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1. Introduction     
 

Self-organizing and adaptive behaviors can be easily seen in flocks of birds or schools of fish. 
It is surprising that each individual member follows a small number of simple behavioral 
rules, resulting in sophisticated group behaviors (Wilson, 2000). For instance, when a school 
of fish is faced with an obstacle, they can avoid collision by being split into a plurality of 
smaller groups that can be merged after they pass around the obstacle. Based on the 
observation of such habits of schooling fishes, we propose collective navigation behavior 
rules that enable a large swarm of autonomous mobile robots to flock toward a stationary or 
moving goal in an unknown environment. Recently, robot swarms are expected to be 
deployed in a wide variety of applications such as odor localization, mobile sensor 
networking, medical operations, surveillance, and search-and-rescue (Sahin, 2005). In order 
to perform those tasks successfully, the behaviors of individual robots need to be controlled 
in a simple manner to support coordinated group behavior. 
Reynolds presented a distributed behavioral model of coordinated animal motion based on 
fish schools and bird flocks (Reynolds, 1987). His work demonstrated that navigation is an 
example of emergent behavior arising from simple rules. Many navigation strategies 
reported in the field of swarm robotics can be classified into centralized and decentralized 
strategies. Centralized strategies (Egerstedt & Hu, 2001) (Burgard et al, 2005) employ a 
central unit that organizes the behaviors of the whole swarm. This strategy usually lacks 
scalability and becomes technically unfeasible when a large swarm is considered. On the 
other hand, decentralized strategies are based on interactions between individual robots 
mostly inspired by evidence from biological systems or natural phenomena. Decentralized  
strategies can be further divided into biological emergence (Baldassarre et al,  2007) (Shimizu 
et al, 2006) (Folino & Spezzano, 2002), behavior-based  (Ogren & Leonard, 2005)  (Balch & 
Hybinette, 2000), and virtual physics-based (Spears et al, 2006) (Esposito & Dunbar, 2006) 
(Zarzhitsky et al, 2005) approaches. Specifically, the behavior-based and virtual physics-
based approaches are related to the use of such physical phenomena as crystallization (Balch 
& Hybinette, 2000) gravitational forces (Spears et al, 2005) (Zarzhitsky et al, 2005) (Spears et 
al, 2004) and potential fields (Esposito & Dunbar, 2006). Those works mostly use a force 
balance between inter-individual interactions exerting an attractive or repulsive force within 
the influence range, which might over-constrain the swarm and frequently lead to deadlocks. 



Recent Advances in Multi-Robot Systems 

 

2 

Moreover, the computations of relative velocities or accelerations between robots are needed 
to obtain the magnitude of the force. Regarding the aspect of calculating the movement 
position of each robot, accuracy and computational efficiency issues will arise. 
In this paper, from the observation of the habits of schooling fishes, a geometrical motion 
planning framework locally interacting with two neighbor robots in close proximity is 
proposed, enabling three neighboring robots to form an equilateral triangle lattice. Based on 
the local interaction, we develop an adaptive navigation approach that enables a large 
swarm of autonomous mobile robots to flock through an unknown environment. The 
proposed approach allows a swarm of robots to split into multiple groups or merge with 
other groups according to the environmental conditions. Specifically, it is assumed that 
individual robots are not allowed to have any unique identifier, a pre-determined leader, a 
common coordinate system, any memory for past decisions and actions, and a direct 
communication with each other. Given these underlying assumptions, all robots execute the 
same algorithm and act independently and asynchronously of each other. In spite of such 
minimal conditions, the above-mentioned potential applications often require a large-scale 
swarm of robots to navigate toward a certain direction from arbitrary initial positions of the 
robots in an environment populated with obstacles. For instance, in exploration and search-
and-rescue operations, robot swarms need to be dispersed into an unknown area of interest 
in a uniform spatial density and search for targets. Consequently, the proposed approach 
provides an efficient yet robust way for robot swarms to self-adjust their shape and size 
according to the environment conditions. This approach can also be considered as an ad hoc 
mobile networking model whose connectivity must be maintained in a cluttered 
environment.  
The rest of this paper is organized as follows. Section 2 presents the robot model and the 
statement of the swarm flocking problem. Section 3 describes the basic motion planning of 
each individual robot locally interacting with neighboring robots. Section 4 presents a 
collective solution to the swarm flocking problem. Section 5 illustrates how to extend the 
solution algorithms to the swarm tracking problem. Section 6 provides the results of 
simulations and discussion. Section 7 draws conclusions. 

 
2. Problem Statement 
 

We consider a swarm of n autonomous mobile robots, where individual robots are denoted 
respectively by nrrr ,,, 21  . Each robot is modeled as a point, which freely moves on a two-
dimensional plane. It is assumed that the initial distribution of robots is arbitrary and 
distinct. The robots have no leader and no unique identification numbers. They do not share 
any common coordinate system, and do not retain any memory of past actions that gives 
inherently self-stabilizing property 1  (Suzuki & Yamashita 1999). They can detect the 
positions of other robots within their limited ranges of sensing, but do not have any explicit 
direct means of communication to each other. Each of the robots executes the same 
algorithm, but acts independently and asynchronously from other robots. They repeat an 
endless activation cycle of observation, computation, and motion. 

                                                 
1 Self-stabilization is the property of a system which, started in an arbitrary state, always converges 
toward a desired behavior (Dolev, 2000) (Schneider, 1993). 
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(a) adaptive flocking 

 

 
(b) adaptive tracking 

Fig. 1.  Illustration of two flocking control problems 
 
Denote the distance between any two robots ir  and jr , located respectively at  ip  and jp , 
as ),( ji ppdist . Also denote a constant distance as ud  that is finite and greater than zero. 
Each robot has a limited sensing boundary SB. Then ir  detects the positions of other robots, 

},,{ 21 pp , located within its SB, and makes a set of the observed positions iO  obtained 
with respect to its local coordinate system. From iO , ir  can select two specific robots 1sr  and 

2sr , respectively. We call 1sr  and 2sr  the neighbor of ir , and define their positions },{ 21 ss pp  
as the neighbor set iN . Given ip  and iN , Triangular Configuration is defined as a set of three 
distinct positions },{ 21 ssi ppp  denoted by iT . Next, we can define Equilateral Configuration 

iE  if and only if all the possible distance permutations ),( )()( ji ppdist   in iT  are equal to ud .  
In this paper, each robot attempts to follow a certain rule to generate iE  from an arbitrary 

iT . We formally define each individual robot’s behavior as Local Interaction, which allows 
the position of ir  to be maintained to be ud  with iN  at each time toward forming iE . Now, 
we can address the following problem of Adaptive Flocking for a swarm of robots based on 
local interactions (see Fig. 1): 
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 (Adaptive Flocking) Given nrr ,,1   located at arbitrarily distinct positions in a two 
dimensional plane, how to enable the robots to move toward a stationary or moving 
goal while adapting to an environment populated with obstacles. 

 
3. Local Interaction 

 

Local geometric shapes of a school of tuna are known to form a diamond shape (Stocker, 
1999), whereby tunas exhibit the following schooling behaviors: maintenance, partition, and 
unification. Similarly, local interaction for a swarm of robots in this paper is to generate an 
equilateral triangular lattice. This section explains how the local interaction is established 
among three neighboring robots.  
 

 
Fig. 2.  Illustration of local interaction ((a) triangular configuration, (b) target computation)) 
 
As presented in ALGORITHM-1, the algorithm consists of a function nteractioni  whose 
arguments are ip  and iN  at each activation step. Consider any robot ir  and its two 
neighbors 1sr  and 2sr  located within its SB. As shown in Fig. 2-(a), three robots are 
configured into iT  whose vertices are ip , 1sp  and 2sp , respectively. First, ir  finds the 
centroid of the triangle Δ 21 ssi ppp , denoted by ctp , with respect to its local coordinates, and 
measures the angle   between the line connecting the two neighbors and ir 's horizontal 
horizontal axis. Using ctp  and , ir  calculates the target point tip  as illustrated in Fig. 2-(b). 

constant ud := a uniform distance 
Function ),( iininteractio pO  

1   ),( ,, yctxct pp := centroid( },{, 21 ssi ppp )       
2     := angle between 21 ss pp  and s'ri  local horizontal axis  
3    xtip , := 3)2cos(,   uxct dp  
4    ytip , :=  3)2cos(,   uyct dp  
5    tip := ( xtip , , ytip , ) 

              

ALGORITHM - 1  LOCAL INTERACTION (code executed by each robot ir ) 
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Each robot computes the target point by their current observation of neighboring robots. 
Intuitively, under ALGORITHM-1, ir  may maintain ud  with its two neighbors at each time. In 
other words, each robot attempts to form an isosceles triangle for iN  at each time, and by 
repeatedly doing this, three robots configure themselves into iE . 
 

 
Fig. 3.  Adaptive flocking flowchart 
 
4. Adaptive Flocking Algorithm 
 

4.1 Architecture of Adaptive Flocking 
The adaptive flocking problem addressed in Section 2 can be decomposed into three sub-
problems as illustrated in Fig. 3, each of which is solved based on the same local interaction 
(see Section 3). 
 
 Maintenance: Given that robots located at arbitrarily distinct positions, how to enable 

the robots to flock in a single swarm. 
 Partition: Given that an environmental constraint is detected, how to enable a swarm to 

split into multiple smaller swarms adapting to the environment. 
 Unification: Given that multiple swarms exist in close proximity, how to enable them to 

merge into a single swarm. 
 
As illustrated in Fig. 3, the input of the algorithm for each time instant is iO  and the 
environment information with respect to the local coordinate system of each robot. The 
output is tip  computed by nteractioni . At each time, ir  can either be idle or execute their 
algorithm, repeating recursive activation at each cycle. At each cycle, each robot computes 
their movement positions (computation), based on the positions of other robots 
(observation), and moves toward the computed positions (motion). Through this activation 
cycle, when the robot finds any geographical constraint within its SB, the robot executes the 
partition algorithm to adapt its position to the constraint. On the other hand, when the robot 
finds no geographical constraint, but observes any robot around the outside of its group, the 
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robot executes the unification algorithm. Otherwise, the robot basically executes the 
maintenance algorithm while navigating toward a goal.  

 
4.2 Team Maintenance 
 

  
(a) 1st neighbor selection                   (b) 2nd neighbor selection 

Fig. 4.  Illustration of team maintenance 
 
The first problem is how to maintain a uniform interval among individual robots while 
navigating. This enables the robots to form a multitude of equilateral triangle lattices. Each 
robot adjusts G


, termed the goal direction, with respect to its local coordinates and 

computes iO  at the time t. As illustrated in Fig. 4-(a), let )(GA


 denote the area of goal 
direction defined within the robot's SB. Next, each robot checks whether there exists a 
neighbor in )(GA


. If multiple neighbors exist, ir  selects the first neighbor 1sr  located the 

shortest distance away from ip  and defines its position as 1sp . Otherwise, ir  spots a virtual 
point vp  located an adequate distance vd  away from ip  along G


, defined as 1sp . As 

shown in Fig. 4-(b), the second neighbor 2sr  is selected such that the total distance from 1sp  
to ip  passing through 2sp  is minimized. As a result, tip  can be obtained by nteractioni in 
ALGORITHM-1. 
 

 
Fig. 5.  Simulation for maintenance algorithm ((a) initial distribution, (b)  2 sec. (c) 4 sec. (d) 
11 sec.) 
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Fig. 5 shows the simulation results of maintenance algorithm with 30 robots under no 
environmental constraints. Initially, robots are arbitrarily located on the two-dimensional 
plane. As shown in Figs. 5-(b) and (c), each robot generates its geometric configuration with 
their neighbors while moving toward a goal. Fig. 5-(d) illustrates that robots maintain a 
single swarm while navigating. Once the target is detected by any of the robots closest to the 
goal, the swarm could navigate toward the goal through individual local interactions. 

 
4.3 Team Partition 
 

  
(a) favorite vector                                (b) neighbor selection 

Fig. 6.  Illustration of team partition 
 
When a swarm of robots detects an obstacle in its path, each robot is required to determine 
its direction toward the goal avoiding the obstacle. In this paper, each robot determines their 
direction by using the relative degree of attraction of the passageway (Halliday et al., 2007), 
termed the favorite vector f


, whose magnitude is given by 

 

|/||| 2
jjj dwf 


. (1) 

In Fig. 6-(a), js  denotes the passageway with width jw , and jd  denotes the distance 
between the center of jw  and ip . Note that if ir  can not exactly measure jw  beyond its SB, 

jw  is set to the maximum value of SB. Now the passageways can be represented by a set of 
favorite vectors }1|{ njf j 


 and then ir  selects the maximum magnitude of jf


 denoted as 

max|| jf


. As shown in Fig. 6-(b), ir  defines a maximum favorite area )( maxjfA


 based on the 
direction of max|| jf


 within its SB. Next, ir  checks whether there exists a neighbor in 

)( maxjfA


. If neighbors are found, ir  selects 1sr  located the shortest distance away from 
itself to define 1sp . Otherwise, ir  spots a virtual point vp  located at an adequate distance 

vd  in the direction of max|| jf


 to define 1sp . Finally 2sr  is selected such that the total 
distance from 1sp  to ip  passing through 2sp  is minimized. As a result, tip  can be obtained 
by nteractioni in ALGORITHM-1. 
In Fig. 7, there existed three passageways in the environment. Based on the proposed 
algorithm, robots could be split into three smaller groups while maintaining the local 
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geometric configuration. Through the local interactions, the rest of the robots could 
naturally adapt to an environment by just following their neighbors moving ahead toward 
the goal. 
 

 
Fig. 7.  Simulation for partition algorithm ((a) initial distribution, (b)  5 sec. (c) 9 sec. (d) 18 
sec.) 

 
4.4 Team Unification 
 

  
(a) unification area                                (b) neighbor selection 

Fig. 8.  Illustration of team unification 
 
In order to enable the multiple swarms in close proximity to merge into a single swarm, ir  
adjusts G


 with respect to its local coordinates and defines the position set of robots uD  

located within the range of ud . Let ),( nmang


 be an angle between two arbitrary vectors m


 
and n


. As shown in Fig. 8-(a), ir  computes ),( uki ppGang , where uki pp  is the vectors 

starting from ip  to ukp  of uD , and defines the neighbor position refp  that gives the 
minimum ),( uki ppGang  between G


 and uki pp . Starting from refi pp , ir  checks whether 

there exists the neighbor position ulp  which belongs to uD  within the area obtained by 
rotating refi pp  60 degrees clockwise. If there exists ulp , ir  finds another neighbor position 

ump  using the same method starting from umi pp . Unless ulp  exists, ir  defines refp  as rnp . 
Similarly, ir  can decide the neighbor position lnp  while rotating 60 degrees counter 
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clockwise from refi pp . The two positions, denoted as rnp  and lnp , are located farthest in 
the right-hand or left-hand direction of refi pp , respectively. As illustrated in Fig. 8-(b), a 
unification area )(UA  is defined as the common area between )(GA


 in SB and the rest of 

the area in SB, where no element of uD  exists. Then, ir  defines a set of robots in )(UA  and 
selects the first neighbor 1sr  located the shortest distance away from ip  in )(UA . The 
second neighbor position is defined such that the total distance from 1sp  to ip  can be 
minimized through either rnp  or lnp . As a result, tip  can be obtained by nteractioni  in 
ALGORITHM-1. Fig. 9 demonstrates how two separate groups of 120 robots merge into one 
while maintaining the local geometrical configuration. 
 

 
Fig.9.  Simulation for unification algorithm ((a) initial distribution, (b)  5 sec. (c) 14 sec. (d) 20 
sec.) 

 
5. Adaptive Tracking Algorithm 
 

 
Fig. 10.  Adaptive tracking flowchart 
 
This section introduces a straightforward extension of adaptive flocking to a more 
sophisticated example of swarm behavior that enables groups of robots to follow multiple 
moving goals while adaptively navigating through an environment populated with 
obstacles. Fig. 10 shows the flowchart of this adaptive tracking application. Under the same 
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activation cycle as described in Section 4, each robot first identifies the goal(s) in its SB and 
selects a single goal to track. After adjusting the goal direction, when the robot finds the 
geographical constraint within its SB, the robot executes the partition algorithm to adapt its 
position to the constraint. If the robot finds no constraint, but observes any robot around the 
outside of its group, the robot executes the unification algorithm. Otherwise, the robot 
basically executes the maintenance algorithm while navigating toward the selected goal. 
Notice that the adaptive tracking differs from the adaptive flocking in computation of the 
goal direction detailed below. Specifically, the partition in the tracking is to enable a single 
swarm to be divided into smaller groups according to an environmental constraint and/or 
selected goal.  
 

 
(a) computation of goal favorite vectors       (b) compuation of navigation direction  

Fig. 11.  Illustrating direction selection in adaptive tracking 
 
In Fig. 11, similar to Eq. (1), the favorite vector for the passageway is defined as j

s f


. 
Likewise, the tracking goal is defined as k

g f


. Assuming that one of the goals kg  is located 
some distance kd  away from ip , the magnitude of the favorite vector k

g f


 for the goal is 
given by 
 

|/1||| 2
kk

g df 


. (2) 

 
Here, it is assumed that the set of multiple moving goals GS, }1|{ nkfk

g 


, has the same 
priority across the respective goals. From GS, ir  selects a favorite vector with the maximum 
magnitude denoted as max|| k

gf


. As described in the Subsection 4.3 (see Fig. 6-(b)), ir  defines 
the maximum favorite area )( maxk

gfA


 and selects the neighbors within )( maxk
gfA


.  
Next, let us consider the case that ir  observes both the goals and passageways. As shown in 
Fig. 11-(a), ir  first defines the favorite vectors of the observed goals k

g f


, and then selects kg  
with max|| k

gf


. With respect to the selected goal, as seen in Fig. 11-(b), ir  selects js  based on 
the following measure 
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 || maxmax k
g

kj
s

Ss
fGf

j





 (3) 

 
where kG indicates a weighting coefficient in order to upset the balance between j

s f


 and 

k
g f


. Similar to the previous approach, ir  defines )( maxk
sfA


 where the first neighbor is 
selected. 
  
6. Simulation Results and Discussion 
 

 
Fig. 12.  Simulation results of adaptive flocking toward a stationary goal 
 

 
Fig. 13.  Simulation results of adaptive tracking toward a moving goal 
 

To verify the proposed flocking and tracking algorithms, simulations are performed with a 
swarm of 100 robots. We set the distance vd  between vp  and ip  to 1.2 times longer than ud  
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and the range of SB to 3.5 times longer than ud . Moreover, in the tracking simulations, kG  
was set to 10. The first simulation demonstrates how a swarm of robots adaptively flocks in 
an unknown environment populated with obstacles. In Fig. 12, the swarm navigates toward 
a stationary goal located at the upper center point. On the way to the goal, some of the 
robots detect an obstacle that forces the swarm split into two groups in Fig. 12-(b). The rest 
of the robots can just follow their neighbors moving ahead toward the goal. After being split 
into two groups, each group maintains the geometric configuration while navigating in Fig. 
12-(c). Note that the robots that could not identify the obstacle just follow the moving 
direction of preceding robots. Figs. 12-(d) and (e) show that two groups are merged and/or 
split again into smaller groups due to the next obstacles. In Fig. 12-(f), the robots 
successfully pass through the environment.  
 

 
Fig. 14.  Simulation results of two moving goals tracking in free space 
 

 
Fig. 15.  Simulation results of tracking two moving goals in a geographically-constrained 
environmental constraint 
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The next simulation results seen in Fig. 13 present the snapshots for tracking of a moving 
goal represented by the square. As the goal moves, the swarm starts to move. It can be 
observed that the snapshots of Fig. 13 differ from those of Fig. 12, since j

s f


 varies in 
accordance with G


 detected at each time.  

 

 
Fig. 16.  Simulation results of tracking three moving goals in a geographically-constrained 
environmental constraint 
 

 
Fig. 17.  Simulation for flocking without partition capability ((a) initial distribution, (b)  13 
sec. (c) 52 sec. (d) 148 sec.) 
 
Figs. 14 and 15 present the snapshots that the same swarm tracks two moving goals having 
different velocities represented by the square and the triangle, respectively. The simulation 
conditions are the same, but Fig. 15 is carried out in the environment populated with 
obstacles. In addition, Fig. 16 shows how the swarm tracks three moving goals in the same 
environment. It can be observed that the swarm behavior of each case differs as expected.  
In Fig. 17, we investigate the swarm behavior when the partition capability is not available. 
It took about 150 seconds to pass through the passageway. In the simulation result of Fig. 7, 
it took about 50 seconds with the same velocity and ud . From this, it is evident that the 



Recent Advances in Multi-Robot Systems 

 

14

partition provides a swarm with an efficient navigation capability in an obstacle-cluttered 
environment. Likewise, unless the robots have the unification capability, they may 
separately perform a common task after being divided as presented in Fig. 18. The capability 
of unification can be used to make performing a certain task easier, which may not be 
completed by an insufficient number of robots. 
 

 
Fig. 18.  Simulation for flocking without unification capability ((a) 28 sec., (b)  40 sec.) 
 
We believe that our algorithms work well under real world conditions, but several issues 
remain to be addressed. It would be interesting to verify (1) if the performance of the 
algorithms is sensitive to measurement errors caused by unreliable sensors, or (2) if the 
algorithms can be extended to three dimensional space. The algorithms rely on the fact that 
robots can identify other robots and distinguish them from various objects using, for 
instance, sonar reading (Lee & Chong, 2006) or infrared sensor reading (Spears et al, 2004). 
This important engineering issue is left for future work. Regarding using explicit direct 
communications, it also suffers from limited bandwidth, range, and interferences. Moreover, 
it is necessary for robots to use a priori knowledge such as identifiers or global coordinates 
(Lam & Liu, 2006) (Nembrini et al, 2002). We are currently studying the relation between the 
robot model (or capabilities) and different communication (or interaction) models. 

 
7. Conclusion 
 

In this paper, we presented a decentralized algorithm of adaptive flocking and tracking, 
enabling a swarm of autonomous mobile robots to navigate toward achieving a mission 
while adapting to an unknown environment. Through local interactions by observing the 
position of the neighboring robots, the swarm could maintain a uniform distance between 
individual robots, and adapt its direction of heading and geometric shape. We verified the 
effectiveness of the proposed strategy using our in-house simulator. The simulation results 
clearly demonstrated that the proposed flocking and tracking are a simple and efficient 
approach to autonomous navigation for robot swarms in a cluttered environment by 
repeating the process of splitting and merging of groups passing through multiple narrow 
passageways. In practice, this approach is expected to be used in applications such as odor 
localization, search-and-rescue, and ad hoc mobile networking. 
Finally, we emphasize several points that highlight unique features of our approach. First, 
an equilateral triangle lattice is built with a partially connected mesh topology. Among all 
the possible types of regular polygons, the equilateral triangle lattices can reduce the 
computational burden and become less influenced by other robots, due to the limited 
number of neighbors, and be highly scalable. Secondly, the proposed local interaction is 
computationally efficient, since each robot utilizes only position information of other robots. 
Thirdly, our approach eliminates such major assumptions as robot identifiers, common 
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coordinates, global orientation, and direct communication. More specifically, robots 
compute the target position without requiring memories of past actions or states, helping 
cope with transient errors. 
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