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Abstract

When humans are learning a second language, the presence of keywords in foreign speech
helps the non-native speaker to recognize the subject matter of the conversation and,
consequently, recall the already acquired vocabulary that belongs to the corresponding
topic, thus facilitating the comprehension of the foreign language. Computers are like
non-native speakers when it comes to automatic speech recognition, because they often
misrecognize what they “hear”, so we also expect topic information characterized by
related keywords to aid the recognition process in this case.

Recently, the major target of automatic speech recognition research has shifted from
dictation of document-style sentences to transcription of spontaneous conversational-style
speech. Research in this field is still immature, and the current recognition accuracy is low.
Language models play a crucial role in automatic speech recognition since they provide
effective constraint and preference for possible word sequences. Without language models,
speech recognizers would blindly choose among candidate words without any linguistic
criterion. The most widely used language model is the n-gram model, which models the
occurrence probability of n consecutive words in the text. n-gram models are powerful in
modeling short-distance dependencies between words, but cannot capture long-distance
dependencies because they rely on a word history limited to n — 1 words. This thesis
addresses the trigger-based language model. This model is a good complement of the
n-gram language model, because it incorporates long-distance topic constraints by means
of related keywords, called trigger pairs. Meetings and conversations, which are the main
target of this study, are centered in a topic in many cases, so the trigger pairs could
capture long-distance topic constraints in these tasks. The trigger-based language model
is also insensitive to disfluencies, which are prominent characteristics in conversational
speech, because it focuses on the co-occurrence of topic keywords.

However, reliable statistical estimation is the most critical problem for this kind of
long-distance language model, especially for spontaneous speech, where only a small
amount of training data is available compared with document-style language. This work
proposes two methods to fully exploit the available in-domain data to adapt the trigger-
based language model to conversational speech. Here, task-dependent trigger pairs are
extracted that match more closely the addressed task. In addition, to enhance the relia-
bility of probability estimates derived from the small amount of data, a back-off scheme
that incorporates the statistics from a large corpus is proposed.

Chapter 1 introduces the two main approaches to language modeling and the applica-
tion of statistical language modeling to automatic speech recognition.

Chapter 2 reviews the major language modeling techniques and presents the concept
of the proposed approach. Then, the evaluation measures for language model performance
and the different ways of incorporating long-distance language models are explained.

Chapter 3 presents a trigger-based language model for the transcription of travel ex-
pressions and extemporaneous speeches on given topics. Generally in language model-
ing, when the training corpus matches the target task its size is typically small, and



therefore insufficient to provide reliable probability estimates. On the other hand, large
corpora are often too general to capture task dependency. The proposed approach tries
to overcome this generality-sparseness trade-off problem by constructing a trigger-based
language model in which task-dependent trigger pairs are first extracted from the corpus
that matches the task, and then their occurrence probabilities are estimated from both
the task corpus and a large text corpus to avoid the data sparseness problem. In the
experiments, the perplexity by the proposed model was lower than that by the conven-
tional trigger-based model constructed from one single corpus, and 12.8% lower than the
baseline.

Chapter 4 addresses the trigger-based language model for the transcription of panel
discussions on political and economic issues. Here, the previous approach cannot be used
because of the lack of in-domain training data. In meetings, the topic is focused and
consistent throughout the whole session, therefore keywords can be correlated over long
distances. The trigger-based language model can capture such long-distance dependen-
cies, but the derived trigger pairs are not task-dependent if it is typically constructed from
a large general corpus. The proposed method makes use of the initial speech recognition
results to extract task-dependent trigger pairs and to estimate their statistics. More-
over, the back-off scheme is introduced to exploit the statistics estimated from a large
corpus. The proposed model reduced the perplexity considerably more than the typical
trigger-based language model constructed from a large corpus, and achieved a remarkable
perplexity reduction of 44% over the baseline when combined with an adapted trigram
language model. In addition, a reduction in word error rate was obtained when using the
proposed language model to rescore word graphs.

Chapter 5 concludes the thesis with a summary of contributions and future directions.
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Chapter 1

Introduction

1.1 Motivation

When humans are learning a second language, the presence of keywords in foreign speech
helps the non-native speaker to recognize the subject matter of the conversation and,
consequently, retrieve the already acquired vocabulary that belongs to the corresponding
topic, thus facilitating the comprehension of the foreign language. For example, when
Japanese students of English hear the word “pitcher”, they will immediately recognize
the topic “baseball”, and they will expect words like “catcher” or “base” to come up
afterwards. Figure 1.1 shows another example of conversation in which the topic facilitates
the comprehension of the foreign speech.

Computers can be thought of as non-native speakers when it comes to automatic
speech recognition (ASR), because they often misrecognize what they “hear”, that is the
input speech, so we can expect topic information characterized by related keywords to aid
the recognition process in this case too.

Language models are an important and necessary part of ASR systems, because they
model the linguistic relations among words in the utterance that is to be recognized. With-
out language models, speech recognizers would blindly choose among candidate words
without any linguistic criterion, resulting in ungrammatical and nonsensical sentences in
most cases. The most widely used language model in ASR is the n-gram model. n-grams
model the occurrence probability of n consecutive words in the text, and their param-
eters are estimated from a large text corpus. n-gram models are powerful in modeling
short-distance dependencies between words, but they cannot capture long-distance de-
pendencies such as topic information, because they rely on a word history limited to n —1
words, where n typically ranges from 2 to 4. Nevertheless, it has proved very difficult to
outperform these models, mainly due to their simplicity.

There are some alternative language models that try to overcome this limitation of n-
grams. Examples of those that make use of long-distance topic information are the trigger-
based language model, the cache-based language model, and latent semantic analysis-
based language models. This thesis focuses on the trigger-based language model, which
is capable of capturing long-distance dependencies between words. The trigger-based
language model uses a set of correlated word pairs, known as trigger pairs, to raise the
probability of the words “triggered” by others in the word history. The trigger-based
language model has been mainly applied to the recognition of newspaper tasks, and it has
been typically constructed from large corpora such as newspaper articles. This kind of



| used to go to this resort
on the beach with palm
trees and clear water...

resort,
beach,
palm tree,
water...

| used to go to this resort
on the beach with palm
trees and clear water...

@ @ @ @
—/ —/

Figure 1.1: Example of conversation in which the topic resort facilitates the comprehension
of the words beach, palm, trees, and water.

corpora is usually too general in topic and does not closely match the specific test data,
thus the trigger pairs constructed from them are not task dependent.

Language model adaptation tries to improve language modeling by creating language
models close in style or topic to the target task. In this research, the trigger-based
language model is used to adapt a baseline language model to the target domain by
exploiting the available in-domain data to try to take advantage of topic information
during the speech recognition process.

The following sections 1.2 and 1.3 introduce language modeling in general as well as its
application to ASR. Then, section 1.4 deals with the problems addressed by this research,
and section 1.5 describes the organization of this thesis.

1.2 Language modeling

Language modeling is the attempt to characterize, capture and exploit regularities in
natural language [55]. Natural language is extremely difficult to model formally, due to
its inherent variability and uncertainty.



There are two main approaches to language modeling: statistical language modeling
and knowledge-based language modeling. The statistical approach tries to capture regu-
larities in language from large amounts of text in a process known as training. On the
other hand, knowledge-based modeling uses a set of linguistic rules coded by experts, as
well as domain knowledge, to assess the grammaticality of sentences.

The advantages of statistical language modeling over the knowledge-based approach
are:

e Statistical models assign a probability to each possible sentence, while knowledge-
based models usually only provide a “yes” /“no” answer to the grammaticality of a
sentence. Probabilities convey much more information than such a simple answer.
Moreover, spoken language is often ungrammatical.

e Statistical models can be inexpensively built from a great variety of domains, as
soon as the training procedure has been implemented.

e Coding linguistic rules by hand can be tedious, often incomplete, and sometimes
erroneous.

e At runtime, knowledge-based models like parsers are more computationally expen-
sive than statistical models.

Statistical language modeling has also some disadvantages:

e They do not capture the meaning of the text. Therefore, they may assign a high
probability to nonsensical sentences. Nevertheless, this kind of sentences can be
sometimes found in spontaneous speech due to disfluencies or sudden termination.

e Statistical models require large amounts of training data, which are not always avail-
able. However, these language models can also take advantage of smaller training
sets through language model adaptation.

e Statistical language modeling often do not make use of linguistic and domain knowl-
edge, which sometimes can be very helpful.

Language modeling is useful, and often crucial, in areas like ASR, machine translation
(MT), spelling correction, handwriting recognition, optical character recognition (OCR),
document classification, information retrieval, and any other application that process
natural language with incomplete knowledge.

In this work, statistical language modeling is used for ASR, because it is less expensive
than knowledge-based language modeling and better suited for spoken language tasks,
which is the target of this thesis.

1.3 Language models in automatic speech recogni-
tion

ASR deals with the problem of automatically transcribing speech into text. ASR is
typically performed as follows. First, a preprocessor generates a set of feature vectors
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Figure 1.2: The automatic speech recognition paradigm.

which capture the spectral characteristics of the input speech signal (acoustic waveform)
at discrete time intervals. Then, these feature vectors are passed to the decoder, which,
based on the acoustic and the language model probabilities, searches for the string of
words that best matches these vectors. The result of this search is a list of hypothesized
transcriptions, which is the output of the ASR system. This paradigm is illustrated in
figure 1.2.

The most successful approach to ASR is the statistical one proposed in [2]. The aim is
to find the word sequence W that maximizes the probability of a word sequence W given
the observed acoustic signal A. Applying the Bayes rule:

W= argmvz[}xP(W|A) = argmax P(Agj);;(W)

= argmﬂa/me(A|W)P(W) (1.1)

The calculation of P(A|W) is the role of the acoustic model, whereas the language
model is responsible for the computation of P(WV).

Let W = w? £ wy,w, ..., w,, where the w;’s are the words that make up the word
sequence. P(WW) can be decomposed, by using the chain rule, in the following way:

n

PW) =[] Plwiuwi™) (1.2)

=1

Most statistical language models try to estimate expressions of the form P(w;|H),
where H = w!™" is known as the history.

Since the number of possible histories that can precede a given word is very large, it
is unfeasible to try to estimate the probability of all of them from the limited corpora
that are available. Therefore, some simplification must be applied to the above equation.
Usually, the event space is partitioned in equivalence classes depending on some property
of the history, that is, we use a function ¢(H). As a result, the simplified equation



becomes:

n

P(W) = | [ P(wil¢(h)) (1.3)

i=1

For instance, in the trigram (3-gram) model the partition ¢ is based on the last two words
of the history.

1.4 Problems addressed by this thesis

Recently, the major target of automatic speech recognition research has shifted from
dictation of document-style sentences to transcription of spontaneous conversational-style
speech. Research in this field is still immature, and the current recognition accuracy
rates are low. Therefore, more effort should be devoted to devise new technologies that
contribute to further progress in this field.

Meetings and conversations, which are the main target of this study, are centered
in a topic in many cases, so the trigger-based language model could be used to capture
long-distance topic constraints in these tasks. The trigger-based language model is also
insensitive to disfluencies, because it focuses on the co-occurrence of topic keywords. Dis-
fluencies (filled pauses, repetitions, repairs...) are a kind of phenomenon often found
in spontaneous speech that disrupts the smooth flow of the discourse. They are a se-
rious problem for language modeling, because they can make sentences ungrammatical,
contribute to data sparseness, and make dependencies between words longer.

Although the trigger-based language model seems appropriate for conversational speech,
its reliable statistical estimation is the most critical problem, especially for this kind of
corpora. Conversational text corpora are expensive to produce, as compared to written-
style text corpora, so the available amount of training data is usually insufficient to derive
reliable task-dependent language models.

This work proposes two methods to fully exploit the available in-domain data to
adapt the trigger-based language model to conversational speech. In both methods, task-
dependent trigger pairs that match more closely the addressed task are extracted from the
in-domain data. In the first approach, the available training data is used to extract the
trigger pairs, while in the second approach the initial speech recognition results are used
for this purpose. In addition, to enhance the reliability of probability estimates derived
from the small amount of available data, a back-off scheme that incorporates the statistics
from a large corpus to the model is proposed.

1.5 Thesis organization

The rest of this thesis is organized as follows. First, chapter 2 presents a review of
conventional statistical language modeling techniques. Then, the concept of the proposed
approach is introduced. This is followed by the explanation of the main measures for
language model evaluation and common methods for the incorporation of language models
in the ASR system. Chapter 3 describes the application of the trigger-based language
model to two different conversational speech tasks by obtaining the trigger pairs from the
target corpus and estimating their probabilities from both this task corpus and a large



corpus, and then combining these probabilities by means of a back-off model. Chapter
4 proposes a different adaptation scheme based on the extraction of trigger pairs from
the initial speech recognition results and also a back-off model using the probabilities
estimated from the recognition results and a large corpus. Finally, chapter 5 concludes
this thesis by summarizing and giving future research directions for it.



Chapter 2

Overview

2.1 Introduction

This chapter presents an overview of both the basic language modeling theory and the
proposed approach. First, section 2.2 explains the major language modeling techniques.
Then, the proposed approach is presented in section 2.3. The two most important evalu-
ation measures for language model performance are introduced in section 2.4, followed by
the different integration methods of language models in the ASR system in section 2.5.

2.2 Review of conventional language models

Many different language models have been proposed in the literature. Below is a de-
scription of the most interesting approaches classified by the length of the scope they
cover.

2.2.1 Short distance

Word n-grams

A word n-gram [2] is a model that uses the last n — 1 words of the history as its sole
information source. Typically n equals 2 to 4, and they are called bigram, trigram, and
4-gram models, respectively.

As commented in the previous chapter, n-gram models partition the data into equiv-
alence classes based on the last n — 1 words of the history. Therefore, the following
simplification is made:

P(w;lwy™") = P(w;|wi_p,1) (2.1)

In this way, a bigram estimates P(w;|H) by P(w;|w; 1), a trigram by P(w;|w; 2, w; 1),
and so on.

The probabilities of an n-gram model are estimated from large amounts of text data
by the relative frequency of appearance of the tuple, that is:

N(wi—n—l—la cc Wi, wi)

; i-1 = 2.2
f(w |wz—n+1) N(wi—n-i-la . wi—l) ( )



where N (W) denotes the number of times the tuple W is observed in the training data.

n-grams are affected by the classic modeling trade-off between detail and reliability.
When n is small, the parameters are reliably estimated from the training data, because
the tuples are found easily. However, the modeling power is smaller than for greater
values of n. On the other hand, when n is big, the data are insufficient and the estimates
become unreliable.

Some smoothing techniques such as deleted interpolation [29] or back-off [35, 42] have
been proposed to assign proper probabilities to events that were not seen during training.

Deleted interpolation consists of linearly interpolating an n-gram model with lower-
order n-grams down to the unigram. For example, a trigram probability P (w;|w; 2, w; 1)
may be estimated as:

P(wi|wi72; wiq) = )\3(wz>2, wifl)f(wi|wi72; wifl) + )\2(wi72, wifl)f(wi|wi71)
+ A (wig, wi—) f(wi) + Ao (2.3)

where the history-dependent weights A; are chosen to maximize the likelihood of some
held-out data, and satisfy:

Jj=0

for each history.

Back-off smoothing uses lower-order n-grams with enough evidence to approximate
higher-order n-grams with insufficient evidence. For example, a trigram model is esti-
mated as:

fwi|wi—e, wi_y), if N(wj—2, wi—y,w;) >T
P(wilwi—o, wi—1) = ¢ Qr(wilwi_o, wi_1), if 1 < N(wj_9,w;—1,w;) <T (2.5)
a(w; o, w; 1) P(w;|w; 1), otherwise

where Q7 is a discounting function, 7" is a threshold, and « is the remaining probability
mass for all the unseen w;.

The choice of n in n-grams should depend on the amount of data available. For the
sizes of the corpora typically available nowadays, trigrams own the best balance between
reliability and detail, although interest is gradually moving towards 4-grams and beyond.

n-gram models are easy to implement and easy to interface to the ASR decoder. They
are very powerful and difficult to improve, mainly because of their simplicity. They seem
to capture well short-range dependencies. It is for these reasons that they have become
the standard language models in ASR.

Unfortunately, they also have their drawbacks. First, they are unaware of any phe-
nomenon or constraint that is outside their limited scope. Therefore, they may assign
high probabilities to nonsensical and even ungrammatical utterances, as long as they sat-
isfy local constraints. In addition, the predictors in n-gram models are defined by their
order in the sentence, not by their linguistic properties. Therefore, histories like “the
fireman extinguished the” and “the fireman extinguished quickly the” are very different
for a trigram, even though they are very likely to precede the same word.



Class-based n-grams

Class-based n-grams [7] are n-grams whose parameter space has been reduced by cluster-
ing the words into classes. The n-grams are then based on these classes, rather than the
words themselves.

If it is assumed that each word w belongs to only one class g(w), then this model can
take many forms, for example,

P(wi|H) = P(wi|g(wi—2)ag(wi—1))
P(w;|H) = P(wi|g(w; 2),wi 1)
P(wi|H) = P(g(w;)|g(wi—2), g(wi—1)) P (w;|g(w;))

In practice, it is the last one that is the most used in class-based n-grams.

The clustering method itself can also take many forms. Firstly, the clustering can be
based on the linguistic knowledge. The best known example of this method is clustering by
part of speech (POS). POS clustering attempts to capture syntactic dependencies between
adjacent words in the text. This approach has several problems, though: some words can
belong to more than one POS, POS classifications made by linguists may not be optimal
for language modeling, and there are many different schemes for POS classification.

In second place, in clustering by domain knowledge, all words that will behave in a
similar fashion are manually grouped together. For example, days of the week, numbers,
etc. This approach can be especially helpful when the amount of training data is limited.

Finally, in data-driven clustering, a large amount of data is used to automatically
derive classes by statistical means. This is often better than clustering by hand based on
one’s intuition. However, reliance on data instead of on external knowledge sources can
also be problematic. For example, if the amount of training data available is not large
enough, the resulting classes may not be reliable. The ideal data-driven clustering would
be one supervised by an expert.

Class-based n-grams have advantages over the basic n-grams. Since the possible num-
ber of histories is reduced, the model becomes more compact. Therefore, it could be
expanded to include more context. For example, a class-based 4-gram model might be
approximately the same size as a trigram. In addition, since the number of classes is gen-
erally smaller than the size of the vocabulary, the data sparseness is reduced, and even
if a word n-gram is not found in the training data, the equivalent class-based n-gram is
likely to have been seen. For this reason, these models have been very helpful in situations
where the training data available were limited.

The disadvantage of these models is that they lose some of the semantic information
that word n-grams capture. For example, the word trigram “Sunday school teacher”
captures the semantic relations between Sunday, school, and teacher, which cannot be
captured by class trigrams. This can be partially overcome by constructing language
models that incorporate information from both word and class-based n-grams. A more
important drawback of class-based n-grams is that they do not solve the locality problem
of n-grams.

Mixture-based language models

These models [11, 27] are composed of several language models, each of which is specific
to a particular topic or sub-language. The probability distributions from these component



language models are linearly interpolated to form the global language model probability.
The interpolation weights reflect, at each moment, which component sub-language is
currently being emphasized.

Let My, Ms, ..., M} be the component language models. The overall language model
probability is then

P(wi|H) = \j Py, (w;| H) (2.9)

j=1

where the A;’s are the interpolation weights, with values such that

doa=1 (2.10)

Usually, the first step when creating a mixture-based language model is the clustering:
the training data has to be partitioned in homogeneous components. This can be done
automatically, with some iterative clustering algorithm, or manually, according to the
topic, style of text, etc.

The number of clusters in which the training data should be partitioned is a delicate
matter. A number too small will result in a model incapable of discerning between topics
or linguistic styles in detail. Too large a number will lead to a bunch of undertrained
models with poor probability estimates. It is common that one of the components be the
whole training data, in order to smooth the estimates and avoid data fragmentation.

The next step is typically to construct an n-gram model for each of the constituents.
Then, the interpolation weights can be calculated by using the expectation maximization
(EM) algorithm [18] in such a way as to maximize the likelihood of some held-out data.

These language models are theoretically very attractive and represent a sound ap-
proach to language model adaptation. However, they still have the short-scope limitation
of n-grams, and they have not significantly improved speech recognition accuracy so far.

2.2.2 Intermediate distance
Long-distance n-grams

These models [25] attempt to capture the dependencies between the predicted word and
n — 1-grams that are some distance back in the history. For instance, a distance-2 trigram
predicts w; based on (w;_3,w;_5). Distance-1 n-grams are consequently the conventional
n-grams themselves.

These models have very serious limitations. Even though they capture dependencies
between words that are separated by distance d, they cannot merge training instances
that use different values of d, therefore, they unnecessarily fragment the training data.
In other words, they do not pay attention to the nature of the text in order to decide an
appropriate value for d, but they simply skip the words that are nearer than d words back
in the history.
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2.2.3 Long distance
Cache-based language model

This model [44, 45] is based on the observation that a word that has appeared recently
in the history has a high probability of reappearing.

A cache memory similar to that of computers is used to store the words of recent
appearance. The word probabilities are estimated from their recent frequency of use. If
a candidate word is in the cache, its probability is raised.

Typically, a cache-based component is linearly interpolated with an n-gram language
model:

P(wi| H) = APrace(wil H) + (1 = N Pa_ gram (w; | H) (2.11)

Usually, a cache of the last K words is maintained, and the cache-based probability
of a word is computed as the unigram probability of the word within the cache, that is,

Ncache (wz)

Pcache(wi|H) - K

(2.12)
where Negene(w) is the number of times w appears in the cache.

The original cache-based model was interpolated with a class-based trigram based on
the POS, and a cache of size 200 was maintained for each POS. The interpolation weights
were calculated individually for each POS.

Several extensions have been proposed to this language model, being the most obvious
the addition of the cache-based component to a word-based trigram, rather than a class-
based model [27].

The cache need not be limited to containing single words. Instead, recent bigrams
and trigrams can also be incorporated to the cache and their probabilities boosted [31].
This approach has the problem that the probabilities of n-grams in the cache cannot be
reliably estimated due to the insufficient information contained in several hundred words
back.

Another extension used the idea that the more recent words are more influential in
predicting forthcoming words than those in the more distant past [11]. With this in mind,
an exponentially decaying cache was constructed. This is a cache in which the probability
of the words inside the cache decay exponentially with the distance from the word being
predicted.

The cache-based language model significantly reduces the perplexity of standard lan-
guage models, and some of the extensions mentioned above contributed to a further
improvement in terms of perplexity. However, the same does not apply to recognition
accuracy, which has not been noticeably improved by this model so far. This is because
during the speech recognition experiments the word history is erroneous, so the cache-
based model helps to propagate the errors to the succeeding utterances.

Trigger-based language model

The trigger-based language model [47, 55, 56|, like the cache-based model, also uses a
cache memory of recent words. However, contrary to the original cache-based model,
only “rare” words are incorporated to the cache. A word is defined as rare relative to a
threshold of static unigram frequency.

11
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Figure 2.1: Example of long-distance dependency captured by the trigger-based language
model but not by the trigram model.

In order to extract information from the document history, a basic information bearing
element called trigger pairis used. If a word a is semantically well correlated with another
word b, then a — b is called a trigger pair, with a being the triggering word and b the
triggered word. The occurrence of a in the word history triggers the appearance of b, that
is, if a appears in the text, the model will predict a heightened probability for b.

Figure 2.1 illustrates an example of long-distance dependency captured by the trigger-
based language model but not by the widely used trigram model. In the example, the
trigger pair education — academic is used to help predict academic, a dependency that
falls out of the scope of the trigram model in this case.

The trigger pairs are created from a large text corpus by using the average mutual
information measure between the triggering word a and the triggered word b:

P(bla) oo P(bla)
POb) + P(a,b)log P0)

P@®la) | oo 7o P(bla)
PO + P(a,b) log 20 (2.13)

I(a;b) = P(a,b)log

+ P(a,b)log

Here, @ means “any word different from a”. A high average mutual information indicates
that the appearance of b is highly correlated with the appearance of a.

The model is usually formulated as a constraint of a maximum entropy (ME) frame-
work [17, 28] in which n-grams, long-distance n-grams and so on can also take part as
constraints of the model, although there are works in which linear interpolation is used to
combine the baseline n-gram model with the trigger-based model [73, 74, 80, 5]. In this
thesis we adopt the latter approach, because it is simpler and because ME suffers from
very long training times.

Latent semantic analysis-based language model

Latent semantic analysis (LSA) [16] is an algebraic technique that can be used to infer
the latent semantic relationship among words by means of their co-occurrence in identical
contexts. Given a text corpus 7 of N documents, with a vocabulary V of M words, LSA
defines a mapping between the discrete sets 7 and V and a continuous vector space S.
A document here is a semantically cohesive set of words such as a sentence, paragraph,
newspaper article, etc.
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The first step is to construct a word-document co-occurrence matrix W, with rows
corresponding to words in V and columns to documents in 7", where word order is ignored.
Each element in W is the word count in the corresponding document normalized for
document length and word entropy:

C. .

1
where ¢; ; is the number of times word w; occurs in document d;, n; is the total number
of words present in d;, and ¢; is the normalized entropy of w; in 7, given by:

N
1 Cij Ci i
L= — 2 Jog 22 2.15
¢ IOgN Z ti 8 ti ( )

j=1

where t; = Zj c;,; is the total number of times w; occurs in 7.
The second step is to reduce the dimensionality of the resulting large sparse matrix
by applying order-R singular value decomposition (SVD):

WaW=USVT (2.16)

where Upsy g is a left singular word matrix, Sg«r is a diagonal matrix of singular values,
and Vg is a right singular document matrix. This transformation captures the major
structural associations in W and removes noise. Values of R in the range of 100 to 300 are
typically used for information retrieval. The R-dimensional representations of the word
and document vectors are given by u;S and v;5, respectively, where u; and v; are the
corresponding rows of U and V. Any new document d can be considered as an additional
column of the matrix W, and can be represented as v = d’ U.

In the LSA-based language model [3], the closeness between a word w, and its associ-
ated history, that is the current document so far, represented as d,_, is measured by the
cosine of the angle between u,S/? and v, 5"/

K (wy,dy 1) = cos(uyS1/2), v, 1SY?) (2.17)
Since the range of this distance measure is within [-1,1], we need to transform it to a
probability measure. One way to do this is as follows:
m — cos™ (K (wy|dg-1))
2w, [T = cosTH (K (wydg )]

The LSA-based language model is usually combined with an n-gram model. The
combination proposed in [3] is the following:

Prsa(wgldg—1) = (2.18)

g—1 \ Prsa(wqldg—1)
Pn—gmm(wq|wq—n+1) P(wg)

P(ug| ) =

2.19

Zwiev[Pn—gmm(wi|w3:i+1)%] ( |

The LSA-based language model effectively captures large-span semantic relations
among words and has proved successful in terms of perplexity and word error rate re-
duction. However, strictly speaking it is not a probabilistic model, because it requires
heuristics to compute the probability of an unseen document. Another approach known
as probabilistic latent semantic analysis (PLSA) has been applied to language modeling
to account for this [22]. Here, documents are represented as sets of word occurrence prob-
abilities. The problem with the PLSA-based language model is that it can suffer from the

overfitting problem [72].
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2.3 Proposed approach

2.3.1 Trigger-based language model

This thesis focuses on the trigger-based language model, which is a good complement of the
standard n-gram language model because it effectively exploits long-distance dependencies
by means of related keywords (trigger pairs). Research on trigger-based language models
is insufficient, and they are simpler and easier to implement than other more complex
topic-dependent approaches such as LSA-based language models.

The drawback of trigger pairs is that far more information is contained in self-triggers
(words that trigger themselves) than in any others; even non-self-triggers tend to be trig-
gers with the same stem (e.g. abuse, abused, abusing). Self-triggers are virtually equiva-
lent to the cache-based language model, so the original trigger-based language model does
not significantly outperform the cache-based model. In addition, trigger pairs are usually
constructed from a text window of fixed length with the average mutual information mea-
sure. This window limits the scope of the dependencies that the trigger-based language
model can capture. Therefore, the model captures local topic constraints, rather than
global.

In this research, instead of the average mutual information measure, we use the term
frequency/inverse document frequency (TF/IDF) to extract the trigger pairs from the
whole document, rather than a text window, to capture topic constraints global to the
document.

2.3.2 Transcription of conversational speech

This thesis deals with the automatic transcription of conversational speech. Recently, in
the speech recognition community, the interest has shifted from written language-style
tasks to the recognition of spontaneous speech, which is a field that poses many more
challenging problems. Research in this field is still immature, and the current word
recognition accuracy rates are low, as opposed to dictation systems or written-style tasks.
Therefore, more effort should be devoted to devise new technologies that contribute to
further progress in this field.

So far, the trigger-based language model has been mainly applied to the recognition
of newspaper tasks. In this case, the trigger pairs are constructed from a large newspaper
corpus and the test data consists of some articles read aloud. Spoken language is very
different from written language, but like the latter, the former has also many long-distance
dependencies that we want to capture and conversations are also centered in a topic in
many cases. Therefore, the trigger-based language model could be used to capture long-
distance topic constraints in these conversational speech tasks.

When transcribing conversational speech, however, we find two serious problems for
statistical language modeling: the appearance of disfluencies in speech and the small
amount of available in-domain data.

Disfluencies can be of different types such as filled pauses (e.g. “uh”, “um”), repetitions
(e.g. “II'mean”), and repairs (e.g. “he she doesn’t like it”). Disfluencies can be considered
as noise in the linguistic channel, and they are a serious problem for language modeling,
first because sentences can become ungrammatical, for example by having several subjects
or by ending unexpectedly; second because disfluencies contribute to data sparseness, since
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we could partition the word history into unnecessary equivalence classes (e.g. the trigram
model would have different equivalence classes for “my former job” and for “my former uh
job”); and third because disfluencies can make the dependencies between words longer,
for example when fillers occur between two related words.

The second problem is the small amount of available in-domain data. Contrary to
written style text, there are much less available training data for conversational speech
domains, because it is much more expensive to produce these corpora than those from
newspapers or newswires, for example. The available conversational corpora are usually
insufficient to derive a stand-alone task-dependent language model from them. Recently,
the number of works that use the World Wide Web (WWW) as a source for extracting
training data for language models for conversational speech tasks has been increasing.
However, the extracted web pages are not domain matched, and they must be filtered to
discard out-of-domain text.

The trigger-based language model is insensitive to disfluencies in speech, because it
focuses on the co-occurrence of topic keywords, so it is not affected by the first problem.
As for the second problem, the proposed approach uses the available in-domain data to
adapt the language model to the conversational speech task.

2.3.3 Adaptation scheme

In this study, the language model adaptation scheme is based on the trigger pairs that
are extracted from the available conversational in-domain data. By extracting the trigger
pairs from the in-domain data, contrary to the conventional trigger-based language model
that constructs the trigger pairs from a general large corpus, we can obtain task-dependent
trigger pairs that match more closely the addressed task. In addition, since the probability
estimates derived from the target domain might not be reliable, because the amount of
in-domain data is typically small, a back-off scheme that uses the statistics from a large
corpus is also proposed. In this thesis we propose two different adaptation schemes, which
will be presented in chapters 3 and 4.

In the adaptation scheme presented in chapter 3, the trigger pairs are extracted from
the target corpus, and their probabilities are estimated from both the in-domain data and
the large corpus, resulting in two different sets of trigger pairs, depending on where the
probabilities have been estimated from. We apply this method to two different domains:
a travel expressions task and an extemporaneous speeches task. Both tasks have the
same amount of in-domain training data (3.5M words), which we presume sufficient to
extract task-dependent trigger pairs. However, this amount of data might be insufficient
to derive reliable probability estimates for the trigger pairs. Therefore, we propose a back-
off scheme that backs off to the set of trigger pairs whose probabilities are estimated from
the large corpus when there are no applicable trigger pairs in the trigger set estimated
from the task corpus.

In chapter 4, the target task is the transcription of panel discussions. In this case, the
total size of the available in-domain data is only 134K words, a much smaller size than
that of the tasks addressed in chapter 3. All these data are used as the test set, so actually
there are no available training data. Therefore, we cannot use the previous adaptation
scheme here, because this amount of data is too scarce to obtain the expected quantity
and quality of trigger pairs. Instead, we present an adaptation scheme where the trigger
pairs are extracted and their probabilities estimated from the initial speech recognition
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REF: Parent’s education level affects academic success
HYP: Further education affects an academic success
EVAL: S C D C I C C

Figure 2.2: Example of alignment of hypothesis with reference transcription.

results and from a large corpus, resulting in two different trigger sets, each constructed
from a different source. Here, we also use a back-off scheme to back off to the probabilities
from the trigger set constructed from the large corpus when there are no applicable trigger
pairs in the trigger set constructed from the initial transcription. In addition, we describe
the application of the proposed method to another meeting transcription task.

2.4 Language model evaluation measures

2.4.1 Word error rate

The ultimate evaluation measure of a language model is the one that assesses its perfor-
mance in the particular task for what it was created. In ASR, this measure is the word
error rate (WER). The WER is the rate of erroneous words in the output of the speech
recognizer. Given a reference (correct) transcription and the output of the ASR system,
we align the hypotheses of the output with their respective correct counterparts, and then
we count the number and type of errors.

There are three different types of errors: substitutions, insertions, and deletions. When
a word is misrecognized and a different one is output instead, it is a substitution (S). If a
word appears in a hypothesis but it does not appear in the corresponding acoustic signal,
or it is not a misrecognition of any of the words in this acoustic signal, then it is an
insertion (I). Deletion (D) is the case when a word is skipped during the recognition, that
is, it appears in the observed acoustic signal but it is neither correctly nor incorrectly
recognized; it simply does not appear in the hypothesis.

The WER is defined as follows:

# of errors _S+I+D

WER = =
# of tokens in the reference transcription N

x 100 (2.20)

Figure 2.2 shows the alignment of two sentences with their corresponding errors. The
WER here is WER = 3/6 = 50%.

In order to compare the performance of two difference language models with the WER,
the acoustic model must be fixed and the WER of the system using the two language
models must be compared.

In practice, this measure is not necessarily perfect. In order to reliably measure the
WER, we need to perform recognition experiments with large amounts of test data, which
consumes a great deal of time. Furthermore, the WER depends on complex interactions
among many components, so it is virtually impossible to find analytical expressions for
the relationship between the WER and the values of language model parameters.
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2.4.2 Perplexity

An alternative measure to WER for evaluating the performance of language models is the
perplexity [30]. The perplexity can be interpreted as the branching factor of a language
model, that is the average number of words that will follow a given word history.

Mathematically, the perplexity is derived from the entropy. Let P(x) be the real
probability distribution of x and Py;(x) be the probability estimate of = based on language
model M. The entropy of P(z) is defined as:

Z P(z)log, P(x) (2.21)

Then, the cross-entropy (also called the logprob) of P and Py is:

H(P; Py) = Z P(x)log, Py () (2.22)

The cross-entropy measures the similarity between the distributions P and P;. The
smaller the cross-entropy, the better the language model M approximates P.

If the size of the test text IV is sufficiently large and the language source is ergodic
(i.e. every sufficiently long sentence is equally representative), the previous equation can
be approximated by:

N
1
H(Py) » =~ > logy Pa(wilwy, -+~ wi—y) (2.23)
=1

The perplexity of the text with respect to the model M is finally defined as:
PPL(Py) = 21(Pm) (2.24)

The perplexity depends on both the quality of the language model and the complexity
of the text. For the same text, the model with the lowest perplexity is the better model,
whereas, for the same language model, the text with the highest perplexity is the most
difficult to process. Therefore, a comparison between language models must be made with
respect to the same text, and also the same vocabulary, because smaller vocabularies result
in lower perplexities.

Perplexity is practically a faster way of evaluating the performance of a language
model, but it does not take into account acoustic confusability. Moreover, although WER
and perplexity are well correlated, lower perplexities do not necessarily imply lower WERs,
specially when the reduction in perplexity is low.

2.5 Handling long-distance language models in ASR

2.5.1 The decoder

The decoder is the subsystem of the ASR system that, using the acoustic and language
models, searches for the word string that best matches the input feature vectors. Since
the search space consists of all the possible combinations of word strings, it is necessary
to find some way of reducing the size of this space to make the search feasible. There are
two common techniques to achieve this: path pruning and path merging.
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Figure 2.3: Example of path merging when using a trigram language model.

Path pruning is the method that discards very unlikely paths at a particular time
point. By using this method, the search space can be considerably reduced, but it is
possible that a path very unlikely at an early stage becomes more likely later on, so it
may happen that the best path is pruned from the space, thus leading to a search error.

Path merging is the technique that merges two or more converging paths at some point
and continue the search with only the more likely of the paths, since a path that is less
likely at the point where the paths converge will remain less likely. In order to do this, the
converging paths must have equivalent histories according to the language model being
used. For instance, if a trigram model is used, two paths can be merged if the final two
words in the paths are the same. Figure 2.3 shows an example of path merging with a
trigram model. Long-distance language models cause problems to this decoding scheme,
because it is not possible to merge paths so frequently, and therefore the search space will
probably remain too large.

Moreover, long-distance language models usually require much more memory than a
standard n-gram model, which added to the memory required by the acoustic model can
make it very costly to use these language models during the decoding step.

In order to overcome these problems, there are two alternative methods for integrat-
ing long-distance language models into the speech recognition framework, namely N-best
and word graph rescoring. In these methods speech recognition takes place in two or
more passes. The first pass generally uses a simple language model such as a bigram
to generate a simplified search space. It is hoped that the best hypothesis according to
the final language model is not pruned from this space at this step. The output from
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the first pass usually takes the form of a word graph, which is then rescored with a more
complex language model (typically a trigram or 4-gram) to obtain the final results. These
results consist of an N-best list of hypotheses, which can in turn be rescored with a more
complex language model. These approaches have also the advantage that experiments for
evaluating different language models can be performed without the need of computing
the acoustic scores again.

2.5.2 N-best rescoring

An N-best list is the list of the N most likely hypotheses output by a speech recognizer.
It usually contains for each hypothesis its acoustic score and the language score for each
word.

In the N-best rescoring method, each of the hypotheses in the N-best list is rescored
based on a combination of the scores provided by the speech recognizer and the new lan-
guage model probabilities provided by an alternative (generally more complex) language
model. Then, the hypotheses are reordered based on the new scores and the most likely
hypothesis is presented as the output of the whole recognition process.

N-best rescoring is widely used in language modeling for ASR, because of its easy
implementation and fast evaluation, since only several hundred hypothesis are typically
considered for each sentence. However, as the last possible step for applying a language
model, the search space is much smaller than in previous steps, so the correct hypothesis
is more likely to have already been pruned.

2.5.3 Word graph rescoring

A word graph or lattice is a directed acyclic graph which contains the paths that were
considered more likely by the acoustic and language models during the initial decoding
pass. Each of the nodes corresponds to a hypothesized word boundary, and is associated
with a time, while each arc is labeled with a word and its corresponding acoustic and
language model scores.

Analogously to the N-best rescoring method, in the word graph rescoring technique
the language model scores can be replaced by those from an alternative language model.
Then, we can search through the lattice for the path that is now considered the most
likely.

This approach is preferred to the previous one, even though it is a little more compu-
tationally expensive than N-best rescoring, because the search space is not as constrained
in this case, so we have more chances of finding the correct hypothesis.
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Chapter 3

Trigger-Based Language Model
Construction by Combining
Different Corpora

3.1 Introduction

This chapter presents a novel trigger-based language model adaptation scheme for the
transcription of two different conversational speech tasks that takes advantage of two
distinct corpora.

When training the trigger-based language model, we usually find a fundamental prob-
lem, depending on the nature of the training data. When the trigger pairs are trained
from a large corpus, many of the pairs are not task-dependent, because the corpus is
usually too general. Therefore, the effectiveness of the trigger-based language model is
undermined by the specificity of the target task. On the other hand, when the training
data set is from the same domain as the target task, its size is usually insufficient and the
probability estimates are unreliable.

To overcome this trade-off between generality and sparseness, we propose an approach
that takes advantage of two different corpora to create a trigger-based language model so
that the trigger pairs are dependent on the target task and have reliable estimates.

The rest of this chapter is organized as follows. Section 3.2 describes the proposed
approach in detail. In subsection 3.2.1 the method for extracting the trigger pairs from the
task corpus based on two different measures is explained. Then, the probability estimation
of the trigger pairs from the two different corpora is discussed in subsection 3.2.2, and
the proposed language model is formulated in subsection 3.2.3. Section 3.3 discusses the
application of the proposed approach to a travel expressions task and evaluation in terms
of perplexity and speech recognition accuracy, while section 3.4 deals with the application
and evaluation in an extemporaneous speeches task.

3.2 Proposed approach

Figure 3.1 illustrates the outline of the proposed approach. First, the trigger pairs are
extracted from a text corpus that matches the target task (task corpus). Then the prob-
abilities of the pairs are estimated, based on their co-occurrence frequency within a text
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Figure 3.1: Outline of the proposed approach.

window, from two different corpora: the mentioned task corpus and a large text corpus,
providing us with two different sets of trigger pairs with their corresponding probabilities.
Finally, the resulting trigger-based component is combined with the n-gram component
to produce a new language model.

The proposed model uses a back-off scheme that uses a combination of the probabilities
from the two trigger pair sets when the trigger pairs can be found in the set trained from
the task corpus. Otherwise, the probabilities from the set trained from the large corpus
are used.

By extracting the trigger pairs from the target domain, we solve the generality prob-
lem, while we avoid the data sparseness problem by using the set of trigger pairs whose
probabilities are estimated from the large text corpus.

3.2.1 Extraction of trigger pairs from task corpus

A trigger pair is a pair of content words that are semantically related to each other. Trigger
pairs can be represented as A — B, which means that the occurrence of A triggers the
appearance of B, that is, if A appears in a document, it is likely that B will come up
afterwards.

The trigger pairs are first extracted from a text corpus that matches the target domain.
In this way, we can obtain task-dependent trigger pairs. For the selection of pairs, instead
of the average mutual information used in [47, 56], we adopt two different criteria: the
term frequency/inverse document frequency (TF/IDF) measure [59] and the log likelihood
ratio [19]. We use the former for preliminary experiments because of its simplicity, while
the latter, although more computationally demanding, is used for its powerfulness.
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Extraction based on the TF/IDF measure

The TF/IDF value of a term ¢; in a document D; is computed as follows:

t fir log (N/dfy)
V() log(N/df )

where % f;; is the frequency of occurrence of ¢, in D;, N is the total number of documents,
dfy. is the number of documents that contain ¢, and 7" is the number of terms in D;.

For each document, we create all possible word pairs, including pairs of the same
words (self-triggers), with the base forms and parts of speech (POS) of all the words
with a TF/IDF value above a threshold. POS-based filtering is introduced to discard
function words, as well as a word stop list to ignore words of very frequent appearance.
By using base forms we avoid same-stem triggers (trigger pairs whose component words
have the same stem but different inflection), and we can apply the trigger pair when a
word is presented with any inflected form. For example, in the sentences terebi wo miru
(I watch television) and terebi wo mita (I watched television), it seems reasonable that
the correlation between terebi (television) and miru (to watch) should be used in both
cases. In addition, by using the POS information we distinguish between homonyms with
different POS when applying the trigger pairs. For instance, kaeru (frog) should have a
higher probability of triggering ike (pond) when it is a noun than when it is a verb, in
which case its meaning is “to go back”.

(3.1)

Uik =

Extraction based on the log likelihood ratio

Given a contingency table with the frequency of the following co-occurrence pairs:

a)A+B ¢)-A+B
b)A + =B d)_|A +-B

where A + =B represents the two pairs A — —-B, =B — A formed by A and any word
that is not B, the log likelihood ratio (LLR) of the pair A — B is calculated as follows:

—2loga = 2[aloga + blogb+ clogc+ dlogd — (a + b) log(a + b) — (a + ¢) log(a + ¢)
— (b+d)log(b+d) — (c+d)log(c+d)+ (a+b+c+d)logla+ b+ c+d)]
(3.2)

For each document, we first create all possible pairs with the base forms and POS of
all the words in it, including self-triggers. Again, POS-based filtering and a stop list are
used to remove function words and high frequency words, respectively. Then, we compute
the LLR for each pair and choose the trigger pairs with a ratio greater than a threshold.

3.2.2 Probability estimation from two corpora

The probabilities of the trigger pairs are then estimated from two different corpora by
using a text window to calculate the co-occurrence frequency of the pairs inside it. This
text window consists of the 20 words previous to the one being processed.

The two distinct corpora used are the text corpus that matches the target task and a
large text corpus. The probability estimation stage results in two different sets of trigger
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pairs: the trigger pairs with the probabilities estimated from the task corpus (hereafter

trigger set TC), and the trigger pairs whose probabilities are estimated from the large

corpus (hereafter trigger set LC). The trigger set TC provides a probability distribution

more faithful to the target domain, whereas the trigger set LC offers a more reliable

distribution that can cope with the problem of data sparseness that we discussed above.
The probability of each trigger pair w; — ws is computed as follows:

N(wy, ws)
> N(wi, wy)

where N(w;,ws) denotes the number of times the words w; and wy co-occur within the
text window, and j runs throughout all words triggered by w.

Pl b (wslwy) =

(3.3)

3.2.3 Proposed trigger-based language model

The proposed trigger-based language model is then constructed by linearly interpolating
the probabilities of the trigger pairs with those of the baseline trigram (3-gram) model,
so that both long and short-distance dependencies can be captured at the same time.

The probability of the new language model for a word w; given the word history
H=w,r,---w; 1 £ w; L is computed in the following way:

PLM U}Z|H Z PLM wz|w] (34)
] =i—L
PNG(wZ|wzZ 7lz+1) if P%va(kaj) =0, P%Ig(wl|wj) =0,Vk,l
Pry(wilwy) = ¢ APya(wilwiZ, 1) + (1 = N PES (wilw;), if PG (wy|w;) = 0,k
APy (wi|wiZ} 1) + (1 = N) (0P (wilw;) + (1 — 8) Ph(w;w;)), otherwise
(3.5)

Here L is the number of words in the history H; Py¢ is the probability of the n-gram
component; PLS is the probability of the trigger set TC; PES is the probability of the
trigger set LC; A is the language model interpolation weight; and ¢ is the trigger set
interpolation weight.

When there are no words triggered by h in either of the two sets, the trigram model
alone is used. When there are no trigger pairs for h in the trigger set TC, the trigram
probabilities and the probabilities from the trigger set LC are linearly interpolated. Oth-
erwise, the probabilities of the trigram are linearly interpolated with a linear interpolation
between the probabilities from both trigger sets.

3.2.4 N-best rescoring

The new language model is used to rescore the N-best hypotheses output by a baseline
ASR system. The system provides us with acoustic and language model scores for each
of the words in every hypothesis.

Words in each hypothesis are added in order to a word history buffer, which is cleared
when the hypothesis processing is over. The language model score for each hypothesis is
updated by using this buffer and the previous equations. The hypothesis with the highest
new total score is regarded as the new 1-best sentence.

The number of trigger pairs used during the rescoring process is limited to be those
with a probability above a threshold.
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Table 3.1: Example of trigger pairs extracted from the BTEC.

Triggering word ‘ Triggered word
tounyoubyou (diabetes) menyuu (menu)
tounyoubyou (diabetes) kanja (patient)

sensei (doctor) miru (to examine)
kenpou (constitution) sengo (postwar)
guragura (loose) ha (tooth)

koon (cone) aisukuriimu (ice cream)

koukoku (advertisement) | kouka (effect)
susume (recommendation) | wain (wine)

tai (Thailand) shoo (show)

tegami (letter) ate (addressed to)
nimotsu (baggage) orosu (to unload)
kutsu (shoe) uriba (selling area)
teeburu (table) katazukeru (to tidy up)

3.3 Evaluation in travel expressions task

3.3.1 Corpora and procedure

The Basic Travel Expression Corpus (BTEC) [71] is a conversational text corpus consist-
ing of sentences from many different topics that usually appear in travel conversations. It
is divided in two disjoint sets: training and evaluation. The former contains 467,964 ut-
terances and 3.5 million Japanese morphemes (hereafter words), and the latter comprises
24,682 utterances and 184 thousand words.

The trigger pairs were extracted from the Japanese version of the BTEC. We had to
use the utterance as the document unit, since utterances in this corpus are not related to
each other.

The threshold for the TF/IDF value was chosen to be 0.2 so that the hit rate in the
evaluation corpus of the trigger pairs created with only the POS-based filtering were 20%,
and was empirically tuned later to produce a threshold of 0.15.

The threshold for the LLR was initially chosen to be 10 based on a subjective judgment
of the goodness of the pairs from a sample taken at random, and it was later tuned
empirically, producing the value 2. The hit rate in the evaluation corpus of the trigger
pairs created by using only the POS-based filtering was 19%.

Table 3.1 shows some examples of trigger pairs extracted from the BTEC that were
actually used in the experiments. A bigger list can be found in appendix A.

The probabilities of the trigger pairs were estimated from two different corpora: the
Mainichi Shimbun newspaper corpus and a conversational text corpus extracted from the
WWW [34] (hereafter web corpus). We used 5 years (1991-1995) of articles from the
Mainichi Shimbun corpus, consisting of 130 million words. The web corpus consists of
conversational texts that can be found in the WWW, such as chat logs, and comprises
270 million words, of which we used 122 million words.

Figure 3.2 illustrates a sample from the web corpus. Lines starting with '#’ are
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Figure 3.2: A sample from the web corpus.
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Table 3.2: Experimental setup for the application of the proposed approach to the BTEC.

Test set 1524 utterances (11K words)
ASR system ATRIUMS 2.2

Baseline language model BTEC + Mainichi trigrams
Vocabulary 36K words

OOV rate 0.19%

Number of hypotheses (N) | 100

Baseline word accuracy 87.64%

Oracle word accuracy 94.53%

Baseline perplexity 16

Stop word list threshold 500, 1000, 2000, 3000, 5000

sentence [Ds. It can be seen that some sentences include non-lexical information such as
emoticons (e.g. ‘00 (I, ‘00 00 0"), special characters (e.g. “07), and other emotional
markers (e.g. ‘0 0 07, meaning “sweat”). These items were removed in a preprocessing
step.

3.3.2 Experimental setup

The ASR system ATRIUMS 2.2 [69] was used to output the N-best lists. The size of
the vocabulary was 36K words. This system normally uses a bigram model in a first
stage and a trigram afterwards, in an optional rescoring stage. The BTEC bigram was
used in the first recognition stage, and a linear interpolation between the BTEC and
Mainichi trigrams, with interpolation weights of 0.99 and 0.01, respectively, was used for
the second stage. The test set consisted of 1524 utterances (11K words) taken from the
BTEC evaluation corpus (sets 1, 2 and 3) and the number of output hypotheses N was
100. The baseline perplexity was 16.

We obtained an average word recognition accuracy of 87.64% with this baseline lan-
guage model, and the maximum average recognition accuracy that could be attained by
choosing the best hypothesis from the N-best each time (oracle word recognition accuracy)
was 94.53%.

The experimental setup is summarized in table 3.2.

3.3.3 Perplexity evaluation

We evaluated the perplexity of the proposed language model for different values of the hit
rate of the trigger pairs in the test set, determined by the threshold for the frequency of
the words in the stop list. The values for this threshold were 500, 1000, 2000, 3000, and
5000. We compared the perplexity of the model constructed from both the BTEC and
the web corpus, the model built from the BTEC and the Mainichi Shimbun corpus, and
the one that used only the BTEC, both to extract the trigger pairs and to calculate their
probabilities. We compared these three models for each of the two criteria used for the
extraction of the trigger pairs. For the TF/IDF measure, the number of extracted trigger
pairs varied from 447,060 to 1,052,342 for the first model, from 418,629 to 976,656 for the
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Table 3.3: Topics used in CSJ.

# ‘ Broad topic ‘ Number of files
0 | (Not specified) 222
1 | Joyful memory of my life 137
2 | Sad memory of my life 134
3 | The town I live in 134
4 | This is what I’'m interested in 151
5 | Impressive event of my life 167
6 | Commentary on recent news 152
7 | If I go to an isolated island, I will bring... 101
8 | How to make... 151
9 | History of... 100
10 | My most precious thing/people 100
11 | Things that I want to endow for the 21st century | 150

second one, and from 325,253 to 880,957 for the third one. For the LLR, the number of
extracted trigger pairs varied from 412,678 to 821,093 for the first model, from 388,912
to 767,157 for the second one, and from 300,849 to 668,878 for the third one.

The two criteria gave similar results, and figures 3.3 and 3.4 show the results when
we used the TF/IDF and the LLR criterion, respectively. We can see that the perplexity
did not change significantly in any of the cases. One of the possible reasons for this is
that, since the utterances of BTEC are unrelated to each other, we could not use the
information of the previous sentences for our trigger-based language model. Furthermore,
most utterances in BTEC are short, so it is difficult to extract good trigger pairs from
them.

3.3.4 Rescoring experiments

We then carried out rescoring experiments with the output of the baseline system. We
compared the word recognition accuracy of the models constructed from the BTEC and
the web corpus, the BTEC and the Mainichi Shimbun corpus, and only the BTEC, for
each of the two extraction criteria.

Figures 3.5 and 3.6 show these results. The WER is plotted against the hit rate of the
trigger pairs in the test set. The best word recognition accuracy obtained was 87.71%,
that is, we achieved a global 0.07% improvement when we used trigger pairs based on
the LLR, a stop list threshold of 5000, and the probabilities were computed from the web
corpus.

3.4 Evaluation in extemporaneous speeches task

3.4.1 Corpora and procedure

The Corpus of Spontaneous Japanese (CSJ) [49] is a conversational corpus consisting of
lectures on various academic topics and extemporaneous speeches about different matters
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Figure 3.3: Perplexity against hit rate of trigger-based models for different sets of trigger
pairs extracted from the BTEC with the TF/IDF measure.
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Figure 3.4: Perplexity against hit rate of trigger-based models for different sets of trigger
pairs extracted from the BTEC with the LLR.
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Figure 3.5: Word error rate against hit rate of trigger-based models for different sets of
trigger pairs extracted from the BTEC with the TF/IDF measure.
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Figure 3.6: Word error rate against hit rate of trigger-based models for different sets of
trigger pairs extracted from the BTEC with the LLR.
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Table 3.4: Example of trigger pairs extracted from the CSJ.

Triggering word ‘ Triggered word
machi (town) sumu (to live)

oya (parent) kodomo (child)
mugintou (desert island) | shima (island)
hontouni (really) sugoi (amazing)
haha (mom) chichi (dad)

nihon (Japan) amerika (America)
taberu (to eat) oishii (delicious)
shigoto (job) kaisha (company)
nihongin (Japanese) nihon (Japan)
ryokou (travel) kaigai (abroad)
sensei (teacher) gakkou (school)
byouin (hospital) nyuuin (hospitalization)
daigaku (university) koukou (high school)

Table 3.5: Specification of used corpora.

Corpus name ‘ Contents ‘ Type of language ‘ Size

CSJ Extemporaneous speeches | Spoken language | 3.5M words
Mainichi Shimbun | Newspaper articles Written language | 289M words
Web corpus Chat logs Spoken language | 270M words

such as hobby and travel. We used the extemporaneous speeches, which are 10 to 12
minutes monologues on diverse topics from a list of 12 (table 3.3). The extemporaneous
speeches are divided into 1705 speeches of training data, comprising 3.5 million words,
and 10 speeches of evaluation data, containing 18 thousand words.

The trigger pairs were extracted from the CSJ training data. We used the lecture
as the document unit. The threshold for the TF/IDF value was initially chosen to be
0.015 based on a subjective judgment of the goodness of the pairs from a sample taken
at random, and it was later tuned empirically, producing the value 0.031.

Table 3.4 shows some examples of trigger pairs extracted from the CSJ that were
actually used in the experiments. A bigger list can be found in appendix A.

For estimating the probabilities, we used two different corpora: the Mainichi Shimbun
newspaper corpus and the web corpus. We used 11 years (1991-2001) of articles from the
Mainichi Shimbun corpus, consisting of 289 million words. The whole 270 million words
from the web corpus were used. Being conversational, the web corpus is closer in style
to the CSJ than the Mainichi Shimbun newspaper corpus, so we expected to get better
experimental results with the former. Table 3.5 summarizes the corpora used in this work.

The language model interpolation weight and the trigger set interpolation weight were
empirically tuned to produce the values 0.7 and 0.76, respectively.
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Table 3.6: Experimental setup for the application of the proposed approach to the CSJ.

Test set 10 speeches (18K words)

ASR system Julius 3.4.2

Baseline language model CSJ back-off trigram

Vocabulary 30K words

OOV rate 0.62%

Number of hypotheses (N) 100

Baseline word accuracy 66.76%

Baseline perplexity 74

Stop word list threshold (CSJ) 500, 1000, 2000, 3000, 5000, none
Stop word list threshold (Mainichi Shimbun) | 100000, 200000, 400000, none

3.4.2 Experimental setup

For the CSJ experiments, we used the ASR system Julius 3.4.2 [48]. The size of the

vocabulary was 30K words. We created a word bigram and a back-off trigram from the

CSJ training corpus, and we used the CSJ test set for the experiments. The number

of output hypotheses N was also 100 here. The average word recognition accuracy was

66.76% with this baseline language model. The baseline perplexity in this case was 74.
The experimental setup is summarized in table 3.6.

3.4.3 Perplexity evaluation

We evaluated the test-set perplexity by the proposed language model for different values
of the hit rate of the trigger pairs in the evaluation data, determined by the threshold
for the frequency of the words in the stop list. We compared four different models: the
model that was constructed by using the CSJ and the web corpus (CSJ + Web), the
model constructed with the CSJ and the Mainichi Shimbun corpus (CSJ + Mainichi),
a model that used only the CSJ corpus (CSJ), both to extract the trigger pairs and to
calculate their probabilities, and a model that used only the Mainichi Shimbun corpus
(Mainichi), extracting the trigger pairs from the portion corresponding to year 2001 and
estimating their probabilities from the whole corpus. We did not create a model only
from the web corpus because it is not divided into documents, so it is not suitable for the
TF/IDF computation.

The values of the threshold for the stop list were 500, 1000, 2000, 3000, 5000, and no
stop list, for the first three mentioned models, and 100000, 200000, 400000 and no stop
list, for the last one.

The number of extracted trigger pairs varied from 11,483,557 to 12,048,275 for the
CSJ + Web model, from 11,109,675 to 11,804,186 for the CSJ + Mainichi model, from
3,838,096 to 3,907,486 for the CSJ model, and from 22,774,387 to 23,810,712 for the
Mainichi model.

The results are illustrated in figure 3.7. The highest perplexity reduction was 12.8%.
We can see that the CSJ + Web model and the CSJ + Mainichi model resulted in
very similar perplexity results. Furthermore, the perplexity of the models that used two
corpora was always lower than that of the models that used only one corpus.
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Figure 3.7: Perplexity against hit rate of trigger-based models for different sets of trigger
pairs extracted from the CSJ with the TF/IDF measure.

3.4.4 Rescoring experiments

Next, we performed rescoring experiments with the output of the baseline system. We
compared the word recognition accuracy of the models constructed from the CSJ and the
web corpus, the CSJ and the Mainichi Shimbun corpus, and only the CSJ. The results
are shown in figure 3.8. As can be seen, the model that used both the CSJ and the web
corpus achieved the lowest error rate. The models that used two corpora performed on
average better than the model that used only the CSJ.

3.5 Conclusion

We presented a novel approach to the trigger-based language model based on two different
corpora. Generally in language modeling, when the training corpus matches the target
task, its size is typically small, and therefore insufficient for providing reliable probability
estimates. On the other hand, large corpora are often too general to capture task de-
pendency. The proposed approach tries to overcome this generality-sparseness trade-off
problem by taking advantage of the task corpus in order to obtain task-dependent trigger
pairs, while a large corpus is used to cope with the data sparseness problem.

A significant improvement in perplexity was achieved when using the two corpora for
constructing the model, as compared with the baseline trigram and the models that use
only one corpus. This suggests that the proposed method effectively takes advantage of
the two different information sources to obtain task-dependent trigger pairs with more
reliable probability estimates. In addition, a small improvement in word recognition
accuracy was observed during N-best rescoring.
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Figure 3.8: Word error rate against hit rate of trigger-based models for different sets of
trigger pairs extracted from the CSJ with the TF/IDF measure.

We found out that, contrary to our expectations, the performance of the web corpus
was almost identical to that of the Mainichi Shimbun. The corpus size seems to supersede
the differences in style.

The proposed approach is particularly useful in tasks where large amounts of training
data are not readily available, since we have observed that, with the proposed method,
general corpora such as the Mainichi Shimbun can be used to complement small task
corpora. The applicability of this method will be revisited in chapter 5.
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Chapter 4

Trigger-Based Language Model
Adaptation for Automatic
Transcription of Meetings

4.1 Introduction

As we have seen in the previous chapters, the conventional trigger-based language model
has some limitations. This model has been mostly applied to corpora of newspaper
articles. This kind of corpora are usually too general in topic and do not closely match
the specific test data. Moreover, it has been observed that much of the potential of
trigger-based language models lies in self-triggers. Self-triggers are virtually equivalent to
the cache-based language model, so the original trigger-based language model does not
significantly outperform the cache-based model.

This chapter addresses an effective implementation of the trigger-based language model
mainly targeting at a meeting transcription task to overcome the model’s limitations.
The transcription of meetings and lectures is one of the promising applications of large
vocabulary continuous speech recognition. The subject matter in a meeting is fairly
homogeneous during it, so we can expect to find keywords related in their topic throughout
the whole session. The trigger-based language model could be used to capture these
constraints, but typical large corpora such as newspapers are too general to extract task-
specific trigger pairs and their statistics. On the other hand, the data from a single
meeting session can be used to extract trigger pairs, and we expect that the probabilities
of the trigger pairs can also be estimated from these data.

In the proposed approach, we regard a meeting session as a document unit, and the
trigger pairs are extracted from its initial speech recognition results. The initial tran-
scription, though containing errors, can provide useful information about the topic and
speaking style of the meeting. We introduce several techniques that filter this useful in-
formation from the initial transcription and also exploit a large corpus based on a back-off
scheme. The resultant model is used for rescoring the initial speech recognition results.

The rest of this chapter is organized as follows. Section 4.2 describes the task addressed
in this work, as well as the proposed approach. Section 4.3 deals with the extraction of
trigger pairs from the initial transcription. Then, their probability estimation and an
enhancement based on a back-off scheme using a large corpus are explained in section
4.4. The perplexity evaluation of these models in a panel discussion transcription task
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Table 4.1: Specification of the “Sunday Discussion” corpus.

ID H # Speakers ‘ # Utterances ‘ # Words ‘ Agenda

0624 5 534 14,423 | Reformation of Japanese economy

0805 5 665 15,270 | National budget reformation

0819 5 609 14,828 | Deflation in Japanese economy

0902 8 541 15,147 | Measures against unemployment

0916 6 612 16,128 | Terrorism on 9.11

1118 8 474 15,411 | Employment and recession

1125 5 371 16,130 | Economy stimulus package

1209 5 613 17,150 | Budget for the coming year

1216 5t 559 14,633 | Measures against unemployment

0113 5) 524 14,789 | Economic prospects of the new year
Average 550 15,391 | —

is presented in section 4.5, as well as a further enhancement by combining the model
with n-gram model adaptation. Speech recognition evaluation in this task is portrayed
in section 4.6. Finally, section 4.7 describes the application of the proposed approach to
another meeting transcription task.

4.2 'Trigger-Based Language Model Adaptation

This section describes the addressed task, the corpora used to create the proposed model,
as well as the concept of the proposed approach.

4.2.1 Description of task and corpora

The target task in this work is the transcription of panel discussions from a Japanese TV
program called Sunday Discussion broadcasted by NHK [1]. This program consists of
discussions on current political and economic issues by politicians, economists and other
experts in the field. A specific agenda is given for each session of the discussions. A
chairperson also takes part and prompts the speakers. The duration of each session is one
hour. Ten programs recorded from June 2001 to January 2002 were used in this work.
These programs were chosen arbitrarily to cover diverse topics and a sufficient variety
of speakers. The average number of utterances and words per program is 550 and 15K,
respectively. The total number of words in the test set is 134,405. Figure 4.1 shows the
specification of this corpus.

We also make use of a large corpus of the minutes of the National Diet (Congress) of
Japan [1] from 1999 to 2002. We selected this corpus because of its similarity in topic
with the panel discussion programs, since both corpora mainly deal with politics and
economics. The total number of words in the corpus is 71M. Documents in this corpus
are divided by the kind and date of meetings, and the total number of documents is 2866.
Among them, we select 671 documents from the year 2001 as a portion similar to the test
set. Figure 4.2 shows the description of this corpus.

35



Table 4.2: Categories and number of documents in the National Diet corpus.

Plenary sessions 271
Committees:

Cabinet 98
Internal Affairs and Communications 171
Judicial Affairs 163
Foreign Affairs 100
Financial Affairs 129
Education, Culture, Sports, Science and Technology 136
Health, Labour and Welfare 177
Agriculture, Forestry and Fisheries 127
Economy, Trade and Industry 132
Land, Infrastructure and Transport 149
Environment 82
Security 60
Fundamental National Policies 30
Budget 189
Audit and Oversight of Administration 81
Rules and Administration 323
Discipline in the House of Representatives 6
Others 442
Total 2,866

4.2.2 Proposed approach

Since each session of the discussions focuses on a particular topic, we expect to find
topic-related words during the whole program. In order to capture these long-distance
dependencies, we propose to use the trigger-based language model. This model, however,
is usually trained from large corpora such as newspapers. These corpora are too general
in topic, so the resulting trigger pairs are not task-dependent.

We propose an adaptation paradigm in which the trigger pairs are extracted, and
their probabilities are estimated from the initial speech recognition results. The initial
transcription, although erroneous, contains many of the keywords whose dependencies
we want to model. Therefore, it is a good source for deriving task-dependent trigger
pairs, which we expect to have a significant effect on perplexity and speech recognition
accuracy in a rescoring framework. To the best of our knowledge, this is the first work on
constructing a trigger-based language model from the initial transcription.

This approach, however, poses two problems. The first one is that the size of the
training data, that is, the size of the initial transcription, is much smaller than that of
a large corpus, so it might be insufficient to extract enough trigger pairs and to reliably
estimate their probabilities. The second problem is that, since the initial transcription
contains errors, we may obtain erroneous triggers in addition to correct trigger pairs.
These erroneous trigger pairs can have a harmful effect, increasing the probabilities of
wrong words.

In order to cope with the first problem, instead of extracting the trigger pairs from
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Figure 4.1: Outline of the proposed approach.

a window of fixed length with the average mutual information, we use the term fre-
quency/inverse document frequency measure to find keywords from the whole document,
and then we let any combination of two keywords be a candidate trigger pair. In this
way, not only do we boost the possible number of trigger pairs, but we also capture topic
constraints global to the document. In addition, since the probability estimates derived
from the initial transcription might not be reliable, we propose a back-off scheme that
incorporates statistics from a large corpus to the model.

As for the second problem, we use a confidence measure score to get rid of those trigger
pairs whose component words are not reliable, while we assume that correct trigger pairs
have a greater confidence score and consistently appear throughout the session. In this
way we expect to minimize the number of incorrect trigger pairs.

Figure 4.1 illustrates the outline of the proposed approach. First, ASR is performed
with a standard n-gram as the baseline language model, yielding the initial speech recog-
nition results. The trigger pairs are then extracted and their probabilities are estimated
from the initial transcription, as well as from a large corpus. Finally, the resulting trigger-
based component is combined with the n-gram component to produce a new language
model for the second pass of speech recognition.

4.3 Extraction of Trigger Pairs from Initial Tran-
scription

This section details the extraction of trigger pairs from the initial speech recognition
results.
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4.3.1 Extraction based on TF/IDF instead of mutual informa-
tion

Task-dependent trigger pairs are extracted from the initial transcription, namely the K-
best ASR hypotheses. For the selection of pairs, instead of the average mutual information
(AMI) used in [47, 56], we use the term frequency/inverse document frequency (TF/IDF)
measure [59]. We employ this measure because it is document-based, that is, it lets us
extract the trigger pairs from a whole document, rather than from a text window of the
corpus. In this way, we can capture global constraints from each document. This measure
is also chosen because of its simplicity.
The TF/IDF value of a term ¢; in a document D; is computed as follows:

VL (tf:5)2og(N/df, )1

where tf;; is the frequency of occurrence of ¢, in D;, N is the total number of documents,
dfy. is the number of documents that contain ¢, and 7" is the number of terms in D,.

Since the initial transcription intuitively consists of only one document, the TF part
(tfir and T) is calculated from the K-best hypotheses, whereas the IDF part (N and dfy)
is computed from a fraction of a large corpus similar to the target task.

Vik = (41)

4.3.2 Part-of-speech and stop word filtering

We create all possible word pairs, including pairs of the same words (self-triggers), with
the base forms and parts of speech (POS) of all content words with a TF/IDF value above
a threshold. By regarding any combination of content words as a trigger pair, even though
the size of the initial transcription is small, we obtain a large list of candidate trigger pairs.
By using base forms we avoid same-root triggers, and we can apply the trigger pair when a
word is presented with any inflection, while by using the POS information we distinguish
between homonyms with different POS when applying the trigger pairs.

POS-based filtering is introduced to discard function words, and a stop word list with
the most frequent words is used to ignore them during the extraction.

Table 4.3 shows some examples of trigger pairs extracted from the initial transcription
of the target task that were actually used in the experiments. A bigger list can be found
in appendix A.

4.3.3 Filtering with confidence score and large corpus

In order to minimize the adverse effect of erroneous trigger pairs, we introduce two meth-
ods to get rid of as many incorrect triggers as possible. First, we use the confidence score
that is provided by the ASR system to eliminate the trigger pairs whose component words
have a confidence score lower than a threshold.

Then, we compare the trigger pairs extracted from the initial transcription with pairs
extracted from a large corpus, and we discard the trigger pairs which are not present in
the second set.

With these methods, we can extract reliable trigger pairs, which are matched to the
target domain.
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Table 4.3: Example of trigger pairs extracted from the initial transcriptions of Sunday
Discussion.

Triggering word ‘ Triggered word
roudou (work) shifuto (shift)

ame (rain) kasa (umbrella)
shishutsu (expenses) kyasshu (cash)
juutaku (housing) yachin (rent)
isuramu (Islam) shuukyou (religion)
mukashi (past) Juurai (former)
sodateru (to bring up) | kyouiku (education)
risuku (risk) kaihi (avoidance)
teate (allowance) kyuufu (payment)
kokusai (international) | seiji (politics)

4.4 Probability Estimation and Back-off Method

This section describes the probability estimation of the trigger pairs from the initial
transcription, as well as a back-off scheme to incorporate trigger-based statistics derived
from a large corpus.

4.4.1 Probability estimation from initial transcription

The probabilities of the trigger pairs are estimated from the K-best ASR hypotheses by
using a text window to calculate the co-occurrence frequency of the pairs inside it. Given
a trigger pair w; — wy, this text window consists of the L words preceding ws.

The probability of each trigger pair is computed as follows:

N(wy, ws)
> N(wi, wy)

where N(w;,ws) denotes the number of times the words w; and wy co-occur within the
text window, and j runs throughout all words triggered by w.

Pl b (ws|wy) =

(4.2)

4.4.2 Proposed trigger-based language model

The proposed trigger-based language model is then constructed by linearly interpolating
the probabilities of the trigger pairs with those of the baseline n-gram model, so that both
long and short-distance dependencies can be captured at the same time.

The probability of the proposed language model for a word w; given the word history

H=wi_p, - w_ = wf:i is computed in the following way:
=
Pra(wi|H) = E;:L Ppar(wiw;) (4.3)
Pyg(wilwiZy.y), if Plp(wilw;) = 0,Vk

Prar(wilw;) = { APyl wl|wZ 71L+1) +(1— )\)P%ITJ(w”wj), otherwise
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Here L is the number of words in the history H; Py¢ is the probability of the n-gram
component, which uses only the last n —1 words of H (i.e. n < L); P}L is the probability
of the trigger-based component, computed by equation (2); and X is the language model
interpolation weight. When there are no words triggered by w;, the n-gram model alone is
used. Otherwise, the n-gram probabilities are linearly interpolated with the probabilities
from the trigger pairs.

4.4.3 Back-off method using statistics from large corpus

Since the amount of data provided by the initial transcription may be insufficient to obtain
reliable probability estimates, a back-off scheme is introduced to combine the proposed
model with the statistics estimated from a large corpus.

Another set of trigger pairs is extracted with the TF/IDF measure from a fraction of
the large corpus similar to the target task. Then, the probabilities of the trigger pairs
are computed from the whole corpus. We demonstrated in the previous chapter that the
method that selects trigger pairs from a matched corpus and estimates their statistics with
a larger corpus is effective. The resulting trigger pairs are similar to those used in the
conventional trigger-based language model, except that the trigger pairs presented here
are derived with the TF/IDF measure, instead of the AMI, and that they are extracted
from a matched portion of the large corpus, instead of from the whole training set.

Then, we make use of this model to complement the proposed trigger-based language
model described in section 4.4.2. We have two different sets of trigger pairs: the trigger
pairs constructed from the initial transcription (hereafter trigger set IT), and the trigger
pairs extracted from the large corpus (hereafter trigger set LC). The trigger set I'T provides
a probability distribution more faithful to the target domain, whereas the trigger set LC
offers a more reliable distribution that can cope with the problem of data sparseness that
we discussed in the previous chapter.

The probability of the enhanced language model based on the back-off scheme is
calculated in the following way:

Py (wi|w}=, ), if PEp(wy|ws) = 0, PEE (wi|w;) = 0,Vk, 1
Ppo(wilw;) = $ APya(wi|w;—, 1) + (1 = M) PES (wilw;), if PAG(wilw,) = 0,Vk
APya(wilwi=) 1) + (1 = X) (§PES (wiw;) + (1 — 0) Pfh (w;|w;)), otherwise
(4.5)

Here, Py is the probability of the n-gram component; PJL is the probability of the trigger
set, IT; PES is the probability of the trigger set LC; ) is the language model interpolation
weight; and 0 is the trigger set interpolation weight. When there are no words triggered
by w; in either of the two trigger sets, the n-gram model alone is used. When there are
no trigger pairs for w; in the trigger set IT, the n-gram probabilities and the trigger set
LC probabilities are linearly interpolated. Otherwise, all language models are linearly
interpolated.

Note that if the trigger set IT is empty, that is, if we do not use the trigger pairs
extracted from the initial transcription, the resulting model (first two entries in equation
(4)) is similar to the conventional trigger-based language model, that is, a model whose
trigger pairs are constructed from a large corpus. The differences are those we have just
discussed. Hereafter we call this model the quasi-conventional trigger-based language
model.
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Table 4.4: Experimental setup.

Test set 10 programs (15K words each)
ASR system Julius 3.5-rc2

Baseline language model | CSJ + National Diet trigrams
Acoustic model Triphone HMM from CSJ
Vocabulary 30K words

OOV rate 1.56%

Baseline word accuracy | 55.2%

Oracle word accuracy 76.5%

Baseline perplexity 150

4.5 Perplexity Evaluation

In this section we present the experimental evaluation of the proposed language model by
test-set perplexity.

4.5.1 Experimental setup

The ASR system Julius 3.5-rc2 [39] was used for speech recognition. The baseline language
model was a linear interpolation of word trigram models constructed from the Corpus of
Spontaneous Japanese (CSJ) [49] (3.5M words) and the minutes of the National Diet of
Japan (71M words) with an interpolation weight of 0.5. The size of the vocabulary was
30K words, and the out-of-vocabulary (OOV) rate was 1.56%. The acoustic model was
a shared-state triphone HMM trained with the CSJ [38]. The average word recognition
accuracy with this baseline model was 55.2%. We obtained this relatively low accuracy
because the utterances are truly spontaneous and often uttered very fast.

The minutes of the National Diet from the year 2001 (17M words) were used for
calculating the IDF part used in the trigger pair extraction of the set IT and also to
extract the trigger pairs of the set LC.

The experimental setup is summarized in table 4.4.

4.5.2 Parameter optimization

The parameters of all models were optimized by 2-fold cross-validation. The test data
were divided into two and the first 5 TV programs were used to empirically tune the
parameters used in the evaluation of the other 5 programs and vice versa. The parameters
were optimized by means of the perplexity.

The optimal language model interpolation weight A was, for each half, 0.55 and 0.56 for
the proposed trigger-based model (equation (3)), 0.66 and 0.67 for the quasi-conventional
model (equation (4) without last entry), and 0.55 and 0.57 for the back-off method (equa-
tion (4)). The value of A is larger for the quasi-conventional model than for the proposed
models, because the trigger pairs are not task-dependent in the former model and, there-
fore, less beneficial in the interpolation.

The resulting optimal trigger set interpolation weight 6 was 0.06 and 0.08, the word
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Figure 4.2: Perplexity of the proposed trigger-based language model for different values
of the number of hypotheses K.

history size L. was 25 and 28. The optimal number of hypotheses from the initial tran-
scription K used for extracting the trigger pairs and estimating their likelihood was 2 for
the two halves. Finally, the threshold for the TF/IDF value was 0.0005.

Figures 4.2, 4.3, 4.4, and 4.5 show the perplexity for different values of K, L, 4, and
A, respectively. We can see that the perplexity is not sensitive to the first three values,
and that the perplexity changes smoothly with the language model interpolation weight
A

Table 4.5 summarizes the results of parameter optimization.

In the experiments of perplexity evaluation, it turned out, after optimization, that
the best performance was obtained when filtering with stop words, confidence score, and
large corpus were not incorporated.

4.5.3 Experimental results

We evaluated the test-set perplexity for the 10 programs by three different models: the
quasi-conventional trigger-based model using only a large corpus (LC), the proposed
trigger-based language model using only the initial transcription (IT), and the back-off
method (IT+LC). For reference, we also evaluated the model constructed by deriving the
trigger pairs from the correct transcription.

The perplexity and its reduction averaged over the 10 programs are shown in Table
4.6. The proposed language model (IT) achieved a reduction of 30.66% over the baseline,
much greater than the reduction obtained with the quasi-conventional model (LC). This
demonstrates the effectiveness of the proposed approach.

The back-off method improved the perplexity slightly, but not significantly. This
suggests that the initial transcription provides trigger pairs that are much more adapted
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Figure 4.3: Perplexity of the proposed trigger-based language model for different values
of the history size L.

110 - . . . .
100 Back-off model (IT+LC) —©&—

108 | .
107 ]
106 1
105 1
104 | .
103 | .
102 t C—65—6——0 OO -
101 ]

100 1 1 1
0.02 0.04 0.06 0.08 0.1 0.12 0.14

Interpolation weight 6

Perplexity

Figure 4.4: Perplexity of the proposed trigger-based language model for different values
of the interpolation weight ¢.

43



110 . . . . . . .
100 Initial transcription (IT) —©—

108 r 1
107 r 1
106 r 1
105 r 1
104 r 1
103 r 1
102 1
101 1

100 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09

Interpolation weight A

Perplexity

Figure 4.5: Perplexity of the proposed trigger-based language model for different values
of the interpolation weight \.
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Figure 4.6: Perplexity improvement by the back-off model over the proposed trigger-based
language model (IT) for different sizes of the initial transcription.
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Table 4.5: Results of parameter optimization.

Parameter ‘ Optimal value

Language model interpolation weight () gggz 82; E%T?L’L%?E), 0.56 (IT);
Trigger set interpolation weight (¢) 0.06, 0.08

Word history size (L) 25, 28

Number of hypotheses from IT (K) 2

Threshold for TF/IDF 0.0005

Table 4.6: Perplexity evaluation of trigger-based language models constructed by different
methods.

Model | Perplexity | Reduction (%)
Baseline trigram 150 -

Large corpus (LC) 121 19.33
Initial transcription (IT) 104 30.66
Back-off model (IT+LC) 102 32.00
(cf.) Correct transcription 73 51.33

to the task than those constructed from the large corpus, so the benefit obtained from
the latter is minimal. We expect that the proposed back-off scheme can be useful when
the initial transcription is smaller in size. In order to support this claim, we calculated
the perplexity improvement of the back-off model (IT+LC) over the proposed model
constructed from the initial transcription (IT) for different sizes of the transcription.
Figure 4.6 shows the results. We can see that the smaller the initial transcription, the
better effect of the back-off method, as we expected.

The perplexity reduction by the proposed method was smaller than that obtained with
the model that used the correct transcription. The baseline word recognition accuracy is
55.2%, meaning that about half of the initial transcription is erroneous, so the results are
consistent with this fact.

We also constructed a trigger-based language model from the initial transcription by
using the AMI [47, 56], instead of the TF/IDF measure. The perplexity was 104, which
is comparable to that obtained when using the TF/IDF measure. It was observed that
more trigger pairs were extracted by the TF/IDF measure, so we expect that this measure
should be more effective for shorter discussions. In order to investigate this, we computed
the perplexity improvement of the proposed method that uses the TF/IDF measure over
the conventional method that uses the AMI for different sizes of the initial transcription.
Figure 4.7 illustrates the results. We see that for smaller transcriptions the proposed
method performs better than the conventional method based on the AMI.

Unlike the conventional works on the trigger-based language model, where trigger
pairs are extracted by using a text window, the proposed approach extracts the trigger
pairs from the whole discussion to capture global topic constraints. We compared these
two approaches by creating trigger pairs by using a text window and comparing the
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Figure 4.7: Perplexity improvement by the TF/IDF method over the AMI for different
sizes of the initial transcription.

Table 4.7: Comparison of perplexity reductions for correctly recognized words and incor-
rectly recognized words.

Class of words | Model | Perplexity | Reduction (%)
. Baseline 75 -
Correctly recognized words T 19 3166
. Baseline 408 -
Incorrectly recognized words T 508 56.06

perplexity reductions by this method and the proposed approach. The window size was
optimized by the method explained in section 4.5.2, and the resulting optimal value was
8. The perplexity reduction by the trigger pairs constructed with the text window was
26%, lower than that obtained with the proposed approach. This proves that global topic
constraints are more effective than local constraints in this task.

We also investigated the improvements for correctly recognized words and incorrectly
recognized ones in the initial transcription. The average perplexity for correctly recognized
words was 75 by the baseline model and 49 by the proposed model, whereas, for the
incorrectly recognized words, the perplexity was 408 and 298, respectively. That is, we
obtained a reduction of 34.66% for the correctly recognized words and an also significant
26.96% reduction for the incorrectly recognized ones. The fact verifies that the perplexity
was also improved significantly for incorrect words, showing a potential of improvement
in speech recognition accuracy. Table 4.7 illustrates this comparison.

The average number of trigger pairs was 128K in the trigger set IT, 9158K in the
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Table 4.8: Number of used pairs and perplexity reductions when using only self-triggers
and non-self-triggers from the initial transcription.

Model | Number of used pairs | Perplexity | Reduction (%)
Baseline trigram - 150 -
Initial transcription (IT) 26K 104 30.66
Only self-triggers from IT 606 141 6.00
Only non-self-triggers from I'T 26K 105 30.00

trigger set LC, and 71K from the correct transcription. The average hit rate of the
trigger pairs in the test set was 31% for the first case, 33% for the second, and 35% for
the third. We can see that the set IT efficiently covers the test set with a much smaller
number of trigger pairs than the set LC. This is because the pairs from the set LC are
not task-dependent. The back-off method had slight impact on the perplexity because
the hit rate by using the set LC is only a little greater than that by the set IT.

The model constructed from the initial transcription (IT) used 606 self-triggers on
average during the perplexity evaluation, while 26,555 non-self-triggers were used. The
average perplexity when using only non-self-triggers was 105, very similar to that obtained
when using all the trigger pairs, while the perplexity was 141 when using only self-triggers.
Therefore, most of the perplexity reduction is due to non-self-triggers. This is a significant
difference with the conventional works on trigger-based language models, where non-self-
triggers offered little benefit over self-triggers. In contrast to previous works, the trigger
pairs in the proposed approach are task-dependent and make a better match for the target
task. We can see these results in table 4.8.

4.5.4 Comparison and combination with n-gram model adapta-
tion

Next, we use the initial transcription also to create an adapted n-gram language model in
order to compare its performance with that of the proposed approach. We then combine
this with the proposed model for further improvement.

We take the J-best hypotheses from the initial transcription for creating a back-off
n-gram model. A trigram model was constructed from each of the 10 test sets, and then
interpolated with the baseline trigram model. The value J was optimized with the method
discussed in section 4.5.2, yielding the value 10.

The resulting interpolated trigram was then combined with the trigger-based language
model. Table 4.9 shows the results of the perplexity evaluation. The perplexity reduction
by the n-gram adaptation is smaller than that by the proposed trigger-based adaptation,
and their combination achieved a notable maximum perplexity reduction of 44% over the
baseline trigram model. Although the improvement is not additive, the n-gram model
adaptation serves as a good complement for the proposed approach.

Figures 4.8 and 4.9 show the perplexity by several of the constructed language models
for each of the topics (test discussions) and speakers, respectively. As can be observed,
the results are fairly consistent across the different topics and speakers.
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Figure 4.8: Perplexity evaluation of reference and proposed trigger-based language models
among different topics.
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Figure 4.9: Perplexity evaluation of reference and proposed trigger-based language models
among different speakers.
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Table 4.9: Perplexity evaluation of the adapted n-gram and its combination with the
proposed trigger-based language model.

Model | Perplexity | Reduction (%)
Baseline trigram 150 -
Adapted trigram 119 20.66
+Initial transcription (IT) 87 42.00
+Back-off model (IT+LC) 84 44.00

4.6 Speech Recognition Evaluation

This section presents a scheme for rescoring word graphs by the proposed language model
and the experimental results in terms of speech recognition accuracy.

4.6.1 Word graph rescoring

The ASR system Julius generates a word graph with acoustic, language, and confidence
scores for each node. The experimental setup is the same as in section 4.5.1.

Then, we use a stack decoding search for parsing the word graph to find the most
likely sentence hypothesis [36]. During the search, we use the proposed trigger-based
language model to recalculate the language model scores, by discounting the baseline lan-
guage model probability from the per-node combined score and then adding the proposed
language model probability. The word history is formed with the 1-best hypotheses of
the preceding utterances and with the words that make up the partial path in the current
utterance.

4.6.2 Experimental results

We evaluated the word error rate (WER) for each of the 10 programs of the test set. In this
section, filtering with stop words, confidence score, and large corpus were incorporated.
Here also, we conducted the two-fold cross validation described in section 4.5.2. The
resulting confidence threshold was, for each half of the test set, 0.04 and 0.06, the frequency
threshold for the stop word list was 200 for the two halves, and the average word history
size was changed to 44 and 42.

Figure 4.10 shows the results obtained by the adapted trigram model, the proposed
language model (IT), and those by the model constructed from the correct transcription.
We obtained a relative 0.98% improvement in WER for the proposed language model.
This improvement, although small, is statistically significant, with a p-value of 0.022.
The adapted trigram achieved a relative 0.43% improvement, also comparatively smaller
than its perplexity reduction.

We also examined the WER when using the AMI instead of the TF/IDF measure,
and we obtained no significant difference.

In addition, we investigated the WER when the confidence score filtering and the large
corpus filtering were alternatively used. When only the large corpus filtering was used,
we obtained a 0.91% improvement over the baseline, while when only the confidence score
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Figure 4.10: Word error rate improvement by the proposed trigger-based language model.

filtering was used, the improvement was 0.9%, as compared with the 0.98% improvement
when using both filtering methods. Therefore, the two filtering methods have some effect
in reducing erroneous trigger pairs. We can see this in table 4.10. Here, we compared
the trigger pairs that were actually used during the rescoring experiments with those
extracted from the correct transcription. In order to decide if the used trigger pairs were
correct or incorrect, trigger pairs that did not appear in the list of pairs extracted from the
correct transcription were labeled as incorrect. We can see in the table that the proposed
filtering methods helped reduce the proportion of incorrect trigger pair entries from above
71% to around 56%, although some correct trigger pairs were also discarded.

The reasons why the obtained improvement in WER is much smaller than the perplex-
ity reduction by the proposed language model are presumed as follows. First, as shown
in figure 4.11, the proportion of incorrect trigger pairs used during the rescoring experi-
ments (around half of them) is much greater than that during the perplexity experiments
(less than 2%), where incorrect trigger pairs have little effect. Figure 4.11 compares the
WER obtained by the proposed model with that obtained by the model that only uses
correct triggers, whose relative WER reduction was 2.6%. Second, although the reduction
in perplexity for incorrectly recognized words is significant, the perplexity value is still
very large (reduced from 408 to 298), so it is hard to improve the recognition accuracy.
Third, when we calculate the perplexity, the word history does not contain any errors,
so the predictors are much better than those used in the speech recognition experiments.
Conversely, the word history contains errors during the word graph rescoring, thus a his-
tory size greater than that used in the perplexity evaluation was needed. Finally, the
word graph we rescore has the apparent limitation that the correct words might not be
in any of the nodes. We expect that a re-decoding scheme with the adapted model would
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Table 4.10: Distribution of correct and incorrect trigger pairs used during the rescoring
experiments when confidence score filtering and large corpus filtering were used and not.

Large corpus . . .
Confidence score filtering Class of triggers | Entries | Count | Proportion (%)
0 N Correct, 9504 35582 | 28.29 | 36.36
© Incorrect 24086 | 62264 | 71.71 | 63.64
Correct, 8915 35152 | 35.42 | 44.44
0.04 /0.06 No Incorrect 16251 | 43940 | 64.58 | 55.56
0 N Correct 7870 31757 | 38.66 | 47.36
s Tncorrect 12487 | 35297 | 61.34 | 52.64
Correct 7441 30290 | 43.91 | 52.88
0.04 /.0.06 Yes Tncorrect 0505 | 26987 | 56.00 | 47.12

Table 4.11: Distribution of the total number of extracted correct and incorrect trigger
pairs and of those used during the perplexity and speech recognition experiments.

| Class of triggers | Entries | Count | Proportion (%)

Total bair Correct 31253 - 24.23 -

otal pairs Tncorrect 97727 T 7577 3
. . . Correct 14848 | 26716 | 97.37 | 98.36
Pairs used in PPL experiments Thcorrect 107 146 563 164
. . . Correct 7441 | 30290 | 43.91 | 52.88
Pairs used in WER experiments Tncorrect 9505 | 26987 | 56.00 | 47.12

realize a greater improvement as shown in [1, 50], whose perplexity reductions are much
smaller than the one obtained in this work, and where n-gram adaptation had a significant
improvement in re-decoding. With the correct transcription, the relative WER improve-
ment was 4.07%, much greater than that obtained with the initial transcription, so we
anticipate better results in tasks with higher baseline ASR performance.

4.7 Application to the National Diet Corpus

In this section we apply the proposed approach to the National Diet corpus, and present
perplexity and speech recognition evaluation results.

4.7.1 Task and procedure

The target task here is the transcription of the National Diet (Congress) of Japan [1].
One session divided into three chunks of two hours were used as the test data, totaling
63929 words, with an average number of utterances and words per data set equal to 100
and 21K, respectively.

Topics in the National Diet change abruptly during the sessions, so instead of extract-
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Figure 4.11: Word error rate improvement by the trigger-based language model that uses
only correct trigger pairs.

ing the trigger pairs from the whole session as we did in the panel discussions task, here
trigger pairs are extracted by using a text window. In this way we can capture local topic
constraints and construct a model more robust to sudden topic shifts. Apart from this
change, the trigger-based language model was constructed as in the previous task.

Table 4.12 shows some examples of trigger pairs extracted from the initial transcription
of the target task that were actually used in the experiments. A bigger list can be found
in appendix A.

4.7.2 Perplexity evaluation

The experimental setup is similar to that used in the previous task, and it is summarized
in table 4.13. This time, the baseline word recognition accuracy is 68.5%, higher than the
55.2% obtained for the panel discussions task, and the perplexity is 125, lower than the
value 150 obtained for the previous task. Since the initial transcription this time has less
errors than that of the previous task, and the perplexity is lower, we expect to achieve
better results both in terms of perplexity and speech recognition accuracy.

The parameters of all models were optimized by leave-one-out cross-validation. One
of the data sets was used as the test data and the other two were used to empirically tune
the parameters of the models. This was repeated until all the three data sets were used
as the test data.

The optimal language model interpolation weight A was 0.6 for the proposed trigger-
based model (equation (3)), 0.66 for the quasi-conventional model (equation (4) without
last entry), and 0.55 for the back-off method (equation (4)). The resulting optimal trigger
set interpolation weight § was 0.1, the word history size L. was 20. The optimal number
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Table 4.12: Example of trigger pairs extracted from the initial transcription of the Na-

tional Diet.

Triggering word

‘ Triggered word

keikaku (plan)

kaihatsu (development)

iraku (Iraq)

heiki (weapon)

rachi (abduction)

kitachousen (North Korea)

heiki (weapon)

sensou (war)

nenkin (pension)

okane (money)

chochiku (savings)

toushi (investment)
sekiyu (petroleum)

enerugii (energy)

shigen (resource)

kankyou (environment)

shiberia (Siberia)

roshia (Russia)

gasu (gas) saharin (Sakhalin)

Table 4.13: Experimental setup.

Test set

ASR system

Baseline language model
Acoustic model

One session divided into 3 data sets (21K words each)
Julius 3.5-rc2

CSJ + National Diet trigrams

Triphone HMM from CSJ

Vocabulary 30K words
OOV rate 1.45%
Baseline word accuracy | 68.5%
Baseline perplexity 125

of hypotheses from the initial transcription K used for extracting the trigger pairs and
estimating their likelihood was 3. Finally, the threshold for the TF/IDF value was 0.0005.
Table 4.14 summarizes the results of parameter optimization.

In the experiments of perplexity evaluation, it turned out, after optimization, that the
best performance was obtained when stop word list, confidence score, and large corpus
filtering were not incorporated.

We evaluated the test-set perplexity for the three data sets by three different models:
the quasi-conventional trigger-based model using only a large corpus (LC), the proposed
trigger-based language model using only the initial transcription (IT), and the back-off
method (IT+LC). For reference, we also evaluated the model constructed by deriving the
trigger pairs from the correct transcription.

The perplexity and its reduction averaged over the three data sets are shown in Table
4.15. These results are similar to those obtained for the Sunday discussion task. The pro-
posed language model (IT) achieved a reduction of 32.80% over the baseline, much greater
than the reduction obtained with the quasi-conventional model (LC). This demonstrates
the effectiveness of the proposed approach. As in the previous task, the back-off scheme
improved the perplexity slightly.

Figure 4.12 shows the perplexity by several of the constructed language models for
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Table 4.14: Results of parameter optimization.

Parameter ‘ Optimal value

Language model interpolation weight (A) | 0.66 (LC); 0.6 (IT); 0.55 (IT+LC)
Trigger set interpolation weight (0) 0.1

Word history size (L) 20

Number of hypotheses from IT (K) 3

Threshold for TF/IDF 0.0005

Window size 8

Table 4.15: Perplexity evaluation of trigger-based language models constructed by differ-
ent methods.

Model | Perplexity | Reduction (%)
Baseline trigram 125 -

Large corpus (LC) 101 19.20
Initial transcription (IT) 84 32.80
Back-off model (IT+LC) 83 33.60
(cf.) Correct transcription 60 52.00

each of the data sets of the National Diet. As can be observed, the results are fairly
consistent across the different test data.

We also investigated the perplexity improvements for correctly recognized words and
incorrectly recognized ones. The average perplexity for correctly recognized words was
96 by the baseline model and 64 by the proposed model, whereas, for the incorrectly
recognized words, the perplexity was 273 and 184, respectively. That is, we obtained
a reduction of 33.33% for the correctly recognized words and a 32.60% reduction for
the incorrectly recognized ones. Table 4.16 illustrates this comparison. In this case,
the perplexity reduction for incorrectly recognized words was very similar to that for
correctly recognized words, and better than in the previous task. Since we are using
longer initial transcriptions than in the previous task (21K words vs. 14K words), we end
up with better probability estimates for the trigger pairs, thus the greater reduction for
incorrectly recognized words. As a matter of fact, the average trigger probability for this
task was 0.037, while it was 0.013 for the previous task.

4.7.3 Speech recognition evaluation

We evaluated the WER for each of the three test data sets. In this section, filtering
with confidence score and large corpus were incorporated. Here also, we conducted the
leave-one-out cross-validation described in the previous subsection. The resulting average
confidence threshold was 0.15, and the average word history size was changed to 40.
Figure 4.13 shows the results obtained by the proposed language model (IT) and
those by the model constructed from the correct transcription. We obtained a relative
1.20% improvement in WER for the former model and a relative 4.20% improvement
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Figure 4.12: Perplexity evaluation of reference and proposed trigger-based language mod-
els for different data sets.
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Figure 4.13: Word error rate improvement by the proposed trigger-based language model
for the National Diet task.
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Table 4.16: Comparison of perplexity reductions for correctly recognized words and in-
correctly recognized words.

Class of words ‘ Model ‘ Perplexity ‘ Reduction (%)
. Baseline 96 .
Correctly recognized words T 64 33.33
. Baseline 273 -
Incorrectly recognized words T 1’4 32.60

Table 4.17: Distribution of the total number of extracted correct and incorrect trigger
pairs and of those used during the rescoring experiments.

| Class of triggers | Entries | Count [ Proportion (%)

Total pairs Correct 18120 - 24.47 -
Incorrect 55932 - 75.53 -

Used pairs Correct 8776 | 158299 | 58.20 | 64.50
Incorrect 6363 88974 | 41.80 | 35.50

for the latter. These improvements are greater than the 0.98% and 4.07% respective
improvements obtained in the previous task. As we mentioned, the higher word accuracy
in this task makes the initial transcription a less erroneous source for extracting the trigger
pairs, thus the smaller number of erroneous trigger pairs is less harmful.

We compared the total number of extracted trigger pairs, and those that were actually
used during the rescoring experiments with the proposed language model (IT). Table 4.17
shows the results. We can see that the proportion of incorrect trigger pairs is lower in
this task (41.80%) than in the previous one (56.09%), since the baseline word accuracy is
higher than in the Sunday Discussion task, thus the better improvement in performance.

4.8 Conclusion

We presented a novel trigger-based language model adaptation scheme, oriented to the
transcription of meetings, based on initial speech recognition results. In meetings, the
topic is focused and consistent throughout the whole session, therefore keywords can be
correlated over long distances. The trigger-based language model is designed to capture
such long-distance dependencies, but it is typically constructed from a large corpus, which
is usually too general to derive task-dependent trigger pairs. In the proposed method,
we make use of the initial speech recognition results to extract task-dependent trigger
pairs and to estimate their statistics. Moreover, we introduce a back-off scheme that also
exploits the statistics estimated from a large corpus.

The proposed model reduced the test-set perplexity considerably more than the typical
trigger-based language model constructed from a large corpus, and achieved a remarkable
perplexity reduction of 44% over the baseline when combined with an adapted trigram
language model. Furthermore, it was observed that, contrary to the common finding in
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conventional works on the trigger-based language model, much more non-self-triggers were
used in the proposed method. This demonstrates that the proposed approach, as opposed
to the typical trigger-based language model, effectively constructs task-dependent trigger
pairs from the available in-domain data. In addition, a reduction in word error rate was
obtained when using the proposed language model to rescore word graphs.

The proposed approach is particularly useful in tasks where large amounts of training
data are not readily available but the test set is sufficiently long, since we have observed
that the initial transcription is a good source for deriving the trigger pairs. This is
specifically true for many transcription tasks. A further study of the applicability of this
approach is presented in the next chapter.
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Chapter 5

Conclusion

5.1 Summary and contributions

5.1.1 Summary

This thesis presented two different approaches of trigger-based language modeling for the
transcription of conversational speech. Both approaches take advantage of the available
in-domain data to derive task-dependent trigger pairs, while they make use of a large
corpus to reliably estimate their statistics.

The first approach was presented in chapter 3, where the trigger pairs were extracted
from the task corpus and their probabilities were estimated from both the task corpus
and the large corpus. This trigger-based language model was applied to two different
conversational speech tasks, and it achieved significant improvements in test-set perplexity
and also improved the word recognition accuracy with N-best rescoring.

The second approach, presented in chapter 4, is trigger-based language model adapta-
tion for smaller amounts of in-domain data. In this case, the trigger pairs were extracted
from the initial speech recognition results, and their probabilities were also estimated
from this information source. A back-off scheme was then used to combine the statistics
of the trigger pairs constructed from the initial transcription with those constructed from
a large corpus. This method was used for two different transcription tasks, achieving a
remarkable perplexity reduction and also a significant reduction in WER when rescoring
word graphs.

5.1.2 Contributions

The trigger-based language model has been mainly applied to the recognition of newspaper
tasks, and it has been typically constructed from large corpora such as newspapers [47, 56,
74, 5]. In this thesis, instead of written-style tasks, we applied the trigger-based language
model to the transcription of conversational speech.

Large corpora are usually too general in topic and do not closely match the specific
test data, thus the trigger pairs constructed from them are not task-dependent. In this
research, task-dependent trigger pairs that closely match the target task were extracted
from the available in-domain data. In addition, since the probability estimates derived
from the target domain might not be reliable, because of the typical small amount of
data, we proposed a back-off scheme that incorporates the statistics from the large corpus
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to the model. Moreover, the trigger pairs are usually constructed from a text window of
fixed length with the average mutual information measure. This window limits the scope
of the dependencies the trigger-based language model can capture. We used the TF/IDF
measure to extract the trigger pairs from the whole document, instead of a text window,
to capture topic constraints global to the document.

A common finding in trigger-based language modeling is that much of the potential
of these models lies in words that trigger themselves, called self-triggers, which are virtu-
ally equivalent to the cache-based language model, so the original trigger-based language
model does not significantly outperform the cache-based model. During their evaluation,
the proposed trigger-based language models used much more non-self-triggers than self-
triggers, and most of the perplexity reduction was due to non-self-triggers, which is a
significant difference with the conventional trigger-based language model. This is because
the trigger pairs in the proposed approach are task-dependent and make a better match
for the target task.

To the best of our knowledge, this is the first work that constructs a trigger-based
language model from the initial speech recognition results. Finally, the literature on
trigger-based language models applied to Japanese corpora is almost inexistent, so this is
another contribution of the present research, where the trigger-based model was applied
to four different Japanese tasks.

5.1.3 Applicability

The proposed trigger-based language models are intended for tasks where large amounts of
training data are not readily available, since we proved that large corpora can complement
the available in-domain data with the proposed methods. This is specifically true for
spoken language tasks, where available corpora are typically small.

In addition, in order to get the most from the proposed research, it should be applied
to tasks that can be divided into documents based on topics, and where the topics are
well defined. The more homogeneous the topic, the more topic-dependent trigger pairs
can be extracted.

The proposed adaptation based on initial transcriptions should be used in tasks with
higher baseline word recognition accuracy. As the recognition accuracy is improved, less
erroneous trigger pairs are extracted, so the harmful effect of these is reduced. We proved
that the back-off scheme should be advantageous for transcriptions shorter than the ones
used in this work, since in that case we expect the statistics from the large corpus to
account for the data sparseness problem.

We conclude that broadcast news should be an appropriate task for applying this
approach, since topics in broadcast news are explicit, because each news story focuses
on a given subject matter, typical broadcast news tasks have a high speech recognition
accuracy, and news stories are typically short.

5.2 Future directions

Among the directions we consider worth exploring in the future are the following. First, it
would be beneficial to use an exponential model such as the maximum entropy framework
or log-linear interpolation to combine models, instead of the suboptimal linear interpola-
tion scheme [6].
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Second, instead of the whole large corpus, we could use only the text from it that
is similar to the target task to use only relevant data for the back-off scheme. We pro-
pose here two different ways to do this. One possible way is to find in the large corpus
documents similar to the target task, for example by using probabilistic latent semantic
indexing (PLSI) [24], and using only the data from those documents. The other one is,
instead of using the document as the unit, to choose only the sentences from the large
corpus that are similar to those of the target task, by using some similarity measure such
as BLEU, similarly to the method proposed in [60].

Finally, it would be optimal to use re-decoding instead of rescoring for integrating the
language model with the speech recognizer, and we also encourage the application of the
proposed trigger-based language to broadcast news corpora.

60



Appendix A

Lists of Trigger Pairs

In this appendix we show lists of trigger pairs created from each of the corpora used in
this thesis. For each corpus, the best 100 trigger pairs (excluding self-triggers) ranked by
their frequency in the corpus are shown, from the most frequent to the least frequent of
the 100. The frequencies were calculated by using the same text window that was used
during the probability estimation of the trigger pairs.

This appendix is divided into two sections. The first one lists trigger pairs extracted
from the training data of each corpus, with the method explained in chapter 3, while the
second one enumerates trigger pairs extracted from the initial transcription of each task,
as described in chapter 4.

A.1 Trigger pairs extracted from training data

This section presents lists of trigger pairs extracted from the training data of all the
corpora used in chapter 3.
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A.1.1 Trigger pairs from Mainichi Shimbun

ub =00 ub =00 ut =00
ol =00 o =00 U —-000
ub =00 ub =00 ut =00
ol =00 o =00 o =00
ub =00 ub =00

ol =00 o =00

ub =00 ub =00

g —0 ub =00

g —20 o =00

ub =00 ub =00

ol =00 oob =00
ub =00 ub =00

ol =00 o =00

ub =00 U —=0d

o - 00 o =00

ub =00 ugboo =00
ol =00 o =00

ub =00 ugboo =00
ub =00 ub =00
oob =00 o =00

ub =00 ub =00

ol =00 o =00
ubobod —-0od ub =00

ol =00 oob =00
ub =00 ub =00

ol =00 o0 —-0oo
ub =00 ub =00

ol =00 o0 —-0oo
ub =00 ub =00
uud —-0o0d ub =00

ub =00 o =00

ub =00 ub =00

o =0 o =00

ub =00 ub =00

ol =00 o =00

ub =00 ub =00

U —-00 o0 —-0oo
ugbo — 0O ub =00

ub =00 o =00

ub =00 ub =00

ub =00 ub —-4oobo

U —-00 o =00

ub =00 ugbob =000
ol =00 o =00

ub =00 ub =00
gooob -000 gbood —-000
ub —=40oo ub =00

ol =00 o =00
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A.1.2 Trigger pairs from BTEC

ub =00 ut =00 oo =00
U —-00 oob =00 ogoo —0
o =0 ud —=4odo oo =00
ol =00 o =0 ogoo =00
ub =00 ub =00

ol =00 o0 —-0oo
ub —=-0o0n ub —-4oobo

U —=0d ugoo —=0oo
od —-00 o =00

ot —=0d ub =00
oot —-0do o =00

ol =0 ub =00

o0 -40oo o =00

ub =00 ub =00

ub =00 ol —-00og
ub =000 ub =00

U —-0000 ol -0gn

U —-0o00 ub —-ggo
ub —= oo ugob =00
o =0 o =00

ub =00 ub =00
ooo —-0o o =00

ug —0od o — 0

o - 00 ob =0

ub —=40oo ub =00

ol =00 U —-00

ol =000n U —=0a0

o =00 U —-00

o =0 U —=>000

ub —=0dgo U —=00

ol =00 U —-00

ugbo —-00d ub —-0gog
ol =00 o =00

U —=0d ub =00

U —-000 o =00

U —=0a0 ub =00

ub =00 U —-00

ugbo — 0O U —=0a0

ub =00 g —20

ugoo =00 g —0

ugoo =00 U —=0a0

o0 =000 U —-00o

ub =-00o0n ub =00
obod =00 ub =00

ud =000 ugoo =00
uoob =00 Ul -00ood
uob =00 ol — 0

odb =00 uob =00
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A.1.3 Trigger pairs from CSJ

U —=>000 ubd —-040d uoo —-0o0o
oo =00 o =0 o =00
ol =40ogo ol - 0o ugd —0d
U —-00 o =0 ub - 00
ub —= o0 ub = oo

od —=0d uoob =00

U —=0d ubob —-0000
ugb =40ob0o ub —-0o0n
ogoo =0 ooono —-000
U —=00 ub —=0do
ogoob =00 ub =00

ub =00 gooob —-00
ud =000 ood —-0oo

U —=0d ub —-40obo
ogoob =00 oo — 0

ubod — oo ubb —-0400d
U —-00d o =00

ub —=goib ol —-gobo
ot =0 U —=00

o =0 ol -000d
ub = 40obo ugboo —0d
obod — 0O obod — 0O

ud —=0ood ub —= oo

ol =00 oo =000
ubod —= oo ub =00

U —-00 o =00
ugbob =00 ugbb =000
ogob =000 g —-00

uod =00 ub =00

ol —=40b0 ub =000
ub - 00 o =00

ub =00 ugoo —-0o0o

o =000 ood —-0oo
ugbo —-00d ud =00
obd -00od g —-20

oo =0 ugoo =00
ub =00 U —-00

U —-u0o0n U —=0a0

ol =00 oo =00

U —=0d o —00

ub —= o0 ub —= oo

oo =000 o =00

ol =0 oo —-0o0o
od —=0d oo =000
ug =000 ub =000
o =0 ogoob =00

o —=0 ugbod —- oo
oob =00 U —-00

64



A.2 Trigger pairs extracted from initial transcrip-
tions

This section provides two lists of trigger pairs extracted from the respective initial tran-
scriptions of the two test sets used in chapter 4. Here, we compared the trigger pairs
in each list with the trigger pairs extracted from the correct transcription of each test
set. The trigger pairs in each list that were not present in the pairs extracted from each
correct transcription were labeled as incorrect.

We can see that within the top 100 trigger pairs there are only two or three incorrect
trigger pairs, respectively. This is because the erroneous words that form incorrect trigger
pairs do not co-occur as frequently as correct words.
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A.2.1

sion

ud = aon
god —00d

ud —odd

od —-ogo

ud —odd

od —-ogo

ud —odd

od —-ogo

ubd —-godadaad
ud —odd

od —-ogo

ud —odd

od —-ogo
ugood —-4dd
gooooooon oo
ud —odd

od —-ogo

ud —odd

g —-ogo

ud —odd

ud —-dn

od —-ogo

uggd —=4d

godd -00o0oo
uood =000
o0 - 0oogo
ot —odd

od —-ogo

uod —-0odn

ogd —-ogdo

ud —odd

udd —=4dd
000 — 00 (incorrect)
ud —odd

od —-ogo

ud —odd

od —-ogo

ud —odd

od - gogo

ud —odd

od —-ogo
uggod —-4dd
ud —odd

od —-ogo

00 — 00 (incorrect)
ogd —-ogdo

ud —odd

ub =00
o =00
ub =00
o =00
ub =00
ogoob =00
ub =00

U —-00

ub =00
ub =00
o =00
ub =00
oob =00
ub =00
o0 —-0oo
ub =00
o =00
ub =000
ogooo =00
ub —-4dog
ub =00
oob =000
ub =00
o =00
ub =00
ol -40oooo
ub =00
odd =00
ugoobd —-ogoad
ud =00
ub =00
ub =00
ud =00
ub =00
ol - 0o0dgag
ub =00
o =00
ub =00
ud =-00o0od
good —-0o0aoan
oo =00
oo —-oo
o — 0

o =00
ub =00
o0 —-0oo
ub =00
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A.2.2 Trigger pairs from initial transcription of National Diet

ub =00

ol =00

ub =00

ol =00

ud =00

ol =00

ub =00
uod =040
ub =00

ub =00

ol =00

ub =00
oob =00
ub =00

b -=000000
uod -0
ub =00
gobobod =00
ot —-oib

ol =00
ubood =00
o0 -4ooo
ub =00

ol =00
ugbooono =00
odd =00
ub =00

ol =00

ub =000
ub =00

ol =00

ub =00
opooono -00
ub —=0oo
ot =00

ub =00

ud —-0ogn
ub =000
ol —-0d

ub =00

ub =000
ol =00

ub =00
oobond =00
ub —=0d

o0 =000
ub =00

ol =00

gooood —-odo ud = oo
odd —-0ogo od —- oo
ud = oo ud = oo
od - ogoo ogd —-0od
ud —-odon

000 — 00 (incorrect)
ud = oo

ot —=odd

gd —-0o0god

ot —-oddd

ogd — 0

ud —0od

od - oo

ud = oo

od -0

U =00

od - oo

00 — O (incorrect)
ud = oo

od -0

utd = o

ogd —-0od

ud = oo
gooood oo
ud = oo

g -ooooo

ud —-adobon
oddd -0ooogog
ud = oo

ud = oo

b —-0dd

ud —0od

ogd —ogg
gooogod -oooo
Ud —gogod

ub =0

b —-00oo

ud = oo

g —-0do

00 — 00 (incorrect)
ud = oo

od -0

ugdgd —d

0 —-0o00

Ut =00

od - ogono

ud = oo

oo -0ooooo
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