JAIST Repository

https://dspace.jaist.ac.jp/

Title gobdooooooooooooooooooao

Author(s) oo, 00

Citation

Issue Date 2011-03

Type Thesis or Dissertation

Text version aut hor

URL http://hdl.handle.net/ 10119/ 9638
Rights

Description Supervisor: goooo, ooooooo, 00

AIST

JAPAN
ADVANCED INSTITUTE OF
SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology



Combining Generalization and Localization
Pattern Matching in the Game of Go

Yuuki Doi (0810041)

School of Information Science,
Japan Advanced Institute of Science and Technology

2011/2/8
Keywords: Computer Go, Monte Carlo Go, Pattern Matching.

In this thesis, we propose a new pattern matching which is easier to match than previous
methods and covers larger area in the game of Go, and we evaluate the performance. We
also improve the skill of our program by making the simulation quality more accurate
with using a proposing method.

The skill of Go programs has not improved by Minmax search, which has been success-
fully applied in Chess or Shogi. The reason is the hugeness of the state space and the
search space of Go. In 1993, Monte-Carlo method for Go (Monte-Carlo Go) was proposed
and brought rapid advancements in computer Go, and it has improved the skill of Go pro-
grams. Monte-Carlo Go does playout, which simulates a game randomly from a position
to the end, and repeats it. The position is evaluated by the results of simulation. i.e.,
wining and /losinge counts. It is known that the quality of playouts remarkably affects
the skill of Go programs, and the enhancement is an important subject in this domain.
In this thesis, we focus on enriching the quality of playout by introducing a more accurate
pattern matching to positions.

In the early days, the depth of Monte-Carlo Go was just one ply, and the playout
consisted from completely random moves. This approach has a problem that it tends to
select an unprofitable move which turns out to be a bad move by looking forward with
some depth, and consequently, it tends to expect opponent ' s mistakes. A tree search
algorithm and an evaluation function using pattern matching overcame this problem, and
improved the skill of Go program. We use the same approach in this thesis.

A pattern in Go is a set of stone locations around a focused intersection, i.e., a con-
didate move. If an intersection is matched to a pattern, the intersection is scored by a
corresponding value to the coefficient of the pattern. Common patterns are symmetrical
to a given intersection, and the shapes are variable size of square, diamond or circle. His-
torically, this pattern had been used for a static evaluation function in Minmax search in
order to decrease the number of legal moves to be searched. The patterns have a trade-off
problem; a big pattern requires many game records to learn an adequate coefficient value,
while small one has less ability to evaluate a move accurately. We have proposed various
methods for this problem, but they had both good and bad points. Especially in playouts

Copyright © 2011 by Yuuki Doi



of Monte-Carlo Go, patterns are harder to match to positions, because many positions in
playout are not similar to one appeared in normal game records.

In this thesis, we propose Collage Pattern, which divides intersections around a move
and covers them by several small patterns. It can covers the same area where a classical
large patterns covers, and the each part of the patterns can be learned adequately because
the size is small. Moreover it is expected to covers larger area than classical patterns. We
implemented this method in a Go Program NOMITAN, which was studied and developed
in JAIST. We had several experiments to evaluate the proposing method from variable
aspects.

We compare traditional methods and Collage Pattern, and evaluate their performances
of pattern matching, playout and strength in game playing. We propose some hierarchical
evaluation items, and evaluate from many points such as, playouts, probability and order
important things for strength. One of the contribution of this thesis is to organize these
evaluation items.

Experimental results showed that Collage Pattern was improved in the performance of
the generalization capability. The probability distribution was not improved so much.
The playout speed was slower and program based on the pattern does not show very
good performance. However, we obtained positive result for maximum size of pattern
matching in playouts. Hence it has a potential of improving the performanceby adjusting
the probability distribution and by changing the objective function for the learning. As
future work, we would like to evaluate the quality of playout by fattening the evaluation
items, and create an unrivaled strong Go program.



