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Abstract

Substructural logics which are obtained from classical logic or intuitionistic logic by
deleting some or all of structural rules have been studied actively in recent years. In proof-
theoretical studies of substructural logics, many of important results like the disjunction
property and the decidability come out as consequences of the cut elimination theorem.
But, when we try to study general properties of substructural logics as a whole, we need
to use semantical methods. Recently, algebraic structures called residuated lattices are
paid much attention to as a semantics of substructural logics and has been developed
much. In this thesis, we investigated logics over FL,, which is obtained from the sequent
system LJ for intuitionistic logic by eliminating both the weakening and the contraction
rules, and showed the following results by using F'L.-algebras.

When we regard a logic as a set of formulas, the class of all logics over FL, forms a
bounded lattice whose lattice order is the set inclusion, which has the set of all formulas
Fm and FL, as the greatest and the smallest element, respectively. One of our purposes in
this thesis is to clarify what structure such a lattice does. Our result says that there exist
continuum many maximal elements in the lattice. It means that there exist continumm
maximal logics over FL,.

It is an important problem how various logical properties of a given logic are charac-
terized as algebraic properties of corresponding variety. Up to now, algebraic characteri-
zations of several logical properties had been given only for modal logics and intermediate
logics. So, how these results can be extended to substructural logics has not been clari-
fied yet. Moreover, there were only a few studies which show relations among algebraic
properties from a unified standpoint. In this thesis, we gave algebraic characterizations
of several logical properties for logics over FL.. By using these characterizations, we
clarified not only logical relations but also algebraic relations both from a logical and an
algebraic standpoint.
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Chapter 1

Introduction

Classical logic is usually regarded as standard logic. However, it is often mentioned that
there are several differences between logics in human thinking and classical logic. One
example is a formula =——¢ — ¢ (the law of double negation) which is always true in
classical logic. Let the formula ¢ denote the following meaning;

¢: Jim loves Mary.

Then the formula =—¢ — ¢ means that if it is not the case that Jim doesn’t love Mary
then he loves her. But this argument sounds weird since we don’t reason in such way.
You might think that the formula ——¢ expresses ‘Jim loves Mary a little’, so it may be
an exaggeration to conclude that the formula ——¢ — ¢ is true. Intuitionistic logic is a
well-known example of nonclassical logics which don’t accept the law of double negation.

Another example is the truth of a formula ¢ — ¢ when ) is true. Let ¢ and ¢ denote
the following meaning;

¢: Fishes are plants.
1: Beethoven composed nine symphonies.

Now, we know that 1 is true. Then, it follows that the formula ¢ — % is also true in
classical logic. When we say that ¢ implies 1, we usually suppose that there are some
relations between ¢ and 1. So, if ¢ — 1 is true then you might think that the condition
‘Fishes are plants’ is necessary to lead ‘Beethoven composed nine symphonies’. However,
as you know, such a condition is not necessary for him. So, to ignore the relevance of
implication causes this strangeness. The motivation of relevant logic is to exclude such
strangeness.

Until now, various nonclassical logics has been introduced by their own motivations.
Therefore, the following questions will come naturally to mind;

e Are there something common among these logics?
e If so, then is it possible to discuss them within a uniform framework?

The purpose of the study of substructural logics is to find common features among such
nonclassical logics, and to introduce a uniform framework for them.

Roughly speaking, substructural logics are logics lacking some or all of the structural
rules when they are formalized in sequent systems. They include quite different kinds of



nonclassical logics, e.g., Lambek calculus, relevance logic, linear logic, and FLgy, (lacks
the contraction rule). For these logics, we can show important results like the disjunction
property, interpolation property and decidability in a syntactic way, using the cut elimi-
nation theorem for their sequent systems. But, syntactical methods cannot work well for
substructural logics in general, and hence we need to use semantical methods. Recently,
residuated lattices and pointed residuated lattices have been actively studied as algebraic
semantics for substructural logics, and many important results have been shown by using
algebraic approach.

In this paper, we focus on commutative substructural logics, i.e., we assume always
the exchange rule from the beginning. Hence, our basic sequent system is FL, which
is obtained from the sequent system LJ for intuitionistic logic by eliminating both the
weakening and the contraction rules. Then, by a commutative substructural logic, we
mean a logic over FLe. Until now, there are not so many studies in algebraic semantics of
logics over FL, because of their complicated structures. The purpose of this paper is to
develop an algebraic study of the class of logics over FL,, and to clarify relations between
logical properties and algebraic properties.

This paper consists of 7 chapters. First, we give a survey of results on logics over FL,
and F'L.-algebras in Chapter 2 and 3.

In Chapter 2, we discuss logics over FL,, their deducibility relation and a local de-
duction theorem for them, following results by N. Galatos and H. Ono [13]. At first,
we will show what will happen if we remove some of structural rules, and why we have
to introduce an additional logical connective - (fusion or multiplicative conjunction) and
propositional constants 1 and 0. Then, we show that the class of all logics over FL, forms
a complete lattice. Especially, intermediate logics form an important subclass of these
logics.

In Chapter 3, we introduce F'L¢-algebras. They are essentially bounded commutative
residuated lattices with a designated element 0, and provide algebraic semantics for logics
over FL.. We show some of basic results on F'L.-algebras from a view of universal algebra
[5]. Then we discuss relations between logics over FL, and F'L.-algebras. In fact, it is

shown that the lattice of all logics over FL, is dually isomorphic to the lattice of varieties
of F'L.-algebras.

The remaining chapters consist of results obtained by our study.
In Chapter 4, we investigate the lattice of all logics over FL.. The following will be a
natural question when we discuss the structure of this lattice.

e How many and what kind of maximal logics over FL, are there?

To answer this, we prove that there exist continuum minimal varieties of F'L.-algebras.
Dually, this means that there exist continuum maximal logics over FL.. This result makes
a remarkable contrast to logics over FLey,.

In Chapters 5 and 6, we discuss algebraic characterizations of several logical proper-
ties, e.g., the pseudo-relevance property, Halldén completeness, the principle of variable
separation and so on, and relations among them. These logical properties have been
studied actively for intermediate logics and modal logics. However, there are not so many



such studies for substructural logics except some case studies. So, it is desirable to study
them from a unified standpoint.

In Chapter 5, we discuss relations between two types of interpolation properties and
two types of pseudo-relevance properties for logics over FL,. Then we give an algebraic
characterization of the deductive pseudo-relevance property. This is a generalization of
a result for normal modal logics given by Maksimova [28]. Moreover, we show that the
pseudo-relevance property holds for all logics over FLg, for which Glivenko’s theorem
holds.

In Chapter 6, we discuss algebraic characterizations of Halldén completeness and the
deductive principle of variable separation for logics over FLo. We will see that we can
extend most of the results for intermediate logics or normal modal logics given by Lemmon
[6], Wronski [43] and Maksimova [28] to logics over FLg,,, but some modifications on the
definitions become necessary in order to make similar results hold for logics over FLe.
But, by these characterizations it is not so clear why the deductive principle of variable
separation implies Halldén completeness semantically though this is clear syntactically.
Thus, we will introduce a new algebraic notion called well-connected pair. By using this,
we have succeeded to give alternative characterizations of Halldén completeness and the
deductive principle of variable separation in the original forms for logics over FL., and
clarify their semantical relations with the disjunction property.



Chapter 2

Commutative Substructural Logics

In this chapter, we introduce commutative substructural logics and their deduciblity rela-
tions. Then we will show a local deduction theorem for commutative substructural logics.

In this paper, we assume that our language consists of logical connectives A (con-
junction), V (disjunction), - (fusion or multiplicative conjunction), — (implication), and
propositional constants T (top), L (bottom), 1 and 0. Thus, we have four constants from
the beginning. These constants are used in the standard formulation of linear logics and
relevant logics. Formulas are defined inductively as follows;

1. all propositional variables and propositional constants {T, L, 1,0} are formulas,
2. if ¢ and v are formuals then ¢ A, ¢ V ¢, ¢ - ¥, ¢ — 1 are formulas.

—¢ and ¢ <> 1 are abbreviations of formulas ¢ — 0 and (¢ — ) A (¥ — ¢),
respectively.

We identify formulas and terms, and denote them by letters like ¢, 1,0 or t, s, u de-
pending on whether they are used in logical or algebraic context.

The set of all formulas is denoted by Fm. If p is a set of propositional variables, we
often write a formula ¢ as ¢(p) to indicate that the variables occuring in ¢ are in p. In
this case, we denote the set of all such formulas by Fm(p).

2.1 Gentzen’s sequent systems and structural rules

To explain why we introduce the logical connective - and propositional constants 1 and
0, we will discuss some relationships between commas and structural rules.

The sequent system LJ for intuitionistic logic was introduced by Gentzen in the middle
of the 1930s. A sequent of LJ is an expression of the form ¢, ..., ¢, = 1, where n > 0 and
1 may be empty. An intuitive meaning of the sequent is that “ 1 follows from assumptions
®1,-..,0,”. In this sequent, ¢4, ... ¢, and ¢ are called the antecedents and the succedent,
respectively. In the following, Greek capital letters I'; A, II stand for arbitrary (finite,
possibly empty) sequences of formulas. There are three structural rules in LJ, i.e., the
exchange, weakening and contraction rules. For the sake of convenience, we separate the
cut rule from the other structural rules. Then, the following holds;



PROPOSITION 2.1 A sequent ¢q,...,¢, = © is provable in LI if and only if the
sequent @1 A\ ... A\ ¢, = 1 is provable in it.

(proof) We will show this in the case of n = 2. Suppose that ¢, ¢ = 9 is provable in

LJ. Then,
1, P2 = Y
1 N\ Pa, Pp = ¢
O1 N P2, 01 N\ Py = ¢
1N py = (c :>)-
Conversely, suppose that ¢; A ¢ = 1) is provable in LJ. Then,
¢ = Py ¢o = P
$1, P2 = P1 (w=) o1, P2 = P2 (w=)
b1, 02 = O1 A P PL A P2 =
a0 (cut)

|

The above result says that in LJ, commas in the left-hand side of a sequent mean
conjunctions. But to prove this, we need to both of the weakening and contraction rules.
So, the similar result doesn’t hold in a sequent system which lacks either the weakening
or contraction. Thus, the following question will come naturally to mind:

e What do commas mean in a sequent system lacking either or both of the weakening
and contraction rules?
To answer this, we examine the roles of each of stuructural rules.

Exchange rule:

F’¢’w7A$(5
Fo, 6,806 )

The exchange rule allows us to use assumptions in an arbitrary order.

Weakening rule:

NA=96
Lo, A=6 (w=)

The weakening rule allows us to add any redundant assumption. In other word,
when a sequent [' = ¢ is provable in a sequent system which has no weakening rule,
every assumption, i.e., every formula in I', must be used at least once in a proof of

I'= 9.
Contraction rule:

I, 0,A=9
FoAss )

The contarction rule allows us to use each assumption more than once. In other
words, when a sequent is provable in a sequent system that lacks the contarction
rule, every assumption must be used at most once in its proof.

Hence, in a sequent system with all structural rules, if a sequent ¢1,...¢, = ¥ is
provable then it means that ¢ can be derived from ¢y, ... ¢, by using them in arbitrary
order and number of times.



2.1.1 Comma and fusion

By the above argument, if a sequent ¢, ..., ¢, = 1 is provable in a sequent system which
has neither the weakening nor contraction then every assumption, namely ¢; (1 <1i < n),
must be used ezactly once to derive 1. Moreover, commas in the left-hand side of sequents
don’t behave like conjunctions. Then, what does each comma mean in such systems? To
see this in a more explicit way, we introduce a new logical connective - which represents
a comma in such systems. This connective - is called the fusion or the multiplicative
conjunction. We assume the following rules for -.

L,90,A=46 I'=¢ A=4
Tovass ) TAsge o &)

Then, the following holds.

PROPOSITION 2.2 In a sequent system which lacks both the weakening and contrac-
tion rules, a sequent ¢1,. .., ¢, = V¥ 1s provable if and only if ¢ ... ¢, = 1 is provable.

(proof) We will show this in the case of n = 2. Suppose that ¢, ¢ = 1 is provable in
such a system. Clearly, by definition of (- =), the sequent ¢; - ¢ = 1) is also provable.
Conversely, suppose that ¢, - ¢o = 1 is provable. Then,

b1 = O1 P2 = o
G1, P2 = G1 - P2
¢1;¢2:>1/J

=)

¢1‘¢2:>1/1 (cut)

Moreover, we show an important relationship between fusion and implication.

PROPOSITION 2.3 A sequent ¢1 - ¢po = 1 is provable if and only if ¢p1 = ¢o — ¥ s
provable.

(proof) Suppose that ¢; - ¢ = 1 is provable. Then, by Proposition 2.2, the sequent
¢1, P2 = 1) is also provable. Using (=—) we have that ¢; = ¢ — 1 is provable.
Conversely, suppose that ¢; = ¢o — 1) is provable. Then,

Py = o Y=
P1=> P2 =Y PP, P =Y
¢17¢2:>1/J(-:>)

G1 P2 =

(cut)

|

The above results say that deletion of structural rules has a significant effect on the
meaning of commas and implication.

To see an intuitive meaning of the fusion, we will give some examples. Let formulas
®,1, 6 represent the following meanings;

¢: One pays 100 yen.



1: One can get a rice ball.
0: One can get a cup of coffee.

We assume that one rice ball costs 100 yen and one cup of coffee costs also 100 yen,
i.e., both ¢ = 1 and ¢ = ¢ are provable. Then we can show that

1. ¢-¢ =1 -6 is provable,
2. ¢ = 1 -9 is not provable,

3. ¢ = Y A6 is provable.

These sequents denote the following meanings;

1. If one pays 100 plus 100 yen, i.e., 200 yen then one can get both of a rice ball and
a cup of coffee, namely, 200 yen is enough to have a lunch.

2. 100 yen is not enough to get both of them.

3. If one pays 100 yen then one can get a rice ball and also one can get a cup of coffee,
but not both.

One might be confused about that;
e What is a difference between ¢ -6 in 1 and ¥ A 9 in 37
e The behavior of conjunction in 3 is similar to disjunction.

An answer of the former is that in 1, you can eat a rice ball while drinking a cup of coffee.
On the other hand, in 3, being able to get is only one though you can choose a favorite
thing either of them.

To answer the latter, let

' one can get a sandwich,

and we assume that one sandwich costs 200 yen. Then, ¢ = ' V  is provable but
¢ = ' A § is not provable. This means that if you pays 100 yen then you can get a
sandwich or you can get a cup of coffee, though you have no choice but to take a cup of
coffee.

2.1.2 Propositional constants

Sometimes it is convenient to add propositional constants in our language. For example,
in the case of LJ we use propositional constants T and | to denote the constantly true and
false propositions, respectively. For these constants, LJ has the following initial sequents:

1.I'=T,
2.0, LA = ¢.

The following result says that in LJ, a formula ¢ is provable if and only if it is logically
equivalent to T, and a formula —¢ is an abbreviation of the formula ¢ — L.



PROPOSITION 2.4 In LJ, the following hold;
1. = ¢ is provable if and only if = ¢ <> T is provable.

2. = —¢ < (¢ — L) is provable.

(proof) 1. Suppose that = ¢ is provable. Then,

= ¢
o=T T=0¢
>¢—=T =T—=0¢
= (@—=>T)N(T = 9)

(w =)

Conversely, suppose that = ¢ <> T is provable. Then,

T—=0¢0=>T—=¢

= (= T)A(T = ¢) (¢—>T)A(T—>¢):>T—>¢( ) =T ¢=0¢
=T =¢ u T—=¢0=0¢ .
g (cu)
2.
¢ = ¢
¢, 19 = p=¢ L=
p ey ol G ) B ey
—p=¢— L o— L =-¢
e e I (e
= (¢ = (¢ = L) A((¢— 1) = —9)
Therefore = —¢ <> (¢ — L) is provable. O

By the weakening rule of LJ, it is easy to see that they can be replaced by weaker
initial sequents = T and 1 =, respectively. On the other hand, if a sequent system
doesn’t have the weakening rule then constants defined by these weaker initial sequents
behave in a different way, i.e., a similar result of Proposition 2.4 doesn’t hold in such a
system. Hence, we introduce additional new propositional constants, denoted by 1 and 0,
in our language, and assume the following initial sequents and rules of inference for them:

3. =1,
4.0 =,

A=6 r
T1ass 0™ 1500

Intuitively, constants 1 (0) is the weakest (strongest) proposition among provable for-
mulas (contradictory formulas, respectively). Here, by a contradictory formula, we mean
a formula ¢ such that ¢ = is provable. Note that in a sequent system with the weakening
rule, T (L) is logically equivalent to 1 (0, respectively). Conversely, if T is equal to 1
then by using the initial sequent 1, the rule (1 =) and the cut rule, we can derive the
weakening rule (w =).

PROPOSITION 2.5 In a sequent system with no weakening rule, the following hold;

9



1. = ¢ is provable if and only if = (p A1) <> 1 is provable.
2. = —¢ < (¢ — 0) is provable.

(proof) 1. Suppose that = ¢ is provable. Then,

=¢ =1
1=1 = oAl
pN1 =1 1:>¢/\1(1:)

= (@pAl)=>1 =1-=(pA1)
= ((6AN1) > 1D)A1A = (0A1))

Conversely, suppose that = (#A1) <> 1is provable. By the following proof, = 1 — (#A1)
is provable;

1=>(pA1l)=1—(pA1)
= (A1) > DAL= (A1) (A1) = 1AL = (pAL)=>1—(pA1)

=1-=(pA1) (cm).
Hence,
=1 oN1l=>0pA1
=1—(pAN1) 1—>(¢/\1)=>¢/\1( ) b= ¢
=>o¢oAN1 ¢/\1:>¢(cut)
= ¢ :
2.
o= ¢
¢, ¢ = p=¢ 0=
526207 G50
—0=¢—0 o — 0= ¢
= ¢ — (¢ — 0) = (¢ > 0) > ¢
= (6= 0= 0)A((6—0) > 0)
Therefore = —¢ <> (¢ — 0) is provable. O

The above result says that in a sequent system without the weakening rule, a formula
¢ may not be equivalent to T even if it is provable. Moreover, a formula —¢ can be
regarded as an abbreviation of the formula ¢ — 0, not ¢ — L. Note that T (0) is
logically equivalent to —L (—1, respectively).

2.2 Sequent System FL,

Roughly speaking, substructural logics are logics lacking some or all of structural rules
when they are formulated as sequent systems. As we have discussed in the previous
section, they are sensitive to the number and order of occurrences of assumptions. By
this reason, they are sometimes called resource-sensitive logics.

In this paper, we assume always commutativity of assumptions, i.e., the exchange
rules. Hence, the basic logic in this paper is FL.. By FL., we mean the sequent system
which is obtained from intuitionistic logic LJ by eliminating both the contraction and
weakening rules. More precisely, FL. has the following initial sequents and rules;

10



Initial Sequents:

= oS-
AR

e

AR
4
—_

4

Exchange rule:

F’¢’/l/]7A$5
Ly, 0,A=96

(e =)

Cut rule:

F'=¢ A¢Ill=6
AT IT= 9

(cut)

Rules for constants:

A=6 =

riass 07 159 &0
Rules for logical connectives:
o, A=6 Ly, A=6
Tornvass M7 Tongass M)
I'=¢ I'=9y
T=sony N
Lo, v, A=$ F'=¢ A=1
T 0,Ass () Lasgo )
Lo, A=6 Yy, A=6
T.0VU.A =3 (V=)
[=¢ =9
T?QWE%:VU F:¢v¢ﬁ$w)
'=¢ ILyY,A=9 [,¢ =1
MToovass 7 Toeog &7
'=¢ o=
j&ﬁ;ﬂﬁi) Tﬁ;gﬂiﬁ)

A proof and provability of a sequent in FL, are defined as usual. If there is a proof of
the sequent = ¢ in FL, then we say that the formula ¢ is provable in FL.. Note that
there are four propositional constants in the standard formulation of FL,.

We denote sequent systems obtained from FL, by adding the weakening rule and the

contraction rule, by FLew and FLgc, respectively.
We often identify a sequent system with the set of all formulas provable in it.

11



2.3 Deducibility Relations

We say that a formula v is deducible from a set of formulas ® in FLe, ® Fpr_ ¥, if there
is a proof of = 1) in FL, by adding = ¢; for ¢; € ® as initial sequents. Clearly, ) Fgr_ ¥
if and only if ¥ is provable in FL,.

We say that any subset 7' of Fm(p) is an FLe-theory of the language Fm(p), if it is
closed under tgr, i.e., T Fgr, ¥(p) implies ¥(p) € T.

In [13], Galatos and Ono showed the following;

PROPOSITION 2.6 A subset T of Fm is an ¥Le-theory if and only if
1. FL. CT.
2. If o, 0 > €T theny €T.
3. IfoeT then pN1€T.

(proof) (=) 1. Suppose that a formula ¢ is provable in FL,. Then,

}_FLe ¢
= TlFpL, ¢
= ¢oel.

2. If ¢, — 1 €T then

60 p=
=6 600>

=600 6009
=

Hence, the formula % is provable in FL, by adding = ¢ and = ¢ — v as initial sequents.
Thus, T l_FLe ’L/), i.e., ¢7 eT.
3. If € T then

(cut)

=¢ =1
=opAN1

Thus, o N1 €T.

(<) Let T be a subset of Fm satisfying the above three conditions. It is sufficient
to show that if ¢q,..., ¢, = 1 is provable in FL, by adding = 9§; for §; € T as initial
sequents then (¢1---¢,) — ¥ € T. For, when {¢1,...,¢,} is empty, this means that
T Fpr. ¢ implies ¢ € T. We will prove this by induction on the length of a given proof
of ¢1,...,¢, = 1. The base case is obvious since the sequent is of the form = 1 for
1 € T or an initial sequent of FL.. In the latter case, by Proposition 2.2 and 2.3, the
formulas ¢ — ¥, (¢1---¢n) = T, (¢1-+-L---¢) = ¥, 1 and =0 are provable in FL,.
Thus, by our assumption 1, they belong to 7. Here, we will show the cases of (=—),
(= A) and (V =). In the following, to eliminate nonessential complications, we assume
that the number of assumptions of the last sequent of given proof is at most one.

(=—) Suppose that the last inference of the proof is (=—);

P1, g = 2
o= 1 = Y .

12



Then, by induction hypothesis, the formula (¢; - ¢2) — 1 belongs to T. Note that

Or = P11 Q2 = o
O1, 02 = ¢1 - P2 Y=
G1, Q2,91 P2 = Y =P
G2, P12 =Y = ¢y = P
G1 - = Y= o = (1 = V)
= (¢1- 92 = P) = (2 = (61 = V) ,

hence the formula (¢ - ¢2 — ) — (¢ — (¢1 — 1)) is provable in FLe, so by our
assumption 1, it belongs to 7. Thus, by our assumption 2, we have ¢ — (¢p; = ¢) € T.
(= A) Suppose that the last inference of the proof is

dp=>v% ¢=9¢
peevyy Sl el

Then, by induction hypothesis, the formulas ¢ — 1, — ¢ belong to 7. By our assump-
tion 3, the formulas (¢ — ) A1 and (¢ — &) A 1 also belong to T. Note that

p=9¢ Vv=>19¢ db=>¢ 0=90
G, 0 =Y =1 6,0 —6=6
O, (> V)AL= O, (p—=>0)AN1=4
¢, (= Y)AL 1= 6,1, (p—=0)A1=>0

¢, (= Y)ANL(p—=0)A1=Y ¢ (0= Y)AL(p—=0)A1=14
(@2 YP)AL (@ =) ANT=>PNS

= (0= 08) A1) = (¢ = ¥)AL) = (¢ = Y AD)) )

hence ((¢p = 0) A1) = (((¢ > Y) A1) = (¢ — Y Ad)) € T. Thus, by our assumption 2,
we have o > Y Ad €T.
(V =) Suppose that the last inference of the proof is

p=0 v=9¢
oo V)

Then, by induction hypothesis, the formulas ¢ — §,% — § belong to 7". By our assump-
tion 3, the formulas (¢ — 6) A1 and (¢ — §) A 1 also belong to 7. Note that

db=¢ =190 Y= =9
O, 0 —0=9 V) =0 =46
6, (p—>0)AN1=6 v, (Y= 0)AN1=6
6, (p—>0)AN1,1=0 v, 1, (b= 0)AN1=6

O, (p—=>0)ANL (W —=HA1=0 Y, (d—=0)AL (WY —=>0)AN1=§
OV, (= )N (Y —=>0)A1=6
= (=)A= (((¢—=0) A1) = ((6V ) =) :

hence ((p = ) A1) = (((¢ = ) A1) = ((¢ V) — §)) € T. Thus, by our assumption
2, we have o V1) =0 €T. O
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If an FLe-theory is closed under substitution then it is called a logic over FL, or
a commutative substructural logic . Clearly, Fm and FL, are the largest and smallest
logics over FL,, respectively. Let C'SL be the set of all logics over FL,. Note that if
L; € CSL (i € I) then (;c; £; € CSL. For any Ly, L; € CSL, we define £, V L, by the
smallest commuative substructural logic which includes £; U £5. Then, it is easy to see
that CSL = (CSL,N,V, FLg, Fm) forms a complete lattice.

In the following figure, Cl and Int denote classical logic and intuitionistic logic, re-
spectively:;

FL.

Figure 2.1: the lattice of CSL

For any logic £ over FL, and a set of formulas ®U{«}, we write ® . ¢ if DUL Fpr,_ 1.
The relation -z on Fm is called the deducibility relation of L. As with FLe-theories, we
can define theories with respect to . as follows; a subset T" of Fm(p) is called an L-theory
of the language Fm(p), if it is closed under -, i.e., T . ¢ (p) implies (p) € T. Note
that every L-theory is an FL.-theory, since

T byr, ¢
= TULbFpL ¢
= Tk
= el
Moreover, if T is an L-theory then it must include L, since
veL
= L *_FLe 1[}
= TULbFpL ¢
= Tk
= vel.

In the same way as Proposition 2.6, we can show that for any logic £ over FL,, a subset
T of Fm is an L-theory if and only if it satisfies the following;
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1. LCT,
2. ¢,¢0 > €T impliesy €T,

3. ¢ T implies A1 € T.

It is well-known that the deduction theorem holds for any intermediate logic L, i.e.,
for subset ' U A U {¢} of Fm,

IAbp¢ <= Ik N\ — ¢ for Ine Ny € AG <n),

=1

where N is the set of natural numbers and A}_; ¢; denotes the conjunction of formulas
¥; (i <m). But this doesn’t hold for substructural logics in general.
For logics over FL which is obtained from intuitionistic logic LJ by eliminating all of
structural rules, Galatos and Ono showed a parametrized local deduction theorem in [13].
Here, we see a local deduction theorem, which is a simpler version of a parametrized
local deduction theorem, for logics over FLe.

PROPOSITION 2.7 Let TUAU{®} be a subset of Fm and L a logic over FLg. Then,

n

NAbe¢ <= The ([[(in1) = ¢ forIneN ¢ € A(i <n),

=1

where [[i—, (i A 1) denotes the fusion of formulas ; A1 (i < n).
In particular, if £ 1s a logic over FLew then we obtain more simpler form;

DAbL¢ < Thp [[vi = ¢ forIneNy; € A(i <n).

=1
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Chapter 3

F'L.-algebras

In this chapter, we will introduce F'L.-algebras, whose reducts are commutative residuated
lattices. We will show that F'L.-algebras provide algebraic semantics for logics over FL,
which are introduced in the previous chapter. We discuss not only basic results on F'L,-
algebras from universal algebra [5] but also some relations between logics over FL, and
FL.-algebras.

A commutative residuated lattice is an algebra A = (A, A, V, -, —, 1) such that (4, A, V)
is a lattice, (4, -, 1) is a commutative monoid, and multiplication is residuated with respect
to the order by the division operation — ; i.e., for all a,b,c € A,

a-b<c << b<a—c

An FL,-algebra is an algebra A = (A, A, V,-,—, T, 1,0,1) such that (4, A, V,-, —, 1)
is a commutative residuated lattice, T and L are the greatest and the smallest elements
of (A, A\, V), respectively, and 0 is an arbitrary element of A. Note that the language of
F'L.-algebras has four constants from the beginning but this doesn’t mean that there are
at least four elements in F'L.-algebra even if it is non-degenerate. For example, consider
the two element Boolean algebra. In this case, T =1, 1 =0. {A,V,-,—, T, L1,0,1} are
called fundamental operations.

An FL.-algebra is integral if the unit 1 of the commutative monoid is equal to T. In
any integral F'L.-algebra, a-b < a holds since a-b < a-T =a-1=a. An FL.-algebra A
is increasing idempotent if a < a-a for any a € A. It is easy to see that an F'L.-algebra A
is both integral and increasing idempotent if and only if a-b = a A b holds for all a,b € A.

Well-known examples of F'L.-algebras are Heyting algebras and Boolean algebras. A
Heyting algebra is a integral, increasing idempotent F'L.-algebra in which 0 is equal to
L. A Boolean algebra is a Heyting algebra in which a V @’ = 1 holds always, where o’ is
an abbreviation of a — 0.

In this chapter, though we discuss the following results in the case of F'L.-algebars,
most of those hold for more general algebras.

3.1 Basic Concepts of F'L.-algebras

Let A and B be F'L.-algebras. In the following, we will introduce some of basic algebraic
concepts of F'L.-algebras.
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A map a: A — B is called a homomorphism from A to B if it satisfies the following;
1. a(Ta)=Tg, a(la)=1g, a(la) =1, a(0a) = 0p,
2. for all z,y € A and for every operation @ € {A,V, -, —},

a(z ©a y) = a(z) OB a(y).

In the following, we allow symbol @ to range over operations in {A,V, -, —}. The kernel
of a homomorphism « : A — B is defined to be the set Ker(a) = {(a,b) € A% : a(a) =
a(b)}.

Let B be a subset of A. B = (B, Ag, VB, ‘B, =B, | B, LB, 08, 1B) is called a subalgebra
of A if

1. TB - TA) J—B - J—AaOB - OAa 1B - ]-Aa
2. B is closed under all binary fundamental operations, i.e., for all z,y € B,

t®py=c®ay (€B).

A congruence relation on A is an equivalence relation ¢ on A that is compatible with
all binary fundamental operations of A, i.e., for any x1,2o,y1,y2 € A, if 10y, x20yo
then (1 @ x2)0(y1 @ y2). The collection of all congruences on A forms a complete lattice
denoted by Con(A). For, if {6;]i € I} is a family of congruences then (), 6; is also a
congruence. Every non-degenerate F'L.-algebra A has at least two congruences, i.e., the
universal congruence V := A? and the diagonal congruence A := {(a,a)|a € A}. When
A has exactly two congruences then it is called simple. The congruence generated by a
set X of pairs of elements in A is the smallest congruence Cg(X) containing X. The
congruence generated by a singleton is called principal.

PROPOSITION 3.1 Let A,B be FL.-algebras and o« a homomorphism from A to B.
Then Ker(«) is a congruence on A.

(proof) Clearly, Ker(«) is a equivalent relation on A. For any (ai, b1), (as,bs) € Ker(a),

a(a; ©a as) = afa) ®s ala)
= a(b) @B a(by)
= Of(bl Da bg)
Thus, Ker(a) is a congruence on A. O

Let 6 be a congruence on A. For a € A, the #-congruence block of a is the set a/0 =
{b € A|(b,a) € 8}. The set {a/f|a € A} is denoted by A/f. The quotient algebra A /8 of
A by 6 is an F'L.-algebra such that its underlying set is A/, and fundamental operations
@49 are defined by a/6 ®a /s b/0 = (a Da b)/6. Note that since 6 is a congruence, B4 /g
is well-defined.

Let A be an F'Lc-algebra and F a subset of A. Then F is called a filter of A if it
satisfies the following conditions;
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1. 1 < a implies a € F,
2. a,a — b € F implies b € F,

3. a € FimpliesaAleF.

PROPOSITION 3.2 Let A be an FL.-algebra and F a filter of A. Then for any
a,be A,

1. a € F and a < b impliy b € F,
2. a,be F impliesa-be F,
3. a,b € F impliesaNnNbeF.

(proof) 1. If a < b then 1 < a — b. Hence, by conditions 1 and 2 of a filter, we have
be F.

2. Notethat a-b<a-b< a<b—a-b Thus, by I and condition 2 of a filter, we
have a - b € F.

3. If a,b € F then aA1l,bA1 € F by condition 3 of a filter. So, by 2, (aA1)-(bA1) € F.

Since
(anl)-(bA1)<a-1<a
(an1)-(bA1)<b-1<D
= (aAl)-(bAL)<aAb,
by 1, we have a Ab € F. O

By above proposition, a filter F of an F'L.-algebra A is a lattice filter of (A, A, V).

The collection of all filters of A forms a complete lattice denoted by Fil(A). For, if
{Fili € I} is a family of filters then [),.; F; is also a filter. A filter F of A is called proper
if F # A. We say that a proper filter F of A is prime if for any a,b0 € A, aVb € F
impliesa € F or b € F.

PROPOSITION 3.3 Let F be a filter of an F Le-algebra A, and define
0 ={(a,b) | (a—=b)A(b—a) e F}.
Then 0 is a congruence of A and F = {a € Al(aA1,1) € O7}.

(proof) Clearly, 67 is symmetric by the definition, and it is reflexive since for every
a € A, 1 < (a — a)A(a — a). If (a,b),(b,c) € O5 then by the definition of O,
(a—=>b)ANb—a),b—=>c)AN(c—0b € F. Since (a = b Ab—a) <a— band
b—=c)AN(c—b) <b—c wehave a > b € F and b — ¢ € F. Note that for any
z,y,2€ A, (x> y) = (y— 2) = (x = 2)) € F since

rT—=y<zT—=y

& z-(z—y)<y

= z-(z—oy) - y—=2)<y-(y—2) <z
= z-(z—oy) - -(y—=>2)<z

S 1<(z—=y) — (y—2) — (z— 2).
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Hence, by condition 2 of a filter, a — ¢ € F. Similarly, from b - a € F and ¢ — b € F,
it follows that ¢ — a € F. By Proposition 3.2, we have (a — ¢) A (¢ — a) € F, namely,
(a,c) € Ox. Therefore 05 is an equivalence relation on A. We will show that 65 is a
congruence. It is sufficient to show that for any fundamental operation & € {A,V, -, —},
(z,y) € 0 and z € A imply (z D 2,y ® 2), (2 D x,2 D y) € 0. Here we will prove the
cases of V and —.

(V) Suppose that (x,y) € 6. Then z — y,y — = € F. By condition 3 of a filter,
(x = y)AN1,(y—>z) A1l € F. Now,

{x-((x%y)/\l)sx-(fv%y)éy
z-((x—=>yANl)<z-1<z

= (@ (z—=y)A))V(z-((z =y Al)<yVz
S (zVz2)-((zr—=yAl)<yVz

< 1<(z=2yAl) = ((zVz) = (yV2),

hence ((z — y) A1) = ((xVz) = (yVz) € F. Thus, by condition 2 of a filter,
(xVz)— (yVz)eF. Similarly (y Vz) = (zV 2) € F.
(—) Suppose that (z,y) € 0. Then z — y,y — x € F. Since

y-(y—az) (z—2) <2
& 1< (y—=z)—= ((z—=2) = (y—2),

by condition 2 of a filter, (x — 2z) — (y — z) € F. Similarly (y = 2) — (r — 2) € F, so
(x = 2,y — 2z) € Ox. On the other hand, since

z-(z—=x) - (r—y) <y
& 1< (@—=y) = ((z—=2) = (2 =2y),

(z > z) = (2 = y) € F. Similarly (z = y) = (2 = z) € F, thus, (z > 2,2 > y) € OF.
Next, we will show that F = {a € Al|(a A1,1) € 0x}. Let a € F. Then, clearly,
(anl) >1€ Fsinceanl <1< 1< (aAl)— 1. By condition 3 of a filter, a A 1 € F.

Now
(anl)-1<anl

& 1<(@nl)—= (1= (anl)),

hence 1 — (a A 1) € F, therefore, (a A1,1) € 5. Conversely, let (a A1,1) € . Then
((an1) > 1)A(1 — (aAnl) € F,s0,1 = (aAl) € F. Sincel € Fand a1 < a,
a€F. O

PROPOSITION 3.4 For any FLc-algebra A, Fil(A) is isomorphic to Con(A), via
the mutually inverse maps F — O0r and 0 — Fy = {a € A|(a A 1,1) € 0}.

(proof) By Proposition 3.3, f is a congruence. Let 6 be a congruence. Then Fy satisfies
the conditions 1 and 3 of a filter. Suppose that a,a — b € Fy. Then, by definition of Fj,
(an1,1),((a—b)A1,1) €6. Since (aA1)-((a—=b)Al)<a-(a—b)<Dh,

1/0=((aA1)-((a—b)AL)/0< (a-(a—b))/8<b/b.

Thus, 1/6 =1/0 Ab/0 = (1 ADb)/6, ie., (bA1,1) €8, s0, b e Fy.
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We will show that Fil(A) is isomorphic to Con(A). Note that for any lattices L and
M, L is isomorphic to M if and only if L is order-isomorphic to M. Now the given maps
are clearly order-preserving, so, it is sufficient to show that they are inverses of each other.
Proposition 3.3 already proved F = Fy,.. In order to show 6 = 0, we will prove that
(z,y) € 0 if and only if ((z = y) A (y = x) A1,1) € 0. If 20y then

Il=((z—=2)Aly—=y)A1D)I(z > y) Ay = 2x)A1).

Conversely, suppose that ((z — y) A(y = z) A1,1) € 0. Since z- ((z = y) A (y —

z/0=(z-((z =29 Ay —=2)A1))/0<(z-2—=y)/0 <y/b.

Similarly y/6 < z/6. Hence /6 = y/0, i.e., (z,y) € 6. We will show that 0 = 0z,. If
(a,b) € 6 then, by above mention, ((a — b) A (b = a) A1,1) € . Thus, (a — b) A (b —
a) € Fy, s0, (a,b) € Ox,. Conversely, (a,b) € 0z, implies ((a = b) A (b — a) A1,1) € 0.
Therefore (a,b) € 6. O

If A= {A;|i € I} is an indexed set of F'L.-algebras then the product of A is the
algebra P = Il;c;A; whose underlying set is the Cartesian product of the underlying sets
of each algebras in A, and in which all binary fundamental operations @&p are defined by

(a:)icr ®p (bi)icr = (ai ®a,; bi)icr,

where a;, b; € A;.

A subdirect product of an indexed set A = {A;|i € I} of F'L.-algebras is a subalgebra B
of the product of A, such that for every ¢ € I and for every a; € A;, there exists an element
of B, whose i-th coordinate is a;. In other words, the projection to the i-th coodinate map
from B to A; is onto. A homomorphism « : A — Il;c;A; is called a subdirect embedding if
it is a one-to-one homomorphism (embedding) and a(A) is a subdirect product of ;s A,;.

PROPOSITION 3.5 Let 0; € ConA (i € I) and (\;c;0; = A. Then, the homomor-
phism v : A — ;1A /0; defined by

v(a)(i) = a/b;,
15 a subdirect embedding.

(proof) Let v; be the natural homomorphism from A to A/6; for i € I. Then, each y;
is an onto (surjective) homomorphism. We will show that v is an embedding. For any
distinct elements a,b € A, (a,b) & (;c; 0 since (;c; 0 = A. Hence, there exists some
j € I such that (a,b) € 6;. Thus, v;(a) # v;(b), namely, v(a) # v(b). O

An FL.-algebra A is subdirectly irreducible, if for every subdirect embedding o : A —
IT,c1B; there exists some 7 € I such that

moa:A — B,

is an isomorphism, where =; is the i-th coodinate map from «(A) to B;.
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PROPOSITION 3.6 An FL.-algebra A is subdirectly irreducible iff either A is trivial
or there is a minimum congruence in ConA — {A}. In the latter case the minimum
element is (\(ConA — {A}), called the monolith.

(proof) (=) If A is non-degenerate and ConA — {A} has no minimum element then
((ConA — {A}) = A. Let I = ConA — {A}. Then the natural map o : A — Ilyc;A /0
is a subdirect embedding by Proposition 3.5, and as the natural map A — A /6 is not an
embedding for 6 € I, it follows that A is not subdirectly irreducible.

(<) If A is trivial and « : A — Il;c;A; is a subdirect embedding then each A; is
trivial; hence each 7; o  is an isomorphism. So suppose A is non-degenerate, and let
0 = (ConA — {A}) # A. Choose (a,b) € 6 such that a #b. If « : A — II;c;A; is a
subdirect embedding then for some 4, (aa)(i) # (ab)(i); hence (m; o a)(a) # (m; o «)(b).
Thus (a,b) & ker(m; o ) and hence 6 € ker(m; o ). But this implies ker(m; o a) = A, so
moa: A — A; is an isomorphism. Consequently A is subdirectly irreducible. a

We say that an element a(# 1) of F'L.-algebra A is an opremum, if for each z(< 1)
there exists some n € w such that z" < a.

PROPOSITION 3.7 Let A be an FL.-algebra. Then A is subdirectly irreducible if and
only if there is an opermum a in it.

(proof) (=) Suppose that A is subdirectly irreducible. Then, by Proposition 3.6 and 3.4,
A has the second smallest filter F. Thus, there is some a € F such that a 2 1. For each
r<1,let
Fr.={y € Alz" < y,3In € w}.

It is easy to see that F, is a filter generated by z. Since F C F,, a € F,. Hence there is
some n € w such that 2™ < a, i.e., a is an opremum of A.

(<) Let a be an opremum of A and F, = {y € A|(aA1)” < y,3In € w}. It is sufficient
to show that F, is the second smallest filter of A. Let F be a filter other than the smallest
filter. Then for any z € F, there is some m € w such that

(xA1)™ < a.
Thus for any y € F,, there is some n, m € w such that
(A])™ < (aN1)" <y.

Hence y € F. O

PROPOSITION 3.8 (Birkhoff) Fvery FL.-algebra A is isomorphic to a subdirect
product of subdirectly irreducible F Le-algebras (which are homomorphic images of A ).

(proof) Since trivial algebras are subdirectly irreducible, we suppose that A is non-
degenerate. Then there exists some a,b € A such that a # b. Let ¥ = {0 € ConAl(a,b) ¢
6}. By Zorn’s lemma, there is maximal element 6,5 in X. Then clearly Cg(a,b) V 0,
is the smallest congruence in [6,5, V] — {64}, so by Proposition 3.6 we see that A /6,
is subdirecty irreducible. As ({04pla,b € A,a # b} = A we can show that A is subdi-
rectly embeddable in the product of the indexed family of subdirectly irreducible algebras
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(A/Oab)azto- 0

Let B = (B, A,V,,0,1) be a Boolean algebra. Note that since 1 is the greatest element
of a Boolean algebra B, a filter F of B is defined more simply as follows;

1. 1€ F,
2. a,a — b€ F implies b € F.
It is easy to see that the above condition is equivalent to the following;
1. 1eF,
2. a,b € F impliesaAbe F,
3. a € F and a < b implies b € F.
A subset Z of B is called an ideal of B if it satisfies the following;
1. 0eZ,
2. a,b €7 impliesa Vb e T,
3. a€Z and a > bimplies b € T.

Let X be a set and B(P(X)) the Boolean algebra defined by the power set P(X) of X.
A subset U of P(X) is called an ultrafilter over a set X or an ultrafilter of B(P(X)), if it
is a filter of B(P(X)) which is maximal with respect to the property that () & U.

PROPOSITION 3.9 Let F be a filter of a Boolean algebra B. Then the following are
equivalent:

1. F is an ultrafilter of B,

2. for any a in B, exactly one of a,a’ belongs to F,

3. for any a,b € B, aVbe F implisea e F orbe F.

(proof) 1 = 2. If F is an ultrafilter then B/07 = 2 since B/0# is simple, where 2 is the
two element Boolean algebra. Let v : B — B/f8z be the natural homomorphism. For
a € B, v(d') =v(a) so

v(a) =1/0 or v(d')=1/0F,

as B/6r = 2; hence
aceF or decF.

If there exists a € B such that « € F and o’ € F then 0 = a A d € F, so this is a
contradiction.

2 = 3. Suppose F is a filter with avVb e F. By 2, (aVb) = (a' NV) & F,sod ¢ F
or ' ¢ F. Thus, either a € F or b € F.

3 = 1. Suppose that F' is a filter of B such that F C F'. If a € 7' — F then o' € F,
sincel =aVd € Fand a & F, by 8 Hence,d € FC F',s00=aAd € F. Thus,
F' = B. O
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PROPOSITION 3.10 (Jénsson) Let W be a family of subsets of I (# () such that
1. IeW,
2.if JeW and J C K C I then K e W,
3. if JUJy € W then Jy € W or Jo, € W.

Then there is an ultrafilter U over I such that U C W.

(proof) If ) € W then W = P(I), so every ultrafilter is in W. Otherwise, it is easy to see
that P(I) — W is a proper ideal. Hence we can extend it to a maximal ideal and obtain
an ultrafilter by taking the complementary ultrafilter. O

If A={A;|i € I} is an indexed set of F'L.-algebras and U is an ultrafilter over index
set I, then the binary relation 6, on the product P of A, defined by (a;)icr0y(b;)icr iff
{i € Ila; = b;} € U, is a congruence on P. The quotient algebra P /6, is called the
ultraproduct of A over the ultrafilter .

PROPOSITION 3.11 If{A;|i € I} is a finite set of finite F Le-algebras, say {B, ..., By},
(I can be infinite), and U is an ultrafilter over I, then I;c;A;/U is isomorphic to one of
the algebras By, ..., B,,, namely to the B; such that

{ic I|A; =B} eU.

(proof) Let

Then I = S1U- - -US,,, so by Proposition 3.9, there is some j (1 < j < m) such that S; € U.
Let Bj = {by,...,b;}, where the b’s are all distinct, and choose ay,...,a; € II;c;A; such
that

al(i) = bl, ceey ak(z) = bk
if 1 € S;. Then, for every element a € II;cr A;,

{iella(i) =a1())}U---U{i € I|a(i) =ar(i)} D 5.
Since S; € U, {i € Ila(i) = a1(4)} U --- U {i € I|a(i) = ax(i)} € U, this follows
{i € Ila(i) =a1(1)} €U or ... or {i € I|a(i) = ax(i)} € U,

hence
a/0y = a1/6y or ... or a/by = ar/6y.

Also it is evident that ai/0y, ..., ax/6y are all distinct. Thus IT;c;A; /6, has exactly k
elements, a/0y, ..., ax/0y. Let o be the map from II;c;A; /6y to B, defined by

O!(at/eu) = bt, 1 S t S k.

Then it is easy to see that « is an isomorphism. O
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3.2 Basic Concepts of Classes of F'L.-algebras

In this section, we will discuss some basic concepts of classes of F'L.-algebras.

For a class of F'L.-algebras C, we denote by S(K), H(K), P(K) and Ps(K) the classes
of all F'L.-algebras that are isomorphic to a subalgebra, a homomorphic image, a product
of algebras of K and a subdirect product of algebras of K, respectively. I(K) denotes
the class of all F'L.-algebras which are isomorphic to some member of . If O; and O,
are two operators on classes of algebras we write 0,05 for the composition of the two
operators, and < denotes the usual prtial ordering, i.e., O; < Oy if O1(K) C O5(K) for
all classes of algebra K. An operator O is idempotent if 0% = O.

PROPOSITION 3.12 The following inequalities hold: SH < HS,PS < SP, and
PH < HP. Also the operators, H,S, and IP are idempotent.

(proof) Suppose A = SH(K). Then for some B € K and onto homomorphism « : B — C,
we have A < C. Thus, a!(A) < B, and as a(a }(A)) = A, so A € HS(K). In the
same way, we can show that PS < SP and PH < HP.

It is easy to show that H,S and IP are idempotent. O

A nonempty class K of F'L.-algebras is called a wvariety if it is closed under the three
operators S, H and P. If K is a class of F'L.-algebras then V() denote the smallest
variety containing L. We say that V' (K) is the variety generated by K. If K has a single
member A we write simply V(A).

PROPOSITION 3.13 (Tarski) V = HSP.

(proof) Since HV = SV = IPV =V and I <V, it follows that HSP < HSPV = V.
By the previous proposition, we see that H(HSP) = HSP, S(HSP) < HSSP = HSP,
and P(HSP) < HPSP < HSPP < HSIPIP = HSIP < HSHP < HHSP = HSP;
hence for any I, HSP(K) is closed under H, S and P. As V(K) is the smallest variety
containing /C, it must be V = HSP. O

Let X be a set of (distinct) objects called variables. The set T'(X) of terms over X is
the smallest set such that

1. X U{T,1,0,1} C T(X),
2. if t,s € T(X) then the “string” t ® s € T(X), where @ is a fundamental operation.

For t € T(X) we often write t as t(z1,...,x,) to indicate that the variables occurring in
t are among 1, ...,Z,. The term algebra or absolutely free algebra over X is the algebra
T(X)=(T(X),\,V,-,—, T,1,0,1).

Let K be a class of F'L.-algebras and U(X) an F L-algebra generated by X. Then, we
say that U(X) has the universal mapping property for K over X, if for every A € K and
for every map o : X — A there is a homomorphism 3 : U(X) — A such that 3(z) = a(x)
for any z € X. Note that for any set X of variables and class K of F'L.-algebras, the
term algebra T(X) has the universal mapping property for K over X.

Let I be a class of FLc-algebras and T(X) the term algebra over X. Define a
congruence Ox(X) on T(X) by O (X) =) Px(X), where

O (X) = {¢ € ConT(X) | T(X)/¢ € IS(K)}.
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Then we say that Fi(X) is the K-free algebra over X, if it is the quotient algebra of T(X)
by 0x(X), i.e., Fx(X) = T(X)/0x(X), where X = X/0x(X). For z € X we write Z for

PROPOSITION 3.14 (Birkhoff) Let K be a class of FLc-algebras and Fx(X) the
IC-free algebra over X. Then Fi(X) has the universal mapping property for IC over X.

(proof) Given A € K, let o be a map from X to A. Let v : T(X) — Fx(X) be the natural
homomorphism. Then a o v maps X into A, so by the universal mapping property of
T(X) there is a homomorphism p : T(X) — A such that u(z) = aov(z) for any z € X.
From the definition of 0y (X), it is clear that 6 (X) C Ker(u) since Ker(p) € ®x(X).
Thus there is a homomorphism 3 : Fx(X) — A such that u = 3o v. Then, for any
r € X,

B(z) =pBov(x)
= p(z)
=aov(x)
= (),

so B3(z) = a(z). Hence Fx(X) has the universal mapping property for K over X. O

PROPOSITION 3.15 If K is a class of F Le-algebras and A € K, then for sufficiently

large X, A € H(Fr(X)).

(proof) Choose | X| > |A| and let o : X — A be a surjection. Then, by Proposition 3.14,

there is an onto homomorphism g : Fx(X) — A. a

PROPOSITION 3.16 (Birkhoff) Let K be a class of F'Le-algebras. Then Fx(X) €
ISP(K). In particular, if K is a variety then F(X) € K.

(proof) Since Ox(X) = ) Pk (X),

Fr(X) = T(X)/0c(X) € IPs({T(X)/¢ | ¢ € 2c(X)}),

so Fx(X) € IPsIS(K). Note that Ps < SP. Thus, by Proposition 3.12, Fx(X) €
ISP(K). =

An equation over a variable set X is a pair of terms of T(X). If ¢, s are terms we
write t & s for the equation defined by them. We say that an equation ¢(z1,...,z,) ~
s(x1,...2,) over X is walid in an FLc-algebra A, or it is satisfied by A, in symbols
A E=tw s, if for any aq,...,a, € A, t(ay,...,a,) = s(ay,...,a,). The notion of validity
is extended to classes of algebras and sets of equations. A set £ of equations is said
to be valid in a class I of FLc-algebras, in symbols K = &, if every equation of £ is
valid in every algebra of K. For a class K of F'L.-algebras and a set X of variables, let
Ex(X)={trs|KEtrsfort,s e T(X)}.

PROPOSITION 3.17 Let K be a class of FLe-algebras and t =~ s an equation over
X. Then K =t = s if and only if for every A € K and for every homomorphism
a:T(X)—= A, at = as.
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(proof) (=) Let t = t(x1,...,2,),8 = s(x1,...,2,), A € K and o a homomorphism from
T(X) to A. By our assumption, t(ai,...,a,) = s(ai,...,a,) for any ai,...,a, € A.

Thus,
t(a(xr),...,a(z,)) = s(a(zr), ..., a(z,))
= at(x, ..., 2n) = as(T1,. .., %)
= at = as.

(<) Choose A € K and ay,...,a, € A. By the universal mapping property of T(X),
there is a homomorphism « : T(X) — A such that a(z;) = a; (1 <i<n). Then,

t(ar, ... a,) =tla(zy),...,a(x,))
= ot
; S(Q(xl), cen a(mn))

=s(a1,---,an),

thus £ =t~ s. O

PROPOSITION 3.18 For any class K of FLe-algebras, all of the classes IC, I(K),
S(K), H(K), P(K) and V(K) satisfy the same equations over any set of variables X .

(proof) Clearly K and I(K) satisfy the same equations. Since [ < IS, < H,and I < IP,
it must be Ex(X) O Egx)(X), Ex(X) 2 En)(X) and Ex(X) D Epge)(X).

Suppose that K = t(zq,...,2,) ~ s(z1,...,z,). f B< A € K and by,...,b, € B
then t(by,...,b,) = s(b1,...,b,) since by,...,b, € Aand A =t~ s. Thus B Et = s,
50 Ex(X) = Egx)(X). Suppose that A € K and o : A — B is an onto homomorphism.
Then for any by,...,b, € B there exist ai,...,a, € A such that a(e;) = b; (1 < i <
n). Since t(ay,...,a,) = s(a,...,a,), t(a(ar),...,a(a,)) = s(a(ar),...,a(a,)). Hence
t(b1,...,bn) = s(b1,...,b,). Thus Ex(X) = EH (c)(X). Suppose A € K fori € 1.
Then for ay,...a, € Ay, t(a1(7),...,a,(¢)) = s(a(i),...,a,(i)). Hence for i € I,
t(ar, ... a,)(7) = s(ay,-..,a,)(%), so HzelA Etrs. Thus EK(X) Epgc)(X). Since
V:HSP, EIC(X):EV(IC)(X) O

PROPOSITION 3.19 Let K be a class of F'L.-algebras and t,s terms over X. Then,

K=ta~s
& FeX)Etrs
& (t,8) € O (X).

(proof) By Proposition 3.16 and 3.18, it is easy to see that K =t ~ s implies Fx(X) |
t~s. Lett=t(r,...,7,),8 = s(r1,...,7,) and v : T(X) — Fx(X) the natural ho-
momorphism. Suppose that Fx(X) =t ~ s. Then, clearly, t(Z1,...,%s) = $(Z1,...,Tn)-
Hence,

v(t) = t(T1,...,Tp) = $(T1,...,Tp) = V(S),
o (t,s) € Ker(v) = 0 (X). Finally, suppose (t,s) € Ox(X). For A € £ and a4,...,a, €
A, let a : T(X) — A be a homomorphism such that a(z;) = a; (1 < i < n). Since
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0x(X) = Ker(v) C Ker(a), there is a homomorphsim 8 : Fx(X) — A such that
o = fowv. Then,
alt) = Bou(t) = Bou(s) = als).

Thus, by Proposition 3.17, K =t & s. O

PROPOSITION 3.20 Let K be a class of F L.-algebras and t,s € T(X). Then for any
set of variables Y with |Y| > | X]|,

KeEtrseFe(Y)=txrs.

(proof) (=) It is obvious since Fx(Y) € ISP(K).
(«) Let X, be a set of variables which satisfies Xo 2 X and |Xo[ = |Y[. Then
Fi(Xo) =~ Fx(Y). By Proposition 3.19,

’C):tzsﬁFlc(Xo)lzt%S,

hence

KeEtrseFe(Y)=txrs.

PROPOSITION 3.21 Let K be a class of F' Lq-algebras and X a set of variables. Then
for any infinite set of variables Y,

EIC(X) = EFK(Y’)(X)'

(proof) For any t ~ s € Ex(X), there exist a subset {zi,...,2,} of X such that ¢ =
t(Z1,- 5 Tn), 8 = 8(T1,. .., 2,) and (21, ..., %0), (71, ..., 70) € T({x1,...,2,}). Since
{z1,...,2,}| < |Y|, by Proposition 3.20, K =t~ s< Fe(Y) =t~ s. O

Let £ be a set of equations, and define Mod(E) to be the class of all FL.-algebras
satisfying £. A class K of F'L.-algebras is an equational class if there is a set £ of equations
such that L = Mod(€). In this case, we say that K is aziomatized by .

PROPOSITION 3.22 IfV is a variety and X is an infinite set of variables then V =
Mod(Ey(X)).

(proof) Let V' = Mod(Ey(X)). Clearly V' DO V and V' is a variety by Proposition 3.18.
Moreover, Ey(X) = Ey(X) since for any t & s € Ey/(X), V' =t~ s implies V =t & s.
Thus for any equation t = s,

VEtrseVEtas,

so by Proposition 3.19, 6, (X) = 6y(X), namely, Fy»(X) = F,(X). Let Y be an infinite
set, of variables. Then by Proposition 3.21,

Ey(Y) = Egp,x)(Y) = Ep,x)(Y) = Ey(Y)
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since X is also infinite. Thus again by Proposition 3.19, 6y(Y) = 6,(Y), so Fy/(Y) =

Fy(Y). Let A € V'. Then by Proposition 3.15, for suitable infinite Y,

A € HFy(Y)) = H(Fy(Y)).

Therefore V' = V. O

PROPOSITION 3.23 (Birkhoff) K is an equational class if and only if K is a variety.
(proof) (=) Suppose that K = Mod(€). Then, by Proposition 3.18, V(K) = £. Hence,
V(K) € Mod(€) = K C V(K),

so K is a variety.
(<) Let K be a variety and X an infinite set of variables. Then by Proposition 3.22,
K = Mod(Ex(X)). O

An FL.-algebra A is congruence-distributive if Con(A) is a distributive lattice. A
class K of FL.-algebras is congruence-distributive if every algebra in K is congruence-
distributive. It is well-known that every variety of F'L.-algebras is congruence-distributive.
We denote the class of ultraproducts of members of I by Py(K). The following is a cele-
brated result due to B. Jénsson, known as Jonsson’s Lemma.

PROPOSITION 3.24 (Jénsson’s Lemma) Let V(K) be a congruence-distributive va-
riety. If A is a subdirectly irreducible algebra in V (K) then

A € HSPy(K).

(proof) Suppose that A is a non-degenerate subdirectly irreducible algebra in V(K).
Then for some A; € K (i € I), and for some B < II;c;A; there is an onto homomorphism
a:B — A. Let § = Ker(a) and for J C I,

05 ={(a,) € (ierAs)* | J C {i € Ila(i) = b(i)}}.

It is easy to see that for any J(C I), 6, is a congruence on II;c;A;. Let 6;]z= 6; N B? be
the restriction of #; to B and

W = {J C I|9,15C 6}.

Clearly I € W and 0 ¢ W. If J € W and J C K C I then 0x[5C 0 since 0x[5C 0;]5.
So K € W. Suppose that J, U Jy, € W, ie., 05,05,[8C 0. As 0,05, =05 N0O,,, it follows
05,00, 8= 04,18 MO, 5. Since § = OV (0,15 NG,,]5), by distributitity of congruences,

0=0VO,ls)N(OVH,IE).

Thus 8 = V6,5 for i =1 or 2 since B/# ~ A is subdirectly irreducible. Hence 0;.]5C 6
for : =1 or 2, so either J; or J, is in W. By Proposition 3.10, there is an ultrafilter & in
W. From the definition of W,

OulBC 0,
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where 0, = \/{0;|J € U}. Let v be the natural homomorphism from IT;c; A; to Il;c; A;/U.
Then let
8:B —v(B)

be the restriction of v to B. Since Ker(f) = 0u[gC 6, A ~B/0 ~ (B/Ker(3))/(8/Ker(3)).
Now
B/K@T(ﬂ) ~ I/(B) S HiEIAi/ua

" B/Ker(B3) € ISPy (K),

hence A € HSPy(K). 0

Let FL. be the variety of all F'L.-algebras and V,,; the variety which contains only
trivial algebras. We define sub) = {V | V is a subvariety of FL.}. Note that if V; €
subV (i € I) then (,.;V; € subV. For any Vi,V, € subV, let V; V Vs, be the smallest
variety including the class V; UV,. Then, it is not hard to see that (subV,N,V, Vi, FLc)
forms a complete lattice in which FL, and V,,; are the largest and smallest elements,

respectively. We call it the subvariety lattice of FL,. or the lattice of varieties of FL,-
algebras.

In the following figure, A and BA denote the class of all Heyting algebras and
Boolean algebras, respectively.

FL.

Vtrz’

Figure 3.1: the subvariety lattice of FL,

3.3 Logics over FL, and Varieties of F'L.-algebras

Let A be an F'L.-algebra and X the set of all variables. A valuation v on A is a map from
X to A. The notion of valuation is extend to a map from Fm(X) to A as usual. A formula
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¢(X) is valid in A, or it is satisfied by A, if for every valuation v on A, v((X)) > 1a.
Note that a formula ¢ is valid in A if and only if the equation ¢ A1 ~ 1 is valid in A,
ie, AE¢A1=1. Let L(A) be the set of all formulas which are valid in A.

PROPOSITION 3.25 For any FL.-algebra A, L(A) is a logic over FLe.

(proof) It is easy to see that L(A) is closed under substitution and FL, C L(A). Suppose
that ¢, ¢ — 1 € L(A). For any valuation v on A,

1a <w(p — ) =v(8) = v(¥)
= 1a <v(e) <v(¥)
= 1a < ().

Hence ¢ € L(A). Clearly, if ¢ € L(A) then ¢ A1 € L(A). O
We call L(A) the logic characterized by A.

PROPOSITION 3.26 Let A be an F L.-algebra. If B is a subalgebra of A then L(A) C
L(B).

(proof) Suppose that ¢ ¢ L(B). Then, there is some valuation v on B such that v(¢) # 1g.
Since B is a subalgebra of A, the valuation v is considered as a valuation on A. Thus,

v(@) 2 1a. O

PROPOSITION 3.27 Let A be an FL.-algebra and 0 a congruence on A. Then,
L(A) CL(A/9).

(proof) Suppose that there is some formula ¢(ps,...,p,) such that ¢ ¢ L(A/6). Then
there exists some valuation v on A /6 defined by v(p;) = x;/6 (1 <i < n) such that

v(d(P1,---,Pn)) = (x1/0,...,2n/0) Z 1ay.

Hence ¢(z1,...,2,)/0 2 1as, s0 ¢(21,...,7,) 2 1a. Thus, by the valuation w on A
defined by w(p;) = 21 for 1 <1i < n, we have w(¢) 2 1a. O

The above two results say that for any homomorphism o : A — B, if o is an embedding
(onto homomorphism) then L(B) C L(A) (L(A) C L(B), respectively). Clearly, when «
is an isomorphism, L(A) = L(B).

PROPOSITION 3.28 Let A; (i € I) be an FL,-algebra. Then,
L(JT A = L(A).
icl i€l

(proof) Let v; be the i-th coodinate projection. Then v; are onto homomorphisms, so
L(ILerA;) € L(A;) for any i € I by Proposition 3.27. Hence L(IlicrA;) C [,y L(Ay).
Suppose that ¢ € L(Il;c;A;). Then there is a valuation v on Il;c;A; such that v(¢) 2
I, A;, so there is some j € I such that v(#)(j) 2 lm,a,(j). Let w = vjov. Itis
easy to see that w is a valuation on A; and w(@) 2 1a,. Thus, ¢ ¢ L(A;), therefore
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¢ gﬂzeIL(Az) O

Let £ be a logic over FL, and T an L-theory of a language Fm(p). We define an
equivalence relation ~r on the set Fm(p) by

pvrtp = ppel.

It is easy to see that ~¢ is a congruence relation on Fm(p). It allows to define the
Lindenbaum-Tarsk: algebra

A(p,T) = Fm(p)/ ~r
as a quotient algebra of Fm(p). Denote

1] = {l¢ ~r b}

for any formula ¢ = ¢(p).

PROPOSITION 3.29 Let L be a logic over FL.. Then there is some F Lo-algebra A
such that
L=L(A).

(proof) Let A = Fm/ ~ be the Lindenbaum-Tarski algebra determined by £. We will
show that £ = L(A). Note that ¢ € L if and only if A1 <> 1 € L. Let ¢(p1,...,p,) € L
and v a valuation on A defined by v(p;) = ||¢i]| (1 < i < n). Since L is a logic, the
substitution instance ¢(vy,...,¥,) of ¢ is in L. Thus,

SW1, .. )AL 1EL
d(1y .. ) N1 ~p 1

p(Pr, -, %) AL = [[1]]
¢(H¢1||aﬂ|‘wn||)/\ Ia=1a
v(@(p1;---,pn)) = B(v(p1),-- -, v(pn)) > 1a.

Hence ¢ € L(A). Conversely, let ¢(p1,...,p,) € L(A). Then, for a valuation v on A
determined by v(p;) = ||ps|| (1 <i < n),

R R

v(o(P1,---,pn)) = B(l[p1lls - -, [|Pall) > 1a.
Hence,
d(lIprlls - -5 [Ipall) A1a =14
= |o(p1, ..., pn) ALl =[1]]
= o1, P) N1 ~p ]
= ¢(p1,.... o) N1 1L
= o(p1,...,pn) € L.

For any logic £ over FL., we define the class of F'L.-algebras V(L) as follows;
V(L)=Mod({pN1=1|¢€L}).
PROPOSITION 3.30 For any logic L over FLe, the class V(L) is a variety.
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(proof) By definition, V' (£) is an equational class. Thus, by Proposition 3.23, V(L) is a
variety. O

Conversely, for any variety V of F'L.-algebras, we define the set of formulas L()V) as
follows;

LWV)={peFm|V EosAN1lx1}.
PROPOSITION 3.31 For every variety V of F Le-algebras, L(V) is a logic over FLe.

(proof) At first, we will show that L(V) is closed under substitution. Let ¢(p1,...,pn)
L(V) and ¢(t1,...,1%,) a substitution instance of ¢. Suppose that ¢(v1,...,1¥,) & L(V
Then there exist some A € V' and valuation v on A such that

v(¢(wla .. awn)) - ¢(U(¢1), ey U(wn)) ?f 1A-
Let w be a valuation on A defined by w(p;) = v(¢;) for i € I. Then,

w(¢(p1""’pn)) qﬁ(w(pl),...,w(pn))
¢(U(¢1)7 T U(¢n))

A-

S
).

—_

ba
Thus ¢ ¢ L(V), but this is a contradiction. It is easy to see that if ¢ € FL, then for any

FL.-algebra A and valuation v on A, v(¢) > 1o. Hence ¢ € L(V). Let ¢, — b € L(V).
Then for any A € V and valuation v on A, 15 < v(¢) and 15 < v(¢ — ). Thus,

la<v(@—9) < 1a <v(d) = v(¥)
= (o) <v(¥)

<— 15 < ’U(w)

Therefore ¢ € L(V). Clearly, ¢ € L(V) implies ¢ A1 € L(V). 0

PROPOSITION 3.32 (CSL,N,V,FLg, Fm) and (subV,N,V, Vyi, FLe) are dually iso-
morphic, via the mutually inverse dual maps L +— V(L) and V — L(V).

(proof) First, we will show that the given maps are antitone. Let £; C Lo. Then V(£5) E
dAN1=1for ¢ € Ly. Thus, V(Ls) E v A1~ 1 for every ¢ € Ly, so, V(L2) C V(Ly).
Let V1 C Vy and ¢ € L(V,). Then, Vo = ¢ A1 =~ 1, so clearly, V; = ¢ A1 ~ 1. Thus
they are antitione. We will show that £ = L(V (L)) and V = V(L(V)). If ¢ € L then
V(L) E ¢ A1~ 1. Hence, ¢ € L(V(L)). If ¢ ¢ L then, by Proposition 3.29, there is
some FLc-algebra A such that A ¢ A1 1and A € V(L). Hence, V(L) FdN1 =~ 1,
so ¢ & L(V(L)). Therefore £L = L(V(L)). Let A € V. Then for any ¢ A1 = 1, if
ViEdAN1=~1then A =¢Al=x1. Thus,

= AcMod{pAlx1|VESALx1})
= AeV(LYV)).

Conversely, suppose that A € V(L(V)). Then, for any 6 A1 ~ 1,V E o A1l =~ 1
impliess A = ¢ A1 = 1 by definitions of V" and L. Note that for any equation ¢ &~ s and
FLc-algebra B,

BEt~xseBE((t—=s)A(t—=s)A1l=1.
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Thus,

VEtxs
VE((t—=s8)A(s—t)Alr1
AE((t—=s)AN(s—=t)Alr1
AEt=s

A e Mod({t =~ s|V =t~ s}).

By Proposition 3.22, V = Mod({t = s|V =t =~ s}), therefore A € V. O

Lol

Figure 3.2:

PROPOSITION 3.33 Let L be a logic over FLe. For any L-theory T of the language
Fm(p), the Lindenbaum-Tarski algebra A(p,T) is in V(L); the canonical mapping « :
Fm — A, i.e., for each formula ¢ = ¢(p)

a(¢) = ||¢]| = ¢/ ~r,
1s a homomorphism and, moreover,
¢ €T = |[¢|| = 1a.

(proof) First, we will show that A(p,T) € V(L). Note that for any ¢(p1,p2,---,pn) € L
and ¢¥; € Fm(p) (i =1,2,---,n), ¢(th1,19,---,1y,) is also in L since L is closed under
substitution. Then

¢(¢1,¢2,"'a¢n) €L = ¢(w17¢2aawn)/\1(_)1 €L
¢(¢1,¢2,"',’lﬁn)/\1(—)1€T
1a = [[1]| = [[(¥1, ¥a, -+ 9hn) A L]
||¢(¢1;¢2;;¢n)|| > 1a

L4y
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Let v be any valuation on A. We assume that v(p;) = |[1||. Then,

v(@(p1,p2, - +,pn)) = S(v(p),v(p2), -+, v(pn))
O[], [[ll, - -+, [lebnl])
= ||¢(w1,w2aaq/}n)”

Hence, v(¢(p1,p2, -+, Pn)) > 1a, s0 A € V(L). Tt is clear that « is a homomorphism since
~r is a congruence relation on Fm(p). Next, we will show that ¢ € T <= ||d|| > 1a.
Note that for any formula 1, ¢ € T if and only if Yy A1 4> 1 € T'. Thus,

pel <= ANl 1eT
= |loAll|=1a
= 9] > 1a.

PROPOSITION 3.34 Let T be an L-theory of the language Fm(p), ¢ € Fm(p) and
¢ & T. Then there exists a mazimal L-theory Ty of the language Fm(p) such that T C Ty
and ¢ & Ty. Moreover, A(p,Ty) is a subdirectly irreducible algebra and ||¢|| is its opremum
element.

(proof) Let
Y. ={G : L-theory | T C G and ¢ ¢ G},

since T' € 3, ¥ is not empty. By Zorn’s lemma, > has a maximal element. So let Tj
be a maximal element of ¥. We will show that A(p,7}) is subdirectly irreducible. It is
sufficient to show that ||¢|| is an opremum. Note that for any |[¢|| € A, ||¢]| < 1a implies
¥ & Ty by Proposition 3.33. So for any ||¢|| < 14, let

T,/, = {O' € .7-'m(p) ‘ To,w }_L O'}.

Then Ty is an L-theory of the language Fm(p) which includes 7;. Moreover, since 3 ¢ Tj
and v € Ty, T, is strictly bigger than 7j. Since Tj is maximal with respect to ¢, T, must
contain ¢, i.e., Ty, ¥ F, ¢. Hence, by local deduction theorem, there exists some n € w

such that
ToFe (WA= ¢ = (WAL)"—=0eT,

= 1a <[ A1)" = ]
= 1a <|[@ A" — |9l
= @AD" < ¢l

= |[pl[* < llol]-
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Chapter 4

Maximal Commutative Logics

In this chapter, we will discuss mazimal logics over FL,. By a maximal logic, we mean a
logic £ such that £ C Fm, and £ C L' C Fm implies £’ = L for any logic L' over FL.
For logics over FL,, which is obtained from intuitionistic logic LJ by eliminating the
contraction rule, it is well-known that there is only one maximal logic, which is classical
logic Cl. But there are many maximal logics over FL,.

The goal of this chapter is to show that there exist in fact continuum maximal logics
over FL.. In order to show this, we will investigate the subvariety lattice (subV, N, V,
Viri, FLe) and show that there are continuum minimal varieties of F'L.-algebras. Here,
a non-trivial variety V of F'L.-algebras is mimimal if for any variety W of F'L.-algebars,
W C V implies W = V,,;, i.e., the subvarieties of V' are exactly V;,; and V itself.

Before showing our result, we discuss several results related to maximal logics for
substructural logics and to minimal varieties for residuated lattices.

As mentioned above, for logics over FLey, there is exactly one maximal logic, i.e., the
classical logic Cl is the only maximal logic. Hence, for logics over FLey, almost mazimal
logics have been studied. By an almost maximal logic, we mean a logic £ such that
L C Clyand £ C £' C Climplies £' = £ for any logic £ over FLey. In [41], M. Ueda
showed that there exist countably many almost maximal logics over FLg,, (see also [31]).
Then, T. Kowalski and M. Ueda extended the result and proved in [21] that there exist
continuum many almost maximal logics over FLgy .

On the other hand, P. Jipsen and C. Tsinakis showed in [15] that there exist continuum
many minimal varieties of non-commutative residuated lattices that satisfy the equation
p* ~ p?, but not the equation p*> ~ p?. In [10], N. Galatos improved this result by
constructing continuum many minimal varieties of non-commutative residuated lattices
that satisfy the idempotent law, i.e., p?> ~ p and distributivity. Moreover, he showed that
there are only two minimal varieties of commutative residuated lattices that satisfy the
idempotent law. These results imply that there exist continuum many maximal logics
over FL which is obtained from LJ by eliminating all of the structural rules.

The following figure represents the lattice of all logics over FL.
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classical logic CI maximal logics

almost maximal logics

Figure 4.1: the lattice of all logics over FL

4.1 Algebras B,

To explain our basic ideas developed in the next section, we introduce algebras By =
(Bg, \,V,-,—,T,1,0,1) for £ € N defined as follows;

(underlying set)
For any k € N, .
B, ={T,L}u{0" | 0<3i<2k+1},

where 0° and 0! denote constants 1 and 0, respectively.
(lattice order)
1<1<0®<0t<---<0*<T,
1L <0<03<05-- <0+ < T,

(monoid operation)
l-x=x-L =1 VzeB,.
T-x=z-T=T V€ B withz# L.
0™t i mo4n < 2k 41,

0™.-0" =< 0% if m+n>2k+1and m+nis even,
0%+ if m+4n>2k+1and m+n is odd.
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(residuation)

=T =T L —=xz=T
T ifz=T T if =1
T—or= { 1 otherwise © - l= { 1 otherwise
l—sz=2x
T if =1
r— 1= 1 if z=1
1 otherwise
0%k if =k
0% 0% =¢ 029 if {<l<k
1 if 1<
Q2k+1 if l=k
0% — 2%+ = 02U=0+1  if 4 <l<k
1 if 1<
0%k if l=k
0%+ — 02 = ¢ 02D if i<I<k
1 if 1<
0kt if I=k
0% — 0% = ¢ 02071 if i<l<k
1 if <14
The following are some examples of algebras By.
k=0 k=1 k=m
T T T
02m—|—1 m 02m
0 1 03 02 02m—1 02m—2
0 1 :
1 0° 0*
03 0?
1
0 1

Figure 4.2: algebras By
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LEMMA 4.1 For any k € N, By is a ssimple F'L.-algebra.

(proof) It is a routine work to check that By is an F'L.-algebra. We will show that it is
simple. Suppose that there exist some elements z,y € By and congruence # on By such
that © # y and (z,y) € 6. Then, without loss of generality, we can assume that either
x <y,or bothz £yandy £ x.

(r <y) Theny — 2= 1 and y — y is T, 1 or 0%*. So,
(z,y)€ld = (y—ozy—y) el
= (y—=2)Al,(y—y)Al)eb
= (L,1)€8.
(r £yand y £ x) Let x € {0%|0 < i < k} and y € {0¥ 110 < j < k}. Then,
(z,y) €= (xzANl,ynl)ef= (1,1) €.
Hence, in each cases, we obtain (L, 1) € #. For any elements z;, 2z, € By,

(J_ ~ 21,1 Zl), (J_ < 29,1 Zz) el = (J_,Zl), (J_,ZQ) el
= (2’1,2’2) €0.

Thus, § = V. a

LEMMA 4.2 For any k € N, V(By) is a minimal variety.

(proof) Suppose that V is a nontrivial variety such that ¥V C V(By) and A is a non-
degenerate subdirectly irreducible algebra in V. Then A € V(By), hence, by Jénsson’s
Lemma, A € HSPu(By). Since By is a finite algebra, by Proposition 3.11 , every algebra
in Pu(By) is isomorphic to By. Hence,

A € HS(By).

Note that By has no subalgebras other than By, itself since every element in By, is generated
by the constants {T,1,0,1}. Moreover, by Lemma 4.1, By is simple, so A must be
isomorphic to By. Thus, By &2 A € V. Hence V = V(By). a

THEOREM 4.3 There exist at least countably many minimal varieties of F'L.-algebras.
(proof) By Lemma 4.1 and 4.2, By is simple, so it is subdirectly irreducible and V' (By)

is minimal variety. Moreover, as shown in proof of Lemma 4.2, if V(By,) = V(By,) then
By, & By, ie., k1 = ky. Thus, for each ki, ky € N with k1 # ko, V(Byg,) # V(By,)- a
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4.2 Algebras B; and Bg

By extending the idea of the previous section, we will show in this section that there exist
continuum minimal varieties of F'L.-algebras. This implies that there exist continuum
maximal logics over FLe. At first, we will introduce algebras B; which are obtained
from By by adding new elements x; (i € S) for any subset S of natural number N. More
precisely, see below;

For any subset S of N and k € N, we define an algebra Bf = (B2, A,V,-,—, T, 1,0,1)
by the following;

(underlying set)
B ={T,L}U{0" |0<i<2k+1}U{x| 0<i<kicS}
where 0° and 0 denote constants 1 and 0, respectively.

(lattice order)

1l<1<0®<0t< - <0*<T
L<0<x <P <hy<---<0P <y < 0P <ol < 0%+ < T

(monoid operation)
l-x=z-1 =1 Vxe€ By.
T-x=z-T=T Ve B withz# L.

0™t if m+n<2k+1,
0™-0" =< 0% if m+mn>2k+1and m+nis even,
0%+1 if m+n>2k+1 and m+ n is odd.

*1 if sz,

o O™ = O™ g 0%=1+m  §f 9l —14+m <2k +1,

l ! 02k if 20—1+4+m > 2k+1 and 21 — 1+ m is even,
0%k+1 if 20—14+m >2k+1and 2/ —1+mis odd.

QA-1H2m=1  f 2] —14+2m—1<2k+1,

*, - km = 0% if 20—14+2m—1>2k+1and 2l — 1+ 2m — 1 is even,
02k+1 if 20—14+2m—1>2k+1and 2/ —1+2m —1 is odd.
(residuation)
=T =T L —=xz=T

T if =1
1 otherwise

T ifa=T

T—oe= { 1 otherwise

x—)J_z{
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l—>2x=2x

T if =1
r—1= 1 if z=1
1 otherwise

02k if 1=k
0% 502 =< 029 if i<l<k
1 if <1

02=0)-1 if j<landl—i¢ S
021'_)*1: *]—; if i<landl—7€ S
1 if [ <7

02k+1 if 1=k
020D+l if j<l<kandl—i+1¢S

21 20+1
0% =0 =N i ifi<l<kandi—it+1€eS
1 if 1<
. 02—i-1)  if < |
21+1 —_
0 _’*l—{L if 1<
02k if 1=k
0%t 5 0241 = ¢ 020D §f j<[<k
1 if 1<
(2k+1 if 1=k
02 % — 0X=9-1 if j<i<kandl—i¢S
- *7 i 1fz<l<kandl—z€S
1 if 1<
, 0% <
KTTRE ) if 1<
0% if =k
x — 02 = 02—+ f <<k
1 if 1<
02k+1 if 1=k
o ypuo d PO i i<i<kandl-i+1¢5

Ki_i+1 1fz§l<kandl—2+1€5’
€ if [ <.

It is a routine work to check that B} is an FL.-algebra for any S C N and k € N.
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T T
03 02 0% 04
*1
0 1 03 02
*1
L 0 1
1
k=m
T
02m—|—1 02m
02m—1 : : 02m—2
011 : : 010
*5
0° 08
*y
07 08
*3
0% 0*
03 02
*1
0 1
1L

Figure 4.3: algebras By for S = {1,3,4,5}
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Let S be a subset of N, I/ an ultrafilter over N and [, B¢ /U an ultraproduct of the
family {Bj|k € N}. Then, let Bg be the zero-generated subalgebra of [], B3 /U, i.e.,
it is the subalgebra generated by only constants T, L, 1,0 of [,y Bi/U-

T
. . .
011 ; : 010
*5
0° 08
07 08
*3
0° 0*
03 0?
*1
0 1
1

Figure 4.4: Bg for S = {n|n is odd}

LEMMA 4.4 For any S CN, Bg is simple.

(proof) In the same way as Lemma 4.1, we can show that for any congruence 6 on Bg,
6 # A implies § = V. O

LEMMA 4.5 For every S CN, V(Bg) is a minimal variety.

(proof) Let A be a non-degenerate subdirectly irreducible algebra in V(Bg). First,
we will show that Bg is isomorphic to some subalgebra of A. By Jonsson’s Lemma,
A € HSPu(Bg), i.e., there is some subalgeba C of an ulterproduct Bg’ /i and an onto
homomorphism « from C to A, where [ is an arbitrary set and U is an ultrafilter over I.
Let 8 be the map from By to the direct product Bg’ defined by

/B(st) = ( LT, T, Ty ')BSI’

namely, every i-th coordinate is equal to . Then it is easy to see that  is an embedding.
Moreover (3(Bg) is the smallest subalgebra of Bg’ since By is a zero-generated algebra.
Let v be the natural map from Bg’ to Bg’'/U. For every z,y € 3(Bs), © # y implies

¥(z) # y(y). Since x # y implies {i € I|z(i) = y(i)} = 0, {i € I|z(7) = y(i)} € U.
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Thus, By is isomorphic to the zero-generated subalgebra of Bg’ /U4. If C is a subalgebra
of Bs' /U then
Bs < C.

[

We will show that for every onto homomorphism « from C to non-degenerate A, «(Bg)
Bs. If not, for every a,b € Bgs, a(a) = a(b) since Bg is simple. Hence,

TA = Of(Tc) = a(TBS) = a(J_BS) = a(Lc) = J_A.

Thus A is a trivial algebra. But this is a contradiction. Therefore Bg is isomorphic to
some subalgebra of A.

Suppose that V is a nontrivial subvariety of V(Bg) and A is a non-degenerate subdi-
rectly irreducible algebra in V. Then Bg is isomorphic to some subalgebra of A, hence
Bs € V. Thus V = V(Bg), so V(Byg) is a minimal variety. 0

THEOREM 4.6 There exist continuum minimal varieties of F'L.-algebras.

(proof) Suppose that there exist some subsets S1, Sy of N such that S; # S and V(Bg,) =
V(Bs,). Without loss of generality, we can assume Sy Z S;. Then,

V(le) = V(B52)
= B52 € V(le) and le € V(Bsz)

Since Bg, and Bg, are non-degenerate subdirectly irreducible algebras, by the proof of
Lemma 4.5, Bg, and Bg, are isomorphic to some subalgebras of Bg, and Bg,, respectively.
Thus Bg, = Bg, because Bg does not have any proper subalgebras for all S C N. Let «
be an isomorphism from Bg, to Bg,. Now there is some [ € S, — Sy such that x, € Bg,
and *1 ¢ B.S'1- Then,

a(0Bg, —Bg, 0%Bs,) = a(0mg, ) —Bs, @(0¥ng,)
= a(02l*1351) = Oy, —Bg, ()2l]3s2
= 0% g, = Hipg,-
But this is a contradiction. Therefore V(Bg,) = V(Bg,) implies S; = Ss. O

In the previous chapter, we have already seen that the subvariety lattice (subV,N,V,
Viriy FLe) is dually isomorphic to the lattice (CSL,N,V,FLe, Fm). Then by the above
result, we can show that there exist continuum maximal logics over FLe.
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Chapter 5

Interpolation Property and
Pseudo-relevance Property

In this chapter, we will show that an algebraic characterization of the deductive pseudo-
relevance property given by L. Maksimova [28] works well also for commutative substruc-
tural logics, i.e., extensions of FL,. More pricisely, a commutative substructural logic £
has the deductive pseudo-relevance property if and only if the joint embedding property
holds in the corresponding variety V(£). We will discuss also how the weakening rules
have an effect on relations between the deductive pseudo-relevance property and the de-
ductive interpolation property, or equivalently, between the joint embedding property and
the amalgamation property.

5.1 Interpolation Property for Commutative Substruc-
tural Logics

We say that a logic £ has Craig’s interpolation property (IP) if for all formulas ¢ and ¢
the condition . ¢ — 1 implies there exists some formula o such that

1. Fpp—>oand g o — 9,
2. Var(o) € Var(¢) N Var(y),

where Var(¢) denotes the set of all propositional variables in ¢. A formula o that satisfies
the above condition 1 and 2 is called an interpolant of ¢ — 1.

We say that a logic £ has the deductive interpolation property (DIP) if for all formulas
¢ and v the condition ¢ -, 1 implies there exists some formula o such that

1. ¢, oand o, 1,
2. Var(o) CVar(¢) N Var(y).

PROPOSITION 5.1 For any logic L over FLg, if L has IP then it has also DIP.

(proof) If ¢ k-, 1 then, by the local deduction theorem, there exists a non-negative integer
n such that F, (p A1)" — 1. So, by IP, there is an interpolant o of (¢ A1)"™ — 1. Hence,
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¢Frp o0t and Var(o) C Var(¢) N Var(y) hold. a

In the case of intermediate logics, the converse direction of the above result holds since
the deduction theorem holds for them, but this doesn’t hold in general.

A class of I of algebras is said to have the amalgamation property (AP) if for all
D, A,B in £ with monomorphisms f : D — A, g : D — B, there exist C € K and
monomorphisms f': A — C,¢': B — C such that f'of =g 0og.

Figure 5.1: amalgamation property

In [13], Galatos and Ono showed the following.

PROPOSITION 5.2 For any logic L over FLe, L has DIP if and only if the associated
variety V(L) of FLe-algebras has AP.

5.2 Pseudo-Relevance Property for Commutative Sub-
structural Logics

We say that a logic £ possesses the pseudo-relevance property (PRP), if for all formulas
¢ and 1 without common variables the condition F, ¢ — 1 implies -2 ¢ — L or -, .
The pseudo-relevance property was introduced and was studied for intermediate predicate
logics by N.-Y. Suzuki [38] (see also [39]).

We say that a logic £ possesses the deductive pseudo-relevance property (DPRP), if
for all formulas ¢ and 1 without common variables the condition ¢ -, 1 implies ¢ . L
or -, 1. Note that in the case of commutative substructural logics, by compactness
theorem, we can replace ¢ by an arbitrary nonempty set I' of formulas whenever I' and
have no variables in common.

It is easy to see that for each logic £ over FL., PRP implies DPRP. For, if ¢ . ¢
holds for ¢ and 1 without common variables then, by the local deduction theorem, .
(¢ A 1)™ — 2 holds for some n € N. Hence, by PRP, either . (¢ A1)" — L or b, 9
holds, i.e., ¢ Fr L or -, 1 hold. In the case of intermediate logics, the converse direction
also holds, but this doesn’t hold in general.

PRP and DPRP can be regarded as a special case of IP and DIP, respectively. Here,
we will see relations between DIP and DPRP.
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For each logic £ over FLy, DIP implies DPRP. For, if ¢ -, ¥ holds for ¢ and
1 without common variables, there exists ¢ without any variables such that it is an
interpolant of ¢ . 1. Such a formula ¢ must be constructed by constants 1 and T. It
is easy to see that for any logic over FL.y, every formula constructed by only constants
1 and T is equivalent either to | or to T. Hence o is equivalent either to | or to T. In
the former case, ¢ -, L holds. Otherwise . 1 holds.

On the other hand, DIP doesn’t always implies DPRP for logics over FL.. For,
interpolants of ¢ k. ¢ are formulas consisting only of constants 0,1, T and L, and it
might be neither T nor L. In fact, Ono [32] showed that IP holds for FL, by using cut
elimination of FL, and Maehara’s method. Hence, DIP also holds for FL.. On the other
hand, since p-—p Fpr, (0 — ¢) — ¢ holds but neither p- —p Fpr, L nor ke, (0 = ¢) = ¢
hold. Therefore DPRP doesn’t hold.

In the following figure, dotted arrows hold for logics over FLg,.

*PRP
DIP

DPRP

Figure 5.2: relations among several properties

A class IC of algebras is said to have the joint embedding property (JEP) if for all
algebras A and B in K there exist C € K and monomorphismsa : A — Cand §: B — C.

Figure 5.3: joint embedding property

We can extend a result on a characterization of DPRP for normal modal logics given
by Maksimova [28] to logics over FL, as follows.

THEOREM 5.3 Let L be a logic over FLe, and V(L) the associated variety of FLe-
algebras. Then the following are equivalent:

1. L has the DPRP,
2. the class of all non-degenerate F Le-algebras of V(L) has the JEP,
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3. every two subdirectly irreducible F Le-algebras of V(L) are jointly embeddable into a
suitable algebra in V (L).

(proof) 1 = 2. Assume that £ has the DPRP, A and B are non-degenerate algebras in
V(L). Let
P'={p.la€ A}, p'={a|b€B}, p=p'Up’,

i.e., p’ and p” are disjoint sets of variables constructed by A and B, respectively. Denote
Fm(p), Fm(p'), and Fm(p”) the sets of all formulas of variables from p, p’, and p”,
respectively. Let us take valuations v’ : p’ — A and v" : p” — B, where v'(p,) = a for
a € A and v"(g) = b for b € B. Take sets T" and T" of formulas as follows,

T'={¢ e Fm(p) | v'(¢) 2 1a}, T"={¢ € Fm(p") [ "(¥) = 1B}.

Then 7" and T" are L-theories of the languages Fm(p') and Fm(p"), respectively. Let
us define
T={oceFm(p) | T'UT" .o}

Then T is an L-theory of the language Fm(p). By Proposition 3.33, one can define the
Lindenbaum-Tarski algebra C = C(p,T) = Fm(p)/ ~r. Let us define the mappings
a:A — Cand f:B — Cby ala) = ||p| for a € A, 5(b) =||g|| for b € B. First, we
will show that o and 4 are homomorphisms. For all a;,a; € A and every operation @,

Ck(al Da 012) = Hpm@AazH

and
Par|| ®c ||Pas ||

Par ®Fm(p) Pas ||

Pay DFm(p') Pas IE

It is easy to see that pa,gaa, > Pay ®Fm(pr) Pay € T'. Since T C T, we have pg g6,
Pa,y EBJ’-'m(p’) Da, € T, ie., Pay@®aas T Pay GB]-'m(p’) Pas- Thus,

aa) B¢ alay)

a(a; ©a a2) = ||Pay@aas || = |[Pay D rm(p) Pay|| = aa1) &c afag).

Similarly, since 7" C T, 3 is a homomorphism. Let us show that they are monomorphisms.
It is sufficient to show that a(a) # 1c fora # 14 and 3(b) # 1cforb # 1g. Let a € A and
a(a) > 1c. Then a(a) = ||pa|| > 1c, so p, € T by Proposition 3.33. Thus, 7" UT" k. p,.
By the local deduction theorem, there exists ¢,, € 7' such that

T" ¢ G, — Da-

By DPRP, we obtain
T'ke L or bgdp, = Da

Tk, L, ie., L €T" then

U"(J_) >1g
= 1lp2>1p
= J—B = 1B-

Hence,
TB:J_B—)J_leB—}lelB:J_B.
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Thus B is degenerate, but this is a contradiction. Thus, F, ¢,, — p, must hold. This
means that p, € 7" and hence v'(p,) = a > 1a.

2 = 3. Obvious.

3= 1. Assume that there exist some ¢(p’) and ¥(p”), where p’ and p” are disjoint lists
of variables, such that neither ¢ . L nor F, v holds. Let p = p’ U p”. By Proposition
3.34 , there exist maximal L-theories 7', T, of the language Fm(p) such that ¢ € T and
1 ¢T,,and ¢ & Ty. So, A(p,T.) and B(p, T}) are subdirectly irreducible and ||_L|| and
||4|| are oprema of A and B, respectively. Take the canonical mappings v; : Fm — A
and vy : Fm — B as valuations on A and B, respectively, i.e.,

vi(o) = |loll =0/~ and (o) =|lof| =0/ ~z, .

Then,
vi(@) = [[g[l =2 1a and  we(¢) = |[P]] £ 1s.

Now, by Proposition 3.33 , A, B € V(£). Thus, by our assumption 3, there exists some C
in V(L) into which both A and B are jointly embeddable by monomorphisms a:: A — C
and 5 : B — C. Since ¢ and v have no variables in common, we can construct a valuation
v on C defined by v = aw; for variables in p’ and v = v, for variables in p”. Then,

v(¢) = avi(¢) = a((|¢l]) = 1c

and

v(¥) = Bua(v) = B(I[YI]) 2 1c-

Hence for any n € w,

v((p A" = 1p) = v(pA1)" =c ()
= lc —=cv(¥)
= v(y)
# e

Then by local deduction theorem, ¢ t# 1. Thus £ has DPRP. O

From Theorem 5.3, for any logic £ over FLey AP of V(L) implies JEP of the class of
all non-degenerate algebras of V(L£). The following result is a direct proof of it.

COROLLARY 5.4 Let L be a logic over FLeyw. Then, if V(L) has AP then the class
of all non-degenerate F Ly, -algebras of V(L) has JEP.

(proof) Let A,B be non-degenerate F'Le,-algebras in V(£) and 2 the two-elements
Boolean algebra. Then, it is easy to see that maps  : 2 - A and #: 2 — B de-
fined by

a(lz) =1a and «(02) = 04,

B(12) =1 and p(02) =08
are monomorphisms. Thus, by AP of V(£), there exist some C in V(£) and monomor-
phisms o/ : A —- C and ' : B — C. O

In [19], Komori showed that PRP holds always for all intermediate logic by using
Glivenko’s theorem. We can extend this result to any logic over FLe, for which Glivenko’s
theorem holds. Here, we will give a proof of this by proof-theoretical method suggested
by Ono. (see e.g. [12])
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THEOREM 5.5 PRP holds always for any logic L which includes FLeyw + —(6 A —6).

(proof) Note first that the following logics are equivalent;
WEM: FLeyw + —(d A —0),
WConl: FLgy + =62 — 6,

0,6, =

WCon2: FLew + 6’117:}

First, we will show that Glivenko’s theorem holds for any logic which includes FLgy +
=(6 A =6). In fact, FLeyw + —(d A =) is the smallest logic among logics over FLg,, for
which Glivenko’s theorem holds. For, if Glivenko’s theorem holds for a logic £ over FLe,,
then -z —(6 A —6) since Frx —(0 A =d). Thus, £ D FLew + —(6 A —J). In order to prove
that Glivenko’s theorem holds for FLgy + —(d A —0), it is sufficient to show that if a
sequent I' = A is provable in LK then —=A,I' = is provable in our third system, where
=A means —)y, - - -, 7, for all ¥; € A. In fact, if this is the case then for any formula ¢
provable in LK the sequent —¢ = is provable in FLgyw + —(d A —6) and hence ——¢ is also
provable in it. We will prove it by induction on the length of a given proof of I' = A in
LK. The base case is obvious. Here, we will show the cases of (—=>), (= A) and (=—).

(—=) By induction hypothesis, —¢, =A,T" = and —X, 1,1 = are provable in FLgy +
—(6 A —6). Then,

Y =

d=>¢ =

¢, AT = =X 9,1l = o, U, 0 — Y =

A= ¢ X =Y ——¢, Y, ¢ — )=

A=Y= ¢ =g Y, — Y =
A -S4 I= (cut)

(= A) By induction hypothesis, ¢, =A T = and —), ~A, ' = are provable in FLgy +
=(0 A =d). Then,

p=¢ Y=49
V=9 ¢P=1
QY= 9NY
¢, (9 AY) =
—¢,~A,T = —,-A,T = g, o, (P AY) =
A= ¢ -ATl=- A A V5 _'(¢ A w) =
AT = =g A = A, 0 (PAY) = (cut)
—(pAY),-AT =

(WCon2)
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(=—) By induction hypothesis, =1, =A, ¢, ' = is provable in FLey + —=(§ A —6). Then,

o= ¢
¢, ~¢ =
¢, = ¢ Y= ¢, —, AT =
== b, = —tp, 2\, T = —¢
¢, = (p = ) = V=0 =P ==, ), A, T =
(@)= md —(p oY) = W A h, md A p, —A T =
(6o 9) = oA —¢A—p-AT= _ (WCen2)
_'(¢ — ¢)7 _'Av I'= (CUt)

Let £ be a logic including FLey + (0 A =6). Suppose that there exist some formulas
¢ and 1, which have no variables in common, such that neither -, ¢ — | nor . v hold.
By t/c 1, there is an algebra A € V(L) and a valuation v on A such that v(¢) # 1a.
Since FLew + (6 A—0) C L, 7¢p = ¢ — L & FLgyw + —(6 A —=6). By Glivenko’s theorem,
—¢ ¢ LK. Hence, there exists a valuation u on A defined by u(p) = 14 or u(p) = 04 for
any propositional variable p such that u(—¢@) = 04, i.e., u(¢) = 1a. Since ¢ and 1 have
no varialbes in common, there is some valuation w on A determined by

w(p) =v(p) ifp€ Var(y),
w(q) =u(q) if ¢ € Var(¢).
Hence,
w(p = Y) =u(d) = v(®) =1a = v(¥) = v(¢h) # 1a.
Therefore, t/, ¢ — 1. O

Since PRP always implies DPRP, DPRP also holds for any logic which includes FLey, +
(0 A =0).

If we don’t suppose the variable’s condition of DPRP then we obtain the following
result. It is interesting to compare the following result with the above.

THEOREM 5.6 A logic L satisfies the following condition, for all formulas ¢ and 1,
¢|‘£1ﬁ:>¢|_£J_O’F |‘£’(ﬁ
of and only iof L is equal to Fm.

(proof) Cleary, Fm satisfies the above condition. Assume that a logic £ is not Fm. Then,
there is a non-degenerate algebra A € V(L). Note that for any propositional variable
p, p & L, since there is a valuation v on A defined by v(p) = Lo # 1a. Hence t/. p.
Moreover, since . p — p always holds, p -z p. If p . L then there is some n € w such
that 2 (p A 1)™ — L. Define a valuation w on A by w(p) = 1a. Then,

w((p/\ 1)n—>J_) =1Z—)J_A =_1a z 1a.

This is a contradiction, so p //, L. Hence £ does not satisfy the above condition. O

90



Chapter 6

Halldén Completeness and Principle
of Variable Separation

The disjunction property, Halldén completeness, and the principle of variable separation
have been studied actively in modal logics and intermediate logics. Some relationships
among them were shown in [8].

In this chapter, we discuss algebraic characterizations of Halldén completeness and the
deductive principle of variable separation for commutative substructural logics. Though
to logics over FLgy we can extend most of results on Halldén completeness and the
deductive principle of variable separation obtained by Lemmon [6], Wroriski [43] and
Maksimova [28], the lack of the weakening rule will cause some difficulties in extending
them to logics over FL.. So, some modifications of definitions of them become necessary
to make similar results hold for logics over FL,. We will give not only partial results
on modified Halldén completeness and the deductive principle of variable separation, but
also algebraic characterizations of them in the original form for logics over FLe.

6.1 Halldén Completeness

It is well-known that a logic £ has the disjunction property (DP) if for all formulas ¢ and
Y, Fe @V Y implies F, ¢ or . 1.

We say that a logic £ is Halldén complete (HC) if for all formulas ¢ and 1 which have
no variables in common, -, ¢ V 1 implies -, ¢ or -, 1. It is easy to see that Halldén
completeness is a special case of the disjunction property. An example of a logic which is
Halldén complete but doesn’t have the disjunction property is classical logic Cl. Wronski
[42] showed that there are a continuum of intermediate logics for which the disjunction
property holds, and Galanter [9] showed that there are a continuum of intermediate logics
which are Halldén complete but don’t have the disjunction property.

LEMMA 6.1 Let G be a proper filter of an F Ley,-algebra A and a ¢ G. Then there
exists a prime filter F, such that it is mazrimal in the set

Y ={F: filterlG C F,a & F}.

(proof) By Zorn’s lemma, ¥ has a maximal element. So let F, be a maximal element of
Y. We will show that F, is prime. Assume z ¢ F, and y ¢ F,, and define H, as follows:

Hy={z€ A 2" u<2 Fk€w IucF,}.
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Then H, is the filter generated by F, U {z}. Since F, is maximal in ¥ and z ¢ F,,
a € Hy. So there exist some [ € w and u € F, such that

2w < a.
Similarly there exists some m € w and v € F, such that
y" v < a.
Let t =1+ m — 1. Then, by the distributivity of - with Vv

(xVy)l-u-v
t

= \/xi-yt’i-u-v.
i=0

Since ¢ > [ or t — i > m, either of the following holds:

—~~

INIANEZ

~—~~

INIA 2

So if z Vy € F, then a € F,. But this is a contradiction. Hence, z Vy &€ F,. a

An algebra A is said to be well-connected if for every x,y € A, xVy > 1 impliesz > 1
or y > 1. We can extend the results for intermediate logics given by Lemmon (e.g. [6]
Theorem 15.22) and Wroniski [43] to logics over FLey as follows.

THEOREM 6.2 Let L be a logic over FLey,. Then the following are equivalent:
(1) L is Halldén complete,
(ii) L is meet-irreducible in the lattice of all logics over Fleyw, i.e., for any logics L1, L,

L=LiNLy implies L1 =L or Ly =L,

(iii) £ = L(A) for some well-connected F L.,,-algebra A, where L(A) denotes the set of
all formulas which are valid in A.

(proof) (iii) =-(ii) Let A be a well-connected FL,-algebra and £ = L(A), and £ =
L1 N Ly. Then, clearly £ C £, and £ C L5. Suppose that neither £ = £ nor £ = L,.
Then there exist some formulas ¢ € £;—L and ¥ € L5 — L such that they have no variable
in common, since every logic is closed under substitution. So, there is some valuation u
on A such that

u(p) <1 and  u(y) <L

Since A is well-connected, u(¢ V ¥) = u(¢) Vu(yp) < 1. Thus ¢ V¢ ¢ L. But, by our
assumption,
peELL,YEL, = oVYEL (i=1,2)
= ¢V¢E£1r\|£2:£.
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This is a contradiction.

(ii) = (i) Suppose that there exist some ¢, ¢ which have no variables in common,
|_L ¢1\/¢2 but |7ZL ¢1 and |7ZL ¢2. Let Ez = £+¢Z (7/ = 1, 2) Clearly, L Q £1ﬂ£2 and El 7é L
and Lo # L. It remains to show that £, N Ly C L. Suppose that v € £, N Lo. Then, by
local deduction theorem for FLe, there are substitution instances ¢; (i = 1,---,n) and
o; (j=1,---,m) of ¢; and ¢y, respectively, such that

uHa — 1, FLH0]—>1/)

j=1

Thus,
|_L (Héi\/HUj) — w
i=1 j=1
Since for any formulas A; (¢ =1,---k) and B; (j =1,---1),

k1

TT11cA:v By) (HA \/H )

i=1 j=1 =1

is provable in FLgy,

l_L' HH(5Z V O'j) — w
i=1 j=1
Now each ¢; V o; is a substitution instance of ¢; V ¢, so it is provable in £. Hence, 9 € L.
(i) = (iii) Let A be the Lindenbaum-Tarski algebra determined by £ and for any
a € A— {1}, F, be a prime filter obtained by Lemma 6.1. For every formula ¢ define a
subset ref(p) of A — {1} as follows:

ref(¢) ={ac A—{1} [ ¢ & L(A/Fu)},

where A /F, denotes the quotient algebra determined by F,.

We will show that the family {ref(¢)|¢ ¢ L} has the finite intersection property.
Suppose ¢, € L. If ¢ and 1 have variables in common then take a formula ¢’ which is
a renaming of ¢, i.e., ¢’ and 1) have no variables in common and there exists a bijection
from the set of all variables of ¢ to the counterpart of ¢’. Since ¢ & L, ¢' ¢ L. By
Halldén completeness of £, ¢' V¢ ¢ L. Thus, there is some valuation u on A such that
u(@d' V) < 1a. Let = u(¢’ V ¢). Then by the definition of F,,

u(¢' V) & Fu
u(@) Vau(y) ¢ Fu
u(¢') ¢ F, and u(y) ¢ F,.

Define a valuation w by w(¢) = u(¢’). Then,

w(¢) & Fr and u(y) ¢ F
= ¢ ¢ L(A/F,) and ¢ & L(A/F;)
= z €ref(s) and = € ref ()
= z €ref(o) Nref(y).

=
=
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In a same way, we can show that for finite many ¢; ¢ £ (0 < i < n), we have
Mo<icnTef(#:) # 0, and hence the family {ref(¢)|¢ ¢ L} has the finite intersection
property. Thus, there exists some ultrafilter A over A — {1} such that

{ref(¢)lo & L} C A.

We will show that the ultraproduct

a=( 1 wm)/a

acA—{1}

is a well-connected F'Le,-algebra. In the following, the notation xa,za~ and 4,7, stand
for elements of A, A* and A/F,, respectively. Suppose s+ Va~ ya- = 1a~. Then,

{a e A—{1} | (za- Va- ya-)(a) = (1a-)(a)}
= {a€ A—{1} | va/7 Va/r. ya/7, = 1aj7.}
= {aEA—{1}|a;A\/AyA€.7:a}
{a € A—{1} | za € Foor ya € F,} (since F, is prime.)
= {a€A—{1} |za € Fo}U{a€e A—{1} | ya € Fo}
= {a €eA—- {1} | TA/F. = ].A/]-'a} U {a €A- {1} ‘ YA/ F, = 1A/.7-'a}-

By definition of the ultraproduct A*, {a € A — {1} | (za~ Va+ ya+)(a) = (1a+)(a)} € A,
so{a € A—{1} | za/r, = la/rfU{a € A= {1} | yayr, = lajr} € A. Since A is a
ultrafilter,

{ac A—{1} | za/7, = 1a/r} €A or {a € A—{1} | ya/r, = 1a/7.} € A.
Thus, xao« = 1A+ or ya~ = 1a«, hence A* is well-connected. Moreover,

peLlL = ¢eL(A*) (since A* € V(L))
6¢L = 6@ L(A") (since {ref(¢) | 6 &L} C A).

Therefore, £L = L(A*). O

In [43], Wronski showed that for every intermediate logic £, £ is Halldén complete if
and only if £ = L(A) for some subdirectly irreducible Heyting algebra A. On the other
hand, by Proposition 3.7, an F'L.,-algebra A is subdirectly irreducible if and only if

dJa21Vr<1ldn€w, st, 2" <a.

Since this is not a first-order sentence, it is not necessarily preserved under ultraproducts.
Thus, we can’t extend it in the same way as in Wronski’s proof. It is an open problem
whether Halldén completeness of a logic over FLe, is characterized by some subdirectly
irreducible FL,,-algebra. But if we assume the n-potency, i.e., " — ¢", to a logic £
over FLey, then we can show that £ is Halldén complete if and only if £ = L(A) for
some subdirectly irreducible F'L.,-algebra.

The previous theorem doesn’t hold always if we replace FLeyw by FLe, and FL,,-
algebras by F'L.-algebras, since 1 is not the greatest element on F'L.-algebras. In other
words, we need to modify definitions of Halldén completeness and well-connectedness so
as to make it true.
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LEMMA 6.3 Let G be a proper filter of F'L.-algebra A and a € G. Then there exists a
filter F, which is mazimal in the set

Y ={F: filter|G C F,a & F}.
Moreover, F, satisfies the following condition:
if (AN1)V(yAl) € F,thenxz e F, ory € F,.
(proof) By analogy with the proof of Lemma 6.1. O

Note that the above condition is equal to the following condition:
if (x A1)V (yAl) e Fythenz Al e FooryAl € F,.

Therefore, when A is a F'L.,-algebra, i.e., 1 is the greatest element of A, the above
condition is equal to primeness.

LEMMA 6.4 For every logic L over FLe, if 6; = 1 and v; = 1 (i = 1,---,m,j =
1,---,n) are provable in L then

m n

15 also provable in L.

(proof) By induction on k£ = (m,n). It is trivial if £ = (1,1). Suppose that the above
holds for k£ = (1,). Then,

1(51 V ’)/]) = 51 V H] 175 51 V Y41 = 51 V Yi+1
(TE_y (01 V 95))5 (61 V miga) = (61 VIT_y5) - (81 V Yipa) .
( j:1(51 V) - (01 Vyig) = (61 V Hé’:ﬂ/j) (61 V yi41) ;

o (I (01 V v5)) - (01 V mg1) = (61 VIT5_1;) - (01 V 7i41) is provable in £. Now, by
distributivity of - with Vv, and our asomptions of §; and +;, the formula (4, Vv Hé L)

(01 VY41) = (01 V H] 17;) is also provable in £. Thus, Hlel (01 V) = (01 V H§+11 Yi)
is provable in £. One can show in the same way for m. O

As the above lemmas show, it seems to be necessary to modify the notion of Halldén
completeness and well-connectedness. The following conditions (i) and (*) seem to be
strictly weaker than Halldén completeness and well-connectedness, respectively. Never-
theless, they characterize the meet-irreducibility of a given logic.

COROLLARY 6.5 Let L be a logic over FLo. Then the following are equivalent:

(1) for every formulas ¢ and ¢ which have no variables in common,

Fe (@A) V (A1) implies e ¢ or Fr ),
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(ii) L is meet-irreducible in the lattice of all logics over FLe,

(iii) £ = L(A) for some F Le-algebra A satisfying the following.
(*) for any z,y € A~ ={a € Ala < 1},

ifeVy=1thenxz=1o0ry=1.

(proof) (iii) = (ii) Note that for any logic £ over FLe, ¢ € £ implies ¢ A1 € L. Then,
by analogy with the proof of Theorem 6.2, one can show this direction.

(ii) = (i) In the same way as the proof of Theorem 6.2, we will prove this by taking a
contraposition. Suppose that there exist some ¢1, ¢ which have no variables in common,
Fe (61 A1)V (92 A1) but t/z ¢1 and t/, ¢o. Let £; = L+ ¢; (i =1,2). It is sufficient to
show that LN Ly C L. For any v € £L1N Ly, by local deduction theorem for FL, there are
substitution instances ¢; (¢ = 1,---,n) and 0; (j = 1,---,m) of ¢; and ¢, respectively,
such that

I—£H5/\1 — 1, FEH%M — 1.

j=1

e (ﬁ(sm vﬁajm)
i=1 j=1

Note that (5; A1) =1 (¢=1,...,n) and (6; A1) =1 (j =1,...,m) are provable in L,
so by Lemma 6.4,

Thus,

n m n

TITI(G: ALV (05 A L)) = (H((sz- AV (o5 A 1))

i=1j=1 i=1 j=1
is provable in £. Hence
Fe JTTIG A D) V(05 A L)) — .
i=1 j=1

Therefore ¢ € L. -

(i) = (iii) Let A be a Lindenbaum algebra of £ and for any a € A = {a € Ala % 1},
F, a filter obtained by Lemma 6.3. For every formula ¢, define a subset ref(#) of A as
follows:

ref(¢) ={a€ Al ¢ ¢LA/F)}.

In the same way as Theorem 6.2, one can show that the family {ref(¢)|¢ ¢ L} has the
finite intersection property. Thus, there exists some ultrafilter A over A such that

{ref(¢)lo & L} C A.

We will show that the ultraproduct

A= (/) /a

acA
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satisfies the condition (*). Note that the condition (*) is equivalent to the following:
Ve,y€ A, x Z1andy # 1implies (z A1)V (yAl)#1.
If xa« 2 1a+ then xpx« Apx 1o« # 1ax, SO,

{a € Al (za- Aa-1a-)(a) # 1a-(a)} € A
= {a S 4 | TA)F, \A/F, 1A/_7-‘a #* 1A/-7:a.} eA
= {ac€A|zaNalagF}eA
= {acA|zad F}eA

Hence for any xa« 2 1a~ and ya~ 2 1a-,

{acAlzadFyeAand{acA|yad FleA
= {a€A|lzadFtn{acAlyag Fu} €A
= {a€A|za¢gF,and ya € F,} € A.

By the condition of the filter F,,
{CLEA | $A¢fa andyAg}"a}:{aEA | (mA/\AlA)\/A(yA/\AlA) Q’fa}.
Thus, {a €A | (.”L‘A AA 1A) VA (yA AA 1A) € .7:(1} € A. So,

{a € A| (((za- Aa- 1a-) Va~ (Ya- Aax 1a+)) Ala-)(a) # 1a-(a)} € A
= ((mA* /\A* 1A*) \/A* (yA* /\A* 1A*))/\1A* ¢1A*
= (.’EA* /\A* 1A*)\/A* (yA* /\A* ].A*)?é]_A*

Moreover,
peL = ¢e€L(A*) (since A* € V(L))
p¢L = ¢&L(A") (since {ref(¢) | ¢ & L} C A).
Therefore, £L = L(A*). O

Obviously, each of (i) and (iii) is equivalent to the counterpart of Theorem 6.2, when
the weakening rule or the distributive law holds in a given logic £. Moreover, whenever
the axiom of n-potency, i.e., o™ — ¢"*!, holds in £ over FL,, they are equivalent to the
following (the same holds for logics over FLey):

(iv) £ = L(A) for some subdirectly irreducible F'L.-algebra A satisfing " < z"!.

6.2 An Alternative Characterization of Halldén Com-
pleteness

In the previous section, we have already seen that it is necessarly to modify the definition
of Halldén completeness in order to give the similar algebraic characterizaiton of it for
logics over FL,. In this section, we will give another algebraic characterization of Halldén
completeness in the original form and see an algebraic relation between the disjunction
property and Halldén completeness.

We say that the subalgebras B, C of A are a well-connected pair if for any elements

r € Bandy € C, x Vay > 1 implies x > 15 or y > 1a. It is easy to see that the
following conditions are equivalent;
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1. A is a well-connected algebra,
2. every two subalgebras B, C of A form a well-connected pair,

3. A, A are a well-connected pair of A.

LEMMA 6.6 Let L be a logic over FL. and Fy ) (X) a V(L)-free algebra. Then the
following are equivalent;

1. L is Halldén complete,

2. for each disjoint pair of subsets X]_,Xg of X, the subalgebras B(X,) and C(X;) of
Fyo)(X) generated by X, and X,, respectively, are a well-connected pair.

(proof) 1 = 2. Let X; and X, be disjoint subsets of X, and B(X;) and C(X;) be
the subalgebras of Fy ) (X) generated by X; and X, respectively. Then, for any b €
B(X}),c € C(X,) there are some terms p, ¢ such that

b=p(X1) and c=q(Xs).

Suppose that b = p(X1) 2 1g, (%) and ¢ = ¢(X3) 2 1p, . (x)- Then neither -, p(X:)
nor k. ¢(Xs) hold. Now p(X;) and ¢(X3) have no variables in common, by our assumption
1, ¢ p(X1) V q(X2) doesn’t hold. Hence p(X1) V q(X2) 2 1p, . (5)-

2 = 1. Suppose that there exist some formulas ¢(p) and ¢(q), where p and q are
disjoint lists of variables, such that neither . ¢(p) nor . ¥(q) hold. Let X = pUq
and Fy ) (X) the V(L£)-free algebra. Since p and q are disjoint subsets of X, by our
assumption 2, the subalgebras B(p) and C(q) generated by p and q, respectively, are
well-connected pair of Fy ) (X). Let v be the valuation on Fy()(X) defined by the
canonical mapping, i.e.,

vip)=p for pe X =pUq.

Then,
0(6(p) = 6(B) # Tpye(x) and (B) € B(P),
v(y(a)) =¥(@) 2 g, x) and ¥(@) € C(a@).
Hence ¢(p) V ¥(q) # g, ) (%)s SO Fc é(p) V ¥(q) doesn’t hold. a

THEOREM 6.7 Let L be a logic over FLe. Then the following are equivalent;
1. L is Halldén complete,

2. for every two non-degenerate F Le-algebras A, B in V (L), there is a well-connected
pair C1,Cy of some algebra C in V(L) such that A and B are quotient algebras of
C: and C,, respectively.

(proof) 1 = 2. For any non-degenerate algebras A, B in V(L£), let

p={p.a€ A}, a={@lbe B}, r=pUaq.

Denote Fy ) (T), Fy(s)(P) and Fy(,)(q) the V(L)-free algebras generated by T,p and
q, respectively. Clearly, Fy(.)(f) € V(£). Now p and q are disjoint sets of T, by our
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assumption 1 and Lemma 6.6, the subalgebras Fy () (P), Fv(r)(q) of Fy(c)(T) are a well-
connected pair. Since |p| = |A| and |q| = |B|, there are onto homomorphisms

o FV(L)(I_)) — A and 6 . Fv(ﬁ)((_l) — B.

Thus, A and B are quotient algebras of Fy(.)(p) and Fy()(q), respectively.

2 = 1. Assume that there are some formulas ¢(p) and (q), where p and q are
disjoint lists of variables, such that neither -, ¢(p) nor . (q) hold. Then there are
some F'L.-algebras A, B in V(L) and valuations v; on A and v, on B such that

v1(¢) 21a and wo(v0) Z# 1p.

By our assumption 2, there are a well-connected pair C;, Cy of some C in V(L) and onto
homomorphisms a : C; — A and : Cy — B. Since p and q are disjoint, we can define
a valuation w on C by

w(p) =c¢ for p € p,

w(q) =d forq € q,

where ¢ and d are arbitrary elements in a~'v;(p) and 3~ 'vy(q), respectively. Then,

aw(¢) = U1(¢) Z 1a,
Bw(y) = va () Z 1B,

hence w(¢p) # 1o, w(¢) € Cy and w(v) ? 1c, w(y) € Cy. Thus
w(¢ V) =w(d)Vw) £ lc,

so k¢ ¢ V ¢ doesn’t hold. O

Figure 6.1: characterization of HC

D. Souma [37] has shown that a characterization of the disjunction property for inter-
mediate logics given by L. Maksimova [27] holds also for logics over FL,. More precisely,
the following holds.
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PROPOSITION 6.8 Let L be a logic over FLo. Then the following are equivalent;
1. L has the disjunction property,

2. for any FL.-algebras A, B in V(L) there exists a well-connected C in V(L) such
that A x B s a quotient algebra of C.

Syntactically, it is easy to see that the disjunction property implies Halldén complete-
ness and the condition (i) of Corollary 6.5. But semantically, it has not been so clear why
the above condition 2 implies the condition (iii) of Corollary 6.5. Now, by using the char-
acterization of Theorem 6.7, we can give a direct proof of it, since if C is well-connected
then C and C are a well-connected pair of it.

C

Figure 6.2: DP implies HC

6.3 Principle of Variable Separation

We say that a logic £ has the principle of variable separation (PVS) if for every formulas
®1, P2, U1, o, where {1, o} and {11,102} have no variables in common, the condition
|_£ ¢1 A 1ﬁ1 — ¢2 V 1ﬁ2 implies |_L ¢1 — (ﬁg or l_[; 1ﬁ1 — 1ﬁ2. Clearly, both Halldén
completeness and PRP are special cases of PVS.

We say that a logic £ has the deductive principle of variable separation (DPVS) if for
every formulas ¢, @9, 11, 19, where {¢1, do} and {11, } have no variables in common,
the condition ¢ Ay Fr @9 V 19 implies ¢ - ¢o or 1 £ 15, It is easy to see that both
Halldén completeness and DPRP are special cases of DPVS. Note that for any logic £

over FL,,
OANY L) <= ¢, 0.

Hence, as with DPRP, we can replace formulas ¢; and v; by sets of formulas I' and X,
respectively, i.e., whenever I' U {¢»} and X U {12} have no variables in common,

['YX g o V by implies I' =4 ¢pg or X 1 1)s.

In the case of intermediate logics, by the deduction theorem, PVS and DPVS are
equivalent logical properties. But this is not true in general.
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In [8], Chagrov and Zakharyaschev showed that there are a continuum of intermediate
logics which are Halldén complete but don’t have the PVS. Moreover, they showed that
there are a continuum of intermediate logics which have both the PVS and the disjunc-
tion property, and as many intermediate logics which have the PVS but don’t have the
disjunction property. Thus, the relation between the disjunction property, Halldén com-
pleteness, and PVS for intermediate logics can be represented as following figure in which
the cardinality of each set of logics are continuum.

HC

DP

PVS

Figure 6.3:

Note that since every intermediate logics is a logic over FL,, the above relation holds also
for logics over FL,.

By using a syntactic method, Naruse, Surarso and Ono [30] showed that if our language
does not contain any propositional constant then PVS holds for FL,. On the other
hand, since DPRP doesn’t hold for FL,, neither PVS nor DPVS holds for FL, when our

language contains propositional constants.

DPVS PVS

PRP

C DPRP

Figure 6.4: relations among several properties

As described before, PVS and DPVS are equivalent logical properties for intermediate
logics. Moreover, for logics over FLe., PVS implies DPVS. For, if ¢1 Ay 2 ¢1V1)e holds
for formulas ¢1, ¢, 11, 12, where {d1, ¢} and {11, 15} have no variables in common, then
Fo (f1 Apr A1) — ¢ V 1by holds for some n € N. Note that a formula o1 A oy A1 is
equivalent to the formula (o3 A 1) A (02 A 1), and a formula § — ¢™ is provable in £ by
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using the contraction rule, so, we have F, ((¢1 A1) A (1 A 1)) = ¢ V ¢o. By PVS,
Fro (o1 A1) — ¢ and b, (11 A1) — 1hy hold. Thus, we have ¢ Fz ¢o and 9 . )9, i€,
L has DPVS.

But, for logics over FL., we don’t know a general relations between PVS and DPVS.

In this and next sections, we will discuss algebraic characterizations of DPVS and
semantical relations between Halldén completeness and DPVS.

The following result is a generalization of the result for intermediate logics given by
Maksimova [28].

THEOREM 6.9 Let L be a logic over FLey,. Then the following are equivalent:
1. DPVS holds in L,
2. the class of all subdirectly irreducible F Ley,-algebras of V(L) has the JEP,

3. every two subdirectly irreducible F Le,-algebras of V(L) are jointly embeddable into
a well-connected algebra in V(L).

(proof) 1 = 2. Assume that DPVS holds in £ and A and B in V(L) are subdirectly
irreducible with its opremum ¢ and d, respectively. Similarly with Theorem 5.3, let

pP={p.|acA}, p"={g|beB}, p=p Up’,

denote by Fm(p), Fm(p') and Fm(p") the sets of all formulas with variables in p, p’ and
p”, respectively. Let us take the valuations v’ : p’ — A and v" : p” — B determined by

v'(py) =aforae A, v"(gy) = b for b € B.

Let
T ={¢ € Fm(p') | v'(¢) =1a}, T"={¢ € Fm(p") | v"(¢) = 18}
Obviously p. € T' and g4 ¢ T". Denote

T ={oceFm(p) | T"UT" -, o},

then T* is an L-theory of the language Fm(p). Suppose that the formula p. V ¢z belongs
to T*. Then T"UT" b, p.V qq. Since T"U{p.} and T"U{q,} have no variables in common,
by DPVS, it follows

T Fepe or T'Fr qq.

But the former case is refutable on A and the latter is also refutable on B. Thus, T
doesn’t contain p.V gq. By Proposition 3.34, there exists some maximal £-theory T of the
language Fm(p) such that 7* C T and p.V ¢4 ¢ T. Then the Lindenbaum-Tarski algebra
C =C(p,T) = Fm(p)/ ~ is subdirectly irreducible, and ||p. V ¢q|| is its opremum. Let
us define mappings 6 : A — C and ¢ : B — C as follows;

d(a) = ||pa|| for a€ A,
e(b) = ||gs|| for b€ B.

Since 7", 7" C T, § and € are homomorphisms. Now we will show that § and e are
monomorphisms. It is sufficient to show that d(a) # 1lc for a # 14 and €(b) # 1¢ for
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b # 1g. As c is an opremum of A, for every a # 1A there exists some n € w such that
a” < c. So,
6(a") <d(c) = [|pel| < |lpe V gal| < 1c.

Hence, d(a) # 1¢. Analogously, €(b) # 1¢ for b # 1p.

2 = 3. It is obvious, since if F'L,-algebra is subdirectly irreducible then it is well-
connected (see e.g. Theorem 4.2 in [31]).

3= 1. Let us suppose that p and q are disjoint lists of variables and neither ¢;(p) .
¢2(p) nor ¥1(q) Fz 2(q) hold. By Zorn’s lemma, we can get an L-theory Ty, of the
language Fm(p) such that it is maximal among L-theories 7" which contain ¢; but don’t
contain ¢,. Similarly, let T;, be a maximal L-theory of the language Fm(q) with respect
to ¢o. Let A = Fm(p)/ ~r, and B = Fm(q)/ ~r,, . Then they are subdirectly
irreducible algebras in V(L) such that ||¢9|| and ||1)2|| are oprema of A and B, respectively,
and the canonical mappings v : Fm(p) — A and u : Fm(q) — B satisfies

u(tr) = ||[¢1]| = 1B
A T ) = [l < 1n.

By our assumption &, there exist a well-connected algebra C € V(L) and monomorphisms
a from A into C and g from B into C. Since

a(v(ds)) = afl|da]l) <lc  and  fu(e)) = B([|¢]]) < lc,
a(v(d)) V Bu(2)) < lc.

Since p and q are disjoint lists of variables, we can take a valuation w on C defined by
the following;

w(p) = av(p) for pep
w(q) = Bu(q) for ge€aq.

Then w(¢1) = av(¢1) = Lo, w(1) = Bo(¥1) = 1c and w(PaVihe) = a(v(d2))VB(u(th)) <
lg, thus ¢1(p), ¥1(q) Fz ¢2(p) V 12(q) doesn’t hold on C. O

As well as in the case of Halldén completeness, the previous theorem doesn’t hold
always, if we replace FLe, by FL,, and F'L.,-algebra by FL.-algebra. So, we need to
modify the definitions of DPVS and well-connectedness so as to make it true.

COROLLARY 6.10 Let L be a logic over FLg. Then the following are equivalent:
1. for every formulas ¢1, ¢, 11,12, where {¢1, p2} and {11,172} have no variables in

common,
G AN L (P2 A1)V (Yo A1) dmplies ¢y bz ¢ or 1 Fr by,

2. the class of all subdirectly irreducible F Le-algebras of V(L) has the JEP,

3. every two subdirectly irreducible F L.-algebras of V(L) are jointly embeddable into
an algebra C in V(L) which satisfies the following,

foranyzx,ye C-={ceC|c<1},

xVy=1wmpliesx=1o0ry=1.
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(proof) Similar with the proof of Theorem 6.9. O

In the following figure, HC* and DPVS* denote the logical properties introduced in
Corollary 6.5 and 6.10, i.e., the modified versions of HC and DPVS, respectively.

DP, DPVS
DPVS*

HC

Figure 6.5: relations among several properties

As well as in the case of HC, the algebraic condition of DPVS for intermediate logics
characterizes the modified version of DPVS for logics over FL,.

6.4 An Alternative Characterization of Principle of
Variable Separation

In this section, by taking the idea in section 6.2, we will give another algebraic character-
ization of DPVS in the original form and see algebraic relations among DPVS, HC and
DPRP.

We say that a class K of algebras has the joint super-embedding property (JSEP) if
for every two algebras A and B in K there exist some C in X and monomorphisms
a: A — Cand f: B — C such that for every a € A —{L} and b € B — {T} the
inequality a(a) < (b) does not hold. The following result is given by L. Maksimova [28].

PROPOSITION 6.11 Let £ be a normal modal logic, V(L) the associated variety of
modal algebras. Then the following are equivalent;

1. L 1s Halldén complete,
2. the class of all non-degenerate algebras of V(L) has the JSEP.

Since for any normal modal logic, a formula ¢ — 1 is an abbreviation of the formula
=¢V1, so Halldén completeness, PVS and DPVS are equivalent. Thus the above condition
2 is also an algebraic characterization of PVS and DPVS for normal modal logics. Though
it doesn’t hold for logics over FL,, we can give a similar result of it. To do this, we need
to introduce a new property.

We say that a class IC of algebras has the well-connected joint embedding property
(WCJEP) if for each A and B in K there exist C in K and monomorphisms o : A — C
and : B — C such that for every a € A and b € B, a(a) V f(b) > 1¢ implies a > 14 or
b > 1g. Note that JSEP and WCJEP are equivalent for any class of modal algebras.
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Figure 6.6: well-connected joint embedding property

THEOREM 6.12 Let L be a logic over FLo. Then the following are equivalent,
1. DPVS holds in L,
2. the class of all non-degenerate F Le-algebras of V(L) has the WCJEP.

(proof) 1 = 2. Suppose that DPVS holds in £ and A and B are non-degenerate F'L,-
algebras in V(£). Similarly with Theorem 6.9, let

P ={p.|acA}, p"={e|beB}, p=p Up’,

denote by Fm(p), Fm(p') and Fm(p") the sets of all formulas with variables in p, p’ and
p”, respectively. Let us take the valuations v’ : p’ — A and v"” : p” — B determined by

v'(py) = a for a € A, v"(gp) = b for b € B.

Let
T'={¢ € Fm(p') | v'(¢) > 1a}, T"={y€ Fm(p") | v"(¢) > 18}

Denote
T={ceFm(p) | T'UT"+,o0o},

then T is an L-theory of the language Fm(p). Take the Lindenbaum-Tarski algebra
C=C(p,T) = Fm(p)/ ~r and mappings a: A — C and  : B — C determined by

a(a)
p(b) =

Since T",T" C T, the mappings «,  are homomorphisms. We will show that they are
monomorphisms, and for every a € A,b € B, a(a) vV 3(b) > 1¢ implies a > 1 or b > 1g.
Assume that a(a) > 1¢. Then ||py||~p > 1c, s0 p, € T. By definition of T, T"UT" b, p,
holds. Hence, by local deduction theorem, there exists some ¢ € T” such that

||pal|l~y fora e A
llgp||~ for b€ B.

T"Fr ¢ — pa.
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By our assumption 1, F ¢ — p, or T" F, L hold. But T” F, L is refutable on B,
so Fg ¢ — pg, ie., T" bz p, holds. Therefore p, € T, namely, a > 1. Thus « is
monomorphism. Similarly, # is monomorphism. Suppose that for a € A,b € B,

a(a)V 5(0) = |[paV @ll~r = 1c-

Then p, Vg, €T, s0 T"UT" b pg V qp. By our assumption 1, 7"+, p, or T" - ¢, hold.
Hence a > 14 or b > 1g.

2 = 1. Suppose that there exist some formulas ¢;(p), ¢2(p), ¥1(q), ¥2(q), where
p and q are disjoint lists of variables, neither ¢ -z ¢ nor ¢y k. 9o hold. Let Ty,
and Ty, be L-theories generated by ¢, and 1, respectively. Clearly, ¢o & T, and
Y2 & Ty,. Then, the Lindenbaum-Tarski algebras A = A(p,Ty,) = Fm(p)/ ~r, and
B = B(q,Ty,) = Fm(q)/ ~r,, are non-degenerate algebras such that

||¢1||NT¢1 > 1a and ||¢2||NT¢1 Z 1A’
1llr, =1 and [[¢ofl~y, 2 1s.

By our assumption 2, there exist C € V(L) and monomorphisms « : A — C and
B : B — C such that for every a € A and b € B, a(a) V 3(b) > 1c implies a > 15 or
b > 1. Take a valuation w on C defined by

w(p) = a(|pll~r, ) forpep,
w(q) = B(lgll~r,, ) forgeca

If ¢1,91 Fr ¢2 V 10y holds then, by local deduction theorem, there exist some n,m € w
such that
Fe (o AL)" - (01 A1)™ = (d2 V 1ho),
S0,
w((d1 A1)" - (hr A1)™ — (d2 V ¥2))
(w(g1) Ale)™ - (@) Ale)™ = (w(d2) V w(ts))
1218 = |92l g, ) V B(|ltel s, )
ol[16allr, ) V A2l lr,, -

Hence H¢2HNT¢ > 1 oOr ||,¢12HNT¢ > 1g. But thisis a contradiction, thus ¢, ¥ Fz ¢oViby
1 1
does not hold. O

—_
Q
I IA

Obviously, the WCJEP is stronger than the JEP. This is why DPVS implies DPRP
semantically.

Note that the following condition is equivalent to the WCJEP of the class of all non-
degenerate algebras of V' (L);

(x) for every two non-degenerate F'L.-algebras A, B in V(L), there is a well-connected
pair Cq, Cy of some algebra C in V(L) such that A and B are isomorphic to C;
and C,, respectively.

It is easy to see that (x) implies the algebraic characterization of Halldén completeness
given in Theorem 6.7. This is why DPVS implies Halldén completeness semantically.
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Chapter 7

Conclusions and Open Problems

In this thesis we investigated logics over FL, by using algebraic methods. In Chapter 4,
we showed that there exist continuum maximal logics over FL,. In Chapter 5, we showed
that an algebraic characterization of the deductive pseudo-relevance property for normal
modal logics worked well also for logics over FL.. In Chapter 6, we introduced some
modifications of definitions of Halldén completenss and the deductive principle of variable
separation in order to extend results for intermediate logics and modal logics to those
for logics over FL.. So, by using a new algebraic notion, namely well-connected pair,
we were able to give alternative characterizations of them, and clarified their semantical
relations with the disjunction property. But still there remain many open problems. The
following is a list of them that have come up from our study. The author believes that
these problems are worth while to study in the future.

Do our algebraic characterizations of Halldén completeness, the deductive pseudo-
relevance property and the deductive principle of variable separation work well for
logics over FL, i.e., non-commutative case?

What are algebraic characterizations of original (i.e., non-deductive) form of both
the pseudo-relevance property and the principle of variable separation for logics over
FL., respectively?

Are there some relations between the principle of variable separation and the de-
ductive principle of variable separation?

What kind of logical property does our algebraic condition of Halldén completeness
characterize for normal modal logics? (cf. Propositon 6.11 and Theorem 6.12)

For any logic £ over FL,, £ is Halldén complete and has the deductive pseudo-
relevance property if and only if it satisfies the following;

for all formulas ¢, 1, d which have no variables in common,
qﬁl—giﬁ\/éimpliesqﬁl—ﬁi or l_[;’(/) or |_£ 0.

— What is an algebraic characterization of the above logical propety?

— Is there a logic which has the above property but doesn’t have the deductive
principle of variable separation?
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