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Abstract

The knowledge of network topology is vital for various network management tasks and appli-

cations in different types of networks such as routing, flow control, traffic shaping, resource

scheduling, performance evaluation and optimization. Network topology discovery has thus

become a critical research area of increasing significance in both theory and applications. This

area attracts numerous researchers to study various methods and techniques for effective dis-

covery of network topology. This thesis is devoted to this important research area, concentrated

on the topic of network topology discovery and its applications in the following three aspects

covering both wired and wireless networks:

• Topology discovery for multicast network and its applications in performance evaluation.

• Mobile agent-based topology discovery and performance analysis.

• Topology analysis in wireless sensor network and its applications in routing.

For multicast network topology discovery, we apply multicast-based network tomography to

infer the network topology and internal loss/delay performance because of its lower traffic bur-

den and higher efficiency than other methods. Different from previous work, we propose Binary

Loss Tree Classification with Hop count (HBLT) and Binary Hamming distance Classification

(BHC) algorithms which takes hop count and hamming distance of sequences on receipt/loss

of probe packets maintained at each pair of nodes into account respectively. The use of level

information and hamming distance classification approach brings different benefits to topology

inference. The HBLT algorithm that takes level information into account improves greatly in

efficiency of inference procedure by grouping receivers according to hop count as initial steps.

Each node in the network records its hop count information which is proved greatly helpful for

topology inference by both theoretically analysis and simulation results. The BHC algorithm

applies the hamming distance approach for siblings classification and hop count information.

The hamming distance based siblings classification approach gains more benefits to topology

inference, and thus enables BHC to achieve a better performance for topology discovery than

all previous approaches based on the well-known technique of traditional A-approach in siblings

classifications.
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Based on discovered topology, we further propose network-internal loss/delay performance

inference schemes. We propose a novel method to infer internal links’ loss rates which signif-

icantly improves the efficiency of loss performance inference than the previous methods. We

also present a hamming distance matrix-based loss/delay performance inference approach by

employing end-to-end loss/delay measurements. The accuracy and efficiency of these schemes

are proved by detailed theoretical analysis and validated by simulation results.

As a development in new approaches for topology discovery, we apply mobile agents tech-

nology in topology discovery and build statistical models to study its performance. We pro-

pose several mechanisms for both Internet and multicast network topology discovery, includ-

ing the report-at-newly-found-nodes (RN) algorithm and report-at-leaf-nodes (RL) algorithm.

Through analysis on the behavior of mobile agents with different report fashion, we study the

performance of different mechanisms for both Internet and multicast network topology discov-

ery and verify their feasibility in simulated networks. Generally speaking, the RN algorithm

reports more frequently than the RL algorithm and thus brings heavier burden to the manage-

ment station while the RL algorithm results in less burden to the management station. Thus RL

outperforms RN in efficiency, while RN outperforms RL in the system reliability. By analysis

and simulation, it is shown that, in mobile agent systems, topology discovery can be performed

correctly and efficiently due to inherent advantages of mobile agents.

We further extend our research to wireless sensor networks (WSNs) and address coverage,

connectivity, reliability and energy-efficiency, which are the most important issues in WSNs,

from the topology point of view. Observing that topology control is more meaningful than

topology discovery in WSNs because neighboring information is usually enough to support var-

ious applications of WSNs in practice, we study energy-efficient topologies in which deployed

sensor nodes can cover the required area and guarantee their connection as well. We show that

triangle-based, square-based, hexagon-based and strip-based topologies built with the same

number of sensor nodes can meet different requirements in reliability and coverage. We further

propose two routing schemes to achieve desired energy-efficiency. Our first protocol is developed

by considering different requirements for energy consumption and transmission delay, and in-

corporating different route selection functions by combining the length of route and the number

of streams at individual nodes. This strategy requires only neighboring information and has

clear advantages for achieving different performance goals. Our second protocol employs the

random walk technique for routing in WSNs with patterned topologies and shows performance

improvements for small-size data transmission. This protocol achieves high successful trans-

mission rate within a limited number of steps which is quantitatively analyzed for the first time

to our knowledge, thus improving in energy-efficiency over other protocols. The performance

of the random walk routing in energy-efficiency is comparative to that of the shortest path

routing, while load balancing in the former cannot be achieved by the latter.

ii



keywords: Algorithm, mobile agent, multicast, performance inference, routing protocol,

topology discovery, wireless sensor network.

iii



Acknowledgements

I take immense pleasure in acknowledging various people and organizations that have supported

me in different ways. To all of them, I would like to convey my heartfelt gratitude.

First, I am deeply indebted to my supervisor, Professor Hong Shen, without whom this thesis

would not be possible. His effective guidance, constructive comments and detailed feedback have

helped me achieve my goal.

When I started my research, I often committed at least two mistakes. Sometimes I developed

confused ideas without deep thinking. Prof. Shen’s ability to see clearly through my confusion

and find the potentially interesting elements hidden there has well enlightened me in logical

thinking. Also, I sometimes had problems in presenting ideas clearly. Prof. Shen has given

me invaluable suggestions that helped me improve my skills in writing and comprehension.

During my three years PhD study I learnt from Prof. Shen the most significant mentality

of concentration, dedication and self-criticism in doing scientific research. This mentality has

guided me throughout my research and led to completion of this thesis.

I am very grateful to my sub-theme supervisor, Professor Teruo Matsuzawa, for his valuable

suggestions on my thesis work. His broad knowledge and penetrating comments are so impres-

sive and helpful to my research. I also wish to thank Professor Susumu Horiguchi, Professor

Maneo Kaneko and Associate Professor Yasuo Tan for their time spent in examining my thesis.

Many thanks are expressed to all members in Shen laboratory for various discussions and

suggestions on my research, and to all my friends and staff members in Japan Advanced Institute

of Science and Technology (JAIST) for their help, support and friendship. I am grateful for the

experiences that I gained over the time I spent with them at JAIST.

I wish to express my special thanks to the 21st Century COE Program “Verifiable and

Evolvable e-Society” of Ministry of Education, Culture, Sports, Science and Technology, and

Grant-in-Aid for Scientific Research General Research Scheme (B) Grant No. 14380139 of

Japan Society for the Promotion of Science (JSPS), for provision of full support to my thesis

work; to C&C Foundation, Inoue Foundation, Telecommunications Advancement Foundation

and JAIST Foundation for supporting me during this research.

I am highly obligated to my family for their endless love and encouragements that gave me

enormous moral support and helped me complete my work in a distant land. My heartiest

iv



thanks goes to my parents for teaching me to be a honest and diligent person, and to my sister

for her love and friendship. I wish to dedicate this thesis to them.

v



Contents

Abstract i

Acknowledgements iv

1 Overview of Network Topology Discovery 1

1.1 Definition of Network Topology Discovery . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Significance of Network Topology Discovery . . . . . . . . . . . . . . . . . . . . . 2

1.3 Methodologies for Network Topology Discovery . . . . . . . . . . . . . . . . . . . 3

1.3.1 Methodologies for Internet Topology Discovery . . . . . . . . . . . . . . . 4

1.3.2 Methodologies for Multicast Network Topology Discovery . . . . . . . . . 8

1.3.3 Methodologies for Wireless Network Topology Discovery . . . . . . . . . . 10

1.4 Related Work and Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Multicast Network Topology and Loss/delay Performance Inference 17

2.1 Introduction to Network Tomography . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Multicast-based Network Tomography . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Mathematical Models of Multicast Network . . . . . . . . . . . . . . . . . 19

2.2 Multicast Topology Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Binary Loss Tree Classification (BLT) Algorithm . . . . . . . . . . . . . . 21

2.2.2 Binary Loss Tree Classification Algorithm with Hop Count (HBLT) . . . 23

2.2.3 Analysis on HBLT and BLT . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Hamming Distance-based Multicast Topology Inference . . . . . . . . . . . . . . 39

2.3.1 Existing Approach for Siblings classification . . . . . . . . . . . . . . . . . 40

2.3.2 Hamming Distance Classification Approach . . . . . . . . . . . . . . . . . 40

2.3.3 Binary Hamming Distance Classification (BHC) algorithm . . . . . . . . . 41

vi



2.3.4 Analysis on Inference Accuracy of Hamming Distance Classification Ap-

proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.5 Experimental Results on the BHC Algorithm . . . . . . . . . . . . . . . . 46

2.4 Multicast Network Internal Loss Performance Inference . . . . . . . . . . . . . . 47

2.4.1 Approach to loss performance inference . . . . . . . . . . . . . . . . . . . 48

2.4.2 Algorithm on loss inference . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Topology and Loss Performance Inference for General Trees . . . . . . . . . . . . 52

2.5.1 Topology Inference for General Trees . . . . . . . . . . . . . . . . . . . . . 52

2.5.2 Loss Performance Inference for General Trees . . . . . . . . . . . . . . . . 53

2.5.3 Loss Rate-Combined Topology Inference . . . . . . . . . . . . . . . . . . . 54

2.6 Hamming Distance Matrix for Loss/Delay Performance Analysis . . . . . . . . . 56

2.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Network Topology Discovery by Mobile Agents 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Mobile Agent-based Topology Discovery . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Mobile agent-based algorithms for Internet topology discovery . . . . . . 64

3.3.2 Mobile agent based algorithm for multicast network topology discovery . 65

3.4 Analysis on Mobile Agents for Topology Discovery . . . . . . . . . . . . . . . . . 66

3.4.1 Dwell time distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.2 Life span of a mobile agent . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4.3 Report time distribution at the management station . . . . . . . . . . . . 74

3.4.4 Interreport time distribution at the management station . . . . . . . . . . 75

3.4.5 Comparison between the RN and RL Algorithms . . . . . . . . . . . . . . 76

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 Topology Analysis in Wireless Sensor Networks and Its Applications 79

4.1 Preliminaries of Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . 79

4.1.1 Modelling Connected-Coverage WSNs . . . . . . . . . . . . . . . . . . . . 81

4.2 Patterned Topologies for Connected-coverage WSNs . . . . . . . . . . . . . . . . 82

4.2.1 Analysis on additional sensing area . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 WSNs with Strip-based Topology . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3 WSNs with Hexagon-based Topology . . . . . . . . . . . . . . . . . . . . . 84

4.2.4 WSNs with Square-based Topology . . . . . . . . . . . . . . . . . . . . . . 85

4.2.5 WSNs with Triangle-based Topology . . . . . . . . . . . . . . . . . . . . . 85

4.2.6 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3 Route Selection Function-based Routing Protocols in Patterned WSNs . . . . . . 88

vii



4.4 Random walk routing protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.1 Description on The Random Walk Routing for WSNs . . . . . . . . . . . 92

4.4.2 Density-Aware Topology Deployment . . . . . . . . . . . . . . . . . . . . 96

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Conclusion 100

Bibliography 103

Publications 109

viii



List of Figures

2.1 A simple multicast tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 An example of a multicast tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Multicast tree folding procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Misclassification probability comparison between BLT and HBLT when ᾱf = 0.1,
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Chapter 1

Overview of Network Topology

Discovery

The knowledge of network topology is critical for many applications. As the network size

increases, network topology discovery (NTD) has received more and more attention recently.

We provide an overview of NTD in this chapter, which includes the methods for NTD, its

significance and applications, and the related work.

1.1 Definition of Network Topology Discovery

Physical topology represents the topology model for layer 1 of the OSI stack - the physical

layer (RFC2922). Physical topology consists of the devices in the network and how they are

physically interconnected. These devices include communication infrastructure devices, such as

hubs, switches, and routers, as well as ‘leaf’ devices such as workstations, printers, and servers.

Generally, user data passes through infrastructure devices while leaf devices are sources and

sinks of data. Knowledge of the physical topology of a network is extremely important for the

successful execution of many network management tasks such as fault monitoring and isolation,

server placement and resource sharing. The physical topology can be depicted as a graph, with

internal nodes representing switching elements and edge nodes representing hosts.

Logical topology is related to the physical topology, and can also be represented as a graph.

The logical topology graph can represent the topology model for data link layer and network

layer of the OSI stack, for which we call layer-2 topology and layer-3 topology in this thesis

respectively. Over a specific period of routing stability, the logical topology graph is determined

by the paths traversed by packets sent from the sources to the receivers. It is clear that

the logical topology is only stable during a period when no routing changes occur. In one

sense, the logical topology displays less information than the physical topology, because it does
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not indicate all connectivity or switching elements. However, the logical topology provides

some important information that cannot be generated from the physical topology: it identifies

the paths traversed by packets sent from each source to the receivers and indicates where

these paths diverge and merge. This information is extremely useful for the evaluation of the

resource sharing capability of the network under the current configuration, the recovery of the

loss and congestion, and also can guide the decisions of source-based routing algorithms, the

determination of the routing bottleneck and so on.

Topology discovery can be defined as a process that discovers all required network entities

and connections among them. According to different objectives, topology discovery is classified

into layer-2 topology discovery and layer-3 topology discovery. In layer-2 topology discovery,

network entities required to be discovered include switches, hubs, bridge, and so on. While

for layer-3 topology discovery, it only requires to discover the router-to-router interconnections

and router interface-to-subnet relationships. According to operation of topology discovery, it

is classified into proactive and on-demand topology discovery. Proactive topology discovery is

based on the transmission of probe packets to collect topology information and exchange of this

information between nodes. On-demand topology discovery requires to set probers in the net-

work. The probers monitor and analyze network traffic and report topology information to the

network administrator. Proactive topology discovery requires less time than on-demand topol-

ogy discovery, while brings heavier burden than on-demand topology discovery. Depending on

applications, topology discovery can be classified into domain topology discovery and backbone

topology discovery which aim to discover the topology within a domain and the backbone in

a network respectively. Furthermore, depending on different network environments, topology

discovery can be divided into Internet topology discovery, multicast network topology discovery

and wireless network topology discovery.

The objective of NTD is to develop algorithms/tools that have following characteristics:

1. Fast: discover network topology timely and keep internal consistency of all the data;

2. Complete: identify as many entities as possible with the least probability of error;

3. Accurate: try to keep the results as correct as possible;

4. Efficient: consume the least possible network resources, that is, introduce the lowest

possible overheads to the network.

1.2 Significance of Network Topology Discovery

Network topology constantly changes as new members join a network, links breakdown and

other various network behavior. Keeping track of network topology manually is a difficult,
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if not impossible, job. So automatic topology discovery algorithms are needed. Moreover,

discovered topology information is useful for many applications:

1. Simulation: In order to simulate a real network, the topology of the network must be first

obtained.

2. Network Management: Network topology information is useful in deciding whether cur-

rent hardware is configured correctly and new routers should be added. It also allows

network managers to find bottlenecks and failures in the network.

3. Siting: A network map helps users determine where they are in the network so that they

can decide where to site servers, and which ISP to join to minimize latency and maximize

available bandwidth.

4. Topology-aware algorithms: Topology information enables a new class of protocols and

algorithms that exploit knowledge of topology to improve performance. Examples include

topology-sensitive policy and QoS routing, and group communication algorithms with

topology-aware process group selection.

5. Location of mirror server: Appropriate location of mirror server determined by topology

information can greatly decrease latency and solve the bottleneck problem.

6. Service Management: Quality of service can be improved significantly if topology in-

formation is transparent to users and administrators. For example, mail, ftp, web,

SNMP(Simple Network Management Protocol), DNS(Domain Name System).

7. Network diagnostics: Topology information enables troubleshooting in a network and help

build schemes for loss recovery and congestion control.

8. Network optimization: Topology information can help reconfigure a network to improve

performance.

9. Designated data collection and analysis: Analysis on given paths or subnets is enabled if

topology information is obtained.

Therefore, network topology not only has a great impact on network performance but also

is very useful to many tasks of various applications. It hence becomes a challenging task to

discover network topology automatically.

1.3 Methodologies for Network Topology Discovery

We discuss the methodologies of topology discovery (TD) according to the classification of

Internet TD, multicast network TD and wireless network TD.

3



1.3.1 Methodologies for Internet Topology Discovery

Available tools/protocols which can provide information sources for Internet TD are listed as

follows:

1. Ping:

The “Ping” program contains a client interface to ICMP (Internet Control Message Proto-

col). It can be used by a user to verify whether an end-to-end Internet path is operational,

and thus know whether a host is alive or not. The ping program also collects performance

statistics, i.e. the measured round trip time and the number of times the remote server

fails to reply. Usually, when a user sends a “Ping” probe packet (ICMP echo request)

to a host, the host will return an ICMP echo reply message. The message shows the

received sequence number (starting at 0 and incremented after each transmission), and

the measured round trip time (in milliseconds). If the host is power off or does not exist,

there will be no ICMP echo reply message to the user. To verify multi-path operation

more efficiently, “Ping” can be executed asynchronously.

Similar to “Ping”, there is another program called “Directed broadcast ping” which can

verify all hosts’ availability within a subnet simultaneously. Though it can accelerate the

discovery process. However, many routers and hosts prevent them from receiving these

probe requests. Therefore, discovered topology may be very incomplete.

2. Traceroute

The “traceroute” program also contains a client interface to ICMP. Like the “ping” pro-

gram, it may be used by a user to verify whether an end-to-end Internet Path is opera-

tional, but also provides information on each of the Intermediate Systems (i.e. IP routers)

to be found along the IP Path from the sender to the receiver. Traceroute uses ICMP

echo messages. These are addressed to the target IP address. The sender manipulates

the TTL (hop count) value at the IP layer to force each hop in turn to return an error

message.

The program starts by sending an ICMP Echo request message with an IP destination

address of the system to be tested and with a Time To Live (TTL) value set to 1. The

first system that receives this packet decrements the TTL and discards the message, since

this now has a value of zero. Before it deletes the message, the system constructs an

ICMP error message (with an ICMP message type of “TTL exceeded”) and returns this

back to the sender. Receipt of this message allows the sender to identify which system is

one link away along the path to the specified destination.

Then the sender sends an ICMP Echo request message with TTL being 2. The first system

decrements the TTL and forwards to the second system on the path to the destination.
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The second system decrements TTL and discards the message, meanwhile constructs an

ICMP error message with its own IP address and returns to the sender. The sender goes on

increasing the TTL of ICMP Echo request message by 1 if the system that responds is not

the intended destination. The process repeats as above until the sender receives a receives

a response from the intended destination (or the maximum TTL value is reached). In this

way, the sender learns the identities of all systems along the IP path to the destination.

Obviously, traceroute is very helpful to construct the topology of concerned network.

However, some routers are configured to discard ICMP messages, while others process

them but do not return ICMP Error Messages. Such routers hide the “topology” of the

network, and thus impact correct operation of protocols. Some routers will process the

ICMP Messages, providing that they do not impose a significant load on the routers,

such routers do not always respond to ICMP messages. In all these cases, the discovered

topology becomes incomplete.

3. SNMP (Simple Network Management Protocol)

SNMP is the standard network management protocol for TCP/IP networks. The three

major components of the SNMP that form an integral part of its foundation are the

network device, the agent and the manager. A network device is also called the Managed

Object, which requires to be monitored and managed by the manager. An agent is a

mediator between the manager and the device. The agent resides inside the network

device. It collects the management information from the device and makes it available

to the manager. The agent is a program that resides in the device and is not a separate

entity. The manager is a separate entity that manages the agents from a remote place.

It queries the agent to know the functioning of the device.

Management Information Base (MIB) is a collection of definitions which define the prop-

erties of the managed objects. It enables the SNMP manager to operate intelligently on

the data available on the managed devices. The data about the names and types of the

objects in the device that the manager needs to know are all included in MIB. Topology

discovery based on these information can be operated efficiently and effectively. How-

ever, these information are not always available due to restriction of access to MIB. Thus,

topology discovery based on SNMP is limited.

4. DNS

The Domain Name System (abbreviated DNS) is an Internet directory service. It is a

distributed hierarchical database, and its structure is akin to a computer’s filing system

of folders and subfolders. DNS is developed because it is difficult to remember the IP

addresses of the machines. A domain’s DNS name server keeps a binding from every

name in the domain to its IP address. Most DNS servers respond to an “zone transfer”
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command by returning a list of every name in the domain. Thus, all hosts and routers

within the domain can be identified through DNS zone transfer. This provides very

useful information for topology discovery. It may not be complete, however, since hosts

obtaining IP addresses using DHCP are not served by DNS. Moreover, some network

managers disable DNS zone transfer due to security concerns.

One the advantages of DNS is that we can easily and quickly discover many devices. These

can serve as a starting point for other algorithms. There are also a lot of disadvantages.

First of all, the information stored in the DNS database may not be consistent. This

means that some devices may not be active any more. Also, it is very possible that

there are some devices which are active, but they are not registered in the database.

Another disadvantage is that we cannot rely on the other information which is stored

in the database. This is true, because there is no standard and widely-accepted format

to encode this information (especially the Host Information field). Also, the information

which we can take with DNS cannot help us to discover the structure of the actual

network. By this we mean that we cannot extract information about the subnets or even

the role of each device in the network. Of course we cannot extract any information about

the performance of the network or the quality of service it gives to its users. Another

drawback is that DNS zone transfer is not always possible. Some DNS servers don’t allow

zone transfer. Thus whether DNS is chosen to involve in topology discovery depends

on various applications. If DNS is chosed, it must incorporate with other information

sources.

5. Other techniques and proprietary protocols

Depending on the exact type of network there are some other techniques which provide

more about the topology of the network. For example a single node can easily find about

its neighbors by simple looking its ARP (Address Resolution Protocol) table.

Another information source comes from using the information of routing processes, such

as OSPF (Open Shortest Path First), RIP (Routing Information Protocol) and BGP

(Border Gateway Protocol). In the case of OSPF and RIP, the subnets, the number and

position of routers in networks can be found. In the case of BGP, the path, which is a

collection of Autonomous Systems, can be found.

It is also possible to use specialized techniques to learn more about non-IP protocols.

For example in the case of IPX (Internetwork Packet Exchange), we can use the SAP

(Service Advertisement Protocol) to learn more about the servers of the network and

their location in the network. We can also use vendor-specific techniques to learn more

about the behavior of the devices and the network.
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The above tools/protocols provide information source for topology discovery. However, each

individual information source is neither complete nor reliable to discover the network topology.

Therefore, many methods based on various sources have been developed to discover the more

accurate and complete possible topology. All of these methods apply the same basic discovery

process as follows.

Step 1: Come up with a temporary set of hosts in the network that may or may not exist;

Step 2: Go through each host and determine whether they really do exist. If they exist:

Step 3: Add to permanent set.

Step 4: Use some heuristics on those hosts to find more hosts which are added to

the temporary set. Go back to step 2.

By use of different tools/protocols to abstract topology information, the existing methods

can be classified as follows:

1. Network topology discovery based on SNMP and ping [60].

This method is the simplest because it assumes that SNMP is available everywhere in the

domain. MIB provides neighboring nodes information of each node, and Ping helps to

find whether these nodes are alive. Thus all discovered nodes and connections reconstruct

a layer-3 logical topology of the network.

By use of SNMP and Ping, topology discovery can be efficient, fast, complete, and accu-

rate. However, it can only be used on networks where SNMP is enabled on all routers.

Thus, it fails to discover a real complete topology if there are some routers which do

not support SNMP. Moreover, MIB is only accessible for authorized users, this limits the

application of this method.

2. Network topology discovery based on DNS and broadcast ping [60].

This algorithm assumes the domain allows DNS zone transfer and pings to broadcast

addresses. DNS zone transfer is used to add more IP addresses to temporary set for

identification, and ping will verify their existence and connections. In order to discover

nodes not found in DNS zone transfer, broadcast ping is used to identify more nodes.

This method can correctly determine network topology in the absence of SNMP. However,

DNS zone transfer and broadcast ping may both be unavailable for security reason in

practice. Therefore, a method which have little limitation in reality is desirable.

3. Network topology discovery based on DNS and traceroute [60].

In this method, DNS zone transfer gets lists of all routers and hosts in the domain, ping

verifies their existence and traceroute identifies their connections. It is faster than the

previous one and has fewer overheads. It makes fewer assumptions than the previous
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algorithm, and thus is more widely applicable. However, if DNS lookup cannot return all

the IP addresses of a router, or DNS zone transfer is disabled, this method cannot result

in a complete topology. It cannot guarantee accuracy, either.

4. Network topology discovery based on Ping and traceroute [62].

Since DNS zone transfer is disabled in many domains for reasons of security, the method

only using ping, traceroute and intelligent guess about the IP addresses in a domain

is proposed. It requires the least support from the network, thus can be applied most

widely. However, the completeness cannot be guaranteed as above methods because ping

and traceroute sometimes are also limited. The accuracy of this method depends on the

configuration of entities in the network because intelligent guess may not work always

correctly.

5. Topology inference from end-to-end measurements by unicast/multicast [26, 30].

This method can be performed actively or passively. It is also called network tomography

which has attracted many researchers in last five years. It obtains internal characteristics

such as topology, loss and delay by inference from end-to-end measurements as will be

introduced in detail in Chapter 2. To infer the topology, the probe packets are sent by

unicast/multicast from a source to receivers. After the source collected the end-to-end

measurements, the topology between the source and the receivers can be inferred by this

method.

Topology inference from unicast end-to-end measurements brings heavy burden to the

network. Thus sending probe packets by multicast, which can lighten the burden than

that by unicast, is preferred to be used in topology inference if the routers within the

network of interest support multicast. Though this assumption may not be feasible in

some networks, topology inference by multicast measurements is prevalent and works very

well in multicast network.

There are also many other methods for different objectives, such as address forwarding tables

(AFT)-based link layer topology discovery, routing protocol RIP and OSPF-based network

layer topology discovery. Incorporating several methods to discover the topology of a network

is sometimes feasible and needed. Generally speaking, methods for Internet topology discovery

should be chosen depending on the expected results, which information source is available, and

the network status.

1.3.2 Methodologies for Multicast Network Topology Discovery

This section introduces methodologies for multicast network topology discovery. Discovering

multicast distribution tree is the main objective in multicast network topology discovery. Pos-
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sible approaches are usually classified into three types [46]: multicast topology inference based

on end-to-end measurements which does not need support from internal network nodes; mech-

anisms requiring the help of internal network nodes; and schemes that lie in their midst.

The key idea underlying the first approach is that receivers sharing common paths on the

multicast tree associated with a given source will see correlations in their packet losses/delays.

Thus based on the shared loss/delay statistics for transmitted probe packets, one can attempt

to infer the multicast tree. This elegant approach to the problem is particularly advantageous

in that it requires no support from internal nodes. It does however, potentially suffer from

significant communication overheads required to periodically gather large amounts of loss data

so as to adapt to changing memberships or topology, and processing overheads to assemble

and perform the inference step. This is currently conceived as a centralized approach whose

accuracy is unlikely to scale nicely. The approach assumes network links have steady state loss

characteristics, which may or may not be realistic on the time-scales during which loss data are

collected. A final point is that the approach permits identification of the “logical” multicast

topology rather than the actual physical topology. As will be discussed in Chapter 2, this means

that those single-child parent nodes where no branch exists in a path are inferred as a single

node and their links are collapsed to a single “logical” link. In practice, this may not be an

appropriate abstraction of the actual topology. The key advantage of this approach lies in its

applicability to inferring multicast trees without requiring the help from internal nodes. Note

that for multicast networks, logical topology only denotes layer-3 logical topology and physical

topology means a graph of real connections of multicast members.

The second approach to multicast topology discovery is based on using the MTRACE feature

currently implemented in the IGMP protocol. MTRACE enables tracing the path from a source

to a destination on a given multicast distribution tree. A query packet is sent from the requester

to the last multicast router (on the distribution tree) prior to a given destination. This query

is then forwarded hop-by-hop along the reverse path from the “last-hop” router to “first-hop”

router, i.e., that to which the source is attached. While the query packet traverses the tree,

each router adds a response data block containing its interface addresses and packet statistics.

When the query packet reaches the first-hop router it is sent back to the requester via unicasting

or multicasting. The main advantage of this approach is that it provides full information on

the multicast topology based on currently available IGMP features. The physical topology

including interface addresses of routers can therefore be obtained. This however, shall rely

heavily on special services at routers.

The third approach combines the advantages of the above two approaches. The work along

this line can be found in [46]. Our work in [65, 66] also belong to this category. This method

usually requires lighter support from internal nodes than the second method and can infer

multicast topologies which are closer to the physical topology than the first approach.
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1.3.3 Methodologies for Wireless Network Topology Discovery

Topology information in wireless networks is very helpful to control transmission power, avoid

congestion, discover resources and gather data. However, it’s much more complicated to discover

topology for wireless networks than for wired networks. This is because of complex environment

in wireless networks such as more frequently changing topology, complex channel and very

limited resources. There is no IP subnet hierarchy or popular network management protocol,

such as SNMP for wireless networks. Therefore, the methodology for topology discovery in

wireless networks is significantly different from that in wired networks.

Existing work related to topology discovery for wireless networks can be listed as follows.

A clustering scheme to discover ad hoc network topology is proposed in [22]. Ad hoc Net-

work Management Protocol (ANMP) in [22] applies hierarchical structure and similar MIB as

in SNMP. The cluster heads are dynamically chosen based on geographic location or network

connectivity, and the MIBs at cluster heads are used to gather topology information. However,

this scheme has the overhead of constantly maintaining cluster heads in the network. Addi-

tionally, the information in the MIBs might be stale due to mobility and could fail to provide

a complete link information of the network. Another topology discovery algorithm is presented

in [23]. It applies mobile agent to wireless network topology discovery. Mobile agents in the

nodes periodically gather topology information and disseminate it to all the other nodes in

the network. However, this scheme does not provide an instantaneous topology of the network.

This algorithm is also extremely intensive in time and messages to discover a complete topology

of the network. TBRPF [8] and OLSR [40] are link state routing protocols. They require each

node to constantly maintain a partial topology of the network. This is an overhead when the

link information is required temporarily at a few nodes. Link state routing protocols provide

network layer topology information. Further, [29] proposes a hierarchical tree-based clustering

scheme for wireless sensor networks. The proposed TopDisc algorithm gives an efficient way

to get approximate yet structured information about the topology. The constructed network

topology is a Tree of Clusters (TreC) rooted at the monitoring node. This topology is used

for data dissemination and aggregation, duty cycle assignments and nework state retrieval. A

mesh-based topology discovery protocol for hybrid wireless networks is proposed in [21]. It can,

more powerfully than above methods, discover the entire topology information adaptively and

maintain the topology at a few prespecified nodes. This protocol is a more reliable protocol for

topology discovery in wireless networks.

Summarizing the above, methodologies for wireless network topology discovery can mainly

be classified into: topology discovery based on cluster in hierarchical tree; topology discovery

based on mobile agents; and mesh-based topology discovery.
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1.4 Related Work and Our Contributions

Since topology discovery provides invaluable information for various applications in Internet,

multicast networks and wireless networks, a large amount of work has been devoted to this

area. Especially for Internet topology discovery, many projects were developed in late 90s.

1.4.1 Related Work

Topology information collected by Atlas [1] and CAIDA (Cooperative Association for Inter-

net Data Analysis) [2] are earliest and most notable collections of Internet topologies. These

topologies are neither automatically discovered, nor updated. Later on, automatic topology dis-

covery was developed in Hewlett-Packard’s OpenView (www.openview.hp.com), IBM/Tivoli’s

Netview (www.tivoli.com) and Ciscoworks Network Connectivity Monitor (www.cisco.com)

which are commercialized products based on SNMP. Other commercially available tools for in-

ferring layer-3 network topology include Actualit’s Optimal Surveyor (www.actualit.com) and

the Dartmouth Intermapper (intermapper.dartmouth.edu). These tools offer an IP-network

management functionality for automatically discovering routers and IP subnets and generating

a layer-3 topology. However, SNMP is not universally deployed and only administrators are

authorized to perform topology discovery. Thus SNMP-based topology discovery has limited

application. Projects Octopus and Argus in Cornell university developed a set of tools which

have implemented three algorithms for automatic topology discovery using Perl language. One

of them uses SNMP to lookup the ARP tables of routers. The other uses DNS zone transfer

and traceroute. The third tries to guess some addresses and then use traceroute to find the

topology. This implementation uses modified version of ping and traceroute, which speeds up

the running time of the algorithm. Another popular tool is Skitter [3], which was developed by

CAIDA. This tool uses traceroute to find the paths connecting two nodes and also to collect

performance information from them in a distributed form. Similar tool using traceroute and

ping is developed in Mercator project [36]. CAIDA developed another tool, Otter [4], to aggre-

gate topology views from multiple routers which can further improve the accuracy of topology.

This is also called aggregation view of MBGP topology. The Rocketfuel project [70] uses re-

sults from 294 public traceroute servers to build router-level ISP topologies; it also employs

techniques that can reduce the amount of probing and resolve address aliasing.

Topology discovery for layer-2 is more challenging than layer-3 TD because it tries to discover

more detailed connections among network elements. Layer-2 TD has been developed in Cisco’s

Discovery Protocol and Bay Networks’ Optivity Enterprise (www.baynetworks.com). The pro-

prietary tools and protocols are typically based on vendor-specific extensions to SNMP MIBs

and are not useful on a heterogeneous network comprising elements from multiple vendors. Pere-

grine’s Infratools software (www.peregrine.com), Riversoft’s NMOS product (www.riversoft.com),

and Micromuse’s Netcool/Precision application (www.micromuse.com) claim to support layer-
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2 topology discovery, but these tools are based on proprietary technology to which we do not

have access. In an effort to some standards for physical-topology discovery, IETF has pub-

lished an RFC proposing a standard for a physical network topology MIB (originally proposed

by Cisco). Unfortunately, very few vendors implement the proposed physical MIB design.

Loran Network Systems released a software for discovering layer-2 topology in heterogeneous

networks. Briefly, their approach is based on trying to statistically map (i.e., correlate) the

traffic patterns observed at the ports of different elements in the underlying network, and prob-

abilistically inferring connections for ports with similar traffic characteristics [28, 55]. Their

approach relies on statistical correlation, so it can only infer element connections with some

(high) probability; furthermore, it is not at all clear if or how their proposed method would

work in the presence of interconnections between network elements belonging to different IP

subnets. Shao et al. [59] also propose correlating benchmark measurements to determine the

functional differences between a central server and a collection of machines across a LAN; how-

ever, for network-management purposes, such a application-level view of the underlying network

structure is often insufficient. Y. Breibart et al. [15] and [14] proposed algorithms that relies

on standard SNMP information to discover the layer-2 topology of a heterogeneous, multi-

subnet network. They utilizes information either from the address forwarding tables (AFTs)

of elements capturing the set of medium access control (MAC, i.e., layer-2) addresses that are

reachable from each element interface, or (in the absence of AFT data) from the elements’

NetToMedia tables.

Multicast network topology discovery aims to discover layer-3 multicast trees. Proposed

solutions to this problem rely on either correlating end-to-end multicast measurements [30,33],

or using some specialized mechanism that requires router cooperation [46, 65, 67] as presented

in Section 1.3.2. The project MINC (Multicast-based Inference of Network-internal Character-

istics) is developed for multicast network topology discovery and other internal characteristics

such as loss and delay. They proposed a novel methodology for identifying internal network

performance characteristics based on end-to-end multicast measurements. The methodology is

based on statistical estimation theory, and can be used to characterize the internal loss and

delay behavior of a multicast network. Our work is mainly based on the research in MINC.

For wireless networks, same as above, topology information is very important. The project

WTD (Wireless Topology Discovery) of UC San Diego [71] is a project which focuses on wireless

topology discovery and analysis. It collects data on the dynamic characteristics of a real world

wireless network. Through analyzing the collected data, the long term goal of this project is to

test and develop reliable and efficient routing protocols for large, and perhaps geographically

constrained, wireless networks. Since the topologies of wireless networks change very frequently,

maintaining a global view of topology for wireless networks is too energy consuming which is

not worth in most applications. Local neighboring information, instead of the global topology,

is usually sufficient to support the function of wireless networks. The final goal of topology
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discovery, either global or local, is to develop routing protocols as mentioned in [71] above which

can satisfy various applications. Thus, topology discovery is always embedded in development

of routing algorithms.

Wireless sensor networks (WSNs) represent an important type of wireless networks which

have a wide range of applications in practice. For wireless sensor networks (WSNs), how to

keep coverage and connectivity is the most fundamental issue. Both coverage and connectivity

are strongly influenced by topologies of WSNs. Coverage problems which address how a point

or a path is covered have been studied widely in [18, 38, 47, 49]. How to place node in WSNs

to provide connected coverage has been studied in [10, 39, 41, 54]. All these work showed the

significance of topology for connectivity and coverage in wireless sensor networks. Another

important issue in WSNs is energy-constraint which is also related to network topology. There

have been a lot of work in studying various methods to achieve energy efficiency. The existing

approaches to save energy can be classified into two categories. One is turning off or changing

some nodes to sleep mode as proposed in [20, 39, 57, 61]. The other is minimizing sensing

range and transmission range while keeping connected coverage as proposed in [44,51]. In both

approaches network topology is critical for achieving energy efficiency.

1.4.2 Our Contributions

Our research work contributes mainly to the following three aspects: topology discovery for

multicast network and its applications in performance evaluation; mobile agent-based topology

discovery and performance analysis; and topology analysis in wireless sensor networks and its

applications in routing.

Conceptually, we may classify all problems of network topology discovery (NTD) into three

domains in the dimensions of application, methodology and model respectively: communica-

tion pattern, discovery methodology and network type. The three components contained in this

thesis are drawn from these three different domains of NTD and represent new developments

of NTD in these domains which we have made during our research. To study NTD comprehen-

sively, we choose one representative in each domain: multicast in the communication pattern

domain, mobile agent-based method in the discovery methodology domain and wireless sensor

networks in the network type domain. We start with NTD for multicast networks because

multicast is the most widely used communication pattern existing in various applications. We

then move on to the proposal of a novel methodology of deploying mobile agents for the NTD

task because this method is different from the traditional algorithmic approaches and it pos-

sesses some interesting properties. Finally we show how to carry out the NTD task in the form

of topology analysis in wireless sensor networks which has different structural properties from

wired networks and show increasing importance in applications. Our achievements made in

these three domains provide a complete picture of the contributions of this thesis to network
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topology discovery this challenging research area.

For multicast network topology discovery, tomography from end-to-end measurements has

received considerable attention recently because of its lower traffic burden and higher efficiency

than other methods. We apply network tomography in our research to identify topology and

internal loss/delay performance. We propose Binary Loss Tree Classification with Hop count

(HBLT) and Binary Hamming distance Classification (BHC) algorithms which consider hop

count and hamming distance of sequences on receipt/loss of probe packets maintained at each

pair of nodes respectively. Both algorithms improve the accuracy and efficiency of tomogra-

phy over previous algorithms from different prospectives. HBLT takes level information into

account which benefits greatly to inference procedure. BHC algorithm incorporates hamming

distance into hop count-based HBLT algorithm, and achieves the best performance for topol-

ogy discovery among available methods. Based on the discovered topology, we further propose

network-internal loss/delay performance inference schemes. They employ end-to-end loss/delay

measurements to infer the internal loss/delay performance. We perform detailed analysis to

show the accuracy and efficiency of these schemes and validate them by simulation results.

To develop new approaches for topology discovery, we apply mobile agents technology in

topology discovery. We propose several mechanisms for both Internet and multicast network

topology discovery, including the report-at-newly-found-nodes (RN) algorithm and the report-

at-leaf-nodes (RL) algorithm. Through analysis on the behavior of mobile agents with different

report fashions, we study the performance of different mechanisms for topology discovery of

both Internet and multicast networks and verify their feasibility in simulated networks. In

mobile agent systems, it is shown that topology discovery can be performed correctly and

efficiently due to the inherent advantages of mobile agents. However, the assumption that all

entities must support the execution of mobile agent codes may limit the application of mobile

agent-based topology discovery algorithms in practice.

We extend our research to wireless sensor networks. Since coverage, connectivity, reliability

and energy-constraint are the most important issues in WSNs, we address them from the

topology point of view. Instead of topology discovery, topology control is more meaningful in

WSNs because neighboring information is usually enough to support various applications of

WSNs in practice. We thus focus on studying energy-efficient topologies in which deployed

sensor nodes can cover the required area and guarantee their connection as well. We show

that the four patterned topologies, triangle-based, square-based, hexagon-based and strip-based

topologies, can meet different requirements for reliability and coverage. Each topology pattern

provides a different performance metric for WSNs built with the same number of sensor nodes.

For example, the highest reliability is supported by triangle-based WSNs and the maximal

coverage area is provided by strip-based WSNs. We further propose two routing schemes to

achieve desired energy-efficiency. Our first protocol considers different requirements for energy

consumption and transmission delay, and incorporates different route selection functions by
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combining the length of route and the number of streams at individual nodes. We demonstrate

clearly the advantages of applying this strategy to achieve different performance goals. Our

second protocol employs random walk for routing in WSNs with patterned topologies. We

show that this protocol has a high successful transmission rate by quantitative analysis for the

first time to our knowledge. The comparison on energy-efficiency performance between our

protocol and the shortest path routing shows the advantages of our protocol. These advantages

become significant for small-size data transmission in WSNs.

Summarizing all the contents of our research, we list the following main contributions of

this thesis:

• We propose new algorithms for multicast network topology discovery that are more effi-

cient and accurate than previous methods;

• We develop new methods for network internal loss/delay performance inference based on

discovered topology information;

• We propose new methods for mobile agent-based network topology discovery, and develop

statistical models to analyze the behavior of mobile agents and system performance.

• We study different topology deployment schemes in wireless sensor networks and their

impacts on reliability and coverage and develop energy-efficient routing protocols.

Performances of all our developed algorithms and protocols are both mathematically shown

by theoretical analysis and experimentally verified through simulations.

1.4.3 Thesis Outline

Chapter 2 starts with an introduction of network tomography for topology inference. It then

presents our algorithms for multicast network topology discovery using hop count and ham-

ming distance classification and shows that these strategies can bring in different benefits to

topology inference. It further presents our methods for multicast network internal loss/delay

performance inference based on the discovered topology information, in both binary trees and

general trees as their extension. Finally, it shows how to utilize the inferred loss rate in topology

discovery process to improve the quality of the discovered topology, and proposes the method

of using hamming distance matrix for network loss/delay analysis from end-to-end loss/delay

measurements.

Chapter 3 first gives an introduction to mobile agents and its applications, then presents

two algorithms, report-at-newly-found-nodes algorithm and report-at-leaf-nodes algorithm, that

deploy mobile agents for both Internet and Multicast network topology discovery. It further
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presents a detailed analysis on statistical behaviors of the mobile agents deployed in our al-

gorithms, represented by dwell time, life span, report time and interreport time these key

statistical parameters, to show the performance of the proposed algorithms.

Chapter 4 first introduces necessary background knowledge of wireless sensor networks

(WSNs) and some fundamental performance metrics of WSNs. Then it discusses four desirable

topology patterns for WSNs which can provide both coverage for required area and connectivity

between all nodes deployed in the network. Based on the analytical results on these patterns,

it further presents two routing protocols, route selection function-based routing and random

walk routing, to achieve desired energy-efficiency. It also gives quantitative analysis on the

performance of these protocols.

Chapter 5 concludes the thesis with a summary of its main contributions and some future

research tasks.
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Chapter 2

Multicast Network Topology and

Loss/delay Performance Inference

We begin this chapter with introducing network tomography which provides the theory for

topology inference in our work. Then we present our new algorithms for topology inference

which are more efficient and accurate than previous schemes, and new scheme for network-

internal loss/delay performance inference. We give theoretical analysis on them and validate

them by simulation results.

2.1 Introduction to Network Tomography

Network tomography, first proposed by Y. Vardi [72], stems from the similarity between network

inference and medical tomography. It can be looked as a sort of method which mainly relies on

various inferential theory to uncover the network characteristics.

There are two forms of network tomography according to summary of [25] on recent liter-

atures. One is link-level parameter estimation based on end-to-end, path-level traffic measure-

ments. The other is sender-receiver path-level traffic intensity estimation based on link-level

traffic measurements. The latter one is essentially the antithesis of the former one. Its goal is

to estimate path-level network parameters from measurements made on individual links. For

example, the estimation of origin-destination (OD) traffic from measurable traffic at router

interfaces has important applications in routing optimization.

Our work belongs to the first type of network tomography, which is link-level characteristics

inference, such as topology, link loss rates, and link delay inference, from end-to-end, path-level

traffic measurements. The end-to-end, path-level traffic measurements can be obtained by ac-

tive probing or passive monitoring in multicast or unicast. Network tomography from unicast

measurements mainly use the method of sending packet pairs or stripes (triples, quadruples,
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etc.) to measure packet delay/loss and then infer network internal characteristics. It applies

the same inferential theory as multicast-based network tomography. However, unicast and mul-

ticast measurements have different advantages in tomography. Tomography based on unicast

measurements is more practical than that based on multicast measurements because multicast

is not supported by all the networks. However, tomography based on unicast measurements

is more complex and add much heavier burden to the network than tomography based on

multicast. By multicast measurements, each probe packet is transmitted only once per link

while resulted end-to-end characteristics at different end-points are highly correlated. Another

advantage of using multicast is scalability [31]. Assume N probe packets are sent to collect

end-to-end measurements, the load by multicast measurements grows proportionally to N in

all links. However, the load by unicast measurements grows proportionally to N 2 in some link.

Therefore, we mainly focus on multicast-based network tomography in this thesis. Tomography

based on unicast measurements is out of our interest, which can be referred to [9,24,26,27,32].

2.1.1 Multicast-based Network Tomography

Network tomography from multicast measurements extracts data by multicast probing or mon-

itoring multicast traffic. In multicast network, when a packet encounters an internal router

where branching occurs, it is duplicated and sent to each branching node. Thus each multicast

receiver should get a copy of the same packet if they are transmitted successfully. In a simple

multicast network of Figure 2.1, assume the sender 0 sends probe packets to receiver 2 and

3 by active multicast probing. Any probe packets sent by node 0, if transmitted successfully,

should reach both node 2 and 3. If node 2 loses this probe packet, it can be determined that

loss occurred on link 2 because successful reception on node 3 proves the packet has been suc-

cessfully received by node 1. In order to get internal link delay information in the network,

observation on the delay difference between receiver 2 and 3 can be used. If a probe packet

reaches node 2 without delay while node 3 gets the delayed packet, it can be determined delay

occurs on link 3 because this packet has been received by node 1 without delay. By repeatedly

sending the probe packets and collecting statistically measured results, network internal loss

rates and link average delay can be inferred. The correlation of measurements at any pair of

nodes such as that at node 2 and 3 exists throughout the whole multicast network because

the packets received by the pair of nodes traverse along the same path from the root to their

nearest ancestor. The more common links two nodes share, the more correlated their received

packets are. Thus based on correlation from end-to-end path measurements, network internal

characteristics can be obtained.
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Figure 2.1: A simple multicast tree

2.1.2 Mathematical Models of Multicast Network

We use multicast tree model and loss/delay model which have been widely used in [17, 30, 31,

33,34] to explain the correlation and inferential theory. A number of key assumption should be

mentioned before going deep into tomography because they underpin current link-level network

tomography techniques, determining measurement frameworks and mathematical models. The

routing and topology are assumed to be constant during the measurement period. Thus dynamic

routing and topology may restrict the amount of data collected for inference. Most current

methodologies usually assume that performance characteristics on each link are statistically

independent of all other links. However, this assumption is easily violated due to common

cross-traffic flowing through the links. Temporal stationarity is also assumed in many cases. In

link-level delay tomography, it is generally assumed that synchronized clocks are available at all

senders and receivers. Although these simplifying assumptions do not strictly hold, such “first-

order” approximations have been shown to be reasonable enough for the large-scale inference

problems as presented in [25]. Thus, by above assumption, the multicast tree and its loss/delay

measurements can be modelled as follows.

• Tree model

The physical multicast tree is represented by a tree comprising actual network elements

(the nodes) and communication links connecting them. Let T = (V, L) denote a multicast

tree with node set V and link set L. The root node 0 is the source of probe packets, and

R ⊂ V denotes the set of leaf nodes representing the receivers. A link is said to be internal

if neither of its endpoints is the root or a leaf node. Let W denote V \({0, 1} ∪R), where

1 is the child node of 0. Each non-leaf node k has a set of children node d(k) = {di(k) |
1 ≤ i ≤ nk} , and each non-root node k has a parent p(k). The link

(
p(k), k

)
∈ L is

denoted by link k. Write j ≺ k if j is descended from k, k = pr(j) if j is r-level descended

from k, where r is a positive integer. Let a(U) denote the nearest common ancestor of a

node set U ⊂ V . Nodes in U are said to be siblings if they have the same parent, i.e., if

p(k) = a(U), ∀k ∈ U . The subtree of T rooted at k is denoted by T (k) =
(
V (k), L(k)

)

where V (k) and L(k) are node set and link set rooted at k. The receiver set R(k) is
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defined as the set of receivers descended from k, i.e., R(k) = R ∩ V (k). Figure 2.2 shows

an example of multicast tree model.

Figure 2.2: An example of a multicast tree

• Delay and Loss model

Probe packets are dispatched down the tree from the root node 0. Each packet arriving at

a node k gives rise to copy sent to each child node of k. On each link, the packet is either

lost, or transmitted with some delay. The delay can be represented as the sum of a fixed

propagation delay and a variable queueing delay. Suppose Zk to be the random variable

that specifies the queueing delay of a packet traversing link k, Zk ∈ [0,∞]. Zk = ∞
denotes packet loss. By convention Z0 = 0. The queueing delay for the path from the

root to a node k is Y (k) =
∑

j�k Zk. If a packet is lost on some link between node 0 and

k, Y (k) = ∞. Likewise, if a packet does not encounter any queueing delay on each link

between node 0 and k, Y (k) = 0.

Assume αl(k) to be the probability of successful transmission on link k, and αu(k) to be

the probability of transmission without queueing delay on link k, i.e., αl(k) = P [Zk < ∞]

αu(k) = P [Zk = 0]. Thus, 1 − αl(k) denotes the probability of packet lost on link k.

1 − αu(k) denotes the the probability of link k being utilized because Zk > 0 iff the link

is utilized, which is also called link utilization. If 0 < αl/u(k) ≤ 1, ∀k ∈ V \{0}, the loss

tree is said to be a canonical tree. Any tree (T, α) in non-canonical form can be reduced

to a canonical tree [30] by simply removing all subtrees rooted at the broken links whose

successful transmission rates are 0. Henceforth only canonical loss trees are considered in

this thesis. A loss tree can thus be modelled as (T, αl). Similarly, and a delay tree can be

modelled as (T, αu).

For each link an independent Bernoulli loss (delay) model is assumed with each probe

packet being successfully transmitted (or transmitted without delay) across link k with

probability αl(k) (αu(k)). Thus Zk are independent random variables, and the progress

of each probe packet down the tree can be described by Markov stochastic processes
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Xl/u = (Xl/u(k))k∈V [33]. Here Xl denotes loss process and Xu denotes utilization process.

For loss process, Xl(k)=1, if the probe packet reaches k (i.e., Y (k) < ∞) and 0 otherwise

(i.e., Y (k) = ∞), k ∈ V . For utilization process, Xu(k)=1, if the probe packet reaches k

without queueing delay (i.e., Y (k) = 0) and 0 otherwise (i.e., Y (k) > 0), k ∈ V . Their

Markov properties come from the following facts:

Xl/u(0) = 1; Xl/u(p(k)) = 0 =⇒ Xl/u(k) = 0;

P [Xl/u(k) = 1|Xl/u(p(k)) = 1] = αl/u(k).

Obviously, the loss and utilization processes are formally identical except that these pro-

cesses represent the event of “no loss” and “no delay” respectively.

By above modelling, it is clear that observed end-to-end measurements are (Xl/u(k))k∈R.

Given (Xl/u(k))k∈R, the objective is to infer the network topology, the network internal link-

level loss and delay performance which have been modelled as T = (V, L), and (T, αl/u).

2.2 Multicast Topology Inference

For multicast topology inference, end-to-end measurements on loss and delay, which result in

performance measurements of loss rate, delay variance, average delay and link utilization can

all be used. N. G. Duffield et al. discussed all measurements for topology inference in [34].

Detailed loss-based topology inference was studied in [16,30]. A method that adaptively choose

loss and delay measurements according to the network situation was proposed in [33]. R. Castro

et al. [19] concisely gave a description on maximum likelihood identification of topology which

was also the key idea of above work. All of them are based on the measurements that can

compose a metric holding the monotonicity property such as loss and delay. This generalized

method will be introduced here because it’s important for our work.

2.2.1 Binary Loss Tree Classification (BLT) Algorithm

As we have known, the more number of shared links or queues in the paths from the root to

a pair of receivers, the more correlated the observed measurements on the pair of receivers

are. Suppose a metric γ = {γi,j} denote the correlation matrix where γi,j is the correlation

parameter of any node pair (i, j). This metric satisfies the following property:

Monotonicity Property: Let i, j and k be any three receivers and let pi,pj and pk denote

the paths from the sender to each. If pi shares more links with pj than with pk, then γi,j > γi,k.

The correlation parameter of each pair in the matrix can be estimated from a number

of different end-to-end measurements including counts of losses, counts of zero delay events
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(utilization), i.e., (Xl/u(k))k∈R. The estimated matrix is denoted by x = {xi,j} that can be

interpreted as observations of the true metric values γ contaminated by some randomness or

noise [19]. The estimated metrics are randomly distributed according to a density (whose precise

form depends on the contamination model) that is parameterized by the underlying topology T

and the set of true metric values, written as p(x|γ, T ). The x are observed and fixed quantities.

When p(x|γ, T ) is viewed as a function of T and γ it is called the likelihood of T and γ. The

maximum likelihood tree is given by

T ∗ = argmaxT∈Fmaxγ∈Gp(x|γ, T ), (2.1)

where F denotes the forest of all possible tree topologies connecting the sender to the receivers

and G denotes the set of all metrics satisfying the monotonicity property.

Since it’s extremely difficult to scan all possible tree topologies to compute the maximum

likelihood tree in Equation (2.1), the deterministic algorithm that can obtain suboptimal results

is considered. A representative example for deterministic algorithm is Deterministic Binary Tree

(DBT) classification algorithm proposed in [34].

In DBT, γi,j is the probability that a probe packet reaches the nearest common ancestor of

node pair (i, j) successfully (if use loss measurements) or reaches it without queueing delay (if

use utilization measurements). Denote it by A(i, j) in function form. Let X(k) generalize the

measurements for loss and utilization Xl/u(k). Followed X(k) is written as Xk for simplicity.

Thus, for any node pair (i, j), i 6= j 6= a(i, j),

A(i, j) =
P [∨k∈R(i)Xk = 1]P [∨k∈R(j)Xk = 1]

P [∨k∈R(i)Xk = ∨k∈R(j)Xk = 1]
. (2.2)

Because each probability in Equation (2.3) is impossible to obtain in practice, A(i, j) is

estimated by A(n)(i, j) (which was denoted by xi,j in above estimated matrix) as used in all

previous work, where n is the number of probe packets.

A(n)(i, j) =

∑n
m=1 X

(m)
i · ∑n

m=1 X
(m)
j

n · ∑n
m=1 X

(m)
i · X(m)

j

, (2.3)

where X
(m)
i = ∨k∈R(i)X

(m)
k . X

(m)
k , m = 1, · · · , n denotes the measured outcomes observed

at receiver k by n probe packets. Each probability in Equation (2.2) is estimated by the

observation from n probe packets as in Equation (2.3), e.g., P [∨k∈R(i)Xk = 1] is estimated by
∑n

m=1 X
(m)
i /n. As n goes to infinity, A(n)(i, j) is consistent with A(i, j), i, j ∈ V .

Then the key clue of multicast network topology inference is minimizing A(n)(i, j) in each

iteration and identifying the node pair (i, j) as siblings. For simplicity in describing siblings

identification by this estimation approach, we call it A-approach in later sections. The main

idea of DBT algorithm by use of A-approach is as follows.
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Step1: Input the receiver set R, and the observed measurements on R, X
(n)
k , k ∈ R; denote

the set of nodes to be inferred by R′, the set of inferred nodes by V ′, and the set of inferred

links by L′; let R′ = R and V ′ = ∅, L′ = ∅;
Step2: Find a pair of nodes U = {u1, u2} ⊆ R′ which minimizes A(U);

Step3: Mark the pair of nodes as siblings and remove them from R′; add them to the

inferred node set V ′; add a new node u′ which denotes the siblings’ virtual parent node to the

node set R′; add the links from u′ to each node in U to L′;

Step4: Get the loss measurement of the virtual parent node u′ for each probe packet by

computing X
(i)
u′ := X

(i)
u1 ∨ X

(i)
u2 ;

Step5: Iterate Steps 2–4 until R′ contains only one element.

Step6: Output the inferred multicast tree (V’, L’).

By the above procedure the logical multicast tree is reconstructed in a bottom-up fashion.

If loss measurements are used, DBT algorithm becomes Binary Loss Tree Classification (BLT)

Algorithm. Since measurements on loss or delay do not make difference for inference procedure,

we concentrate on BLT algorithm that based on loss measurements and study our new algorithm

from end-to-end loss measurements.

BLT can identify the siblings in a multicast network without any single-child nodes. How-

ever, if there are single-child nodes in the multicast network, the algorithm cannot identify these

nodes and their connecting links. Clearly, an inferred logical tree by BLT will differ from the

actual physical tree if single-child node exists in the physical tree, and this difference increases

proportionally to the increase on the number of single-child nodes. In practice there may be

many internal routers connected with only one downstream multicast router because routers

are configured to support multicast in a network only when necessary. Particularly, when there

aren’t many group members who require the multicast applications, the intervening routers are

accordingly fewer, which results in a high probability on existence of single-child routers in the

multicast network. Therefore, it’s necessary to have a new scheme that can find those internal

single-child nodes to reconstruct a topology closer to the physical topology than the previous

schemes. We thus propose the usage of an important measurement — hop count, to develop a

new algorithm called Binary Loss Tree Classification Algorithm with Hop Count (HBLT).

2.2.2 Binary Loss Tree Classification Algorithm with Hop Count (HBLT)

As mentioned above, in order to identify both the single-child nodes and the links connecting to

single-child nodes, we take the hop count information into consideration at each node, because

hop count brings significant benefits to sibling-relationship inference of individual nodes. By

incorporating the level information in hop count into multicast topology inference, we propose

the HBLT algorithm which can obtain a multicast topology closer to the physical tree than

BLT.

23



Moreover, it should be noted that though one more measurement is taken into account,

HBLT does not add any extra traffic burden to the multicast network because hop count can

be computed by simply reading the TTL values of the probe packets. For internal nodes, the

values of hop count can be easily computed by degression. Therefore application of hop count

to topology inference can be done without deteriorating efficiency.

HBLT infers the multicast topology from the node with the maximum hop count and pro-

ceeds in a bottom up fashion. Since real siblings must have the same value of hop count, the

set of all receivers is classified to different sets according to their values of hop count at the

beginning. In the procedure of identifying siblings, only comparison between the sets with the

same value of hop count is necessary, which in turn, avoids redundant comparison between

nodes with different values of hop count. Below is the description of the HBLT algorithm:

1. Input : The set of receivers R, number of probe packets n, observed sequences at

receivers (X
(i)
k )i=1,··· ,n

k∈R ;

2. R′ := R, V ′ := ∅, L′ := ∅, h = maxk∈R(k.hop), We = ∅, (e = 1, · · · , h); //V ′ is the set

of discovered nodes; L′ is the set of discovered links, We is a set of nodes with hop count

value e, e is initialized as the maximum value of hop count for all nodes in R.//

3. for k ∈ R, do

4. Wk.hop := Wk.hop
⋃{k} //Classify the receivers into different groups according to

their hop count values.//

5. while e > 1 do

6. while We 6= ∅ do

7. Let u be the first element in We; search for v ∈ We to minimize Â(u, v), (u 6= v);

8. if Â(u, v) > εe then S = {u}, Set r to be u’s virtual parent node; //Initially,

sibling nodes set S := ∅, εe is a given classification threshold of level e. If

minimal value of Â(u, v) is still greater than εe, u does not have siblings.//

9. else S = {u, v}, Set r to be u and v’s virtual parent node; //u and v are

siblings, r is denoted as their virtual parent node.//

10. for i = 1, · · · , n do X
(i)
r := ∨l∈SX

(i)
l ;

11. r.hop := e − 1;

12. V ′ := V ′ ⋃ S; We := We \S; We−1 := We−1
⋃{r}; //The discovered two siblings

are added to the discovered node set V ′ and excluded from original set We, their

parent node is added to the node set We−1.//

13. for each l ∈ S, L′ := L′ ⋃{(r, l)};
14. S = ∅;
15. e := e − 1;

16. V ′ := V ′ ⋃{0}; L′ := L′ ⋃{0, r}; //Include root node and the link from root node to

his child node to the discovered node set and link set.//
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17. Output : Inferred topology (V ′, L′).

The algorithm HBLT works as follows: Firstly all the receivers are classified into different

node sets We (1 ≤ e ≤ h) according to their values of hop count. Inference begins with

identifying siblings in the node set with maximum value of hop count. The Â(u, v) (u 6= v) of

each node pair in We is calculated. Node v is identified to be u’s siblings if Â(u, v) is minimum

and less than the classification threshold of level e. Remove the siblings pair u and v from the

node set with the hop count being e and add their parent node into the node set with hop count

reduced by 1. The loss measurement X
(i)
r of the parent node is obtained by “OR” operation

of those of the siblings. When all nodes in We are grouped, decrease hop count value by 1.

Repeat the same procedure among the nodes in the node set We−1. The algorithm ends when

the hop count becomes 1.

2.2.3 Analysis on HBLT and BLT

We analyze the performance of HBLT and compare it with that of BLT from the following

aspects: time complexity, misclassification probability and inference accuracy.

1. Analysis on Time complexity

As we discussed in HBLT, the application of the hop count information avoids redundant

comparison between node pairs that are impossible to be siblings, because a pair of siblings

must have the same value of hop count. However, BLT searches for the minimum A(U) by

performing comparisons among all possible combinations of node pairs. Therefore, HBLT is

apparently superior to BLT in terms of the efficiency which is defined as the time needed to

perform required comparisons in the algorithm concerned. Time complexity is thus used to

measure algorithm performance. We compare the time complexities of both algorithms on

different types of topologies in this section.

Before comparison, we need to define several parameters in order to describe the tree topolo-

gies and analyze time complexity.

Assume that there are n nodes in the binary tree distributed over h levels, and the number

of nodes at level i is ai, 1 ≤ i ≤ h. Let the total number of leaf nodes in the tree be l. Clearly,

log2 l + 1 ≤ h ≤ l. As only trees whose internal nodes all have two children are considered, we

have n = 2l − 1 and 2 ≤ ai ≤ 2ai−1 for 2 ≤ i ≤ h.

For BLT algorithm, comparison on A(U) is performed among all pairs of leaf nodes, so its

time complexity TBLT (l) is determined by the total number of leaf nodes.

TBLT (l) =
l∑

k=2

k ∗ (k − 1)/2 =
1

6
l3 − 1

6
l (2.4)
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For HBLT algorithm, as we can see from the detailed algorithm in section 2.2.2, its time

complexity is determined by the number of nodes at each level and computed by the following

equation.

THBLT (a1, a2, · · · , ah) =
h∑

k=2

a2
k (2.5)

a. Worst-case Time Complexity Comparison

Firstly, we compare the time complexities of both algorithms on the worst-case tree topologies

where least level information can be obtained. A balanced full binary tree belongs to this case

because all the leaf nodes are at the same level, their values of hop count are the same.

In this case, h = log2 l + 1 and ai = 2i−1 for 1 ≤ i ≤ h. Thus, the time complexity of HBLT

can be obtained from Equation (2.5).

THBLT (l) =
4

3
l2 − 4

3
= O(l2) (2.6)

As for the time complexity of BLT on worst-case tree topology, we find that it is determined

only by the number of leaf nodes and irrelevant to the tree structure. So its time complexity

is always O(l3) as Equation (2.4) shows. Comparing Equation (2.6) with (2.4), we conclude

that the time complexity of HBLT improves significantly by an order of O(l) on BLT for the

worst-case tree topologies.

Now let’s have a glance at the best-case tree topology. The best-case tree topology for

HBLT is a tallest tree with one leaf node on each level. Then it’s obvious the time complexity

is linear to the number of leaf nodes O(l), while the time complexity of BLT is still O(l3).

Though such great improvement resulted by level information in HBLT in this case cannot

be taken as a general measurement of performance gain of HBLT over BLT, we can still see

from this figure the huge benefits hop count can bring to the topology inference when many

group members are not in the same level. To see the performance gain of HBLT over BLT in

other cases, we compare the time complexities of both algorithms in a more general case in the

following section.

b. Expected-case Time Complexity Comparison

In this section we take a sequence of different types of topologies between the best-case and

worst-case tree topologies in order to compare both algorithms in a more general case, which

we call expected-case time complexity. Note that the expected-case here is not the average-

case in the strict sense because it is obtained by sampling the problem space to one of a

manageable size. The strict average-case time complexity appears to be extremely difficult,

if not impossible, to obtain due to the super-exponential number of trees one could construct

considering different sizes and node distributions, and the difficulties in formulating all different
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trees in a manageable way. As will show below, we sample all trees according to their heights

and widths of levels at different heights. Because this sample space covers all different heights

and different widths at each level, the time complexity in our expected-case is a fair estimate

to that of the average-case in the strict sense.

For a binary tree of n nodes, it is well known that the total number of all different binary

trees is given by Catalan number. The number of structurally different binary trees can also be

estimated. However, the time complexity analysis in our algorithm only relates to the height of

the tree and number of nodes at each level, regardless of the tree’s concrete structure. Even if

trees have different structures, the time complexity of the algorithm for them remains the same

if their heights and combination of nodes at all levels are the same.

Lemma 1 The time complexity of HBLT depends only on the values of ai, 1 ≤ i ≤ h, not on

their order of appearance in the tree.

Proof

THBLT (a1, a2, · · · , ah) = a2
1 + a2

2 + · · · + a2
i + · · · + a2

h, therefore the value of THBLT is

unchanged when ai and aj are swapped. �

Assume that the number of nodes at each level is an integer power of 2, ai = 2k. Let l = 2r.

Under this condition, there are still too many different binary trees to enumerate. But we can

sample all trees based on lemma 1 and consider only leftist trees. In this way we can get tree

topologies with different levels.

We begin with the best-case tree for HBLT, in which the height of the tree equals the total

number of leaves, i.e., h = l. Then we fold the tree at the bottom level to reduce its height

in bottom-up way, and make the width of the leftist tree as twice as before. Let i denote

the number of foldings. Folding stops when the number of leaves at the bottom level under

operation is maximized.

Figure 2.3: Multicast tree folding procedure

Figure 2.3 gives the folding procedure for 8 leaves. After twice of folding, the tree has been

changed from the best case to the worst case. Folding is performed with the level number
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reduced by 1 each time. There are many possibilities for constructing a binary tree every time

when the height is decreased by 1. However, as shown in Lemma 1, the time complexities

remain the same for all such trees. From Figure 2.3(b), it is obvious no matter whose children

nodes m and n are, the tree has the same time complexity. So it’s unnecessary to compute time

complexity for every such tree. When the tree is folded to the structure in Figure 2.3(d), it is

called first (phase) folding and i equals to 1. The second folding (i = 2) transforms the tree

in Figure 2.3(d) to that in Figure 2.3(e). Iterating the folding process to reduce the height, a

complete binary tree is constructed as shown in Figure 2.3(e). For every case in the procedure,

time complexities are calculated. Then the total time complexity divided by the total number

of trees will give the expected-case time complexity.

Denote the total number of trees sampled in this way by TN , the total execution time by

TT , and the expected-case time complexity of HBLT by T̃HBLT .

TN =
r−2∑

i=0

(2r−i−1 − 1) = 2r − r − 1 = l − log2 l − 1 (2.7)

TT =
r−2∑

i=0

2r−i+i−1∑

h=2r−(i+1)+i+1

[(2r−i + i − h) · 22(1+(i+1)) +

h−(2r−i+i−h)−(i+1)∑

k=1

22(i+1) +
i∑

k=2

22k]

= 3l2 log2 l − 13

2
l2 + 6l +

4

3
r +

4

9
(2.8)

T̃HBLT = TT/TN = O(l · log2 l) (2.9)

Since the time complexity of BLT is only relevant to the number of leaf nodes, all these

sampled trees have the same number of leaves, the expected-case time complexity of BLT O(l3),

which is far worse than HBLT.

Although the above does not consider all binary trees, but binary trees included in cal-

culation represent all cases influencing much to the performance of HBLT from the best case

to the worst case. Therefore, the expected-case time complexity calculated on such sampled

tree topologies represents a more general case. The analysis on this more general case can

demonstrate a major performance advantage of HBLT over BLT in algorithm efficiency.

Hence, we have

Theorem 1 The algorithm of binary loss tree classification with hop count has a worst-case

time complexity of O(l2) and expected-case time complexity of O(l log l).
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2. Analysis on Misclassification Probability

In this section, we describe a model of failures of HBLT, and analyze the probability of misclas-

sification to compare the performance of both algorithms. Since HBLT proceeds by recursively

classifying receivers, topology misclassification can be analyzed by looking at how the receivers

are misclassified in the estimated topology T̂ .

Definition 1 Let (T, α) be a loss tree with T = (V, L), and (T̂ , α̂) be an inferred loss tree

with T̂ = (V̂ , L̂). Denote the receiver set of i by RT (i) and let RT = ∪iRT (i). If ∀i ∈ W =

V \({0, 1} ∪ R), RT (i) = R
T̂
(̂i), the node i is said to be classified correctly.

For a binary tree, the topology is correctly classified if and only if ∀i ∈ W is correctly

classified. So we can study topology misclassification by looking at the misclassification of

receivers for each i. Both BLT and HBLT use A(U), which is defined as the probability of

successful probing to a(U) (the nearest common ancestor of a set of nodes U), to classify

siblings. It can also be written as A(i, j) as Equation (2.2) of Section 2.2.1, where U = (i, j).

While for HBLT, one more measurement on hop count in addition to A(U) is used to classify

siblings, making the classification process more efficient than BLT. To analyze misclassification

probability of HBLT, we firstly have a look at how A(U) affects classification in the procedure

of topology inference, which is along the same line as proposed in [30].

A general form for A(U) — A(S1, S2) is used to analyze misclassification because it reflects

how each receiver descended from i influences the classification on i, where S1 and S2 are two

non-empty disjoint subsets of RT . Similar to previous definition on A(i, j), A(S1, S2) denotes

the probability of successful transmission on the path from the root to the the nearest common

ancestor of nodes in S1 and S2. When the nearest common ancestor of nodes in S1 and the

nearest common ancestor of nodes in S2 are siblings, A(S1, S2) is minimized.

A(S1, S2) =
P [∨j∈S1Xj = 1]P [∨j∈S2Xj = 1]

P [∨j∈S1Xj · ∨j∈S2Xj = 1]

=
γ(S1)γ(S2)

γ(S1) + γ(S2) − γ(S1 ∪ S2)
, (2.10)

where γ(S) = P [∨k∈S ∨j∈R(k) Xj = 1], which is approximated by γ̂(S) in practice.

A(S1, S2) can be estimated by A(n)(S1, S2). For simplicity, we denote A(n)(S1, S2) by

Â(S1, S2). Then we have

Â(S1, S2) =

∑n
i=1 ∨j∈S1Y

(i)
j

∑n
i=1 ∨j∈S2Y

(i)
j

n
∑n

i=1(∨j∈S1Y
(i)
j ) · (∨j∈S2Y

(i)
j )

=
γ̂(S1)γ̂(S2)

γ̂(S1) + γ̂(S2) − γ̂(S1 ∪ S2)
, (2.11)
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where Y
(i)
k = X

(i)
k = ∨j∈d(k)Y

(i)
j = ∨j∈RT (k)Y

(i)
j , Y

(i)
k is the loss measurement of node k for the

ith probe packet, which is the result of “OR” operation on the loss measurements of all the

leaves descended from node k. For U ⊂ V , γ̂(S) = n−1
∑n

i=1 ∨j∈SY
(i)
j is the ratio of number of

probe packets that reach any receiver descended from nodes in U to the total number of probe

packets. As the number of probe packets n increases, Â(S1, S2) asymptotically approaches to

A(S1, S2), i.e., limn→∞ Â(S1, S2) = A(S1, S2).

Though HBLT classifies the siblings based on above estimation on A(S1, S2) in Equation

(2.10), it works in a different way from BLT due to the incorporation of level information. We

now study the condition of correctly classifying a node i by HBLT according to Definition 1.

We assume that the height of the multicast tree is h, so the maximum value of hop count is

h. Each node set with the same hop count value k is denoted by Hk, 1 ≤ k ≤ h. The coherence

coefficient of Hk, denoted by εk, is defined to be the correlation among the nodes within Hk,

1 ≤ k ≤ h. Coherence coefficients ε1, ε2, ...εh are used to decide whether two nodes are siblings.

Let Gi be the event that HBLT correctly classifies nodes in RT (i) for some i ∈ W . Gi happens

if every descendent of i finds its sibling in HBLT inference correctly.

Let D(S1, S2, S3) be the difference between A(S1, S2) and A(S1, S3), and D̂(S1, S2, S3) the

difference between Â(S1, S2) and Â(S1, S3). Define a set S(i) to be

S(i) = {(S1, S2, S3) : a(S1), a(S2), a(S3) ∈ Hk, 1 ≤ k ≤ h, S1, S2 ⊂ RT (i),

S3 ⊆ RT \RT (i), Sp 6= ∅, p = 1, 2, 3, Sp 6= Sq, p 6= q}.

S(i) contains all (S1, S2, S3) used in HBLT for classification of all nodes in the subtree

rooted at i. Thus we can obtain the following Lemma for HBLT to decide if node i is correctly

classified. Since HBLT works in a different way from BLT, the sufficient condition is also

different from the condition given in [30].

Lemma 2 A sufficient condition for correct classification of i is that

D̂(S1, S2, S3) = Â(S1, S3) − Â(S1, S2) > 0 (2.12)

and

Â(S1, S2) < εk (2.13)

for all (S1, S2, S3) ∈ S(i).

Lemma 2 shows that, to classify node i, HBLT needs to access all elements in S(i), i.e. to

compare those descendant node pairs of i whose ancestors are in the same level. In contrast,

the BLT algorithm [30] requires to access all elements in set S ′(i) defined as follows:
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S′(i) = {(S1, S2, S3) : S1, S2 ⊂ RT (i),

S3 ⊆ RT \RT (i), Sp 6= ∅, p = 1, 2, 3, Sp 6= Sq, p 6= q}.

That is, BLT needs to compare all possible pairs of nodes descended from i without any

level-based constraint.

Clearly, S(i) ⊆ S ′(i). Therefore, to classify any node (and its subtree), the number of

comparisons required by HBLT is significantly smaller than that required by BLT, especially

in the case of large tree height (h).

Let Q(S1, S2, S3) be the event that Equations (2.12) and (2.13) hold, Qi be the event that

Q(S1, S2, S3) holds for all S1, S2, S3 ∈ S(i), i.e., Qi =
⋂

(S1,S2,S3)∈S(i) Q(S1, S2, S3). Let Ḡi be

the event that i is classified incorrectly, P f
i be the misclassification probability on node i. Then

similar to the deduction steps in [30], we can obtain the misclassification probability of HBLT

by the following steps.

Gi ⊇ Qi, (2.14)

So, an upper bound for probability of classified i incorrectly can be expressed as

P f
i = P [Ḡi] ≤

∑

(S1,S2,S3)∈S(i)

P [Q̄(S1, S2, S3)]. (2.15)

We denote G to be the event that the multicast tree is correctly classified, then

G ⊇
⋂

i∈W

Qi =
⋂

i∈W

⋂

(S1,S2,S3)∈S(i)

Q(S1, S2, S3). (2.16)

Consequently the misclassification probability of the inferred tree by HBLT is,

P f
HBLT = P [Ḡ] ≤

∑

i∈W

∑

(S1,S2,S3)∈S(i)

P [Q̄(S1, S2, S3)]. (2.17)

Thus we have the following theorem to describe the distribution of
√

n · (D̂(S1, S2, S3) −
D(S1, S2, S3)). Because HBLT compares fewer pairs of nodes than BLT in each iteration, we

use a parameter ξ to distinguish the comparison times of both algorithms. The exact meaning

of ξ is given in the proof of Theorem 2.

Theorem 2 For each i ∈ W and all ((S1, S2, S3) ∈ S(i)),
√

n · (D̂(S1, S2, S3) − D(S1, S2, S3))

converges in distribution to a Gaussian random variable with mean 0 and variance σ2(S1,S2,S3)
ξ

as the number of probe packets n → ∞, where D(S1, S3, S3) = A(S1, S3) − A(S1, S2), ξ ≥ 2.
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Proof From Theorem 10 of [30], we know that by use of BLT, for each i ∈ W and all

((S1, S2, S3) ∈ S′(i)),
√

n ·(D̂(S1, S2, S3)−D(S1, S2, S3)) can be expressed as a standard normal

distribution N(0, σ2(S1, S2, S3)) as n → ∞. For every classification of siblings descended from

i, S1, S2 are selected from subsets of all nodes which are descendent of i, and S3 is selected

from the subsets that do not belong to the subtree rooted at i. In HBLT, only the subsets

S(i) where a(S1), a(S2), and a(S3) are in the same level are sampled from the set S ′(i). εk

acts as a virtual node a(S3), which makes Equation (2.12) hold after replacing S3 with εk.

That is, Equation (2.13) is consistent with Equation (2.12) by assuming εk to be a virtual

node a(S3). Assume the number of elements in the set S(i) is ξ, then ((S1, S2, S3) ∈ S(i)),√
n · (D̂(S1, S2, S3) − D(S1, S2, S3)) can be considered as the sampled values from the original

variable ((S1, S2, S3) ∈ S′(i)),
√

n · (D̂(S1, S2, S3) − D(S1, S2, S3)). The mean of the sampled

set remains the same as that of the original normal distribution, which is 0. The variance of

the sampled set is the original variance divided by the number of elements in sampled set, i.e.,

ξ.

�

By Theorem 2, we can approximate P [Q̄(S1, S2, S3)] by Ψ
(
−√

n ·√ξ · D(S1,S2,S3)
σ(S1,S2,S3)

)
, Ψ is the

CDF (cumulative density function) of the standard normal distribution. Therefore, for a great

number of probe packets n, P [Q̄(S1, S2, S3)] can be approximated as follows.

P [Q̄(S1, S2, S3)] ≈ e
−(n/2)·ξ·D2(S1,S2,S3)

σ2(S1,S2,S3) (2.18)

The logarithmic asymptotic of P [Q̄(S1, S2, S3)] is

log P [Q̄(S1, S2, S3)] ∼ −n · ξ · D2(S1, S2, S3)

2σ2(S1, S2, S3)
(2.19)

From Equation (2.15) we know that P f
i is dominated by Pmax(Q̄(S1, S2, S3)). That is, when

D2(S1,S2,S3)
σ2(S1,S2,S3)

|(S1,S2,S3)∈S(i) is minimized, P (Q̄(S1, S2, S3)) is maximized. At this time P f
i can be

approximated by Pmax(Q̄(S1, S2, S3)), i.e., P f
i ≈ Pmax(Q̄(S1, S2, S3)). Because from Theorem

10 in [30], we can deduce that for HBLT, when the nearest common ancestor node of nodes in

S1 and S3 is just node i’s parent node p(i), D2(S1,S2,S3)
σ2(S1,S2,S3)

|(S1,S2,S3)∈S(i) is minimized, and

min
(S1,S2,S3)∈S(i)

D2(S1, S2, S3)

σ2(S1, S2, S3)
= ᾱi + O(‖ ᾱ ‖2), (2.20)

where ᾱi is the loss rate of link (p(i), i), i.e., ᾱi = 1− αi, ‖ ᾱ ‖= maxk∈V ᾱk. Thus, for great n

and small ‖ ᾱ ‖, P f
i can be approximated as:

P f
i ≈ e−ᾱi

n
2

ξ (2.21)
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From Equation (2.17) we know that P f
HBLT is dominated by maxi∈W P f

i , that is, when

ᾱf = min
i∈W

ᾱi (2.22)

holds. ξ at this time is the number of elements in the sampled set from the entire set of all

nodes descended from node i whose link loss rate ᾱi is the minimal loss rate in the network.

Under this condition, the logarithm on P f
HBLT is expected to be asymptotically linear on n

with negative slope ξ
2 · ᾱf .
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Figure 2.4: Misclassification probability comparison between BLT and HBLT when ᾱf = 0.1,

ξ = 3.

Compared with the asymptotical slope of BLT, ᾱf/2, it is clear that HBLT has better

performance because the misclassification probability of HBLT decreases more quickly than

that of BLT as the number of probe packets increases, as depicted in Figure 2.4. According

to different types of topologies and the link status in the multicast network, ξ may vary so it

is a critical parameter that affects the misclassification probability of HBLT. If ξ is great, the

misclassification probability of HBLT will decrease to 0 more quickly as the number of probe

packets increases. If ξ is small, the misclassification probability will decrease to 0 slowly. As we

mentioned above, ξ is greater than 2, henceforth HBLT can always infer a tree topology with

a lower misclassification probability than BLT.

3. Analysis on Inference Accuracy

In this section, we compare the inferred trees by BLT and HBLT to analyze the inference

accuracy. It is clear that the inferred tree by BLT contains only those nodes with two children

in the physical tree, whereas that by HBLT contains nodes with both two children and one

child in the physical tree. We say that the multicast tree is classified correctly by the algorithm

if misclassification probability of an algorithm is 0. Considering the case that both algorithms

classify correctly, the object trees inferred by BLT and HBLT may be very different from each

other. From this view inference accuracy is discussed.
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Figure 2.5: Comparison of logical trees inferred by BLT and HBLT in case of correct classifica-

tion

Assume that both algorithms work on a binary tree network whose topology is depicted as

the Figure 2.5(a). In the case of correct classification, the inferred tree by HBLT is the same

as the physical tree as shown in Figure 2.5(b). The tree shown in Figure 2.5(c) is the inferred

tree by BLT. It is obvious that the correctly inferred tree by BLT changes a lot in the structure

from the original physical tree, whereas the correctly inferred tree by HBLT is the same as the

original one. We now analyze their difference in inference accuracy.

Assume that the actual physical tree has n internal nodes. Every internal node has 1 child

at probability δ, and 2 children at probability 1− δ. Let n1 be the number of nodes that have 1

child, and n2 be the number of nodes that have 2 children. Then we have n = n1 + n2. Denote

by ci the number of children of internal node i.

P{ci = x} =

{
δ x = 1

1 − δ x = 2
(2.23)

E(n1) =
2∑

x=1

P{ci = x} · E[n1 | ci = x]

= P{ci = 1} · E[n1 | ci = 1] + P{ci = 2} · E[n1 | ci = 1]

= n · δ (2.24)

When all internal nodes have 1 child, E[n1 | ci = 1] is n; if all internal nodes have 2 children,

E[n1 | ci = 2] equals 0.

Definition 2 For a multicast tree with n internal nodes, the inference accuracy of an algorithm

is defined as the number of inferred internal nodes divided by the number of actual internal nodes

in the case of correct classification.
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Clearly, the expected number of internal nodes that have single child is nδ. In BLT all these

single-child nodes are deleted. It only infers all those internal nodes that have two children.

Henceforth, the BLT’s inference accuracy is

n − E(n1)

n
= 1 − δ (2.25)

Suppose that δ = 1/2, a half of internal nodes will then fail to be identified. The inference

accuracy of BLT in this case is 1/2. As δ increases, i.e., the probability of each internal node

with single child increases, the inference accuracy of BLT will decrease. If at a large probability

each internal node has single child, the inferred tree by BLT will be very different from the

original physical tree. The inference accuracy of BLT is thus very low in such case. However, if

δ = 0, that is, a physical multicast topology does not contain any single-child nodes, BLT can

also infer an accurate topology as HBLT does.

For HBLT, the inference accuracy is irrelevant to δ, so it can identify all the internal nodes

regardless of the number of children they have. The inference accuracy is therefore always equal

to 1 if only the number of nodes is taken into account according to Definition 2.

2.2.4 Experimental Results

In this section we verify the benefits from hop count measurement by simulating both HBLT and

BLT. We show simulation results in several different types of networks with different internal

link status, including a random tree without single-child node, a random tree with single-child

nodes and a balanced full binary tree. To compare the performance of HBLT and BLT, we also

define a similarity degree function to describe how the inferred tree is close to the real physical

tree.

Firstly, we simulate both algorithms in the network topology shown in Figure 2.6. Node 0 is

the sender, nodes 1− 10 are receivers. All internal links are configured with different capacities

ranging from 0.1Mbit/s to 5Mbit/s. The link 0 → 1 is set at 10Mbit/s. The root node 0

generates probe packets in a 20K-1Mbit/s stream. Every probe packet comprises one UDP

packet with 1000bytes.

By sending different numbers of probe packets, we can obtain the inferred topologies using

HBLT and BLT. To compare how the inferred topologies are close to the original physical

topology by HBLT and BLT, we define the similarity degree function as follows:

Definition 3 Define SimilarityDegree = α · s+β ·h, where s denotes the ratio of the number

of nodes whose siblings are identified correctly to the total number of nodes, h denotes the ratio

of the number of nodes whose hop levels are inferred accurately to the total number of nodes.

α, β are the weight of these two factors. When at least one of the two subtrees of a node’s sibling

is the same as that of the physical tree, we say that the node is inferred correctly.
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Figure 2.6: A multicast network without single-child nodes

Then the results on similarity degree comparison between HBLT and BLT are obtained as

follows.
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(a) α = 1, β = 0
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(b) α = 0, β = 1
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(c) α = 0.5, β = 0.5

Figure 2.7: Similarity degree comparison of HBLT and BLT in a network with internal loss

rates ranging from 0.197 to 0.683

C1)

From Figures 2.7(a)-2.9(c), we can see HBLT can infer a correct topology with around 100

probe packets. As the internal link status varies, the number of probe packets required by

HBLT to obtain a correct topology is just a bit different. However, BLT needs thousands of

probe packets to infer a similar topology to the original one. Moreover, the performance of

inferred topology by BLT is severely influenced by the internal link status.

We now compare the performance of HBLT and BLT in a large-scale network as shown in

Figure 2.10(a). From Figure 2.10(b) we can find that HBLT can infer the correct topology with
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(b) α = 0, β = 1
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Figure 2.8: Similarity degree comparison of HBLT and BLT in a network with internal link loss

rates ranging from 0.495 to 0.792
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(b) α = 0, β = 1
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Figure 2.9: Similarity degree comparison of HBLT and BLT in a network with internal link loss

rates ranging from 0.132 to 0.457
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a much smaller number of probe packets than BLT. Due to the existence of single-child nodes

in this network, we can see BLT cannot infer a correct topology with even 10000 probe packets

because it cannot infer those single-child nodes and links connecting to them. From Figure

2.10(b), we can also find that in a network with more loss, HBLT and BLT can work with

higher performance. This can be explained by lower misclassification probability if minimal

loss rate is larger in Section 5.

(a) The tree topology with 42 nodes
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(b) α = 0.5, β = 0.5

Figure 2.10: Similarity degree comparison between HBLT and BLT on a random binary tree

In a network with a balanced full binary tree topology as Figure 2.11(a) where hop count

information may not be a great help as in other types of tree topologies, we compare the

performance of both algorithms. From the result in Figure 2.11(b), we find HBLT can also

work out a correct topology with a smaller number of probe packets.

All the above simulation results show that incorporating hop count into inference can yield

exciting improvement. It avoids misclassification between nodes with different values of hop

count which may have very similar loss measurements. The performance of BLT is significantly

worse than that of HBLT because such case exists prevalently. Thus, the misclassification

probability of HBLT is much lower than that of BLT, which is consistent with the analytical

result in Section 2.2.3. In a large-scale network, more nodes with different values of hop count

may have similar loss measurements. In this case, BLT works with a high misclassification

probability and low efficiency. Henceforth, we can conclude that HBLT will work out more

accurate and efficient multicast network topologies than BLT for large-scale networks in practice

which validates the analyzes in above section.

We should note that hop count information obtained by TTL may not be always correct.

Wrong information in hop count will affect the performance of HBLT. However, through simu-
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(a) The tree topology with 32 nodes

101 102 103 104
0

0.2

0.4

0.6

0.8

1

Number of probe packets

S
im

ila
rit

y 
de

gr
ee

BLT 

HBLT 

BLT 

HBLT 

minimal loss rate: 0.65

minimal loss rate: 0.375

(b) α = 0.5, β = 0.5

Figure 2.11: Similarity degree comparison between HBLT and BLT on a balanced full binary

tree

lation, we find that hop count information is always right in the small scale network in Figure

2.6. In the large scale networks as Figures 2.10(a) and 2.11(a), error information in hop count

occurs in very few cases. Because we send many probe packets, we can get hop count infor-

mation every time a probe packet is received at a receiver. It may happen to be wrong, but

it will be corrected when next probe packet is received. Therefore, we calculate the hop count

information by reading from several received probe packets, and we can therefore always obtain

correct information.

2.3 Hamming Distance-based Multicast Topology Inference

Though both analysis and experimental results show the improvement on the performance of

HBLT, it fluctuates as the number of probe packets increases when the scale of multicast network

is large. Especially when the number of probe packets is small the performance of HBLT shows

obvious instability. The performance of BLT also has this disadvantage. This is because both

of them estimate the loss rate by limited probe packets as shown in Equations (2.3), which

we called A-approach as mentioned in Section 2.2.1. The violation is inevitable and might be

great when the number of probe packets is small. Thus, we would first give an example to

explain this disadvantage clearly, then propose a new sibling classification approach for siblings

classification, which is called hamming distance approach. Thereafter, comparison of inference

accuracy between hamming distance and A-approach will be given. Incorporating hamming

distance approach with hop count measurements which have been proven to be effective and

efficient in Section 2.2.3, we get a new algorithm called Binary Hamming Distance Classification

(BHC) algorithm. Finally we will justify the advantage of the new algorithm by experimental
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results.

2.3.1 Existing Approach for Siblings classification

In the previous work of [30,33,34,65], identification of siblings by A-approach plays the key role

in network topology inference. In A-approach, A(i, j) represents the product of the probabilities

of successful transmission on each link between the root 0 to the nearest common ancestor node

of receivers i and j. Each probability is estimated with a limited number of probe packets.

With a finite number of probe packets, the estimation may cause mistakes. Figure 2.12 gives a

simple example of determining whether two nodes are siblings with 7 probe packets.

Figure 2.12: Comparison of Hamming distance(Hd(·, ·)) and the previous A-approach (A(n)(·, ·))
for each pair node

According to the estimated value A(n)(i, j) of Equation (2.13), if receiver j loses many probe

packets, the value of A(n)(i, j) will be very small, even smaller than the value between i and

its actual sibling, e.g., A(n)(a, c) < A(n)(a, b), n = 7 in Figure 2.12. Thus, A-approach will

misclassify nodes a and c as siblings. Even when the number of probe packet increases, such

bias cannot be eliminated completely. Because the estimated probability in Equation (2.13)

does not equal to the true probability unless the number of probe packets is infinite. In order

to reduce the bias with a finite number of probe packets, we propose our hamming distance

classification approach.

2.3.2 Hamming Distance Classification Approach

The hamming distance between nodes u and v is defined as the number of different bits be-

tween their sequences, which is given in the following equation, where “⊕” is the exclusive-OR

operator.

Hd(u, v) =
n∑

m=1

X(m)
u ⊕ X(m)

v . (2.26)

For instance, the hamming distances of each pair of sequences in Figure 2.12 are computed.

Different hamming distances between different node pairs can be used to determine which pair
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of nodes are siblings. As illustrated in Figure 2.12, Hd(a, c) > Hd(a, b) is congruent with

the relationship between the nodes because nodes a and b are siblings. However, as we have

discussed in Section 2.3.1, A-approach failed to identify the relationship of nodes a, b and c with

7 probe packets in Figure 2.12. The hamming distance approach distinguishes the siblings and

non-siblings with different values successfully. However, A(n)(i, j) does not give the differences

between the pair of sequences with 7 probe packets in Figure 2.12. We will discuss the reason

that our hamming distance approach is superior to A-approach in Section 2.3.3.

In the multicast network, the nearer two nodes are located, the more similar two “0-1”

sequences they maintained are. The reason for such phenomenon is that the probe packets

from the root to the receivers may pass many common links. If the receivers are siblings, the

paths the probe packets pass from the root to their parent nodes are the same. Therefore, the

correlation of two “0-1” sequences between a node and its siblings is greater than that of all

other pairs of sequences between the node and its non-sibling node.

In order to infer the topology of the multicast network, all the siblings need to be identified

correctly. That is, we should find out the similarity of each pair of sequences. The problem

of identifying siblings in the multicast network can be stated as marking out the similarity

and dissimilarity of all pairs of bit sequences. For a bit sequence, hamming distance is the

simplest and most efficient method to identify the similarity and dissimilarity among differ-

ent sequences. Therefore, we use hamming distance to identify siblings for multicast network

topology inference.

It should be noted that our proposed approach generally works well regardless of temporal

correlation between the losses in actual networks. No matter when we send the probe packets

and how many probe packets we use to infer the network topology, the hamming distance

approach can classify siblings correctly. In contrast, the previous A-approach is affected strongly

by the temporal correlation of collected data. Different data collected in different time periods

may cause different siblings classifications, especially when a small number of probe packets is

used.

2.3.3 Binary Hamming Distance Classification (BHC) algorithm

We present the BHC algorithm based on the hamming distance classification approach in this

subsection. BHC infers the multicast topology from the node with the maximum hop count

and proceeds in a bottom up fashion. Since true siblings must have the same value of hop

count, the set of all receivers is classified to different sets according to their values of hop count

at the beginning. In the procedure of identifying siblings, only comparison between the sets

with the same value of hop count is necessary, which in turn, avoids redundant comparisons

between nodes with different values of hop count. For the nodes with the same value of hop

count, a node pair is identified as siblings if the hamming distance is not only minimal among
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all hamming distances of all node pairs in the node set, but also less than a given threshold.

Thus, by repeatedly identifying each sibling pair from the node set with the maximal hop count

to the node set with minimal hop count, the multicast tree can be reconstructed.

Figure 2.13 shows the characteristics of the BHC algorithm and its main differences from

other algorithms.

Figure 2.13: Differences between BHC and HBLT, BLT

The detailed BHC algorithm is similar to HBLT in Section 2.2.2. Same as HBLT in [65], we

associate each node v with a hop count v.hop. The v.hop values of leaf nodes can be obtained by

simply reading the TTL values of the probe packets. For internal nodes, their v.hop values can

be computed by degression from the v.hop values of leaf nodes during the topology inference

procedure. For the nodes with the same value of hop count, a node pair is identified as siblings

if the hamming distance is not only minimal among all hamming distances of all node pairs in

the node set, but also less than a given threshold. The algorithm is run in bottom up fashion as

HBLT. Thus, the BHC algorithm runs similar procedure of HBLT in Section 2.2.2 by replacing

the following steps.

7. Let u be the first element in We; search for v ∈ We to minimize Hd(u, v),

(u 6= v);

8. if Hd(u, v) > εe then S = {u}, Set r to be u’s virtual parent node;

Firstly all the receivers are classified into different node sets Wm (1 ≤ m ≤ h) according to

their values of hop count. Inference begins with identifying siblings in the node set with the

maximum value of hop count. The hamming distances of each node pair in Wm are calculated.

The node pair is identified to be siblings if its hamming distance is minimal and less than the

threshold. Remove the siblings from the node set with the hop count being m and add the

parent node into the node set with hop count reduced by 1. The “0-1” sequence of the parent

node is obtained by “OR” operation of those of the siblings. When all nodes in Wm are grouped

decrease hop count value by 1. Repeat the same procedure among the nodes in the node set

Wm−1. The algorithm ends when the hop count becomes 1.

It should be noted that Levenshtein distance [6] may also be used for determining the
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similarity and dissimilarity between two strings. While Hamming distance is used for strings

of the same length, Levenshtein distance is defined for strings of arbitrary lengths and hence

more sophisticated. Levenshtein distance can be regarded as a generalization of the hamming

distance. In our BHC algorithm, the bit sequences required to be compared are of the same

length because n probe packets are sent and each node in the network has a record about

whether each probe packet has been received or not — if the i-th probe packet is received by

a node, the corresponding digit in the bit sequence of this node is 1, otherwise it is 0. Clearly,

hamming distance suffices for our requirement. We therefore choose to use hamming distance

for simplicity and efficiency.

2.3.4 Analysis on Inference Accuracy of Hamming Distance Classification

Approach

BHC, HBLT and BLT can all get the consistent result with the real multicast network as the

number of probe packets increases to infinity. However, with a finite number of probe packets,

the BHC algorithm can obtain accurate results with a higher probability than HBLT and BLT,

because the hamming distance is found to be superior to A(n)(i, j) used in [30, 33, 34, 65] in

many cases.

Definition 4 Let s1 and s2 be two nodes that have a common parent node i, s3 be a node for

which node i is not its parent, Wk is the node set with the hop count k. Define s(i) as follows:

s(i) = {(s1, s2, s3) : ∀s1, s2, s3 ∈ Wk, 1 ≤ k ≤ h}

Definition 5 For (s1, s2, s3) ∈ s(i), let DH(s1, s2, s3) be the difference of hamming distance

between non-siblings and siblings, and DA(s1, s2, s3) be the difference of A(n)(·, ·) between non-

siblings and siblings. That is,

DH(s1, s2, s3) = Hd(s1, s3) − Hd(s1, s2),

DA(s1, s2, s3) = A(n)(s1, s3) − A(n)(s1, s2).

Lemma 3 The sufficient conditions for correctly identifying nodes s1 and s2 as siblings are

0 < min(s1,s2,s3)∈s(i)DH(s1, s2, s3) and H(s1, s2) < εe. For A-approach, the same condition

must be satisfied by replacing DH(s1, s2, s3) with DA(s1, s2, s3), and H(s1, s2) with A(n)(s1, s2).

Lemma 3 holds because the hamming distance or A(n)(·, ·) of a node and its non-sibling

nodes should be greater than that of it and its siblings.

We denote by n1
si

the number of probe packets transmitted from the root to node si suc-

cessfully, and by n1
sisj

the number of probe packets transmitted successfully from the root to

both nodes si and sj at the same time, i = 1, 2, 3.
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Lemma 4 For (s1, s2, s3) ∈ s(i), if inequality (2.27) holds, the hamming distance approach can

identify the siblings while A(n)(·, ·) cannot; if inequality (2.28) holds, A(n)(·, ·) can identify the

siblings while the hamming distance approach cannot; in all other cases, both approaches can

identify siblings correctly.

1

2
(n1

s2
− n1

s3
) < n1

s1s2
− n1

s1s3
≤ n1

s1s3

n1
s3

(n1
s2

− n1
s3

), (2.27)

n1
s1s3

n1
s3

(n1
s2

− n1
s3

) < n1
s1s2

− n1
s1s3

≤ 1

2
(n1

s2
− n1

s3
), (2.28)

Proof

Since Hd(s1, s2) = n1
s1

+ n1
s2

− 2n1
s1s2

and A(n)(s1, s2) =
n1

s1
·n1

s2
n·n1

s1s2

, we have,

DH(s1, s2, s3) = n1
s1

+ n1
s3

− 2n1
s1s3

− (n1
s1

+ n1
s2

− 2n1
s1s2

) (2.29)

= (n1
s3

+ 2(n1
s1s2

− n1
s1s3

)) − n1
s2

,

and

DA(s1, s2, s3) =
n1

s1
· n1

s3

n · n1
s1s3

− n1
s1

· n1
s2

n · n1
s1s2

(2.30)

=
n1

s1

n · n1
s1s2

· ((n1
s3

+
n1

s3

n1
s1s3

· (n1
s1s2

− n1
s1s3

)) − n1
s2

).

From Lemma 3, we know that nodes s1 and s2 will be identified as siblings if DH(s1, s2, s3) >

0 using the hamming distance approach for any (s1, s2, s3) ∈ s(i). If (s1, s2, s3) results in

DH(s1, s2, s3) < 0, the hamming distance approach will fail to identify s1 and s2 as siblings

correctly. Similar conditions holds for A(n)(·, ·) approach. Therefore, we can conclude that

if any (s1, s2, s3) ∈ s(i) results in DA(s1, s2, s3) < 0 while DH(s1, s2, s3) > 0, the hamming

distance approach is superior to the A(n)(·, ·) approach in siblings identification, and vice versa.

Lemma 4 describes the complete conditions based on equations (2.29) and (2.30). �

Lemma 4 shows when the hamming distance approach or A-approach can identify nodes

s1 and s2 as siblings correctly. If the probability that inequality (2.27) holds is greater than

the probability that inequality (2.28) holds, the hamming distance approach works better than

previous A-approach. However, obtaining the exact probabilities for inequality (2.27) and (2.28)

to hold is very difficult because both probabilities vary with different network connections and

conditions. Thus, we only analyze the cases that inequality (2.27) holds and inequality (2.28)

holds respectively and give an example through which we can have a clear view on which

approach has a better performance in inference accuracy.
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Firstly we should note that in most cases, both the hamming distance approach and A-

approach can identify siblings correctly according to our analysis on the different receiving

cases of nodes s1, s2 and s3. When links s1 and s2 are in similar conditions, the hamming

distance approach can identify siblings correctly if A-approach can do so. However we also

find that sometimes A-approach cannot identify siblings correctly while the hamming distance

approach can. When both nodes s1 and s2 receive almost all probe packets while node s3 loses

many probe packets, and n1
s1s3

happens to be equal to n1
s3

, the hamming distance approach can

identify siblings correctly while A-approach cannot. The above is also true when both nodes

s1 and s2 lose many probe packets while s3 receives almost all probe packets, and
n1

s1s3
n1

s3

< 1
2 .

In very few cases, the hamming distance approach may not identify siblings correctly while

A-approach can. This might happen only when links s1 and s2 are in different conditions

which result in dissimilar sequences on nodes s1 and s2. In a multicast network, only a few

siblings links may exhibit completely different performances among all siblings-link pairs. Even

if under this condition, it can be noted that in most cases the hamming distance approach can

identify siblings correctly as A-approach does. Thus from all cases discussed, we can see that

the occurrence of the hamming distance approach outperforming A-approach is more frequent

than that of the opposite situation.

As to the exact probabilities that inequalities (2.27) and (2.28) hold, we suppose a multicast

network with 5%-27% links losing packets severely where the ratios can represent most cases

in the real multicast networks. Less than 5% links suffering severe packet losses only occurs in

some applications. Multicast networks with more than 10% links losing packets often result in

unacceptable performance because most group receivers can be affected not to receive packets

accurately. Therefore, the multicast network with 5%-27% links losing packets severely as

shown in Figure 2.14 choose reasonable ratios of ill-performing links to represent general cases in

practice. Assume other links experiences some loss and congestion to different degree. Different

cases are discussed in this network and the probabilities of inequality (2.27) and (2.28) holding

in each case are calculated respectively. We find that the probabilities vary with different link

status. As we have discussed before, the probabilities also vary with different network topologies.

Figure 2.14 illustrates clearly that the probability that the hamming distance approach succeeds

but A-approach fails is greater than the probability in the opposite situation for this network.

This conclusion may be extended to any network in general case. The simulation in the network

given in Section 2.3.4 also supports this conclusion.

Though the probabilities that inequalities (2.27) and (2.28) hold are different as the net-

work condition varies, we have seen from the above analysis that with a finite number probe

packets, the hamming distance approach is more likely to work out the accurate topology than

A-approach. In another word, due to the greater probability of the hamming distance approach

outperforming A-approach in siblings identification, we may conclude that the use of the ham-

ming distance approach in the BHC algorithm can result in a better performance than use of
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Figure 2.14: Comparison on probabilities that inequality (2.27) or (2.28) holds in a certain

multicast network

A-approach in inference accuracy in our tested networks.

2.3.5 Experimental Results on the BHC Algorithm

In this section, we validate the BHC algorithm by comparing it with HBLT and BLT. As given

above, BLT provides a good combination of inference accuracy and computational efficiency

comparing among many other topology inference algorithms in [30, 33, 34]. HBLT in Section

2 applies A-approach as BLT, however, it incorporates hop count into topology inference. We

show the comparison result among these three algorithms in this subsection, which can be used

to justify the superiority of the BHC algorithm sufficiently.

We implement all the algorithms in the network topology shown in Figure 2.6 of Section

2.2.4 by network simulator ns. Same as the configuration in Section 2.2.4, node 0 is the sender,

nodes 1 − 10 are receivers. All internal links are configured with different capacities ranging

from 0.1Mbit/s to 5Mbit/s. The link 0 → 0′ is set at 5Mbit/s. The root node 0 generates

probe packets in a 20K—2Mbit/s stream. Every probe packet comprises one UDP packet with

1000bytes.

Here we still use similarity degree of Definition 3 of Section 2.2.4 to describe how close the

inferred topology is to the original physical network.

Let α = 0.5 and β = 0.5, we get the compared results between three algorithms as Figure

2.15(b).

Figures 2.15(a) and 2.15(b) are obtained by changing different links’ capacities such that the

statistical loss rates of all links ranges from 0.053 to 0.572 which is different from configuration

for simulation in Section 2.2.4. Both simulation results show that BHC requires fewer probe

packets than HBLT and BLT to infer the accurate topology constantly. BLT shows the lowest
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Figure 2.15: Similarity degree comparison among BLT, HBLT and BHC when α = 0.5, β = 0.5

efficiency in topology inference. Since both HBLT and BLT applies A-approach, we can conclude

that hamming distance classification approach used in BHC helps to infer the topology more

efficiently and accurately.

Figures 2.15(a) and 2.15(b) also validates our analysis on siblings identification by the ham-

ming distance approach and A-approach. It shows that the occurrence of that the hamming

distance approach outperforming A-approach is more frequent than that of the opposite situa-

tion. This supports the conclusion we have drawn in Section 2.3.4, that is, the probability that

hamming distance approach outperforming A-approach should be greater than the probability

of the opposite situation. This also indicates why BHC works out better performance than

HBLT and BLT in our simulated network.

In the followed simulation, we compare the performance of the BHC algorithm with previous

algorithms in a larger network as show in Figure 2.10(a). From Figure 2.16, it is clear that

BHC can infer the correct topology with the least number of probe packets.

2.4 Multicast Network Internal Loss Performance Inference

Above we introduce multicast-based network tomography for topology. Followed we will go into

multicast-based network tomography for link-level loss performance.

When we infer the multicast network topology by the either HBLT or BHC, a “0-1” sequence

is obtained for each node in the network including those internal nodes. We propose an approach

to infer the loss rate for each link simultaneously when inferring multicast topology, taking

advantage of these “0-1” sequences.
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Figure 2.16: Similarity degree comparison among BLT, HBLT and BHC when α = 0.5, β = 0.5

in the network of Figure 2.10(a) (minimal loss rate is 0.375)

2.4.1 Approach to loss performance inference

Multicast networks in the binary tree form are firstly considered. According to the BHC

algorithm, we know the sequence of internal nodes can be deduced by the following equation.

X
(n)
i = ∨l∈R(i)X

(n)
l . (2.31)

In the sequence of node i, a bit of 0 means the correspondent probe packet is lost on the

path from the root to node i. Comparing the sequence of node i with that of its siblings j, if

node j receives a probe packet, and i hasn’t received it, we consider the probe packet is lost on

link i. Thus, it can be determined that those bits of 0’s in the sequence of node i are caused by

loss in link i if the correspondent bits in the sequence of node j is 1. Among those bits whose

correspondent values of both node i and j are 0 (denote the number of these bits by n0
ij), we

know that some bits are resulted by packets lost in the path from the root to their parent node

(denote this number by n0
ij−p), other bits are resulted by packets lost in both the links directly

connecting the siblings i and j at the same time. We use γ to denote the ratio of n0
ij−p to n0

ij :

γ =
n0

ij−p

n0
ij

.

The probability of a probe packet transmitted through link i successfully can be estimated

as the ratio of the number of accepted probe packets at node i to the number of accepted probe

packets at its parent node. As mentioned previously, the number of probe packets reaching the

parent node of siblings can be expressed as n1
i +n1

j −n1
ij +γ ·n0

ij , where n1
i +n1

j −n1
ij denote the

number of 1’s in “0-1” sequence of the parent node. Then p̂i can be expressed as the following
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Figure 2.17: A Transmission Model

equations.

p̂i =
n1

i

n1
i + n1

j − n1
ij + γ · n0

ij

(2.32)

=
n∑

k=1

X
(k)
i

/
[

n∑

k=1

X
(k)
i +

n∑

k=1

X
(k)
j −

n∑

k=1

X
(k)
i ∧ X

(k)
j

+ γ · (n −
n∑

k=1

X
(k)
i ∨ X

(k)
j )], (2.33)

where n1
i and n1

ij denote the numbers of probe packets transmitted successfully trough link

i and through both links i and j respectively; n0
i and n0

ij denote the numbers of lost probe

packets on link i and on both links i and j respectively.

Let ps be the probability of transmitting probe packets successfully from the root to the

parent node of node pair i and j as shown in Figure 2.17.

Firstly, we give the following lemma to estimate ps on which calculation of the loss rate on

link i is based.

Lemma 5 ps can be estimated by the following formula

p̂s =
n1

i · n1
j

n · n1
ij

. (2.34)

Proof

We knew that A(i, j) can be estimated by A(n)(i, j):

A(n)(i, j) =

∑n
m=1 X(m)(i) · ∑n

m=1 X(m)(j)

n · ∑n
m=1 X(m)(i) · X(m)(j)

=
n1

i · n1
j

n · n1
ij

. (2.35)

Because,

lim
n→∞

n1
i /n = ps · pi

lim
n→∞

n1
j/n = ps · pj
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lim
n→∞

n1
ij/n = ps · pi · pj ,

we have,

lim
n→∞

A(n)(i, j) = lim
n→∞

n1
i · n1

j

n · n1
ij

= ps.

Therefore, with a finite number of probe packets we can use
n1

i ·n1
j

n·n1
ij

to estimate ps. ]

Lemma 6 If node i and j are siblings in the real multicast network, the loss rate on link i and

j denoted by α̂i and α̂j respectively can be estimated on both of their “0-1” sequences as follows:

α̂i = 1 − p̂i = 1 −
∑n

k=1 X
(k)
i ∧ X

(k)
j

∑n
k=1 X

(k)
j

, (2.36)

α̂j = 1 − p̂j = 1 −
∑n

k=1 X
(k)
i ∧ X

(k)
j

∑n
k=1 X

(k)
i

. (2.37)

Proof

Since nodes i and j are siblings in the real multicast network, the number of lost probe

packets observed at i and j at the same time composes of those lost on the link from the root

to i and j’s parent node and those lost on both links i and j.

n0
ij = n(1 − ps) + nps(1 − pi)(1 − pj).

We denote γ · n0
ij in Equation (2.32) by Γ and equate it to the second factor of the above

expression:

Γ = nps(1 − pi)(1 − pj) = n0
ij − n(1 − ps).

Since n0
ij by its physical meaning can also be obtained by the following equation.

n0
ij = n − (n1

i + n1
j − n1

ij),

and ps can be estimated by (n1
i · n1

j )/(n · n1
ij) according to Lemma 1, we can easily derive

the following formula for Γ.

Γ =
n1

i · n1
j

n1
ij

− (n1
i + n1

j − n1
ij). (2.38)

Thus, replacing Γ in Equation (2.32) with Equation (2.38), we get the following equation

to estimate pi.

p̂i =
n1

i

n1
i + n1

j − n1
ij + Γ

=
n1

ij

n1
j

=

∑n
k=1 X

(k)
i ∧ X

(k)
j

∑n
k=1 X

(k)
j

.
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Likewise, pj can be estimated as follows.

p̂j =
n1

ij

n1
i

=

∑n
k=1 X

(k)
i ∧ X

(k)
j

∑n
k=1 X

(k)
i

.

Thus, loss rates of the link i and j can be determined by Equations (2.36) and (2.37). ]

When n increases to infinity,

lim
n→∞

n1
ij/n = ps · pi · pj ,

lim
n→∞

n1
j/n = ps · pj .

Clearly, limn→∞ p̂i = pi.

Therefore, it can be concluded that the loss rate estimated by Lemma 6 is consistent with

the real loss rate for each link as the number of probe packets goes to infinity.

2.4.2 Algorithm on loss inference

Since we have deduced the formula on the loss rate of a link with prior knowledge of the sequence

maintained by the node, we can infer loss performance of all links in a multicast network. In

the procedure of topology inference given in BHC, the “0-1” sequence for each internal node

is obtained. So it becomes possible to infer the link loss rate with the help of our deduced

result. We therefore extend the BHC algorithm to infer topology and all links’ loss lates in the

multicast network simultaneously.

The extension can be done by modifying Step 8 and 9 in the BHC algorithm as follows.

8. if Hd(u, v) > εe then S = {u}, set r to be the virtual parent node of u,αu = 0;//αu is

the loss rate of link u.//

9. else {S = {u, v}, set r to be the virtual parent node of u and v;

9(a). for i = 1 to n

Calculate n1
u =

∑n
i=1 X

(i)
u , n1

v =
∑n

i=1 X
(i)
v , n1

uv =
∑n

i=1 X
(i)
u · X

(i)
v ;

9(b). Calculate loss rates of link u and v,

α̂u = 1 − n1
uv

n1
v

, α̂v = 1 − n1
uv

n1
u

;}

Change Step 17 in BHC to

17. Output : Inferred topology and loss rate (V ′, L′, α̂)

In order to evaluate the performance of the algorithm for link loss rate inference, we compare

the inferred loss rates with the real statistical loss rates as follows. The simulation has been

done in the same network as depicted in Figure 2.6. We set link 7 to lose packets with a

probability of 0.2, links 9 and 10 with probability of 0.5. From the simulation results shown in

Figure 2.18, it can be easily seen that the inferred loss rates approach to the real loss rates as

the number of probe packets increases.
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Figure 2.18: Evaluation on the inferred loss rates

2.5 Topology and Loss Performance Inference for General Trees

We extend the BHC algorithm for topology inference and the approach for link loss rate inference

to general trees in this section.

2.5.1 Topology Inference for General Trees

It is more complicated to infer the topology for general trees than the binary case. We introduce

a threshold η into grouping the siblings set S. The set S is grouped if the hamming distance

between any pair of nodes in S is sufficiently close to being minimal.

The grouping step starts by finding a pair of nodes {u, v} that has the minimum hamming

distance in S, then adjoining further elements to it provided the following inequality is satisfied:

Hd(u, v′)(1 − η) < Hd(u, v). (2.39)

Thus we replace line 9 of the BHC algorithm by the following steps so that topology inference

for general trees can be performed.

9a. else {S = {u, v};
9b. while there exists v′ ∈ We\S such that Hd(u, v′)(1 − η) < Hd(u, v) do

9c. S := S ∪ {v′}; }
9d. Set r to be the virtual parent node of all identified siblings in S.

We also use classification threshold εe for identification of siblings in general trees in a similar

way as used in the BHC algorithm of Section 2.3.3. We can set εe to a given experience value

for a network with binary tree topology due to the structure simplicity. However, for general
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trees, we set εe to be n
k · lg e in order to reduce the ratio of misclassification of siblings. Here e

is the level of nodes computed from the root, n is the total number of nodes in the multicast

network, and k is the estimated expected number of branches of the multicast network. We

set εe to be n
k · lg e because we want εe to be linearly proportional to the number of nodes and

to the logarithm of the level, and inversely proportional to the branches of each level in the

multicast tree. The value may also need to be adjusted according to the real condition of the

network.

As presented in [30], the violation of the condition described in inequality (2.39) has the

interpretation that the ancestor a(U) is separated from a({u, v}) by a link with loss rate at least

η. The convergence of the inferred topology to the true topology is mainly influenced by η. If

only η is less than the internal link loss rates, the inferred topology will be convergent to the

true topology. However, the internal link loss rates are unknown in advance. A small value of η

is more likely to satisfy the above condition but at the cost of slow convergence. A large value

of η, on the other hand, is more likely to result in systematically removing links with small loss

rates. Thus it is convergent to a wrong topology. In order to choose an appropriate η to obtain

more accurate and complete topology practically, we will propose the scheme of incorporating

the link loss rate into topology inference in Section 2.5.3 based on the loss performance inference

for general trees.

2.5.2 Loss Performance Inference for General Trees

Based on the priori knowledge of the inferred topology and “0-1” sequences for each node

discussed above, we extend the approach in Section 2.4.1 to infer loss performance for general

trees. Similar to Lemma 6, the link loss rate of general trees can be estimated by the following

Lemma.

Lemma 7 The loss rate of link s1 can be estimated by α̂s1.

α̂s1 = 1 − p̂s1 = 1 − n1
s1s2s3...sm

n1
s2s3...sm

, (2.40)

where s1, s2, . . . , sm are siblings.

Proof

As n increases to infinity,

lim
n→∞

n1
s1s2s3

/n = ps · ps1 · ps2 · ps3 ,

lim
n→∞

n1
s2s3

/n = ps · ps2 · ps3 .

Thus, limn→∞
n1

s1s2s3
n1

s2s3

= limn→∞ p̂i = pi. ]
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As the number of probe packets goes to infinity, the loss rate estimated by p̂i is consistent

with the real loss rate for each link in general trees.

We have done the simulation for topology inference and loss rates inference in general trees

with sizes ranging from 20 nodes to 200 nodes. Figures 2.19(a) and 2.19(b) gives the average

results on these general trees.
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Figure 2.19: Simulation on a general tree network

2.5.3 Loss Rate-Combined Topology Inference

As discussed in Section 2.5.1, parameter η is used for grouping siblings in general trees, which

requires η to be less than all internal link loss rates such that the inferred topology can be

correctly convergent to the true topology. However, the internal link loss rates are unknown in

advance, which may result in wrongly inferred topologies containing only high loss rate links

as discussed in [30] about failure inference.

Thus, with the help of the approach to loss rate inference proposed in section 2.5.2, a scheme

is built to adjust η timely based on the inferred loss rates.

In the procedure of grouping siblings, the loss rates of links are computed. Errors in grouping

may exist due to an inappropriate choice of η. So when the minimum loss rate among all links

is less than η, we change the value of η to be the minimum loss rate, and group the siblings

again according to the modified η. The procedure is described as follows.

1. Initiate η, α̂min.

2. While α̂min < η do

3. η = α̂min

4. Group siblings according to inequality (2.39).
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5. Compute the loss rates based on inferred topology,

denote the minimized loss rate as α̂min.

In the above procedure, we initially set η to be smaller than α̂min that has a value between

0.5 and 1. So some pseudo siblings are grouped firstly, which will result in large loss rates,

whose minimum value is less than η. Then all the nodes will be grouped again with a smaller η,

some pseudo siblings are removed in this case, which consequently diminishes the minimum loss

rate inferred in the newly grouped tree. The nodes are grouped again due to α̂min < η. The

procedure is repeated until η is adjusted to an appropriate value that satisfies the condition

that η is smaller than the loss rates of all links in the network. Thus, the inferred topology can

quickly converge to the true topology with the appropriate η. The following Lemma gives the

relationship between η and the link loss rate.

Lemma 8 A small η can remove some pseudo siblings, and result in decreased loss rates of the

links.

Proof

Assume that s1 is identified to have m siblings including itself and some possible pseudo

siblings. Then, let p̌s1(m) denote the probability of successfully transmission on link s1 with

the hypothetical m siblings.

p̌s1(m) =
n1

s1s2s3...sm

n1
s2s3...sm

.

If a smaller η causes a node to be removed from its siblings set according to inequality

(2.39),

p̌s1(m − 1) =
n1

s1s2s3...sm−1
+ x

n1
s2s3...sm−1

+ y
,

where x and y are integers, and x < y due to the removal of the node whose “0-1” sequence

is much different from those of other nodes. The minimum hamming distance among all pairs

of sequences maintained by the removed node and other nodes is far from those pairs among

other siblings, which leads x to be less than y, and both are greater than 0.

Thus,

p̌s1(m − 1) < p̌s1(m).

So a smaller η leads the adjusting procedure to remove some pseudo siblings and thus results

in decreased loss rates of the links. ]

By adjusting η the loss rate-based topology inference can thus be made more accurate than

those inferred in [30,67].
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2.6 Hamming Distance Matrix for Loss/Delay Performance Anal-

ysis

This section generalizes the application of hamming distance-based network internal loss/delay

performance inference, which can use either end-to-end loss measurements for network internal

loss performance diagnosis or end-to-end delay measurements for delay performance diagnosis.

From above sections, it is seen that every receiver maintains a bit sequence from end-to-end loss

measurements. When end-to-end delay measurements is counted, similarly, if a probe packet

has some delay when received by a receiver, the correspondent digit of bit sequence maintained

by this receiver is 0, otherwise it’s 1 as modelled in Section 2.1.2. Each internal node can also

get a bit sequence by use of the same procedure as in BLT, HBLT, or BHC based on end-to-

end loss measurements. From all loss/delay measurements, we can use a hamming distance

matrix-based scheme for analyzing the network internal loss/delay performance.

A hamming distance matrix is first defined in this section. The bit sequence maintained by

each receiver is denoted by {X (m)
r }, 1 ≤ m ≤ n, r ∈ R. We assume the number of receivers in a

multicast network to be l. For simplicity, let dij denote the hamming distance between receiver

i and j, i.e., dij = Hd(i, j). Denote D to be the hamming distance matrix. Then D is defined

as follows:

D =




d11 d12 . . . d1l

d21 d22 . . . d2l

...
...

. . .
...

dl1 dl2 . . . dll




.

Obviously, the matrix is a symmetric matrix, that is, dij = dji for i 6= j. And it is also easy

to know dij = 0 if i = j. Apart from these properties, the matrix implies more information.

For instance, if receiver i and j are siblings, dij is supposed to be smaller than dik, k 6= j and

k 6= i. More generally, the nearer two nodes are located, the smaller their hamming distance

is supposed to be because their sequences are more similar due to more shared common link

condition which we have discussed in Section 2.3. Another property of this matrix is that

hamming distance among those receiver-pairs with small distance values (except receiver-pairs

whose small distance is because both receive almost all packets without loss/delay) is transitive

because they share common links that are experiencing heavy link loss/delay, and hence the

matrix can be transformed into a blocked matrix. Therefore, such a hamming distance matrix

shows a lot of information on internal topology in the condition that those internal links have

different congestion and loss situations.

Now let’s see what this matrix can do for internal loss/delay performance analysis and

identification. Since we have inferred the multicast network topology in Section 2.3, how to

discover the internal loss/delay performance based on the topology is now considered. For

56



clearly clarifying the applications of the hamming distance matrix in loss/delay performance

analysis, we firstly consider a network in Figure 2.20 where only one receiver observes severe

loss. We assume here the loss measurements are counted. Internal link delay performance can

be obtained if the end-to-end delay measurements observed on receivers are counted. Suppose

link s in Figure 2.20 is in very poor condition and all other links work in good condition with

few losses.

Figure 2.20: A simple hamming distance matrix.

According to the hamming distance matrix in Figure 2.20, we can easily find the hamming

distances between 1 and any of the rest receivers are very great, while the hamming distances

among receiver 2, 3 and 4 are quite similar and small. Then we can infer that the nearest

common link of receiver 2, 3 and 4 work in poor condition.

As for a network where internal links condition may be very complex, we need to transform

the matrix into several blocks according to different values of components in the matrix. Usually

we classify the components by an experienced difference which depends on how many probe

packets are sent in total. With the experienced difference, we can do elemental transformation

on the hamming distance matrix and obtain a matrix in several regular blocks. The receivers

are accordingly classified into several groups. Thus we can infer all the possible bad links in

the topology according to those classified receivers by blocks easily. For example the network

topology, the hamming distance matrix and the transformed matrix are given in Figure 2.21,

we aim to analyze the internal link loss/delay performance and locate the ill-performing link

easily.

There is a group including receiver 1, 4 and 5 which receive almost all the probe packets.

This group is called base group which can be easily identified by the 0-1 sequence maintained

by any receiver in this group. The links in the path from the source to the receiver in this

group all works in good condition. We find all other groups have the common property, that

is, the hamming distance between any receiver in these group and any receiver in base group is

very great while the hamming distance between the receivers in each group is very small. These

groups are called loss group (or delay group in the case of internal delay inference). We can

then decide the link connecting to the nearest common ancestor node of each loss/delay group

is one of the links who are causing severe loss (experiencing severe delay). In the topology of
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Figure 2.21: Hamming distance matrix and matrix in blocks

Figure 2.21, link 13, 6 and 14 are links we aim to identify. All other links work well with few

loss or delay in this network.

Therefore, if we can transform a hamming distance matrix into blocks according to the

values of components, the receivers are classified into several groups. Then we can determine a

base group which include those receivers who receive almost all probe packets (or receive most

probe packets without delay), i.e., there is not any links causing big loss (or severe delay) in the

path from the source to these receivers. And apart from this group, there are many loss/delay

groups. The link connecting to the nearest common ancestor node of each loss/delay group

are identified as those links where severe loss/delay is caused. By this means, a hamming

distance matrix D of a network can help to analyze and identify the network internal loss/delay

performance. Moreover, a phenomenon which values our attention is that there are usually

only a few links who are in poor condition in a large scale network in practice. Therefore, the

components in hamming distance matrix usually appear to be different obviously and can be

classified very easily.

The above method can be accomplished by the following algorithm:

INPUT: Hamming distance Matrix D and the set of l receivers R; //D is a symmetric

matrix whose row/column indices are kept in R denoting different receivers.//

Step 1: i = 1, b = 1, Rb = ∅, R = {1, 2, 3, . . . , l};

Step 2: While i ≤ l do

Step 2.1: Compare all elements in row i and record in Rb the original column indices
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of all the elements whose values are not greater than an experienced

threshold n · α. Assume Rb = {r1, r2, . . . , rpb
}; //n is the number of probe

packets, α is an experienced ratio.//

Step 2.2: Do row swaps and column swaps to move rows r1, r2, . . . , rpb
to top and

columns r1, r2, . . . , rpb
to left in consecutive positions from

∑b−1
j=1 pj + 1 till

∑b
j=1 pj . Record in R the original row/column indices of the permutated

rows/columns according to the original hamming distance matrix;

Step 3: i = i + pi; b = b + 1;

OUTPUT: Hamming distance matrix D in blocks with grouped receivers and index array

R, where R(i) is the ith row/column’s (in the output D) original row/column index in

the input D.

The algorithm’s time complexity is decided by Step 2. Since Step 2.1 takes O(l) and Step

2.2 requires O(pi · l) in the worst case, the dominating factor in Step 2 is Step 2.2, that is,

the number of element-exchanges for row swaps and column swaps. Assume that the output

D contains b groups of receivers, where group i is of size pi, represented in the form of blocks

along the main diagonal in D. Clearly,
∑b

i=1 pi = l. The worst-case is that all these groups are

produced by row swaps and column swaps. In this case, the total number of element-exchanges

involved in row swaps and column swaps is:

2 ·
b∑

i=1

l · pi = 2l ·
b∑

i=1

pi = 2l2.

Hence the worst-case time complexity of the above algorithm is O(l2).

2.7 Concluding Remarks

In this chapter, we have introduced network tomography for topology inference. We have

proposed new approaches of using hop count and hamming distance classification, which bring

different benefits to topology inference. We have developed new methods for network internal

loss/delay performance inference based on discovered topology information.

Based on hop count, we have proposed an improved algorithm for multicast network topol-

ogy discovery, Binary Loss Tree Classification with Hop Count (HBLT). Through analysis on

time complexity, misclassification probability, and inference accuracy, and comparisons with

the previous binary loss tree classification algorithm (BLT), the advantage of the measurement

on hop count is justified. Experimental results also support the usage of hop count in topology

59



inference and have been shown that HBLT outperforms BLT greatly with a significantly lower

misclassification probability and higher inference accuracy and efficiency.

We have further proposed the application of hamming distance classification approach,

namely Binary Hamming distance Classification (BHC), which improves the traditional A-

approach used in HBLT and previous algorithms. With a finite number of probe packets, the

topology inferred by the BHC algorithm has been shown to be more accurate than those inferred

by previous algorithms based on A-approach. It has also been shown that BHC significantly

outperforms previous algorithms in efficiency according to the implementation results of BHC,

BLT and HBLT algorithms in our simulated networks. Since all algorithms discussed in this

chapter are based on end-to-end loss measurement, they may not work very efficiently when

inferring topology for a multicast network with few losses. In this case, same as other work in

the literature [30,34], only when the number of probe packets is very large, the inferred topology

may approach to the accurate topology. To avoid use of an excessive number of probe packets

for topology inference, we may simply replace loss measurement by delay measurements. In

multicast networks with few losses, delay-based topology inference would provide a more efficient

inference procedure. We can also choose the measurement according to the network status

adaptively as [33]. Thus, the use of hop count measurement and hamming distance classification

approach can be easily applied to inference algorithms based on other types of measurements.

This also indicates why we can infer internal loss/delay performance by hamming distance

matrix approach from end-to-end loss/delay measurements as discussed in Section 2.6.

Extension of the hamming distance approach to general trees has also been discussed in this

chapter. It has been shown that our proposed method of incorporating hop count and hamming

distance-based topology inference is also quite effective for topology inference of general trees.

Apart from topology inference, we have also proposed a novel approach to inferring the net-

work internal loss performance, making it possible for the first time to infer multicast topology

and link loss rate simultaneously. It is based on the data collected in the procedure of topology

inference. Experimental results have shown that the loss performance inferred by our approach

is consistent with the real loss performance in the multicast network.

Our loss performance inference approach has also been extended to the general trees. Since

topology inference for general trees is very complicated and cannot achieve as good result as

for binary trees. By incorporating approaches for loss performance inference into topology

inference, we have given a new idea on a technique that can improve the inferred topology to

one that is correctly convergent to the true topology.
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Chapter 3

Network Topology Discovery by

Mobile Agents

Since mobile agents have been successfully deployed for collecting and processing network man-

agement information in the Internet, telecommunication networks and other types of networks,

it is possible to extract topological information by mobile agents. In this chapter, we propose

mobile agent-based network topology discovery methods. We first give an introduction on mo-

bile agent and its applications, then develop algorithms of deploying mobile agents for both

Internet and Multicast network topology discovery. We further establish statistical models to

show the behavior of mobile agents and give a complete analysis on the performance of our

proposed algorithms. Finally we give the experimental results. It is shown that due to the

inherent advantages of mobile agents, the proposed algorithms provide effective techniques for

employing mobile agents in topology discovery which has great promises in the future.

3.1 Introduction

A mobile agent is a software that can move within the network and act on behalf of a user or

another entity. Mobile agents can function independently or cooperatively to solve problems.

Deployment of mobile agent is one of the most promising technologies for managing complex

and large scale networks. It has potential applications in various functional areas as discussed

in [7, 11, 12, 43, 50, 52, 53, 56, 73, 75], for instance, network management, information retrieval,

network services delivery, and topology discovery [48].

The introduction of mobile agent brings a lot of benefits to various applications. It reduces

traffic congestion because agents are smaller in size. It gains enhanced security over protected

data especially in a broadcast mode. It avoids unnecessary data transfer. The transfer of

user intention enables selection of required data and intelligently computed abstraction. It is a
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modular approach to distributed applications. In addition, it enables interoperability through

a new agent layer.

Due to all these advantages brought by mobile agents inherently, topology discovery based

on mobile agents can be performed more efficiently with lighter burden to the network than

before. However, mobile agent-based schemes must have support from the network hardware.

Usually the special protocol is developed for mobile agent-based system. Therefore, our study

on mobile agent-based topology discovery is developed in these infrastructures.

This chapter mainly focuses on the problem of automatic topology discovery using mobile

agents. We build a network model for the mobile agents running for topology discovery where

automatic discovery is achieved in two different ways, report-at-newly-found-nodes (RN) and

report-at-leaves(RL), along the same line as proposed in [48]. In this model, several important

statistics including dwell time distribution, life span distribution, the report time distribution

of a mobile agent and the interreport time distribution at the management station are ana-

lyzed. These analytical results give significant insight to reveal the behaviors of mobile agents

performing the topology discovery task. We finally give a clear view on the performance of

different schemes through comparison among them.

3.2 Network Model

A network comprises a set of nodes and communication links connecting them. Each node is

assigned an unique ID (e.g., IP address). Each node has the knowledge of the IDs of itself and its

neighboring nodes. Each link is bidirectional and symmetric. Transmission speeds are identical

in both directions of the same link, but may be different over different links. A management

station is located at one node in the network. Receivers are a set of nodes whose IP addresses

are known by the management station. But the management cannot know how they connect

to each other. Thus the management station initiates the task of network topology discovery

by generating a discovery agent. The goal is to discover all the receivers and how they connect

to the management station. This model is similar to the model built in [48,68].

The generated discovery agent can mark the nodes and the links it passed. It can also spawn

new discovery agents if searching along different paths is needed and another type of mobile

agents, report agent, when it decides to report the topology information to the management

station. The report agent can extract the information of the nodes and their neighborhood,

provide storage to store the required topology information, and report the information to the

management station.

At the beginning of the topology discovery task, the discovery agent visits the node where

the network management station resides. Based on the neighborhood information maintained

at the node, the discovery agent will spawn more discovery agents and dispatch them to each of

the neighboring nodes. The discovery agents interact with the nodes they visit and may collect
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information from these nodes. When necessary, a discovery agent will spawn a report agent

to send topology information collected in the discovery agent back to the management station.

After receiving the topology information from the report agent, the management station stores

these data into its topology database, and sends an acknowledgement (ACK) to the discovery

agent. After it gets the ACK from the management station and makes sure that its information

has been sent back successfully, the mobile agent will either terminate itself or continue on

discovering other topology information, depending on if all neighborhood nodes have been

visited or not. If there is no ACK from the management station after a certain period, the

mobile agent will send back the information once again and decide whether to go on with the

searching or not. Decision on whether the report agent should be spawned depends on different

report ways proposed in the algorithms.

Two ways of report fashion are proposed for mobile agents, persistent report and intermit-

tent report. Persistent report means that a mobile agent reports from every node it visits. In

the model of RN for multicast topology discovery, mobile agents are persistent report agents.

When a mobile agent reports from some of the nodes it has visited, it is called intermittent

report. RL and RN algorithms for Internet topology discovery and RL algorithm for multicast

topology discovery apply this type of report.

3.3 Mobile Agent-based Topology Discovery

Four mobile agent based topology discovery algorithms are proposed in this section. Two of

them are for Internet topology discovery and the other two are for multicast topology discovery.

All of them use controlled flooding to discover the network topology.

As assumed in the model, the network management station generates a discovery agent at

the node where it resides at the beginning. If the discovery agent arrives at a node which hasn’t

been visited by any other discovery agent, the discovery agent marks the node “visited” and

the link from which it enters the node as “upstream” link. It then checks the node’s IP address

to see if it is a receiver. If the node is a receiver, the discovery agent terminates itself after

reporting the topology information successfully. Otherwise, it regards all other links at this

node as “downstream” links and spawns more discovery agents so that each of the downstream

links gets one discovery agent. Each discovery agent moves to a neighboring node along a

downstream link. When a discovery agent arrives at a node which has been marked “visited”,

the discovery agent will stop searching because there is no downstream links at a node already

visited by another mobile agent. The link from which the discovery agent enters a visited node

is marked “N” indicating that this link is neither an upstream link nor a downstream link.

Clearly, an “N” link causes a cycle in the network. Thus the flooding is controlled by checking

statuses of nodes. In this way, the discovery agents spawn themselves and flood the network as

fast as possible. The management station can construct the topology of the network according

63



to the information sent back by report agents.

We call the set of nodes containing all “visited” nodes and un-visited receivers leaf nodes.

Clearly, a discovery agent will terminate itself when arriving at a leaf node.

3.3.1 Mobile agent-based algorithms for Internet topology discovery

We propose two algorithms for Internet topology discovery that differ in the way of carrying

back topology information to the management station.

1. The report-at-newly-found-nodes (RN) algorithm

In this algorithm, when a discovery agent arrives at a node that has never been visited by any

other discovery agent, it immediately spawns a report agent to carry the information of the

newly discovered node and its neighboring nodes back to the management station. The report

agent moves along the “upstream” links back to the management station. At the same time, it

generates new discovery agents, each being dispatched to a link connecting a neighboring node.

When the management station receives the newly discovered topology information, it stores

the information in its topology database. It doesn’t send acknowledgement to discovery agents

in the RN algorithm because the report agents report frequently. Even if a report agent car-

rying the topology information of a node is lost, the management station can still extract the

information about the node if any of its neighboring nodes reports correctly.

After the mobile agents finish the topology discovery task, the management station con-

structs the topology according to its topology database. It may get incomplete topology infor-

mation when the network runs in heavy load. In this case, the management station can initiate

the topology discovery task again with the lost nodes as destination only. In order to determine

whether all required topology information of the network have been received, the management

station checks the status of each node in its database to see if there is any node that has not

been visited by a discovery agent.

2. The report-at-leaf-nodes (RL) algorithm

In this algorithm, a discovery agent does not always spawn a report agent every time it finds

new topology information. When a discovery agent arrives at a node, it checks to see if this

node has been marked “visited”. If yes, there can’t be downstream links for the mobile agent to

continue on searching because the previously arrived mobile agent must have dispatched mobile

agents to all links connecting to this node. If the node hasn’t been visited by another mobile

agent, the mobile agent checks if there are downstream links. If so, the discovery agent spawns

several discovery agents, each being dispatched to one downstream link. Otherwise, it spawns

a report agent. In another word, a discovery agent spawns a report agent when it determines

that a node is a leaf node of the network.
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The report agent moves along the “upstream” links back to the network management sta-

tion. It collects the topology information along the path. When the network management

station received the topology information, an “ACK” is sent to the discovery agent. After re-

ceiving “ACK”, the discovery agent is terminated. If “ACK” hasn’t been received, the discovery

agent will spawn a report agent to report again until it gets “ACK” finally. After a certain

period of time, the management station checks its topology database to see if all required in-

formation is obtained. If yes, the topology can be constructed according to the information.

In case if too much information is lost, the topology can also be constructed as an incomplete

topology. Unless a lot of topology information is lost, the management station will discover the

topology again.

In the report-at-leaves algorithm, the report agents are spawned at leaf nodes where no

downstream links exist. As we have said, if a node has been marked “visited”, there can’t be

downstream links. If a node is a receiver, there can’t be downstream links. Thus, a mobile

agent reports at leaf nodes, and terminates itself after it receives “ACK” on report success

notification.

3.3.2 Mobile agent based algorithm for multicast network topology discovery

The network management station administrates one or more multicast groups. According

to multicast protocol [74], each router supporting multicast is assigned an extra multicast

address specifically. All the group members including routers are assigned the identical multicast

address. The task of mobile agents is to discover all the group members and how they connect

with each other in the multicast network.

When the management station requests the information on the topology of the multicast net-

work, one mobile agent is generated. The first node it visits is the node where the management

station is located. The discovery agent spawns several new discovery agents to all connected

routers supporting multicast except the router where the discovery agent comes from. The task

of multicast network topology discovery will finish when all the group members are discovered.

The detailed algorithms in different report fashions are given in succeeding paragraphs.

1. The report-at-newly-found-nodes (RN) algorithm

Similar to RN algorithm for Internet topology discovery, the discovery agent spawns a report

agent each time it visits a new group membership. The report agent reports the latest topology

information as soon as possible. Because there isn’t any cycle in the multicast network, the

discovery agent spawns a report agent at each step, which leads to persistent report.

The management station doesn’t send an “ACK” to discovery agents when it receives the

topology information reported by report agents. After spawning the report agent, the discovery

agent will continue to discover more group memberships until it finds there is no downstream
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node. Then it reports and terminates itself at leaf nodes(also group receivers in multicast

network).

There are two kinds of multicast distribution trees: source trees and shared trees, also

called RP trees or CBT (core-based trees). For source trees, the RN algorithm marks the link

where the discovery agent enters as “upstream” link. For core-based trees the mark “USR”

is used to denote the link from the source to the shared root where unicast is used. When

the discovery agents are multicasted from the shared root to the receivers, the links they pass

are marked as “upstream”. Thus, each report agent spawned before its discovery agent arrives

at the shared root returns the collected information to the management station along “USR”

path. The report agents spawned after its discovery agent arrives at the shared root return the

information along “upstream” firstly to the shared root. Then the report agent returns from the

shared root to the management station by “USR” path. When a mobile agent finds there isn’t

any “downstream” link connecting another group member, it terminates itself after reporting

the topology information. After all report agents have sent back the collected information, the

management station can reconstruct the multicast tree based on the reported information.

2. The report-at-leaf-nodes (RL) algorithm

In RL algorithm for multicast topology discovery, the report agent is only spawned at leaf nodes.

At the intervening routers the discovery agents mark the path “upstream” or “USR” without

generating the report agent. Only when the discovery agent finds it arrives at leaf nodes (where

there is no downstream link), it generates a report agent. The report agent is sent back to

the management station through the marked link by which it collects the topology information

along the path. The management station sends an “ACK” to the discovery agent after it

receives the report agent. When the discovery agent gets the “ACK” from the management

station it terminates itself. If no “ACK” is sent to discovery agent after some period, it will

spawn a report agent to report the topology information again until it gets the “ACK” from the

management station, which shows that the topology information has been received successfully.

3.4 Analysis on Mobile Agents for Topology Discovery

In this section the characteristics of mobile agents for topology discovery are analyzed. These

include dwell time distribution at a host, life span distribution of a mobile agent, report time

distribution of a mobile agent and interreport time distribution at the management station.

The technique of Laplace transform is applied as presented in [42].
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3.4.1 Dwell time distribution

Dwell time is defined as a random variable representing the time of a mobile agent staying in

a host. The mobile agent concerned here is the discovery agent only. When the management

station needs to discover the topology of a network, many mobile agents are generated in the

procedure to collect information. These mobile agents travel from one host to another host,

mark the nodes and links, collect relevant information, and report the collected information to

the management station. Analysis on how long a mobile agent needs to stay in one node is

beneficial to determine how long the topology discovery task will take.

Assume that a mobile agent is served immediately when it arrives at a host. Then the dwell

time of the mobile agent at a host denoted by TD doesn’t include the queuing delay. TD is the

summation of mark time TM and report time TO. If the mobile agent doesn’t spawn the report

agent at a host, TO = 0. For instance, the mobile agent will not report if it hasn’t arrived at

the leaf nodes in the RL algorithms described previously.

TD = TM + TO. (3.1)

The cycle time TC which describes the time period of a mobile agent at a host is the dwell

time at the host TD plus its travel time to the next host TV as shown in Figure 3.1.

TC = TD + TV . (3.2)

Figure 3.1: Mobile agent state description

Dwell time depends on the network host status such as processor speed of a host. Cycle

times of different mobile agents are assumed to be independent of each other. Reporting time

contains such latency as spawning time, report propagation delay, acknowledgment delay from

the source, and twice propagation time or more.
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Suppose the mark time probability density function (pdf) to be m(t), the reporting time

pdf to be o(t), the travel time pdf to be v(t), dwell time pdf to be d(t) and the cycle time pdf

to be c(t). Because the sum of two independent random variables results in a convolution (∗)
of the their probability density functions, we have,

d(t) = m(t) ∗ o(t), (3.3)

c(t) = d(t) ∗ v(t) = m(t) ∗ o(t) ∗ v(t). (3.4)

Proof If we assume

TC = TD + TV

We can obtain,

E[TC ] = E[TD] + E[TV ]

It can also be described by the following equation,

∫ ∞

0
te(t)dt ·

∫ ∞

0
r(t)dt +

∫ ∞

0
tr(t)dt ·

∫ ∞

0
e(t)dt =

∫ ∞

0
td(t)dt

Where
∫ ∞
0 r(t)dt = 1 because r(t) is the probability density function. Similar case holds for

e(t).

The above equation is the result of the following when we assume s = 0.

∫ ∞

0
te(t)e−stdt ·

∫ ∞

0
r(t)e−stdt +

∫ ∞

0
tr(t)e−stdt ·

∫ ∞

0
e(t)e−stdt =

∫ ∞

0
td(t)e−stdt

∂
∫ ∞
0 e(t)e−stdt ·

∫ ∞
0 r(t)e−stdt

∂s
=

∂
∫ ∞
0 d(t)e−stdt

∂s

Then, ∫ ∞

0
e(t)e−stdt ·

∫ ∞

0
r(t)e−stdt =

∫ ∞

0
d(t)e−stdt

It’s,

E∗(s) · R∗(s) = D∗(s)

Thus,

d(t) = e(t) ∗ r(t)

�

Take the Laplace transform of the dwell time pdf, then the above relationships can be

expressed in the following equations.

D(s) = M(s) · O(s), (3.5)
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C(s) = D(s) · V (s) = M(s) · O(s) · V (s). (3.6)

Here, M(s), O(s) and V (s) are accordant to the definition of Laplace transform: X(s) ≡∫ ∞
0 x(t)e−stdt, for X = M, O, V and x = m, o, v.

Then the statistical property of the dwell time at a host is given by the following Lemma.

Lemma 9 The mean E[TD] and variance V ar[TD] of TD can be calculated by the following

equations.

E[TD] = −dD(s)

ds
|s=0, (3.7)

V ar[TD] =
∂2D(s)

∂s2
|s=0 − [

dD(s)

ds
|s=0]

2. (3.8)

Proof For Equation (3.7),

D(s) =

∫ ∞

0
d(t)e−stdt,

−dD(s)

ds
|s=0 =

∫ ∞

0
d(t)te−stdt|s=0

=

∫ ∞

0
d(t)tdt

= E[TD].

For Equation (3.8),

V ar[TD] = E[T 2
D] − E2[TD],

∂2D(s)

∂s2
|s=0 =

∂2
∫ ∞
0 d(t)e−stdt

∂s2
|s=0

=

∫ ∞

0
d(t)t2dt

= E[T 2
D].

Thus,
∂2D(s)

∂s2
|s=0 − [

dD(s)

ds
|s=0]

2 = V ar[TD].

�
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3.4.2 Life span of a mobile agent

Life span of a mobile agent is the time between its generation and its termination. A mobile

agent can be generated at the management station or any internal router. Termination of a

mobile agent happens in the following cases. When a discovery agent receives an “ACK” from

the management station showing that the report agent has returned topology information suc-

cessfully, it will be terminated according to the proposed algorithms. This kind of termination

happens at leaf nodes. The source can discard returned report agents. But termination of a

report agent isn’t taken into account when analyzing the life span of a mobile agent. Because

once the condition of links is given, the life span of a report agent is the transmission time.

Therefore, we only consider the life span of a discovery agent.

1. Analysis on the mean of life span

Before a mobile agent is terminated, the total life span of the mobile agent includes several

cycle times in the intervening nodes and one dwell time, as shown in Figure 3.2. Denote the

life span by TL. It can be expressed as Equation (3.9).

TL = t1 + t2 + t3 + . . . + tN =
N∑

k=1

tk, N ≥ 1. (3.9)

Figure 3.2: Total life span of a mobile agent

Here, N is the total number of hosts visited by a mobile agent, tk, 1 ≤ k ≤ N − 1 is cycle

time in host k which includes the dwell time in host k plus the travel time, and tN includes

only the dwell time in (the last) host N .

Because tk, 1 ≤ k ≤ N , is independent of the total number of hosts visited by the mobile
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agent, the average life span of a mobile agent can be inferred as follows.

E[TL] = E[
N∑

k=1

tk]

= E[E[
N∑

k=1

tk|N ]]

=
∞∑

n=1

Pr(N = n)E[
N∑

k=1

tk|N = n]

=

∞∑

n=1

Pr(N = n)E[

n∑

k=1

tk]

=
∞∑

n=1

nPr(N = n)E[tk]

= E[N ]E[tk]. (3.10)

2. Analysis on a given network

For a given network that has r′ receiver nodes, l′ links, and n′ nodes in total including the

management node, the average number of mobile agents generated for topology discovery can

be estimated based on the above result. If there isn’t any cycle in the network, the number of

links l′ is equal to n′− 1. Otherwise, l′ cannot be decided simply by the total number of nodes.

From the network in Figure 3.3 we know that the first mobile agent spawned in the man-

agement station generates three mobile agents at the start. They are dispatched into each

direction of the network. When the mobile agents pass through branches, new mobile agents

are generated so that each downstream link has one agent to continue searching. All the links

and nodes will be marked correctly after they have been visited as Figure 3.3 shows. In this

network, mobile agents terminate themselves in two cases. One is when they arrive at the

receivers, the other is when they visit a link that has already been marked “N”, indicating that

another agent has already visited the link.

The average life span of all mobile agents spawned for the task of discovering topology of a

network can be calculated according to Equation (3.10). Because automatic topology discovery

by mobile agents uses flooding algorithm, each link is visited only by one mobile agent.

Therefore, the average number of hops a mobile agent made to finish the topology discovery

task is the total number of hops H made by all discovery agents divided by the total number

of generated discovery agents M in the network. The number of links in the network is the

total number of hops made by all discovery agents, i.e., l′ = H. The total number of discovery

agents generated in the network is determined by the number of receivers and the number of

cycles in the network. To each receiver, there must be one discovery agent dispatched from
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Figure 3.3: Network topology discovered by flooding algorithm using mobile agents

the root. Each cycle connecting the root to either one “end-node” (when the cycle contains an

even number of links) or two “end-nodes” (when the cycle contains an odd number of nodes),

where an “end-node” has an “upstream” link and an “N” link on the cycle which are marked

by two discovery agents dispatched to the node. While one agent will continue search on a

downstream link, the other agent will be terminated because the end-node is already marked

“visited” by the first agent. Therefore, each cycle will add two additional discovery agents if the

cycle contains an odd number of links, and one discovery agent if it contains an even number

of links, all terminated at “end-nodes”, into the network. Assuming that both cases occur at

an equal probability, we have that the total number of discovery agents is:

M = r′ +
3

2
C, (3.11)

where C is the number of cycles in the networks.

Thus, the average number of hops a mobile agent made to finish the topology discovery task

is:

E(N) =
H

M
=

l′

r′ + 3
2C

. (3.12)

Then, according to Equation (3.10) and (3.12), the average life span of a mobile agent in

the network shown in Figure 3.3 is,

E(TL) = E(N) · E(tk)
.
=

l′ · E(TC)

r′ + 3
2C

, (3.13)

where E(tk) can be approximated to E(TC) because tk, 1 ≤ k ≤ N − 1, is the cycle time of the

mobile agent except tN doesn’t include the travel time.
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Thus, we can estimate the total time TTD required to finish topology discovery. An upper

bound and a lower bound are given by the following inequality. Consequently, while the man-

agement station initiates the topology discovery task, it can estimate when the task will be

finished so that it can start to construct the topology based on the collected information.

E[TL] ≤ TTD ≤ E[M ] · E[TL]. (3.14)

The lower bound is given because the time of topology discovery must be greater than the

expected life span of a mobile agent. However, the time required by the topology discovery task

is less than the total life span of all the mobile agents.

3. Analysis on the life span distribution function

In order to describe the variable life span, we assume that the life span pdf is l(t), and denote

the Laplace transform of l(t) by L(s).

L(s) = E[e−sTL ]

=
∞∑

n=1

E[e−sTL |N = n]Pr(N = n)

=
∞∑

n=1

E[
N∏

k=1

e−stk |N = n]Pr(N = n)

=
∞∑

n=1

(C(s))n−1D(s)Pr(N = n), (3.15)

where, C(s) = E[e−stk ], 1 ≤ k ≤ N − 1 and D(s) = E[e−stN ] because tN is the dwell time of

the mobile agent when it visits the N -th host.

In the task of Internet topology discovery(ITD), a mobile agent encounters either a leaf

node or a non-leaf node by the algorithms proposed in Section 3.3.1. Suppose a mobile agent

encounters a leaf node with probability pI , and a non-leaf node with probability 1 − pI , in a

hop. As we have said, the mobile agent is terminated at leaf nodes. Therefore, the probability

that a mobile agent is terminated after the n-th hop is,

PrI [N = n] = (1 − pI)
n−1pI . (3.16)

In the task of multicast topology discovery(MTD), the nodes a mobile agent visits are either

internal un-visited routers or receivers because there isn’t cycle in multicast network. Assume

that pM is the probability of a mobile agent encountering a leaf node in each hop. So the

probability of a mobile agent that is terminated after the n-th host-visit in the MTD case is,

PrM [N = n] = (1 − pM )n−1pM . (3.17)
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Then L(s) can be obtained by replacing Pr in Equation (3.15) with PrI in Equation (3.16)

for ITD case and with PrM in Equation (3.17) for the MTD case respectively.

We can determine the pdf of life span distribution by inverse Laplace transform of L(s).

The mean and variance of the life span of a mobile agent are given as follows.

Lemma 10 The mean and variance of TL can be calculated by the following equations.

E[TL] = −dL(s)

s
|s=0, (3.18)

D[TL] =
∂2L(s)

∂s2
|s=0 − [

dL(s)

ds
|s=0]

2. (3.19)

Proof of Lemma 10 is identical to the proof of Lemma 9.

3.4.3 Report time distribution at the management station

Report time is defined as the time from the beginning of the topology discovery task to a

report generated by a mobile agent. The report time distribution can be applied to analyze the

interreport time distribution which will be discussed in Section 3.4.4.

The report time in persistent report case can be easily obtained which is a multiple of cycle

times. We mainly study the report time in the intermittent report case. The RN algorithm

for Internet topology discovery and the RL algorithm for both Internet and multicast network

topology discovery belong to this case. In the intermittent reporting case, the cycle time of

those mobile agents that don’t spawn report agents includes only mark time and travel time.

We assume that the report time of a mobile agent denoted by TR is the time from the

initiation of the topology task to the spawn of report agent observed at the management station.

Let TI be the time interval between two reports: TI = TR1 −TR2 , TR1 ≥ TR2 . Figure 3.4 shows

the relationship between TR and TI .

According to the model, no matter a mobile agent is generated early or late, TR is composed

of several cycle times and one dwell time. Then,

E[TR] = E[Report time from the beginning]

= E[t1 + t2 + . . . + tH−1 + tH ], (3.20)

where H is the total hops from the management station to the host that the report agent is

spawned. tH doesn’t include travel time.

We assume r(t) to be the pdf of the report time TR. Thus, the Laplace transform of r(t)

denoted by R(s) can be expressed by the following equation.

R(s) =
∞∑

n−1

E[e−stk |H = n] · Pr[H = n]. (3.21)
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Figure 3.4: Interreport time in intermittent reporting case

For RL and RN algorithms in the intermittent report case, the probability a mobile agent

reports at the H-th hop host from the root is given as follows. In the past H −1 hops itself and

its parent mobile agent haven’t generated any report agent. In the ITD case, we have assumed

that a mobile agent encounters a leaf node in a hop with probability pI . Suppose the mobile

agent encounters a “visited” node (caused by a cycle) with probability qI . Thus,

Pr[H = n] =





(1 − pM )H−1 · pM RL algorithm for MTD,

(1 − pI)
H−1 · pI RL algorithm for ITD,{

1 H = 1

qH−1
I · (1 − qI) H > 1

RN algorithm for ITD.

Then the pdf of intermittent interreport time distribution r(t) can be obtained by inverse

Laplace transform of R(s). The mean and variance of interreport time in the intermittent case

can be determined by the following Lemma.

Lemma 11 The mean and variance of the report time of any mobile agent TR can be calculated

by the following equations.

E[TR] = −dR(s)

s
|s=0, (3.22)

D[TR] =
∂2R(s)

∂s2
|s=0 − [

dR(s)

ds
|s=0]

2. (3.23)

The proof of Lemma 11 is similar to that of Lemma 9.

3.4.4 Interreport time distribution at the management station

Interreport time is defined as a random variable that describes the time interval between the

arrival time of the previous report and that of the next report at the management station
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as shown in Figure 3.4. Because the report time of each mobile agent follows the report

time distribution discussed above, we can analyze the distribution of interreport time at the

management station. Accordingly, we can measure the burden that each algorithm brings to

the management station based on the analysis.

As shown in Figure 3.4, we have that TI = TR1 − TR2 . Assume the pdf of interreport time

is i(t), it can be deduced by the pdf of the report time of any mobile agent r(t).

i(t) = r(t) ∗ r(−t). (3.24)

Then according to Equation (3.24), we can get the Laplace transform of i(t) denoted by

I(s):

I(s) = R(s) · R(−s). (3.25)

Similarly, we can determine the mean and variance of interreport time by the following

Lemma.

Lemma 12 The mean and variance of the interreport time at the management station can be

calculated by the following equations.

E[TI ] = −dI(s)

s
|s=0, (3.26)

D[TI ] =
∂2I(s)

∂s2
|s=0 − [

dI(s)

ds
|s=0]

2. (3.27)

Lemma 12 can be derived similarly to Lemma 9.

The RN algorithm for multicast topology discovery follows persistent report. In this case,

the time interval of two reports generated by the same mobile agent is one cycle time. The

interreport time observed at the management station also approximates to one cycle time if the

statuses of all links are similar. Denoting interreporting time in persistent report case by TP ,

we have

E[TP ] = E[TC ]. (3.28)

Obviously, the mean of the persistent interreport time is less than that of the intermittent

interreport time. From the interreport time point of view, we compare the burdens of these

two schemes to the management station in a given network in the next section.

3.4.5 Comparison between the RN and RL Algorithms

According to the above analysis, we can conclude that the RN algorithm reports more fre-

quently than the RL algorithm and thus brings heavier burden to the management station.

The management station has to spend more time in handling all the topology information.

However, the RL algorithm generates much fewer report agents, which results in less burden
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to the management station. Our experiments show that overall the RL algorithm brings less

burden to the management station and therefore is superior to the RN algorithm in this sense.

If considering system reliability, RN is better than RL because the network topology can still

be reconstructed even if some reports are lost. Figure 3.5 shows the superiority of the RL algo-

rithm to the RN algorithm. The given network topology is shown in Figure 3.5(a), where the

multicast membership is the receivers with big circles. The X-axis in Figure 3.5(b) describes

the unit time as one cycle time of a mobile agent.

(a) A given network.
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(b) Report number of different algorithms.

Figure 3.5: Comparison of burdens to the management station by different algorithms

However, the RN algorithm is more reliable than the RL algorithm in the event of heavy

congestion in the network. Because any lost information of one node can be extracted from

the information of its neighborhood in the RN algorithm. As to the RL algorithm, the lost

information of a node will cause unrecoverable loss for the topology reconstruction unless the

task of topology discovery is initialized again to search the lost nodes.

3.5 Concluding Remarks

Mobile agents based topology discovery algorithms for Internet and multicast networks have

been proposed in this chapter, which can construct the required network topology effectively.

The network model has been built for analyzing the statistical characteristics of the mobile

agents for topology discovery. In order to avoid the endless spawning of a mobile agent, the

management station may enforce the mobile agent to jump within a limited number of steps

by simply setting a timer inside the agent. Laplace transform and inverse laplace transform

are applied to analyze the behavior of mobile agents. According to the analytical results, we

can determine the mean, variance and distribution function of dwell time at a host, life span,

report time of a mobile agent and interreport time at the management station.
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Applying the proposed mobile agents based topology discovery algorithms to a given net-

work, we can obtain more practical performances of the mobile agents based on the analytical

results. For example, it has been estimated how long mobile agents need to collect all the

topology information to finish topology discovery. We have also compared the burdens on the

management station from the proposed algorithms in the network. It has been shown that the

report-at-newly-found-nodes algorithm is more costly from the point of view of the network

load and burden to the management station than the report-at-leaf-nodes algorithm, and is,

however, more reliable from the system model’s point of view. For the efficiency of the pro-

posed algorithms and the inherent advantages of mobile agents, it is promising to develop more

significant applications based on our methods and analytical results.
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Chapter 4

Topology Analysis in Wireless

Sensor Networks and Its

Applications

We study topology analysis in wireless sensor networks in this chapter. Because the topology

of wireless sensor networks changes less compared with other types of wireless networks such

as cellular networks and mobile ad hoc networks, it gives more significance to discover, main-

tain and employ the topology information of wireless sensor networks. Furthermore, because

the topology of wireless sensor networks (WSNs) can provide great help to network routing

and resource management, it motivates our study on the topology analysis for wireless sensor

networks and the routing algorithms development based on the topology information. In the

following sections, we first give some necessary background knowledge of WSNs, followed by a

description on some fundamental performance metrics of WSNs. Then we study some desirable

topology patterns which can provide both coverage for required area and connectivity between

all nodes deployed in WSNs. Based on the analytical results on these patterns, we develop the

route selection function-based routing protocols and the random walk routing protocol.

4.1 Preliminaries of Wireless Sensor Networks

The advancement in wireless communication and sensor technology is expediting the develop-

ment of WSNs, which have a wide range of environmental sensing applications such as danger

alarm, vehicle track, battle field surveillance, habitat monitor, etc. [5, 35]. A WSN consists of

hundreds to thousands of sensors and a base station. To gather information from the environ-

ment and deliver the processed messages to the base station, each sensor is capable of collecting,

storing, processing signal, and communicating with neighbors. The base station decides if an
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unusual or concerned event occurs in the sensing area after aggregation and analysis of the

messages from the sensors.

Similar to mobile ad-hoc networks (MANET), WSNs apply multi-hop communications

where the packets sent by the source node are relayed by several intermediate nodes before

reaching the destination node. However, they are significantly different in several aspects.

First, the communication mode of a WSN is mainly many-to-one, that is, multiple sensor nodes

send data to a base station or aggregation point in the network, whereas MANET support

communication between any pair of nodes. Second, unlike MANET, data collected by different

sensor nodes in a WSN might be the same and needs to be processed in the intermediate nodes.

Third, in most envisioned scenarios the sensor nodes are immobile and keep on sensing and

monitoring the area assigned beforehand until the system energy is exhausted. Finally, the

energy constraint is much more stringent in WSN than that in MANET because the communi-

cation devices handled by human users can be replaced or recharged relatively often in MANET,

whereas battery recharging or replacement is usually infeasible for a WSN because it’s often

deployed in hostile or inhospitable places. Thus, maintenance of unattended sensor nodes in a

WSN to lengthen the system lifetime becomes extremely important when deploying the WSN.

All of these properties of sensor networks, in turn, highlight one fundamental and important

issue, that is how to keep connected coverage in a WSN with as less power consumption in

routing as possible.

The connected-coverage problem is to achieve two goals when deploying sensor nodes: cov-

erage and connectivity [41]. Coverage is to ensure that the entire physical space of interest is

within the sensing range of at least one of the active sensors. Connectivity is to ensure that

all the sensor nodes can communicate with the base station by either single-hop or multi-hop

path. The connected-coverage problem in WSNs can easily be solved if the number of sensor

nodes and energy-constraint needn’t to be concerned. However, it is not possible to construct a

connected-coverage WSN without energy and economy concerns in practice. Energy-constraint,

instead, is extremely stringent in WSNs. Therefore, it is significant to study how to construct

a connected-coverage WSN while consuming as least energy as possible so as to maximize

the networking lifetime which is defined as the duration that the WSN provides satisfactory

performance on sensing and transmission.

Networking lifetime is directly affected by power consumption in the procedure of sensing,

communication and data processing. Since all the sensor nodes are battery-powered, it is

paramount to develop efficient methods to save energy. The existing work to save energy can

be classified into two categories. One is turning off or changing some nodes to sleep mode as

proposed in [20, 39, 61]. The other is minimizing sensing range and transmission range while

keeping connected coverage as proposed in [44, 51]. As will be discussed in later sections, we

address the issue of keeping connected coverage with power efficiency by studying the topology

patterns which is different from above methods. It minimizes the redundant overlapping among
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neighboring sensor nodes while keeps required connectivity with least sensor nodes alive to save

energy.

Our study is different from existing studies in either connectivity and coverage problems, or

in energy-efficiency routing protocol. It addresses all of these problems by performing topology

patterns analysis. WSNs in patterned topologies are assured to provide longer networking

lifetime than randomly deployed WSNs if the same number of sensor nodes is used in both

types of WSNs. We call these patterned topologies energy efficient topologies. They have

many significant applications in practice. For example, node placement in topology patterns

can efficiently save energy and achieve long networking lifetime in some scenarios where priori

node deployment for WSNs are possible, such as danger alarm and vehicle tracking. In such

cases, study on topology patterns can guide to construct WSNs with potentially more energy

saving and longer lifetime. It is also worth noting that patterned topologies can also instruct

to choose duty-on nodes to keep connected coverage in a WSN and put all other sensor nodes

in sleeping mode so as to avoid redundant overlapping area, save energy, and thus prolong

the networking lifetime [39]. Therefore, we begin with studying different patterned topologies

for WSNs and comparing their performance on different measures in the succeeding section.

Later on, we propose several routing protocols for WSNs with patterned topologies based on

different selection functions and compare their performance by simulation. This work provides

a supplement to [39] which only address how to save energy by choosing duty-on sensor nodes

based on patterned topologies. The proposed routing protocols require only local information,

which are different from DSAP in [54]. Our routing protocols can achieves energy efficiency

and perform in a simple and effective way. Followed by this piece of work, we propose the

random walk routing in WSNs with patterned topologies which is applicable in WSNs where

sensor nodes do not have capability of computation and comparison. By this routing protocol,

neighboring information exchanging does not required and less computation burden is given to

each sensor node, thus energy is further saved.

4.1.1 Modelling Connected-Coverage WSNs

A connected-coverage WSN is defined as a wireless sensor network that can guarantee coverage

of all the required region and connectivity among all sensor nodes in the WSN. We assume

the region of interest to be 2-dimensional. Assume the area of the region to be A. There are

N sensor nodes and one base station placed in the region. Each sensor node deployed in the

region can sense any event within the disk with radius rs centered at the sensor node. Each

sensor node can communicate with other sensor nodes whose Euclidean distance between them

is no more than rt, that is, nodes s1 and s2 can communicate with each other if their Euclidean

distance Ed(s1, s2) ≤ rt. Otherwise, they cannot. The sensing radius of a sensor node can be

either equal or unequal to its communication radius in the WSN.
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The sensing ability of each sensor node diminishes as distance increases. In [47], the sensing

ability at point y of sensor node si is assumed to be inversely proportional to Ed(si, y)k where

k is a sensor technology-dependent parameter. This characteristic of sensor nodes introduces

an important parameter, we call it sensing strength factor dmm, stating how well region A is

covered and sensed. If we define miniEd(si, y) as the distance of point y to its closest sensor

node, y ∈ A, then all points in A have a distance at most maxy∈AminiEd(si, y). We use dmm

to denote this distance:

dmm = maxy∈AminiEd(si, y).

Thus dmm is the maximum distance from any point to its closest sensor node. Usually a

WSN is required to be deployed with a particular sensing strength factor equal to dmm so that

distance from any point to its closest sensor node is no more than dmm to ensure coverage and

sensing strength. The less dmm is, the better each point is sensed in the WSN. In [49] and [10],

similar parameters can be found, but they were proposed for other applications.

The power consumption is another important parameter to measure how much energy dif-

ferent topology patterns can save for WSNs. Since each sensor node usually includes a sensing

unit, a processing unit, a transceiver unit and a power unit as modelled in [5], power consump-

tion can be divided into three domains: sensing, communication, and data processing. Of the

three domains, we are only concerned with the maximum energy spent by a sensor node in data

communication. This involves both power consumed in data transmission, denoted by Pt, and

in data reception, denoted by Pr. That is, the power consumed by a sensor node is Ps = Pt+Pr.

4.2 Patterned Topologies for Connected-coverage WSNs

As we have discussed in in [64], sensor nodes can be placed in hexagon, square, and triangle-

based topologies. In [39] strip-based topology has also been proposed to place nodes to construct

a connected-coverage topology for WSNs. We will discuss all these topology patterns in this

section and compare the performance of WSNs in different patterns. The case that the sensing

range of a sensor node equals to its transmission range is discussed in the comparison part. We

begin with additional sensing area analysis, followed by topology analysis for different coverage

schemes.

4.2.1 Analysis on additional sensing area

We define the new sensing area provided by adding a sensor node as the additional sensing area

of this node. The shadow area in Figure 4.1 is the additional sensing area of node j. We denote

it by SAj
. Let d be the distance between nodes i and j. Assume the sensing area of sensor

node i to be Si. Thus we can derive SAj
= Sj − Si ∩ Sj = πr2 − INTS(d), where INTS(d) is
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the intersection area of two circles covered by two nodes whose distance is d.

INTS(d) = 4

∫ r

d/2

√
r2 − x2dx (4.1)

When d > r, i and j cannot communicate with each other. If either i or j does not have any

else neighbor nodes, the sensor node will be isolated so that it cannot report any sensed event to

the base station. Thus, each sensor node in the network must keep at least one neighbor whose

distance from it is no more than r as Lemma 1 will give. Even if the additional sensing area

provided by j if d > r (d ≤ 2r) would be great, i and j need the third sensor node to cover both

of them, which in turn, results in the actual additional area of j being the additional area under

the condition d ≤ r. Therefore, the additional area of j is studied under d ≤ r. When d = r,

the additional area SAj
is the largest, which equals πr2 − INTS(d) = r2(π

3 +
√

3
2 ) ≈ 0.61πr2.

i j 

Figure 4.1: Additional area provided by sensor node j

Lemma 13 In order for a WSN to sense any abnormal event in its covered area, each sensor

node must have at least one neighbor node whose distance from it is no more than its commu-

nication range, i.e. d ≤ r.

We then work on how to deploy sensor nodes under the above constraint and cover as large

area as possible which may be in any shape. The simplest way is deploying sensor nodes in

a linear array, but it is only limited to a strip area to be covered. We have to find a general

approach to cover the area in any shape. Thus, the strips can be deployed into parallel array.

As we have derived, the additional sensing area by deploying a new sensor node is maximized

when d = r under the condition of their communication availability. In a linear array-deployed

network, assuming in horizontal direction, every two sensor nodes share a sensor node with

distance r to maintain communication. That is, each sensor node has two neighbors. To enable

the communication along vertical direction while maximize the coverage area, we set a sensor

node connecting every two strips. The most efficient way to keep vertical communication is

let this sensor node having three neighbors because the arc covered by a neighbor with largest

additional area is 2π/3. Thus, to maximize the coverage while minimize the number of sensor

nodes, deploying parallel strips and keeping a node connecting every two strips is the optimal

scheme. This scheme is clearly specified in Figure 4.2 of the next subsection.

83



4.2.2 WSNs with Strip-based Topology

To keep the connectivity of two sensor nodes, their distance should be no more than rt. To

maximize the coverage area sensed by use of a fixed number of sensor nodes, [39] proposes a

strip-based topology as in Figure 4.2. To compare it with other WSNs with different topologies,

we place the same number of sensor nodes (25) for all WSNs.

Figure 4.2: A WSN with strip-based topology

The strip-based WSN in Figure 4.2 clearly shows that sensor nodes 40, 41 and 42 connect

4 self-connected strips 00 − 05, 10 − 14, 20 − 25 and 30 − 34. By this way of node placement,

these sensor nodes construct a connected WSN with strip-based topology. The total number of

sensor nodes is 25. We assume node 05 to be the aggregation node.

4.2.3 WSNs with Hexagon-based Topology

In hexagon-based WSNs, each sensor node has three neighbor nodes located uniquely around

the node. Connecting all sensor nodes to their neighbor nodes obtains the minimum unit in the

shape of hexagon. Thus the WSN in this topology pattern is called the hexagon-based WSN.

The distances of the node to its neighbor nodes are all set to rt so that direct communication

is available between the node and its neighbor nodes, and each neighbor provides maximal

additional sensing area [64]. Figure 4.3 specifies a WSN with hexagon-based topology. The

number of deployed sensor nodes is 25 as above. We assume node 06 to be the aggregation

node which plays the role of aggregating the sensed information in the WSN and reporting to

the base station.
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Figure 4.3: A WSN with hexagon-based topology

4.2.4 WSNs with Square-based Topology

In square-based WSNs, each sensor node has four neighbor nodes located uniquely around the

node. Connecting all sensor nodes to their neighbor nodes obtains the minimum unit in the

shape of square. Thus the WSN in this topology pattern is called the square-based WSN. The

distances of the node to its neighbor nodes are set to rt. A WSN composed of 25 sensor nodes

is given in Figure 4.4. Node 04 is assumed to be the aggregation node.

Figure 4.4: A WSN with square-based topology

4.2.5 WSNs with Triangle-based Topology

In triangle-based WSNs, each sensor node has six neighbor nodes located uniquely around the

node. Connecting all sensor nodes to their neighbor nodes obtains the minimum unit in shape

of triangle. Thus the WSN in this topology pattern is called the triangle-based WSN. Same as

above, the distances of the node to its neighbor nodes are set to rt. Figure 4.5 is a triangle-based

WSN with 25 sensor nodes deployed. Node 04 is assumed to be the aggregation node.

In WSNs with triangle-based topology, we find that every point within the area is covered

by at least two sensor nodes. We call the reliability provided by such kind of node placement
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Figure 4.5: A WSN with triangle-based topology

2-reliability. A 2-reliability WSN can maintain its connected-coverage for any single sensor node

failure. When every point is covered by at least k sensor nodes, the sensor network is called

k-reliability. The WSNs with other patterned topologies are 1-reliability as we have discussed

in [64].

4.2.6 Performance Comparison

Given the same number of sensor nodes, we compare the above four types of patterned topologies

on coverage area, coverage density, sensing strength factor, reliability, node degree and energy

consumption. The coverage area is denoted by A as mentioned above. The coverage density

is the number of sensor nodes per area unit which can be obtained by D = N
A . The sensing

strength factor dmm is the maximal distance of a point to its closest sensor node as described in

Section 2. The value of k in k-reliability denotes how many sensor nodes each point in the WSN

is at least covered by. Node degree can be used to measure the resilience of a WSN because it

denotes how many routing neighbor options each sensor node can have. Energy consumption

is the most important measurement for routing protocol.

We assume rt = rs = r in all WSNs with four different topologies. For energy consumption

comparison, we fix the destination to be the aggregation node as designated above. The source

is fixed to be a node with distance 4r from the destination. In this case, the less the energy is

consumed, the better the topology pattern is.

We first calculate the coverage area by all WSNs with four different topologies. For triangle-

based WSNs, it’s easy to get the coverage area of each triangle is s4 =
√

3
4 r2. Each node is a

corner of six triangles. Each triangle has three corners. Thus N nodes approximately composes

2N triangles. The coverage area of triangle-based WSNs by N nodes can be approximate to

S4 =
√

3
2 Nr2. For square-based WSNs, the coverage area of each square is s� = r2. Each
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node is a corner of four squares. Each square has four corners. Thus N nodes approximately

composes N squares. The coverage area of square-based WSNs by N nodes is S� = Nr2.

Similarly, N nodes in hexagon-based WSNs composes approximately N
2 hexagons. The area of

each hexagon is s� = 3
√

3
2 r2, thus the coverage area of the hexagon-based WSN by N nodes

is approximate to S� = 3
√

3
4 Nr2. For strip-based WSNs, we assume each strip comprises M

nodes, thus the WSN has N
M strips in total. The distance between two neighboring strips is

(1 +
√

3
2 )r which can be easily calculated according to Figure 4.2. Thus the coverage area of

strip-based WSNs by N nodes can be approximate to S∼ = Mr · N
M (1 +

√
3

2 )r = (1 +
√

3
2 )Nr2.

The coverage density can accordingly be obtained by D = N
A . Therefore, the densities

of triangle (square, hexagon, strip) -based WSNs are D4 = 1.15
r2 , D� = 1

r2 , D� = 0.769
r2 ,

D∼ = 0.536
r2 . In [39], it has been proved that the density of nodes required by the optimal

topology (OPT) providing connected-coverage was dOPT ≥ 0.522
r2 . We can see the densities of

nodes in all topology patterns discussed in this report are greater than 0.522
r2 . We also note that

for a WSN with nodes being randomly deployed, [39] empirically obtained by simulation that

90% area will be connected and covered if the density of nodes is around 1.45
r2 . If the density of

nodes is less than 1.45
r2 , the fraction of connected-coverage area decreases abruptly for randomly

deployed WSNs. However, for WSNs with patterned topology, the densities can be less than
1.45
r2 (even half or 1

3 of 1.45
r2 ) and keep connected coverage as well. It is also worth noting that

WSNs in triangle-based topology provide 2-reliability with the density 1.15
r2 which is much less

than 1.45
r2 . Therefore, WSNs in patterned topologies can efficiently save the number of sensor

nodes and thus economy costs. It will be shown that WSNs in patterned topologies can also

have more energy-efficient routing protocol than randomly deployed WSNs.

The table in Figure 4.6 gives the results of these performances comparison.

Figure 4.6: Performance comparison among WSNs with different patterned topologies

From the table in Figure 4.6, we can see that strip-based topology provides maximal
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connected-coverage with the same number of sensor nodes and consumes least energy by the

routing protocol of flooding. WSNs in triangle-based topology provide the best reliability and

the best sensing strength while trading off total coverage area and energy consumption.

4.3 Route Selection Function-based Routing Protocols in Pat-

terned WSNs

We propose several routing protocols in this section. Different from Directional Source-Aware

Protocol (DSAP) [54] where each node must have the knowledge of global information of topol-

ogy, our routing protocols only require local information.

We define a route selection function f(h, s) for a sensor node to choose neighbor nodes when

routing the message back to the aggregation node. The function is determined by the hop count

value h of neighbor nodes and stream units s which has been sent by neighbor nodes. Here we

assume the stream sent by a sensor node can be measured by stream unit, thus s means how

many units have been sent by the sensor node. We denote the battery life of sensor node i by

bi.

We propose three approaches to route back the message for different aims. All of them are

based on the route selection function f(h, s) = αh + βs.

Approach 1: Maximize the total energy saving for WSNs, i.e., B =
∑

i bi: This can

be obtained by minimizing first the hop count value h when choosing next-hop neighbor

and then minimize s. In this case, α = 1, and β = σ, where σ is a small number which

approximates to 0.

Approach 2: Maximize the minimal battery life at all sensor nodes, i.e., minibi: This

can be obtained by minimizing first the stream units s of next-hop neighbor and then h.

In this case, α = σ, and β = 1.

Approach 3: Maximize networking lifetime by considering both total energy saving and

minimal battery life: This can be obtained by minimizing the sum of h and s. In this

case, α = 1, and β = 1.

We name the protocols as route selection function-based protocols. It works as follows:

1. Distance identification: The aggregation node floods the discovery message in the WSN

with a determined TTL value. Each sensor node records its distance from the aggregation

node by hop count. If a sensor node receives several broadcast messages, it records the

least value of hop count.
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2. Data collection: When a sensor node senses any abnormal event and needs to report the

event, it chooses a neighbor with minimized f(h, s) to route back the message.

Thus, our protocols with different route selection functions can achieve maximal total energy

saving, maximal individual node’s battery life, and maximal networking lifetime respectively.

Approach 1 achieves less transmission delay by trading off the networking lifetime. Approach 2,

instead, tries to prolong the networking lifetime by trading off transmission delay. By combining

the both measurements hop count and stream units together, the networking lifetime can be

maximized. The route selection function-based routing algorithm initiated by any node i is

given as follows: (Assume each node in the WSN has n neighbors.)

Step 1: For n neighbors

node i periodically inquires h and s from its neighbors and

update the information in its routing table;

Step 3: For j = 1 to n

Calculate fj(h, s) to get minjfj(h, s) and mark j = p as its

next-hop neighbor;

Step 4: Send message to node p;

Step 5: si = si + k //k is stream units.//

To compare the performance of our protocols, we simulate the square-based WSN with the

routing protocol for simplicity. We assume the networking lifetime is from the start to the time

that any node exhausts its power in the WSN since one node failure results in an unconnected

coverage for WSNs with square-based topology.
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Figure 4.7: Energy consumption and lifetime comparison among three approaches

From Figure 4.7, we can see that Approach 1 provides least network lifetime. Approach 2

gets a longer lifetime than approach 1 and, however, trades off much more energy consumption
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by choosing a longer path to the aggregation node in the WSN. Approach 3 can provide the

longest lifetime, which is almost as twice as that provided by Approach 1 because it tries to

find a shorter path and a next-hop neighbor with more energy in every step.

The routing protocol proposed above is compared with flooding protocol, DSAP and Power-

DSAP [54]. Figure 4.8 gives the comparison result.

Figure 4.8: Energy consumption and lifetime comparison among three approaches

In Figure 4.8, Pe and P ′
e are the extra energy consumed in the network initiation stage,

neighbor information maintenance and so on. They are much less than energy consumed in

sensing data aggregation. P ′
e < Pe because our routing protocol does not require global infor-

mation maintenance. Therefore, Figure 4.8 shows our routing protocol consumes less energy

than flooding, DSAP, and Power-DSAP in each message aggregation. Thus it’s potentially

energy efficient in routing for WSNs due to consideration of both hop count and stream unit.

4.4 Random walk routing protocol

In this section, we will discuss a more energy-efficient routing protocol, namely, random walk

routing protocol. It is especially developed for small-size data collection in WSNs.

Generally speaking, the sensed data are classified into three types: large-size data, mid-size

data, small-size data. Small-size data is defined to be in comparative size with the inquiry data

among neighboring nodes for choosing the next-hop neighbor. It is a beep-like message and

contains only several bits besides the header, destination and source ID information. Large-

size data are those complex data such as image. Mid-size data lies in the midst of small-size

and large-size. Most routing protocols are developed for mid-size data transmission. While

the family of Sensor Protocols for Information via Negotiation (SPIN) [37, 45] is especially

appropriate for large-size data transmission because it applies data negotiation before sending

the real large-size data. By avoiding redundant large-size data transmission, SPIN family can

save a lot of energy. When transmitting small-size data, flooding or other routing protocols

which do not have special constraints can be chosen as alternative protocols.
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The random walk routing protocol in this section is mainly proposed for small-size data

transmission in WSNs with patterned topologies. As mentioned above [64,69], deploying WSNs

in patterned topologies can help to efficiently save energy and achieve long networking lifetime

and thus have many applications in environment monitor, danger alarm and so on [64, 69].

In these applications, sensor nodes need report their status to the Base Station from time

to time by sending a short message. How to route these messages from sensor nodes to the

BS efficiently in these WSNs is a very important issue that we aim to solve. When the data

size is comparatively small with the query message between neighboring nodes, we find that

routing packets based on random walk can obtain significant performance improvement. We

thus propose the routing based on random walk, for which we just simply name as the random

walk routing. The main advantages of the random walk routing are listed as follows. First,

it does not require any location information which is needed in DSAP [54] developed also for

WSNs with patterned topologies. Second, the random walk routing achieves load balancing

property inherently for WSNs which is difficult for other routing protocols. Third, it is proved

that the random walk routing consumes the same amount of energy as the shortest path routing

in the scenarios where the message required to be sent to the BS is in comparatively small size

with the inquiry message between neighboring nodes. As we know, the shortest path routing,

if the shortest paths can be easily found in WSNs with global information, consumes the least

energy among all other protocols. Our random walk protocol can route the message successfully

by consuming the same amount of energy as the shortest path routing.

The idea of using random walk for routing has been proposed previously in [13] and [58].

Rumor routing in [13] applied random walk for its long-lived search agents in a randomly-

deployed architecture. With agents forwarded by random walk, the route passed by the agents

are recorded. Once there is a query interested in some event informed by some agents, the

query will go along the previously recorded path to withdraw the interested message. We

can see random walk in rumor routing is used in different architectures and goals from ours.

In [58], constrained random walk in grid was studied. It set the packet to choose the next-hop

neighbor only in the shortest path direction. And in the two directions of the shortest path, the

probability of forwarding in each direction is recalculated in every step so that the load balancing

is reached for multi-path routing. Our work in this paper is also different from [58] because

we do not constrain the direction and probability of random walk in each step. The packet in

our scheme does not need to calculate the probability of forwarding to different neighbors. The

behavior of the packets forwarding in our random walk is truly random in this sense. To the

best of our knowledge, our work is the first work that focuses on the random walk routing on

patterned topologies and analyzes the successful transmission probabilities.

In this section, we will further present a density-aware deployment scheme [63] for the

scenarios where the topology can be pre-deployed and the BS is fixed. The motivation comes

from the consideration that though the random walk routing provides load balancing in WSN
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with patterned topology, the nodes near the BS are inevitably under heavier burden than the

nodes far from the BS. Our density-aware deployment scheme aims to guarantee that the heavy-

load nodes do not affect the networking lifetime even if they are exhausted. In this way, the

networking lifetime is prolonged.

4.4.1 Description on The Random Walk Routing for WSNs

Reviewing three types of patterned topologies, hexagon-based topology provides maximal connected-

coverage with the same number of sensor nodes, WSNs in triangle-based topology provide the

best reliability and the best sensing strength while trading off total coverage area and energy

consumption and square-based topology provides the performance which lies in their midst

and the simplest architecture. Since routing packets based on random walk can achieve load

balancing in a network, we now present how to apply random walk to route packets in WSNs

with patterned topologies. For simplicity, we choose square topology to be the basic architec-

ture on which we devise the routing protocol with random walk as the first stage of this work.

We choose square-based WSNs is also because square-based architecture provides a moderate

performance in every aspect among WSNs with all the topologies as mentioned above.

In a WSN, the way for a sensor node to report an event to the base station (or the sink)

is usually forwarding a packet to a selected neighbor after communicating with all neighbors.

In the scenarios where the data required to be sent back is in small size such as danger alarm

system and abnormal determination system, the communication cost between each neighbor

pair for choosing the next-hop neighbor is comparative with that of transmitting the real data.

In square-based WSNs, each node needs to communicate with three neighbors before forwarding

the data. We assume that the communication cost between any neighbor pair for inquiry is the

same as the transmission cost of real data, and denote it to be one energy unit e. Therefore,

the total energy cost of routing the data from a node to its next-hop neighbor is four energy

units. In the square-based WSN as Figure 4.9 shows, the shortest path from the node 40 to the

sink 04 is eight hops. Then the energy cost of routing on the shortest path is 32 energy units.

Now let’s have a look at the energy cost if we apply routing with random walk on the

square-based WSNs. Routing with random walk is that when a node receives data, it just

randomly selects a neighbor and forwards the data. Since random walk routing does not

require communication before forwarding the data, the energy cost of transmission to a next-

hop neighbor is one energy unit. In order to analyze how the routing with random walk

performs in square-based WSNs and compare it with the shortest path routing, we analyze the

probability of the data being sent successfully within 8 hops (length of the shortest path), 32

hops and 40 hops respectively from node 40 to 04 in the WSN of Figure 4.9.

We assume two kinds of routing schemes with random walk. One is that a node selects a

neighbor node randomly among all its neighbors including the neighbor where the data came
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Figure 4.9: A WSN with square-based topology

from (Case 1). The other one is that a node selects a neighbor node randomly among all its

neighbors except the neighbor where the data came from (Case 2).

Case 1: Firstly we calculate the probability that a packet can be sent successfully from the

node 40 to 04 at 8 hops. It is obvious that the packet must be forwarded to the neighbor in

either right or up direction (we call correct direction) in order to reach the destination with 8

hops. If the packet is forwarded downward or leftward, we call it is in wrong direction. Since

the packet is forwarded to four neighbors randomly in Case 1, the probability of forwarding

packet in either right or wrong direction is 1
2 (we ignore the difference between the probabilities

of non-boundary nodes and boundary nodes in the grid for simplicity). At 8 hops in total,

the packet is forwarded 8 hops in correct direction and 0 hops in wrong direction, thus the

probability of successful transmission from node 40 to 04 is as follows:

P{d = 8} =

(
8

0

)
1

28
= 0.003906,

where d means the number of hops the packet is forwarded.

If the packet is forwarded one hop in wrong direction, the least number of hops the packet

requires to be sent back is 10 hops. Thus the number of hops of each packets from node 40 to

04 is d = 8 + 2 · i, i = 0, 1, 2, ·. Similar as above, with 10 hops in total, the packet is forwarded

9 hops in correct direction and 1 hops in wrong direction; with 12 hops in total, the packet

is forwarded 10 hops in correct direction and 2 hops in wrong direction; and so on. Thus the

probabilities of successful transmission at 10, 12, 14, . . ., 32, . . ., 40 hops are calculated as

follows:

P1{d = 10} =

(
10

1

)
1

29
· 1

2

.
= 0.009766,

P1{d = 12} =

(
12

2

)
1

210
· 1

22

.
= 0.016113,

P1{d = 14} =

(
14

3

)
1

211
· 1

23

.
= 0.022217,
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...

P1{d = 32} =

(
32

12

)
1

220
· 1

212

.
= 0.052571.

...

P1{d = 40} =

(
40

16

)
1

224
· 1

216

.
= 0.057164.

Thus, the probability of reaching destination at any given number of hops d is

P1{d = k + 2i} =

(
k + 2i

i

)
1

2k+2i
, i = 0, 1, 2, . . . (4.2)

where k is the number of hops in the shortest path routing. k = 8 for routing packets from

node 40 to 04 in our exampled WSN.

Summing up all above probabilities, we can obtain that the probability of successful trans-

mission within H hops is

P1{d ≤ H} =

H−k
2∑

i=0

(
k + 2i

i

)
1

2k+2i
. (4.3)

Therefore, within 32, 40 and 50 hops, the probabilities are calculated as follows:

P1{d ≤ 32} .
= 0.43279925, (4.4)

P1{d ≤ 40} .
= 0.65550625, (4.5)

P1{d ≤ 50} .
= 0.9502225. (4.6)

From above calculation, we can see that the probability of successful transmission increases

as the number of hops increases. Random walk routing of Case 1 can guarantee near half

packets to reach the destination with the same energy cost (4k) as the shortest path routing as

Equation (4.4) shows. Within 50 hops which is less than twice energy cost of the shortest path

routing, the random walk routing in Case 1 can provide more than 95% successful transmission.

Case 2: In Case 2, since the packet will not return to the neighbor where it comes from, the

node randomly select one neighbor in the other three neighbors. Without taking the boundary

of grid into account, we consider the probabilities of forwarding in correct direction and wrong

direction as follows. If a packet comes from left or down direction (correct direction in last hop),

the probability of forwarding the packet in correct (wrong) direction to next-hop neighbor is 2
3

(1
3). If a packet comes from right or up direction (wrong direction in last hop), the probability

of forwarding the packet in correct (wrong) to next-hop neighbor is 1
3 (2

3). Then the average

probability of forwarding a packet in correct (wrong) direction depends on the probability of

occurrence of forwarding packets in correct (wrong) direction. For example, in a 30-hop path
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where the packet is forwarded 19 hops in correct direction and 11 hops in wrong direction, the

average probability of forwarding a packet in correct direction can be estimated by 19
30 · 2

3 + 11
30 · 1

3 .

Similarly, the average probability of forwarding a packet in wrong direction can be estimated

by 19
30 · 1

3 + 11
30 · 2

3 . Thus, the probability of reaching destination with 30 hops for the WSN in

Figure 4.9 can be estimated by

P2{d = 30} =

(
30

11

)
· (19

30
· 2

3
+

11

30
· 1

3
)19 · (19

30
· 1

3
+

11

30
· 2

3
)11.

Thus we estimate the probability of forwarding a packet with k + 2i hops for Case 2 as

follows:

P2{d = k + 2i} =

(
k + 2i

i

)
· ( k + i

k + 2i
· 2

3
+

i

k + 2i
· 1

3
)k+i · ( k + i

k + 2i
· 1

3
+

i

k + 2i
· 2

3
)i, (4.7)

where k is the number of hops in the shortest path routing and i ≥ 0 is an integer.

P2{d ≤ H} =

H−k
2∑

i=0

(
k + 2i

i

)
· ( k + i

k + 2i
· 2

3
+

i

k + 2i
· 1

3
)k+i · ( k + i

k + 2i
· 1

3
+

i

k + 2i
· 2

3
)i. (4.8)

Comparing equations (6) and (1), we can easily prove ( k+i
k+2i · 2

3 + i
k+2i · 1

3)k+i ·( k+i
k+2i · 1

3 + i
k+2i ·

2
3)i > 1

2k+2i by inductive method. Thus, it is clear that the probability that the packet reaches

destination within H hops in Case 2 is greater than that in Case 1. For the exampled path in

Figure 4.9, the probabilities of reaching destination within 8, 24 and 32 hops are calculated as

follows.

P1{d ≤ 8} .
= 0.039018, (4.9)

P1{d ≤ 24} .
= 0.699459, (4.10)

P1{d ≤ 32} .
= 1.068195. (4.11)

It is found that to guarantee around 65% successful transmission probability, the random

walk routing in Case 2 set each packet to jump three times hops of the shortest path (3k = 24,

Equation (4.10)). However, to guarantee the similar successful transmission probability, random

walk routing in Case 1 requires each packet to jump five times hops of the shortest path (5k = 40,

Equation (4.6)). For random walk routing of Case 2, 100% successful transmission rate can be

guaranteed when setting the packet to jump four times hops of the shortest path as Equation

(4.11) shows. Here the estimated successful transmission probability is greater than 100%

because the difference of the probabilities of forwarding a packet in correct (wrong) direction

in boundary and interior area is ignored. For a large-scale square-based WSN, the bias brought

by the difference of boundary and interior area can be ignored.
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As we have mentioned before, the shortest path routing requires 4k energy cost where k

is the number of hops of the shortest path because each step it requires to communicate with

all neighboring nodes to choose the next-hop node. If we use the routing with random walk of

Case 2, the energy cost is also 4k because 100% successful transmission probability is provided

within 4k hops. For small-size data WSNs applications, flooding is also a popular routing

protocol in order to guarantee successful transmission. After calculation, we obtain that the

flooding protocol requires 2g(g − 1) energy cost in a WSN with grid size being g × g, g is

the number of sensor nodes in each edge. It is obvious that the flooding protocol consumes a

huge amount of energy when some sensor node requires to report the event, especially when

the WSN is in a large scale. However, the routing with random walk in Case 2 can guarantee

successful transmission with the same energy cost as the shortest path routing. Figure 4.10

compares the energy cost of these routing protocols by routing messages on the longest path in

the grid (k = 2(g−1)). Therefore, we can conclude that the routing with random walk achieves

significant performance improvement in not only energy cost but also in load balancing which

is not available for the shortest path routing.

Figure 4.10: Performance comparison on routing protocols

4.4.2 Density-Aware Topology Deployment

We have proved that the random walk routing can provide energy efficiency and load balancing

in square-based WSNs. However, if the sink (or aggregation node) is fixed, the simple topology

of grid cannot guarantee long lifetime for WSNs though the random walk routing has outper-

formed other protocols for load balancing. It is found the closer a sensor node is to the sink,

the faster its energy is consumed. This is because more packets are routed by these nodes to

reach the sink than by those nodes who are far from the sink. For any WSNs with fixed sinks,

this is the inevitable problem of designing the topology of WSNs. Therefore, we propose a

density-aware topology deployment scheme in this section which can solve this problem.

Density means the number of sensor nodes per unit area. The main idea of density-aware

topology deployment is to place more sensor nodes at the area which is closer to the sink
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and fewer sensor nodes at the area which is farther to the sink. Assume the size of grid is

N = g × g. The distance of each neighboring nodes pair is 1 unit. There are N · α messages

sensed by the sensor nodes during the period from the initiation to the time the WSN ends its

task. Here α is an estimation factor for the number of messages the WSN will generated in

total. We suppose the abnormal events exist uniformly in the whole area of the WSN. Suppose

the energy consumption of each message required to be sent is em and the battery life of each

sensor node is En. The distance from a sensor node to the sink is denoted by the number of

hops d. Assume the sink is located at any edge corner of the grid, then the density, denoted by

σ, at any point in grid should be set as follows:

σgrid =





d Nα·em

(1+d)·En
e d ≤ g

d Nα·em

(2g−d−1)·En
e d > g

,

where

α ∝





(g−1)2− 1
2
d2

(g−1)2
d ≤ g

1
2
(2(g−1)−d)2

(g−1)2
d > g

.

Here the number of sensor nodes which should be placed at each cross point in the grid is

given by σGrid. It is estimated according to the energy requirement at each place. Taking ceiling

is for satisfying the estimated maximal energy requirement by least number of sensor nodes.

Since the number of messages generated is assumed to be proportional to the area as above,

we set α to be proportional to the ratio of message-generated area to the whole area. Here the

message-generated area is defined as the area covered by the sensor node whose distances are

greater than d. The message generated in the message-generated area must be routed to the

sink via the nodes with the distance d to the sink.

Figure 4.11 gives an example for density-aware deployment in grid where the sink is node

04 and em = 1J , En = 10J .

Figure 4.11: Density-aware deployment for a WSN with square-based topology
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We can see that, in order to guarantee that nodes with heavier load distribution task do

not affect the networking lifetime after exhaustion, some supplementary sensor nodes at the

same location must be waken up to maintain the active WSN. In this way, the WSN can

provide longer networking lifetime. In Figure 4.11, the nearer a node is to the sink, the more

supplementary sensor nodes are provided.

If the sink is located at the center of the grid, the density σ is a little bit different from the

above formula.

σgrid = dNα · em

4d · En
e. (4.12)

Similarly, the density formula can be extended to triangle-based WSNs, hexagon-based

WSNs and WSNs with general topologies. Assume the sink is located at the center of the

WSN.

σtri = dNα · em

6d · En
e (4.13)

σhex = dNα · em

3d · En
e (4.14)

σgen ∝ dNα · em

d · En
e (4.15)

The above formulas show how to deploy the sensor nodes effectively and efficiently to provide

longer lifetime for WSNs. The deployment density depends on the distance from the sink. For

triangle-based WSNs, there are 6d nodes who take the task of routing messages generated in

the area covered by sensor nodes whose distances are greater than d. For hexagon-based WSNs,

there are 3d nodes who share to route messages generated in the area covered by sensor nodes

whose distances are greater than d. Similar to patterned topologies, for WSNs with general

topologies, a general formula can be deduced as Equation (4.15). By employing these formulas,

we can see that if the deployment of a sensor node can be made density-aware, the performance

of the WSN will be improved greatly.

Though this kind of pre-deployment may not be applicable in many scenarios, the formulas

can still be used to predict and evaluate the network performance. Also they can guide to

develop density-aware deployment protocols (or topology control scheme) in dynamic environ-

ment.

4.5 Concluding Remarks

This chapter has addressed how to deploy WSNs in patterned topologies which can provide the

required coverage area and the connectivity of all sensor nodes. We have discussed different
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patterned topologies for WSNs by theoretically analyzing their coverage area and comparing

the characteristics of WSNs in these topologies. It has been found that strip-based topology

provides the maximal connected coverage and consumes the least energy by flooding protocol,

whereas triangle-based topology reaches the best performance in reliability and sensing strength.

Square-based topology provides the simplest architecture and a moderate performance which

lies in their midst.

In WSNs with patterned topology, existing routing methods mainly adopt shortest path

routing with the knowledge of global location information. We have proposed several routing

protocols that require only local information and work in a simple and effective way to achieve

to achieve different performance goals. Our simulation results have shown that the networking

lifetime is maximized by selecting route based on both the length of route (hop count) and

the number of streams (stream unit) of the next-hop neighbor. Therefore, patterned WSNs

equipped with these routing protocols provide great promises and guarantee their potential

applications to meet different needs. We have observed through analysis and simulation that

our routing protocols can achieve desired performance goals by suitably taking into account of

local parameters (hop count and stream unit) in route selection. This interesting property will

also hold if our routing protocols are used in WSNs with random-deployed topology.

To achieve a better energy efficiency, particularly for small-size data transmissions, we have

proposed another protocol of applying random walk routing. This routing protocol does not

require any location information, neither the exchange information between neighboring nodes.

Moreover, it has an inherent property of load balancing which is difficult to achieve by other

routing protocols in WSNs. It has also been proved that random walk routing consumes the

same amount of energy as the shortest path routing when the message to be sent to the base

station is in comparatively small size to the inquiry message between neighboring nodes. This is

a usual case for sensor networks adopted in emergency treatment scenarios where sensor nodes

send beep-like short messages to the base station to report their status. Based on the regular

architectures and the random walk routing, we further proposed a density-aware deployment

scheme to guarantee a longer networking lifetime than other routing schemes for WSNs. The

density-aware deployment scheme avoids the impact of early energy exhaustion at heavy-load

nodes on the whole network’s lifetime. This kind of deployment can also be extended to general

WSNs and thus provides an alternative method for prolongation of networking lifetime.
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Chapter 5

Conclusion

The information of network topology is vital for routing, resource scheduling, flow control and

network management. This thesis presents new methods and techniques for network topology

discovery and its applications which were developed during my PhD research in JAIST. Our

main contributions can be summarized as follows:

Firstly, we studied network tomography for multicast network topology discovery. We pro-

posed two new topology inference algorithms which took the level information and hamming

distance of sequences on receipt/loss of probe packets maintained at each pair of nodes into

account. Both algorithms show impressively better performance than previous inference algo-

rithms based on the well-known A-approach in inference accuracy and efficiency. Based on the

discovered topology information, we further developed network internal loss performance infer-

ence schemes which simplified the inference procedure and improved efficiency of the previous

methods. The hamming distance matrix-based loss/delay performance inference approach was

also proposed as a generalized method for network internal performance inference.

Secondly, we developed a novel method of deploying mobile agents for network topology

discovery as a new application of mobile agents technology. Due to the inherent advantages of

mobile agents, mobile agent-based topology discovery algorithms have shown potential efficiency

and effectiveness. Two proposed algorithms, report-at-newly-found-nodes (RN) and report-

at-leaf-nodes (RL), exhibit own advantages and disadvantages for different types of networks

including Internet and multicast networks. This shows that they can be effectively applied

according to practical system requirements. However, as a general restriction to mobile agents

technology, the assumption that all entities must support the execution of mobile agent codes

may limit the application of mobile agent-based topology discovery algorithms in practice.

Thirdly, we studied topology deployment for wireless sensor networks (WSNs) and its appli-

cation in routing. We analyzed four types of patterned topologies in details, and compared the

performance of WSNs in different topology patterns. It has been shown that energy-efficiency,

reliability, and maximal connected coverage can be provided by different strategies of topol-
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ogy deployment for WSNs. Based on patterned topologies, we proposed two types of routing

protocols for various scenarios. Both of them require only local information, and work in a

simple and effective way to achieve different performance goals. The first protocol provides

a generalized method for selecting the next-hop neighbor by different functions on local pa-

rameters to achieve desired energy efficiency in total energy saving, battery life at individual

nodes, and networking lifetime respectively. Choice of route-selection functions is determined

by the requirements for particular applications. The second protocol uses the random walk

technique and applies mainly to WSNs in which the size of data in transmission is small. We

showed through quantitative analysis that random walk is a quite effective technique to achieve

energy-efficiency and load balancing.

Network topology discovery is a fast growing research area. Many new challenging problems

in this area will catch our attention along with the emergence of new types of networks and

applications. Below are some tasks for our future research, as extensions of the work reported

in this thesis:

• Hamming distance of sequences on receipt/loss of probe packets maintained at each pair

of nodes was proposed for the first time in this thesis for multicast-based tomography. It

has been observed to have more potential applications in detailed link delay performance

inference which will be studied further in the future.

• As the prevalent applications of mobile agents technology, we intend to validate our

proposed algorithms in a real mobile agent-based system and improve their performance.

We will also develop new mobile agent-based network topology discovery models and

methods to incorporate new network properties and application requirements.

• As wireless sensor networks are mainly application-driven, different applications may have

different requirements for energy-efficiency and reliability. To extend our work on this

line, we will concentrate on particular types of applications and develop new methods

and techniques to meet different requirements for energy-efficiency and reliability.

• Applying network topology discovery techniques to achieve better network security has

recently attracted an increasing attention. We plan to extend our developed network

topology inference methods and techniques for detection of potential intrusions and se-

curity holes by comparing a network’s topology and regional traffic status in the secured

(normal) state with the discovered ones. By analyzing a network’s topology, we can dis-

cover these weak components/areas in the network and thus take necessary means to

protect them from being attacked.

• Semantic web is an emerging research topic which has shown great promises in various

applications of Internet and web technology. We plan to explore the possibility of applying
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network topology discovery methods and techniques for semantic web topology discovery.

Such topologies will reveal the semantic relations among web access patterns and thus

provide valuable information for different kinds of web information analysis to improve

the quality of service.

102



Bibliography

[1] An atlas of cyberspace. http://www.geog.ucl.ac.jk/casa/martin/atlas/atlas.html, 1998.

[2] Caida mapnet viewer. http://www.caida.org/Tools/Mapnet/, 1998.

[3] Skitter. http://www.caida.org/tools/measurement/skitter, 1998.

[4] Otter. www.caida.org/tools/visualization/otter/, 1999.

[5] I.F. Akyildiz, Y. Sankarasubramaniam W. Su, and E. Cayirci. Wireless sensor networks:

A survey. Computer Networks, 38(4):393–422, 2002.

[6] Mikhail J. Atallah, editor. Algorithms and Theory of Computation Handbook. CRC Press

LLC, 1999.

[7] M. Baldi, S. Gai, and G.P. Picco. Exploiting code mobility in decentralized and flexible

network management. In Proc. of the 1997 1st International Workshop on Mobile Agents,

1997.

[8] B. Bellur and R. G. Ogier. A reliable, efficient topology broadcast protocol for dynamic

networks. In Proc. of IEEE INFOCOM, 1999.

[9] A. Bestavros, K. Harfoush, and J. Byers. Robust identification of shared losses using end-

to-end unicast probes. In Proc. of IEEE Internation Conference on Netowrk Protocols,

Osaka, Japan, Nov. 2000.

[10] Edoardo S. Biagioni and Galen Sasaki. Wireless sensor placement for reliable and efficient

data collection. In Proc. of the 36th Hawaii International Conference on System Sciences

(HICSS), 2003.

[11] A. Bieszczad, B. Pagurek, and T. White. Java-based intelligent mobile agents for open sys-

tem management. In IEEE the 9th IEEE International Conference on Tools with Artificial

Intelligentce, pages 492–501, 1997.

103



[12] A. Bieszczad, B. Pagurek, and T. White. Mobile agents for network management. IEEE

Communications Surveys, 1:2–9, 1998.

[13] D. Braginsky and D. Estrin. Roumor routing algorithm for sensor networks. In Proc. of

the First Workshop on Sensor Networks and Applications (WSNA), 2002.

[14] Y. Breitbart, M. Garofalakis, Ben Jai, C. Martin, R. Rastogi, and A. Silberschatz. Topology

discovery in heterogeneous ip networks: The netinventory system. IEEE/ACM Transac-

tions on Networking, 12:401–414, 2004.

[15] Y. Breitbart, M. Garofalakis, C. Martin, R. Rastogi, S. Seshadri, and A. Silberschatz.

Topology discovery in heterogeneous ip networks. In Proc. of IEEE INFOCOM, pages

265–274, 2000.

[16] R. Caceres, N. G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. Loss based inference

of multicast network topology. In Proc. of IEEE Conference on Decision and Control,

Phoenix, AZ, 1999.

[17] R. Caceres, N. G. Duffield, J. Horowitz, and D. Towsley. Multicast-based inference of

network-internal loss characteristics. IEEE Trans. on Information Theory, 45(7):2462–

2480, 1999.

[18] M. Cardei and J. Wu. Coverage in wireless sensor networks. Handbook of Sensor Networks,

2004.

[19] Rui Castro, Mark Coates, and Robert Nowak. Maximum likelihood identification from end-

to-end measurements. In Proc. of DIMACS Workshop on Internet Measurement, Mapping

and Modeling, DIMACS Center, Rutgers University, Piscataway, New Jersey, February

2002.

[20] Alberto Cerpa and Deborah Estrin. Ascent: Adaptive self-configuring sensor networks

topologies. In Proc. of INFOCOM, 2002.

[21] Ranveer Chandra, Christof Fetzer, and Karin Hogstedt. Adaptive topology discovery in

hybrid wireless networks. Informatics, 2002.

[22] W. Chen, N. Jain, and S. Singh. Anmp: Ad hoc network management protocol. IEEE

Journal on Selected Areas in Communications, 17(8):1506–1531, 1999.

[23] Romit Roy Choudhury, Somprakash Bandyopadhyay, and Krishna Paul. Topology dis-

covery in ad hoc wireless networks using mobile agents. In Proceedings of the Second

International Workshop on Mobile Agents for Telecommunication Applications, pages 1–

16, 2000.

104



[24] M. Coates and R. Nowak. Network loss inference using unicast end-to-end measurement.

In ITC Seminar on IP Traffic: Measurement and Modelling, Monterey, CA, 2000.

[25] M. J. Coates, A. O. Hero, R. Nowak, and B. Yu. Internet tomography. IEEE Signal

Processing Magazing, 19(3):47–65, May 2002.

[26] Mark Coates, Rui Castro, and Robert Nowak. Maximum likelihood network topology

identification from edge-based unicast measurements. In ACM sigmetrics, 2002.

[27] Mark Coates, Rui Castro, Robert Nowak, Manik Gadhiok, Ryan King, and Yolanda Tsang.

Maximum likelihood network topology identification from edge-based unicast measure-

ments. In Proc. of SIGMETRICS, Marina Del Rey, California, 2002.

[28] N. Dawes, D. Schenkel, and M. Slavitch. Method of determining the topology of a network

objects. U.S. Patent 6411997, 25 June 2002.

[29] B. Deb, S. Bhatangar, and B. Nath. A topology discovery algorithm for sensor networks

with applications to network management. In Proc. of IEEE CAS Workshop on Wireless

Communications and Networking, 2002.

[30] N. G. Duffield, J. Horowitz, F. Lo Presti, and D. Towsley. Multicast topology inference

from measured end-to-end loss. IEEE Trans. on Information Theory, 48(1):26–45, 2002.

[31] N. G. Duffield and F. Fo Presti. Multicast inference of packet delay variance at interior

network links. In Proc. of IEEE INFOCOM, pages 1351–1360, Tel Aviv, Israel, 2000.

[32] N. G. Duffield, F. Lo Presti, V. Paxson, and D. Towsley. Inferring link loss using striped

unicast probes. In Proc. of IEEE INFOCOM 2001, Anchorage, Alaska, April 2001.

[33] N.G. Duffield, J. Horowitz, and F. Lo Presti. Adaptive multicast topology inference. In

Proc. of IEEE INFOCOM, pages 1636–1645, Anchorage, Alaska USA, April 2001.

[34] N.G. Duffield, J. Horowitz, F.Lo Presti, and D. Towsley. Multicast topology inference

from end-to-end measurements. ITC Seminar on IP Traffic Measurement, Modeling and

Management, Monterey, CA, Sept. 2000.

[35] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scalable

coordination in sensor networks. In Proc. of ACM MobiCom, 1999.

[36] R. Govindan and H. Tangmunarunkit. Heuristics for internet map discovery. In Proc. of

IEEE INFOCOM, pages 1371–1380, 2000.

105



[37] W. Heinzelman, J. Kulik, and H. Balakrishnan. Adaptive protocols for information dissem-

ination in wireless sensor networks. In Proc. of 5th ACM/IEEE MobiCom, pages 174–185,

1999.

[38] Chi-Fu Huang and Yu-Chee Tseng. The coverage problem in a wireless sensor network.

In Proc. of ACM Int’l Workshop on Wireless Sensor Networks and Applications(WSNA),

2003.

[39] Rajagopal Iyengar, Koushik Kar, and Suman Banerjee. Low-coordination topologies for

redundancy in sensor networks. In Proc. of Mobihoc, 2005.

[40] P. Jacquet, P. Muhlethaler, A. Qayyum, A. Laouiti, L. Viennot, and T. Clausen. Optimized

link state routing protocol. Technical report, www.ietf.org/rfc/rfc3626.txt, 2001.

[41] Koushik Kar and Suman Banerjee. Node placement for connected coverage in sensor

networks. In Proc. of WiOpt, 2003.

[42] S-H. Kim and T.G. Robertazzi. Mobile agent modeling. Technical report, University at

Stony Brook, College of Engineering and Applied Science, 2000.

[43] H. Ku, G. W. R. Luderer, and B. Subbiah. An intelligent mobile agent framework for

distributed network management. In Proc. IEEE GLOBECOM’97, pages 160–164, 1997.

[44] Martin Kubisch, Holger Karl, Adam Wolisz, and Lizhi Charlie Zhong andJan Rabaey.

Distributed algorithms for transmission power control in wireless sensor networks. In

Proc. of IEEE Wireless Communicationsand Networking Conference (WCNC), 2003.

[45] J. Kulik, W. Heinzelman, and H. Balakrishnan. Negotiation-based protocols for dissemi-

nating information in wireless sensor networks. Wireless Networks, 8:169–185, 2002.

[46] Jangwon Lee and Gustavo de Veciana. Resource and topology discovery for ip multicast

using a fan-out decrement mechanism. In Proc. of IEEE INFOCOM, pages 1627–1635,

Anchorage, Alaska USA, 2001.

[47] Xiang-Yang Li, Peng-Jun Wan, and Ophir Frieder. Coverage in wireless ad-hoc sensor

networks. In Proc. of IEEE ICC, 2002.

[48] Hwa-Chun Lin and Chien-Hsing Wang. Automatic topology discovery using mobile agents.

In The International Workshop on Agent Technologies over Internet Applications, 2001.

[49] Seapahn Meguerdichian, Farinaz Koushanfar, Miodrag Potkonjak, and Mani B. Srivastava.

Coverage problems in wireless ad-hoc sensor networks. In Proc. of IEEE INFOCOM, 2001.

106



[50] N. Minar, K. H. Kramer, and P. Maes. Cooperating mobile agents for mapping networks.

In Proc. of the 1st Hungarian National Conference on Agent Based Computing, 1998.

[51] Jianping Pan, Y. Thomas Hou, Lin Cai, Yi Shi, and Sherman X. Shen. Topology control

for wireless sensor networks. In Proc. of MobiCom, 2003.

[52] Vu Anh Pham and Ahmed Karmouch. Mobile software agents: An overview. IEEE

Communications Magazine, pages 26–37, 1998.

[53] A. Sahai. Toward distributed and dynamic network management. In Proc. of the

IEEE/IFIP Network Operations and Management Symposium (NOMS’98), pages 455–464,

1998.

[54] Ayad Salhieh, Jennifer Weinmann, Manish Kochhal, and Loren Schwiebert. Power efficient

topologies for wireless sensor networks. In Proc. of Int’l Conf. on Parrallel Processing, 2001.

[55] D. Schenkel, M. Slavitch, and N. Dawes. Method of determining topology of a network of

objects which compares the similarity of the traffic sequences/volumes of a pair of devices.

U.S. Patent 2926462, 20 July 1999.

[56] C. Schramm, A. Bieszczad, and B. Pagurek. Application-oriented network modeling with

mobile agents. In Proc. of the IEEE/IFIP Network Operations and Management Sympo-

sium (NOMS’98), 1998.

[57] Curt Schurgers, Vlasios Tsiatsis, Saurabh Ganeriwal, and Mani B. Srivastava. Topology

management for sensor networks: Exploiting latency and density. In Proc. of MobiCOM,

2001.

[58] S. Servetto and G. Barrenechea. Constrained random walks on random graphs; routing

algorithms for large scale wireless sensor networks. In Proc. of 1st ACM International

Workshop on Wireless Sensor Networks and Applications, 2002.

[59] G. Shao, F. Berman, and R. Wolski. Using effective network views to promote distributed

application perfoormance. In Proc. of Int. conf. Parallel and Distributed Processing Tech-

niques and Applications, pages 2649–2656, 1999.

[60] R. Siamwalla, R. Sharma, and S. Keshav. Discovering internet topology. Technical report,

Cornell University, 1999.

[61] Di Tian and Nicolas D. Georgannas. A coverage-preserving node scheduling scheme for

large wireless sensor networks. In Proc. of ACM Int’l Workshop on Wireless Sensor Net-

works and Applications(WSNA), 2002.

107



[62] Hui Tian and Changxing Pei. An improved algorithm of network topology discovery. Radio

Engineering of China, 2002.

[63] Hui Tian and Hong Shen. Random walk routing for wireless sensor network. In The

Sixth International Conference on Parallel and Distributed Computing, Applications and

Technologies (PDCAT’04), Dalian, China.

[64] Hui Tian and Hong Shen. An optimal coverage scheme for wireless sensor networks. In

Proc. of International Conference on Networking, pages 722–730, 2005.

[65] Hui Tian and Hong Shen. An improved algorithm of multicast topology inference from

end-to-end measurements. International Journal of Communication Systems, 2005 (ac-

cepted). Preliminary version partially in Proc. of the 5th Int’l Symp. on High Performance

Computing ISHPC-V, Tokyo, Oct. 2003, 376-384.

[66] Hui Tian and Hong Shen. Analysis on binary loss tree classification with hop count for

multicast topology discovery. In Proc. of IEEE CCNC’04, Las Vegas, USA, Jan. 2004.

[67] Hui Tian and Hong Shen. Hamming distance and hop count based multicast network

topology inference. In Proc. of IEEE AINA’2005, pages 267–272, Taiwan, China, March,

2005.

[68] Hui Tian and Hong Shen. Mobile agents based topology discovery algorithms and mod-

elling. In Proceedings of ISPAN’04, pages 502–507, Hongkong, China, May. 2004.

[69] Hui Tian, Hong Shen, and Teruo Matsuzawa. Developing energy-efficient topologies and

routing for wireless sensor networks. In Proc. of IFIP International Conference on Network

and Parallel Computing, Dec. 2005.

[70] K. Tutschku and H. Baier. Characterizing network performance for enterprise networks.

In Proc. of Passive and Active Measurements (PAM), 2001.

[71] San Diego University of Califoria. Wireless topology discovery.

http://ramp.ucsd.edu/wtd/wtd.html.

[72] Y. Vardi. Network tomography: estimating source-destination traffic intensities from link

data. Journal of the American Statistical Association, 91:365–377, 1996.

[73] T. White, B. Pagurek, A. Bieszczad, G. Sugar, and X. Tran. Intelligent network modeling

using mobile agents. In Proc. of the IEEE GLOBECOM’98), 1998.

[74] Beau Williamson. Developing IP Multicast Networks. Cisco Press, 2001.

108



[75] M. Zapf, K. Herrmann, and K. Geihs. Decentralized snmp management with mobile agents.

In Proc. of the IEEE /IFIP International Symposium on Integrated Network Management

(IM’99), 1999.

109



Publications

1. Hui Tian and Hong Shen, “Multicast Based Inference for Topology and Network-Internal

Loss Performance from End-to-end Measurements”, accepted by Computer Communica-

tions, Elsevier, Dec. 2005.

2. Hui Tian and Hong Shen, “An improved algorithm of multicast topology inference from

end-to-end measurements”, accepted by International Journal of Communication Sys-

tems, John Wiley & Sons, Oct. 2005.

3. Hui Tian, Hong Shen and Teruo Matsuzawa, “Random Walk Routing for Wireless Sensor

Networks”, International Journal of Computer Science and Network Security, accepted,

2005.

4. Hui Tian, Hong Shen and Teruo Matsuzawa, “Energy-Efficient Topologies and Routing

for Wireless Sensor Networks”, GESTS International Transaction on Computer Science

and Engineering, No.1, Vol.8, pp. 79-89, May 2005.

5. Hui Tian and Hong Shen, “Multicast Topology Inference and Its Applications”, to appear

in Handbook of Approximation Algorithms and Metaheuristics, Taylor & Francis Books

(CRC Press), 2006.

6. Hui Tian, Hong Shen and Teruo Matsuzawa, “Developing Energy-Efficient Topology and

Routing in Wireless Sensor Network”, Lecture Notes of Computer Science (Proc. of 2005

IFIP Int. Conf. on Network and Parallel Computing, Beijing, Dec. 2005), Springer-

Verlag.

7. Hui Tian, Hong Shen and Teruo Matsuzawa, “Random Walk Routing in Wireless Sensor

Networks”, Proc. Of 2005 International Conference on Parallel and Distributed Com-

puting, Applications and Technologies (PDCAT’05), Dalian, China, Dec. 2005, IEEE

press.

8. Hui Tian and Hong Shen, “Discover multicast network internal characteristics based on

hamming distance, Proc. of 2005 IEEE International Conference on Communications

(ICC’05), Seoul, Korea, May 2005, CD-ROM, IEEE press.

110



9. Hui Tian and Hong Shen, “An optimal coverage scheme for wireless sensor network”,

Lecture Notes of Computer Science, Vol. 3420 (Proc. of 2005 International Conference on

Networks (ICN’05), Reunion Island, France, April 2005), pp. 722-730, Springer-Verlag.

10. Hui Tian and Hong Shen, “Hamming distance and hop count based classification for mul-

ticast network topology inference”, Proc. of Proc. of IEEE 19th International Conference

on Advanced Information Networking and Applications (AINA’05), Taiwan, China, pp.

267-272, March 2005, IEEE press.

11. Hui Tian and Hong Shen, “Lossy link identification for multicast network”, Lecture Notes

of Computer Science, Vol. 3320 (Proc. of The Fifth International Conference on Parallel

and Distributed Computing, Applications and Technologies (PDCAT’04), Singapore, Dec.

2004), pp.416-419, Springer-Verlag.

12. Hui Tian and Hong Shen, “Multicast-based inference of network-internal loss perfor-

mance”, Proc. of 2004 International Symposium on Parallel Architectures, Algorithms

and Networks (I-SPAN’04), Hongkong, China, pp.288-293, May 2004, IEEE press.

13. Hui Tian and Hong Shen, “Mobile agents based topology discovery algorithms and mod-

elling”, Proc. of 2004 International Symposium on Parallel Architectures, Algorithms and

Networks (I-SPAN’04), Hong Kong, China, pp.502-507, May 2004, IEEE press.

14. Hui Tian and Hong Shen, “Analysis on binary loss tree classification with hop count

for multicast topology discovery”, Proc. of 2004 IEEE Consumer Communications and

Networking Conference (CCNC’04), Las Vegas, USA, Jan. 2004, CD-ROM, IEEE press.

15. Hui Tian and Hong Shen, “An improved algorithm of multicast topology inference from

end-to-end measurements”, Lecture Notes of Computer Science, Vol. 2858 (Proc. of

The Fifth International Symposium on High Performance Computing (ISHPC-V), Tokyo,

Japan, Oct. 2003), pp.376-384, Springer-Verlag.

111


