
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title
A Study on Recognition of Requisite Part and

Effectuation Part in Law Sentences

Author(s) Ngo, Bach Xuan

Citation

Issue Date 2011-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/9621

Rights

Description
Supervisor: Professor Akira Shimazu, 情報科学研究

科, 修士

A Study on Recognition of Requisite Part and
Effectuation Part in Law Sentences

By Ngo Xuan Bach

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Akira Shimazu

March, 2011

A Study on Recognition of Requisite Part and
Effectuation Part in Law Sentences

By Ngo Xuan Bach (0910021)

A thesis submitted to
School of Information Science,

Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements

for the degree of
Master of Information Science

Graduate Program in Information Science

Written under the direction of
Professor Akira Shimazu

and approved by
Professor Akira Shimazu

Associate Professor Kiyoaki Shirai
Professor Satoshi Tojo

February, 2011 (Submitted)

Copyright c© 2011 by Ngo Xuan Bach

A Study on Recognition of Requisite Part and

Effectuation Part in Law Sentences

by

Ngo Xuan Bach (0910021)

School of Information Science

Japan Advanced Institute of Science and Technology

February 08, 2011

Keywords: Law Sentences, Requisite Part, Effectuation Part, Sequence Learning,
Semi-supervised Learning

Abstract

In recent years, a new research field called Legal Engineering has been proposed. Legal
Engineering regards laws as a kind of software for our society. Specifically, laws such as
pension law are specifications for information systems such as pension systems. To achieve
a trustworthy society, laws need to be verified about their consistency and contradiction.

Analyzing the logical structure of legal texts is a key problem in Legal Engineering.
The results of this process are helpful to not only lawyers but also people who want to
understand the legal texts. This is a preliminary step to support other tasks in legal text
processing (such as translating legal articles into logical and formal representations, legal
article retrieval, legal text summarization, question answering in legal domains, etc) and
serve to verify legal documents.

In this thesis, we focus on two tasks which analyze the logical structure of legal texts
at the sentence level and the paragraph level, respectively: Recognition of Requisite Part
and Effectuation Part in Law Sentences (or RRE task) and Recognition of Requisite Parts
and Effectuation Parts in Paragraphs Consisting of Multiple Sentences (or RREP task).
The goal of the RRE task is to recognize logical parts given a law sentence. The goal of
the RREP task is to recognize logical parts and logical structures (a set of some related
logical parts) given a legal paragraph.

For the RRE task, our approach is modeling the task as a sequence learning problem.
We present several supervised learning models for the RRE task: word-based model
(consider a law sentence as a sequence of words), Bunsetsu-based model (consider a law
sentence as a sequence of Bunsetsus), and reranking model (use a linear score function
to rerank N-best outputs of the Bunsetsu-based model with a variant of the perceptron
algorithm). We also present a simple semi-supervised learning method for the RRE task

i

using extra word features derived from Brown word clusters. Our results show that
modeling based on Bunsetsu is better than modeling based on words, and the semi-
supervised learning method outperforms supervised models. In this task, our best model
achieves 88.84% in Fβ=1 score on the Japanese National Pension Law corpus.

For the RREP task, we present a two-phase framework in which we recognize logical
parts in the first phase and logical structures in the second phase. We divide logical
parts in a law sentence into some layers and provide a multi-layer sequence learning
model to recognize them. We consider the sub-task of recognizing logical structures as
an optimization problem on a graph, where each node corresponds to a logical part and
a sub-graph corresponds to a logical structure, and give a heuristic algorithm to solve
it. Our models achieve 74.37% in recognizing logical parts, 75.89% in recognizing logical
structures, and 51.12% in the whole task on the Japanese National Pension Law corpus.
Our results provide a baseline for further researches on this interesting task.

ii

Acknowledgments

First and foremost, I would like to sincerely thank my supervisor, Professor Akira
Shimazu, who brought me to the interesting world of natural language processing and
supported me during my study. Without his guidance and encouragement my work would
not be done.

Second, I would like to say many thanks to Japanese Government Scholarship Program.
Without their financial support I would not come to Japan to study.

I would like to thank Professor Kiyoaki Shirai. His valuable comments made this thesis
better.

I would like to thank Dr. Nguyen Le Minh, who gave me advices when I was in troubles.
He always listened to me, discussed with me, and supported me everything I need.

I am grateful to my colleagues in natural language processing laboratory for making
JAIST an enjoyable place to my study and life.

I also would like to thank Kenji Takano and Yoshiko Oyama for analyzing law sentences
and building the corpus, and Technical Communication Program Office of JAIST for
editing this manuscript.

Finally, I would like to give special thanks to my family for their sacrifice, love, and
understanding.

iii

Contents

1 Introduction 1

1.1 RRE task . 1

1.2 RREP Task . 4

1.3 Related Works . 6

1.4 Contributions and the Outline of the Thesis 9

2 RRE as a Sequence Learning Problem 11

2.1 Formulation . 11

2.2 Learning Method: Conditional Random Fields 13

2.3 Corpus and Evaluation Methods . 15

2.3.1 Corpus . 15

2.3.2 Evaluation Methods . 15

3 RRE Based on Words 17

3.1 Word-based Model . 17

3.2 Feature Investigation . 18

3.2.1 Feature Design . 18

3.2.2 Baseline . 18

3.2.3 Experiments on Feature Sets . 19

3.3 RRE Using Head Words and Functional Words 19

3.4 Exploring Contributions of Words to RRE 21

3.4.1 Method . 21

3.4.2 Experimental Results . 22

3.5 Conclusions . 24

iv

4 RRE Based on Bunsetsu 26

4.1 Bunsetsu-based Model . 26

4.2 Experiments on Bunsetsu-based Model . 27

4.3 Experiments with Different Tag Settings 27

4.3.1 Four Kinds of Tag Settings . 27

4.3.2 Experiments . 28

4.4 A Reranking Model for RRE . 29

4.4.1 Why Reranking? . 29

4.4.2 Discriminative Reranking with Linear Models 29

4.4.3 Feature Representation . 30

4.4.4 The Perceptron Algorithm and Some Variants 31

4.4.5 Experiments on Reranking Model 33

4.4.6 Error Analysis . 34

4.5 Conclusions . 35

5 A Simple Semi-supervised Learning Method for RRE 36

5.1 Semi-supervised Learning in NLP . 36

5.2 Brown Clustering . 38

5.3 RRE with Extra Word Features . 40

5.3.1 Framework . 40

5.3.2 Word Cluster Extraction and Feature Design 41

5.3.3 Experiments . 42

5.4 Conclusions . 43

6 Recognition of Requisite Parts and Effectuation Parts in Paragraphs
Consisting of Multiple Sentences 45

6.1 Formulation . 45

6.1.1 Sub-Task 1: Recognition of Logical Parts 45

6.1.2 Sub-Task 2: Recognition of Logical Structures 47

6.2 Proposed Solutions . 47

6.2.1 Multi-layer Sequence Learning Model for Logical Part Recognition . 47

6.2.2 A Graph-based Model for Recognition of Logical Structures 49

v

6.3 Experiments . 55

6.3.1 Corpus and Evaluation Methods . 55

6.3.2 Experiments on Sub-Task 1 . 56

6.3.3 Experiments on Sub-Task 2 . 58

6.4 Conclusions . 60

7 Conclusions 61

7.1 Summary of the Thesis . 61

7.2 Future Work . 62

vi

List of Figures

1.1 Four cases of the logical structure of a law sentence. 2

1.2 Examples of four cases of the logical structure of a law sentence. A means
antecedent part, C means consequent part, and T1, T2, T3 mean topic
parts which correspond to case 1, case 2, and case 3 (the translations keep
the ordinal sentence structures). 3

1.3 Two cases of inputs and outputs of the RREP task. 4

1.4 An example of the RREP task in natural language (T means Topic part,
A means Antecedent part, and C means Consequent part). 5

2.1 An example of overlapping and embedded relationships. 12

2.2 A sentence in sequence learning model with IOB notation. 12

2.3 Graphical model of a CRFs for sequence learning (n is the length of sequence). 14

2.4 An example of evaluation method for the RRE task. 16

3.1 A law sentence in the word-based model. 17

3.2 Sentence reduction. 20

3.3 A feature vector in sequence learning models. 21

3.4 A feature vector after removing features related to comma. 22

3.5 Experimental results. 23

3.6 Error rates by orders of words. 23

3.7 Some common templates of law sentences. 24

3.8 Top 100 most frequency words in the JNPL corpus. 25

4.1 A law sentence in the Bunsetsu-based model. 26

4.2 Four kinds of tag settings. 28

4.3 Reranking model. 34

vii

5.1 The class-based bigram language model (ci = C(wi)). 38

5.2 An example of Brown word-cluster hierarchy. 40

5.3 A Brown word-cluster hierarchy after reduction to depth 2. 40

5.4 Semi-supervised learning framework. 41

5.5 Comparison between the supervised method and the semi-supervised method. 42

5.6 Experimental results illustrated in graph. 43

6.1 A law sentence with logical parts in three layers. 48

6.2 An example of labeling in the multi-layer model. 49

6.3 An example of the first case. 51

6.4 An example of the second case. 53

6.5 Another example of the second case. 53

6.6 The third example of the second case. 54

viii

List of Tables

1.1 A comparison between our RRE task (and Sub-task 1 of the RREP task)
and some NLP tasks . 8

1.2 A comparison between Sub-task 2 of the RREP task and coreference reso-
lution task . 9

2.1 Statistics on the Japanese National Pension Law corpus 15

3.1 Feature design . 18

3.2 Results of the baseline model . 19

3.3 Experiments with feature sets . 19

3.4 Experiments on reduced sentences . 20

4.1 Experiments on the Bunsetsu-based model 27

4.2 Comparison between the baseline model and the BC model 28

4.3 Experiments with four kinds of tag settings 29

4.4 Results of the reranking model . 34

5.1 Feature Design. 41

5.2 Experiments with different training sizes. 43

5.3 Acts in the plain text corpus . 44

6.1 Statistics on logical parts of the JNPL corpus 55

6.2 Examples of evaluation method for Sub-task 2 56

6.3 Experimental results for Sub-task 1 on the JNLP corpus(W:Word; P: POS
tag; B: Bunsetsu tag) . 58

6.4 Experimental results in more details . 59

ix

6.5 Examples of evaluation method for Sub-task 2 in the end-to-end setting
(Pre = Predicted, GIn = Gold Input, GRes = Gold Result) 60

6.6 Experimental results on Sub-task 2 . 60

x

Chapter 1

Introduction

In this chapter, we first introduce our research tasks, Recognition of Requisite Part and
Effectuation Part in Law Sentences, or RRE task (Section 1.1), and Recognition of Req-
uisite Parts and Effectuation Parts in Paragraphs Consisting of Multiple Sentences, or
RREP task (Section 1.2). Next, we describe some related works (Section 1.3). Finally,
we present contributions and the outline of this thesis (Section 1.4).

1.1 RRE task

In recent years, a new research field called Legal Engineering has been proposed in the 21st
Century COE Program, Verifiable and Evolvable e-Society [15, 16, 17]. Legal Engineering
serves to exam and verify whether a law has been established appropriately according to
its purpose, whether the law is consistent with related laws, and whether the law has
been modified, added, and deleted consistently. There are two important goals of Legal
Engineering. The first goal is to help experts make complete and consistent laws, and the
other is to design an information system which works based on laws.

Legal Engineering regards laws as a kind of software for our society. Specifically, laws
such as pension law are specifications for information systems such as pension systems.
To achieve a trustworthy society, laws need to be verified about their consistency and
contradiction.

Legal texts have some specific characteristics that make them different from other daily-
use documents. Legal texts are usually long and complicated. They are composed by
experts who spent a lot of time to write and check carefully.

One of the most important characteristics of legal texts is that legal texts usually have
some specific structures. In most cases, a law sentence can roughly be divided into two
logical parts: requisite part and effectuation part [30, 40]. For example, the Hiroshima
city provision 13-2 When the mayor designates a district for promoting beautification, s/he
must in advance listen to opinions from the organizations and the administrative agencies

1

which are recognized to be concerned with the district, includes a requisite part (before the
comma) and an effectuation part (after the comma) [30].

The requisite part and the effectuation part of a law sentence are composed from three
parts: a topic part, an antecedent part, and a consequent part. There are four cases (illus-
trated in Figure 1.1) basing on where the topic part depends on: case 0 (no topic part),
case 1 (the topic part depends on the antecedent part), case 2 (the topic part depends
on the consequent part), and case 3 (the topic part depends on both the antecedent part
and the consequent part). In case 0, the requisite part is the antecedent part and the
effectuation part is the consequent part. In case 1, the requisite part is composed from the
topic part and the antecedent part, while the effectuation part is the consequent part. In
case 2, the requisite part is the antecedent part, while the effectuation part is composed
from the topic part and the consequent part. In case 3, the requisite part is composed
from the topic part and the antecedent part, while the effectuation part is composed from
the topic part and the consequent part. Figure 1.2 gives examples of law sentences in four
cases.

Figure 1.1: Four cases of the logical structure of a law sentence.

Recognition of Requisite Part and Effectuation Part in Law Sentences, or RRE, is the
task of analyzing the logical structure of law sentences. The input of the task is a law
sentence, and the output are non-overlapping and non-embedded1 logical parts of the input

1This means that one word can only belong to one logical part, and there is no logical part that
contains another logical part. These notions will be formally explained in Chapter 2.

2

Figure 1.2: Examples of four cases of the logical structure of a law sentence. A means
antecedent part, C means consequent part, and T1, T2, T3 mean topic parts which corre-
spond to case 1, case 2, and case 3 (the translations keep the ordinal sentence structures).

sentence2. The RRE task is an important task which has been studied in research on Legal
Engineering. This task is a preliminary step to support other tasks in legal text processing
such as translating legal articles into logical and formal representations and verifying legal
documents, legal article retrieval, legal text summarization, question answering in legal
domains, etc [16, 30]. In a law sentence, the consequent part usually describes a law
provision, and the antecedent part describes cases in which the law provision can be
applied. The topic part describes subjects which are related to the law provision. Hence,
the outputs of the RRE task will be very helpful to not only lawyers but also people who
want to understand the law sentence. They can easily understand 1) what does a law
sentence say? 2) in which cases the law sentence can be applied? and 3) which subjects

2As shown in Figure 1.2, the outputs are topic parts (together with their case numbers), antecedent
parts, and consequent parts.

3

are related to the provision described in the law sentence?

1.2 RREP Task

In the previous section (Section 1.1), we have introduced the RRE task, in which we
recognize logical parts of law sentences. In this section, we introduce the RREP task,
Recognition of Requisite Parts and Effectuation Parts in Paragraphs Consisting of Multiple
Sentences, in which we analyze the logical structure of legal text at the paragraph level.
The input of this task is a paragraph in a legal article, and the outputs are logical parts
in law sentences and logical structures between logical parts (each logical structure is a
set of some related logical parts).

Figure 1.3 shows two cases of inputs and outputs of the task. In the first case, the input
is a paragraph of two sentences, and the outputs are four logical parts, which are grouped
into two logical structures. In the second case, the input is a paragraph consisting of four
sentences, and the outputs are four logical parts, which are grouped into three logical
structures.

Figure 1.3: Two cases of inputs and outputs of the RREP task.

This task consists of two sub-tasks as follows:

1. Sub-task 1: Recognition of Logical Parts. The goal of this sub-task is recognizing
(non-overlapping) logical parts of law sentences in the input paragraph.

4

2. Sub-task 2: Recognition of Logical Structures. The goal of this sub-task is grouping
related logical parts (outputs of Sub-task 1) into some logical structures.

In the RRE task, the input is only one sentence, so we assume that all the logical
parts of this sentence belong to the same logical structure. In this task, we consider more
general cases, in which the input is a paragraph consisting of multiple sentences (maybe
complete or non-complete) and logical parts of an input sentence can belong to different
logical structures.

An example in natural language is presented in Figure 1.4. In this example, the input
paragraph consists of four sentences3. The goal of the first sub-task is to recognize five
logical parts including one topic part and one consequent part in the first sentence, and
three antecedent parts in remainder sentences. In the second sub-task, the goal is to
recognize three logical structures given five logical parts. Each logical structure consists
of the topic part, the consequent part, and one antecedent part.

Each logical structure will form a logical formula4. The intuitive meaning of three
logical formulas can be expressed as follows:

1. The meaning of formula 1 : If a person in my company cannot complete his/her job,
he/she will be sacked without warning.

2. The meaning of formula 2 : If a person in my company goes to work late three times
or more, he/she will be sacked without warning.

3. The meaning of formula 3 : If a person in my company uses the Internet in working
time, he/she will be sacked without warning.

Figure 1.4: An example of the RREP task in natural language (T means Topic part, A
means Antecedent part, and C means Consequent part).

3Some sentences are non-complete.
4The task of building logical formulas is not covered in this thesis.

5

1.3 Related Works

This section presents some related works in Legal Engineering and some tasks in natural
language processing (NLP) which are similar to our tasks.

There have been some studies on analyzing logical structures of legal texts. Nakamura
et al. (in [30]) describe a rule-based system, which translates legal sentences into logical
forms. They built the system based on linguistic analysis of Japanese legal documents.
Their system achieved 78% in accuracy in terms of deriving predicates with bound vari-
ables. Kimura et al. (in [18]) present a study on how to deal with legal sentences
including itemized and referential expressions. At the paragraph level, Takano et al. (in
[39]) classify a legal paragraph into one of six predefined categories: A, B, C, D, E, and
F . Among six types, Type A, B, and C correspond to cases in which the main sentence is
the first sentence, and subordinate sentences are other sentences. In paragraphs of Type
D, E, and F , the main sentence is the first or the second sentence, and a subordinate
sentence is an embedded sentence in parentheses within the main sentence.

In the RRE task, we want to recognize some kinds of parts in an input sentence. There
are some NLP tasks which are quite similar to our RRE task.

1. Named entity recognition [29, 35]. Named entities (NEs) are phrases that contain
the names of persons, organizations, locations, expressions of time, percentages,
quantities, etc. Named entity recognition (NER) is the task in which we locate
named entities in texts and classify them into predefined categories5. For example:

[PERSON Jim] bought [QUANTITY 300] shares of [ORGANIZATION Acme Corp.]
in [TIME 2006]6.

This sentence contains four named entities: Jim is a person, 300 is a quantity, Acme
Corp. is an organization, and 2006 is an expression of time. Usually, the NER task
is modeled as a sequence learning problem where its input is a sequence of words as
follows:

Jim/B-PERSON bought/O 300/B-QUANTITY shares/O of/O
Acme/B-ORGANIZATION Corp./I-ORGANIZATION in/O 2006/B-TIME ./O7

2. Text chunking [33]. Chunks are phrases of syntactically related words. Text chunk-
ing is the task of dividing a text into non-overlapping phrases or chunks. This means
that one word can only belong to one chunk. For example:

[ADVP However] , [NP Mr. Dillow] [VP said] [NP he] [VP believes] [SBAR that]
[NP a reduction] [PP in] [NP raw material stockbuilding] [PP by] [NP industry] [VP
could lead] [PP to] [NP a sharp drop] [PP in] [NP imports] .8

5Each NER system only can recognize some predefined categories of named entities.
6This example is picked from Wikipedia.
7Words tagged with B-X begin an named entity of type X. Words tagged with I-X are inner an named

entity of type X. Words tagged with O are outside named entities.
8This example is picked from CoNLL-2000 shared task data [33].

6

In text chunking task, we consider following types of chunks: NP (noun phrase),
VP (verb phrase), PP (prepositional phrase), ADVP (adverb phrase), SBAR (sub-
ordinated clause), ADJP (adjective phrase), PRT (particles), CONJP (conjunc-
tion phrase), INTJ (interjection), LST (list marker), and UCP (unlike coordinated
phrase). Usually, text chunking task is also modeled as a sequence labeling problem
as follows:

However/B-ADVP ,/O Mr./B-NP Dillow/I-NP said/B-VP he/B-NP believes/B-VP
that/B-SBAR a/B-NP reduction/I-NP in/B-PP raw/B-NP material/I-NP
stockbuilding/I-NP by/B-PP industry/B-NP could/B-VP lead/I-VP to/B-PP a/B-
NP sharp/I-NP drop/I-NP in/B-PP imports/B-NP ./O

3. Clause identification [10, 34]. Clauses are natural structures above chunks: It is
a hypothesis of the author’s current clause-by-clause processing theory, that a unit
corresponding to the basic clause is a stable and easily recognizable surface unit and
that is also an important partial result and building block in the construction od a
richer linguistic representation that encompasses syntax as well as semantics and
discourse structure ([10], page 220). For example:

(Coach them in (handling complaints) (so that (they can resolve problems immedi-
ately)) .)9

This sentence contains four clauses:

• handling complaints

• they can resolve problems immediately

• so that they can resolve problems immediately

• Coach them in handling complaints so that they can resolve problems imme-
diately.

Usually, clause identification task is divided into three sub-tasks:

• Start identification. The goal of this sub-task is to detect starts of clauses.
Usually, this sub-task is modeled as a sequence learning problem:

Coach/S them/X in/X handling/S complaints/X so/S that/X they/S can/X
resolve/X problems/X immediately/X ./X

In this encoding scheme, words starting a clause are tagged with S, and other
words are tagged with X.

• End identification. The goal of this sub-task is to detect ends of clauses. Usu-
ally, this sub-task is modeled as a sequence learning problem:

Coach/X them/X in/X handling/X complaints/E so/X that/X they/X can/X

9This example is picked from CoNLL-2001 shared task data [34].

7

resolve/X problems/X immediately/E ./E

In this encoding scheme, words ending a clause are tagged with E, and other
words are tagged with X.

• Clause identification. The goal of this sub-task is to identify all clauses in the
input text. This sub-task can also be modeled as a sequence learning problem:

Coach/(S* them/* in/* handling/(S* complaints/*S) so/(S* that/* they/(S*
can/* resolve/* problems/* immediately/*S)S) ./*S)

In this encoding scheme, (S*, *S), and * denote a clause start, a clause end,
and neither a clause start nor a clause end, respectively. (S* and *S) can be
used in combination with each other. For example, (S*S) marks a word where
a clause starts and ends, and *S)S) marks a word where two clauses end [34].

A comparison between our RRE task (and Sub-task 1 of the RREP task) and above
tasks is shown in Table 1.1.

Table 1.1: A comparison between our RRE task (and Sub-task 1 of the RREP task) and
some NLP tasks

Task Input Outputs Overlapping Embedded

RRE A sentence Logical parts No No
Sub-task 1 of RREP A paragraph Logical parts No Yes

NER A sentence NEs No No
Text Chunking A sentence Chunks No No

Clause Identification A sentence Clauses No Yes

In the RREP task, in addition to recognizing logical parts, we also recognize logical
structures (Sub-task 2). This sub-task is quite similar to the coreference resolution task
[13, 31]. Coreference is the phenomenon in which multiple expressions in a text refer to
the same thing. For example:

Kaka has revealed he thought he would never play again after undergoing knee surgery
last summer.10

In this sentence, Kaka and two words he are most likely referring to the same person.
In coreference resolution task, we cluster mentions (each mention is a phrase, typically a
noun phrase) in a text according to the underlying referent entity. Usually, we consider
three types of mentions: proper (Kaka), nominal (football player), and pronominal (he).

However, our Sub-task 2 of the RREP task and coreference resolution task have some
significant differences. The greatest difference is that our task accepts one logical part
belonging to multiple logical structures. We describe these differences in Table 1.2.

10This sentence is picked from BBC News.

8

Table 1.2: A comparison between Sub-task 2 of the RREP task and coreference resolution
task

Feature to be compared Coreference resolution Sub-task 2 of RREP

Input items mentions in texts logical parts in paragraphs
Outputs groups of mentions groups of logical parts

Relations between items coreference to an entity logical relation
Number of items in each group possibly one mention at least two logical parts

Items in multiple groups no yes

1.4 Contributions and the Outline of the Thesis

Our main contributions can be summarized in the following points:

1. Introducing two tasks to legal text processing:

• Recognition of Requisite Part and Effectuation Part in Law Sentences, or RRE
task.

• Recognition of Requisite Parts and Effectuation Parts in Paragraphs Consisting
of Multiple Sentences, or RREP task.

2. Presenting an annotated corpus for the tasks, the Japanese National Pension Law
corpus :

• Single sentences for the RRE task.

• Paragraphs for the RREP task.

3. Proposing solutions to solve the tasks.

• Word-based model, Bunsetsu-based model, reranking model, and simple semi-
supervised method for the RRE task.

• Two-phase framework, multi-layer sequence learning model for Sub-task 1, and
graph-based model for Sub-task 2 of the RREP task.

4. Evaluating our solutions on the real annotated corpus.

The remainder of this thesis is organized as follows.

Chapter 2 presents how to model the RRE task as a sequence learning problem, gives
a brief introduction to Conditional random fields (the learning method which we choose
for the RRE task), and introduces our corpus and evaluation methods for the RRE task.

Chapter 3 describes our word-based model for the RRE task, feature investigation,
and experiments on the word-based model. This chapter also presents an exploring on
contributions of words to the RRE task.

9

Chapter 4 describes our Bunsetsu-based model for the RRE task and experiments on
this model. This chapter also presents our reranking model, in which we use a variant of
the perceptron algorithm to rerank N-best outputs of the Bunsetsu-based model.

Chapter 5 considers the RRE task in the view of semi-supervised learning. This
chapter presents a simple semi-supervised learning method for the RRE task using extra
word features derived from Brown word clusters.

Chapter 6 investigates the task of recognition of requisite parts and effectuation parts
in paragraphs consisting of multiple sentences (the RREP task). This chapter begins with
the formulation section. Next, the chapter presents our two-phase framework to solve two
sub-tasks: multi-layer sequence learning model for Sub-task 1, and graph-based model
for Sub-task 2. Then the chapter describes our experiments on the Japanese National
Pension Law corpus. The chapter ends with some conclusions.

Chapter 7 summarizes this thesis and discusses future works.

10

Chapter 2

RRE as a Sequence Learning
Problem

In this chapter, we first present how to formulate the RRE task as a sequence learn-
ing problem (Section 2.1). Then, we give an introduction to Conditional random fields
(CRFs), the learning method which we choose for our task, and provide some explana-
tions why we choose CRFs (Section 2.2). Finally, we describe our corpus, the Japanese
National Pension Law (JNPL) corpus, and evaluation methods for the RRE task (Section
2.3). This corpus was used in all experiments on the RRE task.

2.1 Formulation

Let x be an input law sentence in a law sentence space X, then x can be represented by
a sequence of elements [w1w2 . . . wn]. An element can be a word or a Bunsetsu1. Let P
be the set of predefined logical part categories. A logical part p(s, e) is the sequence of
consecutive elements spanning from element ws to element we with category p ∈ P .

Let p1(s1, e1) and p2(s2, e2) be two different logical parts of one sentence x. We define
two kinds of relationships between two logical parts: overlapping and embedded. We
say that p1(s1, e1) and p2(s2, e2) are overlapping if and only if s1 < s2 ≤ e1 < e2 or
s2 < s1 ≤ e2 < e1. We denote the overlapping relationship by ∼. We also say that
p1(s1, e1) is embedded in p2(s2, e2) if and only if s2 ≤ s1 ≤ e1 ≤ e2, and denote the
embedded relationship by ≺.

Figure 2.1 illustrates an example of overlapping and embedded relationships. In this
example, the law sentence consists of nine elements w1, . . . , w9, and three logical parts
p1(2, 5), p2(1, 7), and p3(7, 9). Among three logical parts, p2 and p3 are overlapping, and
p1 is embedded in p2.

1In Japanese, Bunsetsu is a unit of language, which is similar to a chunk in English. We will explain
more details about Bunsetsu in the next chapters.

11

Figure 2.1: An example of overlapping and embedded relationships.

In the RRE task, we want to split a source sentence into some non-overlapping and
non-embedded logical parts. Let S be the set of all possible logical parts:

S = {p(s, e)|1 ≤ s ≤ e ≤ n, p ∈ P}. (2.1)

A solution of the RRE task is a subset y ⊆ S which does not violate the overlapping
relationship and the embedded relationship. Formally, the solution space can be described
as follows:

Y = {y ⊆ S|∀u, v ∈ y, u � v, u ⊀ v}. (2.2)

The learning problem in the RRE task is to learn a function R : X → Y from a set of
m training samples {(xi, yi)|xi ∈ X, yi ∈ Y, ∀i = 1, 2, . . . ,m}.

Our RRE task belongs to the class of phrase recognition problems [5]. The task is
similar to some other tasks such as named entity recognition (NER) [35] and chunking [33]
in the sense that it does not allow overlapping and embedded relationships. In this sense, it
is different from the clause identification task [34] because that task allows the embedded
relationship. One important characteristic of our task is that the input sentences are
usually very long and complicated, so the logical parts are also long.

Sequence learning is a suitable model for phrase recognition problems which do not
allow overlapping and embedded relationships. It has been applied successfully to many
phrase recognition tasks such as word segmentation, chunking, and NER. So we choose
the sequence learning model for the RRE task.

We model the RRE task as a sequence labeling problem, in which each sentence is a
sequence of words or Bunsetsus. Figure 2.2 illustrates an example in IOB notation [26].
In this notation, the first element of a part is tagged by B, the other elements of the part
are tagged by I, and an element not included in any part is tagged by O. This sentence
consists of an antecedent part (tag A) and a consequent part (tag C).

Figure 2.2: A sentence in sequence learning model with IOB notation.

12

In the RRE task, we consider two types of law sentences: implication type and equiva-
lence type2, and seven kinds of logical parts, as follows:

1. Implication sentences:

• Antecedent part (A)

• Consequent part (C)

• Three kinds of topic parts T1, T2, T3 (correspond to case 1, case 2, and case 3)

2. Equivalence sentences:

• The equivalent left part (EL)

• The equivalent right part (ER)

In the IOB notation, we will have 15 kinds of tags: B-A, I-A, B-C, I-C, B-T1, I-T1,
B-T2, I-T2, B-T3, I-T3, B-EL, I-EL, B-ER, I-ER, and O3. For example, an element with
tag B-A begins an antecedent part, while an element with tag B-C begins a consequent
part.

2.2 Learning Method: Conditional Random Fields

This section provides an introduction to Conditional random fields (CRFs), the learning
method which we choose for the RRE task, and explains why CRFs is suitable for the
RRE task.

Conditional random fields (CRFs) [23, 38, 45] are undirected graphical models (see
Figure 2.3), which define the probability of a label sequence y given an observation se-
quence x as a normalized product of potential functions. Each potential function has the
following form:

exp(
∑
j

λjtj(yi−1, yi, x, i) +
∑
k

µksk(yi, x, i)) (2.3)

where tj(yi−1, yi, x, i) is a transition feature function (or edge feature), which is defined
on the entire observation sequence x and the labels at positions i and i − 1 in the label
sequence y; sk(yi, x, i) is a state feature function (or node feature), which is defined on
the entire observation sequence x and the label at position i in the label sequence y; and
λj and µk are parameters of the model, which are estimated in the training process.

Each feature function (edge feature and node feature) takes a real value. For example,
in the part of speech (POS) tagging problem, the input is a sequence of words, and the

2Most of sentences belong to implication type.
3Tag O is used for an element not included in any part.

13

Figure 2.3: Graphical model of a CRFs for sequence learning (n is the length of sequence).

output is a sequence of POS tags. A state feature function may be sk(yi, x, i) = 1 if
the word at the position i is table and the POS tag at the position i is NN , otherwise
sk(yi, x, i) = 0.

The probability of a label sequence y given an observation sequence x then can be
defined as follows:

p(y|x, λ, µ) =
1

Z(x)
exp(

∑
j

λjtj(yi−1, yi, x, i) +
∑
k

µksk(yi, x, i)) (2.4)

where Z(x) is a normalization factor,

Z(x) =
∑
y

exp(
∑
j

λjtj(yi−1, yi, x, i) +
∑
k

µksk(yi, x, i)). (2.5)

Training CRFs is commonly performed by maximizing the likelihood function with
respect to the training data using advanced convex optimization techniques like L-BFGS
[4]. And inference in CRFs, i.e., searching the most likely output label sequence of an
input observation sequence, can be done by using Viterbi algorithm [11].

In the RRE task, we choose CRFs as the learning method. There are some reasons why
we choose CRFs. The first reason comes from the nature of the RRE task. The RRE task
can be considered as a sequence learning problem, and CRFs is an efficient and powerful
framework for sequence learning tasks. The second reason comes from the advantages of
CRFs. CRFs is a discriminative method, it has all the advantages of Maximum entropy
Markov models (MEMMs) [25] but does not suffer from the label bias problem [23].
The last reason is that CRFs has been applied successfully to many NLP tasks such as
POS tagging, chunking, named entity recognition, syntax parsing, information retrieval,
information extraction, etc [22, 23, 32, 37].

14

2.3 Corpus and Evaluation Methods

This section presents our corpus for the RRE task (Japanese National Pension Law corpus)
and evaluation methods.

2.3.1 Corpus

The Japanese National Pension Law (JNPL) corpus includes 764 annotated Japanese law
sentences4. Some statistics on the JNPL corpus are shown in Table 2.1. We have some
remarks to make here. First, about 98.5% of sentences belong to the implication type,
and only 1.5% of sentences belong to the equivalence type. Second, about 83.5% of topic
parts are T2, 15.2% of topic parts are T3, and only 1.3% of topic parts are T1. Finally,
four main types of parts, antecedent parts (A), consequent parts (C), topic parts in case
2 (T2), and topic parts in case 3 (T3) make up more than 98.3% of all types.

Table 2.1: Statistics on the Japanese National Pension Law corpus

Sentence Type Number Part Type Number

Equivalence 11
EL 11
ER 11

Implication 753

A 429
C 745
T1 9
T2 562
T3 102

In Legal Engineering, we mainly study the National Pension Law of Japan. But why
do we choose National Pension Law for Legal Engineering? Our purpose is to study
methodologies to design an information system based on laws, and methodologies to verify
the consistency of laws, which are the base of that information system. National Pension
Law is a procedural law, which provides administrative procedures of the national pension
system. It can be regarded as the specification of an information system. Therefore,
National Pension Law is suitable for studying methodologies in Legal Engineering.

2.3.2 Evaluation Methods

In all experiments on the RRE task, we divided the corpus into 10 sets and performed
10-fold cross-validation tests. Results were evaluated using precision, recall, and Fβ=1

scores as follows:

4The corpus consists of mainly the first sentence of each article.

15

precision =
#correct parts

#predicted parts
, recall =

#correct parts

#gold parts
(2.6)

Fβ=1 =
2 ∗ precision ∗ recall
precision+ recall

(2.7)

Note that results were evaluated based on logical parts, not based on labels of sequences.
From the predicted label sequence, we extracted predicted logical parts, and compared
predicted logical parts with annotated logical parts (or gold logical parts). A logical part
is recognized correctly if and only if it has correct start element, correct end element, and
correct part category (kind of logical part).

Figure 2.4 shows an example5 of how to evaluate the RRE task. In this example, from
the predicted label sequence, we can extract two predicted logical parts: A(1, 5) and
C(6, 9). Suppose that gold logical parts are T1(1, 2), A(3, 5), and C(6, 9), then precision,
recall, and F1 scores can be calculated as follows:

precision =
#correct parts

#predicted parts
=

1

2
= 0.50, recall =

#correct parts

#gold parts
=

1

3
= 0.33, (2.8)

F1 =
2 ∗ precision ∗ recall
precision+ recall

=
2 ∗ 0.50 ∗ 0.33

0.50 + 0.33
= 0.40 (2.9)

Figure 2.4: An example of evaluation method for the RRE task.

5A means antecedent part, C means consequent part, and T1 means topic part in case 1.

16

Chapter 3

RRE Based on Words

In this chapter, we present a word-based model for the RRE task, in which each word is
considered as an element in the sequence model (Section 3.1). We describe an investigation
on linguistic features for the RRE task (Section 3.2). We present a study on RRE using
head words and functional words (Section 3.3). We also present an investigation on
contributions of words to RRE (Section 3.4). Finally, some conclusions are given (Section
3.5).

3.1 Word-based Model

In the word-based model, we consider a law sentence as a sequence of words. The recog-
nition task now becomes a sequence learning task in which we assign a label sequence to
an input word sequence.

Figure 3.1 shows an example of a law sentence in the word-based model. First, we
segment the law sentence into a sequence of words. Then, we label the word sequence
using IOB notation.

Figure 3.1: A law sentence in the word-based model.

17

3.2 Feature Investigation

This section presents our experiments to evaluate the effects of features on the RRE task.
All experiments were conducted using CRFs [23]. We used the implementation of Taku
Kudo [21].

3.2.1 Feature Design

We designed five sets of features using the CaboCha1 tool [20]. Each of these feature
sets contains one kind of feature. With each kind of feature f , we obtained the following
features in a window size 2:

• Uni-gram features (5): f [−2], f [−1], f [0], f [1], f [2]

• Bi-gram features (4): f [−2]f [−1], f [−1]f [0], f [0]f [1], f [1]f [2]

• Tri-gram features (3): f [−2]f [−1]f [0], f [−1]f [0]f [1], f [0]f [1]f [2].

For example, if f is word feature then f [0] is the current word, f [−1] is the preceding
word, and f [−1]f [0] is their co-occurrence. More details on feature sets are shown in
Table 3.1.

Table 3.1: Feature design

Feature Set Kinds of Features Window Size #Features

Set 1 Word 2 12
Set 2 POS tag 2 12
Set 3 Katakana and Stem of word 2 24
Set 4 Bunsetsu tag 2 12
Set 5 Named Entity tag 2 12

3.2.2 Baseline

We considered the model using only word features as the baseline model. The results of
the baseline model are shown in Table 3.2. They are quite good, especially on four main
kinds of parts, C, A, T2, and T3. This means that word features are very important to
the RRE task.

1A Japanese morphological and dependency structure analyzer.

18

Table 3.2: Results of the baseline model

Tag Precision(%) Recall(%) Fβ=1(%)

C 90.25 91.95 91.09
EL 0.00 0.00 0.00
ER 0.00 0.00 0.00
A 89.29 85.55 87.38
T1 100.00 22.22 36.36
T2 85.02 89.86 87.37
T3 60.00 38.24 46.71

Overall 87.27 85.50 86.38

3.2.3 Experiments on Feature Sets

To investigate the effects of features on the task, we conducted experiments on four other
feature sets combined with the word features. The experimental results are shown in
Table 3.3. Model 1 using only word features is the baseline model. Only Model 3 with
word and pos features led to an improvement of 0.28% compared with the baseline model.
Three other models yielded worse results. We can see that features other than word and
pos features were not effective for our recognition task. In these experiments, Bunsetsu
information was used as features of elements in sequences. In the next sections and
the next chapters, we will present some other ways to use Bunsetsu information more
efficiently.

Table 3.3: Experiments with feature sets

Model Feature Sets Precision(%) Recall(%) Fβ=1(%)

Model1 Word 87.27 85.50 86.38
Model2 Word + Katakana, Stem 87.02 85.39 86.20(-0.18)
Model3 Word + POS 87.68 85.66 86.66(+0.28)
Model4 Word + Bunsetsu 86.15 84.86 85.50(-0.88)
Model5 Word + NE 87.22 85.45 86.32(-0.06)

3.3 RRE Using Head Words and Functional Words

In Japanese, a sentence can be divided into some chunks called Bunsetsus. Each Bunsetsu
includes one or more content words (noun, verb, adjective, etc) and may include some
function words (case-marker, punctuation, etc). The head word of a Bunsetsu is the
rightmost content word, and the functional word is the rightmost function word, except
for punctuation [28]. The head word contributes the central meaning and the functional
word plays a grammatical role. The couple of these two words is the core of a Bunsetsu,
and other words play less important roles.

19

Our idea is to: first, reduce an original sentence to a reduced sentence which contains
only head words and functional words; then, perform the recognition task on the new
reduced sentence. From the recognition results of the reduced sentence, we can deduce
the results of the original sentence. We illustrate this process in Figure 3.2. First, we
split the original sentence into a sequence of Bunsetsu. Then, we mark words which are
the head word or the functional word of a Bunsetsu. Only words with a mark remain in
the reduced sentence.

Figure 3.2: Sentence reduction.

Experimental results on the new reduced sentences are shown in Table 3.4. In the
HFW (Head-Functional-Word) model, we only use head and functional words, while in
the HFWP (Head-Functional-Word-POS) model, we use head and functional words and
their POS tags. In both models, we retain punctuation marks, which are important signals
in a sentence.

Table 3.4: Experiments on reduced sentences

Model Sentence Feature Precision(%) Recall(%) Fβ=1(%)

Baseline Original Word 87.27 85.50 86.38
HFW Reduction Word 88.09 86.30 87.19(+0.81)

HFWP Reduction Word + POS 87.74 86.52 87.12(+0.74)

Experimental results show that using reduced sentences gives better results than using
full sentences. This demonstrates the importance of head and functional words in the
RRE task. The HFW model improves by 0.81% in the Fβ=1 score (5.9% in error rate)
compared with the baseline model.

Reduced sentences only contains important words of the original sentences (head words,
functional words, and punctuation marks). These words are significant to convey the main
meaning of the sentence. Hence, the model based on reduced sentences only process on a
subset of words compared with the word-based model. It can disregard other unimportant
words. It is the reason why the model using head words and functional words is better
than the word-based model.

20

3.4 Exploring Contributions of Words to RRE

In the previous sections, we have applied statistical machine learning methods to the
RRE task. Experimental results show that word features are very important. However,
applying machine learning methods to NLP tasks is considered as a black-box process,
in which it is too difficult to understand the behavior of models. In the RRE task, we
do not know the contributions of each word, which words are good, and which words
are bad. An interesting question is that whether machine learning methods use the same
words as human do in recognizing logical parts of law sentences. This section presents an
investigation on the contributions of words to the RRE task, and finds an answer to this
question.

3.4.1 Method

In sequence learning models (such as CRFs model), a feature vector for an element is
a vector in which each factor usually is an indicator function. For example, indicator
function f [0] = play will returns 1 if the current word is play, otherwise it returns 0.
Indicator function f [0]f [1] = play tennis will returns 1 if the current word is play and
the next word is tennis, otherwise it returns 0.

Figure 3.3 shows an example of a feature vector of an element in sequence learning
models. This vector includes features extracted in a window size 2. In this vector, most
of feature values are zero, only features that map with the context of the element have
non-zero value (1 in the case of indicator functions).

Figure 3.3: A feature vector in sequence learning models.

In our method, to investigate contributions of a word w, we remove all features related
to w, and compare the performance of the system before and after removing features. A
decrease in the performance means that word w is important to the task. Figure 3.4
illustrates the feature vector in Figure 3.3 after removing all the features related to

21

comma. In this vector, all values are the same with the previous vector, except for values
of five features related to comma (they are changed from 1 to 0).

Figure 3.4: A feature vector after removing features related to comma.

Let f1 be the Fβ=1 score of the system when we use all the features, and f1w be the
Fβ=1 score of the system when we remove all the features related to a word w. Errors in
two cases are computed as follows:

error = 1− f1, (3.1)

errorw = 1− f1w. (3.2)

We define an errorRate score of a word w, the percentage of the change in the error,
as follows:

errorRatew = (errorw − error)/error. (3.3)

We use the errorRate score of a word w to evaluate the importance of w. The lager
errorRate is, the more important w is. This is reasonable because the performance of the
system decreases when we remove all the features related to w.

3.4.2 Experimental Results

We conducted experiments with top 100 most frequency words2 of the JNPL corpus.
Figure 3.5 and Figure 3.6 show experimental results of top 20 highest errorRate words.
Most of these words have strong relations to the logical structure of law sentences.

In many cases, the word wa separates a topic part from other parts. Statistics on our
JNPL corpus show that, among 673 topic parts (including T1, T2, and T3), 655 cases

2Top 100 most frequency words are listed in Figure 3.8 at the end of this chapter.

22

Figure 3.5: Experimental results.

Figure 3.6: Error rates by orders of words.

23

(more than 97%) end with the word wa followed by a comma. A logical part usually ends
with a punctuation mark (comma or dot). Among 1869 logical parts in the JNPL corpus,
1070 parts (more than 57%) end with a comma and 745 parts (about 40%) end with a
dot. Hence, about 97% logical parts end with a punctuation mark.

Words toki (when) and baai (case, situation) are clear signals of an antecedent part. In
the JNPL corpus, the word toki appears 347 times, in which it belongs to an antecedent
part 343 times (about 99%). Only 4 times it belongs to a consequent part (about 1%).
The word baai appears 127 times in the corpus. It belongs to an antecedent part 115 times
(about 90%), a consequent part 4 times (about 3%), and a topic part 8 times (about 7%).
Words niyoru (due to) and jiyū (reason, cause) realate to if-then strutures. Words kikan
(period), shōgai (failure, trouble), kitei (provision), hitsuyō (need, necessary), and zenkō
(preceding paragraph) are characteristics of legal texts.

We can see that, the top three words wa (68.65%), comma (11.38%), and toki (8.30%)
are very important to the RRE task. They are significant signals for recognizing logical
structures of law sentences.

Figure 3.7 presents some common templates (built from three words wa, comma, and
toki) of law sentences3. In the first template, a law sentence consists of an antecedent part
and a consequent part. In the second template, a law sentence consists of a topic part and
a consequent part. In the last template, a law consists of an antecedent part, a topic part,
and a consequent part. In all the cases, antecedent parts end with the phrase of words
toki,wa, and comma, and topic parts end with the word wa followed by a comma.

Figure 3.7: Some common templates of law sentences.

3.5 Conclusions

In this chapter, we presented our word-based model for the RRE task, in which we consider
a law sentence as a sequence of words. We investigated various kinds of features including
words, katakana and stem of words, part-of-speech (POS) tags, NE tags, and Bunsetsu
tags. We found that only word and POS tag features are effective to the RRE task. We
showed that using only functional words and head words is better than using all words. We
also investigated contributions of words to the RRE task. We found that words that are
important to human in recognizing logical structures of law sentences are also important
to our statistical machine learning models. This is meaningful in the linguistic aspect,
because statistical machine learning models are usually considered as black boxes.

3A means an antecedent part, C means a consequent part, and T2 means a topic part in case 2.

24

Figure 3.8: Top 100 most frequency words in the JNPL corpus.

In this chapter, Bunsetsu information was used as features of the word-based model.
In the next chapter, we will present a model that uses Bunsetsu information in a more
effective way.

25

Chapter 4

RRE Based on Bunsetsu

In this chapter, we first present a Bunsetsu-based model, in which each Bunsetsu is
considered as an element in the sequence model (Section 4.1). We then present some
experimental results on the Bunsetsu-based model (Section 4.2), and some experiments
with different tag settings on this model (Section 4.3). We next describe a reranking model
for the RRE task using a variant of the perceptron algorithm (Section 4.4). Finally, we
give some conclusions (Section 4.5).

4.1 Bunsetsu-based Model

In Chapter 3, we model the RRE task as a sequence labeling problem in which elements
of sequences are words. Because a sentence may contain many words, the length of a
sequence becomes large. In the Bunsetsu-based model, instead of considering words as
elements, we consider each Bunsetsu as an element. This can be done because no Bunsetsu
can belong to two different parts in this task. By doing this, we can reduce the length
of sequences significantly. The recognition task now becomes a sequence learning task in
which we assign a label sequence to an input Bunsetsu sequence. An example of a law
sentence in the Bunsetsu-based model is illustrated in Figure 4.1.

Figure 4.1: A law sentence in the Bunsetsu-based model.

26

In this example, the length of the sequence is reduced from 17 (words) to 6 (Bunsetsus).
On average, in the Japanese National Pension Law corpus, the length of a sequence with
the old setting (words) is 47.3, while only 17.6 with the new setting (Bunsetsus).

4.2 Experiments on Bunsetsu-based Model

We use features about head words, functional words, punctuations, and the co-occurrence
of head words and functional words in a window size 1. A window size 1 in this model
will cover three Bunsetsu. So, it is much longer than a window size 2 (which covers five
words) in a model based on words. This is the reason why a window size 1 is sufficient in
this model. Experimental results with the new setting are shown in Table 4.1, in which
the BC model (Based-on-Chunks) is the model with the new setting. The results show
that modeling based on Bunsetsu, an important unit in Japanese sentences, is suitable
for the RRE task.

Table 4.1: Experiments on the Bunsetsu-based model

Model Precision(%) Recall(%) Fβ=1(%)

Baseline 87.27 85.50 86.38
HFW 88.09 86.30 87.19(+0.81)
BC 88.75 86.52 87.62(+1.24)

A detailed comparison between the BC model and the baseline model is shown in Table
4.2. The BC model improves by 1.24% in the Fβ=1 score (9.1% in error rate), compared
with the baseline model.

There are two reasons may explain why the Bunsetsu-based model is better than
the word-based model. The first reason is that Bunsetsus are basic units in analyz-
ing Japanese(in fact, dependency parsing of Japanese based on Bunsetsus, not words).
Bunsetsus convey the meaning of a sentence better than words. In the Bunsetsu-based
model, we only use head words and functional words to represent a Bunsetsu. Hence, the
Bunsetsu-based model also take advantages of the model using head words and functional
words. The second reason is that the Bunsetsu-based model reduces the length of se-
quences significantly compared with the word-based models. It helps the Bunsetsu-based
model so much in the learning process.

4.3 Experiments with Different Tag Settings

4.3.1 Four Kinds of Tag Settings

We describe briefly four kinds of tag settings which are normally used in sequence labeling
problems [26].

27

Table 4.2: Comparison between the baseline model and the BC model

Tag
Baseline model BC model

Precision(%) Recall(%) Fβ=1 Precision(%) Recall(%) Fβ=1

C 90.25 91.95 91.09 91.39 92.62 92.00(+0.91)
EL 0.00 0.00 0.00 0.00 0.00 0.00
ER 0.00 0.00 0.00 0.00 0.00 0.00
A 89.29 85.55 87.38 89.43 84.85 87.08(-0.30)
T1 100.00 22.22 36.36 100.00 22.22 36.36
T2 85.02 89.86 87.37 85.62 91.10 88.28(+0.91)
T3 60.00 38.24 46.71 81.67 48.04 60.49(+13.78)

Overall 87.27 85.50 86.38 88.75 86.52 87.62(+1.24)

1. IOB: The first element of a part is tagged by B, the other elements of a part are
tagged by I, and an element not included in any part is tagged by O.

2. IOE: The last element of a part is tagged by E, the other elements of a part are
tagged by I, and an element not included in any part is tagged by O.

3. FILC: Four boolean categories are used: whether the element is the first in a part
(F), inside a part (I), last in a part (L), or first in a consecutive part (C).

4. FIL: This is similar to FILC, except that we only use three boolean categories, F ,
I, and L.

An example that illustrates these tag settings for the RRE task is shown in Figure 4.2.

Figure 4.2: Four kinds of tag settings.

4.3.2 Experiments

To investigate the RRE task with different tag settings, we conducted experiments using
the BC model with all four kinds of tag settings. In all experiments (see Table 4.3), we use

28

the same feature set (head words, functional words, punctuations, and the co-occurrence
of head words and functional words in a window size 1).

The best tag setting is IOE (it improves by 1.80% in the Fβ=1 score, 13.2% in error rate
compared with the baseline model). In the IOE setting, the model determines the last
element of a part, while in the IOB setting, the model determines the first one. There
are two reasons which may explain why the IOE setting is suitable for the RRE task.
First, in Japanese, important words usually occur at the end of a phrase, and important
Bunsetsu usually occur at the end of a sentence. A Bunsetsu always depends on another
Bunsetsu which stands to its right. Second, in the RRE task, a part tends to finish at a
punctuation mark (comma or period). So a chunk containing a comma or period has a
high probability of being the last element of a part.

Table 4.3: Experiments with four kinds of tag settings

Model Element Setting Precision(%) Recall(%) Fβ=1(%)

Baseline Word IOB 87.27 85.50 86.38
BC-IOB Bunsetsu IOB 88.75 86.52 87.62(+1.24)
BC-IOE Bunsetsu IOE 89.35 87.05 88.18(+1.80)
BC-FILC Bunsetsu FILC 88.75 86.09 87.40(+1.02)
BC-FIL Bunsetsu FIL 88.87 86.30 87.57(+1.19)

4.4 A Reranking Model for RRE

4.4.1 Why Reranking?

Discriminative reranking with linear models has been used successfully in some NLP
tasks such as POS tagging, chunking, and statistical parsing [8]. The advantage of the
reranking method is that it can exploit the output of a base model to learn. Based on
the output of a base model, we can extract long-distance non-local features, which are
impossible in sequence learning Markov models such as the Hidden Markov model, the
Maximum entropy Markov model, and CRFs. In the RRE task, we use the reranking
method to utilize features (probability, tag sequence, part sequence, etc) extracted from
the output of a base model which is learned using CRFs.

4.4.2 Discriminative Reranking with Linear Models

In this method, first, a set of candidates is generated using a component GEN. GEN
can be any model for the task. For example, in the POS tagging problem, GEN may be
a model that generates all possible POS tags for a word based on a dictionary. Then,
candidates are reranked using a linear score function:

29

score(y) = Φ(y) ·W (4.1)

where y is a candidate, Φ(y) is the feature vector of candidate y, and W is a parameter
vector. The output of the reranking model will be the candidate with the highest score:

F (x) = argmaxy∈GEN(x)score(y) = argmaxy∈GEN(x)Φ(y) ·W. (4.2)

In this method, we must consider three questions:

1. How to choose the GEN component?

2. How to represent the feature vector Φ?

3. How to learn the parameter vector W?

In the next sub-sections, we will discuss how to represent a feature vector in the RRE
task. We then present some variants of the perceptron algorithm, which will be used
to learn the parameter vector. The choice of GEN component will be presented in the
experiment sub-section.

4.4.3 Feature Representation

For a candidate, we extract a tag sequence and a part sequence. The tag sequence is the
output of the candidate after removing the second tag if there are two adjacent same tags.
In both sequences, we insert two special symbols, START at the beginning, and END at
the end. For example:

• Candidate: I-A I-A I-A E-A I-T2 I-T2 I-T2 E-T2 I-C I-C I-C E-C

• Tag sequence: START I-A E-A I-T2 E-T2 I-C E-C END

• Part sequence: START A T2 C END

For a candidate, we extract the following features (each of them corresponds to an
element in a feature vector):

1. Prob: probability of the candidate output by GEN.

2. Unigram: For example: the number of times that the tag I-A (part A) appears in
the tag sequence (part sequence).

3. Bigram: For example: the number of times that two tags, E-A, END, (two parts,
A, END) co-appear in the tag sequence (part sequence).

4. Trigram: For example: the number of times that three tags, I-A, E-A, END, (three
parts, A,C,END) co-appear in the tag sequence (part sequence).

5. Num-of-parts: the number of logical parts in the candidate.

30

4.4.4 The Perceptron Algorithm and Some Variants

The perceptron algorithm is one of the oldest algorithms used in machine learning. It is an
online algorithm for learning a linear threshold function. Suppose that D = {(xi, yi)|xi ∈
Rn, yi ∈ {+1,−1},∀i = 1, 2, . . . ,m} is a set of m training samples, the set of positive
samples D+ and the set of negative samples D− are defined as follows:

D+ = {(xi, yi)|(xi, yi) ∈ D, yi = +1}, (4.3)

D− = {(xi, yi)|(xi, yi) ∈ D, yi = −1}. (4.4)

The purpose of the perceptron algorithm is to learn a parameter vector w ∈ Rn so that:

w · xi =
n∑
j=1

wj ∗ xij > 0, ∀(xi, yi) ∈ D+, and (4.5)

w · xi =
n∑
j=1

wj ∗ xij ≤ 0,∀(xi, yi) ∈ D−. (4.6)

The perceptron algorithm is presented as Algorithm 1, where T is the number of iter-
ations. The main step of the algorithm is checking whether the perceptron (with current
value of the parameter vector) predicts samples correctly or not. If there is a mistake,
it will update the parameter vector (line 6 in the algorithm). Since yi ∈ {+1,−1}, the
update formula can be expressed in two cases:

w = w + xi, for yi = +1 (4.7)

and

w = w − xi, for yi = −1. (4.8)

Algorithm 1 The perceptron algorithm

1: Initialize: w ← 0
2: for t = 1, 2, . . . , T do
3: for i = 1, 2, . . . ,m do
4: Predict zi = +1 if w · xi > 0, otherwise zi = −1
5: if zi 6= yi then
6: Update: w ← w + yi ∗ xi
7: end if
8: end for
9: end for

31

Now we describe some variants of the perceptron algorithm for reranking1. Suppose
that D = {(xi, yi)|yi ∈ C, ∀i = 1, 2, . . . ,m} is a set of m training samples, where C is a
set of predefined categories. We define a feature function Φ(y), Φ(y) ∈ Rn. We want to
learn a parameter vector w so that:

F (xi) = argmaxy∈GEN(xi)Φ(y) · w = yi,∀i = 1, 2, . . . ,m, (4.9)

where GEN(x) is the GEN component in the reranking model, GEN(x) ⊆ C.

A variant of the perceptron algorithm for reranking is shown as Algorithm 2, where
T is also the number of iterations. At the beginning, the parameter vector is initialized
zero values. In each iteration, the algorithm predicts the label of each instance using the
current value of the parameter vector. The predicted label is the label that maximizes the
score function score(y) = Φ(y) · w. If there is a mistake (the predicted label is different
from the gold label), the values of the parameter vector are updated as follows:

w = w + Φ(yi)− Φ(zi). (4.10)

Algorithm 2 A variant of the perceptron algorithm for reranking

1: Inputs: Training set {(xi, yi)|xi ∈ Rn, yi ∈ C, ∀i = 1, 2, . . . ,m}
2: Initialize: w ← 0
3: Define: F (x) = argmaxy∈GEN(x)Φ(y) · w
4: for t = 1, 2, . . . , T do
5: for i = 1, 2, . . . ,m do
6: zi ← F (xi)
7: if zi 6= yi then
8: Update: w ← w + Φ(yi)− Φ(zi)
9: end if

10: end for
11: end for
12: Output: Parameter vector w.

Another variant of the perceptron algorithm for reranking, the average perceptron al-
gorithm, is shown as Algorithm 3. In the average perceptron algorithm, in addition to
parameter vector w, we store an average parameter vector wavg. At the beginning, the
average parameter vector is also initialized zero values. In each iteration and for each
sample, we update the average parameter vector as follows2:

wavg = wavg + w. (4.11)

1These algorithms were presented in Collins’ papers [7, 8].
2The goal of this step is to calculate the total of parameters in all iterations.

32

Note that, we always update wavg for each sample (even if w is not updated). Finally,
we calculate the average values:

wavg = wavg/(mT), (4.12)

where T is the number of iterations and m is the number of training samples. Collins
(in [7]) showed that the average perceptron algorithm performs sinificantly better than
the final parameter perceptron algorithm (Algorithm 2) in some tasks. In our model, we
choose the average perceptron algorithm (Algorithm 3) to learn the parameter vector.

Algorithm 3 Average perceptron algorithm for reranking

1: Inputs: Training set {(xi, yi)|xi ∈ Rn, yi ∈ C, ∀i = 1, 2, . . . ,m}
2: Initialize: w ← 0, wavg ← 0
3: Define: F (x) = argmaxy∈GEN(x)Φ(y) · w
4: for t = 1, 2, . . . , T do
5: for i = 1, 2, . . . ,m do
6: zi ← F (xi)
7: if zi 6= yi then
8: w ← w + Φ(yi)− Φ(zi)
9: end if

10: wavg ← wavg + w
11: end for
12: end for
13: wavg ← wavg/(mT)
14: Output: Parameter vector wavg.

4.4.5 Experiments on Reranking Model

The architecture of our reranking model for the RRE task is illustrated in Figure 4.3.
First, the annotated corpus was divided into three parts: the training set (80%), the
development set (10%), and the test set (10%). The training set was used for training a
BC-IOE model. Then, this model was tested on the development set to learn a parameter
vector using the average Perceptron algorithm [7, 8]. We also trained another BC-IOE
model (using both the training set and the development set), and used this model as the
GEN component of the reranking model. With each sample, we chose 20-best outputs as
candidates.

In the decoding phase, we only performed reranking on samples for which the proba-
bilities output by GEN are less than a threshold (Algorithm 4).

Experimental results on the Japanese National Pension Law corpus are shown in Table
4.4, in which the iteration number is set to 10 and the threshold is set to 0.5. The
reranking model improves by 0.40% in the Fβ=1 score (3.4% in error rate) compared with

33

Figure 4.3: Reranking model.

Algorithm 4 Decoding in the reranking model

1: for each sample x do
2: if the highest probability output by GEN is greater than a threshold then
3: y is the output with the highest probability of GEN
4: else
5: F (x) = argmaxy∈GEN(x)score(y) = argmaxy∈GEN(x)Φ(y) ·W
6: end if
7: end for

the best model before (BC-IOE), and by 2.2% in the Fβ=1 score (15.9% in error rate)
compared with the baseline model.

Table 4.4: Results of the reranking model

Tag Precision(%) Recall(%) Fβ=1(%)

C 91.50 92.48 91.99
EL 0.00 0.00 0.00
ER 0.00 0.00 0.00
A 91.28 87.88 89.55
T1 100.00 22.22 36.36
T2 87.90 91.81 89.82
T3 74.67 54.90 63.28

Overall 89.42 87.75 88.58

4.4.6 Error Analysis

In this sub-section, we discuss some cases in which our model fails. First, we could not
analyze sentences of equivalence type (EL and ER parts). This is understandable, because
in our corpus only 1.5% of sentences belong to this type, while 98.5% of sentences belong

34

to the implication type. Part T1 is a similar case (Fβ=1 = 36.36%). Another case is
when we discriminated between T3 and T2. This is a difficult situation, because we need
semantic information to recognize T3 correctly (there is a slight difference between T3 and
T2). In some other situations, we fail when the input sentence is too long and complicated.
In these cases, our model usually splits a correct part into two parts or merges two correct
parts into one part.

In statistical machine learning, when the number of instances of a type X is small (both
in the training set and in the test set), the model rarely predicts the label X. For this
reason, the recall of a rare type is usually very low. Even the model predicts type X in a
small number of times, if it predicts correctly in the cases it learned in the training set,
the precision will be high. It is the case of T1 in the RRE task for the corpus we used
(low recall but high precision). If the model predicts wrongly, the precision will be low.
It is the case of EL and ER in the RRE task (low recall and low precision). In this case,
data is insufficient for the model to learn. Whether the precision may be low or high, the
Fβ=1 score is often low because the recall is very low.

4.5 Conclusions

In this chapter, we presented our Bunsetsu-based model for the RRE task, in which we
consider a law sentence as a sequence of Bunsetsus. Experimental results on the JNPL
corpus showed that the Bunsetsu-based model outperforms the word-based model. This
is reasonable, because the Bunsetsu-based model has some advantages in comparison
with the word-based model. The Bunsetsu-based model reduces the length of the input
sequence by three times compared with the word-based model. Bunsetsu-based model
does not need to concentrate on words in the middle of a Bunsetsu. Hence, it can reduce
significantly the search space. We also showed that using a linear score function to rerank
N-best outputs can improve the result of the Bunsetsu-based model.

In Chapter 3 and Chapter 4 (this chapter), we investigated the RRE task using super-
vised learning methods. Supervised methods using labeled data which are expensive and
time consuming to obtain. In the next chapter, we will study how to exploit unlabeled
data (easy to collect) to improve the RRE task.

35

Chapter 5

A Simple Semi-supervised Learning
Method for RRE

In this chapter, we present a simple semi-supervised learning method for the RRE task
using extra word features. First, we give an overview of semi-supervised learning in NLP
(Section 5.1). Next, we present Brown clustering method, a simple and efficient method for
word representation (Section 5.2). Then, we describe how to exploit extra word features
extracted from Brown clusters to improve the RRE task (Section 5.3). Finally, some
conclusions are given (Section 5.4).

5.1 Semi-supervised Learning in NLP

In NLP tasks, one natural question is how to utilize unlabeled data to improve the per-
formance of a system with a fixed amount of labeled data. This problem is known as
semi-supervised learning. Several semi-supervised learning approaches have been pro-
posed. One traditional approach is using both labeled data and unlabeled data to train
a system. Self-training is a popular method belonging to this approach [12, 47]. In self-
training, a model is first trained with labeled data, and then used to label the unlabeled
data. Usually, the most confident unlabeled samples, together with their predicted labels,
are added to the training set. This procedure is repeated until a stop condition is satisfied.

Co-training [2, 47] is another well-known method in semi-supervised learning. In co-
training, we assume that some assumptions on data are satisfied: the feature set can
be divided into two sub-sets; each sub-set is sufficient to train a good classifier; and the
two sub-sets are conditionally independent given the class. First, two classifiers are train
on labeled data, each classifier using one sub-set of features. Then, each classifier labels
unlabeled data, and most confident unlabeled instances (together with their predicted
labels) are used to train the other classifier. Like in self-training, the second step is also
repeated until a stop condition is satisfied.

36

A new approach in semi-supervised learning bases on the idea of transductive inference
[43]. There are two kinds of settings for learning in Artificial Intelligence (AI) field:
inductive inference and transductive inference. In inductive inference, first we train a
global model based on labeled data, and then use this model to classify unlabeled data in
the test phase. By contrast, a transductive learner predicts labels for test data directly
without learning a global model. It considers both labeled data and unlabeled data (test
data) in the learning process. The advantage of this approach is that it can focus on test
data. In traditional approach, we need to learn a global model from the whole problem
space and classify new unlabeled instances by it. However, such a global model is hard
to obtain when training data are not enough. In addition, this global model may be
unnecessary when we only care for specific data.

Transductive SVM [14, 47] and graph-based semi-supervised methods [47] are instances
which belong to the transductive inference approach. Transductive SVM (TSVM) is
an extension of traditional support vector machines. In TSVM, both labeled data and
unlabeled data (test data) are used to find the maximum margin. Graph-based semi-
supervised methods define a graph where nodes are labeled and unlabeled samples, and
edges reflect the similarity between samples. The goal is to learn a function f on the
graphs such that f classifies correctly labeled nodes, and f should be smooth on the
whole graph.

Another approach is to learn some underlying predictive functional structures from
unlabeled data, and then use these structures to support learning models. Alternating
structure optimization (ASO) algorithm belongs to this second approach [1]. The key idea
of ASO algorithm is to learn predictive functional structures by considering simultaneously
multiple prediction problems. By doing this, we can find the common structures shared
by some predictors, and then use the information about these structures to improve each
individual problem.

Recently, a simple and general semi-supervised learning method has been proposed.
The main idea of this method is to use unsupervised word representation as extra word
features of a supervised model [42]. Some kinds of word representations have been
investigated (including Brown clusters [3], Collobert and Weston embeddings [9], and
HLBL embeddings [27]) and applied successfully in many NLP tasks such as chunking and
named entity recognition [42], dependency parsing [19], semantic dependency parsing
[46], etc. Among word representation methods, Brown clustering produces better word
representations than embeddings, especially for rare words. It is the most popular method,
and also gives the highest accuracy in some tasks [42].

In the rest of this chapter, we will describe briefly Brown clustering algorithm and show
how to use Brown word clusters to improve the RRE task. Among word representation
methods, we chose Brown clustering algorithm for our work because of its simplicity and
efficiency.

37

5.2 Brown Clustering

A main goal of word clustering is to deal with the problem of data sparsity by providing a
lower-dimensional representation of words [24]. A good clustering should produce clusters
so that the words in the same cluster should be similar in some definitions. However, how
we can measure the similarity between words if we only have a raw text? Usually, two
similar words are defined as two words that appear in similar contexts or that they are
exchangeable to some extent [24].

The Brown clustering algorithm is a word clustering algorithm based on the mutual
information of bigrams [3]. Given an input text w1, . . . , wn (the raw text can be presented
as a sequence of words), we want to find a clustering C that map each word wi to a cluster
C(wi) so that the quality of C is maximized. The quality of clustering C is defined as
the logarithm of the probability that a class-based bigram language model (see Figure 5.1)
assigns to the input text, normalized by the length of the text.

Figure 5.1: The class-based bigram language model (ci = C(wi)).

Quality(C) =
1

n
log P (w1, . . . , wn). (5.1)

Using the deterministic property of C, and from the definition of the model, the quality
of C can be rewritten as follows:

Quality(C) =
1

n
log P (w1, . . . , wn, C(w1), . . . , C(wn))

=
1

n
log

n∏
i=1

P (C(wi)|C(wi−1))P (wi|C(wi))

=
1

n

n∑
i=1

log P (C(wi)|C(wi−1))P (wi|C(wi)).

(5.2)

Let count(w) and count(w,w′) be the number of times word w and bigram (w,w′)
appear in the input text, respectively. The number of times a word in cluster c appears
in the input text, denoted by count(c), will be defined as follows:

38

count(c) =
∑
w∈c

count(w) (5.3)

and the number of times a bigram with the first word in cluster c and the second word
in cluster c′ appears in the text, denoted by count(c, c′), will be defined:

count(c, c′) =
∑

w∈c,w′∈c′
count(w,w′). (5.4)

The quality of C now becomes:

Quality(C) =
∑
w,w′

count(w,w′)

n
log P (C(w′)|C(w))P (w′|C(w′))

=
∑
w,w′

count(w,w′)

n
log

count(C(w), C(w′))

count(C(w))

count(w′)

count(C(w′))

=
∑
w,w′

count(w,w′)

n
log

n ∗ count(C(w), C(w′))

count(C(w))count(C(w′))

count(w′)

n

=
∑
w,w′

count(w,w′)

n
log

n ∗ count(C(w), C(w′))

count(C(w))count(C(w′))
+

∑
w,w′

count(w,w′)

n
log

count(w′)

n

=
∑
c,c′

count(c, c′)

n
log

n ∗ count(c, c′)
count(c)count(c′)

+
∑
w′

count(w′)

n
log

count(w′)

n

=
∑
c,c′

P (c, c′)log
P (c, c′)

P (c)P (c′)
+

∑
w

P (w)log P (w)

= I(C)−H.
(5.5)

where P (w) = count(w)
n

, P (c) = count(c)
n

, and P (c, c′) = count(c,c′)
n

are empirical distribu-

tions over words, clusters, and pairs of clusters, respectively; and I(C) =
∑

c,c′ P (c, c′)log P (c,c′)
P (c)P (c′)

and H = −
∑

w P (w)log P (w) are the mutual information between adjacent clusters and
the entropy of the word distribution, respectively.

Because entropy H is independent on C, we want to find clustering C that maximizes
mutual information I(C). Brown (in [3]) presents a greedy algorithm that can find the
approximation solution in O(k3) time, where k is the number of different word types1.
In the initial step, each word belongs to its own individual cluster. The algorithm then
gradually groups clusters to build a hierarchical clustering of words. In each step, two
clusters are merged so that the loss in mutual information I(C) is least2.

1There is no practical method for finding the clustering that maximizes mutual information I(C).
2Brown clustering algorithm produces a hard clustering. Each word belongs to exactly one cluster.

39

Figure 5.2 shows an example of Brown word-cluster hierarchy in a binary tree style. In
this tree, each leaf node corresponds to a word, which is uniquely identified by the path
from the root node to it. This path can be represented by a bit string, as shown in Figure
5.2. From the root node, we add bit 0 to the left branch and bit 1 to the right branch.

A word-cluster hierarchy is reduced to depth n if all words with the same n-bit prefix
are grouped in one cluster. For example, if the word-cluster hierarchy in Figure 5.2 is
reduced to depth 2, we will obtain a new hierarchy in Figure 5.3. In the new tree, we
only have four leaf nodes according to four clusters: 00, 01, 10, and 11.

Figure 5.2: An example of Brown word-cluster hierarchy.

Figure 5.3: A Brown word-cluster hierarchy after reduction to depth 2.

Features extracted at n-bit depth are binary strings with length n. By reducing the
word-cluster tree to different values of depth n, we can group words at various levels, from
coarse clusters (small value of n) to fine clusters (large value of n).

5.3 RRE with Extra Word Features

5.3.1 Framework

The main idea of our semi-supervised learning method is to use unsupervised word rep-
resentations as extra word features of a supervised model. We use Brown word clusters
as the word representation method. In this framework, unlabeled data are used to pro-
duce word clusters. From these word clusters, we extract extra word features, and add
these features to a supervised model (labeled data are used to train this model). Fig-
ure 5.4 shows our semi-supervised learning framework. This framework consists of two

40

phases: unsupervised phase with the Brown clustering algorithm, and supervised phase
with CRFs.

Figure 5.4: Semi-supervised learning framework.

5.3.2 Word Cluster Extraction and Feature Design

To produce word representations, we first collected plain text from the address
http://www.japaneselawtranslation.go.jp3. Our plain text corpus consists of 30 acts with
more than 13 thousand Japanese law sentences. Table 5.3 lists 30 acts in our plain text
corpus. After word segmenting (using Cabocha tool [20]), we conducted the Brown
clustering algorithm to cluster words. In our work, we used the implementation of Percy
Liang [24], and the number of clusters was set to 200.

We designed features similar to features presented in [19]. Details of feature design
are shown in Table 5.1, where n is an integer. For example, a feature hw[0]-4=0101 will
receive value 1 if 4-bit prefix of the head word of the current Bunsetsu is 0101, otherwise
it will receive value 0.

Table 5.1: Feature Design.

Feature Meaning

hw[-1]-n n-bit prefix of the head word of the previous Bunsetsu
hw[0]-n n-bit prefix of the head word of the current Bunsetsu
hw[1]-n n-bit prefix of the head word of the next Bunsetsu
fw[-1]-n n-bit prefix of the functional word of the previous Bunsetsu
fw[0]-n n-bit prefix of the functional word of the current Bunsetsu
fw[1]-n n-bit prefix of the functional word of the next Bunsetsu

3This website provides many Japanese law articles in both Japanese and English. We downloaded
articles available on the website in March, 2010.

41

5.3.3 Experiments

For the RRE task, we extracted features at 4-bit depth and 6-bit depth. We integrated
these features into two models: the Bunsetsu-based model and the reranking model. The
experimental results of the semi-supervised method with extra word features are shown
in Figure 5.5. In both models, the semi-supervised method outperforms the supervised
method. For the Bunsetsu-based model, the Fβ=1 score was 88.63%, compared with
88.18% for the supervised method. The reranking model got 88.84% in the Fβ=1 score,
compared with 88.58% for the supervised method. The Bunsetsu-based model using
the semi-supervised method even got better results than the reranking model using the
supervised method (88.63%, compared with 88.58%).

Figure 5.5: Comparison between the supervised method and the semi-supervised method.

We conducted additional experiments to evaluate the effect of the Brown cluster features
as the amount of training data is varied. In these experiments, the Bunsetsu-based model
was exploited. We started with 5% of training data, and then gradually doubled the
amount of training data to 10%, 20%, 40%, and 80%. Experimental results are shown in
Table 5.2, in which the last column indicates the improvement of the model using features
extracted from Brown clusters compared with the model not using these features. In all
experiments, the semi-supervised method outperformed the supervised method. Figure
5.6 illustrates experimental results in graph. We note that, when the amount of training
data is small, the improvement is bigger (about 1.5% when using less than 20% of training
data, and about 0.4% when using more training data).

42

Table 5.2: Experiments with different training sizes.

Training size Supervised Semi-supervised ∆

5% 64.03 65.51 1.48
10% 72.83 74.06 1.23
20% 81.71 83.54 1.83
40% 83.27 83.80 0.53
80% 87.90 88.11 0.21
All 88.18 88.63 0.45

Figure 5.6: Experimental results illustrated in graph.

5.4 Conclusions

In this chapter, we studied how to exploit unlabeled data to improve the RRE task. We
presented a simple semi-supervised learning method using Brown clusters as extra word
features for a supervised learning model. We showed that, for the RRE task:

1. Using unlabeled data combining with labeled data in a semi-supervised learning
model can improve the RRE task compared with using only labeled data.

2. Using unlabeled data is more effective when the amount of labeled data is small.

43

Table 5.3: Acts in the plain text corpus

Act Name Act Number

1 Administrative Procedure Act Act No. 88 of November 12, 1993
2 Bank of Japan Act Act No. 89 of June 18, 1997
3 Child Welfare Act Act No. 164 of December 12, 1947
4 City Planning Act Act No. 100 of June 15, 1968
5 Civil Code Act Act No. 89 of April 27, 1896
6 Civil Execution Act Act No. 4 of March 30, 1979
7 Commercial Registration Act Act No. 125 of July 9, 1963
8 Commodity Exchange Act Act No. 239 of August 5, 1950
9 Companies Act Act No. 86 of July 26, 2005
10 The Constitution of Japan Constitution November 3, 1946
11 Consumer Product Safety Act Act No. 31 of June 6, 1973
12 Corporation Tax Act Act No. 34 of March 31, 1965
13 Basic Act on Crime Victims Act No. 161 of December 8, 2004

14
Electrical Appliance

Act No. 234 of November 16, 1961
and Material Safety Act

15 Electricity Business Act Act No. 170 of July 11, 1964

16
Act on Electronic Signatures

Act No. 102 of May 31, 2000
and Certification Business

17 Gas Business Act Act No. 51 of March 31, 1954
18 Income Tax Act Act No. 33 of March 31, 1965
19 Labor Insurance Act Act No. 84 of December 9, 1969
20 Basic Act for Land Act No. 84 of December 22, 1989
21 Long-Term Care Insurance Act Act No. 123 of December 17, 1997
22 Measurement Act Act No. 51 of May 20, 1992
23 National Government Organization Act Act No. 120 of July 10, 1948
24 National Public Service Ethics Act Act No. 129 of August 13, 1999

25
Act on Nippon Telegraph

Act No. 85 of December 25, 1984
and Telephone Corporation

26 Plant Protection Act Act No. 151 of May 4, 1950
27 Professional Engineer Act Act No. 25 of April 27, 1983
28 Quarantine Act Act No. 201 of June 6, 1951
29 Act on the Rational Use of Energy Act No. 49 of June 22, 1979

30
Services and Supports for Persons

Act No. 123 of November 7, 2005
with Disabilities Act

44

Chapter 6

Recognition of Requisite Parts and
Effectuation Parts in Paragraphs
Consisting of Multiple Sentences

In the previous chapters (Chapters 2,3,4, and 5), we have investigated the RRE task,
where the input is a single law sentence. In this chapter, we will present a study on the
RREP task, in which the input of the task is a paragraph consisting of multiple sentences.
In this task, we also examine cases where a logical part contains other logical parts. In
addition to recognizing logical parts, we also recognize logical structures between logical
parts. A logical structure is a set of some related logical parts.

The remainder of this chapter is organized as follows. First, we formulate the RREP
task as two sub-tasks: Recognition of Logical Parts and Recognition of Logical Structures
(Section 6.1). Then, we present our proposed solutions for two sub-tasks: multi-layer
sequence learning model for Sub-task 1 and graph-based model for Sub-task 2 (Section
6.2). Next, we describe experiments on two sub-tasks on the Japanese National Pension
Law (JNPL) corpus (Section 6.3). Finally, we provide some conclusions (Section 6.4).

6.1 Formulation

6.1.1 Sub-Task 1: Recognition of Logical Parts

Recall that the goal of this sub-task is to recognize logical parts given a paragraph con-
sisting of multiple sentences.

Let s be a law sentence1 in the law sentence space S, then s can be represented by a
sequence of words s = [w1w2 . . . wn]. A legal paragraph x in the legal paragraph space

1s may be a complete or non-complete sentence.

45

X is a sequence of law sentences x = [s1s2 . . . sl], where si ∈ S,∀i = 1, 2, . . . , l. For each
paragraph x, we denote a logical part p by a quad-tuple p = (b, e, k, c) where b, e, and k
are three integers which indicate beginning position, end position, and sentence position
of p, and c is a logical part category in the set of predefined categories C. Formally, the
set P of all possible logical parts defined in a paragraph x can be described as follows:

P = {(b, e, k, c)|1 ≤ k ≤ l, 1 ≤ b ≤ e ≤ len(k), c ∈ C}. (6.1)

In the above definition, l is the number of sentences in the paragraph x, and len(k) is
the length of the kth sentence.

In this sub-task, we want to recognize some non-overlapping (but possibly embedded)
logical parts in an input paragraph. A solution for this task is a subset y ⊆ P which
does not violate the overlapping relationship. We say that two logical parts p1 and p2 are
overlapping if and only if they are in the same sentence (k1 = k2) and b1 < b2 ≤ e1 < e2
or b2 < b1 ≤ e2 < e1. We denote the overlapping relationship by ∼. We also say that p1 is
embedded in p2 if and only if they are in the same sentence (k1 = k2) and b2 ≤ b1 ≤ e1 ≤ e2,
and denote the embedded relationship by ≺. Formally, the solution space can be described
as follows:

Y = {y ⊆ P |∀u, v ∈ y, u 6∼ v}. (6.2)

The learning problem in this sub-task is to learn a function R : X → Y from a set of
m training samples {(xi, yi)|xi ∈ X, yi ∈ Y, ∀i = 1, 2, . . . ,m}.

In this task, we consider the following types of logical parts:

1. An antecedent part is denoted by A

2. A consequent part is denoted by C

3. A topic part which depends on the antecedent part is denoted by T1

4. A topic part which depends on the consequent part is denoted by T2

5. A topic part which depends on both the antecedent part and the consequent part
is denoted by T3

6. The left part of an equivalent statement is denoted by EL

7. The right part of an equivalent statement is denoted by ER

8. An object part, whose meaning is defined differently in different cases, is denoted
by Ob

9. An original replacement part, which will be replaced by other replacement parts
(denoted by RepR) in specific cases, is denoted by RepO.

46

Compared with the RRE task, we introduce three new kinds of logical parts: Ob, RepO,
and RepR.

6.1.2 Sub-Task 2: Recognition of Logical Structures

Recall that the goal of this sub-task is to recognize logical structures given a set of logical
parts in a paragraph consisting of multiple sentences.

Let y ⊆ P be a set of logical parts in a paragraph x, and 2|y| be the set of all the
subsets of y. The logical structure of a formula is a subset of y which contains at least
two elements. A solution for this sub-task is a subset z ⊂ 2|y| that satisfies the following
constraints:

1. ∀u ∈ z, |u| ≥ 2,

2. ∪u∈zu = y,

3. ∀u, v ∈ z, if u ⊆ v then u = v,

4. ∀u ∈ z,∪v∈z,v 6=uv 6= y.

Constraint 1) says that each logical structure must contain at least two logical parts.
Constraint 2) says that each logical part must belong to at least one logical structure.
Constraint 3) says that we cannot have two different logical structures such that the set
of logical parts in one logical structure contains the set of logical parts in the other logical
structure. Constraint 4) says that if we remove any logical structure from the solution,
Constraint 2) will be violated. Although Constraint 3) is guaranteed by Constraint 4),
we introduce it because of its importance.

Let Z be the solution space, Z ⊂ 22|y| . Usually, Z is a huge set even with a small set y.
The learning problem in this sub-task is to learn a function I : Y → Z from a set of m
training samples {(yi, zi)|yi ∈ Y, zi ∈ Z, ∀i = 1, 2, . . . ,m}.

6.2 Proposed Solutions

6.2.1 Multi-layer Sequence Learning Model for Logical Part Recog-
nition

This sub-section presents our model for recognizing logical parts. We consider the recog-
nition problem as a multi-layer sequence learning problem. First, we give some related
notions.

Let s be a law sentence, and P be the set of logical parts of s, P = {p1, p2, . . . , pm}.
Layer1(s) (outer most layer) is defined as a set of logical parts in P , which are not

47

Figure 6.1: A law sentence with logical parts in three layers.

embedded in any other part. Layeri(s) is defined as a set of logical parts in
P\ ∪i−1

k=1 Layer
k(s), which are not embedded in any other part in P\ ∪i−1

k=1 Layer
k(s).

Formally, we have:

Layer1(s) = {p|p ∈ P, p 6≺ q,∀q ∈ P, q 6= p}, (6.3)

Layeri(s) = {p|p ∈ Qi, p 6≺ q,∀q ∈ Qi, q 6= p}, (6.4)

where

Qi = P\ ∪i−1
k=1 Layer

k(s). (6.5)

Figure 6.1 illustrates a law sentence with four logical parts in three layers: Part 1 and
Part 2 in Layer1, Part 3 in Layer2, and Part 4 in Layer3.

Let K be the number of layers in a law sentence s, our model will recognize logical parts
in K steps. In the kth step we recognize logical parts in Layerk. In each layer, we model
the recognition problem as a sequence labeling task, in which each word is an element.
Logical parts in Layeri−1 will be used as input sequence in the ith step (in the first step,
we use original sentence as input).

Figure 6.2 gives an example of labeling for an input sentence. The sentence consists of
three logical parts in two layers. In our model, we use IOE tag setting: the last element
of a part is tagged with E, the other elements of a part are tagged with I, and an element
not included in any part is tagged with O.

Let K∗ be the maximum number of layers in all law sentences in training data. We
learn K∗ models, in which the kth model is learned from logical parts in the Layerk of
training data, using Conditional random fields [23, 21]. In the testing phase, we first
apply the first model to the input law sentence, and then apply the ith model to the
predicted logical parts in Layeri−1.

48

Figure 6.2: An example of labeling in the multi-layer model.

6.2.2 A Graph-based Model for Recognition of Logical Struc-
tures

Let G =< V,E > be a complete graph with the vertex set V and the edge set E. A real
value function f is defined on E as follows:

f : E → R, e ∈ E 7→ f(e) ∈ R.

In this sub-task, each vertex of the graph corresponds to a logical part, and a complete
sub-graph corresponds to a logical structure. The value on an edge connecting two vertices
expresses the degree to which the two vertices belong to one logical structure. The positive
(negative) value means that two vertices are likely (not likely) to belong to one logical
structure.

Let Gs be a complete sub-graph of G, then v(Gs) and e(Gs) are the set of vertices and
the set of edges of Gs, respectively. We define the total value of a sub-graph as follows:

f(Gs) = f(e(Gs)) =
∑

e∈e(Gs)

f(e). (6.6)

Let Ω be the set of all complete sub-graphs of G. The problem becomes determining a
subset X ⊆ Ω such that:

1. ∀x ∈ X, |x| ≥ 2,

2. ∪x∈Xv(x) = V ,

3. ∀x1, x2 ∈ X, x1 ⊆ x2 ⇒ x1 = x2,

4. ∀x ∈ X,∪y∈X,y 6=xv(y) 6= V , and

5.
∑

x∈X f(x)→ maximize.

Suppose that |V | = n, then |Ω| = 2n, and the number of subsets of Ω is 22n
. Here we

only consider the cases in which n > 1 (in the case n = 0 we do not have any logical
structure; if n = 1, we have a special logical structure with one node).

49

We now describe a heuristic algorithm to solve this sub-task on graphs. This is an
approximate algorithm which satisfies four constraints from 1) to 4). The main idea of
our algorithm is selecting as many positive edges as possible, and as few negative edges
as possible. We consider two cases:

• Case 1: There is no positive value edge on the input graph.

• Case 2: There are some positive value edges on the input graph.

Our algorithm in the first case is presented as Algorithm 5. Because all the edges have
negative values, we build logical structures with as few logical parts as possible. In this
case, each logical structure contains exactly two logical parts. So we gradually choose two
nodes in the graph with the maximum value on the edge connecting them.

Algorithm 5 Case 1 (no positive edge)

1: Initialize: L← ∅, V1 ← V
2: while V1 6= ∅ do
3: if |V1| ≥ 2 then
4: (u, v)← argmaxu6=v∈V1f(u, v)
5: else
6: Let v be the element in V1

7: u← argmaxu∈V f(u, v)
8: end if
9: L← L ∪ {{u, v}}

10: Update V1: V1 ← V1\{u, v}
11: end while
12: Return L.

An example of the first case is illustrated in Figure 6.3. The maximum value on an
edge is −0.1, so the first logical structure will contain Node 1 and Node 3. The second
logical structure contains Node 2 and Node 42.

The second case of the algorithm is described as Algorithm 6. First, we consider a graph
G+, which only contains non-negative value edges (E+). We divide the vertices of G+

into two subsets, set V1 of zero-degree vertices and V2 of other vertices. In the sub-graph
with vertex set V2 and non-negative value edges, we repeatedly build logical structures
with as many logical parts as possible. After building successfully a logical structure, we
remove all the nodes and the edges according to it on the graph. When have no positive
edge, we will build logical structures with exactly two logical parts.

Logical structures with exactly two parts are built in two steps. In the first step3, we
consider one node in V2, which has not appeared in any logical structure4. Then we find

2If the number of nodes is odd, the final logical structure will consist of the final node and another
node, so that the edge connecting them has the maximal value.

3In Algorithm 6, code for this step is described in lines 7 to 13
4This node is chosen in V2\R in Algorithm 6

50

Figure 6.3: An example of the first case.

another node, which has appeared in a logical structure5 so that the edge connecting them
has maximum value. A new logical structure is built from these two nodes.

In the second step6, we consider two nodes u, v in V1 such that the edge connecting
them has maximum value. Then we find two nodes u1, v1 (which have appeared in a
logical structure) so that the edges (u, u1), (v, v1) have maximum values. If f(u, v) >
f(u, u1) + f(v, v1), a new logical structure is built from two nodes {u, v}, otherwise two
new logical structures are built from two sets of nodes, {u, u1} and {v, v1}. To make the
algorithm easier to understand, we will provide some examples below.

An example of the second case is illustrated in Figure 6.4. First, we consider the
graph with positive edges. This graph consists of five nodes {1, 2, 3, 4, 5} and four edges
{(1, 2), (1, 3), (2, 3), (2, 4)}. We have V1 = {5} and V2 = {1, 2, 3, 4}. The maximal sub-
graph of this graph is the graph with three nodes {1, 2, 3}, so we have the first logical
structure with these three nodes. We remove these nodes and the positive edges connecting
to these nodes. We have two nodes {4, 5} with no positive edges.

Now we build logical structures with exactly two nodes. In the first step, we consider
Node 4 (the remainder node in V2). Among edges connecting to Node 4, edge (2, 4) has
maximal value. So we have the second logical structure with two nodes {2, 4}. In the
second step, we consider Node 5, and we have the third logical structure with two nodes
{1, 5}.

Another example of the second case is shown in Figure 6.5. First, we consider the
graph with positive edges. This graph consists of four nodes {1, 2, 3, 4} and one edge
{(1, 2)}. We have the set of zero-degree vertices V1 = {3, 4}, and the set of other vertices
V2 = {1, 2}. The maximal sub-graph of this graph is the graph with two nodes {1, 2},
so we have the first logical structure with these two nodes. We remove these nodes and
the positive edges connecting to these nodes. We have two nodes {3, 4} with no positive
edges, and f(3, 4) = −0.15. With Node 3, the maximum edge connecting to it is the edge
(2, 3) with f(2, 3) = −0.1. Similar to Node 4, the maximum edge connecting to it is the
edge (1, 4) with f(1, 4) = −0.1. We have7:

5This node is chosen in R in Algorithm 6.
6In Algorithm 6, code for this step is described in lines 14 to 35
7In Algorithm 6, code for this comparison is described in line 27.

51

Algorithm 6 Case 2 (have some positive edges)

1: Initialize: L← ∅, G′ ←< V2, E
+ >

2: while e(G
′
) 6= ∅ do

3: g is the complete sub-graph of G
′

that maximizes f(g)
4: L← L ∪ {g}
5: Remove g and edges connecting to a vertex in g from G

′

6: end while
7: R← ∪l∈Lv(l), R

′ ← ∅
8: for v ∈ V2\R do
9: S ← {s ∈ R|∀l ∈ L, v(l) 6⊆ R

′ ∪ {s}}
10: u← argmaxu∈Sf(u, v)
11: L← L ∪ {{u, v}}
12: Update R

′
: R

′ ← R
′ ∪ {u}

13: end for
14: while V1 6= ∅ do
15: if |V1| = 1 then
16: Let v be the element in V1

17: S ← {s ∈ R|∀l ∈ L, v(l) 6⊆ R
′ ∪ {s}}

18: u← argmaxu∈Sf(u, v)
19: L← L ∪ {{u, v}}
20: Remove v from V1: V1 ← V1\{v}
21: else
22: (u, v)← argmaxu6=v∈V1f(u, v)
23: S ← {s ∈ R|∀l ∈ L, v(l) 6⊆ R

′ ∪ {s}}
24: u1 ← argmaxu1∈Sf(u1, u)
25: S ← {s ∈ R|∀l ∈ L, v(l) 6⊆ R

′ ∪ {u1, s}}
26: v1 ← argmaxv1∈Sf(v1, v)
27: if f(u, v) > f(v, v1) + f(u, u1) then
28: L← L ∪ {{u, v}}
29: else
30: L← L ∪ {{u, u1}, {v, v1}}
31: Update R

′
: R

′ ← R
′ ∪ {u1, v1}

32: end if
33: Remove u,v from V1: V1 ← V1\{u, v}
34: end if
35: end while
36: Return L.

52

Figure 6.4: An example of the second case.

f(3, 4) > f(2, 3) + f(1, 4). (6.7)

Hence, in the next step8, we have the second logical structure with two node {3, 4}.
Note that if f(3, 4) = −0.3, then f(3, 4) < f(2, 3) + f(1, 4). In the next step9, we will
have two logical structures {2, 3} and {1, 4}.

Figure 6.5: Another example of the second case.

In the first case, we can easily see that all four constraints are satisfied. In the second
case, constraints 1) and 2) are easily satisfied, too. Now we explain how the constraints 3)
and 4) are also satisfied. When building logical structures with two nodes, at each step,
we choose one node in the set of nodes which have appeared in a logical structure (Set 1)
(we call the built logical structure set L), and one node in the set of other nodes (Set 2)
so that the edge connecting them has maximum value. For example, in Figure 6.4, two
sets of nodes are, Set1 = {1, 2, 3} and Set2 = {4, 5}. However, we only choose one node
in a subset S ⊆ Set1. At first, we initialize S = Set1. After each step, we check each
logical structure l in L. If there are k nodes in l, and k − 1 nodes in l have been chosen
in previous steps, the final node in l will be removed from S. By doing this, each logical
structure will always contain one node that appears in exactly one logical structure.

8In Algorithm 6, code of this step is described in line 28.
9In Algorithm 6, code for this case is described in line 30.

53

An example that illustrates this method is shown in Figure 6.6. First, we consider
the graph with positive edges. This graph consists of four nodes {1, 2, 3, 4} and two
edges {(1, 2), (2, 3)}. We have the set of zero-degree vertices V1 = {4}, and the set of
other vertices V2 = {1, 2, 3}. The maximal sub-graph of this graph is the graph with
two nodes {1, 2}, so we have the first logical structure with these two nodes. We remove
these nodes and the positive edges connecting to these nodes. We initialize10 R = {1, 2},
and R′ = ∅. Now we consider Node 3, the remainder node in V2 which has not been
chosen. The set of nodes that can be connect to Node 3 in the next logical structures,
S = R = {1, 2}. Because f(2, 3) > f(1, 3), in the next step we have the second logical
structure with two nodes {2, 3}. After choosing Node 2 to connect to Node 3, we update11

R′ = R′ ∪ {2} = {2}.

Now we consider the final node, Node 4. The set of nodes that can be connect to Node
4 in the next logical structures, S = {2}. Note that we remove Node 1 from S because
R′∪{1} = {1, 2} will contain the first logical structure. Because only Node 2 can connect
to Node 4, in the final step we have the third logical structure with two nodes {2, 4}.
Note that if we do not remove Node 1 from S then in the final step we will have the
logical structure with two nodes {1, 4}. Three logical structures {1, 2},{2, 3}, and {1, 4}
will violate the Constraint 4.

Figure 6.6: The third example of the second case.

The remaining problem is how to define the value function f . Our solution is that,
first we learn a binary classifier C using maximum entropy model. This classifier takes
a pair of logical parts as the input, and outputs +1 if two logical parts belong to one
logical structure, otherwise it will output −1. Then, we define the value function f for
two logical parts as follows:

f(p1, p2) = Prob(C(p1, p2) = +1)− 0.5. (6.8)

Function f will receive a value from −0.5 to +0.5. Function f equals zero in the case
the classifier assigns the same probability to +1 and −1.

10In Algorithm 6, code for this step is described in line 7.
11In Algorithm 6, code for this step is described in line 12.

54

6.3 Experiments

This section describes our annotated corpus, evaluation methods, and experimental results
of our solutions.

6.3.1 Corpus and Evaluation Methods

Corpus

Our Japanese National Pension Law (JNPL) corpus consists of 83 legal articles12, which
contain 119 paragraphs with 426 sentences. On average, each paragraph consists of 3.6
sentences. The total number of logical parts is 807, and the number of logical structures
is 351. On average, each paragraph consists of 6.8 logical parts and 3 logical structures.
Table 6.1 shows some statistics on the number of logical parts of each type.

Table 6.1: Statistics on logical parts of the JNPL corpus

Logical Part C A T1 T2 T3 EL ER Ob RepO RepR

Number 248 286 0 114 12 55 57 9 12 14

Main types of parts are A(35.4%), C(30.7%), T2(14.1%), ER(7.1%), and EL(6.8%).
Five main types of parts make up more than 94% of all types.

Evaluation Methods

We divided the JNLP corpus into 10 sets, and conducted 10-fold cross-validation tests.
For the first sub-task, we evaluated the performance of our system by precision, recall,
and F1 scores as follows13:

precision =
#correct parts

#predicted parts
, recall =

#correct parts

#actual parts
, (6.9)

F1 =
2 ∗ precision ∗ recall
precision+ recall

. (6.10)

For the second sub-task, we used MUC precision, recall, and F1 scores as described in
[44]. We summarize them here for clarity.

Let P1, P2, . . . , Pn be n predicted logical structures, and G1, G2, . . . , Gm be the correct
answers or gold logical structures. To calculate recall, for each gold logical structure

12The corpus does not include all the articles of JNPL.
13The evaluation methods for Sub-task 1 are similar to evaluation methods for the RRE task.

55

Gi(i = 1, 2, . . . ,m), let k(Gi) be the smallest number such that there exist k(Gi) predicted

structures P i
1, P

i
2, . . . , P

i
k(Gi)

which satisfy Gi ⊆ ∪k(Gi)
j=1 P i

j :

recall =

∑m
i=1 (|Gi| − k(Gi))∑m

i=1 (|Gi| − 1)
. (6.11)

To calculate precision, we switch the roles of predicted structures and gold structures.
Finally, F1 score is computed in a similar manner as in the first sub-task.

Table 6.2 shows two examples of the evaluation method for Sub-task 2. In two examples,
we have five input logical parts numbered 1,2,3,4, and 5, and the system predicts three
logical structures {1,2,3}, {1,4}, and {2,5}. In the first case, the correct answer (gold)
consists of two logical structures {1,2,3,4} and {1,5}, while in the second case, the correct
answer consists of three logical structures {1,2,3}, {1,5}, and {2,4}.

Table 6.2: Examples of evaluation method for Sub-task 2

Input Predicted Gold Recall Precision Fβ=1

1,2,3,4,5
{1,2,3} {1,2,3,4} (4−2)+(2−2)

(4−1)+(2−1)
= 0.50 (3−1)+(2−1)+(2−2)

(3−1)+(2−1)+(2−1)
= 0.75 0.60{1,4} {1,5}

{2,5}

1,2,3,4,5
{1,2,3} {1,2,3} (3−1)+(2−2)+(2−2)

(3−1)+(2−1)+(2−1)
= 0.50 (3−1)+(2−2)+(2−2)

(3−1)+(2−1)+(2−1)
= 0.50 0.50{1,4} {1,5}

{2,5} {2,4}

6.3.2 Experiments on Sub-Task 1

Baseline

We chose the Filter-Ranking (FR) Perceptron algorithm proposed by [5, 6] as our baseline
model because of its effectiveness on phrase recognition problems, especially on problems
that accept the embedded relationship14. We use FR-perceptron algorithm to recognize
logical parts in law sentences one by one in an input paragraph.

The idea of the FR-perceptron algorithm is to build a recognition model with two
components. The first component, operating at word level, is a filtering function F ,
which identifies a set of candidate logical parts for an input law sentence s, F (s) ⊆ P .
The second one, operating at part level, is a score function which produces a real value
score for a logical part. The recognizer will use the score function to search an optimal
coherent subset from the candidate set F (s).

14We re-implement the FR-perceptron algorithm by ourself.

56

R(s) = argmaxy⊆F (s)|y∈Y
∑
p∈y

score(p, s, y), (6.12)

score(p, s, y) = W · φ(p, s, y), (6.13)

where φ(p, s, y) is the feature vector defined on logical part p of sentence s in solution
y.

The filtering component F is only used to reduce the search space. Instead of searching
in the space P , the R function only searches in a subset F (s) of P . The setting for
function F is a begin-end classification for each logical part category: a word is considered
as c-begin if it is likely to begin a category-c logical part, and as c-end if it is likely to
end a category-c logical part. Each pair of c-begin word wb and c-end word we forms a
logical part candidate (b, e, k, c)15. Suppose that hcb and hce are begin and end classification
functions for each category c, the filtering function F can be described as follows:

F (s) = {(b, e, k, c)|hcb(wb, s, k) = +1 ∧ hce(we, s, k) = +1}. (6.14)

For begin/end predictors, we get features of words, POS tags, and Bunsetsu tags. We
obtained following features in a window size 2: f [−2], f [−1], f [0], f [+1], f [+2] (for
words, POS tags, and Bunsetsu tags), f [−2]f [−1], f [−1]f [0], f [0]f [+1], f [+1]f [+2],
f [−2]f [−1]f [0], f [−1]f [0]f [+1], f [0]f [+1]f [+2] (for words and POS tags). For example,
if f is word feature then f [0] is the current word, f [−1] is the preceding word, and
f [−1]f [0] is the co-occurrence of them. Moreover, with begin predictor, we use a feature
for checking whether this position is the beginning of the sentence or not. Similarly,
with end predictor, we use a feature for checking whether this position is the end of the
sentence or not.

With each candidate of logical part, we extract following kinds of features:

1. Length of the part

2. Internal structure: this feature is the concatenation of the top logical parts, punc-
tuation marks, parenthesis, and quotes inside the candidate. An example about
internal structure may be (A+,+C + .) (plus is used to concatenate items). This
means that the candidate consists of an antecedent part, a comma, a consequent
part, and a period at the end.

3. Uni-gram of words and part-of-speech tags,

4. Bi-gram of words and part-of-speech tags,

5. Tri-gram of words and part-of-speech tags.

15k is the sentence position in the input paragraph.

57

Experimental Results

In our experiments, we focus on paragraphs in Type A, B, and C defined in [39]. In
these types, the first sentence is the main sentence, which usually contains more logical
parts than other sentences. The other sentences often have a few logical parts, and in
most cases these logical parts only appear in one layer. The first sentences usually contain
logical parts in two layers.

We divided sentences into two groups. The first group consists of the first sentences
in paragraphs, and the second group consists of other sentences. We set the number of
layers k to 2 for sentences in the first group, and to 1 for sentences in the second group.
To learn sequence labeling models, we used CRFs [23, 21].

Experimental results on the JNPL corpus are described in Table 6.3. We conducted
experiments with four feature sets: words; words and POS tags; words and Bunsetsu tags;
and words, POS tags, and Bunsetsu tags. To extract features from source sentences, we
used the Cabocha tool [20], a Japanese morphological and syntactic analyzer. The best
model (word and Bunsetsu tag features) achieved 74.37% in F1 score. It improves 11.04%
in F1 score (30.11% in error rate) compared with the baseline model.

Table 6.3: Experimental results for Sub-task 1 on the JNLP corpus(W:Word; P: POS tag;
B: Bunsetsu tag)

Model Prec(%) Recall(%) F1(%)

Baseline 79.70 52.54 63.33
W 79.18 69.27 73.89

W+P 77.62 68.77 72.93
W+B 79.63 69.76 74.37

W+P+B 77.89 69.39 73.39

Table 6.4 shows experimental results of our best model in more detail. Our model got
good results on most main parts: C(78.98%), A(80.42%), and T2(82.14%).

6.3.3 Experiments on Sub-Task 2

In our experiment, to learn a maximum entropy binary classification we used the imple-
mentation of Tsuruoka [41]. With a pair of logical parts, we extracted the following
features (and combinations of them):

• Categories of two parts.

• Levels of two parts.

• The positions of the sentences that contain two parts (the first sentence or not).

58

Table 6.4: Experimental results in more details

Logical Part Prec(%) Recall(%) F1(%)

C 83.41 75.00 78.98
EL 76.74 60.00 67.35
ER 41.94 22.81 29.55
Ob 0.00 0.00 0.00
A 80.42 80.42 80.42

RepO 100 16.67 28.57
RepR 100 28.57 44.44
T2 83.64 80.70 82.14
T3 60.00 25.00 35.29

Overall 79.63 69.76 74.37

• Categories of other parts in the input paragraph.

We conducted experiments on this sub-task in two settings. In the first setting, we used
annotated logical parts (gold inputs) as the inputs to the system. The purpose of this
experiment is to evaluate the performance of the graph-based model on Sub-task 2. In the
second setting (end-to-end), predicted logical parts outputted by Sub-task 1 were used as
the inputs to the system. The purpose of this experiment is to evaluate the performance
of our framework on the whole task.

In the second setting, end-to-end setting, because input logical parts may differ from
the correct logical parts, we need to modify the MUC scores. Let P1, P2, . . . , Pn be n
predicted logical structures, and G1, G2, . . . , Gm be the gold logical structures. For each
gold logical structure Gi(i = 1, 2, . . . ,m), let Di be the set of logical parts in Gi which
are not included in the set of input logical parts. Di = {p ∈ Gi|p /∈ ∪nj=1Pj}. Let k(Gi)
be the smallest number such that there exist k(Gi) predicted structures P i

1, P
i
2, . . . , P

i
k(Gi)

which satisfy Gi ⊆ (∪k(Gi)
j=1 P i

j) ∪Di.

recall =

∑m
i=1 (|Gi| − |Di| − k(Gi))∑m

i=1 (|Gi| − 1)
. (6.15)

To calculate the precision, we switch the roles of predicted structures and gold struc-
tures.

Two examples of evaluation method for Sub-task 2 in the end-to-end setting are shown
in Table 6.5. In the first case, the input (output predicted by our system in Sub-task 1)
consists of three logical parts 1,2, and 3, while the actual input (gold input) consists of
four logical parts 1,2,3, and 4. Logical part 4 is not included in the set of input logical
parts. Therefore, when calculating recall, we need to subtract 1 from each factor in the
numerator. In the second case, the input is unchanged, while the gold input consists of
four logical parts 1,2, and 4. The input does not contain logical part 4, and the gold

59

input does not contain logical part 3. Hence, we need to subtract 1 from each factor in
the numerator when calculating both recall and precision.

Table 6.5: Examples of evaluation method for Sub-task 2 in the end-to-end setting (Pre
= Predicted, GIn = Gold Input, GRes = Gold Result)

Input Pre GIn GRes Recall Precision Fβ=1

1,2,3
{1,2}

1,2,3,4
{1,2,4} (3−1−1)+(2−1−1)

(3−1)+(2−1)
=0.33 (2−0−1)+(2−0−2)

(2−1)+(2−1)
= 0.50

0.40
{1,3} {3,4}

1,2,3
{1,3}

1,2,4
{1,4} (2−1−1)+(2−1−1)

(2−1)+(2−1)
=0.00 (2−1−1)+(2−1−1)

(2−1)+(2−1)
= 0.00

0.00
{2,3} {2,4}

Table 6.6 shows experimental results on the second sub-task. When using gold inputs,
our model achieved 75.89% in MUC F1 score. However, when using outputs of the first
sub-task as the input, we only got 51.12%. This is reasonable, because errors accumulate
in two sub-tasks.

Table 6.6: Experimental results on Sub-task 2

Setting Prec(%) Recall(%) F1(%)

Gold Inputs 81.24 71.19 75.89
End-to-End 54.88 47.84 51.12

6.4 Conclusions

We presented the RREP task, in which we consider legal paragraphs consisting of multiple
sentences. We proposed a two-phase framework to solve the task. In the first phase, we
provided a multi-layer sequence learning model to recognize logical parts. We divided
logical parts in a law sentence into some layers, and modeled the task of recognizing
logical parts in each layer as a sequence learning problem. In the second phase, we
introduced a graph-based model to recognize logical structures. Our experimental results
provides a baseline for futher researches on this interesting task.

60

Chapter 7

Conclusions

7.1 Summary of the Thesis

In this thesis, we introduced two tasks in Legal Engineering: (1) Recognition of Requisite
Part and Effectuation Part in Law Sentences, or RRE task; and (2) Recognition of Req-
uisite Parts and Effectuation Parts in Paragraphs Consisting of Multiple Sentences, or
RREP task. For the RRE task, the goal is to recognize logical parts given a law sentence.
For the RREP task, given a paragraph in a legal article, the goal is to recognize logical
parts in law sentences and group related logical parts into some logical structures. We
also introduced a corpus of real legal data for these tasks, Japanese National Pension Law
corpus.

We presented a study on the RRE task in some aspects:

1. Linguistic features. We found that word features are the most important features
to the RRE task. Features other than word features and part-of-speech features are
not effective to the task. We also described an exploring on contributions of words
to the RRE task, in which we found that statistical machine learning models use
the same words as human do when recognizing logical parts in law sentences.

2. Problem modeling. We showed that modeling based on Bunsetsus is better than
modeling based on words. On the model based on words, using only head words
and functional words gives better results than using all words.

3. Tag setting. We found that among four kinds of tag settings, IOB, IOE, FIL, and
FILC, IOE (the last element of a part is tagged with E, the other elements are
tagged with I, elements outside every part are tagged with O) is the most suitable
tag setting for the RRE task.

4. Semi-supervised learning. We showed that by exploiting unlabeled data in a simple
manner (use extra word features derived from Brown clusters), we can improve the

61

results of the RRE task. The unlabeled data are more helpful when the amount of
labeled data is small.

For the RRE task, Our best model achieved 88.84% in Fβ=1 score on the Japanese
National Pension Law corpus.

We also proposed a two-phase framework to solve the RREP task:

1. Sub-task 1: Recognition of Logical Parts. We divided logical parts in a law sentence
into some layers. The first layer consists of logical parts that are not embedded in
any other parts. Suppose that we remove logical parts in the first layer, the second
layer will consist of logical parts that are not embedded in any other parts. The
higher layers are similarly defined. We proposed a multi-layer sequence learning
model, in which we trained a CRFs model to recognize logical parts in each layer.

2. Sub-task 2: Recognition of Logical Structures. We considered this task as a problem
of searching a set of sub-graphs in a complete weighted graph with some constraints.
In this graph, each vertex corresponds to a logical part and a complete sub-graph (or
a set of vertices) corresponds to a logical structures. The weight on an edge indicates
the degree in which two vertices belongs to one logical structure. We proposed a
heuristic algorithm to solve the problem. The main idea of the algorithm is to take
as many positive edges as possible, and as few negative edges as possible.

Our models achieved 74.37% in recognizing logical parts, 75.89% in recognizing logical
structures, and 51.12% in the whole task on the Japanese National Pension Law corpus.
Our results provide a baseline for further researches on this interesting task.

7.2 Future Work

In our future work, we will continue to investigate these two tasks:

1. RRE task

In this thesis, we have investigated the RRE task using Markov models (CRFs). In
the future, we will compare Markov and semi-Markov models (semi-CRFs [36]) on
the RRE task. Some studies show that sometimes semi-Markov models can improve
performance over Markov models [24, 36].

2. RREP task

In this thesis, we considered this task as two separate sub-tasks. This means that the
process of recognizing logical parts and the process of recognizing logical structures
are independent. The information of one process, however, may support the other
process, and vice versa.

62

In the future, we will try to integrate two sub-tasks into a unified process, where we
recognize both logical parts and logical structures at the same time.

From the results of these two tasks, we also investigate the task of Translating Legal
Articles into Logical and Formal Representations, where the input is a set of documents
and the outputs are their formal representations.

63

Publications

The works in this thesis have been published (accepted to publish) in the following papers:

• Journal Papers

1. Ngo Xuan Bach, Nguyen Le Minh, Akira Shimazu. RRE Task: The Task
of Recognition of Requisite Part and Effectuation Part in Law Sentences. Ac-
cepted to publish in International Journal of Computer Processing Of Lan-
guages (IJCPOL), 2011.

• Papers in International Conferences and Workshops

1. Ngo Xuan Bach, Nguyen Le Minh, Akira Shimazu. Recognition of Requi-
site Part and Effectuation Part in Law Sentences. In Proceedings of the 23rd

International Conference on the Computer Processing of Oriental Languages
(ICCPOL), pp. 29-34, 2010.

2. Le Minh Nguyen, Xuan Bach Ngo, Viet Cuong Nguyen, Quang Nhat Minh
Pham and Akira Shimazu. A Semi-Supervised Learning Method for Viet-
namese Part of Speech Tagging1. In Proceedings of the 2nd International Con-
ference on Knowledge and Systems Engineering (KSE), pp. 141-146, 2010.

3. Ngo Xuan Bach, Nguyen Le Minh, Akira Shimazu. Exploring Contributions
of Words to Recognition of Requisite Part and Effectuation Part in Law Sen-
tences. In Proceedings of the 4th International Workshop on Juris-Informatics
(JURISIN), pp. 121-132, 2010.

• Papers in Domestic Conferences

1. Ngo Xuan Bach, Nguyen Le Minh, Akira Shimazu. Recognition of Requisite
Part and Effectuation Part in Law Sentences. In Proceedings of 16th Annual
Meeting of Association for Natural Language Processing, pp. 35-38, 2010.

1This work does not relate to the thesis. It only uses the same semi-supervised technique as the
technique we do in Chapter 5.

64

Bibliography

[1] R.K. Ando, T. Zhang. A Framework for Learning Predictive Structures from Multiple
Tasks and Unlabeled Data. In Journal of Machine Learning Research, Volume 6,
pp.1817-1853, 2005.

[2] A. Blum, T. Mitchell. Combining labeled and unlabeled data with co-training. In
Proceedings of the Workshop on Computational Learning Theory, 1998.

[3] P.F. Brown, P.V. deSouza, R.L. Mercer, V.J.D. Pietra, J.C. Lai. Class-Based n-
gram Models of Natural Language. In Computational Linguistics, Volume 18, Issue
4, pp.467-479, 1992.

[4] R.H. Byrd, J. Nocedal, R.B. Schnabel. Representations of Quasi-Newton Matrices
and their use in Limited Memory Methods. In Mathematical Programming, Volume
63, Issue 4, pp.129-156, 1994.

[5] X. Carreras, L. Màrquez, J. Castro. Filtering-Ranking Perceptron Learning for Par-
tial Parsing. In Machine Learning, Volume 60, pp.41-71, 2005.

[6] X. Carreras, L. Màrquez, V. Punyakanok, D. Roth. Learning and Inference for Clause
Identification. In Proceedings of ECML, pp. 35-47, 2002.

[7] M. Collins. Discriminative Training Methods for Hidden Markov Models: Theory and
Experiments with Perceptron Algorithms. In Proceedings of EMNLP, pp.1-8, 2002.

[8] M. Collins, T. Koo. Discriminative Reranking for Natural Language Parsing. In Com-
putational Linguistics, Volume 31, Issue 1, pp.25-70, 2005.

[9] R. Collobert, J. Weston. A unified architecture for natural language processing: deep
neural networks with multitask learning. In Proceedings of ICML, pp.160-167, 2008.

[10] E. Ejerhed. Finding clauses in unrestricted text by finitary and stochastic methods. In
Proceedings of the 2nd Conference on Applied Natural Language Processing, pp.219-
227, 1988.

[11] G.D.Jr. Forney. The viterbi algorithm. In Proceedings of the IEEE, Volume 61, Issue
3, pp.268-278, 1973.

65

[12] G. Haffari, A. Sarkar. Analysis of semi-supervised learning with the Yarowsky algo-
rithm. In Proceedings of UAI, pp.159-166, 2007.

[13] A. Haghighi, D. Klein. Simple Coreference Resolution with Rich Syntactic and Se-
mantic Features. In Proceedings of EMNLP, pp.1152-1161, 2009.

[14] T. Joachims. Transductive inference for text classification using support vector ma-
chines. In Proceedings of ICML, pp.200-209, 1999.

[15] T. Katayama. The current status of the art of the 21st COE programs in the infor-
mation sciences field. Verifiable and evolvable e-society - realization of trustworthy
e-society by computer science - (in Japanese). In IPSJ (Information Processing So-
ciety of Japan) Journal, 46(5), pp.515-521, 2005.

[16] T. Katayama. Legal engineering - an engineering approach to laws in e-society age.
In Proceedings of the 1st International Workshop on JURISIN, 2007.

[17] T. Katayama, A. Shimazu, S. Tojo, K. Futatsugi, K. Ochimizu. e-Society and Legal
Engineering (in Japanese). In Journal of the Japanese Society for Artificial Intelli-
gence, 23(4), pp.529-536, 2008.

[18] Y. Kimura, M. Nakamura, A. Shimazu. Treatment of Legal Sentences Including Item-
ized and Referential Expressions - Towards Translation into Logical Forms. In New
Frontiers in Artifical Intelligence, volume 5447 of LNAI, pp.242-253.

[19] T. Koo, X. Carreras, M. Collins. Simple semi-supervised dependency parsing. In
Proceedings of ACL, pp.595-603, 2008.

[20] T. Kudo. Yet Another Japanese Dependency Structure Analyzer.
http://chasen.org/ taku/software/cabocha/

[21] T. Kudo. CRF++: Yet Another CRF toolkit. http://crfpp.sourceforge.net/

[22] T. Kudo, K. Yamamoto, Y. Matsumoto. Applying conditional random fields to
Japanese morphological analysis. In Proceedings of EMNLP, pp.230-237, 2004.

[23] J. Lafferty, A. McCallum, F. Pereira. Conditional Random Fields: Probabilistic Mod-
els for Segmenting and Labeling Sequence Data. In Proceedings of ICML, pp.282-289,
2001.

[24] P. Liang. Semi-Supervised Learning for Natural Language. Master’s thesis, Mas-
sachusetts Institute of Technology, 2005.

[25] A. McCallum, D. Freitag, F. Pereira. Maximum entropy Markov models for informa-
tion extraction and segmentation. In Proceedings of ICML, pp.591-598, 2000.

[26] D. Lüdtke, S. Sato. Fast Base NP Chunking with Decision Trees-Experiments on
Different POS Tag Settings. In Proceedings of CICLing, pp.139-150, 2003.

66

[27] A. Mnih, Y. Bengio. A scalable hierarchical distributed language model. In Proceed-
ings of NIPS, pp.1081-1088, 2009.

[28] M. Murata, K. Uchimoto, Q. Ma, H. Isahara. Bunsetsu identification using category-
exclusive rules. In Proceedings of COLING, pp.565-571, 2000.

[29] D. Nadeau, S. Sekine. A survey of named entity recognition and classification. In
Lingvisticae Investigationes, Volume 30, Issue 1, pp.3-26, 2007.

[30] M. Nakamura, S. Nobuoka, A. Shimazu. Towards Translation of Legal Sentences into
Logical Forms. In Proceedings of the 1st International Workshop on JURISIN, 2007.

[31] V. Ng. Supervised Noun Phrase Coreference Research: The First Fifteen Years. In
Proceedings of ACL, pp. 1396-1411, 2010.

[32] F. Peng, A. McCallum. Information extraction from research papers using condi-
tional random fields. In Information Proceesing and Management,Volume 42, Issue
4, pp.963-979, 2006.

[33] E.T.K. Sang, S. Buchholz. Introduction to the CoNLL-2000 Shared Task: Chunking.
In Proceedings of CoNLL, pp.127-132, 2000.

[34] E.T.K. Sang, H. Déjean. Introduction to the CoNLL-2001 Shared Task: Clause Iden-
tification. In Proceedings of CoNLL, pp.53-57, 2001.

[35] E.T.K. Sang. Introduction to the CoNLL-2002 Shared Task: language-independent
named entity recognition. In Proceedings of CoNLL, pp.1-4, 2002.

[36] S. Sarawagi, W. Cohen. Semi-Markov Conditional Random Fields for Information
Extraction. In Proceedings of NIPS, pp.1185–1192, 2004.

[37] F. Sha, F. Pereira. Shallow parsing with conditional random fields. In Proceedings of
NAACL, pp.213-220, 2003.

[38] C. Sutton, A. McCallum. An Introduction to Conditional Random Fields for Rela-
tional Learning. In Introduction to Statistical Relational Learning, Chapter 4, MIT
Press, 2006.

[39] K. Takano, M. Nakamura, Y. Oyama, A. Shimazu. Semantic Analysis of Paragraphs
Consisting of Multiple Sentences - Towards Development of a Logical Formulation
System. In Proceedings of JURIX, pp. 117-126, 2010.

[40] K. Tanaka, I. Kawazoe, H. Narita. Standard structure of legal provisions - for the
legal knowledge processing by natural language. In IPSJ Research Report on Natural
Language Processing, pp.79-86, 1993.

[41] Y. Tsuruoka. A simple C++ library for maximum entropy classification. http://www-
tsujii.is.s.u-tokyo.ac.jp/ tsuruoka/maxent/.

67

[42] J. Turian, L. Ratinov, Y. Bengio. Word representations: A simple and general method
for semi-supervised learning. In Proceedings of ACL, pp.384-394, 2010.

[43] V.N. Vapnik. Statistical learning theory. New York: Wiley, pp.339-371, 1998.

[44] M. Vilain, et al. A Model-Theoretic Coreference Scoring Scheme. In Proceedings of
MUC-6, pp.45-52, 1995.

[45] H.M. Wallach. Conditional Random Fields: An Introduction. University of Pennsyl-
vania CIS Technical Report MS-CIS-04-21.

[46] H. Zhao, W. Chen, C. Kit, G. Zhou. Multilingual dependency learning: a huge fea-
ture engineering method to semantic dependency parsing. In Proceedings of CoNLL,
pp.55-60, 2009.

[47] X. Zhu. Semi-Supervised Learning Literature Survey. Computer Sciences TR 1530
University of Wisconsin-Madison, 2008.

68

