stands for Recall-Oriented Understudy for Gisting Evaluation [53]. It is a method
to automatically determine the quality of a summary by comparing it to other (ideal)
summaries created by humans. This measure is computed by counting the number of
overlapping words between the computer-generated summary to be evaluated and the
ideal summaries created by humans.

ROUGE − N =

∑
S∈{referencesummaries}

∑
gramn∈s

Countmatch(gramn)∑
S∈{referencesummaries}

∑
gramn∈s

Count(gramn)
(8.1)

Equation (8.1) shows the ROUGE-N score where n stands for the length of the n-
gram, gramn, and Countmatch(gramn) is the maximum number of n-grams co-occurring
in candidate summary and a set of reference summaries.

For testing, we collected 20 English news articles and they gist meanings in Vietnamese
and English from the web (http://www.vnagency.com.vn/). We then experiment our
CLTS system on this test set by using the ROUGE evaluation. In addition, we also use
our example based sentence reduction technique (EBSR) as described in 7.5 to reduce
the Vietnamese long sentence after translating 20 English news sentences. We called the
method MT-EBSR.

The evaluation results in Table 8.3 explain that the CLTS system outperforms MT-
before-lead in almost every extraction tasks. Table 8.3 also indicates that our second
method (MT-EBSR) outperforms MT-before-lead. In comparison with MT-late-gold, the
results of CLTS were smaller but the difference is acceptable.

8.4 Conclusion

We have designed a cross language text summarization framework and show its potential
when testing on a subset of DUC corpus, Cmlp corpus, and a news article corpus for
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summarizing English document to Vietnamese language. Human and ROUGE evaluation
both show that the proposed system achieved acceptable results and they are significantly
better than that of MT-before-lead. Although our results are good in testing on a small
corpus there are some problems to obtain a reliable cross language text summarization
system. To make it applicable, we focus on improving the performance of the mono-
language text summarization and machine translation tasks further. Currently, the initial
results of CLTS system is not high but in the future its result will be improved when the
training data corpus is completely revised and enriched more.

We believe that with a larger corpus, these problems can be solved and the system’s
performance will be further improved.
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Chapter 9

Conclusion

In this thesis we have described statistical machine learning for cross language text sum-
marization. We show that the major limitation of previous work on CLTS is likely to
treat machine translation and mono-lingual text summarization separately. To overcome
this problem, we first propose a new method which allows adapting translation to mono-
lingual summarization. We then apply statistical machine learning models to CLTS in
order to improve both the performance of text summarization and machine translation.

9.1 Summary of the Contributions

The main contributions of this thesis include:

• Decomposition of human-written summary sentences
Chapter 4 presents a new method of enhancing the accuracy of a decomposition task
by using position checking and a semantic measure for each word within a summary
document. The proposed model is an extension of the Hidden Markov Model for the
human written decomposition problem. Experimental results using DUC data and
Telecommunication Corpus shows that the proposed method improves the accuracy
of decomposition of human-written summary sentences. Although our generation
training data method are suitable as well for experimenting on the corpus of original
texts and their abstracts, it still needs human correction for the generated data in
order to use for training sentence extraction and sentence reduction task.

• Co-MEM for Sentence Exaction
Chapter 5 discusses the use of unlabeled data to improve the sentence extraction
using machine learning, we propose a Co-MEM training algorithm that is a variant of
the co-training algorithm based on two different views. Experiments shows that the
proposed algorithm improved the conventional algorithms on the sentence extraction
task.

• Probabilistic sentence reduction
Chapter 6 investigates a novel application of support vector machines in sentence
reduction. Furthermore, we propose a new probabilistic sentence reduction meth-
ods based on support vector machine learning and maximum entropy models. In
contrast to previous methods, the proposed methods have the ability to produce
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multiple best results for a given sentence, which is useful in text summarization be-
cause information in full text document can be utilized to summarize the document.
Experimental results show that the proposed methods outperform earlier methods
in term of sentence reduction accuracy.

• Machine translation in Cross-language summarization
Chapter 7 addresses a new example-based machine translation system based on
template translation learning method. The proposed system improves the template
translation system in both the learning phase and the translation phase. The learn-
ing phase is extended by incorporating linguistic information in order to produce
more comprehensive and reliable rules. The translation phase is extended to en-
hance translation’s performances in term of computational times and accuracy by
establishing a Hidden Markov Model on a set of template rules that estimates from
translation examples. Experiments show that the comprehensive and reliable rules
improved translation results. Furthermore, establishing a Hidden Markov Model on
a set of template rules dramatically outperforms the original system. The proposed
system also incorporated with a rule-based machine translation system with a larger
number of translation rules for using in real application. To this end, we introduce
an example based sentence reduction method which can achieve a good reduction
result without using any syntactic parser.

• A new Cross-Language Text Summarization System
Chapter 8 shows the implementation of the cross language text summarization sys-
tem for English and Vietnamese language. In which, we have designed a road map
and built a framework of a cross language text summarization for any pair of lan-
guages. In addition, we show its potential by testing on a small corpus.

9.2 Further Research Direction

We have shown a new approach to cross-language text summarization system using sta-
tistical machine learning models. Although our CLTS system shows a promising results,
there are still several open problems for future works which can be listed as follows.

• Our generating training data algorithm is mainly applied for a pair of text document
and its summary in the same language. So it is essential to adapt it to wherever
the abstract and the original document are two different languages.

• Since we treat the reduction phase and the translation phase separately, it would
be interesting to find a common kennel for reduction and translation phase in our
CLTS system. When we obtain a corpus of long sentences and short sentences,
in which a long sentence and a short one are in two different languages, then our
reduction model should change to new one so that it can utilize these corpus. In
the translation phase, we draws a new perspective for applying statistical machine
learning to this domain, but only HMM models are experimented. To support
our idea further, using other statistical learning models such as Maximum Entropy
Makov Model and Conditional Random Fields seem to be very promising.

• Reformulating the text for other summarization purpose. In this thesis, we have
looked at how to reformulate the text from a document into a text summary that
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can be read by reader. In future work, we focus on applying our technique to
multimedia summarization. Typically, the structure of multimedia and text are very
different, therefore discovering new suitable statistical machine learning models for
multimedia summarization are interesting works.

• We have designed a cross language text summarization system and show its sum-
marization performance. However, it would be very nice if we could incorporate it
with other applications. For example, we can use our CLTS system in digital library
or cross language information retrieval.
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