JAIST Repository
https://dspace.jaist.ac.jp/

Area of effect and compromising tecl
Title the detection and resolutjon of envi
conflicts between servicep in the H¢
System
Author(s) oooog, ObOoo
Citation
Issue Date 2011-03
Type Thesis or Dissertation
Text version aut hor
URL http:// hdl handle.net/ 10119/ 9652
Rights
o Supervisor: Tan Yasuo, School of | nf
Description)
Science, Master cour se

AIST

JAPAN

ADVANCED

INSTITUTE OF

® SCIENCE AND TECHNOLOGY

Japan Advanced Institute of Science and Technology

Area of effect and compromising techniques for the detection
and resolution of environmental conflicts between services in
the Home Network System

By Marios Sioutis

A thesis submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Professor Yasuo Tan

March, 2011

Area of effect and compromising techniques for the detection
and resolution of environmental conflicts between services in
the Home Network System

By Marios Sioutis (0910030)

A thesis submitted to
School of Information Science,
Japan Advanced Institute of Science and Technology,
in partial fulfillment of the requirements
for the degree of
Master of Information Science
Graduate Program in Information Science

Written under the direction of
Professor Yasuo Tan

and approved by
Professor Yasuo Tan
Professor Yoichi Shinoda
Associate Professor Mikifumi Shikida

February, 2011 (Submitted)

Copyright © 2011 by Marios Sioutis

Thank you!

This thesis could not have happened if | had not been blessed with the support and love of many
people. The following is just a short list of people I would like to thank and dedicate this work.

Professor Yasuo Tan and all of my colleagues in Tan laboratory for the immense support and
guidance that I received over the years. Especially I would like to thank my senpais, Okadasan,
Nakatasan and Kiyoumisan, that helped me so much to get accustomed to life and research at
JAIST.

My close friends at JAIST over the years, Peter, Dominik, Ming, Matou, Nakamura, Blaise,
for the good and hard times we had together. Everyday living without you guys gets boring, I
wish you the best!

My friends back at home, Nikos Kereres, Bidis, Antonis, Dimitris, Christoforas da Best and
others, for their support, comic relief moments and countless hours of skype calling - I love you
guys.

Professor Christos Douligeris, Dimitris Glynos, Antonis Petropoulos and all my friends back
in cslabs at Unipi for shaping my undergraduate years. You have been a great influence and
example for me to follow.

My family. Living away from you is hard.

My girlfriend Noula. Without your support I could not have pulled through this. Without your
love, not many things would matter.

Dedicated to all of you, you help me shape my path in life. Thank you!

Abstract

In this research we deal with the problem of service conflicts in the home network system (hereby
referred to as HNS). Conflicts arise due to the competition for resources among the services. We
propose two methods for the detection of conflicts based on information regarding the ”Area
of Effect” of those services and the use of compromising techniques for the resolution of a
subset of these conflicts know as “environmental conflicts”. To demonstrate the above ideas,
we created a centralised resource management system, capable of performing conflict detection
and resolution in the HNS using the above ideas.

Recently, networking technology is widely being deployed inside houses, allowing devices
to communicate and share resources. There has been steady progress in the field of communi-
cation protocols and standardization and this has resulted in many protocols and technologies
(Bluetooth, UPnP, DLNA, Echonet, others) that allow devices to interoperate.

Having solved the problem of interoperability for devices, the next step is to offer services
to the home environment from an external service provider. The home is expected to become a
standardized service deployment platform and services running on top of it will be able to harness
its resources. Such a service platform is described by the Service Intermediary model. The
characteristics of the environment (such as temperature, humidity, illumination and sound/noise
levels) are also treated as resources.

There are two possible types of service conflicts in the service deployment environment de-
scribed above:

+ device conflicts, where services send conflicting requests towards the same device,

» environmental conflicts, where services operate devices that have conflicting effects on
the environment (e.g. operating a heater and an air condition unit at the same time).

il

The algorithms that have been proposed so far for the conflict resolution involve suspending
at least one of the conflicting services in order to allow the remaining services run successfully.
While this is mostly true for device conflicts, we argue that in the case of environmental conflicts
it may be possible to avoid suspending a conflicting service and still having these services run
with relative success.

To be able to do so, we propose a centralized resource management system for the environmen-
tal properties which can be integrated in the deployment platform. This system has complete
control over the devices that can affect the environment and it is tasked to fulfil the requests
of services regarding the four environmental properties (illumination, temperature, humidity,
sound/noise levels), acting as an abstraction layer between the services and the devices. The
proposed system provides a service application programming interface (API) so that services
can make requests for resources as well as an internal device API to control the devices in the
HNS in a unified manner.

The system uses information regarding the ”Area of Effect” (AoE)of services and devices as
well as compromising techniques to detect and resolve conflicts between services. We defined
the AoE of a service (or a device) as the physical space for which the effect of that service (or
device) lies between upper and lower intensity bounds that we are interested in. The system
uses limited physics simulation to predict the effects and make estimation about AoEs.

Using this information, the system is able to detect conflicts by discovering overlapping AoEs.
We take a two step approach: one per-device conflict detection step where the conflict is dis-
covered by conflicting settings applied on a device inside the intended AoE and and a second
step based on estimations of overlapping AoEs of devices outside the originally intended scope.

Regarding conflict resolution, we propose two main categories of compromising algorithms:
space-based and intensity-based. Both of these types of algorithms do not require the suspension
of any conflicting service.

Space-based compromising algorithms try to limit the AoEs of the conflicting algorithms.
These algorithms strive to impose the requested intensity around the anchor point of a service.
The anchor point is the epicentre of execution of the service and the point which the service is
most interested in. These algorithms are effective when there is a large number of conflicting
devices and their /ocality is good (i.e. the effects of the service tend to weaken sharply as the
distance from the source increases).

Intensity-based compromising algorithms try to choose an intermediate setting for devices
such that all conflicting services can be satisfied to the maximum possible degree. These algo-
rithms are effective when there is a small number of devices that may also have bad locality.

The above algorithms search the solution space (possible combinations of settings for devices)
so that the requests of the services are fulfilled as best as possible. We identified the problem
as being an optimization problem and proceeded to examine various optimization techniques
and their applicability. The implemented algorithms in this prototype system can be said to be

il

variations of local search algorithms combined with evaluation mechanics borrowed heavily
from constraint programming.

Two space based algorithms (”greedy” and "forfeit rights”) and one intensity based algorithm
(’range search”) were implemented. Various combinations of conflict detection and conflict
resolution techniques were tested in a total of three experiments (scenarios for illumination,
temperature and sound/noise levels).

We argue that the use of the prototype system is a significant improvement over the alterna-
tives: suspending a service, or suffering from non-deterministic or erratic behaviour of devices.
Finally we believe that the proposed system augments the SI model and there is potential value
in a combined system.

Contents

1 Introduction 1
1.1 Home network system and services 1

1.2 Targetofthisresearch 2

1.3 Structure of thisdocument L oL 2

2 Background Research 4
2.1 Services in the home network system 4
2.1.1 Conventionalmodels L. 4

2.1.2 The Service Intermediarymodel 6

2.2 Feature Interaction 7
2.2.1 Type of feature interactionsinthe HNS 8

2.2.2 Traditional conflict detection techniques 9

2.2.3 Traditional conflict resolution techniques 9

2.2.4 Advantages and disadvantages in traditional methods of conflict resolution 10

3 Area of Effect and compromising techniques 12
3.1 Resolving environmental conflicts without suspending services 12
3.2 Proposed system architecture L. 12
33 AreaofEffect 13

3.3.1 Effectof a device ata given pointinspace 14
3.3.2 Effect of a service at a given pointinspace 14
333 AreaofEffectofadevice 15
3.3.4 Areaof Effectofaservice 15
3.3.5 Conflicting servicesatapointp 16
34 Requestforresources 16
34.1 Desired AoEofaservice, 16
34.2 Desired intensity of Effect 17
3.4.3 The importance of service requests and a centralized control system . . 17
3.5 Conflicts between ServiCes v v v v v e e e e e e 18

v

CONTENTS

3.6
3.7

3.8

35.1 Typeofconflicts
3,52 N-serviceconflicts
Detection of conflicts L
Compromising Techniques
3.7.1 Space-based conflict resolution
3.7.2 Intensity-based conflict resolution
3.7.3 Combined and Hybrid conflict resolution
Optimization i e e e e e
3.8.1 Formalization
3.8.2 Tackling the optimization problem
3.8.3 Linear Programming
3.84 SATand MaxSAT
38,5 GameTheory
3.8.6 Constraint programming

4 System Architecture and Implementation

4.1

42
43
44

4.5

4.6

4.7

Architecture Overview
4.1.1 Class diagrams and important concepts
4.1.2 Implementation of the Core System
Devices and Device API oo
Service AP e
Detection and Resolution of conflicts
44.1 Mainloop ofthesystem
4.4.2 Enchantments, Enchantment Manager and ideal solutions
Conflict detection algorithms
4.5.1 Per-device conflictdetection
4.5.2 Conflict detection using AoE information
Conflict resolution algorithms L.
4.6.1 Endconditions
4.6.2 Evaluators
4.6.3 Compromising Algorithms
Implementation details L oL
47.1 OSGiandJava
4772 Sample Service e

5 Test cases and results

5.1

Space based resolution experiment L.
5.1.1 Scenario Explanation,

CONTENTS

5.1.2 Case 1: greedy algorithm and highest score end condition
5.1.3 Case 2: greedy algorithm and constrained programming end condition .
5.1.4 Case 3: forfeit rights algorithm and highest score end condition
5.1.5 Case 4: forfeit rights algorithm and constrained programming end con-
dition
5.1.6 - Comments L
5.2 Intensity based resolution experiment
5.2.1 Scenario details and execution L.
522 Comments e
5.3 Conflict detection using Areaof Effect
5.3.1 Scenario details and execution L.
532 Comments e

Future work and improvements
Conclusions

XML configuration files

A.1 configuration file for illumination scenario: 7x5.xml
A.2 configuration file for temperature scenario: TemperatureScenario.xml .
A.3 configuration file for conflict descovery based on area of effect: SoundSce-

Nario.xXmML o e e e e e e e e e e

Execution Logs

B.1 Space based resolution experimentresults
B.1.1 Casel: Highscore+Greedy
B.1.2 Case2: Constrained +Greedy
B.1.3 Case 3: High score + Forfeitrights
B.1.4 Case 4: Constrained + Forfeitrights

B.2 Intensity based resolution experimentresults

B.3 Conflict detection experimentresults

vi

57
58
59

60
61
62
62
64
64
64
66

67

69

70
70
74

75

Chapter 1

Introduction

1.1 Home network system and services

In the past decade the number of home appliances that have networking features has been steadily
increasing. Such devices have increased perceived value for the customer because of the extra
features (remote control, access to the internet, others) that they provide. At the beginning, these
devices used to have a very limited application scope, provided a very specific service to the
user and were not designed with interoperability in mind.

It was not before long that device manufacturers realized the potential of designing network-
capable appliances that can co-operate and share resources. From this fundamental change in
design, protocols such as UPnP[17], Echonet[18] and DLNA[16] were developed. These pro-
tocols are backed by major organizations that are considered to be industry leaders (such as
SONY, Microsoft Corp. and others) and have been adopted in the design of many commercial
products that are readily available to consumers now.

Having somewhat solved interoperability and communication problems between devices, the
next challenge is to offer services to the home environment in a flexible and standardized man-
ner. Recently, various vendors offer services to the home using some proprietary hardware and
software combination. These solutions have quite a few disadvantages such as redundant hard-
ware, configuration complexity, possible conflicts between services and others. These problems
will be explained in detail in section 2.1.

This research is focusing on the detection and resolution of environmental conflicts between
services in the home network system (hereby referred as HNS).

CHAPTER 1. INTRODUCTION 2

1.2 Target of this research

In our research we discuss service conflicts in the home network system. We proceed to cat-
egorize conflicts between services and then propose new methods to detect and resolve a sub-
category of these conflicts, named as “environmental conflicts”. Our approach is based on the
notion of the “Area of Effect” (from now on referenced as AoE) and the application of compro-
mising techniques.

We propose a centralized system in the HNS that acts as a resource manager. This system will
undertake the task to receive requests on behalf of the services and try to fulfil them to the best
possible degree. Furthermore, this resource management system has a comprehensive set of
programming APIs that can be used to design a service with minimum effort and for the control
of devices and can also be integrated with the SI model for the provision of more complex and
feature-rich services that adapt to the deployment environment.

The proposed system employs new techniques for the detection and resolution of conflicts
between services based on the notion of AoE and compromising techniques. It is important
to note that these compromising techniques can be used effectively for only a specific type of
service conflict, which we named “environmental conflict” .

1.3 Structure of this document

In chapter 2 we will explain the background regarding the home network system (from now on
referenced as HNS) and services. We will proceed to describe different architectural models
for the provision of services in the HNS and then describe what is know as feature interaction
between services. We will finish chapter 2 by mentioning the methods currently available to
detect and solve service conflicts and explain their weaknesses.

In chapter 3 we will discuss the various types of conflicts between services, focusing on the
environmental conflicts. Then we will proceed to give the various definitions regarding the AoE.
Namely, we will talk about the effect of a device and the effect of a service at a given point in
space, as well as the AoE of a device and the AoE of a service. We will then proceed to express
the problem of assigning settings to devices as an optimization problem and evaluate different
methods to tackle it.

In chapter 4 we will give an overview of the design of the prototype system we developed, and
describe the various APIs used internally to handle requests from the services. We will proceed
to provide some implementation details about the system.

In chapter 5 we will present some experimental setups along with the results attained. The
experiments will demonstrate the advantages of the proposed conflict detection and conflict
resolution algorithms in various scenarios that may occur in the HNS.

CHAPTER 1. INTRODUCTION 3

Finally in chapters 6 and 7 we present possible future work and improvements as well as the
final conclusions and remarks respectively.

Chapter 2

Background Research

2.1 Services in the home network system

In this section we will discuss the past and the current status of home services in the HNS.
We will provide a definition of what constitutes a service in the HNS and present the different
methods that are used for the provision of such services

A service in the HNS is a service provided to the user that satisfies a specific need. These
services may offer a wide area of functionality, such as ”smart” security systems, regulation
of energy consumption, context-aware environment and others. Such services are quite often
provided by an external entity (a company) which from now on we will refer to as the Service
Provider (SP).

2.1.1 Conventional models

The conventional method to provide services to the user in the HNS is to supply the user with
specific, proprietary hardware that integrates tightly with the provided service. For example,
a typical home security system (that essentially provides a home security service to the users)
usually consists of many sensors that have to be retrofitted to almost all the doors and windows
in a house, a device that provides the main user interface to the user and also acts as a gen-
eral computation system, and possibly utilize some network connection to notify the security
company of possible security breaches in the house.

Another example of a service provided in a very traditional fashion is netflix streaming services[15].
Using the netflix services a user is able to stream a wide variety of video content to a select array
of "netflix-ready” devices!. The video content is streamed directly from the service provider and
arrives directly to a certified device able to handle the video stream.

'for a list of supported devices, see http://www.netflix.com/NetflixReadyDevices (accessed on 2010-02-20)

CHAPTER 2. BACKGROUND RESEARCH 5

A representation of the conventional service provision model can be seen in figure 2.1. Lines
between the SP and the HGW show the direct relationship between the two parties.

— \

SP

Figure 2.1: The conventional service provision model.

The common elements of the above solutions are the following:
* custom hardware equipment to support the service

* A client-server architecture between the service provider and the required service hard-
ware installed directly at the HNS of the user

+ the user must enter a contract with the service provider for every service he may wish to
use.

Despite the simplicity of this conventional model of providing services, there are some severe
disadvantages that prohibit the realization of a more rich, unified HNS. The biggest disadvan-
tages of this conventional approach to services are the following:

1. Usage of custom hardware. In most services the hardware is restricted to only provide the
service it was designated to provide. Other services usually cannot take advantage of the
hardware designed to be used with another service. This may also lead to redundant or
duplicate hardware for similar services.

2. Configuration of the service. Due to the fact that each service is using dedicated hardware,
the configuration of this hardware is usually left to the inexperienced user.

3. User interface. The user interface for each service is usually provided through some pro-
prietary software/hardware solution. This ruins the feeling of consistency between ser-
vices and it is also more difficult to master the peculiarities of the different interfaces.

CHAPTER 2. BACKGROUND RESEARCH 6

4. Conflict between services. Because the services act independently from each other, there
is a high chance that some services may conflict over the use of resources or produce
conflicting results. This degrades the perceived quality of experience for those services.

The above disadvantages all stem from the fragmentation of the deployment hardware. These
inherent limitations of the conventional model hamper its scalability.

2.1.2 The Service Intermediary model
Service Provider, Service Intermediary, and Home Gateway

After realizing the limitations of the traditional model to provide services in the HNS, the Service
Intermediary (SI) model was conceived. The core idea of this model is presented in [1]. The SI
platform is designed to solve the problems of the traditional service model.

In the SI model, there are three main entities.

* The back-end Service Provider (SP). This is the actual provider of a specific service. The
SP designs services that will be provided to the HNS, the final deployment target. This
role is the only one that remains unchanged compared to the traditional model.

* The Home Gateway (HGW). The HGW acts as the gateway of the HNS to the outside
world. Services can be executed directly on the HGW hardware. Moreover, the HGW
acts as a software bridge, capable of controlling or passing command to other devices in
the HNS.

* The Service Intermediary (SI) ,from which this model for service providing takes its name.
The SI acts as an intermediary between the SP and the HGW. In this model, the HGW does
not contact the SP to have access to a service. Instead, the SI aggregates services from
various SPs and presents them to the user. The user makes a contract with the SI to have
access to the services of the various SPs.

A representation of the relationships between the three parties can be seen in figure 2.2. Usu-
ally, SIs aggregate services from the SPs and then a house can enter a contract with an SI.

Advantages of the SI model

The presence of the SI is the major difference between the SI model and the traditional model
of services. By having a service intermediary between the various service providers and the
HNS, the problem of a fragmented deployment environment is resolved. This is because, the
SI can enforce a specification of the hardware platform on which the services will be executed.
The SI will be responsible to verify that all services deployed on the controlled platform do not
misbehave and are consistent.

CHAPTER 2. BACKGROUND RESEARCH 7

O
e

Do

Figure 2.2: The SI service provision platform.

Sl

yj

The existence of an SI saves the user of the hassle of having to make contracts with a substantial
number of different SPs. Moreover, the problem of the configuration of a multitude of different
devices is resolved, since the SI can take care of it. The configuration of the services will also
be taken care by the SI, and we expect that the SI will be able to offer a comprehensive and
consistent user interface, not possible otherwise. Furthermore, the duplication of hardware is
minimized and the same hardware may now be used by many different services, increasing its
value. Moreover, the SI will be able to provide the user with all the equipment that is necessary
(depending on the services the user is subscribing to), or designate compatible equipment that
can be used effectively as part of the platform. Finally, according to [2], it is possible to have
computationally intensive services execute on computational nodes of the SI transparently, as
in the case of cloud computing.

The benefits for the service providers are also quite substantial. Firstly, the SI is now able
to provide the SP with a set of application programming interfaces (APIs) for the design of
services. By adhering to the APIs, now the SP does not have to worry about inconsistencies and
differences in the deployment HNS. The SP now must target the service platform provided by
the SI. It is the responsibility of the SI to guarantee the provision of a consistent service platform
on which services can be deployed. Thus, the SP is freed from the mundane task of having to
test the service with possibly hundreds of different configuration environments, simplifying the
design of services targeted for the HNS.

2.2 Feature Interaction

One of the problems that the SI model is also well suited to solve is the feature interaction (from
now on referenced as FI) between services. Actually, since the services now run on a unified

CHAPTER 2. BACKGROUND RESEARCH 8

platform, they now compete for resources more often than before. It is critical to look into
the possible feature interaction scenarios and try to classify them appropriately based on their
characteristics.

Pattara in [3] gives the following definition for the feature interaction in the home network
system:

“Feature Interaction is a type of functional conflict among multiple services not ex-
pected from the behavior of the services in isolation. FIs bring about unexpected
(and often undesirable) behaviours of the service and lead the service to malfunc-
tion.”

Regarding FI, there are two major areas of research; feature interaction detection and feature
interaction resolution. In the following sections we give an overview of the classification of FI,
as well as present some of the traditional methods for detection and resolution of FI.

2.2.1 Type of feature interactions in the HNS

In [3], Pattara gives a brief explanation about the different types of Feature Interaction.

Device conflicts

Originally mentioned as Inconsistency in the execution of functions of an appliance”, this type
of conflict occurs when two (or more) services send contradicting functionality requests to a
device. For example, it is easy to imagine two services that independently want to set the state
of an illumination device (possibly a simple light bulb). The final state of the device cannot
be deterministically predicted. It could either be turned off, turned on, or the services may be
able to detect that the state of the device is not the desired one, and keep flipping it on and off
continuously.

Environmental conflicts

Originally referred to as “Inconsistency in the execution of functions, which affects the envi-
ronment”, this type of conflict occurs when two (or more) services send requests to appliances
whose functions have contradicting effect on the same environment property. For instance, a
service might turn on the heater in a room, but at the same time, another service may send a
request to turn on the air conditioner which would result in a conflict, since the device effects
are countering each other.

CHAPTER 2. BACKGROUND RESEARCH 9

2.2.2 Traditional conflict detection techniques

Over the years different approaches for the detection of conflicts have been proposed. In this
section we review some of the literature.

In [6] and [7], a model-checking approach using the SPIN model checker is proposed. Further-
more, in [4], temporal logic is used to express the correctness criteria. To produce the temporal
logic formulas, a method to express the behaviour of the services in higher level logic and a
classification of the causes of FI is described.

In [10] ”Use Case Maps” are used for the design and documentation of features, whereas
LOTOS([9]) is used for formal verification, including the detection of undesired interactions in
a PBX telephone system.

In [8] Metzger and Webel propose a series of detection methods for building control systems
based on product model and the PROBAND requirement specification method. In that paper,
four different detection strategies are introduced, each used to refine a list of possible FI. Those
methods are:

* Detection at requirements level. A dependency graph between the needs and the tasks is
generated.

» Detection at strategy level. Dependencies between tasks and their realization methods can
occur at this level.

» Detection at object structure level. Interactions that are impossible to occur are pruned in
this level using information from the object hierarchy and instantiation of objects.

* Detection at environment level. This is the first notion for detection of conflicts based
on characteristics of the environment. The use of a simulator that can detect implicit
interactions is suggested. In research, we further elaborate on this concept introducing
the notion of ”Area of Effect”.

2.2.3 Traditional conflict resolution techniques

Stemming heavily from traditional operating system concepts, in [3], six techniques of conflict
resolution between services are proposed. We will briefly describe each one of them.

Inquiry to the User

When a conflict occurs, an inquiry is made to the user regarding the method of the resolution.
The following are the possible methods which the user can choose from: 1) execute one service
and terminate the other or 2) if possible, reset and change the parameters of the conflicting
services so that FI does not occur.

CHAPTER 2. BACKGROUND RESEARCH 10

Priority of Service

According to a predetermined service priority, if FI occurs, only the service with the highest
priority is executed. This method is considered to be more effective in cases were multiple
services exist, and possibly many users. To implement such a resolution scheme, a database for
managing the order of priority of services is considered to be necessary.

Priority of User

When FI occurs, only the service activated by the user with the highest priority is executed
based on the predetermined order of priority among users. This method is considered to be
more effective in scenarios were multiple users exist.

Priority of Interface

When FI occurs, only the service activated from the interface of highest priority is activated. A
predetermined priority order of interfaces is assumed. This resolution scheme works best when
there are multiple possible user interfaces for a given service.

Priority of Timing

There are two methods in determining the service that is to be given priority based on the order
of service execution, namely, to give priority to the service that is executed first or to the one
that is executed last. This resolution method can be used in any classification of FI. In order to
implement this method of resolution, a database for managing the order of priority of timing is
required.

Meta Priority

Meta priority is the prioritization of all the above-mentioned priority levels. When a conflict
occurs, it is possible to utilize more than one type of priority level in resolving the conflict. At
that point, it is also likely that interactions could occur between different types of priority levels.
In order to avoid such situation, it is necessary to prioritize the different types of priority levels.

2.2.4 Advantages and disadvantages in traditional methods of conflict res-
olution
The conflict resolution methods presented in section 2.2.3 can be said that are derived from

equivalent resource allocation and scheduling techniques already found in modern operating
systems. As such, they offer some clear advantages:

CHAPTER 2. BACKGROUND RESEARCH 11

* Easily understood and well researched.

 Easy to implement. Already existing algorithms can be slightly modified for the needs of

conflict resolution.

However, all of the above conflict resolution methods (except maybe the “Inquiry to the User”
method) have one distinct disadvantage: the suspension of at least one service. This is nec-
essary to allow the remaining services to continue without any conflicts. Regarding device
conflicts, it may be inevitable to completely suspend/stop a service to at least allow other ser-
vices run successfully. However, it is our opinion that in cases of environmental conflicts, it
may be possible to avoid suspending a service and still have it execute with relative success.
This would thus improve the “availability” and effectiveness of services in the HNS.

Chapter 3

Area of Effect and compromising
techniques

3.1 Resolving environmental conflicts without suspending ser-

vices

Traditional compromising techniques need to suspend a service in order to resolve a conflict
between services. Starting from this observation, we propose a new set of conflict resolution
methods that do not have this limitation. The idea is based on the observation that a meaningful
compromise may exist between the requests of the conflicting services.

In the following sections we present the notion of Area of Effect” of a service, and how it can
be utilized for the detection and resolution of conflicts. Furthermore, we also present various
compromising algorithms and their categorization. It must be said that a compromise may not
be meaningful in some cases . For example, in the vast majority of device conflicts, it is almost
impossible to reach a meaningful compromise. Nevertheless, it is our belief that in many cases of
environmental conflicts there may exist such a compromise between the requests of the services
that allows them to continue execution with a relative degree of success.

In this research we examine the cases of environmental conflicts regarding the following four
physical properties of space: illumination, temperature, humidity, sound and noise levels. The
above properties of space are those that are more often changed by the set of devices commonly
available in the HNS.

3.2 Proposed system architecture

To be able to enforce a compromise between services, we took the approach of having a central-
ized system that has absolute control over any device that affects the four physical properties

12

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 13

of space. This management system knows the state of the devices at any given point in time.
Furthermore, it has the task of accepting requests from services regarding the physical properties
for some area inside the house. Finally, the proposed system is responsible for the detection and
resolution of any environmental conflict that may occur.

In more detail, the proposed system can be broken down to three design blocks: a service
API, a device control API, and the core system responsible for the resolution of conflicts. The
reasons behind this three-layered approach are quite simple:

1. By providing a service API that will be used by the services, an abstraction layer is added.
Using this service API, a service will be able to make a request for a resource available
in the HNS. The properties of physical space (illumination, temperature, humidity, sound
and noise levels) are all treated as resources. This abstraction layer frees the service de-
signer from the daunting task of designing services that are compatible with a multitude
of devices, thus simplifying the design process.

2. The design of a device control API allows uniform control over devices that exist in the
HNS. Thus, it is enough that a device that wants to be part of the system implements a
specific control interface.

3. By taking advantage of the above APIs, it is now possible to design the logic of a conflict
detection resolution mechanism with clear separation. Thus, if the device and service APIs
remain constant, it is possible to have interchangeable implementations of the conflict
resolution core.

Due to the clear separation between the service requests and the actual device control, the pro-
posed model can easily be introduced as a part of an SI service delivery platform. The imple-
mentation details of a prototype system will be explained in chapter 4.

The most important job of this centralized system is to handle the incoming requests and
select proper settings for the devices in the requested area. For every request made, the system
proceeds to find an ideal solution (that is, a series of settings for devices that fulfil the request).
At this step, the system does not take into consideration any previous settings that may have
been applied.

After the system has found an ideal solution, it then proceeds to detect conflicts. Conflict
detection is based on two ideas presented in section 3.6

3.3 Area of Effect

In this section we will present the definition of ”Effect” and ”Area of Effect” of a device and
a service. These ideas will come in handy during the explanation of the proposed algorithms
developed for the detection and resolution of environmental conflicts.

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 14

3.3.1 Effect of a device at a given point in space

The four physical properties that were considered during this research are illumination, temper-
ature, humidity, sound and noise levels.

Pro = {Illumination, Temperature, Humidity, SoundN oise} 3.1

Regarding a physical property Pro of space, we define the effect £/ of a device Dev at a given
point in space p as:
EDev,Pro (p) (32)

The above expression results in a numerical value that expresses the intensity of the physical
property at the specific point p in space. The measurement unit of the intensity differs depend-
ing on the physical property measured. For example, Epey riiumination(p) is measured in lux,
whereas Epey Soundnoise(P) 1 measured in db

Using physics simulation, we are able to model the behavior of various devices inside the home
environment, such as air condition units, heating devices, illumination devices and others. The
modelling of those devices is usually based on simple physical laws, like the inverse square law

for the propagation of sound. The modelling of devices requires an implementation of function
(3.2).

3.3.2 Effect of a service at a given point in space

Assuming that a service S is currently utilizing n devices (Dev; to Dev,), the effect of that
service in regards to property Pro at a point p in space is defined as:

ES,Pro<p) = F(EDevl,Pro(p)7 RS EDeUn,PrO(p)) (33)

Function F'is dependent on the property that is being examined. The target of this function is to
essentially compute the combined intensity of property Pro given the already known individual
effects of devices Dev; .

For example in the case of illumination, the individual effect of devices can be summed to
express the effect of a service at a given point p

n
ES,Illumination (p) = Z EDevi,Illumination (p)
i=1
The definition of function F' allows us to predict the effect of a service at a given point p. In
the prototype system developed and discussed in chapter 4, physics simulation was used for the
implementation of various such functions for each physical property.

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 15

3.3.3 Area of Effect of a device

For a property Pro of physical space, given upper and lower thresholds T'hresh,,, and T'hreshq,,
the Area of Effect (AoE) of a device Dev is defined as:

AOEDev,Pro = {p : ThreShlow S EDe'U,Pro(p) S ThreShup} (34)

In other words, the area of effect of a device is the set of points p for which the effect of that
device is between the requested thresholds. In many cases, it may be meaningful to only have
one of the thresholds present and not both. In such cases, the remaining inequalities must still
be fulfilled.

It is worth noting that although it is possible to get an exhaustive set of the points inside the
AoE of a device, this is not usually the case. In most computations carried out by the proposed
system, checks of whether a single point of interest is in the AoE of a device (or a service) is
performed.

3.3.4 Area of Effect of a service

Expanding the definition of AoE of a device, the AoE of a service S is the set of points p in
physical space for which the effect of the service lies between the two given thresholds T'hresh,,,
and T hreshoy

AoEgs pro = {p : Threship, < Es pro(p) < Threshy,} (3.5)

For the computation of Eg p,,(p) the computational formula 3.3 is used. Again, as with the
AoE of'a device, we can perform checks against the thresholds to see if a point p in space belongs
to the AoE of the service.

o] Light source

Light radius/
AoE of device

(| Service's AoE

Figure 3.1: A visualization of various areas of effect.

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 16

3.3.5 Conflicting services at a point p

Given two services S; and S, and upper/lower thresholds T'hresh,, and T'hresh;q,, for Si, we
can perform checks to find out whether S, conflicts with .S; at a specific point p in space.

true if Eg, pro(p) < Threship
CheckAgainsts, s, pro(p) = § true if Eg, pro(p) > Threshy, (3.6)
false otherwise

When the above equation returns true, service Ss is conflicting with service S;. However, if the
result is false, this does not mean that a conflict has not occurred. A check of S1 against the
thresholds of S2 must be made. If both checks return false, then there is no conflict.

To check if there is any kind of conflict between two services 57 and S, we use the following
formula:

true if CheckAgainsts, s, pro(p) = true
Confs, s, pro(p) = § true if CheckAgainsts, s, pro(p) = true (3.7)
false otherwise

When the above equation returns true, a conflict between services S; and S5 has occurred.

3.4 Request for resources

In this research, we assume that any service executing in the HNS is able to make a request
for resource. The properties of physical space (illumination, temperature, humidity, sound and
noise levels) are treated as such resources. Now, the need to be able to express requests regarding
these resources arises.

More specifically, a service needs to be able to express the desired AoE of the service, as well
as the desired intensity of the effect over that AoE. In the following sections, we describe the
method we used to express the above requests in a relatively simple but effective manner.

3.4.1 Desired AoE of a service

The first important thing that a service request for resources must do is specify the desired area
of effect. The desired area of effect is the physical space whose characteristics the service wants
to control. For example, a service that wants control over the illumination of the space three
meters around a user must be able to designate that desired area. To do so, we use the notion
of anchor point combined with some distance specifier to describe an area. Furthermore, it is
possible to designate whole rooms as the desired AoE of a service.

Almost any object inside the home environment that has a perceived position can be designated
as an anchor point. For example, an anchor point can be any kind of object in a room that is

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 17

traceable (e.g. a device, a piece of furniture), an abstract point in space (e.g. the center of the
room), or even a moving object (such as the user).

Combining an anchor point with a distance specifier will yield an area of space in a disc shape.
This is the designated area over which the service request control. It is possible to “expand” that
area and have it to ”snap” to the size of the current room. In spite of the fact that two services
may end up having equal AoEs, special care must be taken regarding the anchor point. The
information regarding the anchor point (i.e. its position) plays a critical role during the later
steps of conflict resolution.

3.4.2 Desired intensity of Effect

After specifying an AoE, a service must proceed and describe the actual intensity of the desired
effect. Again, the service must specify the desired physical property out of the four physical
properties that our system can handle. Next, the service must provide an numerical value, that
describe the intensity of effect in terms of the measuring unit corresponding to the physical
property selected in the previous step.

The final step to describe the desired intensity of the effect is to select between the three types
of settings for the intensity: upper threshold, lower threshold and exact setting. These thresholds
provide hints on how to judge the intensity of the effect.

An upper threshold states that any intensity value below the specified intensity is acceptable.
Conversely, a lower threshold is used when a service request for at least as much as the specified
intensity. The above two threshold definitions allow for a broader and more flexible expression
of the request of a service. For example, a context-aware service that manages the environment
around the user, could make requests regarding the sound and noise levels around the user when
he is asleep. Such a service would request that the physical property of noise constantly remains
below a specific point; such a request can be expressed with the use of upper thresholds.

Finally, the final option is to select an “exact” setting. Using such a setting, the service can
express that the intensity of the effect in the designated AoE must be as close as possible to the
specified intensity. Any setting above or below that is considered to not be fulfilling the request
of that service. These kind of settings make sense, for example, in the case of temperature
control. With today’s technology, the user can specify a very concrete temperature with accuracy
of +1 degrees °C'. A service that would possibly want to control the temperature of an area can
use this kind of exact setting to express its needs.

3.4.3 The importance of service requests and a centralized control system

The idea of having services making requests for resources to a centralized management system
is advantageous in many ways. in this section we will describe the advantages of this method.

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 18

The first most obvious advantage of following such a design pattern is that conflict resolution
in a compromising manner is now possible. Without a centralized model and the information
provided by the service requests, it would be very difficult to have compromising solutions to
problems of FI due to the lack of complete information regarding the situation. The proposed
system, having compete knowledge of the situation, can provide a compromising solution.

The second advantage of a standardized method for resource request is that the information
contained in these requests plays a crucial role during the later steps of conflict detection and
resolution. For example, using the information regarding the AoE of two services, it is possible
to check whether there is an area conflict between these two services. Furthermore, the com-
promising solution changes significantly depending on the threshold setting. For example, two
services that make a request for a resource and both have a setting of upper (or lower) setting
don’t necessarily compete with each other, and a compromising solution is very easy in this
case.

3.5 Conflicts between services

Depending on the requests made by various services, we have different types of conflicts hap-
pening in the HNS. Based on some basic characteristics, we attempt a rough classification of
these types of conflicts.

3.5.1 Type of conflicts

Let us assume two services S; and .S, that make a request regarding a physical property Pro and
that their AoEs are at least partially overlapping. For the sake of simplicity let us examine the
case of a single point p in physical space that belongs to the AoEs of the two services. Finally,
the desired intensity for a service .S is denoted as Is and the possible threshold settings and the
setting of a service S are the following:

Settings = {UPPER, LOWER, EXACT}

Settings € Settings

We can now try to detect conflicts and even vaguely find a compromising solution for the
intensity (/) in the following cases:

1. Settings, = UPPER and Settings, = LOW ER. In this case if I, > Ig, it is possible
to select an intermediate value for I, such that

[52 < Isol < [Sl

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 19

and the requirements of both services will be fulfilled successfully as per 3.7. If I, < Ig,
then it is impossible to satisfy the requests of the services at the same time. Nevertheless,
a solution in the space of (Ig,, I,) may still yield acceptable results.

2. Settings, = UPPER and Settings, = EXACT. In this case, if Ig, > Ig, then
I,,; = I,. This is because C'heckAgainstS,, S, Pro will return false. In other words,
the exact setting requested by S5 does not conflict with the threshold setting of service
Si. In fact, it actually fulfils it. Now if Is, < Ig,, there is no possible setting that can
fulfil both requests. Again, a solution in the space of (I, , I's,) may still yield acceptable
results.

3. Settings, = LOW ER and Settings, = EX ACT. This case is similar to the above case.
With the same reasoning we deduce that if g, < Ig, then I,,; = I5 fulfils both services.
If Ig, > Ig, it is impossible to fulfil the conditions of both services. A compromising
solution in the space of (Ig,, /s,) might yield acceptable results.

4. Settings, = EXACT and Settings, = EXACT. In the rare case that Ig, = Ig, then
I = Ig,. Otherwise, it is impossible to fulfil the demands of both services. Again, a
compromising solution in the space of (Ig,, I,) might still yield acceptable results.

From the above types of conflict, it is easy to deduce that services that use the EX ACT
threshold setting express a very strict request that may be impossible to fulfil. However, even
if we are unable to fulfil the request of a service, it is possible to obtain a setting that is a
compromise between the conflicting requests. This is the target of the compromising techniques
presented in section 3.7.

3.5.2 N-service conflicts

As the number of services increases from 2 to n > 2, using the same logic described in the
previous section it is possible to estimate the solution space. With logic that is similar, we can
detect if it is possible to fulfil all the requests of the services and if that is not possible, find out
the possible solution space.

To check whether a solution is possible for all n services at a point p, the following algorithm
can be followed:

Fori=1;i< n;i++
For j =i+1; j<=n; j++
If (Conflict(S1,52,p))

return true;

return false;

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 20

The above algorithm checks each service against all the other competing services. If there is
even a single conflict, we know that there is no possibility of fulfilling all the requests of the
services. The function Conflict (S1,S2, p) isactually the equation 3.7 presented in section
335

3.6 Detection of conflicts

In the proposed system, two main ideas are used for the detection of conflicts between services.

The first method involves the detection of conflicts on a per-device fashion. After the system
finds an ideal solution to satisfy the request of a service, certain settings must be applied to
devices. The system keeps track of all the settings that are applied to a device using a list. If the
list of settings for a device is empty, the device is not being used. If the list of settings has only
one entry, it means that the device is used by exactly one service.

Now, if in the setting list for a device there are more than one settings, a conflict may have
occurred. The next step is to make a check to see if the requests are contradicting, and if they
are, then the two services that made these requests may have contradicting settings to more than
one device. The system proceeds to discover the remaining conflicting settings on other devices
used by the two services, and the conflict is successfully detected.

The second method to detect conflicts in the proposed system, is to make an estimation of the
AoE of surrounding devices. For example, imagine that a service makes a request for sound and
noise levels with a maximum threshold (i.e. limit the amount of noise) in a room. The system
would search the devices in the intended AoE of the service (i.e.) the room, and see if their
effects violate the threshold. However this is not enough.

The system must make an attempt to identify if the effects of devices outside the intended AoE
have an effect on the service. To make an estimation of the area of effect, a physics simulator
can be used. If indeed the effect of a device (or a combination of effects) exceeds the threshold,
then the system marks these devices and proceeds to cast appropriate settings to them. Again,
the conflict detection was successful, and the information from this step will be used during the
conflict resolution phase.

3.7 Compromising Techniques

In this section we present the basic ideas behind compromising techniques. The main idea
behind compromising techniques is to have the system decide appropriate settings for all the
devices involved in a conflict. The final settings combination should be deemed acceptable
based on some predetermined criteria. Finally, a compromised solution may not honour the
original requests (and their threshold settings) made by the services.

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 21

We divide the compromising algorithms into two categories, ”Space-based” resolution meth-
ods and "’Intensity-based” resolution methods.

3.7.1 Space-based conflict resolution

The target of space-based conflict resolution methods is to mitigate the conflict effect by clearly
separating the AoEs of the conflicting services. To do so, a space-based conflict resolution
algorithm must decide which should be the prevailing setting for a contended device.

Assuming that we have two competing services S1 and S2 and a contended device Dev , the
centralized management system will first go through the process of deciding proper settings for
Dew in order to fulfil the request of each service separately. Now the system is faced with the
choice between two settings for Dev: the setting that would fulfil S1 or the setting that would
fulfil S2. Selecting one of the two settings in essence means that Dev was assigned to one of
the two competing services. If the number of conflicting devices is n the system is faced with
the challenge of assigning proper devices to services. With a good assignment of the devices
to services, it is possible to create areas in space where the effect of one of the two services is
prevailing, thus creating a strong illusion of separation of AoEs.

One of the initial strategies is to assign each device to the service with the closest anchor
point. The anchor point is assumed to be the point in space that the service is most interested
in controlling. Considering the fact that in most cases the effect of the device is weakening
as the distance between the device and the anchor point is growing (illumination and sound
decaying, heat losses), the solution described above is intuitively the simplest solution that we
can have: devices closer to the anchor point have greater effect, devices further away have less
of an impact.

Such a simple device assignment will not really yield interesting results. Nevertheless, it is
actually a good starting point. In [5] we used that initial assignment and then proceeded to
improve the device assignment in an iterative manner.

The space-based algorithms can yield acceptable solutions to scenarios that involve many
devices that exhibit strong locality. A device that has a clearly discernible (and possibly small
in radius) AoE is said to have strong locality. As an example, a spot light device that is affixed
to the ceiling can be said that it exhibits good locality, since the area around the device will be
illuminated sufficiently, but areas that are just a few centimetres further will have a severe drop
in the measured illumination intensity. Such is the case of devices that were assumed for the
experiment presented in [5].

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 22

3.7.2 Intensity-based conflict resolution

Contrary to space-based conflict resolution algorithms, the target of an intensity-based algorithm
is to decide an intermediate setting that would combine the settings of the conflicting services.
Sometimes, a clear separation of the AoEs of the conflicting services might not be possible due to
the limited number of devices that can control the requested physical property. For example, in
the case of temperature and humidity, the AoE of a device can be substantially large, something
that can hinder the separation of AoEs. Furthermore, operating more than two temperature
controlling devices with different settings could potentially be a conflict, since the effects of
these devices could counter each other.

For example, imagine that two conflicting services wish for different room temperatures, and
the only available device in the room is an air condition unit. Let us assume that service S1 and
service S2 want corresponding settings of 25°C' and 28°C' with EX AC'T threshold settings.
We soon realise that separation of AoEs in this case is not an option because there is only a
single temperature controlling device. So the best possible solution is to settle for an interme-
diate solution for the setting of the contended device. The actual deciding parameters for the
final intensity setting can defer depending on the physical property being examined, the policies
enforced by the system and the implementation characteristics of the intensity-based algorithm
used.

Intensity based conflict resolution methods usually work better in the following cases:

1. when the number of conflicting devices is small (possibly just a couple of devices)
2. when devices have effects that counter each other (such as in the case of temperature)

3. when the conflicting devices have poor locality (AoEs that extend in the size of a room or
even expand to several adjacent rooms)

4. when the target of the compromising is to achieve a homogeneous intensity for the target
property in the conflicting area.

3.7.3 Combined and Hybrid conflict resolution

A combined conflict resolution algorithm is an algorithm that combines the characteristics of
space-based and intensity-based resolution algorithms. Such algorithms could potentially select
to completely assign some device to a service completely or apply an intermediate setting to a
device if this is deemed appropriate.

As hybrid conflict resolution mechanisms, we categorize any combination between a conflict
resolution mechanism and a conventional conflict resolution mechanism, such as those presented
in 2.2.3. Although we did not proceed to implement any such algorithm in this research, we

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 23

believe that such a combination is not only possible, but could potentially yield even better
solutions for service conflicts.

3.8 Optimization

The target of a compromising algorithm is to decide suitable settings for all the devices that
are involved in a conflict. To evaluate the appropriateness of a solution, an evaluation function
is used. Using this evaluation function and by estimating the total effect of the devices on a
service, we can produce a numerical score that expresses how good the given solution is. The
true nature of the problem is that of an optimization problem; find the solution with the best
score given specific criteria.

3.8.1 Formalization

Let us assume that n devices Dev and m services Serv are involved in a conflict. For each
device Deuv; there is a corresponding setting Set; for it. Furthermore let us have:

D = {Dewy, Devy, ..., Dev,}

S = {Sety, Sety, ..., Set,}
Services = {Servy, Servy, ..., Serv,,}

where D is the set of all devices involved in a conflict,S' is the set of settings for those devices
and Services is the set of services involved in that conflict. Furthermore, let us assume an

evaluation function
Eval(Serv;, D, S) (3.8)

that evaluates the total effect of devices D with settings S on service Serv;. We also assume
that if Fval(Serv;, D,S) > 0 then the service request is fulfilled successfully, whereas if
Eval(Serv;, D, S) < 0 the request of the service is not fulfilled.

Finally let us define a function that computes the total score of the solution, i.e. the selected
settings for the devices:

SolutionScore(Services, D, S) = G(Eval(Servl, D, S), Eval(Servy, D, S),
..., BEval(Servy,, D, S)) (3.9)

Without any loss of generality, we can say that an optimal compromising solution must maximize
SolutionScore. Thus we need to select S,,,4, such that:

SolutionScore(Services, D, Spar) — maz

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 24

There are a couple of points worth noting regarding the above functions. Firstly, the function
Eval(Serv;, D, S) is responsible to

» compute the total effect of devices in relation to Serv; (for example, evaluate the total
effect of the devices at the anchor point of the service)

* assign a score for the service by comparing the total effect of the devices to the original
request made.

In essence, this function combines the measuring method used to estimate the total effect of
the devices (for example, take samples from points at random and average them) as well as the
scoring strategy. The scoring strategy can be different depending on the physical property dis-
cussed. For example, in the case of an illumination request, it makes sense to score the services
based on a logarithmic scale, because the human perception of light changes in a logarithmic
fashion [11]

Secondly, the function SolutionScore can be used to express a desired scoring scheme. De-
pending on the characteristics of this scoring function, different policies can be implemented,
thus enabling flexibility and the ability to adopt our scoring methods depending on the situation.

3.8.2 Tackling the optimization problem

Having established that the selection of appropriate settings for devices is an optimization prob-
lem, we examined several options to solve the problem. A brief commentary about each method’s
characteristics and an evaluation follows.

3.8.3 Linear Programming

Using linear programming and the simplex method, it is possible to find an optimal maximum to
an optimization problem. However, some prerequisites must hold, namely, that of the linearity
of the system.

Suppose that we have n number of variables x; and we want to find the maximum of a target
function f(z1,...,x,). Each variable x; may have some constraint e.g. being non-negative.
If the problem can be expressed as a set of linear equations and inequalities in regards to the
unknown variables, then we can use linear programming techniques to find an optimal solution.

To use linear programming techniques, we have to answer whether the problem of finding an
optimal compromising solution can be expressed as a linear problem. Looking back at the prob-
lem of finding an optimized compromising solution, it boils down to whether the SolutionScore
equation (3.9) and the service score function (3.8) can be combined to form a linear equation.

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 25

If we assume that both of the above equations are linear (for example, both equations are
simple summation equations) it is possible to derive the following linear function

SolutionScore(Services, D, S) = ¢;Set; + ... + ¢, Set,,

where ¢y, ..., c, are constants and Set; is the setting for Dev;. Thus, the system would be
expressed as a linear programming problem and solved accordingly (e.g. by using the simplex
method).

Unfortunately, it is not always possible to do so. There are cases where the equations (3.8) and
(3.9) are not linear equations. For example, in the case of equation (3.8), for the evaluation of
sound and noise levels it is desirable to express the intensity as a logarithm of a desired setting.
Moreover, the scoring function (3.8) is not always guaranteed to be linear. The total scoring
strategy can change, and to express interesting scoring schemes usually a linear equation is not
enough.

To avoid limiting the expressiveness of equations (3.8) and (3.9), we avoid the use of linear
programming as a prospective solution to the problem.

3.8.4 SAT and MaxSAT

We briefly consider the possibility of expressing the optimization problem as SAT / Max-SAT
boolean satisfiability problem.

In a typical SAT problem, we assume n boolean variables. Let us also assume that there is
a function f that consists of the aforementioned variables and a combination of the operators
AND, OR, and NOT. The problem is to find an assignment for variables such that the whole
formula evaluates to true.

There are several special cases of the SAT problem (e.g. formulas are required to be in a
conjunctive normal form, 3SAT, others), but one with many interesting properties is Max-SAT.
Max-SAT is the problem of determining the maximum number of clauses of a given boolean
formula that can be satisfied by some assignment.

Taking into consideration the fact that the intensity settings of devices may span a continuous
space, it becomes difficult to express the problem of finding a compromising solution as a SAT/
Max-SAT problem. Depending on the number of devices and their possible settings, a SAT
encoding of the problem may lead to unrealistically high execution times. Furthermore, the
complexity of the evaluation functions makes matters even worse, not allowing an easy transition
from the problem as defined in 3.8.1 to be expressed as SAT/ Max-SAT. Thus, we believe that
such an approach is not realistically possible.

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 26

3.8.5 Game Theory

Citing [12] ”game theory is the formal study of conflict and cooperation. Game theoretic con-
cepts apply whenever the actions of several agents are interdependent. These agents may be
individuals, groups firms, or any combination of these. The concepts of game theory provide a
language to formulate, structure, analyze and understand strategic scenarios.”

A game is the formal model of an interactive situation. In non-cooperative game theory, Play-
ers play the game in order to maximize their personal gain (a rational gamer). Furthermore, there
is cooperative game theory where players may form a coalition to dominate the game. In a game,
each player follows a strategy and it is also assumed that the player is rational (i.e. the player
strives for maximum personal benefit).

There are two forms in which games can be expressed: a strategic form (also called a normal
form) and an extensive form (also known as game tree). The strategic form of a game lists
the strategies of the players and also the outcome of each possible combination of them. The
outcome is presented as a separate payoff for each player.

The extensive form of a game is more detailed than the strategic form, and holds complete
information on how the game evolved over time. This includes the order in which players take
actions, the information the players have at each major point in time, and the times at which any
uncertainty in the situation is resolved. A game expressed in extensive form can be converted
to a game in strategic form.

A final concept in game theory that is interesting and potentially useful in a compromising
solution, is the concept of Nash equilibrium A Nash equilibrium recommends a strategy to each
player that the player cannot improve upon unilaterally, i.e. the other players behave rationally
and follow the recommended strategies.

II
I Co-op Deflect
C 2 3
0-op
2 0
0 1
Deflect
3 1

Figure 3.2: The prisoner’s dilemma

Having explained the above notions, let us have a quick look at the prisoner s dilemma. The
strategic form can be seen in figure 3.2. In this game, each player has two strategies: cooperate
or deflect. The payoffs for player I is the number in the lower left corner of each combination
whereas the payoffs for player II are on the upper right corner.

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 27

In this game, strategy “Deflect” dominates over the strategy of ”Co-op”. This means that,
regardless of the choice of the opponent, choosing "Deflect” is always going to bring more
personal gain to the players. Since both players are rational, they will not choose the dominated
strategy ”Co-op”. The Nash equilibrium for this game is for both players to select the ”Deflect”
strategy, although this will paradoxically yield a lower gain for both players compared to a
scenario of mutual cooperation.

The enticing features of game theory (the notion of players , strategies and Nash equilibrium)
may make game theory a candidate method to solve the problem of optimization of a compro-
mising solution. However, there are some severe disadvantages that do not enable us to express
this optimization problem as a game.

* Unrealistically big strategic forms. As soon as the number of possible settings, devices
and “players” (in this case possibly services in the HNS) increases, the strategic form is
going to have an exponential growth. The cost of just creating such a table is equal to an
exhaustive search in the solution space which could prove to be unrealistic.

* The extensive form does not have any tangible advantage over other techniques, such as
local search, branch and bound and others. The game tree could very well be expressed
by a minimax or alfa-beta search algorithm.

* Players are rational and want to maximize their personal gain. This leads to having players
making choices that instead of alleviating conflicts, introduce even more conflicts during
the conflict resolution phase.

3.8.6 Constraint programming

In [13], a thorough review of the literature regarding the field of constraint programming can
be found. Constraint programming deals with the problem of constraint satisfaction; assigning
a value to every variable of a set of problem variables so that all the constraints are satisfied.
The constraints are used to specify limitations on the value domain of a problem variable and
relationships between problem variables.

Citing [13], page 17, a typical definition of a Constraint Satisfaction Problem (CSP) is the
following. A CSP P is a triple P = (X, D,C) where X is an n-tuple of variables X =
(x1,Z9,...,x,), D is a corresponding n-tuple of domains D = (Dy, Ds, ..., D,) such that
z; € D;, C'is a t-tuple of constraints C' = (C1, Cy, ..., (). A constraint Cj is a pair (Rg,, S;)
where Rg; is a relation on the variables in S; = scope(C'). In other words, R; is a subset of the
Cartesian product of the domains of the variables in 5.

A solution to the CSP P is an n-tuple A = (ay, as, ..., a,) where a; € D; and each C; is
satisfied in that g, holds on the projection of A onto the scope 5;. In a given task one may

CHAPTER 3. AREA OF EFFECT AND COMPROMISING TECHNIQUES 28

be required to find the set of all solutions. sol(P), to determine if tat set is non-empty or just to
find any solution, if one exists. If the set of solutions is empty the CSP is unsatisfiable.

When a CSP is unsatisfiable it is said to be over-constrained. Sometimes, we may want to
express some preferences that may not necessarily be fulfilled. Other times it may be impos-
sible to fulfil all of the supplied constraints but we still want to fulfil the maximum amount of
constraints as possible. Soft constraints and weighted CSP, an extension to classic CSP allows
us to express the above needs.

A weighted constraint network (weighted CN) is a triple (X, D, C'), where X and D are the set
of variables and their domains as defined in classical CNs, and C' is a set of weighted constraints.
A weighted constraint (c,w) is just a classical constraint ¢, plus a weight w (over natural, integer,
or real numbers).

The cost of an assignment ¢ is the sum of all w(c), for all constraints ¢ which are violated by
t. An optimal solution is a complete assignment ¢ with minimal cost.

The above properties of weighted CSP are very well fitting to express the problem of finding an
optimized compromising solution. Firstly, X and D are well defined, and can be used to express
the number of devices and their possible settings accurately. Secondly, we can easily express the
requests of services as soft constraints Thirdly, minimizing the total cost of an assignment is in
a sense a compromise; the decision to minimize the cost might involve having a bigger number
of unsatisfied requests but with minimum “badness” i.e. the final assignment of settings makes
a compromising between the requests.

Finally, for the solving of CSPs many different approaches have been made. Constraint propa-
gation, backtracking search algorithms, randomization and random restarts, no-good recording,
randomized iterative improvement algorithms, local search algorithms, dynamic programming
and other global optimization techniques have all been used to tackle cases of CSPs with differ-
ent characteristics and various success rates. In the algorithms described in section 4.6 we were
heavily influenced by the ideas of weighted CP.

Chapter 4

System Architecture and Implementation

In this chapter we explain the implementation details of the prototype system. This system is
based on the characteristics described in 3. As a development platform, we selected the Java SE
1.6 development platform. The total code for the prototype system amounts to about 6500 lines
of java code. Furthermore, initial integration with the OSGi platform has begun.

4.1 Architecture Overview

Core System

Home ‘
Service

— —_ > P
o o B2 o
g9 < =35 <
se P 8 p&25 |8
3 - "33 | <
_ 7 : o xs=s [}
. (7} [®]

Home
Service

y
|

Figure 4.1: System Overview

As we can see in figure 4.1, the prototype is split in three main design blocks: the device API,
the service API and the core conflict resolution system.

The device API is the API used internally to control a number of devices inside the HNS. To
add a device to the proposed system, it is enough to have the target device implement one of the
device interfaces already designed. The service API will be used by the services to make request
for resources. Finally, the conflict resolution mechanism implements the conflict detection and

29

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 30

conflict resolution mechanisms. Although both the device API and the service API still need
further refinement, after a stable API is reached, it will be possible to have interchangeable
conflict resolution mechanisms.

4.1.1 Class diagrams and important concepts

To represent the details of the home environment, the class hierarchy presented in figure 4.2 was
used. In this figure we can see the main classes that are used to handle information regarding a
scene. As a scene, we refer to the details of the HNS; the position of devices, the sizes of the
rooms, the connectivity between rooms and the characteristics of of wall are all being handled
using the classes presented in this figure.

More specifically, the class AbstractSceneObject is the first non-abstract class that also
acts as a parent class for many other important classes. The AbstractSceneObject class
provides a default implementation the Nameable, Countable,HasSize, Positionable
interfaces, subsequently used by other subclasses. The above interfaces allow us to change the
name, size, position and also assign a unique serial number to every object in the scene. Fur-
thermore, the AbstractSceneObject offers the ability to clone the information of another
AbstractSceneObject object. Finally, each such object can hold a reference to its ”par-
ent”. For example, when a device is registered in a room, the room is responsible of registering
that device to its list of devices, but also makes sure that the room is registered as the parent of
this device.

Deriving from the AbstractSceneObject are the Room, Conduit, Wall and Ab-
stractDevice classes. These classes represent information regarding the rooms of the house,
the connectivity between the rooms, the walls of the house and the devices inside the home en-
vironment respectively.

Each Room object has a list of devices inside that room, plus a list of the walls of the room.
At the current stage, each room is considered to be box-shaped, and always has six walls. Fur-
thermore, a conduit that connects two rooms is always associated to a wall. A conduit also
has a ’behaviour”; the behaviour gives us information about how the two rooms are connected.
The rooms could be connected using doors, windows or even nothing at all (a part of the wall
is missing). Finally, walls are represented as geometrical planes, and are always assigned to a
room. During start up, the walls are computed automatically from the sizes and positions of the
rooms and any aliasing (a same wall being computed twice) are resolved.

4.1.2 Implementation of the Core System

In figure 4.3 we can see the implementation and the class dependencies of the core system.
First of all, the system implements the Runnable interface. In essence, the core system runs

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION

<<interface>> <<interface>>
Fo Countable {0 Positionable
Attributes Attributes
Operations Operations
public int HowMany() public Vector3 getPosition()
[public void setPosition(Vector3 pos)
\\
\\
<<interface>> <<interface>>
o Nameable v f© HasSize
Attributes Y Attributes
Operations ‘\ Operations
public void setName(String s) |, public Vector3 getSize()
public String getName() ' public void setSize(Vector3 size ,
\ 4]
,

T
i
'
1
1
[
I
1
1
1
1
1
1
1
1
\ 1
1
1 '
1
|
[
[
1
1
1
I
I
I
I
I
I

=] AbstractSceneObject

Attributes
w

protected String name =

public int ObjectNumber = 0

Operations

public AbstractSceneObject()
public AbstractSceneObject(AbstractSceneObject aso)

private void automaticName()
public AbstractSceneObject getParent()

public void setParent(AbstractSceneObject parent)
public void cloneDataFromOther(AbstractSceneObject other)

Operations Redefined From Countable

public int HowMany()
Operations Redefined From Nameable
public void setName(String s)

public String getName()

Operations Redefined From Positionable

public Vector3 getPosition()
public void setPosition(Vector3 pos)
public void setPosition(double x, double y, double z)

Operations Redefined From HasSize

public Vector3 getSize()

public void setSize(Vector3 size)

Figure 4.2: Basic objects in the system

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION

<<interface>> <<interface>>
fo Runnable o HomeContext
Attributes Attributes
Operations Operations
. public void acceptRequest(ResourceRequest newrequest)
RN public void cancelRequest(ResourceRequest request)
~ N R b
~ \
~. \
AN
ElCoreSystem
Attributes

private AtomicBoolean requestmade = new AtomicBoolean(false)
private boolean end = false

private Thread selfinstance = null

private Class solver = null

private Class evaluator = null

private Class endcondition = null

Operations
public CoreSystem()
public CoreSystem(SceneHandler scene)
public Thread start()
private ResourceRequest dequeRequest()
public SceneHandler getScene()
public void setScene(SceneHandler scene)
public void run()
private void mainLoop()
private void processNewRequest(ResourceRequest request)
private void detectPerDeviceConflicts()
private void resolveConflicts()
protected void DoSomething()
public void stopCoreSystem()
public void setSolverBehavior(Class solver, Class evaluator, Class endcondition)
private void detectAreaConflicts()

Operations Redefined From HomeContext
public void acceptRequest(ResourceRequest newrequest)
public void cancelRequest(ResourceRequest request)

request pendl equests
physicssi emanager,

| ElPhysicsSim IEI ResourceRequest | | ElEnchantmentManager

sce nel/icene/

| = SceneHandIerl

Figure 4.3: Core System Implementation

32

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 33

in its own thread. The call to function start () is used to start the system, and the call to
stopCoreSystem is used to bring the core system to a halt.

Secondly the core system implements the HomeContext interface. This is the interface
which the services use to interact with the core system. For the time being, the implementation
is pretty minimal and it consists of only two functions: acceptRequest () and cancelRe-
quest (). Using this interface, the services can submit or cancel already submitted resource
requests.

Thirdly, the core system internally employs the following components:

* Two request lists, one for pending requests (requests that have yet to be processed) and
already processed service requests.

* A physics simulator. The physics simulator is responsible for the simulation of physics.
Its interface is rudimentary and the final goal is to design programming APIs so that the
physics simulator can be interchangeable. Finally, the physics simulator has access to the
scene handler.

» A 7scene” handler. This particular class manages all the spatial information about scene
objects (rooms, devices, others). It provides search-by-name and search-by-position func-
tionality as well as some basic path finding.

* An ’enchantment” manager. This is a manager that keeps track of the what we named as
“enchantments”. Enchantments are settings for devices that the system decides in various
stages. The notion of enchantments will be explained in section 4.4.2.

The configuration of the home environment is stored in xm1 files such as these seen in ap-
pendix chapter A. For the time being, the configuration is static. However, it is possible to add
devices or modify the properties of already existing devices during runtime.

Finally, the core system has the following attributes: Class solver,Class endcondi-
tionand Class evaluator. These three properties are initialized at start up, and control
which solver, which end condition and which evaluation function will be employed as the com-
promising algorithm. Currently, there is no dynamic selection of algorithm available, but it is
considered as a later addition to the system.

4.2 Devices and Device API

In this section, we first present how the devices are seen in relation to the AbstractDevice
superclass. In figure 4.4 we can see that all concrete device classes in our system so far are
derived from the AbstractDevice class.

34

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION

()snpuod uesjooq dignd
19)20/gAbisug wo.i4 pauyapay suoneisado

(1urod €£40129A)1v12943 3|qnop dlgnd
BINB@PANEINWIS WOL4 pauldapay suonesado

([+"0]sbumas bumas)sbumasAiddy pioa siignd
([x"0]sbumas bumas)sbumasA|ddy pioadignd
()bumasiuasindab signop d1gnd

22IA8(Q W04 pauyapay suonesado

suonesado

sanqLIY

100a 5

?dIAvsQuoneUIWN|[[[euUcAIa [

231A8gbunydojgAbiauzdensqy [

921N0SpUNOSIUWQO]

3dIAvquoneulwn||i]

(YAusuaqujuin1ab s|gnop oignd

(YAusuaquixepiab ajqnop dngnd

(YAsuawupab sjgnop d1gnd

(Aisua1ul 31gnop)Alsualuplas ploA dlgnd
03U0DBIUBISISDYD|GEIIBA WOI{ paulyapay suonesado

(1u10d £10123A)IVI284)3 3|gnop d1gnd
92/A8(@PaIBINWIS WOL{ paulyapay suonesado

a>IAaquoneuIWN|[12e1SqY [

1J9lqOauadSieIIsqy m

- adINaqeIISqY [

|
|
|
1
1
|

v

()adeid3ujjo43u0)idb adea3ulj03U0D) d1Ignd

(bunias bumss)sbuiniasAiddy proa s1gnd

([«"0]sbuias buias)sbuiasAiddy pioa syqnd

()buimesiuaniivb aignop dignd
suonesado

sa1nqLIY

221A3(o]
<<deNUI>>

([«0]sbunmias bumsas)sbumasAiddy pioa signd
82I1A8Q12RISqY WL pauyapay suonesado

([«"0]sbunias bumsas)sbumasAiddy pioasignd
([+0]sbumas bumas)sbumasA|ddy pioa dignd
()bumasiuaiindiab s|gnop dignd

82/A8Q Wo.{ pauyapay suonesadp

()?1A3quODIIY D1 |gnd
suonesado

8T = Alsuliujuiw 3jgnop 31eAud

0€ = Alsuliujxew a|gnop areAnd

Avisuayul 3|qnop abexped
sangrIy

DINBQUODIIV]

(Jutod £10333A)1v123443 djqnop d1jgnd

(utod £10138A ‘buines 6uiIvs)Iy1d943pareinwis ajqnop diignd
(3utod £10123A ‘[""0]sbuiILS bunISS)Iv1d94apaieinwis ajqnop diignd
suonessado

sainqgLy

32/A3apaIE[NWIS o]
<<ddBJAUI>>

ierarchy

ice h

Dev

Figure 4.4

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 35

The abstract class AbstractDevice implements the interfaces SimulatedDevice and
Device. The SimulatedDevice interface defines functions that allows us to model the
effects the device has on the surrounding environment. the function with name Ef fectAt (p)
can make an estimation of the effect the device has at point p. The function Simulated-
EffectAt (settings, p) makes an estimation of the effect of the device if settings are
applied to that device. AbstractDevice also provides a default implementation of the func-
tion SimulatedEffectsAt () so there is no need to override this function.

Since the effect of a device and the settings management varies wildly from device to device,
AbstractDevice as an abstract class does not implement function Ef fectAt or any of the
functions in interface Device so these have to be implemented by the classes derived from it.

<<interface>>
tO EnergyEmitter
Attributes

Operations
<<interface>> <<interface>> <<interfa§§ <<interface>>
Fo TemperatureSource tO HluminationSource t© SoundSource \ o HumiditySource
Attributes Attributes Attributes Attributes
Operations Operations Operations Operations
< 4 =X

Z

/
/ =l AbstractllluminationDevice =/ OmniSoundSource
7/

7
EillluminationDevice] DirectionalllluminationDevice

Figure 4.5: Device categorization: Energy Emitters

Now we will proceed to look the devices from a different angle, roughly categorizing them
depending on the effect that they have on the environment. In 4.5 we see that any energy emitting
design is indirectly implementing the EnergyEmitter interface, and directly implementing
one of the sub-interfaces of that. There are four sub-interfaces, one for each physical temperature
(illumination source, temperature source, humidity source, sound source). These interfaces are
used for the categorization of devices, and do not actually include any method declarations.

Furthermore, the conduits are considered to be energy blockers. The Conduit class is not
an energy blocker by default, but its ”behaviour” component is. That component is usually of
the type AbstractEnergyBlockingDevice. So far we have only implemented a Door
class that simulates the usage of a door as a conduit between two rooms.

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 36

Now, we will have one last look on devices and their categorization. This time, the focus is
on what control interface they implement. In figure 4.6 we can see the proposed interfaces as
well as which of these interfaces are implemented by the devices developed so far.

The basic OnOffControl interface is used to simulate devices that behave like switches.
The devices that implement this interfaces are guaranteed to have at least the two basic states:
on and off. Using this interface, we can set the device to any of these two states. The ab-
stract class AbstractDevice also implements this interface, guaranteeing that all devices
inheriting from it will behave like a switch. More importantly, this interface provides us with
a convenient functions to turn on and off a certain device. Example of devices that implement
the OnOffControl interface include the Door and the T11luminationDevice classes of
devices.

Furthermore, we designed the FourWayContro and VariableResistanceControl
to simulate the controls of other devices. For example, the four-way control can be used to
control any device that usually provides the user with a ”low-medium-high” setting, whereas
the variable resistance control will be used by devices that provide the user with a potentiometer
for the control of the intensity. The variable resistance interface comes handy when we need to
control, for example, the volume of a Hi-Fi system or the intensity of lights in the room.

Our implementation decisions led to the design seen in figure 4.6. An air condition unit and
an omni-directional sound device are using the variable resistance interface, whereas most other
devices are using a typicial on/off control, derived from the AbstractDevice class.

4.3 Service API

As seen in section 4.1.2, the core system implements the interface HomeContext. During
the initialization of a service, the service gets a reference to a HomeContext object. Using
this object, a service is able to make requests for resources and also cancel previously issued
requests.

The HomeContext interface is exposed over OSGi (more on that on 4.7.1). Since the system
is a prototype, the functionality implemented is the bare minimum. Over time, the HomeCon-
text interface will provide facilities for services to make queries about information regarding
the execution environment, such as for example, who invoked the service, how was the service
invoked and what is the service’s anchor point.

ResourceRequest object

To make a request, a service must create an object of class ResourceRequest, seen in figure
4.8

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION

<<interface>>
o Controlinterface

Attributes

Operations

public boolean isWorking()

<<interface>>
Ko OnOffControl

Attributes

Operations
public void turnOn()
public void turnOff()

7
7/ .
K <<interface>>
, 19 FourWayControl
] AbstractDevice <<interface>>
HO VariableResistanceControl

| AbstractllluminationDevice

£ OmniSoundSource

] AirConDevice

N\ T

£ DirectionalllluminationDevice

ElllluminationDevice

Figure 4.6: Device categorization: Control Interfaces

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION

<<interface>>
to EnergyBlocker
Attributes

Operations
public boolean conducts()

| =] AbstractEnergyBlockingDevice

<<interface>>
to SoundBlocker

EiDoor
Attributes

Operations

Operations Redefined From Device
public double getCurrentSetting()
public void ApplySettings(Setting settings[0..*])
public void ApplySettings(Setting settings[0..*])

Operations Redefined From SimulatedDevice
public double EffectAt(Vector3 point)

Operations Redefined From EnergyBlocker
public boolean conducts()

Figure 4.7: Device categorization: Energy Blockers

38

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 39

ElResourceRequest

Attributes
private double intensity = 0
private double distance = 0

Operations
public ResourceRequest()
public ResourceRequest(Service servicethread, PhysicalProperty pro, double intensity, Threshold thresh, AnchorPoint anchor, double distance)
public void setintensity(double targetintensity)
public double getintensity()
public double getDistance()
public void setDistance(double distance)
public PhysicalProperty getProperty()
public void setProperty(PhysicalProperty property)
public Threshold getThreshold()
public void setThreshold(Threshold threshold)
public Service getService()
public void setdouble(Service service)
public AnchorPoint getAnchorpoint()
public void setAnchorpoint(AnchorPoint anchorpoint)

Figure 4.8: Resource Request

This object provides setter and getter methods for access to its internal information. The infor-
mation represented by an object is the information described in section 3.4, that is information
about the intensity of effect and the intended area of effect.

More precisely, each ResourceRequest object holds the following information:

* the physical property to be controlled
* the intended intensity of the physical property
* the anchor point of the service

* the distance around the anchor point that the service wants to control

the threshold type regarding the intensity
« areference to the service that made the request.

The combined information regarding the anchor point and the distance, expresses the area of
effect. If distance is set to -1, then the area of effect automatically ’snaps to” the limits of the
current room, i.e. the whole room is considered to be the target of this request. The information
regarding the intensity, the physical property and the type of threshold dictate the desired in-
tensity of the effect. Finally, each ResourceRequest object holds a reference to the service
that actually made the request. This is used internally by the system.

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 40

4.4 Detection and Resolution of conflicts

4.4.1 Main loop of the system

The prototype system implements the ideas expressed in sections 3.2, 3.6 and 3.7 for the handling
of requests, the detection and resolution of conflicts accordingly. We start by commenting on
the main loop of the core system, as seen in figure 4.9.

private void mainLoop() {
//First phase: handle new requests

//three steps:
//1. deque request. as loong as we have requests, keep deqeuing
ResourceRequest rr;
while ((rr = this.dequeRequest()) != null) {
//2. process the request
processNewRequest (rr);

//3. add it to the processed requests.
this.requests.add(rr);

}

//Second phase: Detect conflicts
detectPerDeviceConflicts();
detectAreaConflicts();
resolveConflicts();

Figure 4.9: The main loop of the core system

As it can be seen from the source code, upon the receipt of a resource request, the system
proceeds to do the following things:

1. process the new request. Processing a new request is handled by the function process-
NewRequest. To process a request, an ideal solution is found. Next, the request is added
to the proper list of processed requests.

2. The system attempts a per-device detection of conflicts and after that, detection of area

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 41

conflicts is performed. The basic idea in the detection of conflicts is described in section
3.6.

3. Attempt conflict resolution. The methods implemented in the prototype system will be
explained in section 4.5.

4.4.2 Enchantments, Enchantment Manager and ideal solutions

Before we proceed any further, we must explain how the prototype system manages the settings
of devices.

Enchantments

The building block of information is the Enchantment class. To manage enchantments we
also use an enchantment manager, implemented by the class EnchantmentManager. An
enchantment holds information regarding the settings to be applied. The Enchantment object
hold a reference to a Set ting object, a reference to the device that the settings will be applied
to, and finally a reference to the ResourceRequest that caused this enchantment (figure
4.4.2).

An EnchantmentEntry is used to keep track of the enchantments cast to a device. For
each device we have exactly one enchantment entry that holds the following information:

» areference to the device whose list of enchantments are taken care of in this enchantment
entry

* a list of the enchantments cast on this device. Proper API for the addition and removal of
enchantments has been provided.

* areference towards the current enchantment. The ”current” enchantment is the enchant-
ment whose settings are currently applied to the device.

We must mention the auxiliary class Setting that is used to hold a variety of settings. De-
pending on the implemented interfaces of a device, the fields of the Setting class may have
different meaning. Usually, a double is used to convey a specified intensity whenever possible,
a boolean variable to set the device on or off, and an enumeration when the intensity can only
be controlled in steps of LOW, MEDIUM, HIGH.

In figure 4.10 we can see a class diagram of the enchantment related classes and in figure 4.11
we can see a block diagram.

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION

=/ EnchantmentManager

data|0..*

] EnchantmentEntry
Attributes

Operations
public EnchantmentEntry()
public EnchantmentEntry(AbstractDevice dev)
public void addEnchantment(Enchantment e)
public void removeEnchantment(Enchantment e)
public int numberOfEnchantments()
public ResourceRequest[0..*] getRequestsOnEntry()
public Enchantment[0..*] getEnchantmentList()
public EntryStatus getStatus()
public void setStatus(EntryStatus status)
public AbstractDevice getDev()
public void setDev(AbstractDevice dev)
public Enchantment getCurrentSetting()
public Enchantment getEnchantmentByResourceRequest(ResourceRequest request)
public void setCurrentsetting(Enchantment currentsetting)

Operations Redefined From Positionable
public Vector3 getPosition()
public void setPosition(Vector3 pos)
public void setPosition(double x, double y, double z)

currentsettin, elist/0..*

ElEnchantment

Operations

public Enchantment()

public Enchantment(ResourceRequest request, Device dev, Setting setting)
public ResourceRequest getResourceRequest()

public void setResourceRequest(ResourceRequest request)

public Setting getSetting()

public void setSetting(Setting setting)

public Device getDevice()

public void setDevice(Device device)

public void setlsSystemEnchantment()

public boolean isSystemEnchantment()

Figure 4.10: Enchantment, EnchantmentEntry and EnchantmentManager

42

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION

Enchantment Manager

EnchantmentEntry 1 EE 2

EE n

Device Reference

Device Reference

Device Reference

Current Enchantment Current Enchant. Current Enchant.
Enchantment 1 Enchantment 1 Enchantment 1
Enchantment 2 Enchantment 2 Enchantment 2

Enchantment n

Enchantment n

Enchantment n

Figure 4.11: A block diagram of the enchantment manager.

settin

|| Setting

| Enchantment

reques

devi

I ResourceRequest

<<interface>>
-0 Device

Figure 4.12: Enchantmnent, Setting, ResourceRequest

43

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 44

Ideal solution

One of the first steps that the core system does when it receives a resource request, is to gen-
erate an ideal solution for it. When the system tries to decide an idea solution for a request it
intentionally ignores the enchantments cast to devices due to previous request. This is a delib-
erate course of action, as the enchantments cast in this stage provide crucial information for the
detection and resolution of conflicts in later steps.

To generate an ideal solution we use the following, somewhat simplistic approach:

1. Check the physical property of the original ResourceRequest object.

2. Get a list of the devices inside the intended AoE of the service that can affect the physical
properties of step 1. To calculate the intended AoE, the anchor point and distance specifier
information of the resource request object is used.

3. Check the type of threshold. Depending on the type of threshold, take appropriate actions.

(a) If the threshold type is UPPER then the service has asked that an upper limit must
be imposed on a property. To fulfil this request, we impose the lowest setting to all
the devices obtained in step 2. In many cases, the selected setting is to turn off these
devices.

(b) If the threshold type is LOWER, the service has requested for a lower limit to be
imposed on a property. In the same spirit as the UPPER case, we set the settings of
affected devices to the conceptional maximum possible setting. Depending on the
interface of the device, we can just turn on a switch device, set intensity to HIGH
for a FourWayControl device, or just set the maximum possible intensity for a
device that implements the variableResistanceControl interface.

(c) If the threshold type is EXACT, then the system proceeds to find a solution as close
as possible to the exact requested intensity.

4. Create the appropriate enchantments and add them to the corresponding enchantment en-
tries for the devices.

The above ideas are implemented in the ideal solvers of this system. However, we must men-
tion that for request with EXACT threshold types, the problem of finding an ideal solution may
turn into a discrete knapsack problem. For example, in a scenario where a specific illumination
intensity is requested, and all the devices only support a switch interface, it is not easy to guar-
antee that a good solution will be found. Thus, in the current prototype system an ideal solution
is provided only for temperature.

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 45

4.5 Conflict detection algorithms

As discussed earlier, two techniques for the detection of conflicts were implemented in the pro-
totype system: per-device conflict detection and area conflict detection.

4.5.1 Per-device conflict detection

After the initial processing of a request, the core system proceeds to detect conflicts on a per-
device basis. After the initial ideal solution has been decided, a set of new enchantments is
cast upon the appropriate devices. Then, the corresponding EnchantmentEntry objects are
marked appropriately to be checked for conflicts. An EnchantmentEntry object is mark
UNUSED when it has no enchantments on it, NORMAL when it has only one enchantment on
it, and CONFLICTING if there are more than two enchantments that are conflicting. For two
enchantments to conflict, one must be of threshold type UPPER and one of type LOWER, or at
least one of them being of type EXACT.

Before a conflict resolution algorithm is applied, the system generates a list of conflicting
services and a list of conflicting devices used by those services. The lists will be passed as argu-
ments to the conflict resolution algorithm. To generate the lists, the system uses the following
algorithm:

1. Initialize conflicting requests list conf r.empty == true

2. Initialize conflicting enchantment entry list conf ee.empty == true
3. Until all EnchantmentEntry.status != CONFLICTING do:

4. For enchantment entry e, If (e . status == CONFLICTING)

(a) Add current enchantment e to conf ee list

(b) Add all resource requests on e to conf r

(c) For all other EnchantmentEntry ee do:

(d) If ee contains enchantments from requests already in conf r do:

1. add all resource requests that have enchantments on ee to the conf r list.

ii. add ee to conf ee
(¢) Solve (conf ee, conf rr)

(f) for each Enchantment entry eeinconf ee, setee.status == RE-
SOLVED

(g) Clear conf rand conf ee

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 46

By the end of each iteration, the EnchantmentEntry list confl ee and the list of con-
flicting ResourceRequest references conf r are created. These are fed into the compro-
mising algorithm to get a solution.

4.5.2 Contflict detection using AoE information

In this detection scheme, checks are made to discover whether the effect of a device outside the
specified in the request AoE has an effect on the service. For example, a SoundSource device
could potentially raise the sound/noise levels in an adjacent room.

To check if such devices exist, we estimate the effect of such potential devices at the anchor
point of the service. If the effect exceeds a specified threshold then an enchantment is cast on
that device on behalf of the request. The enchantment cast depends on the threshold type of
the resource request and it is considered as part of the ideal solution of the previous step. The
conflict resolution step will take measures to decide an appropriate setting for that device.

Finally, to estimate the effect of such devices, a simple physics simulator is used. For the time
being, only illumination and sound/noise are supported for area detection.

4.6 Conflict resolution algorithms

In this section we present the main ideas and concepts used for conflict resolution using compro-
mising techniques as well as explain the details of the algorithms implemented for the prototype
system.

The behaviour of the compromising algorithm is dictated by three things:

* The end condition. The end condition evaluates whether the current solution is better than
that of the previous round and provides a hint as to when the solving algorithm should end
or not. This decision is made based on the data of the current and previous round of
changes in the solution.

* The service evaluation function. The service evaluation function (also known as evalua-
tors) embodies two things: a) the intensity measuring method and b) an evaluation strategy
of the estimated intensity against the one requested. The evaluation function will defer de-
pending on many different factors, such as the physical property examined, or the desired
accuracy of measurement.

* The actual algorithm implementation. The implementation controls which part of the
solution space will be examined. Each algorithm may employ different techniques to
achieve vastly different results. The algorithms developed are variations of local search
algorithms.

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 47

The system is designed in such a fashion that any combination between the above three com-
ponents is possible (even though in many cases some combinations might not make sense). We
proceed to explain each and every one of the above implemented features of the prototype sys-
tem.

4.6.1 End conditions

Two end conditions where implemented in this system. The first one is known as the "highest
score” end condition and the second one as the “constrained programming” end condition. Both
conditions evaluate the total score of an iteration and compare the result to the previous iteration.
If the result of the current iteration are worse than the previous iteration, the end condition will
trigger, and the algorithm can choose to either a) terminate the algorithm (hence the term end
condition) or b) to “undo” the last change in the solution and try another possible combination.
The decision to end the search for a solution is left to the algorithm itself.

Highest Score end condition

This end condition (which is implemented by the class named HighestScore) computes the
total sum of the scores of the services. If the current sum is greater than of the previous round,
the algorithm should continue the search for a solution, since the last change in the solution set
was favourable. Conversely, when a change is not favourable, the algorithm may opt to ”undo”
the last change (to get the best solution so far) and return that solution.

The equation (3.9) now becomes:

SolutionScore(Services, D, S) = Z Eval(Serv;, D, S)
i=1

Constrained Programming end condition

The idea for this end condition was directly derived from the weighted constrained programming
theories presented in 3.8.6. In typical weighted constrained programming, the total score of the
assignment is the weight summation of the violated constraints. In the same spirit, this end
condition only sums the negative scores of services whose requests are not fulfilled.

The equation (3.9) now becomes:

SolutionScore(Services, D, S) = Zw - Eval(Serv;, D, S)
i=1
1, if FEwal(Serv;,D,S) <0
where w =]
0, if FEwval(Serv;,D,S)>0

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 48

A point worth mentioning here is that, in contrast to traditional weighted constraint program-
ming where the weights of the constrains are predetermined, the weight of a violated constrain
is computed using the equation Eval(Serv;, D, .S) (more on that in the next section).

4.6.2 Evaluators

To evaluate how well a service request is satisfied, we use what we named as evaluators. An
evaluator is responsible to evaluate how well a service’s request is fulfilled. A positive score
indicates that a request is fulfilled (the greater the number the better the service is fulfilled),
whereas negative numbers indicate that the request is not being fulfilled. Evaluators are the
implementation of the equation (3.8) presented in earlier sections.

<<interface>>
{o Evaluator

Attributes

Operations
public double evaluate(EnchantmentEntry eelist[0..*], Vector3 at, ResourceRequest rr)
s %
| EightPointLightEvaluator £ SimpleTemperatureEvaluator

Figure 4.13: Evaluators

An Evaluator objectimplements a very simple interface, as seen in figure 4.13. To evaluate
the satisfaction degree of a service, we must provide the three following pieces of information:

1. a list of all EnchantmentEntry objects present in the conflict. Each Enchant-
mentEntry reference holds information about the current setting of the device, a refer-
ence to said device as well as the list of enchantments cast upon it.

2. an optional argument of type Vectoxr3 to provide a hint to the system where we want
the epicentre of evaluation. In case this argument is null the information from the third
argument is used.

3. areference to the actual ResourceRequest object. It holds valuable information as to
what the service has requested. Furthermore, it contains information regarding the anchor
point of the service, that can be used in cases where the second argument is null.

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 49

EightPointLightEvaluator

One of the implemented evaluators is the EightPointLightEvaluator. What this eval-
uator does is to take eight illumination measurements around the point of interest at r distance
(usually 1 meter). The places of measurement can be seen in figure 4.14. For each of the eight
points, the total estimated intensity will be calculated and then averaged. This can provide a
good idea of what the illumination at the center of that circle feels like. This evaluator is used
only in the case where the requested property was illumination.

Figure 4.14: Eight measuring points around anchor point A.

To actually calculate a final satisfaction score for the service, the evaluator uses the following

formula:
101og,, (%) , if threshold is met
score = (41)
—10log,, (f}f—;) , if threshold is not met

where I is the total effect estimated using physics simulation and /g, is specified by the
resource request. As we can see the evaluation function employs a logarithmic scale. The
reason we followed this strategy is because of the strong indications that the human perception
(and by extent the perception of illumination) behaves in a logarithmic fashion. This behaviour
is know as the ”Weber-Fechner Law” [11].

If the threshold requested was not met, the score is negative. For requests with EXACT thresh-
old types, the score is always negative or (in really rare cases) zero.

SimpleTemperatureEvaluator

To evaluate the satisfaction degree regarding a request about temperature, we take a measure-
ment at the point of interest, and then evaluate the score for the request using this simple formula:

(4.2)

a(Ips — Igeq)® , if threshold is met
score =
—a(Ipst — Ipeq)® , if threshold not is met

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 50

Again, I is the total effect estimated using physics simulation and /., is specified by the
resource request. The function used for evaluation ”’punishes” (or rewards) in an exponential
fashion and the coefficient a is used to control the steepness. Using such a formula, and tem-
perature difference more than a couple of degrees will start to incur heavy penalties.

4.6.3 Compromising Algorithms

In this section we present the algorithms that were implemented as part of the prototype system.

Space-based algorithms

Simple space-based algorithm During the early prototyping of this system, this simplistic
algorithm (which is presented in [5]), was the first attempt to a compromising conflict resolution
algorithm. Although simple, many ideas came out of it that were later implemented in other
algorithms, such as the following:

* An initial device assignment to services. The first job of the algorithm is to assign the
contended devices to the services with the closest anchor point to them. This is because
usually devices that are closer to an anchor point have a stronger effect at the area near
the anchor than devices further away.

* An iterative process. In each step the solution would be improved little by little, until no
further improvement was possible.

* Supporting the losing service. The compromise has the meaning of helping the service
whose threshold is not met to get a more favourable solution for it.

This algorithm can handle only two competing services at a time. After the initial device
assignment is evaluated, the service with the smallest score is picked as the ”losing” service. In
the next iteration step, the losing service is given a 50cm advantage each round over the winning
service. Then, a contended device would be assigned to the service with the closest anchor point,
again, taking into consideration the above mentioned accumulated advantage.

However, this algorithm was monolithic: the evaluation function, the total score function the
end condition, as well as the measuring method were all combined in a single class. Furthermore,
it could only cope with illumination requests of a very limited type. Thus, we reference this
algorithm mostly as background knowledge and not as an algorithm with practical value.

Greedy algorithm This is the successor to the simple space-based algorithm. It is modular, so
it can be initialized with a specific end condition and service evaluation method (presented earlier
in this chapter), thus it can be used to get a compromised solution for any physical property. It can

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 51

achieve compromising for more than two service with no upper limit to the number of services,
although the final results may not be very noteworthy.

This algorithm uses an initialization step. In this step, every device is assigned to the service
with the closest anchor point. The assignment of devices forms the initial solution which will be
improved iteratively. Furthermore, for each service, a list with the contended devices is created.
This list is sorted based on the distance to the anchor point, starting with the device closest to it
at the top of the list.

The following procedure takes place in each iteration step.

1. Select the losing service. This is the service with the lowest score so far.
2. If'the losing service changed since the previous round, clear the blacklist of used devices.

3. Find the device closest to the anchor point of the losing service that has not yet been
assigned to it and is not in the list of black listed devices, and apply to it the settings of
the losing request. Add the device to the blacklist.

4. Was the end condition triggered?

(a) if no, continue to the next iteration (step 1).
(b) if yes, are there any more candidate devices left on the sorted list?

i. if yes, “undo” the last change, and continue to the next iteration (step 1).

ii. if no, end the algorithm.

The nature of the algorithm is simple: let the losing request grab as many devices as necessary
in order to improve its score. Eventually, the end condition will trigger for the losing service,
and all the possible devices will already be in the blacklist, and the algorithm will end.

Forfeit rights algorithm Another space-based algorithm is the forfeit rights algorithm. Again,
this algorithm can be initialized with specific end criteria and evaluators. The same concept of
helping the losing service is prevalent. During the initializing step, the same initial state is as the
greedy algorithm is selected. Also, the devices are sorted again for each service, but this time
in a stack; the element on the top of the stack is the device farthest away from the anchor point
of the service. This time a blacklist is used, but not for devices, it is used for services. Despite
the many similarities, the iteration procedure defers.
These are the steps that take place in each iteration:

1. Select the losing service. This is the service with the lowest score so far.

2. If the losing service changed since the last round, clear the blacklist of services

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 52

3. Select a donor service. The donor service is the service with the highest score, that also
happens to conflict with the losing service (i.e. two services with UPPER thresholds do
not conflict). The donor must not be in the black list.

4. Was there a donor?

(a) If yes, have the donor forfeit control of a device, and pass control of that device to
the losing service. The device selected was on the top of the donor’s device stack.
The settings of the losing service are applied to that device.

(b) If no, end the algorithm.
5. Was the end condition triggered?

(a) Ifyes
1. ”Undo” last donation
11. Add the donor to the blacklist

6. Continue to the next iteration (step 1)

A donor forfeits control of devices that are on top of his stack. These devices are less important
for the donors, so they can afford to hand over control to the losing service in hope that the total
score will improve. If the end condition is triggered as a result of a ’bad” donation, the donor
is blacklisted i.e. the losing service has exhausted all the possible gain that it can get out of
this donor (remember that the devices on the stack are ordered by importance). Trying to get
some of the other devices that belong to the donor will result in even greater loses, so this is not
attempted.

Intensity-based algorithms

There are many cases were instead of assigning complete control over to a service (as is the case
with most space-based algorithms), it is better to assign an intermediate setting to a device. As
proof of this concept we present a very simple example of an intensity solver, the range search
intensity solver.

Range Search intensity solver The range search algorithm works in two phases:

1. For each device, examine the enchantments already cast to decide the range of requests
(upper bound and lower bound of intensity).

2. Proceed to an exhaustive search of the problem space to find the best solution.

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 53

The search range is defined as:
Range - [[lower7 Iupper}

where ;o and I, are the lowest and the highest intensity levels that were requested by the
conflicting services.

To apply this algorithm, all the devices involved in the conflict must support the Vari-
ableResistanceControl interface. Starting from the lower bound, the intensity setting is
increased steadily until it eventually reaches the upper bound of requested intensity. The setting
that produces the best results (according to an evaluation function e.g. highest score) is the final
solution.

This algorithm has the obvious limitation that if Range is very big, the search is ineffi-
cient. Furthermore, assuming that /,., is the intensity value tested in each iteration the equation
TotalScore is not guaranteed to be monotonous, something that further hinders the search for
a global maxima. To deal with this problem, other global search algorithms could be used, such
as stimulated annealing.

4.7 Implementation details

4.7.1 OSGi and Java

In our research we wanted to simulate an environment like the one provided by the SI model.
Eventually we settled to use the OSGi framework [14]. OSGi is a dynamic module system for
Java. This framework helps structure software in a modular fashion and expose desired code
functionality as a service with a well defined API that can be utilized by others.

The OSGi also provides an execution environment, on top of which bundles can be executed.
For the OSGi execution environment, several implementations exist, such as Apache Felix[19],
Eclipse’s Equinox [20] and makewave’s Knopflerfish [21]. An OSGi bundle is the basic de-
ployment unit of software in an OSGi platform. The platform supports a dynamic life cycle for
bundles and thus it is able to install, uninstall, start, stop and update them dynamically. In turn,
bundles may expose a service to the OSGi platform which can later be used by other bundles.
A bundle is a usual . jar file that contains some extra metadata. The metadata are used by
the OSGi platform to successfully start the bundle. In OSGi terms, both our prototype system
and the services utilizing it should be designed as OSGi bundles. Even the software bridge of a
device can be a bundle, exposing the control interfaces to the core system as a service.

There were several reasons to use OSGi in this project. First, OSGi provides the notion of the
execution platform. The execution platform could be the home gateway of the home environ-
ment. Furthermore, the services designed by the SP can be deployed easily as bundles and be

CHAPTER 4. SYSTEM ARCHITECTURE AND IMPLEMENTATION 54

handled with ease. Finally, the ability to discover services is a nice feature that can be utilized
by the prototype system.

Due to time limitations, the usage of the OSGi framework was limited to only a few sample
tests. The final goal is to have the prototype system expose the HomeContext interface to
the home service bundle. The HomeContext interface will be the interface through which
services will be able to make requests and queries to the core system.

4.7.2 Sample Service

To implement a new service that utilizes the prototype system, the user must subclass the Ser-
vice abstract class. This class already implements the core functionality of a conceptual ser-
vice, along with the methods required to make and cancel requests to the system. During start
up, each service object is given a reference to the HomeContext object that implements our
system.

To implement the service logic, the user has to override the realRun () method. For each
service, a Thread object is created that, after running some initialization routines, proceeds to
execute the overridden method realRun (). No limitation or assumption is made about the
number of threads or the libraries that a service utilize; they can vary depending on the needs of
the service.

For the experiments shown in chapter 5, a single sample service was designed. That sample
service would make a request towards the system and after a few seconds it would complete
execution.

Chapter 5

Test cases and results

5.1 Space based resolution experiment

5.1.1 Scenario Explanation

We evaluated the proposed space-based resolution algorithms by simulating a scenario where
conflict regarding illumination occurs.
In this scenario the following assumptions were made regarding the environment:

* The scenario takes place in a room with dimensions set to 7 meters long, 5 meters wide
and 2 meters high.

* No external illumination enters the room

* 35 spot lights are affixed to the ceiling. The spot lights are laid out in a 725 matrix pattern
as seen in figure 5.1.

* We named each spot light as Spot;; where 0 <7 < 5and 0 < j < 7. 7 represents the row
of the device and j represents the column of the device in the matrix.

* The spot lights only support the OnOf fControl interface, i.e. only two possible states:
power on and power off.

 Each spot light sheds light in a conical fashion. We assume that the measured amount of
illumination from a distance of 1 meter is 1000/ux inside the cone.

* If two points in space P1 and P2 have the same distance from the spot light and P1 is in
the light cone whereas P2 is not, we assume that the intensity measured at P2 is 10% of
the intensity measured at P1. This 10% amounts for the amount of light that reaches P2
due to reflections.

55

CHAPTER 5. TEST CASES AND RESULTS 56

* As the distance from the light source increases, the intensity of illumination is modelled to
fade away according to the inverse square law. For example, an illumination measurement
taken 2 meters away from the source (and still inside the light cone) should yield 250/uzx.

* The evaluation for each service is done using the EightPointLightEvaluator
evaluator (described in section 4.6.2).

The coordinates of the devices can be calculated as follows: Coord(Light;;) = (50 + (j —
1)100, 200,50 + (i — 1)100) where each dimension is expressed in centimetres. For exam-
ple, Spoty; has coordinates (z,y,z) = (50,200,50) and Spotr; has coordinates (z,y,z) =
(650,200, 450) In figure 5.1 we can see a top down view of the room. The upper left room
corner has coordinates (0, 0). The lower right corner of the room has coordinates (700, 500).

® Light source

00 =% OAnchor point
%" o e e ° ® ®

¥
1 ®
® ® ® @ ® ® @
@ @ @ L @ @ @ E
1)
@ @ @ L @ L @
® ® @ L @ @ L)
room (650,450) ‘

m (700,500)
-

Figure 5.1: A downwards view of the experiment room

For this scenario we assumed two types of services:

1. Service L. This service makes a request for illumination with a minimum threshold of
1000luz.

2. Service D. This service makes a request for illumination with a maximum threshold of
10luz.

Two instances (L, and L) of service L are active in this room. Instance L, has an anchor point
with position (100,100, 100). Instance L has an anchor point with position (200,400, 100).

CHAPTER 5. TEST CASES AND RESULTS 57

Furthermore, one instance of service D, D, is active with an anchor point at (600, 100, 400).
All three services make requests with an intended AoE being the room.

The three services make their requests. Then, the core system proceeds to the detection of
conflicts. The conflict will be discovered using the per-device detection of conflicts. After the
conflict has been detected, the core system enters the conflict resolution phase. The initial device
assignment can be seen in figure 5.2

O AssignedtolL, OAnchor point
® Assignedtol, O Assigned to D,
o o o Q@ o O o
®) o o o O O)

@) o ® ([o O O
® [e ([O O O
e [°® ® O O O

room

Figure 5.2: Initial device assignment

For the conflict resolution the combinations of end conditions and resolution algorithms seen
in table 5.1 were used. For each of the possible combinations we calculated the following:

1. the individual score of each service
2. the ”badness” of the solution (the summation of the negative service scores only)

3. the total score for the solution.

5.1.2 Case 1: greedy algorithm and highest score end condition

The results can be seen in table 5.2. Due to the ”highest score” end condition, service D, was
able to gain control of six extra devices compared to the initial state. If more devices would be
assigned to service D, the total score would deteriorate, and thus algorithm chooses to stop.
Services L, and L, have a surplus of illumination (their scores are more than satisfactory), but

CHAPTER 5. TEST CASES AND RESULTS 58

Case No. | Resolution algorithm End condition
1 Greedy Highest Score
2 Greedy Constrained Programming
3 Forfeit rights Highest Score
4 Forfeit rights Constrained Programming

Table 5.1: Tested combinations of algorithms and end conditions

the score of service D is disappointing. The amount of illumination around the anchor point of
service [exceeds many times the requested.
The final assignment of settings to devices can be seen in figure 5.3.

@ Light source (on)

O Anchor point o Light source (off)
® ® ® O O O O
® ® ® O O O @
® ® ® O @ O O
® ® ® O O O O
@ [® O O O O

room

Figure 5.3: Final device assignment for case 1

5.1.3 Case 2: greedy algorithm and constrained programming end condi-
tion

Using the constrained programming end condition, service [J); was able to get more devices than
case 1. The total score is lesser than that of case 1. However the ”badness” factor has improved
significantly. Moreover, services L; and L, have a score that is really close to zero (above and
below accordingly). This is the effect of the constrained programming end condition; the excess

CHAPTER 5. TEST CASES AND RESULTS 59

Highest Score + Greedy algorithm

L, 2.579174857150577
Lo 3.347747929964837
D, -8.406866232629483

Badness | -8.406866232629483
TotalScore | -2.479943445514069

Table 5.2: Case 1 results: Greedy algorithm and Highest Score end condition

amount of illumination of case 1 was traded in so that service), may have a chance to improve
(and it did significantly improve).

The results can be seen in table 5.3 and the final assignment of settings to devices can be seen
in figure 5.4.

@ Light source (on)

i .

O Anchor point o Light source (off)
® ® O O O O O
® O O O O O O
® ® O O O O O
® O O O O O O
® °® O O O O O

room

Figure 5.4: Final device assignment for case 2

5.1.4 Case 3: forfeit rights algorithm and highest score end condition

Using the forfeit rights algorithm in conjunction with the "highest score” end condition led to
some interesting results: the device assignment is the same as in case 1 (greedy algorithm +
highest score end condition). The end condition has a very strong impact on the evaluation of
the total scores. This does not leave any room for service D, to claim any more devices.

CHAPTER 5. TEST CASES AND RESULTS 60

Constrained Programming + Greedy algorithm

Ly 0.775441771757775
Lo -0.5719388815562672

D, -4.397132159713623
Badness -4.96907104126989
TotalScore -4.193629269512115

Table 5.3: Case 2 results: Greedy algorithm and Constrained programming end condition

The results can be seen in table 5.4 and the final device assignment can be seen in figure 5.3
in case 1.

Forfeit rights algorithm and high score end condition

Ly 2.5791748571505764

Lo 3.347747929964837

Dy -8.406866232629483
Badness -8.406866232629483
TotalScore -2.4799434455140688

Table 5.4: Case 3 results: Forfeit Rights algorithm and High Score end condition

5.1.5 Case 4: forfeit rights algorithm and constrained programming end
condition

In this final case we combined the forfeit rights algorithm with the constrained programming
end condition. With this combination we were able to get quite favourable results, namely:

* the thresholds for services L; and L, where upheld (although barely)
* the score for the losing service D; is the best so far.

Here we can see the true nature of the forfeit algorithm: services will hold onto what is "’barely
enough”; they will hold on to their most important devices i.e. those that were at the bottom of
the stack. If there is surplus of intensity, they will pass on control of those ”surplus” devices to
other services as needed.

The results can be seen in table 5.5 and the final device assignment can be seen in figure 5.5.

CHAPTER 5. TEST CASES AND RESULTS 61

@ Light source (on)

i .

O Anchor point o Light source (off)
® ® O O O O O
® O O O O O O
O O O O O O O
O e ® O O O O
O °® O O O O O

room

Figure 5.5: Final device assignment for case 4

Forfeit rights algorithm and high score end condition

L, 0.06466447241442536
Ly 0.06748716191621316
D, -4.185663037695831
Badness -4.185663037695831
TotalScore -4.05351140336519248

Table 5.5: Case 4 results: Forfeit Rights algorithm and constrained programming end condition

5.1.6 Comments

In table 5.6 we can see the results of the previous cases gathered in a single table.

The various combinations of end conditions and compromising algorithms yielded quite dif-
ferent results. However, the most promising results in our opinion is that of case 4. The forfeit
algorithm manages to produce a solution where badness was minimum. This is the most “fair”
solution. If we compare the results of case 1 to those of case 4, we can clearly see that we failed
completely to honour the request of service D, which is not ”fair” at all. Therefore, when-
ever possible, the forfeit rights algorithm should be used, in conjunction with the constrained
programming end condition.

The highest score end condition proves to be quite limiting because it does not allow for

CHAPTER 5. TEST CASES AND RESULTS 62

flexible device assignment. Whereas the constrained programming end condition may allow an
assignment that, although worsens the total score it improves the overall badness, the highest
end condition cannot do that.

Finally, the greedy algorithm is quite limited. As the number of resource requests goes up, the
greedy algorithm is very well likely to stop prematurely, without reaching any decent solution.
Furthermore, it may mistakenly encroach into the area of another service and take control of
some critical for that service device , leading to overall lower scores. The greedy algorithm
should not be used in all but the simplest of scenarios.

5.2 Intensity based resolution experiment

In this section we present the range search intensity-based algorithm. This algorithm is a proof
of concept, and its practical usage is quite limited. A prerequisite for this algorithm is that all
devices involved in the conflict are the same and that these devices support the VariableRe-
sistanceControl interface.

5.2.1 Scenario details and execution

In this scenario, there are three services (57, 59, .S3) that want to control the temperature of a
room. The following assumptions were made:

1. One air condition unit is available in the room. It supportsthe VariableResistance-
Control interface.

2. Every point in the room will be heated to the exact intensity set by the air condition over
some finite time.

3. Service S; makes a request for temperature set to 29°C' with an EXACT threshold setting.

Forfeit rights algorithm and high score end condition

cases 1 and 3 case 2 case 4
Ly 2.579174857150577 0.775441771757775 0.06466447241442536
Lo 3.347747929964837 -0.5675937638160895 | 0.07183227965639047
Dy -8.406866232629481 | -4.397132159713623 | -4.185663037695831
Badness | -8.406866232629481 | -4.964725923529713 | -4.185663037695831
TotalScore | -2.4799434455140665 | -4.189284151771938 | -4.04916628562501517

Table 5.6: Summary of results

CHAPTER 5. TEST CASES AND RESULTS 63

4. Service S; makes a request for temperature set to 26°C' with an EXACT threshold setting.
5. Service S; makes a request for temperature set to 25°C' with an EXACT threshold setting.

6. The SimpleTemperatureEvaluator wasused for the satisfaction evaluation of ser-
vices.

Service Highest Score | Constrained Programming

St -18 -18
S -2 -2
S -8 -8
TotalScore -28 -28

Table 5.7: Results of the Range Search algorithm. The best solution is 27°C.

The experiment was performed twice, once with a highest score end condition and then with a
constrained programming end condition. First, the conflict is detected using per-device conflict
detection. Then, the search range Range is set to [25, 29]. All the discrete values in Range are
tested. The result with the best score was achieved for a setting of 27°C. Finally, we can see
the state of the EnchantmentEntry object after the compromise has occurred in figure 5.6.
The active enchantment is an enchantment cast by the system and it is marked appropriately as
system enchantment.

EnchantmentEntry 1

Device Reference: Air condition

Current Enchantment: Ench. 4
Enchantment 1: 29°C
Enchantment 2: 26°C
Enchantment 3: 25°C
Enchantment 4: 27°C (system)

Figure 5.6: Final status of EnchantmentEntry for device Air condition.

CHAPTER 5. TEST CASES AND RESULTS 64

5.2.2 Comments

What is immediately clear from the results is that the score does not change even if the end
conditions change. This is because of the negative scores of the services. A service with an
EXACT threshold can only hope to achieve a score of 0 as the highest possible score; anything
below and above the threshold results in penalties. When the scores of all services are negative,
the constrained programming end condition and the highest score condition behave the same.

Although the algorithm can take care of such simple scenarios, its prerequisites severely limit
the deployment opportunities. Furthermore, the exhaustive search of the problem space may
sometimes be impossible. For example, in an illumination scenario where all devices are the
same, a different approach should be used because the intensity range might be much bigger.

However, the only characteristic that sets it apart from the other algorithms is the ability to
impose a homogeneous setting to the conflict AoE. Depending on the situation, this may be the
most desirable solution.

5.3 Conflict detection using Area of Effect

In the previous two experiments, conflict detection was done on a per-device fashion. In this ex-
periment we demonstrate conflict detection using information about AoE in a scenario involving
resource requests for sound and noise levels.

5.3.1 Scenario details and execution

In this scenario, we assumed the following things about the environment.
* Two rooms connected via a conduit.
* The size of the rooms is 3 meters long, 2 meters high and 3 meters wide (3x2x3).

* The conduit connecting the two rooms is a door. The door supports the OnOffControl
and SoundBlocker interface.

* The initial state of the door is assumed to be open.
* An omni-directional sound source exists at position (550,100,150).

* Any sound passing through the closed door incurs a heavy penalty: the resulting amount
of sound is ten times smaller than the original one.

* Any sound passing through the open door suffers no penalties.

* Modelling of sound is based on sound pressure. Reflections have not been considered.

CHAPTER 5. TEST CASES AND RESULTS 65

(0,0) (300,0) (600,0)

s

L

Q N @

Bedroom Livingroom
(600,300)

© Anchor points
@ Sound Device I Door

Figure 5.7: A downwards view of the experiment environment

Furthermore, we assume two services N oisy and Quiet with anchor points NV at (450, 100, 150)
and@ at (150, 100, 150) respectively. Noisy service wants to control the omni-directional sound
device (maybe as part of a set of other devices) and requests an intensity level of 50db with an
EX ACT threshold setting. The Quiet service makes a request for sound and noise levels with
intensity 25db and an U PPER threshold setting. In both cases the requested area of effect is
the whole room (the room where the service executes).

During the ideal solution creation step, an enchantment is cast to the sound device on be-
half of service Noisy. No enchantment is cast on behalf of service Quiet, because no device
implementing the SoundSource interface is found inside that room.

During the per-device conflict detection, no conflict is detected, because the enchantment lists
for all devices either contain zero or one enchantments.

During the area conflict detection phase, a conflict is discovered. This is because the esti-
mated effect of the omni-directional device at the anchor point of Quiet exceeds the requested
threshold. The system proceeds as follows:

1. Cast an enchantment to the omni-directional sound device on behalf of service Quiet.
The enchantment dictates the device to be turned off.

2. Find a path from the device to the anchor point of service Quiet. Cast enchantments to
all conduits in that path. The enchantments specify that the conduits should be closed.

The final state of enchantments and enchantment lists can be seen in figure 5.8. [, and
I'noisy describe the intensity at anchor points () and S respectively. The initial state is to assign
the omni-directional sound device to service Noisy. Control of the door is normally assigned to

CHAPTER 5. TEST CASES AND RESULTS

EnchantmentEntry 1

EnchantmentEntry 2

Device Reference: Door

Device Reference: Sound Device

Current Enchantment: Ench. 1

Current Enchantment: Ench. 1

Enchantment 1: closed

Enchantment 1: 50db

Enchantment 2: 0db

Figure 5.8: Final enchantment state.

Before After
Iuiet 37.95880017344075 | 18.027737252919753
INoisy 50 50
Scoreguiet N/A 1.419987888958309
Scorenoisy N/A 0
TotalScore N/A 1.4199841167448681

Table 5.8: Results using AoE conflict detection

66

service Quiet, since only one enchantment is cast upon it. The score evaluation for services as

well as the total intensity before and after the detection can be seen in table 5.8. We can see that,

although initially there was a conflict (the threshold request of service Quiet was not upheld),

the system was able to detect that conflict and resolve it.

5.3.2 Comments

Again, this scenario helps to demonstrate the benefits of employing an area of effect conflict

detection algorithm. Although the physics simulation used in the current system is not accurate

and makes some assumptions regarding the environment, we can still argue that this method

is a valid method to discover conflicts and that has potential value when applied in real life

situations.

Chapter 6

Future work and improvements

The current prototype system serves as a successful demonstration of a system that utilizes the
basic concepts behind AoE and compromising techniques. However, it has some severe short-
comings that must be improved before the system can be deemed worthy of deployment in real
life. Further research and improvements must be made on these shortcomings.

Firstly, the physics simulation used is very simplistic. Developing a full-blown physics sim-
ulator is a topic worthy of its own research altogether, and was deemed to be out of the scope
of this research. Improving the physics simulation can increase the accuracy of predictions and
improve the compromising results vastly. As future improvements on the prototype system, a
new, modular physics simulator should be designed, allowing for easier modelling of devices
and the surrounding environment.

Secondly, the system in its current form cannot handle some specific scenarios. For example,
the system cannot handle in a scenario with illumination requests with EXACT thresholds and
devices that support only the OnOf fControl interface. Such scenarios have to be studied
further and analysed in order to produce more effective compromising algorithms that can deal
with them.

Thirdly, a mechanism for ad-hoc selection of the compromising algorithm should be devel-
oped. In the current prototype system, the compromising algorithm is selected during the sce-
nario set up. This of course is unacceptable for a system targeted for deployment in a live
environment. Deciphering which algorithm would potentially yield promising results could be
an interesting topic for future research.

Regarding other possible compromising algorithms, we would like to see some combined
and hybrid algorithms being implemented. In a live environment the system has access to user
information. Hybrid compromising techniques could potentially use that information to deliver
even better compromising solutions.

Another part of the prototype system that needs further development is the service APIL. In its
current form it allows nothing but the sending and cancelling of requests. Design of a system

67

CHAPTER 6. FUTURE WORK AND IMPROVEMENTS 68

based on the principles of the SI platform requires further research and a more comprehensive
and versatile API for accurate control of services. Furthermore, security issues should be taken
into consideration.

For a live system we must take into account motion. It is entirely possible to have moving
anchor points. Introducing moving anchor points would add another level of complexity to the
system because the ideal solutions in many cases change as soon as the anchor point moves.

Finally, we must consider the user interaction with the system. Such a system aims to support
the user and automate the handling of the environment around the user. The user must be able
to express its preferences and also take manual control whenever necessary.

Chapter 7

Conclusions

In this research we presented a prototype system capable of using the notion of the area of effect
and compromising techniques to resolve conflicts between services in the home network sys-
tem. We argue that the system offers a valuable solution to the feature interaction problem. Not
dealing with the FI problem leads to conflicts between services and erratic, non-deterministic
behaviour. Our system is not only able to avoid this behaviour but also able to produce device
settings that satisfy the requests of services, as demonstrated by the experiments shown. Further-
more, compared to other conflict resolution techniques, the proposed system has the advantage
that no conflicting services are needed to be paused or terminated.

At a theoretic level, we contributed the idea of using area of effect information and compro-
mising algorithms and defined the problem as a maximization problem. We then propose two
conflict detection methods, a per-device method and a method based on estimation of intensity at
a given point. Furthermore, we demonstrated the idea of space-based and intensity-based com-
promising algorithms in action as well as their effectiveness by simulating a variety of different
scenarios.

We believe that the proposed system augments the SI model and can be integrated into it. The
combination of these two technologies could lead to a viable platform for delivery of services in
the home network system with many advantages over conventional models of service delivery,
thus becoming the base for a new dawn of complex services in the HNS.

69

Appendix A

XML configuration files

The following configuration files represent the information that the system has regarding the
scene of the home environment. Each abstract scene element (a device, a room, a conduit,
others) has position and size information. All objects are assumed to be box-shaped. Devices
and their characteristics are declared inside the Room tags of the room they are in.

A.1 configuration file for illumination scenario: 7x5.xml

This file contains only a single room definition. In it, there are thirty-five declarations of illu-
mination devices such as those used in experiment 5.1.

<House>
<RoomList>
<Room>
<UID>LivingRoom</UID>
<Size><X>700</X><Y>200</Y><Z>500</Z></Size>
<P0s><X>0</X><Y>0</Y><Z>0</Z></Pos>
<Device>
<Type>DirectionalIllluminationDevice</Type>
<UID>Lightl11</UID>
<Pos><X>50</X><Y>200</Y><Z>50</Z2></Pos>
<Lumen>1000</Lumen>
</Device>
<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light12</UID>
<Pos><X>150</X><Y>200</Y><Z>50</Z></Pos>
<Lumen>1000</Lumen>
</Device>
<Device>
<Type>DirectionalllluminationDevice</Type>
<UID>Light13</UID>
<Pos><X>250</X><Y>200</Y><Z>50</Z></Pos>
<Lumen>1000</Lumen>
</Device>
<Device>
<Type>DirectionalIlluminationDevice</Type>

70

APPENDIX A. XML CONFIGURATION FILES 71

<UID>Light14</UID>
<P0os><X>350</X><Y>200</Y><Z>50</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light15</UID>
<P0os><X>450</X><Y>200</Y><Z>50</2Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Lightl6</UID>
<P0s><X>550</X><Y>200</Y><Z>50</2></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIllluminationDevice</Type>
<UID>Lightl17</UID>
<P0os><X>650</X><Y>200</Y><Z2>50</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light21</UID>
<P0os><X>50</X><Y>200</Y><2>150</2></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalllluminationDevice</Type>
<UID>Light22</UID>
<Pos><X>150</X><Y>200</Y><2>150</2></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light23</UID>
<P0os><X>250</X><Y>200</Y><Z>150</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light24</UID>
<P0os><X>350</X><Y>200</Y><Z>150</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light25</UID>
<P0s><X>450</X><Y>200</Y><Z>150</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIllluminationDevice</Type>
<UID>Light26</UID>
<P0s><X>650</X><Y>200</Y><Z>150</Z></Pos>

APPENDIX A. XML CONFIGURATION FILES

<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light27</UID>
<P0os><X>650</X><Y>200</Y><Zz>150</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalllluminationDevice</Type>
<UID>Light31</UID>
<Pos><X>50</X><Y>200</Y><2>250</2></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalllluminationDevice</Type>
<UID>Light32</UID>
<P0os><X>150</X><Y>200</Y><Z>250</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light33</UID>
<P0s><X>250</X><Y>200</Y><Z>250</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light34</UID>
<P0os><X>350</X><Y>200</Y><Z>250</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light35</UID>
<P0s><X>450</X><Y>200</Y><Z>250</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light36</UID>
<P0os><X>550</X><Y>200</Y><Zz>250</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIllluminationDevice</Type>
<UID>Light37</UID>
<P0os><X>650</X><Y>200</Y><Z2>250</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalllluminationDevice</Type>
<UID>Light41</UID>
<Pos><X>50</X><Y>200</Y><2>350</2></Pos>
<Lumen>1000</Lumen>

72

APPENDIX A. XML CONFIGURATION FILES

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light42</UID>
<P0os><X>150</X><Y>200</Y><Z>350</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light43</UID>
<P0os><X>250</X><Y>200</Y><Z>350</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light44</UID>
<P0s><X>350</X><Y>200</Y><Z>350</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light45</UID>
<P0os><X>450</X><Y>200</Y><Zz>350</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIllluminationDevice</Type>
<UID>Light46</UID>
<P0os><X>550</X><Y>200</Y><Zz>350</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIllluminationDevice</Type>
<UID>Light47</UID>
<P0os><X>650</X><Y>200</Y><Zz>350</Z2></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light51</UID>
<P0os><X>50</X><Y>200</Y><Z>450</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light52</UID>
<P0os><X>150</X><Y>200</Y><Z>450</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIlluminationDevice</Type>
<UID>Light53</UID>
<P0s><X>250</X><Y>200</Y><Z>450</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>

73

APPENDIX A. XML CONFIGURATION FILES 74

<Type>DirectionalIllluminationDevice</Type>
<UID>Light54</UID>
<P0os><X>350</X><Y>200</Y><Zz>450</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIllluminationDevice</Type>
<UID>Light55</UID>
<P0s><X>450</X><Y>200</Y><Zz>450</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIllluminationDevice</Type>
<UID>Light56</UID>
<P0os><X>550</X><Y>200</Y><Zz>450</Z></Pos>
<Lumen>1000</Lumen>

</Device>

<Device>
<Type>DirectionalIllluminationDevice</Type>
<UID>Light57</UID>
<P0os><X>650</X><Y>200</Y><Z>450</72></Pos>
<Lumen>1000</Lumen>

</Device>

</Room>

</RoomList>
</House>

A.2 configuration file for temperature scenario: Tempera-

tureScenario.xml

This file contains the description of a single room and the declaration of an air condition de-
vice.

<House>
<RoomList>
<Room>
<UID>Kitchen</UID>
<Size><X>300</X><Y>300</Y><Z>300</2></Size>
<PosS><X>0</X><Y>0</Y><Z>0</Z></Pos>
<Device>
<Type>AirCon</Type>
<UID>Airconl</UID>
<Pos><X>250</X><Y>300</Y><2>300</Z></Pos>
</Device>
</Room>

</House>

APPENDIX A. XML CONFIGURATION FILES 75

A.3 configuration file for conflict descovery based on area of

effect: SoundScenario.xml

In this configuration file we can see how conduits are declared. Each conduit has two endpoints
that must point to rooms declared earlier in the configuration file. Finally, the position and size
of the conduit express its actual position and orientation, since the concflllit is considered to be
just a two dimensional plane. Special care must be taken so that the coordinates will later overlap
with a wall so that the conduit can be associated with.

<House>

<RoomList>

<Room>
<UID>Bedroom</UID>
<S1ze><X>300</X><Y>300</Y><Z>300</2></Size>
<Pos><X>0</X><Y>0</Y><Z>0</Z></Pos>

</Room>
<Room>
<UID>Livingroom</UID>
<Size><X>300</X><Y>300</Y><Z>300</2></Size>
<P0os><X>300</X><Y>0</Y><Z>0</Z></Pos>
<Device>
<Type>OmniSoundSourceDevice</Type>
<UID>Soundl</UID>
<Pos><X>250</X><Y>200</Y><Z>150</Z></Pos>
<Db>80</Db>
</Device>
</Room>
</RoomList>
<ConduitList>
<Conduit>
<UID>conl</UID>
<Type>Door</Type>
<Endpoint>Livingroom</Endpoint>
<Endpoint>Bedroom</Endpoint>
<Size><X>0</X><Y>200</Y><Z>100</Z2></Size>
<P0os><X>300</X><Y>0</Y><Z>100</Z2></Pos>
</Conduit>
</ConduitList>

</House>

Appendix B

Execution Logs

In this chapter we present the output results of the experiments. Each solving algorithm logs
the final solution in a log file. In that log file we store the final scores of the services, the total
score as interpreted by the solving algorithm and the final state of the devices. We proceed to
list these files.

B.1 Space based resolution experiment results

The service scores of this section were evaluated using the EightPointLightEvaluator
as described in section 4.6.2. The calculation formula is (4.1) which is essentially a decibel
calculation. A score of 0 means that the final estimated intensity is exactly equal to the requested
intensity, whereas a score of 3 means that the final estimated intensity value was roughly two
times bigger.

The total score reported when the constrained programming end condition is used is actually
equivalent to the ”badness” score as reported in the experiments of section 5.

B.1.1 Case 1: High score + Greedy

In this experiment, the final estimated intensity for services L; and L is a little bit less and a
little bit more than twice the original threshold. However, the threshold of service D; (that has
a score of -8.4) was violated with an intensity that is close to 7 times brighter than the originally
requested intensity.

Final solution:

device: Light35false
device: Light27false
device: Lightlé4false
device: Lightl7false
device: Light25false
device: Light23true

device: Light32true

76

APPENDIX B. EXECUTION LOGS 77

device: Light43true

device: Light47false

device: Light37false

device: Light45false

device: Light46false

device: Lightl5false

device: Light53true

device: Lightb54false

device: Light44false

device: Light24false

device: Light4ltrue

device: Light42true

device: Lightl3true

device: Light34false

device: Lightlltrue

device: Light2ltrue

device: Light22true

device: Light3ltrue

device: Lightb55false

device: Light52true

device: Lightl2true

device: Lightb57false

device: Light26false

device: Light36false

device: Light33true

device: Lightb6false

device: Light5ltrue

device: Lightléfalse

service: Darkl Score: —8.406866232629483
service: Lightl Score: 2.579174857150577
service: Light2 Score: 3.347747929964837
Total Score: —2.479943445514069

B.1.2 Case 2: Constrained + Greedy

In this experiment, the results for services L; and L, stayed inside a &=1.2 margin of the requested
intensity. The score for service D; was also improved, since the final estimated intensity is only
2.7 times bigger , a vast improvement over the results of case 1.

Final solution:

device: Light33false
device: Light25false
device: Lightl2true
device: Lightlb5false
device: Light23false
device: Light2ltrue
device: Light27false
device: Light4ltrue
device: Light45false
device: Light35false
device: Light43false
device: Lightl3false
device: Light44false
device: Lightb5ltrue
device: Lightb52true

APPENDIX B. EXECUTION LOGS

device: Light42false

device: Lightb57false

device: Light22false

device: Light36false

device: Light37false

device: Light32true

device: Lightlé6false

device: Light26false

device: Lightl7false

device: Light53false

device: Light47false

device: Lightlltrue

device: Lightb6false

device: Light55false

device: Light24false

device: Light34false

device: Light3ltrue

device: Light54false

device: Light46false

device: Lightlé4false

service: Darkl Score: —4.397132159713623
service: Light2 Score: —0.5719388815562672
service: Lightl Score: 0.775441771757775
Total Score: —4.96907104126989

B.1.3 Case 3: High score + Forfeit rights

The results here are the same with case 1.

Final Scores:
—8.406866232629483 3.347747929964837 2.5791748571505764
Final sloution:

device: Light3ltrue
device: Light23true
device: Lightb56false
device: Lightlltrue
device: Lightl3true
device: Light25false
device: Light2ltrue
device: Lightléfalse
device: Light36false
device: Light33true
device: Light43true
device: Light4ltrue
device: Light42true
device: Light46false
device: Light47false
device: Light37false
device: Light55false
device: Lightl7false
device: Light34false
device: Light35false
device: Light27false
device: Lightl4false
device: Light24false

APPENDIX B. EXECUTION LOGS 79

device: Lightl5false

device: Lightb5ltrue

device: Lightb57false

device: Light45false

device: Lightb54false

device: Light53true

device: Light22true

device: Light32true

device: Light26false

device: Light52true

device: Light44false

device: Lightl2true

service: Darkl Score: —8.406866232629483
service: Light2 Score: 3.347747929964837
service: Lightl Score: 2.5791748571505764
Total Score: —2.4799434455140688

B.1.4 Case 4: Constrained + Forfeit rights

In this experiment, the estimated intensity for services S; and S; was barely above that of the

requested intensity, {ust 1.01 times more. The results for service D, further improved, resulting
in an estimated final intensity roughly 2.5 times bigger that that requested.

Final Scores:
0.06466447241442536 0.06748716191621316 —4.185663037695831
Final sloution:

device: Light34false
device: Light26false
device: Lightl3false
device: Lightlé6false
device: Light24false
device: Light22false
device: Light31lfalse
device: Light42true
device: Light46false
device: Light36false
device: Light44false
device: Lightlltrue
device: Light45false
device: Lightl4false
device: Light52true
device: Lightb53false
device: Light43true
device: Light23false
device: Light37false
device: Light4lfalse
device: Lightl2true
device: Light33false
device: Lightl7false
device: Light2ltrue
device: Light27false
device: Lightb4false
device: Light5lfalse
device: Lightb57false
device: Light56false

APPENDIX B. EXECUTION LOGS 80

device: Light25false

device: Light35false

device: Light32false

device: Light55false

device: Light47false

device: Lightl5false

service: Lightl Score: 0.06466447241442536
service: Light2 Score: 0.06748716191621316
service: Darkl0 Score: —4.185663037695831
Total Score: —4.185663037695831

B.2 Intensity based resolution experiment results

In this experiment, the scores for services were calculated using the SimpleTemperatureE-
valuator. The best total score was achieved for the setting of 27°C'.

Final Scores:
—2.0 —18.0 —8.0
Final sloution:

device: Airconl 27.0

service: xmlparser.ServiceApi.TestService2 Score: —2.0
service: xmlparser.ServiceApi.TestServicel Score: —18.0
service: xmlparser.ServiceApi.TestService3 Score: —8.0

Total Score: —28.0

B.3 Conflict detection experiment results

This evaluator models the decaying of sound pressure. Furthermore, if the sound has to go
through a wall or a closed conduit, we assume that it suffers a tenfold decrease. The result for
service Noisy is exactly zero, meaning that the estimated intensity is exactly the same as the
requested intensity. Furthermore, we can see how the estimation of sound pressure changed for
the anchor point of service Quiet at position (150, 200, 150). A tenfold drop in sound pressure
translates into almost 20db less sound pressure at the anchor point, thus satisfying the request of
service Quiet.

Area conflict detected: Device Soundl ,Service: Quiet, Effect: 37.95880017344075
Intensity at: xmlparser.Vector3[x=150.0,y=200.0,z=150.0] 18.027737252919753
Intensity at: xmlparser.Vector3[x=450.0,y=200.0,2z=150.0] 50.00004342923105
Final Scores:

—Infinity —Infinity
Final sloution:

device: Soundl true 50.0

device: conl false 0.0

service: Quiet Score: 1.419987888958309
service: Noise Score: —3.7722134409618327E—6
Total Score: 1.4199841167448681

Bibliography

[1] "RERR—LR Y FT—9 D K - EE LR A E (T F=$EE”, pp. 58-
60, REK IP Ry bT—OHET+—F L K—L *y FT—7 WG

[2] Y. Kiyoumi, A task allocation method considering resource availability for providing ser-
vices to Home Network Environment”, Master thesis, 2010

[3] Pattara Leelaprute, "Resolution of Feature Interactions in Integrated Services of Home
Network System”, Proceedings of Asia-Pacific Conference on Communications, 2007

[4] Pattara Leelaprute , Takafumi Matsuo , Tatsuhiro Tsuchiya and Tohru Kikuno, ’Detect-
ing Feature Interactions in Home Appliance Networks”, Ninth ACIS International Con-
ference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Dis-
tributed Computing, 2008

[5] Marios Sioutis Takashi Okada Junya Nakata Junsoo Kim Azman Osman Lim and Yasuo
Tan, ”Area of effect and compromising techniques to improve availability of services in a
home network environment”, IEICE Technical Report, Japan, 2010

[6] L. du Bousquet. “Feature Interaction Detection using Testing and Model-checking — Ex-
perience Report”, World Congress in Formal Methods, France, 1999

[7] M. Calder, A. Miller, “Using SPIN for Feature Interaction Analysis — A Case Study”,
Model Checking Software 8th International SPIN Workshop. Toronto, Canada, 2001

[8] A. Metzger and C. Webel, ’Feature interaction detection in building control systems by
means of a formal product model”, Feature Interactions in Telecommunications and Soft-
ware Systems VII, pp.105-122, 2003

[9] ISO, Information Processing Systems, Open Systems Interconnection, "LOTOS - A For-
mal Description Technique Based on the Temporal Ordering of Observational Behaviour”,
Switzerland, 1989

81

BIBLIOGRAPHY 82

[10] D. Amyot, L. Charfi, N. Gorse et al, “Feature Description and Feature Interaction Analysis
with Use Case Maps and LOTOS”, Sixth International Workshop on Feature Interactions
in Telecommunications and Software Systems FIW ’00, Scotland. 2000

[11] H. Selig, The visual discrimination of intensity and the Weber-Fechner Law, USA, 1924

[12] Theodore L. Turcoy, Bernhard von Stengel, Game Theory, CDAM Research Report LSE-
CDAM-2001-09 , 2001

[13] F. Rossi, P. Van Beek, T.Walsh, Handbook of Constraint Programming, Elsevier, 2006
[14] OSGi Alliance, http://www.osgi.org

[15] Netflix streaming services, http://www.netflix.com

[16] Digital Living Network Alliance (DLNA), http://www.dlna.org

[17] Universal Plug and Play, http://www.upnp.org

[18] ECHONET consortium, http://www.echonet.gr.jp/english/index.htm

[19] Apache Felix, an OSGi R4 Service Platform implementation, http://felix.apache.org

[20] Eclipse Equinox, an OSGi R4 Service Platform implementation,
http://www.eclipse.org/equinox/

[21] Makewave’s Knopflerfish, an OSGi Service Platform implementation,
http://www.knopflerfish.org

