
Japan Advanced Institute of Science and Technology

JAIST Repository
https://dspace.jaist.ac.jp/

Title CafeOBJを用いた在庫管理問題の記述と評価

Author(s) 坂本, 淳誌

Citation

Issue Date 2011-03

Type Thesis or Dissertation

Text version author

URL http://hdl.handle.net/10119/9746

Rights

Description Supervisor:緒方和博, 情報科学研究科, 修士



Description of an inventory management problem

in CafeOBJ and assessment

Atsushi Sakamoto (s0810027)

School of Information Science,
Japan Advanced Institute of Science and Technology

February 8, 2010

Keywords: Formal Method, CafeOBJ, Rapid prototyping, C, inventory management
problem.

In the field of software development, many problems have occurred on the specifica-
tion. As their measures, developers are interested in formal methods. The methods are
a mathematical and logical technique to write rigorous specifications of systems and for-
mally analyze such specifications, leading to high quality systems. As a case study of
formal methods, FeliCa IC chip firmware can be mentioned. FeliCa is used in a very large
area. For example, it is used as electronic cash, tickets and passes for public transporta-
tion, credit card, door key, and the identification card. This is beacese these areas cannot
tolerate any small faults. To embed FeliCa in mobile phone without trouble, the devel-
oper wrote and tested the mobile FeliCa specification using a formal methods language,
VDM++. Then, they created a FeliCa IC chip firmware based on the specificatin. In
the investigation after creating this firmware, they reported that there were few troubles
related to the specification. CafeOBJ is a formal methods language as VDM++, and it
is an executable language based on algebra. But so far any serious programs have not
been written based on CafeOBJ specifications. In this paper, we do rapid prototyping of
a system using CafeOBJ. Then, we create a program of the system using the rapid pro-
totyping as a specification, and we review and consider the obtained effect and impact.
Rapid prototyping is a technique to solve problems in programming languages. Rapid
prototyping makes it possible to clarify the request, the detailed, the design, and more in
development. Therefore, it allows to discuss specifications of systems at earlier states of
the developments and write programs that conforms to the clients’ requirements.
This paper uses the inventory management problem as an example. The inventory man-

agement problem was raised in Information Processing Society, and is a problem with the
program design techniques. The purpose of this problem is to clarify the differences and
effects of new programming techniques by solving a common programming problem with
such techniques, so this problem has been studied a lot as a program design techniques.
But most of these studies are either to write a specification of problem or to do rapid pro-
totyping of the problem in a programming language. We should not only design a system
solving this problem and describe the design in a specification language, but also write a
program based on the design (or the specification) in a real programming language. By

Copyright c⃝ 2011 by Atsushi Sakamoto

1



describing a specification of a system to solve the problem based on the requirements in
CafeOBJ and writing a program based on the specification in a programming language
in this study, CafeOBJ is assessed in terms of its effects to system development. We
have selected the C programming language as our implementation language because the
language is used in various fields.
Before we write the specification in CafeOBJ, we must have a deep understanding of

the requirements of the inventory management problem. In our study, we used UML class
diagrams and activity diagrams to clarify what data structures and procedures should be
used for the inventory management problem.
we wrote a specification of a system to solve the problem in CafeOBJ based on the UML

diagrams. As a result, when we were writing specifications in CafeOBJ, we noticed that
the activity diagrams should have been changed. This change is reasonable for writing
a programs of the system but we did notice it when we wrote the activity diagrams.
This experiment demonstrates that writing specifications in CafeOBJ lets us make better
understanding of the problem.
Then, we wrote a program to manage the inventory problem in C based on the CafeOBJ

specification. We have come up with a set of transformation rules to systematically
transform CafeOBJ specifications to C programs. We have proposed three transformation
rules: the use of linear lists, handling function and modules, and data syntax. We used
the transformation rules to write programs in C.
We noticed six effects and problems on how CafeOBJ affects program developments

from the experiment. First, writing a specification of a system in CafeOBJ lets us under-
stand the system better. When we made activity diagrams before writing specifications
in CafeOBJ, we use two different functions to treat the situations when a receptionist re-
ceives a request sheet and a cargo sheet, respectively. However, when we were writing the
CafeOBJ specification, we noticed that we can combine the two functions as one function.
In this case, we could not notice it before writing specifications. Second, parameterized
modules can be used in CafeOBJ and can be instantiated with other modules that cor-
respond to more concrete data types. For example, generic lists can be described as a
parameterized module and can be instantiated with module Nat, producing lists of nat-
ural numbers. On the other hand, C is not equipped with this functionality. Hence, each
instantiated module should be written in C. Third, the module should not be fragmented.
C++, Java and other programming languages are equipped with modules and classes.
Thus, we do not fragment modules and should write some functions together. Fourth, the
variable name should be made to the name meaning. Names given to variables used in the
CafeOBJ specification written in this experiment do not have meaning. However, vari-
ables are given meaningful names, we can constrain the variable and argument names used
in function and it also can be more precisely specified. Fifth, it is worth following some
conventions to write programs. In the field of development, function and variable names
often have to decide on the usage of capitalization rules. Most programming languages
distinguish capital letters from small letters and then, for example, a variable whose name
is ”foo” is different from a variable whose name is ”Foo”. So we should write specifications
in CafeOBJ by following some naming rules. Finally, when a program is written based on
a specification, some subsidiary functions may have to be made. CafeOBJ specifications
do not need to have such subsidiary functions, but C may need. For example, CafeOBJ

2



automatically shows results on the display. On the other hand C only calculates, but
does not show the results on the console. We also need to consider other things like file
operations. In this case, before we write the CafeOBJ specifications, we should consider
those things during the problem definition.
In conclusion, it is worth writing a specification of a system to be developed in CafeOBJ,

leading better understanding of the system, but it is necessary to come up with some rules
to write specifications in CafeOBJ to write better specifications. One piece of our future
work is to conduct more case studies to confirm our results obtained from the experiment
and to obtain more skills and knowledge on specification in CafeOBJ.

3


