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Abstract - To achieve biologically inspired robot control conditions. He also investigated the mutual inhibition
architectures based on neural oscillator networks, goal-directed networks to control the frequency and pattern in the neural
imitation is addressed with respect to the problem of motion rhythm generator [2]. Taga [3] researched the entrainment
generation. It would be desirable to easily acquire appropriate properties between the rhythmic oscillation of the neural
motion patterns for skill learning between dissimilar bodies to oscillator and the rhythmic locomotion of a musculo-skeletalattain the goal of the demonstrated motion. This requires neural
oscillator networks to adapt to the non-periodic nature of system Katayama et al. [4] addressed a nonlinear neural
arbitrary input patterns exploiting their entrainment properties. model with the harmonic balance method to design desired
However, even in the most widely-used Matsuoka oscillator, output patterns. Cao et al. [5] proposed the genetic algorithm
when an unknown quasi-periodic or non-periodic signal is based method to build up desired neural oscillator networks.
applied, its output signal is not always closely entrained. Williamson [6] presented the neuro-mechanical system, where
Therefore, current neural oscillator models may not be applied to the artificial neural oscillator was coupled with the physical
the proposed goal-directed imitation for skill learning. To solve
this problem, a supplementary term is newly included in the arm, an appleieutodrobo arm ctontl. Aehniou[7] suggested
equation of Matsuoka oscillator. We verify general properties of the multiple-input descrinbmg function technique to evaluate
the proposed model of the neural oscillator and illustrate in and design anonlinear system based on the neural oscillator.
particular its enhanced entrainment by numerical simulation. We In this paper, the entrainment-enhanced neural oscillator
also show the possibility of controlling dynamic responses of (EENO) is proposed to improve existing neural oscillators. In
oscillator-coupled mechanical systems. Technical implications of order to make the EENO adapt to a quasi-periodic or non-
the results are discussed. periodic input as closely as possible, a new term is added in

Index Terms - Biologically inspired control, Neural oscillator, the well-known mathematical model for the NO. The EENO
Entrainment, Imitation learning, Self-adjusting adaptor can be expected to be used for imitation learning between

dissimilar robots that requires redesign of the perceived
I. INTRODUCTION demonstrated behavior by the imitator robot. The modified

Mosywell with inherent behavior accommodates different kinematics and dynamics of
Mosthmic anm alemes locomote perdiffernctly in their sensors

the imitator and demonstrator robots. In the following section,rhythmic movements in spite of differences in their sensors
and actuators. It is known that these rhythmic movements are we briefly describe the concept of goal-directed imitation. In

generated by central pattern generators (CPGs) in the spinal Section III, we address the difference between the NINO and
cord. Employing CPGs, that are neural networks producing the proposed EENO. The detailed properties of both oscillator
rhythmic patterned outputs, we can realize the artificial models are discussed in Section IV. Details of dynamic
nervous system for controlling locomotion in various types of responses of both models coupled to a simple mechanical
legged robots. Across different groups of animals, entrainment system are discussed in Section V and conclusions are drawn
plays a key role to adapt the nervous system to the natural in Section V.
frequency of the musculoskeletal system. This paper proposes
a new model of artificial neural oscillator as a CPG featuring II. GOAL-DIRECTED IMITATION FOR SKILL LEARNING
enhanced entrainment that facilitates the robot's skill learning
by imitation. A neural oscillator coupled to the robot system The difficulties of learning by imitation lie in how to deal
incorporates sensory feedback of robot-environment with the different kinematics and dynamics of imitator and
interactions, allowing itself to deal with environmental demonstrator robots. The main idea of goal-directed imitation
perturbations. Therefore, the artificial neural oscillator gains is to produce the same effect of the demonstrator robot's
increasing attention in the field of biologically inspired behavior by the imitator robot [8]. Note that the direction of
robotics that has proven to be deployable in uncertain real- the applying force should be coincident between two robots
world environments. interacting with their environment. With this condition, the

Matsuoka [1] proved that neurons generate the rhythmic appropriate modified trajectory is acquired for the imitator.
patterned output and analyzed the steady state oscillation Then, comparing the perceived trajectory and the modified

1-4244-0529-7/06/$20.OO ©2006 IEEE
218



trajectory, the imitator can generate the compensated motion descriptions of the most widely-used MNO and the newly
to achieve the intended goal of the demonstrated motion. proposedEENO.
Specifically, for biped locomotion, the direction of the
reaction force at the point of foot contact should be coincident A. MNO Model
between two robots [9]. .

In our previous works [8-9], we have proposed the self- | Tx
adjusting adaptor (SAA) through which the motion pattern Tonic input bv
acquired by the vision sensor was regenerated into an Si ei b
appropriate data from the point of view of kinematics |__\_a/__
adaptation. Different robots retained the same dynamic [Extensor neuro 1 m
response by only adjusting their kinematic configuration, since kilgil+ Yei
all links were assumed to have a uniform mass distribution. Proprioceptive input + Output
For rigorous compensation of dynamic dissimilarities with Weiyei Wflyfl (Ot
non-uniform mass distribution between the imitator and
demonstrator robots [10], the kinematically adjusted data Yfi

enters the dynamics adaptor composed of a network of neural flexor neuro
oscillators. The oscillator can be entrained with the input Excitatory connection
signal under a stable oscillation condition. That is to say, the Si Inhibitory connection
SAA regenerates the perceived motion pattern into a new one Tonic input bv.
adapted to the imitator's body. Through this sequence as is Fig. 2 Schematic diagram of the MNO
illustrated in Fig. 1, the regenerated motion data is mapped The MNO consists of two simulated neurons arranged in
into the imitator's motion space. In practice, the dynamics mutual inhibition as shown in Fig. 2 [1], [2]. If gains are
adaptation process fundamentally relies on the entrainment properly tuned, the system exhibits limit cycle behavior. The
capability of the neural oscillator. However, even in the most trajectory of a stable limit cycle can be derived analytically
widely-used MNO, output signals are not always closely and describes the firing rate of a neuron with self-inhibition.
entrained with input signals if they exhibit non-periodicity. The MNO is represented by a set of nonlinear coupled
Thus, it is required to develop an enhanced artificial neural differential equations given by
oscillator model that can entrain any non-periodic input signal. Tfiyf + e; = -WfiYfi -Ewj -bve; _Ekj[g]t +s

Tvei+v =i yi j=1

* = [x,iJe = max(xe, 0)
-7 T/fi+Xfi = -Wiy,i-Jw,y-bvf-Jk,[g,]-+sj (1)

j=1

T>~fi+ vfi =f
Joint angle daa1- 1 2

generation Knematic ; Yfi [Xfi ]+ max(xfiO) 1, 2,n)
-* A , t~~~t~o; DynaaCekn where xe(f)i is the inner state of the i-th neuron which represents

i *.nrointetactionhforcee the firing rate; v,(, represents the degree of the adaptation,.I0 000 00g = Behavior COM position modulated by the adaptation constant b, or self-inhibition
regeneration

effect of the i-th neuron; the output of each neuron Ye(f)i is taken
as the positive part of xi, and the output of the whole oscillator
is denoted as Y,O,,); w,y represents the total input from the
neurons inside a neural network; wj (0 for i #j and 1 for i=j) is
a weight of inhibitory synaptic connection from the j-th
neuron to the i-th, and w, wf are also a weight from extensor

Fig.I Famewrkf moionimiatio thoughtheSAAneuron to flexor neuron, respectively; the input iS arranged to
excite one neuron and inhibit the other, by applying the

III. NEURAL OSCILLATOR MODELS positive part to one neuron and the negative part to the other;
the inputs are scaled by the gains k,; Tr and Ta are time

The basic motor pattern generated by a CPG is usually constants of the inner state and the adaptation effect of the i-th
modified by sensory signal from motor information to deal neuron respectively; s is an external input with a constant rate.
with environmental disturbances. Similarly, artificial neural

n

oscillators are entrained with external stimuli at a sustained
frequency. They show stability against perturbations through B. FENO Model
global entrainment between the neuro-musculo-skeletal
systems and the environment [3]. Thus, neural oscillators have
been applied to CPGs of humanoid robots with rhythmic
motions [4], [11]. This section addresses the mathematical
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cases are investigated with different initial positions. The
initial positions of Y, Y2t,and Y are set to 0.8, 0.2 and -1.2,

114
T r T, respectively. The upper graph of Figs. 4 and 5 show the

Tonic inputbv+ , k[t position and the velocity ar 12' wYthandYth
Si ei EMN ~~~baccording to the initial condition. The lower graph of Figs. 4

[Exktens~or neuronrma(x1Q and 5 represents the plot of the total output. From these
results, we can verify that the properties of rhythmic pattern

ki g, yel ~~~~~~generation with the BENO are coincident with those of the
Proprioceptive input \ Output MNO under given stable oscillation conditions. Fig. 6 shows

W'Iyeil NWiiZthe FFT and phase plane plots of the MNO and EENO under
the same condition.

[Flexorneuron Exci.Xti.ator cont.....i...... 1) Rhythmic patterned outputs of the MNO
Excitatory connection

Tonic input bvt,
Fig. 3 Schematic diagram of the EENO

Technically, entrainment refers to tracking of sensory input
signals, thus is very similar to the conventional feedback _ __
controller. Through mathematical manipulations of Eq. (1), we
have found that the MNO functionally incorporated a 2 ____
proportional-derivative controller. It is straightforward to add an
integral controller that eliminates the steady-state error in the
MNO, which leads to the BENO given by SLE

Tr xe'i + X'i = wfi yfi -E iiyjj- bv,i -Ek9i1+i+ Si l
+=x 02 .4 OA6 O8 1 12 4.4 16 18 2

T>e,i + v,, + bIei = YTim[i
TrIei = -T TawfiYfi- h[gi] Fig. 4 The stable rhythmic patterned output of the MNO

Yei= [x]+ = max(xe 0) (2) 2) Rhythmic patterned outputs of the EENO
I~fi+fi WeiY+s

j=1

T,<f + vfi +bIlfi = Yfi

T, ~~I WeiY 8

This section investigates the properties of self- 2 l_____

entrainmentof theMNO and the BENO. The entrainment and ai o i

input-output properties of the oscillators are used to perform a

modeling of system or its environment [7]. According to <
Matsuoka's work [1], [2], the entrainment can be realized X 1
under stable oscillation conditions. For stable oscillations, if TimeEsl
tonic input exists, T/Ta should be in the range of 0.1 to 0. 5, for Fig. 5 The stable rhythmic patterned output of the EENO
which the natural frequency of the oscillator is proportional to
I/Tr, And increasing the input gain, k, causes the output of
neural oscillator to be entrained with the amplitude and natural
frequency of the input signal.

A. Rhythmic Patterned Output Generation
First, we begin with the rhythmic pattern generation of the

MNO and the BENO under stable oscillation conditions. Let
Yil and Yi2 denote the extensor and the flexor output of both
oscillators with a designated initial condition, respectively.
Also let Yi denote the total output of both oscillators. Three
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___ >F t -ffithe input signal will disappear as shown in Fig. 8. Although
the control parameter, h, of the integrator is not present here, it

., t ],- A can be observed that the entrainment error decreases with
01 , k 111gYtime. With an optimally tuned parameter h, the entrainment is

140 0 ~~~~~~~~~~~~completely maintained, which is shown in Figs. 10. The result
of Fig. 10 presents the comparison of an entrained signal with
h = 0 and h = 0.0 11 by the same input signal in the EENO.

-070
411From the results so far, the EENO has proven to be robust

_X with respect to the inputs of non-periodicity.
-X 20 40 a 12jt-Frquency(Hz) Displaement(x)

(a) 1) Entrainment Results of the MNO

_H~~~~~~~~~~~~~~~Who h*e1-r

Frequency(Hz) Displacement(x)~~~~~~~~~ai

11 += z =;e=-0A2 '1IL o-~~~~~~~~~~~~~~~~~~~~~~~~C
(b)

Fig. 6 (a) FFT (left) and phase plane (right) plots of the MNO (b) FFT (left) IJ!

and phase plane (right) plots of the BENO EKt 1

B. Entrainment Properties 5 10 is 0 25

This subsection addresses the entrainment properties of Time[#]
both oscillators. Note that we introduce the integral controller Fig. 7 The output signal of MNO entrained by the input signal
term which is expected to eliminate the entrainment error.
Practically, the integrator term improves the degree of the
adaptation or the self-inhibition effect. Tuning some other 2)EntrainmentResultsoftheProposedOscillator
parameters of the equation as well, this entrained output signal Entrine
can be controlled so that it follows the non-uniform multi- W/ t)
phase input signal as closely as possible. - --- j

Generally, it has been known that the MNO exhibits the
following properties: the natural frequency of the output signal
increases in proportion to 1/T,~The magnitude of the output
signal also increases as the tonic input increases. T, and Ta -
have an effect on the control of the delay time and the
adaptation time of the entrained signal, respectively. Thus, as
these parameters decrease, the input signal is well entrained.

And the minimum gain k, of the input signal enlarges theentrainment capability, because the minimum input signal is X E|j II ;I illllitll

needed to be entrained appropriately in the range of the natural ox Vv I1

frequency of an input signal. In this case, regardless of the_
generated natural frequency of the neural oscillator and the 5 m0E[IS 2l
natural frequency of an input signal, the output signal of the
neural oscillator locks onto an input signal well over a wide Fig. 8 The output signal of the EENO entrained by the input signal.
range of frequencies.

However, even though above-mentioned parameters are
optimally tuned, the main limitation still exists in the MNO. If
a quasi-periodic or a non-periodic input signal is entered into
the oscillator, the MNO sometimes would not remain perfectly
entrained as shown in Fig. 7. In this simulation, the values of
Tr, Ta, and k were set as 0.04, 0.08, and 0.6, respectively. On
the other hand, if we employ the BENO, the deviation from
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mechanical system model connected to the neural oscillator as
illustrated in Fig. 11. The desired torque input at the ith joint

20 Hraned signa 0OI: can be given by [6](without integral term a

0 /

I -20 0.1 Ud k,(8i -6)-b6, (3)
I1pUt S~iga

-40 l 0 °0where k-is the stiffness of the joint, bi the damping coefficient,

-601 0 0, the joint angle, and Oi the equilibrium point which is the
output of the neural oscillator. The output of the neural
oscillator drives the mechanical system corresponding to the

20 40 o0 -A a 1 sensory signal input (feedback) from the actuator
(displacement or torque). The oscillator entrains the input

(a) signal, so that the mechanical system can exhibit adaptive
40 O2-A behavior even under the unknown environment condition. The
20|Entrained sina key to implementing this method is how to incorporate the

it ) input signal's amplitude information as well as its phase
information. Recall that the output of the MNO maintains the

g2Q / same phase as the input signal, but they may not be identical
in amplitude.

0INdeura OscillatorI

o 20 40 so - 1
FtFrequency(H 5) Displaceent(Y)

(b)
Fig. 9 (a) FFT (left) and phase plane (right) plots of the input and entrained |77
signals of the MNO, (b) FFT (left) and phase plane (right) plots of the input

and entrained signals of theEENO. *Xtb .ZX

3) Results ofIntegral Gain Change Neural Os111ator 1

4-4-FEntrainedsi'na!

(With intertenh)
I +Entrained si nal

(wth integ tear h=O-0O11),

L... J.. Fig. 11 Mechanical system model coupled to the neural oscillator.

Om We simulated the dynamic response to a sinusoidal input
to compare the entrainment properties of the iNO and the
EENO. In Fig. 12, the thick dashed lines are the outputs of the

E ~~~~~~~~~~~~~~modelthat is not coupled to the oscillator, coupled to the
NINO, and coupled to theeENO, respectively Even though

V.DYNAMIC RESPONSE OFthe frequency and phase are well entrained, the output
amplitude is not identical in both the nINO and BENO models,

I1 if we compare them with the output of the uncoupled model.
Theoretically, since the output is retuned to the oscillator as

5e10 15 20 25 the sensory signal input, the output should be adapted to the
Time[ms input, especially with the BENO coupled model. Note that Fig.

Fig. 10 The comparison of gained entrained signals of the BENO. 13 shows the good entrainment performance in the BENO
coupled model, where the driving frequencies are 10 rad/sec.
We obtained the same results when the driving frequencies are

V. DYNAMIc RESPONSE OF OSCILLATOR COUPLED 15 and 20 rad/sec.. Therefore, if the dIriving input frequency is
MECH71T-ANTICAL SYS-TEMA far1 away from- the- naualfeqec of,th era silao,i

conditions. For simplicity, we employed a 2nd order firequencies to apply the BENO to the control of dynamic

222



systems. output signal of the proposed oscillator coupled mechanical
system could be adapted to the frequency, phase, and
amplitude of the sensory input signal over a reasonable

_______________________I___l_I_I frequency range. This approach is a new contribution toward
Output signal realization of biologically inspired robot control architectures.

inodel witA rigorous proof of the mathematical equation of the proposed
nl(el witl-EEN ,xl.i oscillator is currently under way within the framework of

contol theory. Relating to future research, we will verify the
practical validity of this approach through experiments with
real robots.
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