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Abstract

Web caching is an important technology for improving the scalability of web services.
This dissertation investigates some key problems for coordinated en-route web caching,
such as (multimedia) object caching, (transcoding) proxy placement, cache replacement.
The main contributions of this dissertation are outlined as follows:

• We address the problem of coordinated en-route web object caching for tree net-
works (i.e., determining the locations where a copy of the same object should be
cached in a network such that the specified objectives are achieved). A dynamic
programming-based optimal solution and its analysis are presented. We also ex-
tend this solution to solve the problem of coordinated en-route object caching for
autonomous systems and the problem of proxy placement for coordinated en-route
web caching in tree networks and autonomous systems (i.e., determining the loca-
tions where a cache/proxy should be placed in a network such that the specified
objectives are achieved). Extensive simulation experiments are conducted to evalu-
ate our proposed solutions over a wide range of performance metrics in comparison
with existing solutions proposed in the literature.

• We address the problem of coordinated en-route multimedia object caching for
transcoding proxies for linear and tree networks (i.e., deciding the locations where
an exact version of the same multimedia object should be stored in a network so that
the specified objective is arrived). Dynamic programming-based optimal solutions
and their analysis are also presented. We further extend these solutions to solve
the problem of proxy placement for coordinated en-route transcoding proxy caching
(i.e., deciding the locations where a transcoding proxy should be placed in a net-
work so that the specified objective is arrived). We compare the performance of our
solutions with other solutions over various performance metrics through extensive
simulation experiments. The simulation results show that our solutions outperform
existing solutions proposed in the literature.

• We address the problem of multimedia object placement for transparent data repli-
cation, i.e., choosing a specific version of the same multimedia object to be cached
at each node in a network such that the specified objectives are reached. The per-
formance objective is to minimize the total access cost by considering both trans-
mission cost and transcoding cost. We present optimal solutions for different cases
for this problem. The performance of the proposed solutions is evaluated with a set
of carefully designed simulation experiments for various performance metrics over
a wide range of system parameters. The simulation results show that our solution
consistently outperforms existing solutions in terms of all the performance metrics
considered.

• We address the problem of cache replacement for transcoding proxy caching (i.e.,
selecting the objects that should be removed from the cache to accommodate a new
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object to be cached when the cache space is not enough). We first present a cache
replacement algorithm for transcoding proxy caching that computes the aggregate
profit of caching multiple versions of the same multimedia object with considering
cache consistency, which has not been widely considered in the literature. We also
address coordinated cache replacement in transcoding proxies by formulating this
problem as an optimization problem which determines cache replacement candidates
on all candidate nodes in a coordinated fashion for the objective of minimizing the
total cost loss. Moreover, we conduct extensive simulation experiments to compare
the performance of our algorithms with some existing algorithms. The results show
that our algorithms outperform others in terms of various performance metrics.

Key words: Web caching, Internet, multimedia object, transcoding, optimization,
proxy placement, mobile network, simulation, performance evaluation.
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Chapter 1

Introduction

1.1 Background

The World Wide Web has become the most successful application on the Internet since
it provides a simple way to access a wide range of information and services. However,
due to the dramatic growth in demand, considerable access latency is often experienced in
retrieving web objects from the Internet, and popular web sites are suffering from overload.
An efficient way to overcome such deficiencies is web caching, by which multiple copies of
the same object are stored in geographically dispersed caches. An overview of web caching
can be found in [31, 79, 98]. Although web caching is similar to memory caching, since
they both store objects at different locations for future requests, significant differences
between them result from the non-uniformity of web object sizes, access frequencies,
retrieval costs, and cacheability. In addition, the performance of web caching depends
greatly on the network distance from the user to the server, since users are geographically
distributed over the entire internet.

To obtain the full benefits of web caching, different architectures have been employed,
such as hierarchical caching [79, 85] and distributed caching [85, 93]. En-route caching is
a new caching architecture developed recently [49, 83, 90] in which caches are placed on
the access path from the user to the server. Each en-route cache intercepts any request
that passes through its associated node, and either satisfies the request by sending the
requested object to the client or forwards the request upstream along the path to the
server until it can be satisfied. En-route web caching can be implemented in several
ways, such as by using light-weight techniques [80, 84], active network [10, 92], etc. En-
route web caching has a couple of advantages. First, cache are only located along the
routes from clients to servers, and are placed transparently to the clients and servers.
Second, since the requests are routed along the regular path, a lot of extra bandwidth
and network delay for cache miss are saved. Finally, the additional overhead caused by
locating the objects such as sending broadcast queries [99] and maintaining directories [35]
are not necessary. Therefore, en-route web caching is a system with good scalability and
flexible management. Cooperative caching, in which caches cooperate in serving each
other’s requests and making storage decisions, is a powerful paradigm to improve cache
effectiveness [30,47,48].

In [90], the authors studied the problem of coordinated en-route web caching for
linear networks and proposed an optimal solution for this problem. In [45], the authors
presented an example showing that this solution cannot be directly applied to solve the
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same problem for tree networks, and proposed an en-route web caching algorithm applying
dynamic programming for placing web files in tree networks. However, the model they
established has not considered the impact of caching a copy of a web file at a node on
the requests for this file from all downstream nodes of this node. This model can only
result in an optimal solution for placing web file at only one node on the path from client
to server. In this dissertation, we consider the general case in which several copies of an
object can be cached on the path from the client to the server and a cached copy at a
node shall benefit retrievals to the object from all downstream nodes of the node. We
also address the problem of proxy placement for coordinated en-route web caching for
tree networks.

As many mobile appliances are divergent in size, weight, I/O capabilities, network
connectivity, and computing power, differentiated devices should be employed to satisfy
their diverse requirements. In addition, different presentation preferences from users make
this problem more serious. Transcoding, used to transform a multimedia object from one
form to another, frequently through trading off object fidelity for size, is a technology
that can meet these needs [21,22,41,66,87,97]. There are three main kinds of such media
transcoding: transcoding between the same formats of the same media type (e.g. from
high-resolution JPEG to low-resolution JPEG), transcoding between different formats
of the same media type (e.g. from JPEG to GIF), and transcoding between different
media types (e.g. from text to image format). Transcoding can be executed by various
components in the network such as server, proxy, and client. In the case of the client,
it can preserve the original semantics of system architecture and transport protocols.
However, this solution is extremely expensive when the clients are mobile users, due to
connection bandwidth and power limitations. In the case of the server, it is not necessary
to perform transcoding during the time between the issuance of a client’s request and
the response from the server; thus, no additional transcoding delay will incur. At the
same time, it will take too much storage space to keep all the versions of the same
media object on the server. Further, this method is not flexible in dealing with changing
clients’ needs. For these reasons, it will be better to transcode the media objects in
intermediate proxies. Much research has been focused on exploring the advantages of
this approach [21,25,37,41], in which an intermediate proxy is capable of transcoding the
requested media object to a proper version according to the client’s specification before
sending the media object to the client. As audio and video applications have proliferated
on the Internet, caching media objects in transcoding proxies (transcoding proxy caching
for short) has become an important research topic.

In [23], the authors proposed an effective cache replacement algorithm for transcoding
proxies by exploring the aggregate effect of caching multiple versions of the same multime-
dia object in transcoding proxies. However, this algorithm considered only static objects.
We further investigate this problem when dynamic objects are involved. Moreover, we
address coordinated cache replacement in transcoding proxies. To the best of our knowl-
edge, there is little work done on coordinated en-route transcoding proxy caching. In this
dissertation, we address two important factors that affect the performance of transcoding
proxy caching, i.e., multimedia object caching and transcoding proxy placement.
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1.2 Related Work

Web caching has been recognized as one of the effective schemes to alleviate the server
load, reduce the network traffic, and minimize the user access latency over the Internet.
There have been a lot of research done on several topics related to web caching, including
cache architectures [65,75,78], protocols [35,95,100,101], replacement policies [3,102,104],
prefetching [27,29,35,50,64], cache coherency [9,16,19,40], user access prediction [26,68,
70], web traffic characteristics [11,33,34], and dynamic data caching [13,17,20,36,52].

Efficient replacement algorithms for a single web cache can great improve the perfor-
mance of web caching [46,86,102]. However, these algorithms store copies of an object at
each node through which the object passes, without checking whether it is beneficial to
do so. This may cause ineffective use of the limited cache space, since there are numerous
objects to be distributed in the network. Therefore, it is necessary and important to
find methods that can optimally determine the locations to place the copies of an object.
In [30, 51], the placement and replacement algorithms for local-area networks were stud-
ied. However, this problem is relatively unexplored in wide-area networks, which are very
different from local-area networks in regard to the number of users and objects.

Cache cooperation is an important approach to improve web performance. Recent
studies have focused on the benefits of cooperative caching for distributed systems and
large-scale systems [4, 24, 51, 81, 93]. In [107], wide-area cache cooperation was studied
under a simple model, in which distances among all nodes in the network are assumed to
be the same. In [48], the authors examined three practical cooperative placement algo-
rithms for large-scale distributed caches and showed that cooperative object placement
could significantly improve web performance compared to local replacement algorithms,
particularly when the sizes of individual caches were small compared to those of the ob-
jects. In [47], the object placement problem was formulated as an instance of the facility
location problem and solved by reducing it to the minimum cost problem. The time com-
plexity of this object placement problem is very high, at least quadratic of the product of
the number of nodes and the number of objects in the network. In [47], two approxima-
tion algorithms, greedy placement algorithm and amortizing placement algorithm, were
proposed. Although the greedy algorithm looks simple and is easy to implement, it has
been shown that the performance of its worst case solution can be arbitrarily far from
optimal, i.e. the approximation ratio is relevant to the number of nodes concerned. The
amortizing placement algorithm is a constant-factor approximation algorithm. The prob-
lem studied in [90] considered the coordinated en-route web caching problem for linear
topology, deciding the optimal locations for placing copies of an object among the en-
route caches. This scheme, which optimizes the placement of objects on the path from
the user to the server, has been shown to perform significantly better than other schemes
that considered either object placement or replacement in individual caches only. An
en-route web caching algorithm applying dynamic programming for placing web files in
the tree network was proposed in [45]. They established a model which does not consider
the impact of caching a copy of a web file at a node on the requests for this file from all
downstream nodes of this node. This model can result in optimal solution for placing web
file at only one node on the path from client to server. In [105], the authors the problem
of replication proxy placement in the network and data replica placement on the installed
proxies given that a maximum number of proxies are allowed with considering both read
and write applications. There is little work done on coordinated en-route transcoding
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proxy caching. In [23], the authors proposed an effective cache replacement algorithm in
transcoding proxies by exploring the aggregate effect of caching multiple versions of the
same multimedia object at one one node. This problem becomes more complicated when
a network with many nodes are considered. The methods for coordinated en-route web
caching cannot be directly applied to solve this problem since different versions of the
same multimedia object cannot be simply dealt with different objects due to the relation-
ship among all the versions of the same multimedia object. There is little work done on
coordinated en-route transcoding proxy caching. In [71], the authors proposed a proxy
server management scheme for continuous media objects based on object partitioning.

Proxy placement is also an important factor that affects the performance of web
caching. Traditionally, web proxies are placed in some ”obvious” important places, such
as the router of a LAN, gateway in the internet and some strategic locations in the net-
work of an institute or organization [67]. In addition, it has been shown that multiple web
proxies are necessary to improve the overall web performance. Furthermore, this is also
evident that numerous web sites have employed a replication of the sites. For example,
users can select among 15 different servers to access Yahoo within the US, 101 different
servers to access the Netscape server. Generally, the problem of web proxy placement can
be formulated into the p median problem [38] or the k center problem [96]. Both of them
are NP hard for general networks. Heuristic algorithms and dynamic programming-based
algorithms have been proposed to find the optimal or sub-optimal solutions. In [43], the
placement problem for Internet instrumentation was addressed. Both graph theoretic
methods and heuristics for instrumenting the Internet to obtain distance maps were in-
vestigated. The authors showed that an Internet distance map service based on their
placement techniques can provide useful outlines for server selection by users. In [42],
the same authors compared a 2-approximation algorithm for the k median problem, with
a greedy approach, a random algorithm and a heuristic which favored nodes of higher
out-degree for proxy placement. In [53], the problem of proxy placement for tree net-
works was studied and the authors modelled the problem as an optimization problem of
minimizing the overall access latency for accessing the server. The optimal solution was
obtained by using a dynamic programming-based algorithm and the time complexity of
the algorithm is O(n3k2), where n is the number of nodes in the network and k is the
number of proxies to be placed. In [44], the authors further considered the problem of
placing web proxies for replicated web servers in the internet. They also presented a
dynamic programming-based algorithm to solve the problem. The time complexity of the
algorithm is O(n3k3). In [49], the authors presented optimal algorithms for line and ring
networks. They also presented a dynamic programming algorithm for tree networks. The
time complexity of this algorithm is O(nhk), where h is the height of the tree. In [77],
several placement algorithms were proposed, using workload information, such as client
latency and request rates. In [105], the authors presented two schemes for the replication
proxy placement problem. The authors proposed a set of heuristic models for the problem
of proxy placement in [63], among which the k-maximum shortest path count (KMPC)
heuristic model obtains the best results. There are also some work done on solving the
problem of proxy placement for content distribution networks (CDNs) [6, 12, 77]. CDNs
have also emerged as a powerful solution to improve the client response time and to reduce
the traffic in the Internet. CDNs consist of a number of distributed proxy servers repli-
cating the contents for better performance and availability than centralized servers. The
placement of proxy servers is a key factor in determining the effectiveness of a content
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distribution network. Transcoding proxy placement is also an important factor on the
performance of transcoding proxy caching. Unfortunately, little work has been done on
this topic. The key observation here is that the above proxy placement methods cannot
be simply used to solve the problem of transcoding proxy placement although only one
word is different because transcoding proxies has the functionality of transcoding, which
is an important technique for executing transformation among different versions of the
same multimedia object.

Cache replacement plays a significant role on the functionality of web caching as well.
A number of cache replacement algorithms have been proposed in the literature with
the purpose of attempting to minimize various cost metrics, such as hit rate, byte hit
rate, average access latency, and total access cost. All these algorithms can be generally
classified into such categories as deterministic policies [15, 102, 106], greedydual-based
policies [2, 32], hynrid policies [28, 82], randomized policies [76, 89]. An overview of web
caching algorithms can be found in [5]. However, all these algorithms consider the case in
which web objects are independent. The objects addressed in this paper are multimedia
objects that are dependent because of the relationship among all the versions of the same
multimedia object through the technology of transcoding. There is little work done on
finding effective cache replacement algorithms for transcoding proxy caching. In [87, 91],
the authors studied several caching strategies or architectures for transcoding proxies.
However, all these strategies or architectures are evolved from the algorithms mentioned
above and the authors have not considered the aggregate effect of caching multiple versions
of the same multimedia object at the same time. The algorithm proposed by Chang et al.
in [23] is on the similar line with our algorithm. However, this algorithm is not effective
since it has not considered the aggregate effect of removing several versions of the same
multimedia object at the same time.

1.3 Main Contributions

In this dissertation, we address some key problems for coordinated en-route web caching,
e.g., (multimedia) object caching, (transcoding) proxy placement, cache replacement. The
main contributions are summarized as follows:

• We present a dynamic programming-based optimal solution and its analysis for the
problem of coordinated en-route object caching for tree networks. We extended this
solution to solve the problem of coordinated en-route object caching for autonomous
systems and the problem of proxy placement for coordinated en-route web caching
for tree network. Extensive simulation experiments are conducted to evaluate our
proposed solutions over a wide range of performance metrics. The implementa-
tion results show that our solutions outperform existing solutions proposed in the
literature.

• We present dynamic programming-based optimal solutions and their analysis for the
problem of coordinated en-route multimedia object caching for transcoding proxies
for linear and tree networks. We extended these solutions to solve the problem of
proxy placement for coordinated en-route transcoding proxy caching. We compare
the performance of our solutions with other solutions over various performance met-
rics through extensive simulation experiments. The simulation results show that our
solutions outperform existing solutions proposed in the literature.
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• We present optimal solutions for different cases of problem of multimedia object
placement for transparent data replication with performance objective to minimize
the total access cost by considering both transmission cost and transcoding cost.
The performance of the proposed solutions is evaluated with a set of carefully de-
signed simulation experiments for various performance metrics over a wide range
of system parameters. The simulation results show that our solution consistently
and significantly outperforms comparison solutions in terms of all the performance
metrics considered.

• For the problem of cache replacement for transcoding proxy caching, we present
a cache replacement algorithm for transcoding proxy caching that computes the
aggregate profit of caching multiple versions of the same multimedia object with
considering cache consistency, which is not considered in the existing researches.
We also present a solution for coordinated cache replacement in transcoding proxies
by formulating this problem as an optimization problem which determines cache
replacement candidates on all candidate nodes in a coordinated fashion with the
objective of minimizing the total cost loss. Moreover, we conduct extensive simula-
tion experiments to compare the performance of our algorithms with some existing
algorithms. The results show that our algorithms outperform others in terms of
various performance metrics.

1.4 Dissertation Outline

For easy understanding and reading, we organize each chapter in a self-contained format
as follows:

Chapter 2 addresses some key problems of coordinated en-route web caching. First, a
dynamic programming-based optimal solution and its analysis are presented for the prob-
lem of coordinated en-route web object caching for tree networks. Second, we extend this
solution to solve the problem of coordinated en-route web object caching for autonomous
systems and the problem of proxy placement for coordinated en-route web caching for
tree networks and autonomous systems. Finally, extensive simulation experiments are
conducted to evaluate our solutions.

Chapter 3 concentrates on some major problems of coordinated en-route transcoding
proxy caching. In this chapter, we first address the problem of coordinated en-route mul-
timedia object caching for transcoding proxies for linear and tree networks. Based on
this solution, we present an optimal solution for the problem of transcoding placement.
We then consider the problem of multimedia object placement for transparent data repli-
cation. Finally, we compare the performance of our solutions with existing solutions
proposed in the literature with simulation experiments.

Chapter 4 focuses on the problem of cache replacement. We propose two effective cache
replacement algorithms for transcoding proxy caching and present an optimal solution for
coordinated cache replacement in transcoding proxies. We then present some simulation
experiments to compare the performance of our algorithms with other algorithms in the
literature.

Chapter 5 summarizes our work and discusses some future work.
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Chapter 2

Coordinated En-Route Web Caching

2.1 Coordinated En-Route Web Object Caching

2.1.1 Problem Formulation

Before formulating the problem for coordinated en-route web object caching (CERWOC),
we introduce the notations and definitions used in this section. We model the network
as a tree T = (V, E) 1, where V is the set of nodes, each of which is associated with an
en-route cache 2, and E is the set of network links 3. Figure 2.1 shows an example of such
a tree topology. In this section, we use Tw to denote a tree whose root is w.

Figure 2.1: Coordinated En-Route Web Object Caching for Tree Networks

Let P ⊆ V be a subset of nodes, at each of which a copy of an object is cached. For
every node v ∈ V , D(v) denotes the set of all nodes that are the descendants of node
v, and C(v) denotes the set of all nodes that are the children of node v. For any two
nodes u, v ∈ V , E[u → v] denotes the set of all edges on the path between u and v, and
V [u → v] denotes the set of all nodes on the path between u and v, including u and v.
Let O be the given object for caching. For notational tidiness, we omit argument O in all
parameters and functions throughout this section. Let f(v) denote the access frequency of

1Without loss of generality, we assume there is only one content server at the root of a tree, at which
the objects requested by users are maintained.

2Our analysis can be easily extended to the case in which en-routes are associated with a subset of
nodes only if we include in the graph the nodes with en-route caches.

3In this section, we assume that the network links are bi-directional.
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object O which is defined by the number of requests to access object O that pass through

node v during a certain period of time; obviously, f(v) ≥
∑

w∈C(v)

f(w). Estimation of f(v)

can be tedious and will be discussed in Section 2.1.4. Let c(u, v) be a nonnegative cost
assigned to edge (u, v) ∈ E for object O, which is defined as network latency, bandwidth
consumption, and processing cost at the cache, or some combination of these measures,
incurring on (u, v) for accessing O. The cost of a path for object O is the summation of
all edge costs on the path.

Due to the limitation of cache sizes, it is necessary and important to find methods to
optimally distribute copies of an object among the en-route caches. Accordingly, when
a new object is stored in a cache, one or more objects may need to be removed from
the cache to make room for it, if necessary. Storing an object at a node enables all the
requests for object O previously passing it now to be satisfied at it; hence, its access cost,
which is defined in this section as cost saving, is decreased. Similarly, removing the copy
of an object from a node increases its access cost, which is defined as cost loss. In this
section, we consider cost saving and cost loss in a coordinated way.

Let m(v) be the miss penalty of object O with respect to node v, which is given by

m(v) =
∑

(u1,u2)∈E[v→v′ ]

c(u1, u2) (2.1)

where v
′
is the nearest higher level node of v that stores a copy of object O (see Figure

2.1). Therefore, the cost saving for node v ∈ P denoted by s(v) is defined as

s(v) =
(
f(v)− f

′
(v)

)
m(v) (2.2)

where f
′
(v) is the total access frequency of object O that can still be served by the

original caches on the downstream of node v if the copy of object O stored at node v is
removed. For instance, in Figure 2.1, f

′
(1) = f(3), f

′
(2) = f(5), f

′
(3) = f(4) + f(6),

f
′
(4) = f(7) + f(8), f

′
(5) = f

′
(6) = f

′
(7) = f

′
(8) = 0.

Let l(v) be the cost loss for storing a copy of object O at node v. Computing l(v) is
a bit more complicated. Suppose that O1, O2, · · · , Oα are cached at node v. Obviously,
the removed objects should introduce the least total cost loss while making enough room
to accommodate the object to be cached. We apply the following greedy heuristic to
decide replacement candidates. Note that the normalized cost loss (NCL, i.e., the cost

loss introduced by creating one unit of free space) of ejecting Oi at v is fi(v)mi(v)
ei

, where
fi(v) is the access frequency for object Oi observed at node v, mi(v) is the miss penalty of
object Oi with respect to node v, and ei is the size of object Oi. The objects in the cache
are ordered by their NCLs and are selected sequentially, starting from the object with
the smallest NCL, until enough space is created. The cost loss of caching an object at a
node is calculated by summing the cost losses caused by all the selected objects. Thus,
the cost gain for a single node v denoted by g(v) is defined as

g(v) = s(v)− l(v) =
(
f(v)− f

′
(v)

)
m(v)− l(v) (2.3)

Based on the cost gain for a single node, we formulate the general problem for
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CERWOC as an optimization problem as follows:




max
P

G(T, P ) = max
P

{∑
v∈P

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]}

s.t. C
(2.4)

where C is called the constraint space.
For unconstrained coordinated en-route web object caching (U − CERWOC), C is

null, i.e., there is no constraint. For constrained coordinated en-route web object caching
(C − CERWOC), we consider the following descriptions of C:

• Non-negative cost gain per node
C:

(
f(v)− f

′
(v)

)
m(v)− l(v) ≥ αv ≥ 0 (∀ v ∈ P )

This constraint states that an object may be cached at node v if the cost gain for
caching it at v is above a predefined threshold. Clearly, this threshold should be non-
negative to avoid any possible cost loss, making the caching practically beneficial.

• Placing exactly k copies
C: |P | = k
This constraint is to restrict the number of copies to be distributed. Since in practice
caching an object will also generate overheads, such as maintaining consistency
between caches and the content server, it is necessary to discuss the case of placing
a fixed number of copies.

• Placing at most k copies
C: |P | ≤ k
This constraint sets an up-bound on the number of copies to be placed, and allows
freedom of placement within this bound to maximize the total cost gain. It can be
viewed as an extension of the previous constraint, but requires different technical
treatment.

In Equation (2.4), G(T, P ) is the overall cost gain for placing copies of an object
at each node in P in the constraint space. Regarding the solution to the constrained
cases, we give the following definitions. A placement P is called a feasible solution if
and only if P satisfies the relevant constraints. For example, if a placement P is a
feasible solution to the constrained problem of non-negative cost gain per node, then
we have

(
f(v)− f

′
(v)

)
m(v) − l(v) ≥ αv (∀ v ∈ P ). On the contrary, if we have(

f(v)− f
′
(v)

)
m(v) − l(v) ≥ αv (∀ v ∈ P ), then the placement P is a feasible solu-

tion to the constrained problem of non-negative cost gain per node. A placement P ∗

is called an optimal solution if and only if P ∗ is a feasible solution and satisfies that
G(T, P ∗) = max

P
{G(T, P )}.

2.1.2 Optimal Solutions for Tree Networks

In the following, we focus on unconstrained coordinated en-route web object caching (U−
CERWOC) and constrained coordinated en-route web object caching (C −CERWOC)
for tree networks.

• U − CERWOC
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Now we begin to present an optimal solution for the problem for U −CERWOC for tree
networks. Based on Equation (2.4), the problem for U−CERWOC for tree Tw is defined
as follows:

max
Aw

G(Tw, Aw) = max
Aw

{ ∑
v∈Aw

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]}
(2.5)

where Aw ⊆ D(w) and f(v), f
′
(v), m(v), and l(v) are the same as defined in Section

2.1.1. Suppose that A∗
w is an optimal solution to Equation (2.5) with respect to tree Tw,

then we should store a copy of an object at each node in A∗
w, and G(Tw, A∗

w) represents
the relevant maximum overall cost gain.

Let Tw,x be a subtree of Tw, whose node set is V [w → x] ∪ D(x), where x ∈ D(w).
Similarly, we define the problem for U − CERWOC for tree Tw,x as follows:

max
Aw,x

G(Tw,x, Aw,x) = max
Aw,x





∑
v∈Aw,x

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]


 (2.6)

where Aw,x ⊆ D(x) ∪ {x}. Suppose that A∗
w,x is an optimal solution to Equation (2.6)

with respect to tree Tw,x, then we should store a copy of an object at each node in A∗
w,x,

and G(Tw,x, A
∗
w,x) represents the relevant maximum overall cost gain.

Before presenting our dynamic programming-based algorithm for solving Equation
(2.5), we give the following lemmas or theorems.

Lemma 1 For tree Tw, if C(w) = {w1, w2, · · · , wm}, then we have

G(Tw,∪m
i=1Aw,wi

) =
m∑

i=1

G(Tw,wi
, Aw,wi

) (2.7)

where Aw,wi
⊆ D(wi) ∪ {wi}, i = 1, 2, · · · ,m.

Proof Since Aw,wi
⊆ D(wi) ∪ {wi}, we have ∪m

i=1Aw,wi
⊆ ∪m

i=1(D(wi) ∪ {wi}) = D(w).
Since Aw,wi

∩ Aw,wj
= φ for i 6= j, by the definition of G(Tw, Aw), we have

G(Tw,∪m
i=1Aw,wi

) =
∑

v∈∪m
i=1Aw,wi

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]

=
m∑

i=1

∑
v∈Aw,wi

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]

=
m∑

i=1

G(Tw,wi
, Aw,wi

).

Hence, the lemma is proven. ¤

Lemma 2 If C(w) = {w1, w2, · · · , wm} and A
′
w,wi

= A∗
w ∩ (D(wi) ∪ {wi}), then we have

A∗
w = ∪m

i=1A
′
w,wi

, where A∗
w ⊆ D(w) is an optimal solution to Equation(2.5) with respect

to tree Tw.
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Proof Since C(w) = {w1, w2, · · · , wm} and A
′
w,wi

= A∗
w ∩ (D(wi) ∪ {wi}), we have

∪k
i=1A

′
w,wi

= ∪k
i=1(A

∗
w ∩ (D(wi) ∪ {wi}))

= A∗
w ∩ ∪k

i=1(D(wi) ∪ {wi})
= A∗

w ∩D(w) = A∗
w.

Hence, the lemma is proven. ¤

Theorem 1 For tree Tw, if C(w) = {w1, w2, · · · , wm}, then we have

A∗
w = ∪m

i=1A
∗
w,wi

(2.8)

where A∗
w ⊆ D(w) is an optimal solution to Equation(2.5) with respect to tree Tw, and

A∗
w,wi

⊆ D(wi) ∪ {wi} is an optimal solution to Equation(2.6) with respect to tree Tw,wi
,

i = 1, 2, · · · ,m.

Proof For A∗
w,wi

⊆ D(wi)∪{wi}, we have ∪m
i=1A

∗
w,wi

⊆ ∪m
i=1(D(wi)∪{wi}) = D(w). Since

A∗
w is an optimal solution to Equation(2.5) with respect to tree Tw, we have G(Tw, A∗

w) ≥
G(Tw,∪m

i=1A
∗
w,wi

). Let A
′
w,wi

= A∗
w ∩ (D(wi) ∪ {wi}), by Lemma 2, then we have A∗

w =

∪m
i=1A

′
w,wi

. Obviously, A
′
w,wi

⊆ D(wi)∪{wi}, so we have G(Tw,wi
, A

′
w,wi

) ≤ G(Tw,wi
, A∗

w,wi
)

since A∗
w,wi

⊆ D(wi) ∪ {wi} is an optimal solution to Equation (2.6) with respect to tree
Tw,wi

. By Lemma 1, we have

G(Tw, A∗
w) = G(Tw,∪m

i=1A
′
w,wi

) =
m∑

i=1

G(Tw,wi
, A

′
w,wi

)

≤
m∑

i=1

G(Tw,wi
, A∗

w,wi
) = G(Tw,∪m

i=1A
∗
w,wi

).

Therefore, we have G(Tw, A∗
w) = G(Tw,∪m

i=1A
∗
w,wi

), so we have A∗
w = ∪m

i=1A
∗
w,wi

. Hence,
the theorem is proven. ¤

Theorem 2 For tree Tw,x, if C(x) = {x1, x2, · · · , xk}, then we have

A∗
w,x =

{ ∪k
i=1A

∗
w,xi

G(Tw,x,∪k
i=1A

∗
w,xi

) ≥ G(Tw,x, A
∗
x ∪ {x})

A∗
x ∪ {x} G(Tw,x,∪k

i=1A
∗
w,xi

) < G(Tw,x, A
∗
x ∪ {x}) (2.9)

where A∗
w,x ⊆ D(x) ∪ {x} is an optimal solution to Equation(2.6) with respect to tree

Tw,x, A∗
x ⊆ D(x) is an optimal solution to Equation(2.5) with respect to tree Tx, and

A∗
w,xi

⊆ D(xi) ∪ {xi} is an optimal solution to Equation(2.6) with respect to tree Tw,xi
,

i = 1, 2, · · · , k.

Proof It is easy to see that A∗
x ∪ {x} ⊆ (D(x) ∪ {x}) and ∪m

i=1A
∗
w,xi

⊆ (D(x) ∪ {x}).
For node x, we consider the following two cases. One case is that a copy of an object is
stored at node x, i.e. x ∈ A∗

w,x and the other case is that no copy of that object is placed
there, i.e. x /∈ A∗

w,x.

11



(1) First, we prove A∗
w,x = A∗

x ∪ {x} for x ∈ A∗
w,x. Let A

′
x,xi

= A∗
w,x ∩ (D(xi) ∪ {xi}),

by Lemma 2, then we have A∗
w,x = ∪k

i=1A
′
x,xi

∪ {x}. Therefore, we have

G(Tw,x, A
∗
w,x)

= G(Tw,x,∪k
i=1A

′
x,xi

∪ {x})
=

∑

v∈(∪k
i=1A′x,xi

∪{x})

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]

=
∑

v∈∪k
i=1A

′
x,xi

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]
+

[(
f(x)− f

′
(x)

)
m(x)− l(x)

]

=
k∑

i=1

∑

v∈A′x,xi

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]
+

[(
f(x)− f

′
(x)

)
m(x)− l(x)

]

=
k∑

i=1

G(Tx,xi
, A

′
x,xi

) +
[(

f(x)− f
′
(x)

)
m(x)− l(x)

]

= G(Tx,∪k
i=1A

′
w,xi

) +
[(

f(x)− f
′
(x)

)
m(x)− l(x)

]
≤ G(Tx, A

∗
x) +

[(
f(x)− f

′
(x)

)
m(x)− l(x)

]

On the other hand, we have

G(Tw,x, A
∗
w,x) ≥ G(Tw,x, A

∗
x ∪ {x})

=
∑
v∈A∗x

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]
+

[(
f(x)− f

′
(x)

)
m(x)− l(x)

]

= G(Tx, A
∗
x) +

[(
f(x)− f

′
(x)

)
m(x)− l(x)

]
.

Therefore, we have G(Tw,x, A
∗
w,x) = G(Tw,x, A

∗
x ∪ {x}), so we have A∗

w,x = A∗
x ∪ {x} for

x ∈ A∗
w,x.

(2) Now, we prove A∗
w,x = ∪m

i=1A
∗
w,xi

for x /∈ A∗
w,x. Let A

′
w,xi

= A∗
w,x ∩ (D(xi) ∪ {xi}),

by Lemma 2, then we have A∗
w,x = ∪k

i=1A
′
w,xi

, therefore, we have

G(Tw,x, A
∗
w,x) = G(Tw,x,∪k

i=1A
′
w,xi

)

=
∑

v∈∪k
i=1A′w,xi

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]

=
k∑

i=1

∑

v∈A′w,xi

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]

=
k∑

i=1

G(Tw,xi
, A

′
w,xi

)

≤
k∑

i=1

G(Tw,xi
, A∗

w,xi
)

= G(Tw,x,∪k
i=1A

∗
w,xi

).

Since G(Tw,x, A
∗
w,x) ≥ G(Tw,x,∪k

i=1A
∗
w,xi

), we have G(Tw,x, A
∗
w,x) = G(Tw,x,∪k

i=1A
∗
w,xi

).
So we have A∗

w,x = ∪k
i=1A

∗
w,xi

for x /∈ A∗
w,x.

12



From (1) and (2), we can know that

G(Tw,x, A
∗
w,x) = max{G(Tw,x, A

∗
x ∪ {x}), G(Tw,x,∪k

i=1A
∗
w,xi

)}
Therefore, it is easy to see that the theorem is correct. ¤

By Theorem 2, we can see that for tree Tw,x, if G(Tw,x,∪k
i=1A

∗
w,xi

) ≥ G(Tw,x, A
∗
x∪{x}),

then we do not store a copy of an object at node x and further consider the subtrees
{Tw,xi

, i = 1, 2, · · · , k}, where C(x) = {x1, x2, · · · , xk}. Otherwise, we store a copy at
node x and further consider the subtree Tx.

Based on theorems 1 and 2, we can present the dynamic programming-based algorithm
for U − CERWOC for tree networks as follows:

Algorithm 1: U − CERWOC for Tree Tw

Step 1. Initialization:
A∗

w = φ and G(Tw, A∗
w) = 0;

Step 2. End condition
if D(w) = φ then return;
Step 3. Recursive procedure
for v ∈ C(w) do

if D(v) = φ then
if f(v)c(w, v)− l(v) > 0 then

A∗
w,v = {v}

else
A∗

w,v = φ
else

for x ∈ C(v) do

if
∑

x∈C(v)

G(Tw,x, A
∗
w,x) ≥ G(Tv, A

∗
v) + (f(v)− f

′
(v))c(w, v)− l(v) then

A∗
w,v = ∪x∈C(v)A

∗
w,x

else
A∗

w,v = A∗
v ∪ {v} (According to Theorem 2)

A∗
w = ∪v∈C(w)A

∗
w,v (According to Theorem 1)

Now we give in Figure 2.2 a simple example to show how Algorithm 1 works. First,
we decompose tree T0 into two subtrees, T0,1 and T0,2. For tree T0,1, we can get an
optimal placement by calculating g(1) directly. For tree T0,2, we can further decompose
it into either subtrees T0,3 and T0,4 or tree T2 according to the relationship between
G(T0,3, A

∗
0,3)+G(T0,4, A

∗
0,4) and G(T2, A

∗
2)+g(2). Obviously, G(T0,3, A

∗
0,3) and G(T0,4, A

∗
0,4)

can be solved directly, therefore, what we should do is to further decompose tree T2 until
G(T2, A

∗
2) can be solved directly. Accordingly, we can obtain an optimal placement for

tree T0.
From Algorithm 1, we can know that every cache should maintain some information

on the objects, including size, access frequency, update frequency, and miss penalty with
the associated node. Fortunately, it is not necessary to store the information of an object
at all the nodes in the network. The following theorem describes an important property
of Algorithm 1.

Theorem 3 If A∗
w is an optimal solution to Equation (2.5) with respect to tree Tw, then

we have f(v)c(v, w)− l(v) ≥ 0, ∀ v ∈ A∗
w.
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Figure 2.2: A Simple Example

Proof Suppose there exists x ∈ A∗
w that satisfies f(x)c(x,w)− l(x) < 0, then we have

G(Tw, A∗
w) =

∑
v∈A∗w

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]

=
∑

v∈(A∗w−{x})

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]
+

[(
f(x)− f

′
(x)

)
c(x, x

′
)− l(x)

]

<
∑

v∈(A∗w−{x})

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]
+ [f(x)c(x,w)− l(x)]

<
∑

v∈(A∗w−{x})

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]

= G(Tw, A∗
w − {x}),

which contradicts the fact that A∗
w is an optimal solution to Equation (2.5) with respect

to tree Tw. Hence, the theorem is proven. ¤
From Theorem 3, we easily can see that we should consider placing a copy of an object

only among the caches where object caching is locally beneficial. Here, ”locally beneficial”
means that the cost gain is greater than zero if we put only one copy of an object among
the en-route caches.

Regarding the time complexity of Algorithm 1, we have the following theorem.

Theorem 4 If all nodes are locally beneficial, then the time complexity of Algorithm 1 is
O(n2), where n is the total number of nodes in the network.

Proof From Algorithm 1, we can easily know that the time complexity of it is O(
∑
v∈V

|D(v)|),

where |D(v)| is cardinality of the set D(v). Since |D(v)| ≤ n−1, we have O(
∑
v∈V

|D(v)|) ≤

O(
∑
v∈V

(n− 1)) = O(n(n− 1)) = O(n2). Hence, the theorem is proven. ¤

• C − CERWOC

In the following, we concentrate on solving the problem for C−CERWOC tree networks.
The different constraints include non-negative cost gain per node, placing exactly k copies,
and placing at most k copies of an object among the en-route caches.
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Constraint I: Non-Negative Cost Gain Per Node

Suppose that Bw ⊆ D(w) is a subset of nodes of tree Tw, based on Equation (2.4),
the C − CERWOC problem of non-negative cost gain per node for tree Tw is defined as
follows:





max
Bw

G(Tw, Bw) = max
Bw

{ ∑
v∈Bw

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]}

s.t.
(
f(v)− f

′
(v)

)
m(v)− l(v) ≥ αv (∀ v ∈ Bw)

(2.10)

Suppose that B∗
w is an optimal solution to Equation (2.10), then we should store a copy

of an object at each node in B∗
w, and G(Tw, B∗

w) represents the relevant maximum overall
cost gain.

Before developing the dynamic programming-based algorithm for solving Equation
(2.10), we give the following mathematical proofs.

Lemma 3 If A∗
w ⊆ D(w) is an optimal solution to Equation (2.5) with respect to tree

Tw, then we have
(
f(v)− f

′
(v)

)
m(v)− l(v) ≥ 0, ∀ v ∈ A∗

w.

Proof Suppose that there exists x ∈ A∗
w that satisfies

(
f(x)− f

′
(x)

)
m(x) − l(x) < 0,

then we have

G(Tw, A∗
w − {x})

=
∑

v∈A∗w−(D(x)∪{x})

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]

+
∑

v∈D(x)∩A∗w

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]

>
∑

v∈A∗w−(D(x)∪{x})

[(
f(v)− f

′
(v)

)
c(v, v

′
)− l(v)

]

+
[(

f(x)− f
′
(x)

)
m(x)− l(x)

]

+
∑

v∈D(x)∩A∗w

[(
f(v)− f

′
(v)

)
c(v, v

′
)− l(v)

]

≥
∑
v∈A∗w

[(
f(v)− f

′
(v)

)
c(v, v

′
)− l(v)

]
4

= G(Tw, A∗
w)

which contradicts the fact that A∗
w is an optimal solution to Equation (2.5) with respect

to tree Tw. Hence, the theorem is proven. ¤

Theorem 5 If A∗
w ⊆ D(w) is an optimal solution to Equation (2.5) with respect to tree

Tw, then A∗
w is also an optimal solution to the following equation:





max
Bw

G(Tw, Bw) = max
Bw

{ ∑
v∈Bw

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]}

s.t.
(
f(v)− f

′
(v)

)
m(v)− l(v) ≥ 0 (∀ v ∈ Bw)

(2.11)

4This is because f
′
(v) becomes larger for the nodes of upstream of node x and c(v, v

′
) smaller for the

nodes of downstream of node x when a copy of an object is cached at node x.
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Proof Since A∗
w is an optimal solution to Equation (2.5) with respect to tree Tw,

by Lemma 3, we have
(
f(v)− f

′
(v)

)
m(v) − l(v) ≥ 0,∀ v ∈ A∗

w, therefore, A∗
w is a

feasible solution to Equation (2.11), so we have G(Tw, A∗
w) ≤ G(Tw, B∗

w). Now we suppose
G(Tw, A∗

w) < G(Tw, B∗
w). It is obvious that B∗

w is a feasible solution to Equation (2.5),
therefore, we have G(Tw, A∗

w) = G(Tw, A∗
w) and G(Tw, B∗

w) = G(Tw, B∗
w), so we have

G(Tw, A∗
w) < G(Tw, B∗

w). This contradicts the fact that A∗
w is an optimal solution to

Equation (2.5) with respect to tree Tw. Hence, the theorem is proven. ¤
By Theorem 5, we can obtain an optimal solution to Equation (2.11) by solving Equa-

tion (2.5). It is easy to see that Equation (2.10) can be transferred into the following
equation:





max
Bw

G(Tw, Bw) = max
Bw

{ ∑
v∈Bw

[(
f(v)− f

′
(v)

)
m(v)− l(v)− αv

]
+

∑
v∈Bw

αv

}

s.t.
(
f(v)− f

′
(v)

)
m(v)− l(v)− αv ≥ 0 (∀ v ∈ Bw)

(2.12)
Furthermore, it is obvious that Equation (2.12) is equivalent to the following equation.





max
Bw

G(Tw, Bw) = max
Bw

{ ∑
v∈Bw

[(
f(v)− f

′
(v)

)
m(v)− l(v)− αv

]}

s.t.
(
f(v)− f

′
(v)

)
m(v)− l(v)− αv ≥ 0 (∀ v ∈ Bw)

(2.13)

By Theorem 5, we can get an optimal solution to Equation (2.13) by solving the
following Equation:

max
Aw

G(Tw, Aw) = max
Aw

{ ∑
v∈Aw

[(
f(v)− f

′
(v)

)
m(v)− l(v)− αv

]}
(2.14)

Therefore, we can obtain an optimal solution to Equation (2.10) by solving Equation
(2.14). By now, we have proved that the problem for C − CERWOC as described in
Equation (2.10) can be transformed into a problem for U − CERWOC as described in
Equation (2.14). Based on the algorithm proposed for U − CERWOC (i.e., Algorithm
1), we present the following dynamic programming-based algorithm for C − CERWOC
of non-negative cost gain per node, which is described as follows:

Algorithm 2: C − CERWOC—Non-Negative Cost Gain Per Node

Step 1. Initialization
A∗

w = φ and G(Tw, A∗
w) = 0;

Step 2. End Condition
if D(w) = φ then return;
Step 3. Recursive Procedure
for v ∈ C(w) do

if D(v) = φ then
if f(v)c(w, v)− l(v)− αv > 0 then

A∗
w,v = {v}

else
A∗

w,v = φ
else
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for x ∈ C(v) do

if
∑

x∈C(v)

G(Tw,x, A
∗
w,x) ≥ G(Tv, A

∗
v) +

[
(f(v)− f

′
(v))c(w, v)− l(v)− αv

]
then

A∗
w,v = ∪x∈C(v)A

∗
w,x

else
A∗

w,v = A∗
v ∪ {v}

A∗
w = ∪v∈C(w)A

∗
w,v

Similar to Algorithm 1, we can know that every cache should also maintain some
information on the objects, including size, access frequency, update frequency, and miss
penalty with the associated node. For Algorithm 2, the constraint for each node should
also be maintained. The following corollary describes an important property of Algorithm
2.

Corollary 1 If A∗
w is an optimal solution to Equation (2.14), then we have

f(v)c(v, w)− l(v)− αv ≥ 0, ∀ v ∈ A∗
w.

The proof of Corollary 1 is similar to that of Theorem 3.
From Corollary 1, we can easily see that we should consider placing a copy of an

object only among the caches where object caching is locally beneficial. Here, ”locally
beneficial” means that the cost gain for each node is greater than the constraint for that
node if we put only one copy of an object among the caches.

Regarding the time complexity of Algorithm 2, we have the following corollary.

Corollary 2 If all nodes are locally beneficial, then the time complexity of Algorithm 2
is O(n2), where n is the total number of nodes in the network.

The proof of Corollary 2 is similar to that of Theorem 4.

Constraint II: Placing Exactly k Copies of An Object

Similarly, the C−CERWOC problem of placing exactly k copies of an object among
the en-route caches for tree Tw is defined as follows:





max
Bw

G(Tw, Bw) = max
Bw

{ ∑
v∈Bw

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]}

s.t. |Bw| = k

(2.15)

Suppose that A∗
w is an optimal solution to Equation (2.5) with respect to tree Tw, we

can easily know that it is not necessary to place more than k∗ copies of an object among
the en-route caches, where k∗ = |A∗

w|. Otherwise, there must be at least one node whose
cost gain is negative. Therefore, k should be less than k∗. So we first compute k∗ by
algorithm 2 by setting αv = 0, and the optimal locations are all the nodes in A∗

w when
k ≥ k∗. The relationship between the overall cost gain and the number of copies can be
visualized from Figure 2.3.

Before presenting the algorithm for solving the problem of placing exactly k copies of
an object among the en-route caches for tree Tw, we give the following definition. The
local cost gain 5 for node v denoted by h(v) is defined as follows:

h(v) = f(v)c(v, w)− l(v) (2.16)

5The local cost gain is the cost gain for placing only one copy of an object among the en-route caches.
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Figure 2.3: Relationship between Cost Gain and Number of Copies

Let αmax = max
v∈V

{h(v)}, then we have the following theorem with respect to the feasible

solution to Equation (2.10).

Theorem 6 if αv > αmax, then there is no feasible solution to Equation (2.10).

Proof Suppose that there exists a node that satisfies
(
f(v)− f

′
(v)

)
m(v) − l(v) ≥ αv.

On the other hand, we have

(
f(v)− f

′
(v)

)
m(v)− l(v) ≤

(
f(v)− f

′
(v)

)
c(v, w)− l(v)

≤ f(v)c(v, w)− l(v) ≤ h(v) < αv.

So, the supposition is not correct. Hence, the theorem is proven. ¤
From Theorem 6, we can know that the parameter αv in Equation (2.10) should

satisfy: 0 ≤ αv ≤ αmax. It is obvious that the optimal number of copies of an object to be
placed in the network is relevant to the parameter αv. Hence, the proper selection of αv

determines this number. The crucial observation is that this number is a monotonically
decreasing function of αv, that is, as αv increases, it decreases monotonically. Therefore,
we can determine the optimal locations for placing exactly k copies of an object among
the en-route caches by tuning the parameter αv. The relationship between the optimal
number of copies k∗ and the parameter αv can be visualized in Figure 2.4.

The algorithm for placing exactly k copies of an object among the en-route caches is
described as follows:

Algorithm 3: C − CERWOC—Placing Exactly k Copies of An Object

Step 1. Initialization
αmin = 0; αmax = max

v∈V
{h(v)}, k∗ = |A∗

w|.
Step 2. Recursive Procedure
while k∗ 6= k do

α = (αmin + αmax)/2;
Call Algorithm 2 by setting αv = α;
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Figure 2.4: Relationship between k∗ and αv

k∗ = |A∗
w|;

if k∗ > k then
αmin = α

else
αmax = α

We can see that Algorithm 3 converges to an optimal solution to Equation (2.15)
quickly and its time complexity can be easily shown to be O(n2, where n is the total
number of nodes in the network.

Constraint III: Placing at Most k Copies of An Object

Based on Equation (2.4), the C − CERWOC problem of placing at most k copies of
an object among the en-route caches for tree Tw is defined as follows:





max
Bw

G(Tw, Bw) = max
Bw

{ ∑
v∈Bw

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]}

s.t. |Bw| ≤ k

(2.17)

Suppose that k∗ = |A∗
w|, where A∗

w is the optimal solution to Equation (2.10) by setting
αv = 0, then we have the following theorem on the relationship between Equation (2.17)
and Equation (2.5).

Theorem 7 if k ≥ k∗, then Equation (2.17) is equivalent to Equation (2.5) 6.

Proof Suppose that A∗
w is an optimal solution to Equation (2.5) with respect to tree

Tw and B∗
w an optimal solution to Equation (2.17). (1) By the definition of optimal

solution, we easily know that A∗
w is an optimal solution to Equation (2.17) since k ≥ k∗.

(2) Now we prove B∗
w is an optimal solution to Equation (2.5). We apply reduction

to absurdity, and we have G(Tw, A∗
w) < G(Tw, B∗

w). Since A∗
w is a feasible solution to

6Equivalent means that the optimal solution to Equation (2.17) is an optimal solution to Equation
(2.5) and the optimal solution to Equation (2.5) is also an optimal solution to Equation (2.17).
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Equation (2.17), we have G(Tw, A∗
w) = G(Tw, A∗

w) and G(Tw, B∗
w) = G(Tw, B∗

w), so we
have G(Tw, A∗

w) < G(Tw, B∗
w). This contradicts the fact that A∗

w is an optimal solution to
Equation (2.5) with respect to tree Tw. Hence, the theorem is proven. ¤

From Theorem 7, we can see that the problem as described in Equation (2.5) can
be viewed as a special case of the problem being discussed in this subsection by setting
k = n.

Based on Algorithm 3 , we can present the following algorithm for placing at most k
copies of an object.

Algorithm 4: C − CERWOC—Placing at Most k Copies of An Object

Step 1. Initialization
gain:=0, placement= φ.
Step 2. Recursive Procedure
for i = 0 to k do

Call Algorithm 3 by setting k = i;
gain(i) = G(Tw, B∗

w);
if gain(i) > gain then

gain=gain(i)
placement=B∗

w

We can see that Algorithm 4 converges to an optimal solution to Equation (2.17) very
quickly and the time complexity of Algorithm 4 is O(kn2, where n is the total number of
nodes in the network.

2.1.3 Optimal Solution for Autonomous Systems

In this section, we focus on solving the problem for CERWOC for autonomous systems,
determining the locations for placing exactly k copies of an object among the en-route
caches such that the overall cost gain is maximized.

Autonomous systems play an important role in routing objects in the internet [8,73].
In this section, we assume that the network topology for each autonomous system is a
tree. We denote the whole network by TAS = (VAS, EAS), where VAS is the set of the
nodes and EAS is the set of the links. We assume that there are m ASes in the network,
each of which is represented by tree Ti, i = 1, 2, · · · ,m. Figure 2.5 shows a simple example
of such an autonomous system in which the replicas have the same contents as the server.
We denote the set of the replica servers and the content server by SAS.

Based on Equation (2.4), the problem for CERWOC for autonomous systems is de-
fined as follows:





max
PAS

G(TAS, PAS) = max
PAS

{ ∑
v∈PAS

[(
f(v)− f

′
(v)

)
m(v)− l(v)

]}

s.t. |PAS| = k

(2.18)

where PAS ⊆ VAS − SAS.
From Equation (2.18), we can see that this problem degenerates to the problem ad-

dressed in Equation (2.15) when m = 1, i.e., determining the optimal locations for placing

k copies of an object in tree networks. In this section, we also use G̃(TAS, k) to denote the
overall maximum cost gain for placing k copies of an object in TAS for convenience, i.e.,
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Figure 2.5: En-Route Web Caching for Autonomous Systems

G̃(TAS, k) = G(TAS, P ∗
AS), where G(TAS, P ∗

AS) is an optimal solution to Equation (2.18)
and k∗ = |P ∗

AS|.
Now we apply the following idea to solve this problem, which is similar to that pre-

sented in [44]. We first divide TAS into two parts: ∪m−1
i=1 Ti and Tm; thus, we consider the

problem of placing km copies of an object in the first part and k− km copies of an object
in the second part, where 0 ≤ km ≤ k. Then, we divide ∪m−1

i=1 Ti into two parts: ∪m−2
i=1 Ti

and Tm−1; thus, we consider the problem of placing km−1 copies of an object in the first
part and km − km−1 copies of an object in the second part, where 0 ≤ km−1 ≤ km. We
repeat this process until there is only one tree left. Regarding the recursive process, we
have the following theorem.

Theorem 8

G̃(T+i, k) =

{
G̃(T1, k) if T+i = T1

max
0≤k′≤k

{G̃(T+(i−1), k
′
) + G̃(Ti, k − k

′
)} if T+i 6= T1

(2.19)

where T+i = ∪i
j=1Tj.

Proof When T+i = T1, it becomes the C − CERWOC problem of placing k copies of
an object among the en-route caches for tree topology; therefore, it is obviously correct.

Now we consider T+i 6= T1. Let G̃
′
(T+i, k) = max

0≤k
′≤k
{G̃(T+(i−1), k

′
) + G̃(Ti, k − k

′
)}.

We first prove G̃
′
(T+i, k) ≥ G̃(T+i, k). Suppose that P ∗ is an optimal solution for placing
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k copies of an object in T+i, then we have G̃(T+i, k) = G(T+i, P
∗). Suppose that P ∗ ∩

T+(i−1) = l, then we have P ∗ ∩ Ti = k − l, therefore we have

G(T+i, P
∗) = G(T+(i−1), P

∗ ∩ T+(i−1)) + G(Ti, P
∗ ∩ Ti) (2.20)

It is easy to see that P ∗∩T+(i−1) and P ∗∩Ti are optimal placements for placing l copies and
k− l copies in T+(i−1) and Ti respectively. Otherwise, there should be a better placement
than P ∗ ∩ T+(i−1) or P ∗ ∩ Ti, which would contradict that P ∗ is an optimal placement.
Therefore, we have

G̃(T+i, k) = G(T+i, P
∗)

= G(T+(i−1), P
∗ ∩ T+(i−1)) + G(Ti, P

∗ ∩ Ti)

= G̃(T+(i−1), l) + G̃(Ti, k − l)

≤ max
0≤l

′≤k
{G̃(T+(i−1), l

′
) + G̃(Ti, k − l

′
)}

= G̃
′
(T+i, k).

Now we prove G̃
′
(T+i, k) ≤ G̃(T+i, k). Suppose that G̃(T+(i−1), l) + G̃(Ti, k − l)} =

max
0≤l

′≤k
{G̃(T+(i−1), l

′
) + G̃(Ti, k − l

′
)}. Let P ∗

+(i−1) be an optimal placement for placing l

copies of an object in T+(i−1) and P ∗
i an optimal placement for placing k − l copies of an

object in Ti, then for any l, we have

G̃(T+i, k) ≥ G(T+i, P
∗
+(i−1) ∪ P ∗

i )

= G(T+(i−1), P
∗
+(i−1)) + G(Ti,∪P ∗

i )

= G̃(T+(i−1), l) + G̃(Ti, k − l),

therefore, we have G̃(T+i, k) ≥ max
0≤l′≤k

{G̃(T+(i−1), l
′
) + G̃(Ti, k − l

′
)} = G̃

′
(T+i, k). Hence,

the theorem is proven. ¤
The algorithm for CERWOC for autonomous systems is described as follows:

Algorithm 5: CERWOC for Autonomous Systems

Main Procedure
for i = 1 to m do (Initialization)

for j = 0 to k −m + i do
G̃(T+i, j) = −1; (The cost gain for placing j copies in T+i)
P (Ti, j) = φ (The optimal solution for placing j copies in Ti)

Call Placement(T+m, k); (Calling procedure Placement recursively)
Procedure Placement(T+i, l)

if G̃(T+i, l) ≥ 0 then

Return G̃(T+i, l); (G̃(T+i, l) computed)
if i = 1 then

Return G̃(T1, l); (Call Algorithm 3 since G̃(T1, l) = G(T1, A
∗
1))

TG = 0;
for l

′
= (i− 1) to l − 1 do (Finding the optimal number of copies to be placed in Ti)

TG=Placement(T+(i−1), l
′
) + G̃(Ti, l − l

′
); (According to Theorem 8)
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=Placement(T+(i−1), l
′
) + G(Ti, A

∗
i );

if G̃(T+i, l) > TG then

G̃(T+i, l) = TG
P (Ti, l − l

′
) = A∗

i

The time complexity of Algorithm 5 follows the following corollary.

Corollary 3 The time complexity of Algorithm 5 is O(kn2), where n is the total number
of nodes in the network.

Proof According to Algorithm 3, the time for running Placement(T+i, l) is O(n2
i ),

where ni is the number of nodes of tree Ti and 1 ≤ i ≤ m. Since the Algorithm 5
calls Placement(T+i, l) to compute all the elements in G̃(T+i, l), its time complexity is

O

(
m∑

i=1

k∑

l=1

(
n2

i )
)
)

= O

(
m∑

i=1

(
kn2

i )
)
)
≤ O

(
m∑

i=1

(
n2

i

)
)
≤ O (kn2). Hence, the corollary

is proven. ¤

2.1.4 Parameter Estimation

In the actual implementation, the access frequency and the miss penalty of an object with
respect to a node are not usually constant. We have to estimate them accurately so that
the characteristics of data access can be well captured.

We follow the methods described in [90] for estimating parameters used in our model.
The access frequency f(v) is estimated by recent request data. We apply a “sliding
window” technique to estimate the access frequency to make our model less sensitive
to transient workload [88]. Specifically, f(v) is calculated by K/(t − tK), where K is
the number of accesses recorded, t is the current time, and tK is the Kth most recently
referenced time (the time of the oldest reference in the sliding window). It is shown by
Shim et al. in [88] that K can be as small as 2 or 3 to achieve the best performance. In the
simulation, k is set to 2. If knowledge of access frequency is imprecise, another method
can be applied to estimate the average access frequency for object O observed at node v
based on the size of this object. Specifically, f(v) is calculated by p/sb, where p and b
are constants for object O at node v, and s is the size of object O [88]. This is shown by
Cunha et al. in [28] based on the studies that web clients exhibit a strong preference for
accessing small objects [28, 39]. The miss penalty is updated by the response messages.
Specifically, a variable with an initial value of zero is attached to each object. At each
intermediate node along the way, the variable is increased by the cost of the last link
the object has just traversed. The value is then used to update the miss penalty of the
object maintained by the associated cache. If the object is inserted into the cache, the
node resets the value to zero before forwarding the object downstream. In this way, the
updated cost loss is disseminated to all the caches on the way.

2.1.5 Simulation Model

We have performed extensive simulation experiments for comparing the results of our
model with those of the existing models. Here, we assume that there is only one server.
As far as we knew, it is difficult to find true trace data in the open literature to simulate
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our model. Similar to the simulation model proposed in [90], we generated the simulation
model from empirical results presented in [7, 11,14].

The network topology is randomly generated by the Tier program [14]. We have
conducted experiments for a lot of topologies with different parameters and found that
the performance of our model was relatively insensitive to topology changes. Here, we
list only the experimental results for one topology because of space limitations. Table 2.1
shows the parameters and their values used in our experiments, where U(x, y) denotes
the uniform distribution between x and y.

Table 2.1: Parameters of Our Experiments

Parameter Value
Total Number of Nodes 300
Number of WAN Nodes 150
Number of MAN Nodes 150

Delay of WAN Links 0.45 second
Delay of MAN Links 0.06 second
Number of Objects 1000
Average Object Size 30KB

Average Request Rate Per Node U(1, 9) requests per second

The WAN (Wide Area Network) is viewed as the backbone network to which no
servers or clients are attached. Each MAN (Metropolitan Area Network) node is assumed
to connect to the content server. Each MAN and WAN node is associated with an en-
route cache. Similar to the studies in [11, 15, 46, 88], we describe cache size as the total
relative size of all objects available in the content server. We assume for our experiments
that the object sizes follow the distribution as described in [7] and that the average object
size is 30KB. In our experiments, the client at each MAN node randomly generates the
requests, and the average request rate of each node follows the distribution of U(1, 9).
The cost for each link is calculated by the access latency. For simplicity, the delay caused
by sending the request and the relevant response for that request is proportional to the
size of the requested object. Here, we consider the average object sizes for calculating all
delays, including the propagation delay, the transmission delay, and the searching delay.
The cost function is taken to be the delay of the link, which means that the cost in our
model is interpreted as the access latency in our simulation.

2.1.6 Experimental Results

In our experiments, we compare the performance results of different models across a wide
range of cache sizes, from 0.04 percent to 12 percent, and the performance metrics include
the average access latency, the response ratio of a request 7, the object hit ratio 8, the

7The response ratio of a request is defined as the ratio of its access latency to the size of the target
object.

8The object hit ratio is defined as the ratio of the number of requests satisfied by the caches as a
whole to the total number of requests.
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byte hit ratio 9, and the average server load 10.
In our experiments, we denote the results for the LRU model [102] by LRU , the results

for CERWOC for linear topology [90] by LT , and the results for U −CERWOC for tree
topology by TT .

Figure 2.6 shows the results of the average access latency and the average response
ratio as a function of the relative cache size at each node. As we have known, the lower
the average access latency or the average response ratio, the better the performance. We
can easily see that the performance results for the three models improve as the relative
cache size increases. We can also see that TT can improve both the average access latency
and the average response ratio compared to LRU and LT , since our model determines
the optimal locations in the whole tree, while LRU places the copies of an object at each
en-route cache and LT optimally places the copies of an object on the path from the client
to the server.
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Figure 2.6: Experiment for Average Access Latency and Average Response Ratio

Figure 2.7 shows the results of the object hit ratio and the byte hit ratio as functions
of the relative cache size for different models respectively. By computing the optimal
locations for the tree topology, we can see that the results for our model can greatly
outperform those of the other two models, especially for smaller cache sizes. The object
hit ratio and the byte hit ratio steadily improve as the relative cache size increases, which
conforms to the fact that more requests will be satisfied by the caches as the cache size
becomes larger.
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Figure 2.7: Experiment for Object Hit Ratio and Byte Hit Ratio

Figure 2.8 shows the results of the server load as a function of the relative cache size.

9The byte hit ratio is defined as the ratio of the bytes of requests satisfied by the caches as a whole
to the total bytes of requests.

10The average server load is defined as the average number of bytes served by the server per second.
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It can be seen that the average server load for our model is lower than that of the other
models. We can also see that the average server load decreases as the relatice cache size
increases.
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Figure 2.8: Experiment for Average Server Load

Figure 2.9 shows the results of the average response ratio and the object hit ratio as
functions of the average number of copies of the objects placed among the en-route caches
respectively. We can see that the average response ratio decreases as the number of copies
of an object placed among the en-route caches increases. When the number arrives at
about 175, the average response ratio begins to decrease slowly. This is true because
the optimal number of copies of an object to be placed in such a network topology is
approximately 175. We also can see that the object hit ratio decreases with the number
of copies of an object placed among the en-route caches increasing. When the number
reaches about 190, the object hit ratio starts to decrease. This is true because the optimal
number of copies of an object to be placed in such a network topology is approximately
190.
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Figure 2.9: Experiment for Different Number of Copies

2.2 Proxy Placement

Besides object caching as discussed in Section 2.1, proxy placement is also an impor-
tant factor that affects the performance of en-route web caching. In this section, we
present optimal solutions for the problem of proxy placement for coordinated en-route
web caching as a natural extension of the solution proposed for coordinated en-route web
object caching.
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2.2.1 Mathematical Model

The notations and definitions used in this section are similar to those introduced in Section
2.1. We still model the network as a connected graph T = (V,E), where V is the set of
nodes and E is the set of network links. Figure 2.10 shows an example of a tree topology.

Figure 2.10: Proxy Placement for Coordinated En-Route Web Caching for Tree Networks

Let P ⊆ V be a subset of nodes, at each of which a proxy server is placed. Let
f(v) denote the all the requests passing through node v during a certain period of time

(including the requests from node v itself and from others), obviously, f(v) ≥
∑

w∈C(v)

f(w).

As we have known, placing a web proxy at a node makes some requests previously
passing it now can be satisfied at it; hence, there will be some access cost gain by placing a
proxy server at a node. Thus, we can define the mathematical model for proxy placement
problem as an optimization problem by conducting a similar analysis to that in Section
2.1.1 as follows:

max
P⊆V ;|P |=k

G(T, P ) = max
P⊆V ;|P |=k

{∑
v∈P

(
f(v)− f

′
(v)

)
m(v)

}
(2.21)

where G(T, P ) is the overall access cost gain for placing a proxy server at each node in P ,

m(v) =
∑

(u1,u2)∈E[v→v
′
]

c(u1, u2) is the miss penalty of one request with respect to node v,

v
′
is the nearest higher level node of v at which a proxy server is placed (see Figure 2.10),

and f
′
(v) is the total access frequency that can still be served by the original proxies

on the downstream of node v if the proxy placed at node v is removed. For instance,
in Figure 2.10, f

′
(1) = f(3), f

′
(2) = f(5), f

′
(3) = f(4) + f(6), f

′
(4) = f(7) + f(8),

f
′
(5) = f

′
(6) = f

′
(7) = f

′
(8) = 0.

2.2.2 Dynamic Programming-Based Solution for Tree Networks

In this section, we use Tw to denote a tree, whose root is w. Without loss of generality,
we assume that there is only one content server at the root of a tree, at which the objects
requested by users are maintained. Based on Equation (2.21), the problem of proxy
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placement for tree Tw is defined as follows:

max
Aw⊆D(w);|Aw|=k

G(Tw, Aw) = max
Aw⊆D(w);|Aw|=k

{ ∑
v∈Aw

(
f(v)− f

′
(v)

)
m(v)

}
(2.22)

where f(v), f
′
(v), m(v), and l(v) are the same as defined in Section 2.2.1. Suppose that

A∗
w is an optimal solution to Equation (2.22) with respect to tree Tw, then we should

place a proxy server at each node in A∗
w, and G(Tw, A∗

w) represents the relevant maximum
overall access cost gain.

Before solving Equation (2.22), we consider the following equations:





max
Bw⊆D(w)

G(Tw, Bw) = max
Bw⊆D(w)

{ ∑
v∈Bw

(
f(v)− f

′
(v)

)
m(v)

}

s.t.
(
f(v)− f

′
(v)

)
m(v) ≥ α (∀ v ∈ Bw)

(2.23)





max
Bw⊆D(w)

G(Tw, Bw) = max
Bw⊆D(w)

{ ∑
v∈Bw

[(
f(v)− f

′
(v)

)
m(v)− α

]}
+ |Bw|α

s.t.
(
f(v)− f

′
(v)

)
m(v)− α ≥ 0 (∀ v ∈ Bw)

(2.24)





max
Bw⊆D(w)

G(Tw, Bw) = max
Bw⊆D(w)

{ ∑
v∈Bw

[(
f(v)− f

′
(v)

)
m(v)− α

]}

s.t.
(
f(v)− f

′
(v)

)
m(v)− α ≥ 0 (∀ v ∈ Bw)

(2.25)

It is obvious that equations (2.23), (2.24) and (2.25) are equivalent 11.
The following lemma depicts an important property of the solution to the following

equation:

max
Aw⊆D(w)

G(Tw, Aw) = max
Aw⊆D(w)

{ ∑
v∈Aw

[(
f(v)− f

′
(v)

)
m(v)− α

]}
(2.26)

Lemma 4 If A∗
w is an optimal solution to Equation (2.26), then we have

(
f(v)− f

′
(v)

)
m(v)− α ≥ 0, ∀ v ∈ A∗

w.

The proof of this lemma is similar to that of Lemma 3.
The following theorem describes the relationship between optimal solutions to Equa-

tion (2.25) and Equation (2.26).

Theorem 9 If A∗
w is an optimal solution to Equation (2.26), then A∗

w is also an optimal
solution to Equation (2.25).

11Equivalent means that an optimal solution to one equation is also an optimal solution to the other
equations. For Example, an optimal solution to Equation (2.23) is an optimal solution to Equation (2.25)
and an optimal solution to Equation (2.25) is also an optimal solution to Equation (2.23).
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Proof Since A∗
w is an optimal solution to Equation (2.26), by Lemma 4, we have(

f(v)− f
′
(v)

)
m(v) − α ≥ 0,∀ v ∈ A∗

w; therefore, A∗
w is a feasible solution to Equation

(2.25), so we have G(Tw, A∗
w) ≤ G(Tw, B∗

w). Now we suppose G(Tw, A∗
w) < G(Tw, B∗

w). It
is obvious that B∗

w is a feasible solution to Equation (2.26); therefore, we have G(Tw, A∗
w) =

G(Tw, A∗
w) and G(Tw, B∗

w) = G(Tw, B∗
w), so we have G(Tw, A∗

w) < G(Tw, B∗
w). This con-

tradicts the fact that A∗
w is an optimal solution to Equation (2.26). Hence, the theorem

is proven. ¤
By now, we have proved that we can obtain an optimal solution to Equation (2.23)

by solving Equation (2.26). Now we start to solve Equation (2.26).
Let Tw,x be a subtree of Tw, whose node set is V [w → x]∪D(x), where x ∈ D(w). We

define another equation as follows:

max
Aw,x⊆D(x)∪{x};|Aw,x|=k

G(Tw,x, Aw,x) = max
Aw,x⊆D(x)∪{x};|Aw,x|=k

8<: X
v∈Aw,x

h�
f(v)− f

′
(v)
�

m(v)− α
i9=; (2.27)

If not specially declared in this section, A∗
w and A∗

w,x are used to denote an optimal
solution to Equation (2.26) and to Equation (2.27) with respect to tree Tw and tree Tw,x

respectively.
Based on theorems 1 and 2 proposed in Section 2.1, we can present the following

dynamic programming-based algorithm for solving Equation (2.26).

Algorithm 6: Preliminary Algorithm

Step 1. Initialization:
A∗

w = φ and G(Tw, A∗
w) = 0;

Step 2. End condition
if D(w) = φ then return;
Step 3. Recursive procedure
for v ∈ C(w) do

if D(v) = φ then
if f(v)c(w, v)− α > 0 then

A∗
w,v = {v}

else
A∗

w,v = φ
else

for x ∈ C(v) do

if
∑

x∈C(v)

G(Tw,x, A
∗
w,x) ≥ G(Tv, A

∗
v) + (f(v)− f

′
(v))c(w, v)− α then

A∗
w,v = ∪x∈C(v)A

∗
w,x

else
A∗

w,v = A∗
v ∪ {v} (According to Theorem 2)

A∗
w = ∪v∈C(w)A

∗
w,v (According to Theorem 1)

Similarly, the time complexity of Algorithm 6 is given in the following corollary.

Corollary 4 The time complexity of Algorithm 6 is O(n2), where n is the total number
of nodes in the network.

Now we begin to solve the problem of finding the optimal locations of placing k proxy
servers in tree networks as described in Equation (2.22).
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First, we give the following definition. The local access cost gain 12 at node v, denoted
by h(v), is defined as h(v) = f(v)c(v, w).

Let αmax = max
v∈V

{h(v)}. If α > αmax, then we can easily see that there is no feasible

solutions to Equation (2.23); thus, the parameter α in Equation (2.23) should satisfy:
0 ≤ α ≤ αmax. The crucial observation is that the optimal number of proxies to be placed
is a monotonically decreasing function of α, that is, as α increases, this number will
decrease monotonically. Therefore, we can determine the optimal locations for placing
exactly k proxy servers among the nodes by tuning the parameter α. The relationship
between the optimal number of proxies to be placed, denoted by k∗, and the parameter
α can be seen in Figure 2.11.

Figure 2.11: Relationship between k∗ and α

Therefore, based on Algorithm 6, we can present an algorithm for placing k proxy
servers among the nodes for tree networks as follows:

Algorithm 7: Proxy Placement for Tree Networks

Step 1. Initialization
αmin = 0; αmax = max

v∈V
{h(v)}, k∗ = |A∗

w|.
Step 2. Recursive Procedure
while k∗ 6= k do

α = (αmin + αmax)/2;
Call Algorithm 6;
k∗ = |A∗

w|;
if k∗ > k then

αmin = α
else

αmax = α

We can see that Algorithm 7 converges to the optimal solution to Equation (2.22)
quickly. The time complexity of Algorithm 7 is given in the following corollary.

12The local access cost gain is the access cost gain for placing only one proxy server among the nodes.
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Corollary 5 The time complexity of Algorithm 7 is O(n2), where n is the total number
of nodes in the network.

From Corollary 5, we can see that the time complexity of our algorithm is much better
than the O(n3k2) time complexity of a different dynamic programming algorithm for this
problem proposed in [53]. Compared with the O(nhk) time complexity of the algorithm
proposed in [49], we can see that the two algorithms have their own strength, i.e., if
hk ≥ n, then our algorithm is a little better; otherwise, the algorithm in [49] is a little
better.

2.2.3 Dynamic Programming-Based Solution for Autonomous
Systems

In this section, we assume that the network topology for each AS is a tree. We denote
the whole network by TAS = (VAS, EAS), where VAS is the set of the nodes and EAS is the
set of the links. We assume that there are m autonomous systems in the network, each of
which is represented by tree Ti, i = 1, 2, · · · ,m. We denote the set of the replica servers
and the content server as SAS.

Based on Equation (2.21), the proxy placement problem for autonomous systems is
defined as follows:

max
AAS⊆VAS−SAS ;|AAS |=k

G(TAS, AAS) = max
AAS⊆VAS−SAS ;|AAS |=k

{ ∑
v∈AAS

(
f(v)− f

′
(v)

)
m(v)

}

(2.28)
From Equation (2.28), we can see that this problem degenerates to the problem ad-

dressed in Section 2.2.2 when m = 1. In this section, we also use G̃(TAS, k) to denote
the overall maximum access cost gain for placing k proxy servers in TAS for convenience,
i.e. G̃(TAS, k) = G(TAS, P ∗

AS), where P ∗
AS is an optimal solution to Equation (2.28) and

k = |P ∗
AS|.

Now we apply the following idea to solve this problem, which is similar to that pre-
sented in [44]. We first divide TAS into two parts: ∪m−1

i=1 Ti and Tm, and consider the
problem of placing km proxy servers in the first part and k− km proxy servers in the sec-
ond part, where 0 ≤ km ≤ k. Then, we divide ∪m−1

i=1 Ti into two parts: ∪m−2
i=1 Ti and Tm−1,

and consider the problem of placing km−1 proxy servers in the first part and km − km−1

proxy servers in the second part, where 0 ≤ km−1 ≤ km. We repeat this process until
there is only one tree left. The recursive process is given in the following theorem.

Theorem 10

G̃(T+i, k) =

{
G̃(T1, k) if T+i = T1

max
0≤k′≤k

{G̃(T+(i−1), k
′
) + G̃(Ti, k − k

′
)} if T+i 6= T1

where T+i = ∪i
j=1Tj.

The proof of Theorem 10 can be found in Section 2.1. Now we can present the
algorithm for proxy placement for autonomous systems as follows:

Algorithm 8: Proxy Placement for Autonomous Systems

31



Main Procedure
for i = 1 to m do (Initialization)

for j = 0 to k −m + i do
G̃(T+i, j) = −1; (The cost gain for placing j proxy servers in T+i)
P (Ti, j) = φ (The optimal solution for placing j proxy servers in Ti)

Call Placement(T+m, k); (Calling procedure Placement recursively)

Procedure Placement(T+i, l)

if G̃(T+i, l) ≥ 0 then

Return G̃(T+i, l); (G̃(T+i, l) computed)
if i = 1 then

Return G̃(T1, l); (Call Algorithm 7)
TG = 0;
for l

′
= (i− 1) to l − 1 do (Finding the optimal placement in Ti)

TG=Placement(T+(i−1), l
′
) + G̃(Ti, l − l

′
); (According to Theorem 8)

=Placement(T+(i−1), l
′
) + G(Ti, A

∗
i );

if G̃(T+i, l) > TG then

G̃(T+i, l) = TG
P (Ti, l − l

′
) = A∗

i

The time complexity of Algorithm 8 is given in the following corollary.

Corollary 6 The time complexity of Algorithm 8 is O(n2k), where n is the total number
of nodes in the network and k is the number of proxy servers to be placed in the network.

From Corollary 6, we can see that the time complexity of our algorithm is much better
than the O(n3k3) time complexity of a different dynamic programming algorithm for this
problem proposed in [44].

2.2.4 Simulation Model

We have performed extensive simulation experiments for comparing the results of our
model with those of the random placement model. As it is difficult to find true trace data
in the open literature to simulate our model, we generated the simulation model from
empirical results presented in [7, 11,14].

The network topology is randomly generated by the Tier program [14] and consists
of numerous WAN (Wide Area Network) nodes and MAN (Metropolitan Area Network)
nodes. We have conducted experiments for a lot of topologies with different parameters
and found that the performance of our model was insensitive to the topology changes.
Here, we just list only the experimental results for one topology due to space limitations.
Table 2.2 shows the parameters and their values used in our experiments, where U(x, y)
denotes the uniform distribution between x and y.

The WAN is viewed as the backbone network to which no content servers or clients
are attached. Each MAN node is assumed to connect to the content server. Each MAN
and WAN node is associated with a proxy server. In our experiments, the client randomly
generates the requests and the average request rate of each node follows the distribution
of U(1, 9). The cost for each link is calculated by the access latency. For simplicity,

32



Table 2.2: Parameters of Our Experiments

Parameter Value
Total Number of Nodes 1000

Ratio of Number of WAN nodes to that of MAN Nodes 1 : 1
Number of Objects 1000

The Average Object Size 30K
Delay of WAN Links 0.45 second
Delay of MAN Links 0.06 second

Average Request Rate Per Node U(1, 9) requests per node

the delay caused by sending the request and the relevant response for that request is
proportional to the size of the requested object. Here, we consider the average object
sizes for calculating all delays, including the propagation delay, the transmission delay,
and the searching delay. The cost function is taken to be the delay of the link, which
means that the cost in our model is interpreted as the access latency in our simulation.

2.2.5 Experimental Results

In our experiments, we denote the results for random proxy placement model by RPPM ,
and the results for the heuristic model (KMPC) proposed in [63] by KMPC, and the
results for dynamic programming-based solution proposed in this section by DPBS.

Figure 2.12 shows the results of the average access latency and the average response
ratio as functions on numbers of proxy servers. As we have known, the lower the average
access latency and the average response ratio, the better the performance. We can easily
see that the performance results for both models improve as the number of proxy servers
increases. We can also see that our model for tree topology can improve the average
access latency and the average response ratio compared to the other models, since our
model determines the optimal locations in the whole tree.
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Figure 2.12: Experiment for Average Access Latency and Average Response Ratio

Figure 2.13 plots the results of the object hit ratio and the byte hit ratio as functions
on numbers of proxy servers for different models. By computing the optimal locations
for the tree topology, we can see that the results for our model outperforms those of the
other models greatly. The object hit ratio and the byte hit ratio for each model steadily
improve as the number of proxy servers increases, which conforms to the fact that more
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requests can be satisfied by closer proxies as the number of proxy servers becomes greater.
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Figure 2.13: Experiment for Object Hit Ratio and Byte Hit Ratio

Figure 2.14 shows the results of the server load as a function on the number of proxy
servers. It can be seen that the average server load for our model is lower than that of
the other model. We can also see that the average server load for each model decreases
as the number of proxy servers increases.
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Figure 2.14: Experiment for Average Server Load

2.3 Chapter Summarization

In this chapter, we first addressed the problem of coordinated en-route web object caching
in Section 2.1, and then studied the problem of proxy placement for coordinated en-route
web caching in Section 2.2. We proposed several solutions for solving the above problems
for several cases and conducted extensive simulation experiments to evaluate our solutions.
The contents included in this chapter can be found in [55–57].
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Chapter 3

Coordinated En-Route Transcoding
Proxy Caching

This chapter studies transcoding proxy caching (i.e., web caching in transcoding proxies),
which typically connects two heterogeneous networks. A WAP proxy, or gateway, is
such a transcoding proxy that connects the wireless network and the Internet. Figure 3.1
shows a simple example consisting of content servers, transcoding proxies, and various
types of client devices. The transcoding proxy is connected to the content servers via the
IP network, while the clients are connected to the transcoding proxy via different kinds
of networks, such as LANs (Local Area Network), WANs (Wide Area Network), wireless
networks, etc.

Figure 3.1: System Architecture

All the media objects which are maintained by the content servers, such as audio and
video, are referred to as full object versions. The transcoding proxy is located closer to its
clients. A full object version has numerous transcoded versions such that different clients’
capabilities can be accommodated.

The request handling procedure works as follows. Clients’ requests for media objects
are directed to the transcoding proxy. The requests consist of the name of the media
objects and the capability of the client device. When a user’s request arrives at the
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transcoding proxy, the proxy searches its cache for the appropriate media object version.
One of the following situations could occur:

• Version Hit: The requests are satisfied by the exact versions of the media objects
cached. No transcoding is necessary.

• Content Hit: The requests are satisfied by the more detailed versions of the media
objects cached. Additional transcoding is necessary.

• Cache Miss: The requests can not be satisfied by the exact versions of the objects
or the more detailed versions of the objects cached. The full object version needs
to be retrieved from the server and transcoding is also necessary.

3.1 Coordinated En-Route Multimedia Object Caching

3.1.1 Problem Formulation

The network we use in this section is modelled as a tree T = (V,E), where V =
(v1, v2, · · · , vn) is the set of nodes, and E is the set of network links. Without loss of
generality, we assume that there is only one content server at the root by which all the
objects are maintained. In our analysis, we also assume that each node is associated with
an en-route cache. A client’s request for a multimedia object goes along the path from the
client to the server until it is satisfied by the first node on the path whose cache stores a
more detailed version of the requested object. After transcoding if necessary, the proper
version will be sent back to the client along the same path. We also assume in this section
that the routing path is symmetric. For the asymmetric case, we can consider a subset of
V by excluding those noses which are not on both upstream and downstream paths. Such
a simplification is validated in [90]. Figure 3.2 shows an example of such a tree topology.
Here, v0 is the node associated with the content server, and the other nodes are associated
with en-route caches.

Figure 3.2: Coordinated En-Route Multimedia Object Caching in Transcoding Proxies

We denote the set of all nodes that are the children of node v as C(v), and the set
of all nodes that are the descendants of node v as D(v). For instance, in Figure 3.2,

36



C(v1) = {v3, v4}, and D(v1) = {v3, v4, v6, v7, v8}. Let A = (A1, A2, · · · , Am) denote the
set of all versions of a multimedia object 1, and eAj

denote the size of Aj. We assume
that the access frequencies for Aj from vi, denoted by fAj ,vi

, are independent. The cost of
transmitting a multimedia object between vi and vj is denoted by cvi,vj

. In this section,
we assume that cvi,vj

is the same for different versions on the same network link. We shall
consider the general case in which cvi,vj

is different for different versions in our future work.
The cost in our analysis is calculated from a general point of view. It can be different
performance measures such as delay, bandwidth requirement, and access latency, or a
combination of these measures. If a request goes through multiple network links, the cost
is the sum of the cost on all these links.

The relationship among different versions of a multimedia objects can be expressed
by a weighted transcoding graph [23]. An example of such a weighted transcoding graph
is shown in Figure 3.3, where the original version A1 can be transcoded to each of the
less detailed versions A2, A3, A4, and A5. It should be noted that not every Ai can be
transcoded to Aj since it is possible that Ai does not contain enough content information
for the transcoding from Ai to Aj. In our example, transcoding can not be executed
between A4 and A5 due to insufficient content information. The transcoding cost of
a multimedia object from Ai to Aj is denoted by w(Ai, Aj). The number beside each
edge in Figure 3.3 is the transcoding cost from one version to another. For example,
w(A1, A2) = 12, and w(A3, A4) = 10. Φ(Ai) is the set of all the versions that can be
transcoded from Ai, including Ai. For example, Φ(A1) = {A1, A2, A3, A4, A5}, Φ(A2) =
{A2, A4, A5}, and Φ(A4) = {A4}. In this section, we assume that w(Ai, Aj) is independent
on other factors, such as the CPU and the workload of the computer with an en-route
cache. We shall further consider this case in our future work.

Figure 3.3: An Example of A Weighted Transcoding Graph

We use v+(Ai) to denote the nearest higher level node of v that stores a more detailed
version than Ai (including Ai), B−

v (Ai) to denote the set of the nearest lower level node
of v that stores a less detailed version than Ai (including Ai) in different branches from
node v, and Hv to denote the version cached or to be cached at node v. For example, if
a multimedia object has five versions as shown in Figure 3.3, and A2 is cache at v1, A3

1A1, A2, · · · , Am are all stored at the server, i.e., v0 .
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is cached at v3 and v8 (see Figure 3.2), then we have v+
6 (A3) = v+

6 (A4) = v+
6 (A5) = v3,

v+
6 (A2) = v1, v+

6 (A1) = v0; B−
v1

(A3) = B−
v1

(A4) = B−
v1

(A5) = {v3, v8} since A3, A4 and
A5 can all be transcoded from A3, B−

v1
(A1) = B−

v1
(A2) = φ in that A1 and A2 cannot be

transcoded from A3. A list of symbols used in this section is given in Table 3.1.

Table 3.1: A List of the Notations

Notation Decription
C(v) set of all nodes that are the children of node v
D(v) set of all nodes that are the descendants of node v

A = (A1, A2, · · · , Am) set of versions of a multimedia object
eAj

the size of Aj

fAj ,vi
mean access frequency of Aj from vi

cvi,vj
cost of transmitting a multimedia object between vi and vj

w(Ai, Aj) transcoding cost from Ai to Aj for a multimedia object
Φ(Ai) set of all versions that can be transcoded from Ai

v+(Ai)
nearest higher level node of v

that stores a more detailed version than Ai

B−
v (Ai)

set of the nearest lower level node of v that

stores a less detailed version than Ai in different branches

Hv version cached or to be cached at node v

The problem of multimedia object caching is similar to that of web object caching as
discussed in Chapter 2. The problem of coordinated en-route multimedia object caching in
transcoding proxies is further complicated due to the relationship among different versions
of the same multimedia object. We begin with computing the cost saving and the cost
loss of caching a multimedia object at a single node. We first define the miss penalty,
which will be used to define the cost saving and the cost loss later. Let m(Ai, vj) be the
miss penalty of version Ai with respect to node vj, which is defined as the additional
cost of accessing Ai if the version cached at node vj, i.e., Hvj

, is removed. In our model,
m(Ai, vj) is given by the following definition.

Definition 1 m(Ai, vj) is a function for calculating the miss penalty of Ai if Hvj
is

removed from node vj, which is defined as

m(Ai, vj) = cvj ,v+
j (Ai)

+ w(Hv+
j (Ai),Ai)

− w(Hvj
, Ai)

It is easy to see that cvj ,v+
j (Ai)

is the additional access cost, w(Hv+
j (Ai)

, Ai) is the

new transcoding cost, and w(Hvj
, Ai) is the original transcoding cost. For example, if a

multimedia object has five versions as shown in Figure 3.3, and A2 is cache at v1, A3 is
cached at v3 and v8 (see Figure 3.2), then we have m(A5, v3) = c(v3, v1) + w(A2, A5) −
w(A3, A5), m(A4, v3) = c(v3, v1) + w(A2, A4)− w(A3, A4), and m(A3, v3) = c(v3, v0).

Obviously, the cost saving of caching Hv at v is defined as follows.
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Definition 2 s(Hv), a function for calculating the cost saving of caching Hv at v, is
defined as

s(Hv) =
∑

Ax∈Φ(Hv)

fAx,v ·m(Ax, v)

Second, we consider the cost loss of caching a multimedia object at a node, which is
calculated in the same way as introduced in Chapter 2.

Taking into account the cache dependencies, the cost saving of caching Hv at v should
be calculated as follows.

s(Hv) =
∑

Ax∈Φ(Hv)


fAx,v −

∑

z∈B−v (Ax)

fAx,z


 m(Ax, v)

Now we give a simple example to explain how to calculate the cost saving by consider-
ing the cache dependencies. For example, if a multimedia object has five versions as shown
in Figure 3.3, and A2 is cache at v1, A3 is cached at v3 and v8 (see Figure 3.2), then the cost

saving of caching A2 at v1 is calculated as fA2,v1mA2,v1 +
5∑

i=4

(fAi,v1−(fAi,v3 +fAi,v8))mAi,v1 ,

since Φ(A2) = {A2, A4, A5}.
The cost gain, defined as the difference between the cost saving and the cost loss, is

the reduction of access cost in the network. Based on the above analysis, the total cost
gain of caching multiple versions of a multimedia object is defined as follows.

Definition 3 G(T, P ), the total cost gain of caching multiple versions of a multimedia
object at nodes in P ⊆ V is defined as

G(T, P ) =
∑
v∈P

s(Hv)− l(Hv) =
∑
v∈P

∑

Ax∈Φ(Hv)


fAx,v −

∑

z∈B−v (Ax)

fAx,z


 m(Ax, v)− l(Hv)

Obviously, our objective is to find P ∗ = {P1, P2, · · · , Pk∗} ⊆ V such that G(T, P ∗) =
max

P
{G(T, P )}, where H∗

Pi
∈ A (1 ≤ i ≤ k∗) is the proper version that should be cached

at node Pi, and the caching decisions are made from the optimal solution, i.e., H∗
Pi

.

3.1.2 Dynamic Programming-Based Solution for Linear Net-
works

Now we begin to present an optimal solution for coordinated en-route multimedia object
caching for linear networks. Consider the snapshot when a request for a media object
is being served (see Figure 3.4). Let Node 0 be the content server or the higher level
node satisfying the object request, node n be the client issuing the request, and node
1, 2, · · · , n− 1 the nodes on the path from 0 to n.

Based on Definition 3, this problem can be simplified by the follwoing definition.

Definition 4 Let v1, v2, · · · , vk be a set of k nodes such that 1 ≤ v1 ≤ v2 ≤ · · · ≤ vk ≤ n.
F (n : v1, v2, · · · , vk), which is the aggregate profit of caching multiple versions of a media
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Figure 3.4: Coordinated En-Route Multimedia Object Caching for Linear Networks

object at v1, v2, · · · , vk, is defined as

F (n : v1, v2, · · · , vk) =
k∑

j=1

(S(Hvj
)− L(Hvj

)) (3.1)

If k = 0, then we define F (n : φ) = 0. Finding k and v1, v2, · · · , vk that maximizes
F (n : v1, v2, · · · , vk) is referred to as the n-optimization problem [90].

Our objective is to compute the locations for placing multiple versions of a media
object in a subset of nodes {v1, v2, · · · , vk} that maximizes the aggregate profit as defined
in Equation (3.1).

In this following, we develop a dynamic programming-based algorithm which is in-
spired by [53] to solve the problem formulated in Section 3.1.1. The following theorem
shows that an optimal solution to Equation (3.1) must contain optimal solutions to some
subproblems.

Theorem 11 Suppose that {v1, v2, · · · , vI} is an optimal solution to the n-optimization
problem as defined in Equation (3.1) and {u1, u2, · · · , ul} is an optimal solution to the
(vI − 1)-optimization problem, then {u1, u2, · · · , ul, vI} is also an optimal solution to the
n-optimization problem.

Proof By definition, it is obvious that the following inequality is correct.

F (vI − 1 : u1, u2, · · · , ul) ≥ F (vI − 1 : v1, v2, · · · , vI−1)

Therefore, we have

F (n : u1, u2, · · · , ul, vI)
= (S(Hu1)− L(Hu1)) + · · ·+ (S(Hul

)− L(Hul
)) + (S(HvI

)− L(HvI
))

= F (vI − 1 : u1, u2, · · · , ul) + (S(HvI
)− L(HvI

))
≥ F (vI − 1 : v1, v2, · · · , vI−1) + (S(HvI

)− L(HvI
))

= (S(Hv1)− L(Hv1)) + · · ·+ (S(HvI−1
)− L(HvI−1

)) + (S(HvI
)− L(HvI

))
= F (n : v1, v2, · · · , vI−1, vI)

On the other hand, since {v1, v2, · · · , vI} is an optimal solution to the n-optimization
problem, we have

F (n : u1, u2, · · · , ul, vI) ≤ F (n : v1, v2, · · · , vI−1, vI).

So we have

F (n : u1, u2, · · · , ul, vI) = F (n : v1, v2, · · · , vI−1, vI).
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Hence, the theorem is proven. ¤
Before presenting the dynamic programming-based algorithm, we give the following

definition.

Definition 5 Define F ∗
n to be the maximum aggregate profit of F (n : v1, v2, · · · , vk) ob-

tained by solving the n-optimization problem and In the maximum index in the optimal
solution. If the optimal solution is an empty set, define In = −1.

Obviously, we have I0 = −1 and F ∗
0 = 0. From Theorem 11, we know that if Ir > 0,

FIr = FIr−1 + (S(HvIr
)− L(HvIr

))

Therefore, we can check all possible locations of Ir (0 ≤ r ≤ n) and select the one
that maximizes F (r : v1, v2, · · · , vk). So we have

{
F ∗

0 = 0
F ∗

r = max
1≤vi≤r

{
0, F ∗

vi−1 + (S(Hvi
)− L(Hvi

))
}

and 



I0 = −1

Ir =

{ −1 if F ∗
r = 0

v if F ∗
r = F ∗

v−1 + (S(Hv)− L(Hv))

The original problem can be solved using a dynamic programming-based algorithm
with the recurrences above. Theorem 11 ensures the correctness.

In this following, we present an analysis of the algorithm above. The following theorem
describes an important property of the algorithm.

Theorem 12 Suppose that {v1, v2, · · · , vI} is an optimal solution to the n-optimization
problem, then we have

∑

Ax∈D(Bvi )

fAx,vi
·m(Ax, vi)− l(Ax, vi) ≥ 0 ∀ 1 ≤ i ≤ k

Proof Suppose that there exists r such that
∑

Ax∈D(Bvr )

fAx,vr ·m(Ax, vr)− l(Ax, vr) < 0

then we have

F (n : v1, v2, · · · , vI)
= F (vr − 1 : v1, v2, · · · , vr−1)

+
∑

Ax∈D(Bvr )

(
fAx,vr − fAx,v−r (Ax)

)
·m(Ax, vr)− l(Ax, vr)

+F (n− vr : vr+1, vr+2, · · · , vI)
≤ F (vr − 1 : v1, v2, · · · , vr−1)

+
∑

Ax∈D(Bvr )

fAx,vr · ·m(Ax, vr)− l(Ax, vr)

+F (n− vr : vr+1, vr+2, · · · , vI)
< F (vr − 1 : v1, v2, · · · , vr−1) + F (n− vr : vr+1, vr+2, · · · , vI)
≤ F (n : v1, · · · , vr−1, vr+1, · · · , vI)
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which contradicts the fact that {v1, v2, · · · , vI} is an optimal solution to the n-optimization
problem. Hence, the theorem is proven. ¤

Theorem 12 shows that we should only consider the nodes where the local profit is
beneficial 2. It can be easily shown that the time complexity of the algorithm proposed
in Section 3.1.2 is O(n2m), where n is the number of nodes and m is the number of all
the versions of a media object. From Theorem 12, we can also easily see that the time
complexity of the algorithm is greatly less than O(n2m) since there must be many nodes
whose local profit are not beneficial; therefore, the cost of computing the optimal solution
is low.

3.1.3 Dynamic Programming-Based Solution for Tree Networks

Now we begin to solve the problem of coordinated en-route multimedia object caching
for tree networks. To formally define our problem, we use Tr = (V, E) to identify a tree
whose root is r. Based on Definition 3, the problem of coordinated en-route multimedia
object caching for tree Tr is defined as an optimization problem as follows:

max
Pr

G(Tr, Pr) = max
Pr

∑
v∈Pr

(s(Hv)− l(Hv)) (3.2)

where Pr ⊆ D(r).
Before presenting a solution to Problem (3.2), we define the following optimization

problem for tree Tr,w.

max
Pr,w

G(Tr,w, Pr,w) = max
Pr,w

∑
v∈Pr,w

(s(Hv)− l(Hv)) (3.3)

where Pr,w ⊆ D(w) ∪ {w}. Here, tree Tr,w is a subtree of Tr whose node set is Dw ∪ {w},
where w ∈ D(r).

Now we start to present a solution to Problem (3.2). First, we give a theorem that
indicates an important property between the optimal solutions for tree Tr and Tr,ri

, where
ri ∈ C(r).

Theorem 13 For tree Tr, if C(r) = {r1, r2, · · · , rs}, then we have

P ∗
r = ∪s

i=1P
∗
r,ri

where P ∗
r is an optimal solution to Problem (3.2) with respect to tree Tr, and P ∗

r,ri
is an

optimal solution to Problem (3.3) with respect to tree Tr,ri
, i = 1, 2, · · · , s.

Theorem 13 is the same as Theorem 1 in Chapter 1. For easy understanding, we
redescribe it there. Note that Theorem 13 shows that computing an optimal solution to
Problem (3.2) can be decomposed into computing the optimal solutions for subtrees Tr,ri

,
where C(r) = {r1, r2, · · · , rs}. Therefore, we can solve Problem (3.2) if and only if we
can solve Problem (3.3).

In the following, we present another theorem that describes an important property
of the solution to Problem (3.3), by which an optimal solution to Problem (3.3) can be
obtained.

2Here, local profit refers to the profit of caching only one version of a media among the caches.
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Theorem 14 For tree Tr,w, if C(w) = {w1, w2, · · · , wt}, then we have

P ∗
r,w =

{ ∪t
i=1P

∗
r,wi

G(Tr,w,∪t
i=1P

∗
r,wi

) ≥ G(Tr,w, P ∗
w ∪ {w})

P ∗
w ∪ {w} G(Tr,w,∪t

i=1P
∗
r,wi

) < G(Tr,w, P ∗
w ∪ {w})

where P ∗
r,w is an optimal solution to Problem (3.3) with respect to tree Tr,w, P ∗

w is an
optimal solution to Problem (3.2) with respect to tree Tw, and P ∗

r,wi
is an optimal solution

to Problem (3.3) with respect to tree Tr,wi
, i = 1, 2, · · · , t.

The proof of Theorem 14 is similar to that of Theorem 2 in Chapter 1. Theorem 14
shows that an optimal solution to Problem (3.3) is decided according to the cost gain of
storing a version at node w or not.

Based on theorems 13 and 14, the original problem, i.e. Problem (3.2), can be solved
using dynamic programming with the following recurrences.

• Suppose that v ∈ V and C(v) = {v1, v2, · · · , vt1}. If t1 = 0, then P ∗
v = φ; otherwise,

P ∗
v = ∪t1

i=1P
∗
v,vi

.

• Suppose that u ∈ D(v) and C(u) = {u1, u2, · · · , ut2}. If t2 = 0, then

P ∗
v,u =




{u}

∑

Ax∈Φ(Hu)

fAx,u[c(v, u) + w(Hu, Ax)]− l(Hu) ≥ 0

{φ} Otherwise

Otherwise,

P ∗
v,u =

{ ∪t2
i=1P

∗
v,ui

G(Tv,u,∪t2
i=1P

∗
v,ui

)−G(Tv,u, P
∗
u ∪ {u}) ≥ 0

P ∗
u ∪ {u} Otherwise

With the same analysis presented in Chapter 1, we can obtain the following two
theorems for describing some important properties of the solution proposed above.

Theorem 15 If P ∗
r is an optimal solution to Problem (3.2) with respect to tree Tr, then

we have s(Hv)− l(Hv) ≥ 0, ∀ v ∈ P ∗
r .

Proof Suppose that there exists u ∈ P ∗
r that satisfies s(Hu)− l(Hu) < 0, then we have

G(Tr, P
∗
r − {u})

=
∑

v∈P ∗r −(D(u)∪{u})
(s(Hv)− l(Hv)) +

∑

v∈P ∗r ∩D(u)

(s(Hv)− l(Hv))

>
∑

v∈P ∗r −(D(u)∪{u})
(s(Hv)− l(Hv)) + (s(Hu)− l(Hu)) +

∑

v∈P ∗r ∩D(u)

(s(Hv)− l(Hv))

≥
∑
v∈P ∗r


 ∑

Ax∈Φ(Hv)


fAx,v −

∑

z∈B−v (Ax)

fAx,z


 m(Ax, v)− l(Hv)


 3

= G(Tr, P
∗
r )

which contradicts the fact that P ∗
r is an optimal solution to Problem (3.2) with respect

to tree Tr. Hence, the theorem is proven. ¤
3This is because fAx,z becomes larger for the nodes of upstream of node u and m(Ax, v) smaller for

the nodes of downstream of node u when a version is placed at node u.
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Theorem 15 shows an important property of the optimal solution to Problem (3.2).
All the nodes in the optimal solution must satisfy the condition above; otherwise, it can
be removed from the optimal solution.

Theorem 16 If P ∗
r is an optimal solution to Problem (3.2) with respect to tree Tr, then

we have

∑

Ax∈Φ(Hv)

fAx,v · (cv,r − w(Hv, Ax))− l(Hv) ≥ 0 ∀ v ∈ P ∗
r

The proof of this theorem can be similarly obtained from that of Theorem 3 given in
Chapter 1. Theorem 16 shows that we should only consider the nodes where the local cost
gain is beneficial, i.e. the cost saving outweighs the cost loss with respect to that single
node. It can be shown that the complexity of this dynamic programming-based solution
is O(n3m2), where n is the total number of nodes in the network and m is the number of
the versions that a multimedia object owns. In practical network, there must be a number
of nodes whose local cost gain is not beneficial; therefore, the time complexity should be
less than O(n3m2).

3.1.4 Coordinated Caching Scheme

Based on the previous analysis, we present the following coordinated web caching scheme.
In our scheme, every cache maintains some information about the objects in the form of
object descriptors. An object descriptor contains information that includes the object
size, the access frequencies for all versions of the media object, and the cost losses of the
media object with respect to the associated node. When a request is issued from node n
for a version of a media object, each node v on the path between node 0 and n piggybacks
the corresponding information fAi,vj

, cvi,vj
, l(Aj, vi)(i = 1, 2, · · · ,m; j = 1, 2, · · · , n), as it

passes the node. When the request arrives at the content server, the optimal locations for
placing multiple versions of a media object are calculated using the dynamic programming-
based algorithm according to the information accumulated, then the content server sends
the decisions back with copies of that media object. If a version should be cached at node
v (transcoding will be executed if necessary), then node v executes the greedy heuristic
algorithm (e.g. LRU) to decide which objects should be removed and update its cache
information accordingly.

Since the cache contents change over time, the access frequency and the cost loss of an
object with respect to a node must be refreshed from time to time. The access frequency
can be estimated based on recent request history, which is locally available (e.g. by using
a ”sliding window” technique [88]). The cost loss is updated by the response messages.
Specifically, a variable with an initial value of zero is attached to each object. At each
intermediate node along the way, the variable is increased by the cost of the last link the
object has just traversed. The value is then used to update the cost loss of the object
maintained by the associated cache. If the object is inserted into the cache, the node resets
the value to zero before forwarding the object downstream. In this way, the updated cost
loss is disseminated to all the caches on the way.
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3.1.5 Simulation Model

In this section, the simulation model used for performance evaluation is described. We
have performed extensive simulation experiments to compare the results of our model
(proposed in Section 3.1.3) with those of existing caching models. The network in our
simulation consists of numerous nodes and content servers. The system configuration
is outlined in section 3.1.5, and four existing caching models used for the purpose of
comparison are introduced in Section 3.1.5.

System Configuration

To the best of our knowledge, it is difficult to find true trace data in the open literature
to simulate our model. Therefore, we generated the simulation model from the empirical
results presented in [1, 7, 11,14,23,45,53,90].

The network topology was randomly generated by the Tier program [14]. Experiments
for many topologies with different parameters have been conducted and the relative per-
formance of our model was found to be insensitive to topology changes. Here, only the
experimental results for one topology was listed due to space limitations. The character-
istics of this topology and the workload model are shown in Table 3.2, which are chosen
from the open literature and are considered to be reasonable.

Table 3.2: Parameters Used in Simulation

Parameter Value
Number of WAN Nodes 200
Number of MAN Nodes 200

Delay of WAN Links
Exponential Distribution

p(x) = θ−1e−x/θ (θ = 0.45 Sec)

Delay of MAN Links
Exponential Distribution

p(x) = θ−1e−x/θ (θ = 0.06 Sec)

Number of Servers 100
Number of Web Objects 1000 objects per srever

Web Object Size Distribution
Pareto Distribution

p(x) = aba

a−1
(a = 1.1, b = 8596)

Web Object Access Frequency
Zipf-Like Distribution

1
iα

(i = 0.7)

Relative Cache Size Per Node 4%
Average Request Rate Per Node U(1, 9) requests per second

Transcoding Rate 20KB/Sec

The WAN (Wide Area Network) is viewed as the backbone network to which no
servers or clients are attached. Each MAN (Metropolitan Area Network) node is assumed
to connect to a content server. Each MAN and WAN node is associated with an en-
route cache. The number of objects generated is N and these N objects are divided
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into two types: text and multimedia. Similar to the studies in [11, 15, 46, 88, 90], cache
size is described as the total relative size of all objects available in the content server.
In our experiments, the object sizes are assumed to follow a Pareto distribution and the
average object size is 26KB. We also assume that each multimedia object has five versions
and that the transcoding graph is as shown in Figure 3.5. The sizes of each version are
assumed to be 100 percent, 80 percent, 60 percent, 40 percent, and 20 percent of the
original object size. The transcoding delay is determined as the quotient of the object
size to the transcoding rate. In our experiments, the client at each MAN node randomly
generates the requests, and the average request rate of each node follows the distribution
of U(1, 9), where U(x, y) represents a uniform distribution between x and y. The access
frequencies of both the content servers and the objects maintained by a given server follow
a Zipf-like distribution [11, 69]. Specifically, the probability of a request for object O in
server S is proportional to 1/(iα · jα), where S is the ith most popular server and O is
the jth popular object in S. The delay of both MAN links and WAN links follows an
exponential distribution, where the average delay for WAN links is 0.46 seconds and the
average delay for WAN links is 0.06 seconds.

Figure 3.5: Transcoding Graph for Simulation

The cost for each link is calculated by the access delay. For simplicity, the delay caused
by sending the request and the relevant response for that request is proportional to the
size of the requested object. Here, we consider the average object sizes for calculating
all delays, including the transmission delay, and transcoding delay. The cost function is
taken to be the delay of the link, which means that the cost in our model is interpreted
as the access latency in our simulation.

We apply a “sliding window” technique to estimate the access frequency to make our
model less sensitive to transient workload [88]. Specifically, for each object O, f(O, v) is
calculated by K/(t − tK), where K is the number of accesses recorded, t is the current
time, and tK is the Kth most recently referenced time (the time of the oldest reference
in the sliding window). K is set to 2 in the simulation. To reduce overhead, the access
frequency is only updated when the object is referenced and at reasonably large intervals,
e.g., several minutes, to reflect aging, which is also applied in [90].

Existing Caching Models

We also consider the following caching models in our simulation experiments.
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• LRU : Least Recently Used (LRU) evicts the web object which is requested the
least recently. The requested object is stored at each node through which the
object passes. The cache purges one or more least recently requested objects to
accommodate the new object if there is not enough room for it.

• LNC − R [86]: Least Normalized Cost Replacement (LNC − R) is a model that
approximates the optimal cache replacement model. It selects the least profitable
documents for replacement. Similar to LRU , the requested object is cached by all
nodes along the routing path.

• AE [23]: Aggregate Effect (AE) is a model that explores the aggregate effect of
caching multiple versions of the same multimedia object in the cache. It formulates
a generalized profit function to evaluate the aggregate profit from caching multiple
versions of the same multimedia object. When the requested object passes through
each node, the cache will determine which version of that object should be stored
at that node according to the generalized profit.

• TCLT proposed in Section 3.1.2: Multimedia object Caching for linear networks
(TCLT ).

• TCTN proposed in Section 3.1.3: Multimedia object caching for tree networks
(TCTN).

3.1.6 Performance Evaluation

In this section, we compare the performance results of our solution (proposed in Section
3.1.3) with those models introduced in Section 3.1.5 in terms of several performance
metrics. We have The performance metrics we used in our simulation include delay-
saving ratio (DSR), which is defined as the fraction of communication and server delays
which is saved by satisfying the references from the cache instead of the server, average
access latency (ASL), request response ratio (RRR), which is defined as the ratio of the
access latency of the target object to its size, object hit ratio (OHR), which is defined as
the ratio of the number of requests satisfied by the caches as a whole to the total number
of requests, and highest server load (HSL), which is defined as the largest number of bytes
served by the server per second. In the following figures, LRU , LNC−R, AE, and TCLT
denote the results for the four models introduced in Section 3.1.5, and TCTN shows the
results for the model of coordinated en-route multimedia object caching in transcoding
proxies for tree networks proposed in Section 3.1.2. Table 3.3 lists the abbreviations used
in this section.

Impact of Cache Size

In this experiment set, we compare the performance results of different models across a
wide range of cache sizes, from 0.04 percent to 15.0 percent.

The first experiment investigates DSR as a function of the relative cache size at each
node and Figure 3.6 shows the simulation results. As presented in Figure 3.6, we can
see that our model outperforms the other models since our model considers coordinated
en-route multimedia object caching in transcoding proxies by optimally determining the
locations to place multiple versions of a multimedia object in a coordinated way, whereas
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Table 3.3: Abbreviations Used in Performance Analysis

Meaning Abbreviation Decription
DSR Delay-Saving Ratio (%)
ASL Average Access Latency (Sec)
RRR Request Response Ratio (Sec/MB)Performance Metric

OHR Object Hit Ratio (%)
HSL Highest Server Load (MB/Sec)

TCTN Multimedia Object Caching for Tree Networks
TCLT Multimedia Object Caching for Linear Networks

AE Standing for Aggregate EffectCaching Model

LNC −R Least Normalized Cost Replacement
LRU Least Recently Used

existing models, including LRU , LNC−R, and AE, consider web caching in transcoding
proxies either on a path or only at a single node. Specifically, the mean improvements of
DSR over TCLT , AE, LNC − R, LRU are 4.3 percent, 21.3 percent, 29.7 percent, and
31.7 percent, respectively.
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Figure 3.6: Experiment on DSR

Figure 3.7 shows the simulation results of ASL and RRR as a function of the relative
cache size at each node. Clearly, the lower the ASL or the RRR, the better the perfor-
mance. As we can see, all models provide steady performance improvement as the cache
size increases. We can also see that TCTN significantly improves both ASL and RRR
compared to TCLT , AE, LNC −R and LRU , since our model determines the locations
for tree networks in an optimal and coordinated way, while the others place multiple ver-
sions of a multimedia object for linear topology or at each en-route cache. For ASL to
achieve the same performance as TCTN , the other models need 2 to 12 times as much
cache size.

Figure 3.8 shows the results of OHR as a function of the relative cache size for different
models. By computing the optimal locations, we can see that the results for our model can
greatly outperform those of the other models, especially for smaller cache sizes. We can
also see that OHR steadily improves as the relative cache size increases, which conforms
to the fact that more requests will be satisfied by the caches as the cache size becomes
larger. Figure 3.8 also plots the results of HSL as a function of the relative cache size.
It can be seen that HSL for our model is lower than that of the other models. We can
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Figure 3.7: Experiment on ASL and RRR

also see that HSL decreases as the relative cache size increases.
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Figure 3.8: Experiment for OHR and HSL

Impact of Object Access Frequency

This experiment set examines the impact of object access frequency distribution on the
performance results of different models. Figure 3.9 shows the performance results of DSR,
RRR, and OHR for the values of Zipf parameter α from 0.2 to 1.0.

We can see that TCTN consistently provides the best performance over a wide range
of object access frequency distributions. Specially, TCTN reduces or improves DSR by
30.4 percent, 24.4 percent, 21.3 percent, and 8.5 percent compared to LRU , LNC − R,
AE, and TCLT , respectively; the default cache size used here (4 percent) is fairly large
in the context of en-route caching due to the large network under consideration.
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Figure 3.9: Experiment for DSR, RRR, and OHR

49



3.2 Transcoding Proxy Placement

3.2.1 Problem Formulation

Transcoding proxy caching is especially used to improve the performance of mobile ap-
pliances. Needless to say, the placement decision of transcoding proxies is crucial to the
success of this idea. Therefore, it is necessary to find some methods to obtain the optimal
placement decisions. To realize this, we formulate the placement problem of transcod-
ing proxies in this section, i.e., finding the optimal locations to place a fixed number of
transcoding proxies in a network such that the specified objective is achieved.

In the previous section, only a multimedia object is considered. In this section, we
extend the solutions proposed in the previous section to solve the problem of proxy
placement for coordinated en-route transcoding proxy caching by considering all the ob-
jects. Assume that the set of all the media objects is denoted by O = (O1, O2, · · · , Ol).
In our analysis, we assume that each media object Oh has mh versions, denoted by
Oh = (Ah,1, Ah,2, · · · , Ah,mh

). We also assume that the access frequencies for Ah,i from vj,
denoted by fAh,i,vj

, are independent.

3.2.2 Dynamic Programming-Based Solution for Linear Net-
works

Based on Definition 3, we define the aggregate cost gain of placing K transcoding proxies
on the path from node 0 to n as follows.

Definition 6 Given K, fAh,i,vj
, cvi,vj

and w(Ah,i, Ah,j) where i = 1, 2, · · · ,m, j = 1, 2, · · ·
, n, and h = 1, 2, · · · , l. Let v1, v2, · · · , vK be a set of K nodes such that 1 ≤ v1 ≤ v2 ≤
· · · ≤ vK ≤ n. The aggregate cost gain of placing K transcoding proxies at v1, v2, · · · , vK

which is denoted by G(n : v1, v2, · · · , vK) is defined as

G(n : v1, v2, · · · , vK) =
K∑

j=1

l∑

h=1

∑

Ah,k∈D(Bh,vj
)

(
fAh,k,vj

− fAh,k,vj+1

) ·m(Ah,k, vj) (3.4)

where v+
j (Ah,k) is the nearest higher level node of vj at which the requests for Ah,k are

satisfied. If K = 0, then we define G(n : φ) = 0.

Obviously, our objective is to compute the locations for placing K transcoding proxies
in a subset of nodes {v1, v2, · · · , vK} that maximizes the aggregate cost gain as defined in
Equation (3.4), which is generalized as an optimization problem as follows.

max
(v1,v2,··· ,vK)

G(n : v1, v2, · · · , vK)

=
K∑

j=1

l∑

h=1

∑

Ah,k∈D(Bh,vj
)

(
fAh,k,vj

− fAh,k,vj+1

) ·m(Ah,k, vj)
(3.5)

Before solving Problem (3.5), we define another optimization problem 4 by introducing
introducing a parameter α in Problem (3.5).

4In this section, we can this problem an n-optimization problem.
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max
(v1,v2,··· ,vK)

H(n, α : v1, v2, · · · , vk)

=
k∑

j=1

l∑

h=1

∑

Ah,k∈D(Bh,vj
)

[(
fAh,k,vj

− fAh,k,vj+1

) ·m(Ah,k, vj)− α
] (3.6)

Here, we call α in this section control parameter because it plays an important role on
the solution to Problem (3.5). Before presenting an algorithm to solve Problem (3.5), we
discuss the relationship between the solutions to Problem (3.5) and Problem (3.6). From
Problem (3.6), we can easily get that the number of transcoding proxies to be placed
in the network is relevant to the control parameter α greatly. The crucial observation is
that the optimal number of transcoding proxies to be placed is a monotonically decreasing
function of α, that is, as α increases, the optimal number decreases monotonically. Hence,
the proper selection of α determines the optimal number of transcoding proxies to be
placed among the en-route nodes in a network. Therefore, we can determine the optimal
locations for placing K transcoding proxies among the en-route nodes by tuning the
control parameter α. The relationship between the optimal number of transcoding proxies
to be placed, denoted by k∗, and the parameter α can be visualized in Figure 3.10.
Therefore, we can solving Problem (3.5) by tuning the parameter α in (3.6) until we find
the exact number K.

Figure 3.10: Relationship between k∗ and α

Now we start to present a solution to Problem (3.6). The following corollary shows that
an optimal solution to Problem (3.6) must contain optimal solutions to some subproblems.
The proof of this corollary can be easily deduced from Theorem 11.

Corollary 7 Suppose that {v1, v2, · · · , vI} is an optimal solution to the n-optimization
problem (Problem (3.6)) and {u1, u2, · · · , up} is an optimal solution to the (vI − 1)-
optimization problem, then {u1, u2, · · · , ul, vI} is also an optimal solution to the n-optimization
problem.

Before presenting a dynamic programming-based solution for Problem (3.6), we give
the following definition.
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Definition 7 Define H∗
n to be the maximum aggregate cost gain of H(n, α : v1, v2, · · · , vk)

obtained by solving the n-optimization problem and In the maximum index in the optimal
solution. If the optimal solution is an empty set, define In = −1.

Obviously, we have I0 = −1 and H∗
0 = 0. From Theorem 7, we know that if Ir > 0,

HIr = HIr−1 +
l∑

h=1

∑

Ah,k∈D(Bh,vIr
)

[(
fAh,k,vIr

− fAh,k,vIr+1

) ·m(Ah,k, vI+r)− α
]

(3.7)

Therefore, we can check all possible locations of Ir (0 ≤ r ≤ n) and select the one
that maximizes H(r : v1, v2, · · · , vk). So we have





H∗
0 = 0

H∗
r = max

1≤vi≤r
{0, H∗

vi−1 +
l∑

h=1

∑

Ah,k∈D(Bh,vi
)

[(
fAh,k,vi

− fAh,k,vi+1

) ·m(Ah,k, vi)− α
]} (3.8)

and




I0 = −1

Ir =




−1 if H∗

r = 0

v if H∗
r = H∗

v−1 +
∑

Ah,k∈D(Bh,v)

[(
fAh,k,v − fAh,k,v+1

) ·m(Ah,k, v)− α
] (3.9)

Based on Theorem 7 and the recurrences above, Problem (3.6) can be solved using
dynamic programming. After computing H∗

n and In, we can start from vr = In and obtain
all the locations iteratively. Therefore, the original problem, i.e., Problem (3.5), can be
solved by tuning the control parameter α in Problem 3.6 recurrently.

It is easy to see that the time complexity of the dynamic programming solution is
O(n2lm), where n is the number of nodes, l is the number of the media objects, and m
the maximum number of versions for all the media objects.

3.2.3 Dynamic Programming-Based Algorithm for Tree Net-
works

In this section, we consider two cases for the problem of transcoding proxy placement for
tree networks.

• Without Constraint on the Number of Proxies

Based on Definition 3, the problem of proxy placement for coordinated en-route transcod-
ing proxy caching for tree Tr, without constraint on the number of transcoding proxies,
is defined as the optimization problem below.

max
Pr

G(Tr, Pr) = max
Pr

∑

v∈Pr

l∑

i=1

∑

Ai,x∈θ(Hi,v)


fAi,x,v −

∑

z∈B−v (Ai,x)

fAi,x,z


m(Ai,x, v)− l(Hi,v) (3.10)

where Pr ⊆ V .
Obviously, our objective is to compute the locations for placing transcoding proxies

in a subset of nodes Pr that maximizes G(Tr, Pr). Similarly, we can formulate the proxy
placement problem of placing k transcoding proxies by adding a constraint that |Pr| = k.
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Before presenting a solution to Problem (3.10), we define the following optimization
problem for tree Tr,w as below.

max
Pr,w

G(Tr, Pr,w) = max
Pr,w

∑

v∈Pr,w

l∑

i=1

∑

Ai,x∈θ(Hi,v)


fAi,x,v −

∑

z∈B−v (Ai,x)

fAi,x,z


m(Ai,x, v)− l(Hi,v) (3.11)

where Pr,w ⊆ D(w)∪{w}. Here, tree Tr,w is a subtree of Tr whose node set is Dw ∪{w},
where w ∈ D(r).

Based on theorems 13 and 14, the original problem, i.e., Problem (3.10), can be solved
using dynamic programming with the following recurrences.

• Suppose that v ∈ V and C(v) = {v1, v2, · · · , vt1}. If t1 = 0, then P ∗
v = φ; otherwise,

P ∗
v = ∪t1

i=1P
∗
v,vi

.

• Suppose that u ∈ D(v) and C(u) = {u1, u2, · · · , ut2}. If t2 = 0, then

P ∗
v,u =

{ {u} if π(u, v) ≥ 0
{φ} Otherwise

where π(u, v) =
l∑

i=1

∑

Ai,x∈θ(Hi,u)

fAi,x,u(c(v, u) + w(Hi,u, Ai,x)).

Otherwise,

P ∗
v,u =

{ ∪t2
i=1P

∗
v,ui

if ρ(u, v) ≥ 0
P ∗

u ∪ {u} Otherwise

where ρ(u, v) = G(Tv,u,∪t2
i=1P

∗
v,ui

)−G(Tv,u, P
∗
u ∪ {u}).

It is easy to see that the time complexity of the dynamic programming-based algorithm
is O(n2lm), where n is the number of nodes, l is the number of the multimedia objects,
and m the maximum number of versions for all the multimedia objects.

• With Constraint on the Number of Proxies

In the following, we will solve the problem of finding the optimal locations for placing k
transcoding proxies. This problem can be defined as follows.

max
|Pr|=k

G(Tr, Pr) = max
|Pr|=k

∑

v∈Pr

l∑

i=1

∑

Ai,x∈θ(Hi,v)


fAi,x,v −

∑

z∈B−v (Ai,x)

fAi,x,z


 m(Ai,x, v)− l(Hi,v) (3.12)

where Pr ⊆ V .
Before presenting an algorithm to solve Problem (3.12), we define another problem.

max
Pr

G(Tr, Pr, α) = max
Pr

∑

v∈Pr

l∑

i=1

[
∑

Ai,x∈θ(Hi,v)


fAi,x,v −

∑

z∈B−v (Ai,x)

fAi,x,z


m(Ai,x, v)− l(Hi,v)− α](3.13)

where Pr ⊆ V .
Now we discuss the relationship between the solutions to Problems (3.12) and (3.13).

From Problem (3.13), we can easily get that the number of transcoding proxies to be
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placed in the network is highly relevant to the parameter α. Hence, the proper selection
of α determines the optimal number of transcoding proxies to be located among the
en-route nodes in a network. The crucial observation is that the optimal number of
transcoding proxies to be located is a monotonically decreasing function of α, that is, as
α increases, the optimal number decreases monotonically. Therefore, we can determine
the optimal locations for placing k transcoding proxies among the en-route nodes by
tuning the parameter α. The relationship between k∗ and α can be visualized in Figure
3.11, where k∗ is the optimal number of transcoding proxies to be placed obtained from
Problem (3.12). Therefore, we can solve Problem (3.13) by tuning the parameter α in
Problem (3.12) until we find the exact number k since a solution to Problem (3.12) has
been discussed.

Figure 3.11: Relationship between k∗ and α

3.2.4 Simulation Model

In this section, we describe the simulation model used for performance analysis. We have
performed extensive simulation experiments for comparing the results of our model with
existing models.

To the best of our knowledge, it is difficult to find true trace data in the open literature
to simulate our model. Therefore, we generated the simulation model from empirical
results presented in [7, 11,14].

Table 3.4 lists the parameters and their values used in our simulation.
The network topology is randomly generated by the Tier program [14]. We have

conducted experiments for many topologies with different parameters and found that the
relative performance of our model was insensitive to topology changes. Here, we list only
the experimental results for one topology due to space limitations. Table 3.4 shows the
characteristics of this topology and the workload model, which were chosen from the open
literature and are considered to be reasonable.
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Table 3.4: Parameters Used in Our Simulation

Parameter Value
Number of WAN Nodes 200
Number of MAN Nodes 200

Delay of WAN Links
Exponential Distribution

p(x) = θ−1e−x/θ

(θ = 0.46 Sec)

Delay of MAN Links
Exponential Distribution

p(x) = θ−1e−x/θ

(θ = 0.07 Sec)

Number of Servers 100
Number of Web Objects 1000 objects per srever
Average Web Object Size 28KB

Object Access Frequency
Zipf-Like Distribution

1
iα

(i = 0.8)

Request Rate Per Node U(1, 9) requests per second
Transcoding Rate 18KB/Sec

The WAN (Wide Area Network) is viewed as the backbone network to which no
servers or clients are attached. Each MAN (Metropolitan Area Network) node is assumed
to connect to a content server. The number of objects generated is N and these N objects
are divided into two types: text and media. We assume that each media object has five
versions and the transcoding graph is as shown in Figure 3.12. The sizes of each version
are assumed to be 100 percent, 80 percent, 60 percent, 40 percent, and 20 percent of the
original object size. The transcoding delay is determined as the quotient of the object
size to the transcoding rate. In our experiments, the client at each MAN node randomly
generates the requests, and the average request rate of each node follows the distribution
of U(1, 9), where U(x, y) represents a uniform distribution between x and y. The access
frequencies of both the content servers and the objects maintained by a given server follow
a Zipf-like distribution [11, 69]. Specifically, the probability of a request for an object O
in server S is proportional to 1/(iα · jα), where S is the ith most popular server and O
is the jth popular object in S. Both the delay of MAN links and WAN links follow an
exponential distribution, where the average delay for WAN links is 0.46 seconds and the
average delay for WAN links is 0.07 seconds.

The total cost, including the cost for transferring request and the cost for transcoding,
is calculated by the access delay. For simplicity, the delay caused by sending the request
and the relevant response for that request is proportional to the size of the requested
object. Here, we consider the average object sizes for calculating all delays, including
the propagation delay, the transmission delay, transcoding delay, and the searching delay.
The cost function is taken to be the delay of the link, which means that the cost in our
model is interpreted as the access latency in our simulation.

55



Figure 3.12: Transcoding Graph for Simulation

3.2.5 Performance Results

In this section, we compare the performance of our model with existing models proposed
in the literature in terms of several performance metrics.

In addition to the model presented in Section 3.2.1, we also consider the following
models for comparison purposes.

• Random: The random placement model places a fixed number of transcoding proxies
in a network randomly. This model is obviously not optimal.

• Linear proposed in Section 3.2.2: This solution is used to decide the optimal lo-
cations for placing a fixed number of transcoding proxies for linear-array network
topology. From the point view of network topology, this model can be viewed as a
special case of our model.

We still employ the performance metrics defined in previous section in our simulation,
including delay-saving ratio (DSR , average access latency (ASL), request response ratio
(RRR), version hit ratio (V HR)5, and content hit ratio (CHR)6. In the following figures,
Tree denotes the results for our proposed model, Linear the results for the model for linear
topology, and Random the results for the random placement model.

The first experiment was to investigate DSR as a function of the number of transcoding
proxies and Figure 3.13 shows the simulation results. As presented in Figure 3.13, we can
see that our Tree model outperforms the other two models. Since the Linear model can
be viewed as a special case of our model, its performance can not be better than our
model. The Random model is obviously not optimal and its performance must be worst
as well. Specifically, the mean improvements of DSR over Linear and Random are about
22.9 percent and 7.3 percent, respectively.

Figure 3.14 plots the simulation results of ASL and RRR as a function of the number
of transcoding proxies. As we know, the lower the ASL or the RRR, the better the
performance. We can see that all models provide steady performance improvement as the
number of transcoding proxies increases. We can also see that our model significantly
improves both ASL and RRR compared to the other models considered. This is because
our model determines the optimal locations for coordinated en-route transcoding proxy

5V HR is defined as the ratio of the number of requests satisfied by the exact versions in the nearest
higher level transcoding proxies as a whole to the total number of requests.

6CHR is defined as the ratio of the number of requests satisfied by the exact versions or the more
detailed versions in the nearest higher level transcoding proxies as a whole to the total number of requests.
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Figure 3.13: Experiment on DSR

caching, while the other models consider transcoding proxy placement for a linear topology
or randomly. The average improvements of ASL over Linear and Random are about 8.2
percent and 20.9 percent, respectively.
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Figure 3.14: Experiment on ASL and RRR

Figure 3.15 shows the simulation results of V HR and CHR as functions of the number
of transcoding proxies. As we know, the higher the V HR or the CHR, the better the
performance. We can see that all models provide steady performance improvement as
the number of transcoding proxies increases. We can also see that our model greatly
improves both V HR and CHR compared to the other two models. This is because of
the fact that our model obtains the optimal locations for tree networks, while the other
models consider transcoding proxy placement for linear topology or in a random way.
Specifically, the mean improvements of V HR over Linear and Random are about 6.1
percent and 20.5 percent, respectively.
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Figure 3.15: Experiment on V HR and CHR
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3.3 Multimedia Object Placement for Transparent

Data Replication

3.3.1 Problem Formulation

The network topology in this section is modelled as a graph G = (V,E), where V =
{v0, v1, · · · , vn} is the set of nodes or vertices, and E is the set of edges or links. For a
multimedia object O, we assume that it has m versions: A1, A2, · · · , Am. For each version
of object O, we associate each link (u, v) ∈ E a nonnegative cost Lk(u, v), which is defined
as the cost of sending a request for version Ak and the relevant response over the link
(u, v). In particular, Lk(u, u) = 0. If a request goes through multiple network links, the
cost is the sum of the cost on all these links. The cost in our analysis is calculated from a
general point of view. It can be different performance measures such as delay, bandwidth
requirement, and access latency, or a combination of these measures. Let fi,j be access
frequency of version Aj from node vi.

Now we start to formulate the problem of multimedia object placement for data trans-
parent replication (MOP problem). Consider the snapshot when a request for a specified
version of a multimedia object is being served (see Figure 3.16). Here v0 denotes the con-
tent server which contains all versions of object O. vn is the client and v1, v2, · · · , vn−1 are
the nodes on the path from the client to the server. We can see that a request for a version
of a multimedia object from a node can be satisfied either by this node or by upstream
nodes (transcoding if necessary) until it arrives at the server at which no transcoding is
necessary. Therefore, the total access cost can be decomposed into two parts: transcoding
cost and transmission cost. Our objective is to find the exact version of a multimedia
object to be placed at each node on the path from v1 to vn so that the total access cost
is minimized. Note that all requests at node v0 can be satisfied at zero cost. If we denote

Figure 3.16: System Model for Multimedia Object Caching

Adi
(di ∈ {1, 2, · · · ,m}) as the version cached at node vi, then the total access cost of

caching Ad1 , Ad2 , · · · , Adn , denoted by C(X), is defined as follows:

C(X) =
n∑

i=1

m∑
j=1

fi,j min
0≤k≤i

{Lj(vi, vk) + T (Adk
, Aj)} (3.14)

where X = (Ad1 , Ad2 , · · · , Adn) and T (Adk
, Aj) =

{
0 if k = 0
t(Adk

, Aj) if k 6= 0
.

Obviously, our objective is to obtain X∗ = (Ad∗1 , Ad∗2 , · · · , Ad∗n) such that C(X∗) =
min

X
{C(X)}.
Before we solve the MOP problem based on the cost function as given in Equation

(3.14), we can make the following assumptions.
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• Assumption 1. Lj(vi, vk) = (i− k)L for all 1 ≤ j ≤ m as there are i− k links on the
path between nodes vi and vk, and the cost on each link for each version is L.

• Assumption 2. The transcoding graph is a linear array and the transcoding cost

between any two adjacent versions is constant, i.e., t(Ai, Aj) =

j−1∑

k=i

t(Ak, Ak+1) =

(j − i)+T , where x+ = x if x ≥ 0 else x+ = ∞.

• Assumption 3. (δ − 1)T ≤ L, and δT > L for some positive integer δ.

If there does not exist δ such that Assumption 3 can be satisfied, i.e., L À T or T À L.
Obviously, these are two special cases. If L À T , then version Adi

should be cached so
that no transmission cost is necessary to incur, where di = min{j|fi,j > 0, 1 ≤ j ≤ m}.
If T À L, this case is not trivial and is equivalent to the en-route caching problem of
caching m objects on a linear network of n nodes, where transcoding cost is prohibited.

With the above assumptions, the MOP problem can be simplified as follows:

C(X) =
n∑

i=1

m∑
j=1

fi,j min

{
min
1≤k≤i

{
(i− k)L + (j − dk)

+T
}

, iL

}
(3.15)

3.3.2 Dynamic Programming-Based Solutions

In this section, we first consider the case of n = 1, i.e., there is only one node, and then
discuss the case of n > 1.

The Case of n = 1

Before presenting the optimal solutions, we give a brief explanation of the significance
for solving the MOP problem for the case of n = 1. For cache replacement problem, a
crucial thing is to determine the objects to be removed so that the cost loss is minimized
and the free space is enough to accommodate the new object. The following solutions are
of great importance in deciding the objects to be removed for transcoding-enabled cache
replacement problem.

First, we begin by computing the access cost of caching only one version Ak at node v1

with 1 ≤ k ≤ m. Intuitively, all the requests for version Ai with i < k will be handled by
server v0, while some of the requests for Ai with i ≥ k, depending on the transcoding cost
and the transmission cost, will be taken care of by transcoding from version Ak. Based on
the cost function defined by Equation (3.15), the total access cost of caching only version
Ak at node v1 is computed as follows:

C(Ak) =
k−1∑
i=1

f1,iL +
m∑

i=k

f1,i min{(i− k)T, L} (3.16)

Since version Ak is cached at node v1, we can see (with Assumption 3) that δ is such a
parameter that the request for version Ai will be served by the local node if 0 < i−k < δ,
and the request for version Ai will be served by the server if i− k ≥ δ.
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Based on Equation (3.16), C(Ak) can be further defined as follows:

C(Ak) =





k−1∑
i=1

f1,iL +
k+δ−1∑

i=k

f1,i(i− k)T +
m∑

i=k+δ

f1,iL if k + δ ≤ m

k−1∑
i=1

f1,iL +
m∑

i=k

f1,i(i− k)T if k + δ > m

(3.17)

It is easy to see that C(A1) can be calculated in O(m) time. As

C(Ak+1) =





C(Ak) + f1,kL−
k+δ−1∑

i=k+1

f1,iT + f1,k+δ((δ − 1)T − L) if k + δ ≤ m

C(Ak) + f1,kL−
m∑

i=k+1

f1,iT if k + δ > m

= C(Ak) + E(k)

where

E(k) =





f1,kL−
k+δ−1∑

i=k+1

f1,iT + f1,k+δ((δ − 1)T − L) if k + δ ≤ m

f1,kL−
m∑

i=k+1

f1,iT if k + δ > m

and

E(k + 1) =





E(k)− f1,kL + f1,k+1(L + T )
−f1,k+δ(δT − L) + f1,k+δ+1(δ − 1)T − f1,k+δ+1L if k + δ < m

E(k)− f1,kL + f1,k+1(L + T )− f1,k+δ(δT − L) if k + δ = m

E(k)− f1,kL + f1,k+1(L + T ) if k + δ > m

Thus, each C(A2), C(A3), · · · , C(Am) can be done in constant time; Therefore, the
MOP problem can be solved in O(m) time. Regarding to the time complexity of solving
the MOP problem, we have the following theorem.

Theorem 17 Based on the cost function as given in Equation (3.16), the MOP problem
for {A1, A2, · · · , Am} by caching only one version (i.e., n = 1) can be solved in O(m)
time.

Proof Since the cost function as given in Equation (3.17) is equivalent to the cost
function as given in Equation (3.16) and the MOP problem based on the cost function
as given in Equation (3.17) can be solved in O(m) time, the MOP problem based on the
cost function as given in Equation (3.16) can also be solved in O(m) time. Hence, the
theorem is proven. ¤

The second step is to extend the above solution to compute the optimal solution for
caching two versions, Ak1 and Ak2 , at the same time at node v1.
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Figure 3.17: Relationship between C(Ak) and C(Ak+1)

Suppose that Ak1 and Ak2 are the two optimal versions to be cached. The key observa-
tion here is that Ak1 is also an optimal solution for the problem with {A1, A2, · · · , Ak2−1}
if k1 < k2, because the requests for {Ak2 , Ak2+1, · · · , Am} can only be served by Ak2 .
Regarding to this observation, we have the following lemma.

Lemma 5 Assume that Abp and Abq are the optimal solutions for the problem of caching
only one version from the set of {A1, A2, · · · , Ap−1} and {A1, A2, · · · , Aq−1} respectively,
then we have bp ≤ bq if p < q.

Proof Without loss of generality, it is sufficient for us to prove that bp ≤ bp+1 where 1 ≤
bp ≤ p−1 and 1 ≤ bp+1 ≤ p. The proof is by contradiction. Assume that we have bp > bp+1.
As Abp is the optimal version to be cached, we have C1,p(Abp) < C1,p(Abp+1). Let C1,p(Ai)
denote the access cost of caching Ai for the MOP problem with {A1, A2, · · · , Ap−1}. From
the definition of the access cost function C1,p as given in Equation (3.16), adding Ap to
the set {A1, A2, · · · , Ap−1} will increase both C1,p(Abp) and C1,p(Abp+1) by f1,p min{(p −
bp)T, L} and f1,p min{(p − bp+1)T, L} respectively. The increase to C1,p(Abp+1) is no less
than that to C1,p(Abp) because bp > bp+1. So we have C1,p+1(Abp) < C1,p+1(Abp+1), which
contradicts the fact that C1,p+1(Abp+1) is the minimum access cost of caching Abp+1 for the
problem with {A1, A2, · · · , Ap−1, Ap}. Hence the lemma is proven. ¤

Based on Lemma 5, we can see that the feasible range of the optimal solution for the
problem with {A1, A2, · · · , Aq} can be reduced if the optimal version for the problem with
{A1, A2, · · · , Ap} has been obtained. So is the other case when the optimal solution for
the problem with {A1, A2, · · · , Aq} is known, the feasible range of the optimal solution
for the problem with {A1, A2, · · · , Ap} is also reduced. Therefore, we can find Abp and
compute C1,p(Ap) by divide and conquer.

Let D
(k)
p,q denote the minimum access cost of caching k versions for the MOP problem

with q−p versions, i.e., Ap, Ap+1, · · · , Aq−1, where 1 ≤ p < q ≤ m. Thus, D
(1)
1,p = C1,p(Abp)

and D
(1)
1,m+1 = min

1≤k≤m
{C1,m+1(Ak)}. Based on Lemma 5, we have the following theorem on

the time complexity of computing D
(1)
1,p for 1 < p ≤ m.

Theorem 18 All the p MOP problems for {A1, A2, · · · , Ap} where 1 ≤ p ≤ m, i.e., D
(1)
1,p

for 1 < p ≤ m, can be computed in O(m log m) time.
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Proof Assume that there exists an integer θ such that m = 2θ. Based on Theorem
17, we can compute D

(1)

1, 1
2
m

in O(m) time. Assume that Ab m
2

is the optimal solution for

the problem of caching only one version with {A1, A2, · · · , Am
2
−1}, then we can find the

optimal solution for the problem of caching only one version for {A1, A2, · · · , Am
4
} in O(m)

time. Similarly, D
(1)

1, 3m
4

can also be computed by solving the problem of caching only one

version with {A1, A2, · · · , A 3m
4
−1}. As we have already computed C1, m

2
(Ay) where y =

min(bm
2
, m

2
−1), we can base on this result to compute C1, 3m

4
(Ay) for {A1, A2, · · · , A 3m

4
−1}

(by adding at most m
4

terms to C1, m
2
(Am

2
−1). We then compute C1, 3m

4
(Ay), C1, 3m

4
(Ay+1),

· · · , C1, 3m
4

(A 3m
4
−1) in at most O(3m

4
− y) time. So it takes at most O(m) time to compute

D
(1)
1, m

4
and D

(1)

1, 3m
4

. According to the similar decomposition, D
(1)
1, m

8
, D

(1)

1, 3m
8

, D
(1)

1, 5m
8

, and D
(1)

1, 7m
8

can all be solved in O(m) time. To be precise, let Az1 , Az2 , Az3 be the optimal versions
for {A1, A2, · · · , Am

4
−1}, {A1, A2, · · · , Am

2
−1}, and {A1, A2, · · · , A 3m

4
−1} respectively. The

first step is to compute C1, m
8
(A1), and then C1, 3m

8
(Az1), C1, 5m

8
(Az2), and C1, 7m

8
(Az3) from

C1, m
4
(Az1), C1, m

2
(Az2), and C1, 3m

4
(Az3) respectively. As the computation of each item takes

O(m
8
) time, this step takes O(m) time in total. Then we can search the optimal solutions

for {A1, A2, · · · , Am
8
−1}, {A1, A2, · · · , A 3m

8
−1}, {A1, A2, · · · , A 5m

8
−1}, {A1, A2, · · · , A 7m

8
−1}

in the ranges (1, min{z1,
m
8
−1}), (z1, min{z2,

3m
8
−1}), (z2, min{z3,

5m
8
−1}), and (z3,

7m
8
−1)

respectively. Since each step takes constant time, all these searches take no more than
O(m) time in total. After repeating this process log m times, we can finish computing

D
(1)
1,p for 1 < p ≤ m. This process can be viewed from Figure 3.18. Hence, the theorem is

proven. ¤
Now we can accomplish the problem of caching two versions in the following three

steps.

• Step 1: Evaluate D
(1)
1,p for 1 < p ≤ m, where D

(1)
1,p denotes the minimum access

cost of caching only one version for the MOP problem with p − 1 versions, i.e.,
A1, A2, · · · , Ap−1. In particular, D

(1)
1,m+1 = min

1≤k≤m
{C1,m+1(Ak)}.

• Step 2: Evaluate Dp for 2 ≤ p ≤ m, where Dp is the access cost for versions
Ap, Ap+1, · · · , Am if Ap is cached at node v1. Dp is defined as follows:

Dp =





p+δ−1∑
i=p

f1,i(i− p)T +
m∑

i=p+δ

f1,iL if p + δ ≤ m

m∑
i=p

f1,i(i− p)T if p + δ > m

• Step 3: Compute D
(2)
1,m, where D

(2)
1,m is the minimum access cost of caching two

versions for the problem with {A1, A2, · · · , Am}. D
(2)
1,m is calculated as follows:

D
(2)
1,m = min

2≤p≤m
{D(1)

1,p + Dp)}

The following theorem shows that D
(2)
1,m is the minimum access cost of caching two

versions the MOP problem.

62



Figure 3.18: Decomposition Process of Theorem

Theorem 19 D
(2)
1,m is the minimum access cost of caching two versions for the MOP

problem.

Proof Assume that D
(2)
1,m = D

(1)
1,p∗ + Dp∗ = min

2≤p≤m
{D(1)

1,p + Dp)}. It is obvious from the

computation of D
(2)
1,m that bp∗ and Ap∗ are the two versions which achieve the minimum

access cost of caching two versions, where D
(1)
1,p∗ = C1,p∗(bp∗). Hence, the theorem is

proven. ¤
The following theorem shows the time complexity of computing D

(2)
1,m.

Theorem 20 D
(2)
1,m can be computed in O(m log m) time.

Proof Since Step 1 can be computed in O(m log m) time (Theorem 18) and Steps 2

and 3 both take O(m) time, the total time for computing D
(2)
1,m is O(m log m). Hence, the

theorem is proven. ¤
After we have calculated D

(1)
1,p for 1 ≤ p ≤ m in Step 1, we can obtain D

(2)
1,p for

all 2 ≤ p ≤ m in another O(m log m) time by divide and conquer, where D
(2)
1,p is the

minimum access cost of caching only two versions for the problem with p−1 versions, i.e.,
A1, A2, · · · , Ap−1. The main idea is similar to Lemma 5 in the finding of D

(1)
1,p. Assume

that Abp1
and Abp2

with 1 ≤ bp1 < bp2 < p are the two optimal versions cached in node v1

for A1, A2, · · · , Ap−1 to achieve the optimal access cost D
(2)
1,p. Similarly, Abq1

and Abq2
with
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1 ≤ bq1 < bq2 < q are the two optimal versions cached in node v1 for A1, A2, · · · , Aq−1

to achieve the optimal access cost D
(2)
1,q . We can show with a similar argument with

Lemma 5 that bp2 ≤ bq2 if p < q and this property limits the range of searching for the

optimal solutions. As in Theorem 18, the two optimal solutions in D
(2)
1, m

2
can be found

in O(m) time after knowing the optimal versions of D
(1)
1,p for 1 < p ≤ m; then D

(2)
1, m

4

and D
(2)

1, 3m
4

in another O(m) time; then D
(2)
2, m

8
, D

(2)

1, 3m
8

,D
(2)

1, 5m
8

, and D
(2)

1, 7m
8

in another O(m)

time until D
(2)
1,p for 2 < p ≤ m are found after log m times. Therefore, the minimum

access cost of caching three versions, denoted by D
(3)
1,m, can be computed similarly, i.e.,

D
(3)
1,m = min

3≤p≤m
{D(2)

1,p +Dp)}, with at most O(m log m) time (similar to Theorem 21). Using

the same idea, we can solve the problem of caching K versions in O(Km log m) time.

Let D
(K)
1,m denote the minimum access cost of caching K versions from m versions, i.e.,

A1, A2, · · · , Am, then we have the following theorem on the time complexity of computing
D

(K)
1,m .

Theorem 21 D
(K)
1,m can be computed in O(Km log m) time.

Proof Based on the above analysis, we have D
(K)
1,m = min

K≤p≤m
{D(K−1)

1,p + Dp)}. Since Dp

can all be computed in O(m) time and we have showed that D
(1)
1,p can be computed in

O(m log m) time, we can easily prove that D
(K)
1,m can be computed in O(Km log m) time

by induction. Note that in the induction step, D
(K−1)
1,p for K − 1 < p ≤ m is computed in

O((K − 1)m log m) time. Hence, the theorem is proven. ¤

The Case of n > 1

When n > 1, the problem of multimedia object placement can be visualized as given in
Figure 3.19. We can see that the requests can be served in one of the following ways.

• 1. A request is served by the exact versions at its local cache or one of the upstream
caches.

• 2. A request is served by more detailed versions according to transcoding at its local
cache or one of the upstream caches.

• 3. A request is served by the original server (no transcoding is executed since all
versions are stored at the server).

In Figure 3.19, a square symbol at (di, i) indicates that version Adi
is cached at node vi

and a dot indicates the request for a specified version from a node. Each node has exactly
one such square symbol. A request for version Aj at node vi might be either served at
node vi by version Adi

if j ≥ di with transcoding cost (j − di)T , or at node vi−1 with
additional transmission cost L. In the latter case, a new request for Aj is created at node
vi−1. This process can be generalized as follows:

w(i, j) =

{
min{(j − di)

+T, w(i− 1, j) + L} if i ≥ 1
0 if i = 0
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Figure 3.19: Request Flow for Multimedia Object Caching

where w(i, j) is the access cost for request Aj at node vi. In particular, if L > mT , then
w(i, j) = (j − di)T if j ≥ di, i.e., transcoding is always performed if possible. Therefore,
we can solve this problem using dynamic programming.

Assume that version Aj is cached at node vi, and vk is the smallest vertex, k > i,
with a cached version, say Az, more detailed than Aj, i.e, z ≤ j (see Figure 3.20). Let
Bi,j,k = {(α, β)|i ≤ α ≤ k − 1, j ≤ β ≤ m}.

Assume that Ay is the most detailed version in Block Bi,j,k, which is cached at node
vx. Let W (i, j, k) denote the minimum total access cost for serving all the requests in
Block Bi,j,k. It is obvious that all the requests in Block C are served by version Aj

at node vi because the versions of all the requests in this block is more detailed than
Ay, i.e. there does not exist a version in Block Bi,j,k other than Aj that can provide
the requested versions in this block since Ay is the most detailed version in Block Bi,j,k

besides Aj. Similarly, it is easy to see that the minimum total access cost for serving
all the requests in Block A, i.e., Bx,y,k and Block B, i.e., Bi,j,x+1 (see Figure 3.20), is
W (x, y, k) + W (i, j, y− 1). With a similar method for partitioning Block Bi,j,k, Blocks A
and B can be divided recursively until the minimum total access cost for serving all the
requests in each block, i.e., W (x, y, k) and W (i, j, y − 1), can be finally determined.
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Figure 3.20: Block Definition for Multimedia Object Placement

Based on the above observation, W (i, j, k) is defined as follows:

W (i, j, k) =





min
i≤x<k;j≤y≤m

{W (i, j, y − 1) + W (x, y, k)}
+

∑

x≤α<k;j≤β≤y

fα,β((α− i)L + (β − j)T )

(for 0 < i < k ≤ n; 1 ≤ j ≤ m)

min
0<x≤k;1≤y≤m

{W (0, 1, y − 1) + W (x, y, k)}+
∑

x≤α<k;1≤β≤y

βLfα,β

(for i = 0, j = 1)

0 (for i = k)

(3.18)

Now let us refer to the first equation in the recurrence formula above. The first term
W (i, j, y − 1) is the total access cost for the requests in Block B and D, the second term
is the total access cost for the requests in Block A, and the last term is the total access
cost for the requests in Block C. The second equation is for the special case of i = 0
which denotes the original server, where transcoding is not necessary since all versions
are stored there. To obtain the optimal solution, all possible values of i, j, and k must
be checked. The following theorem shows the correctness of the above recurrence formula
for W (i, j, k).

Theorem 22 Formula (3.18) is the correct recurrence formula for W (i, j, k).

Proof Without loss of generality, we only need to prove the correctness of the first
equation in Formula (3.18) since the second equation can be easily derived in a similar
way and the third equation is trivial.

Let W
′
(i, j, k) denote the value of the right side of the first equation, i.e., W

′
(i, j, k) =

min
i≤x<k;j≤y≤m

{W (i, j, y − 1) + W (x, y, k) +
∑

x≤α<k;j≤β≤y

fα,β((α− i)L + (β − j)T ).
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We now prove that W
′
(i, j, k) is the optimal access cost, i.e., W

′
(i, j, k) = W (i, j, k).

Suppose Ad∗i , Ad∗i+1
, · · · , Ad∗k is the optimal placement in Block Bi,j,k, which makes W (i, j, k)

= C(Ad∗i , Ad∗i+1
, · · · , Ad∗k). Thus, we can always divide Block Bi,j,k into four parts accord-

ing to y∗ (see Figure 3.20), where y∗ = max
j<y≤m

{d∗y} and version Ay∗ is cached at node vx∗ .

Therefore, we have

W (i, j, k) = C(Ad∗i , Ad∗i+1
, · · · , Ad∗k−1

)

= W (i, j, y∗ − 1) + W (x∗, y∗, k) +
∑

x∗≤α<k;j≤β≤y∗
fα,β((α− i)L + (β − j)T )

≥ min
i≤x<k;j≤y≤m

{W (i, j, y − 1) + W (x, y, k) +
∑

x≤α<k;j≤β≤y

fα,β((α− i)L + (β − j)T )

Now we want to prove W
′
(i, j, k) ≥ W (i, j, k). Suppose there exists (x

′
, y

′
) such

that W
′
(i, j, k) = min

i≤x<k;j≤y≤m
{W (i, j, y − 1) + W (x, y, k) +

∑

x≤α<k;j≤β≤y

fα,β((α − i)L +

(β − j)T ) = min
i≤x′<k;j≤y′≤m

{W (i, j, y
′ − 1) + W (x

′
, y

′
, k) +

∑

x
′≤α<k;j≤β≤y

′
fα,β((α − i)L +

(β − j)T ). Thus, Block Bα,β can be divided into four parts according to x
′

and y
′
.

According to the definition of W (i, j, k), we have W (i, j, k) ≤ min
i≤x′<k;j≤y′≤m

{W (i, j, y
′ −

1) + W (x
′
, y

′
, k) +

∑

x′≤α<k;j≤β≤y′
fα,β((α − i)L + (β − j)T ) = min

i≤x<k;j≤y≤m
{W (i, j, y − 1) +

W (x, y, k)+
∑

x≤α<k;j≤β≤y

fα,β((α− i)L+(β−j)T ) = W
′
(i, j, k). Therefore, we have proved

that W
′
(i, j, k) = W (i, j, k). Hence, the theorem is proven. ¤

The original multimedia object placement problem, i.e., with the cost function based
on Equation (3.15), can be solved using dynamic programming with these recurrences.
We can also see that the minimum access cost is W (0, 1, n). The detailed algorithm is
given as follows.

Regarding to the time complexity of Algorithm 1, we have the following theorem.

Theorem 23 Algorithm 1 can terminate in O(n3m2) time, where n is the number of
nodes and m is the number of versions.

Proof The work of Procedure Block(i, j, k) is to compute W (i, j, k). It is easy to
see that W (i, j, k) has n2m different entries and each entry is computed only once (it
simply returns the value if it was computed before). Consider the time complexity of
computing an entry in Block(i, j, k). It takes two layers of loops to compute an element
in Block(i, j, k). The outside for-loop on x iterates at most n times, and the inner for-loop
on y iterates at most m times. Thus, it takes at most O(n2m) time of comparisons to
compute an entry. Therefore, it takes O(n2m ·nm) = O(n3m2) time to compute all entries
in Block(i, j, k). Hence, the theorem is proven. ¤

3.3.3 Simulation Model

In this section, the simulation model used for performance evaluation is described. We
have performed extensive simulation experiments to compare our solution with existing
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Table 3.5: Algorithm 1

Main()
begin
Call Block(0, 1, n)

end
Procedure Block(i, j, k)
begin
if j = k then
Exit;

for x=i to k do
for y=j to m do
Block(i, j, k) = Block(i, j, y − 1) + Block(x, y, k) + BlockC(j)

Return Block(i, j, k)
end
Function BlockC(j)
begin
if j = 0 then

BlockC(j) =
∑

x≤α<k;j≤β≤y

βLfα,β

if j > 0 then

BlockC(j) =
∑

x≤α<k;j≤β<y

fα,β[(α− i)T + (β − j)L]

Return BlockC(j)
end

solutions. The network in our simulation consists of numerous nodes and content servers.
The system configuration is outlined in Section 3.3.3, and existing solutions used for the
purpose of comparison are introduced in Section 3.3.3.

System Configuration

To the best of our knowledge, it is difficult to find true trace data in the open literature
to execute such simulations. Therefore, we generated the simulation model from the
empirical results presented in [1, 7, 11, 14,23].

The network topology was randomly generated by the Tier program [14]. Experiments
for many topologies with various parameters were conducted and the performance of our
solution was found to be insensitive to topology changes. Here, only the experimental
results for one topology are presented due to space limitations. The characteristics of this
topology and the workload model are shown in Table 3.6, which were chosen from the
open literature and are considered to be reasonable.

The WAN (Wide Area Network) is viewed as a backbone network to which no servers
or clients are attached. Each MAN (Metropolitan Area Network) node is assumed to
connect to a content server. Each MAN and WAN node is associated with an en-route
cache. The objects generated are divided into two types: text and multimedia. Similar
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Table 3.6: Parameters Used in Simulation

Parameter Value
Number of WAN Nodes 200
Number of MAN Nodes 200

Delay of WAN Links Exponential Distribution (θ = 1.5Sec)
Delay of MAN Links Exponential Distribution (θ = 0.7Sec)
Number of Servers 100

Number of Web Objects 1000 objects per srever
Web Object Size Distribution Pareto Distribution (µ = 6KB)
Web Object Access Frequency Zipf-Like Distribution (α = 0.7)
Relative Cache Size Per Node 4%

Average Request Rate Per Node U(1, 9) requests per second
Transcoding Cost 50KB/Sec

to the studies in [11, 88], cache size is described as the total relative size of all objects
available in the content server. In our experiments, the object sizes are assumed to
follow a Pareto distribution and the average object size is 6KB. We also assume that
each multimedia object has five versions and that the transcoding graph is as shown in
Figure 3.21. The sizes of each version are assumed to be 100 percent, 80 percent, 60
percent, 40 percent, and 20 percent of the original object size. The transcoding delay is
determined as the quotient of the object size to the transcoding rate. In our experiments,
the client at each MAN node randomly generates the requests, and the average request
rate of each node follows the distribution of U(1, 9), where U(x, y) represents a uniform
distribution between x and y. The access frequencies of both the content servers and the
objects maintained by a given server follow a Zipf-like distribution [11, 69]. Specifically,
the probability of a request for object O in server S is proportional to 1/(iα · jα), where
S is the ith most popular server and O is the jth popular object in S. The delay of
both MAN links and WAN links follows an exponential distribution; the average delay for
WAN links is 1.5 seconds and the average delay for WAN links is 0.7 seconds. The cost

Figure 3.21: Transcoding Graph for Simulation

for each link is calculated by the access delay. For simplicity, the delay caused by sending
the request and the relevant response for that request is proportional to the size of the
requested object. Here, we consider the average object sizes for calculating all delays,
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including the transmission delay and the transcoding delay. The cost function is taken to
be the delay of the link, which means that the cost in our solution is interpreted as the
access latency in our simulation.

We apply a “sliding window” technique, for estimating access frequency, to make
our model less sensitive to transient workload [88]. Specifically, the access frequency is
estimated by N/(t − tN), where N is the number of accesses recorded, t is the current
time, and tN is the Nth most recently referenced time (the time of the oldest reference in
the sliding window). N is set to 2 in the simulation.

Existing Models

In addition to the solution proposed in Section 3.3.2, we also consider the following place-
ment solutions for comparison purposes.

• SV : SV stores the same version of a multimedia object at each node when the
request is sent back to the client from the server.

• MV : MV stores the most referred version of a multimedia object at each node as the
request is returned back to the client from the server. Specifically, if i∗ = max

1≤j≤m
{fi,j},

then version Ai∗ is cached at node vi.

• RV : RV randomly stores a version at each node.

3.3.4 Performance Evaluation

In this section, we compare the performance results of our solution with those solutions
introduced in Section 3.3.3, in terms of several performance metrics. The performance
metrics we used in our simulation include delay-saving ratio (DSR), average access latency
(AST ); request response ratio (RRR), object hit ratio (OHR), and average server load
(ASL). In the following figures, SV , MV , and RV denote the results for the three
solutions introduced in Section 3.3.3, and OV denotes the optimal solution proposed in
Section 3.3.2.

Impact of Cache Size

In this experiment set, we compare the performance results of different solutions across a
wide range of cache sizes, from 0.04 percent to 15.0 percent.

The first experiment investigates DSR as a function of the relative cache size at
each node and Figure 3.22 shows the simulation results. As presented in Figure 3.22,
we can see that our solution outperforms the others since it considers multimedia object
placement by determining the optimal versions to be placed at each node, whereas existing
solutions, including SV , MV , and RV , consider multimedia object placement heuristically
or randomly. Specifically, the mean improvements of DSR over SV , MV , and RV are 4.3
percent, 17.9 percent, 19.8 percent, and 24.5 percent, respectively. Figure 3.23 describes
the simulation results of ASL and RRR as a function of the relative cache size at each
node. Clearly, the lower the ASL or the RRR, the better the performance. As we can
see, all solutions provide steady performance improvement as the cache size increases. We
can also see that OV significantly improves both ASL and RRR compared to SV , MV ,
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Figure 3.22: Experiment on DSR

and RV , since our solution determines the optimal versions to be cached on the path from
the client to the server, while the others place multiple versions of a multimedia object in
a heuristic or random way. For ASL to achieve the same performance as OV , the other
solutions require 2 to 8 times as much cache size.
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Figure 3.23: Experiment on AST and RRR

Figure 3.24 shows the results of OHR and ASL as a function of the relative cache size
for different solutions. By computing the optimal versions to be cached, we can see that
our solution produces better results than the others, especially for smaller cache sizes.
We can also see that OHR steadily improves as the relative cache size increases, which
conforms to the fact that more requests will be satisfied by the caches as the cache size
becomes larger. It can also be seen that the ASL for our solution is lower than that
for the other solutions. We can also see that ASL decreases as the relative cache size
increases.

Impact of Object Access Frequency

This experiment set examines the impact of object access frequency distribution on the
performance results of the various solutions. Figure 3.25 shows the performance results
of DSR, RRR, and OHR for the values of Zipf parameter α from 0.2 to 1.0.

We can see that OV consistently provides the best performance over a wide range of
object access frequency distributions. Specially, CV reduces or improves DSR by 30.4
percent, 24.4 percent, 21.3 percent, and 8.5 percent compared to SV , MV , and RV ,
respectively; the default cache size used here (4 percent) is fairly large in the context of
web caching, due to the large network under consideration.
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Figure 3.24: Experiment for OHR
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Figure 3.25: Experiment for DSR, RRR, and OHR

3.4 Chapter Summarization

In this chapter, we studied the problem for coordinated en-route transcoding proxy
caching (i.e. multimedia object caching in Section 3.1 and transcoding proxy placement in
Section 3.2). We also considered the problem of multimedia object placement for trans-
parent data replication in Section 3.3. We conducted a lot of simulation experiments
to compare the performance of our models with those proposed in the literature. The
contents in this chapter can be found in [54,58,59,61].
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Chapter 4

Cache Replacement in Transcoding
Proxies

4.1 Preliminary Knowledge

In this section some preliminary knowledge is introduced for later use.

4.1.1 Weighted Transcoding Graph for Simulation

In the simulation, the clients are divided into five classes and the transcoding relationship
of the five versions is shown in Figure 4.1.

Figure 4.1: Weighted Transcoding Graph for Simulation

4.1.2 Evaluated Algorithms

We include the following algorithms for evaluating our proposed algorithms in the later
sections.

• LRU : Least Recently Used (LRU) evicts the web object which was requested the
least recently. The cache purges one or more least recently requested objects to
accommodate the new object if there is not enough room for it.

• LNC−R [86]: Least Normalized Cost Replacement (LNC−R) is an algorithm that
approximates the optimal cache replacement algorithm. It selects for replacement
the least profitable documents. The profit function is defined as profit(Oi) =
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(ci · fi)/si, where ci is the average delay to fetch document Oi to the cache, fi is the
total number of references to Oi, and si is the size of document Oi.

• AE [23]: Aggregate Effect (AE) is an algorithm that formulates a generalized profit
function to evaluate the aggregate profit from caching multiple versions of an object.
The difference between AE and the solution proposed in this section lies in that AE
removes the objects from the cache one by one, and our solution removes the objects
at the same time by considering the aggregate effect of caching multiple versions of
the same object.

In the following figures, LRU , LNC−R, and AE denote the results for the algorithms
introduced above respectively.

4.2 Cache Replacement for Transcoding Proxy Caching

In this section we present an effective cache replacement algorithm for transcoding proxy
caching. In Section 4.2.1, a generalized aggregate cost saving function is defined to deter-
mine the rule for evicting the cached objects to make room for a new object if necessary.
In Section 4.2.2, we present a cache replacement algorithm and its analysis. The method
of estimating the parameter appearing in the algorithm in introduced in Section 4.2.3.
Finally, we describe the simulation model and the performance evaluation in Sections
4.2.4 and 4.2.5.

4.2.1 Generalized Cost Saving Function

Let oi,j denote version j of object i and mi denote the number of different versions of
object i. di,j is the cost of reading or writing oi,j from the server and ωi(j1, j2) is the
transcoding cost from version j1 to version j2 of object oi. φi(j) is the set of all the
versions of oi that can be transcoded from oi,j, including oi,j itself. For example, suppose
an object o1 has the transcoding graph shown in Figure 4.2. Then, φi(1) = {1, 2, 3, 4, 5},

Figure 4.2: The Weighted Transcoding Graph for o1

φi(2) = {2, 4, 5}, and φi(4) = {4}. In this section, we use Gi to denote the weighted
transcoding graph for oi. λi,j is the read rate of oi,j from the server and µi is the update
rate of oi,1.

First we calculate the cost saving of caching only one version of an object (no other ver-
sions are cached). From the standpoint of clients, an optimal cache replacement algorithm
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should maximize the cost saving from caching multiple copies of objects by considering
both the read cost and the update cost. Thus, the individual cost saving of caching only
oi,j is defined as follows.

Definition 8 CS(oi,j) is a function for calculating the individual cost saving of caching
oi,j, while no other versions of object i are cached.

CS(oi,j) =
∑

x∈φi(j)

λi,x(ωi(1, x) + di,x − ωi(j, x))− µidi,j (4.1)

In Equation (4.1), ωi(1, x) and di,x is the cost for transcoding the original version to
version x and sending it to the client, which are saved by caching oi,j, and ωi(j, x) is the
additional cost of transcoding version j to version x at the client, which is needed when
caching oi,j. di,j is the additional cost of sending oi,j from the server to the cache upon
updates of oi so that the content of the cached version is consistent with that of the server.
Now we give an example of the calculation of the individual cost saving.

Example Consider the scenario shown in Figure 4.2, where only o1,2 is cached. Suppose
that λ1,j = 1, µ1 = 1, and d1,j = 20 for all versions of o1. Based on Definition 8, it is easy
to obtain that CS(o1,2) = 1 ∗ (20 + 6− 0) + 1 ∗ (20 + 6− 4) + 1 ∗ (20 + 6− 8)− 1 ∗ 20 = 46
since φ1(2) = {2, 4, 5}. ¤

As a matter of fact, there may be many versions of an object that can be cached at
the same time if this is beneficial. In the following we discuss the aggregate cost saving
of caching multiple versions of an object. We define the aggregate cost saving of caching
multiple versions of an object at the same time as below.

Definition 9 CS(oi,j1 , oi,j2 , · · · , oi,jk
) is a function for calculating the aggregate cost sav-

ing of caching oi,j1, oi,j2, · · · , oi,jk
.

CS(oi,j1 , oi,j2 , · · · , oi,jk
) =

∑

y∈{j1,j2,··· ,jk}


 ∑

x∈Φi(y)

λi,x(ω(1, x) + di,x − ω(y, x))− µidi,y


(4.2)

where Φi(y) is the set of the versions that are transcoded from oi,y.
Considering the same conditions as assumed in the example above, we can calculate

the aggregate cost saving of caching oi,1 and oi,2 as CS(oi,1, oi,2) = 1 ∗ (20− 0− 0) + 1 ∗
(20 + 6− 6) + 1 ∗ (20 + 6− 0) + 1 ∗ (20 + 6− 4) + 1 ∗ (20 + 6− 8− 1)− 1 ∗ 20 = 86.

If we use si,j to denote the size of oi,j, then we formulate the generalized aggregate
cost saving function as follows:

CSG(oi,j1 , oi,j2 , · · · , oi,jk
) = CS(oi,j1 , oi,j2 , · · · , oi,jk

)/
k∑

α=1

si,jα
(4.3)

It is easy to see that the generalized aggregate cost saving function is further normal-
ized by the total size of oi,j1 , oi,j2 , · · · , oi,jk

to reflect the object size factor. The rationale
behind this normalization is to order the objects by the ratio of aggregate cost saving to
their total object size. The generalized aggregate cost saving function defined in Equation
(4.3) explicitly takes into consideration the new emerging factors in the environment of
transcoding proxies. Importantly, it also takes cache consistency into account.
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4.2.2 A Cache Replacement Algorithm

In this section we propose an effective cache replacement algorithm for transcoding proxy
caching based on the generalized aggregate cost saving function defined in Section 4.2.1.
Suppose that there are l different multimedia objects cached and the size of a new object
to be cached is s, then we should find a subset of objects O∗ ⊆ O that satisfies the
following conditions.

(1)
∑

oi,j∈O∗
si,j ≥ s,

(2) ∀O′ ⊆ O s.t.
∑

oi,j∈O′
si,j ≥ s: CSG(O∗) ≤ CSG(O

′
),

where O∗ = {o1,α1
1
, · · · , o1,α

r1
1

, · · · , ol,α1
l
, · · · , ol,α

rl
l
} is the set of objects to be removed,

O = {o1,β1
1
, · · · , o1,β

c1
1

, · · · , ol,β1
l
, · · · , ol,β

cl
l
} is the set of objects cached, and CSG(O∗) =

l∑
i=1

CSG(oi,α1
i
, · · · , oi,α

ri
i
). CSG(O

′
) can be similarly defined. Obviously, (1) is to make

enough room for the new object, and (2) is to evict those objects whose generalized
aggregate cost saving is minimal.

The naive approach to find such O∗ will be in NP hard, same as the packing problem.
In the following, we present an algorithm that computes an approximate answer of the
problem efficiently by decomposing the set of the candidate objects to be removed into
smaller sets and each such set can be decided in polynomial time.

Before we present the algorithm, we introduce some notations. In the following, let
R∗(i, k) denote the minimal generalized aggregate cost saving of caching k versions of
object i and R∗(k) the minimal generalized aggregate cost saving of the k objects to be
removed. We can see that the k objects to be removed can be k versions of a multimedia
object or different versions of different multimedia objects. Thus, k can be decomposed
as k = k1 + k2 + · · · + ka, where a is the number of different objects to be removed and
0 ≤ ki ≤ k is the number of versions of an object that are in the set of the k objects to be
removed. For example, 1 → {1}, 2 → {2, 1+1}, 3 → {3, 2+1, 1+1+1}, 4 → {4, 3+1, 2+
2, 2+1+1, 1+1+1+1}, 5 → {5, 4+1, 3+1+1, 3+2, 2+1+1+1, 2+2+1, 1+1+1+1+1},
· · · . For the instance of k = 4, k can be the combination of 1 + 1 + 1 + 1, 1 + 1 + 2, 2 + 2,
1 + 3, and 4, where 1 + 1 + 1 + 1 means that the objects to be removed should be the
first four objects with minimal generalized aggregate cost savings of caching one version,
1 + 1 + 2 means that the objects to be removed should be the three objects, i.e., the first
two objects with minimal generalized aggregate cost savings of caching one version and
the last object with minimal generalized aggregate cost saving of caching two versions,
etc. It can be easily proved that there are at most k2 different such combinations in all.
Therefore, we have

R∗(k) = min{R∗(1, k), R∗(2, k), · · · , R∗(l, k),

min
k=k1+k2+···+ka

{R∗(k1) + R∗(k2) + · · ·+ R∗(ka)}}

We denote the set of all the objects that achieves R∗(k) by O∗(k) and their total size is
S∗(k). Now we give an example to show how to calculate R∗(k). For the case of k = 3, we
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have the combination of 3, 1 + 2, and 1 + 1 + 1, each of which can be computed using the
previous calculation results. For 3+0, we just choose three versions from one object with
minimal generalized aggregate cost savings of caching three versions. For 1+2, we choose
the version from an object with minimal generalized aggregate cost savings of caching
one version and two versions from another object with minimal generalized aggregate
cost savings of caching two versions. When we calculated R∗(1) and R∗(2), they may be
using a same version. In this case, we select another version with minimal generalized
cost saving that is not included. We denote the set of versions calculated by R∗(1) and
R∗(2) as O∗(1) and O∗(2), respectively. In this case we will recalculate the set of versions
with minimal number of elements by another set of versions of the same object with the
same number of elements with more generalized aggregate cost saving. For example, if
o1,1 ∈ O∗(1) and o1,1 ∈ O∗(2), then we will recalculate O∗(1) , i.e., finding o1,j with the
minimal generalized aggregate cost saving except o1,1 to represent o1,1. Although this
will be very costly in theory, the fact that the number of objects we hope to remove in
practice is very small makes it feasible. We shall further study this issue in our future
work. Based on the above calculation, we finally find how the k objects should be selected
such that the generalized aggregate cost saving is minimized. In fact, there may exist a
replacement decision by removing more than k objects and the generalized aggregate cost
saving is less. Thus, the minimization here is conditional, i.e., under the condition that
the minimal number of different objects is to be removed.

With the above analysis, we can devise the pseudocode of our algorithm as follows.
In the algorithm, C is used to hold the cached objects, Sc is the cache capacity, Su is the
cache capacity used, o is the object to be cached, and its size is s.

Algorithm MOR (Sc, Su, s)
Input: Sc, Su, s
Output: O∗(n)
1. INSERT o INTO C
2. n = 0
3. S∗(n) = 0
4. WHILE Sc − Su − S∗(n) < s DO
5. n = n + 1
6. FOR i = 1 TO l DO
7. CALCULATE R∗(i, n)
8. CALCULATE R∗(n)
9. CHECK O∗(n) (make all the n objects different)

Regarding to the time complexity of this algorithm, we have the following theorem.

Theorem 24 The time complexity of Algorithm MOR is O(p(k)(l+p(k)) log (l + p(k))),
where l is the total number of different objects cached, p(k) is the number of partitions of
k, and k is the number of versions to be removed.

Proof Suppose k objects are removed to make room for the new object. The running
time of Algorithm MOR mainly depends on Steps 4, 6, 8, and 9. The running time
of Step 6 is determined by computing R∗(i, n) for 1 ≤ i ≤ l. For object i, calculating
R∗(i, n) is to find the minimal generalized aggregate cost saving of caching n versions
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of object i. Note that we should compute the aggregate profit of caching n versions
of object i, and then order them according to the calculated profit. Thus, the running
time for calculating R∗(i, n) is O(C(mi; n) log C(mi; n)). Therefore, The running time of

Step 6 is O(
l∑

i=1

C(mi; n) log C(mi; n)) since there are l objects cached and C(mi; n) =

mi!/(n!(mi−n)!). The running time for Step 8 is O((l+n) log (l + n)) because we should
order all l + n items to find the minimal one among them. Thus, the total running time

for Algorithm MOR (Step 4) is O(

p(k)∑
n=1

[(l +n2) log (l + n2)+
l∑

i=1

C(mi; n) log C(mi; n)]) =

O(p(k)(l + p(k)) log (l + p(k))) since in general mi ¿ l. Since the running time for Step 9
is O(log l), the total running time for Algorithm MOR is O(p(k)(l + p(k)) log (l + p(k))).
Hence, the theorem is proven. ¤

From Theorem 24, we know that the time complexity of Algorithm MOR depends on
k, i.e., the number of objects to be removed. In practical execution, we always stop the
execution of searching the objects to be removed to make room for the new object when k
reaches a certain number. This is based on the fact that it is not beneficial to remove many
objects to accommodate only one object. So the practical time complexity of Algorithm
MOR is O(l log l) since p(k) ¿ l, which is the same as that of the algorithm proposed
in [23]. However, from the algorithm we know that we have to search the entire cache for
the other versions of the object and then recalculate the generalized aggregate cost savings
for them whenever we insert or evict an object into or from the cache. Such operations
are, in general, very costly. Here, we save calculated results for later computation, which
will save a lot of computations. For example, after we finish computing R∗(n), we save
it using an array. When we hope to compute R∗(n + 1), we do not need to recalculate
R∗(k) for 1 ≤ k ≤ n again by reading it from the array directly.

4.2.3 Parameter Estimation

In the actual implementation, the parameters, such as di,j, λi,j, and µi, for computing the
generalized aggregate cost saving are usually not constant. To realize our algorithm, these
parameters may have to be estimated. Here, we adopt a “sliding window” technique [88]
which has been widely applied [106]. It combines both the history data and the current
value to estimate the parameters. Specifically, the parameters are estimated as follow.

di,j = α · dnew
i,j + (1− α) · dold

i,j

λi,j = K1

ti,j−t
K1
i,j

µi = K2

si,1−s
K2
i,1

.

where dnew
i,j is the newly measured cost of reading or writing oi,j from the client or the

server and dold
i,j is the measured cost of reading or writing oi,j from the client or the server

last time; ti,j is the time when the new request to oi,j is received from the client and tK1
i,j

is the time when the last K1 request is received from the client; si,j is the time when the
new update to oi,j is sent from the server and sK2

i,j is the time when the last K2 update is
sent from the server.

The effect of such estimates on the performance of our algorithm depends on the
selection of the fining-tuning knobs: α, K1, and K2. The knob α determines how fast
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di,j adapts to the most recent sample, while the knobs K1 and K2 determine how many
samples should be used to estimate λi,j and µi. Obviously, the larger the value of K1

and K2, the more reliable the estimation of λi,j and µi. However, large value of K1 and
K2 will generate spatial cost to store the relevant data. In [88], the authors showed that
the best performance could be achieved by small values of K1 and K2 and they further
conjectured that such small values of K1 and K2 could be 2 or 3. Thus, the spatial
overhead is relatively small.

4.2.4 Simulation Model

We have performed extensive simulation experiments to compare the performance of our
algorithm with existing cache replacement algorithms. In the simulation, to generate
the workload of clients’ requests, we model a single server that maintains a collection
of m multimedia objects1. The object popularity followed a Zipf-like distribution [11].
Specifically, the popularity of the ith video was proportional to 1/iα. The default values
of m and α were set to be 1000 and 0.75 respectively. The sizes of the videos followed a
heavy tailed distribution with the mean value of 12K Bytes [74]. The clients are divided
into five classes and we assume that the sizes of the five versions of each video are 100
percent, 80 percent, 60 percent, 40 percent, and 20 percent of the original video size. The
access probabilities of the clients are described as a vector of < 0.2, 0.15, 0.3, 0.2, 0.15 >.
The transcoding relationship of the five versions is shown in Figure 4.1 in Section 4.1.1.

Regarding the transcoding rate, we set it, as in [18], to be 20K bytes per second. The
delays of fetching the videos from the server are given by an exponential distribution. We
assume that there is no correlation between the video size and the delay of fetching it
from the server. This is justified by Shim et al. in [88].

The synthetic workloads are generated according to the recent results on the web
workload characterization [28,39,74]. Table 4.1 lists the parameters and their values used
in the simulation.

Table 4.1: Parameters Used in Our Simulation

Parameter Value
Number of Multimedia Objects 1000 objects

Delay of Fetching Objects
Exponential Distribution

p(x) = θ−1e−x/θ (θ = 0.45 Sec)

Web Object Size Distribution
Pareto Distribution

p(x) = aba

a−1
(a = 1.1, b = 8596)

Web Object Access Frequency
Zipf-Like Distribution

1
iα

(i = 0.7)

Transcoding Rate 20KB/Sec

1In the simulation, the multimedia objects are assumed to be videos.
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4.2.5 Performance Evaluation

In this section, we compare the performance of our algorithm with those algorithms
introduced in Section 4.2.4 in terms of several performance metrics. The main performance
metrics employed in the simulation include: delay-saving ratio (DSR), request response
ratio (RRR), object hit ratio (OHR), and staleness ratio (SR), defined as a fraction of
cache hits which return stale objects. Here “stale” means that the time that an object
was brought to the cache is less than the last-modified timestamp corresponding to the
request. In the following figures OA denotes the results for the algorithm proposed in
Section 4.2.2.

• Without Considering Cache Consistency

In this following, we compare the performance of the four algorithms without consid-
ering the issue of cache consistency.

In the first experiment set, we compare the performance of different algorithms across
a wide range of cache sizes, from 0.04 percent to 15.0 percent of the total size of all the
objects as shown in Figure 4.3.
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Figure 4.3: Experiment on DSR, RRR, and OHR

The first experiment investigates DSR as a function of the relative cache size. As
presented in Figure 4.3, we can see that our algorithm outperforms the others. Specifically,
the mean improvements of DSR over LRU , LNC − R, and AE are 9.5 percent, 21.6
percent, and 23.5 percent, respectively.

In the second experiment, we describe the results of RRR as a function of the relative
cache size. Clearly, the lower the RRR, the better the performance. As we can see, all
algorithms provide steady performance improvement as the cache size increases. We can
also see that OA constantly improves RRR compared to AE, LNC −R and LRU , since
our algorithm determines the objects with minimal generalized aggregate cost saving to
be removed, while the others do not satisfy such criterion. For RRR to achieve the same
performance as OA, the other algorithms need 1.4 to 5 times as much cache size.

The third experiment investigates the results of OHR as a function of the relative
cache size for different algorithms. By computing the objects with minimal generalized
aggregate cost saving to be removed, we can see that the results for our algorithm con-
stantly outperforms those of the others, especially for smaller cache sizes. We can also see
that OHR steadily improves as the relative cache size increases, which conforms to the
fact that more requests will be satisfied by the caches as the cache size becomes larger.
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This experiment set examines the impact of object access frequency distribution on the
performance of different algorithms. Figure 4.4 shows the performance results of DSR,
RRR, and OHR for the values of Zipf parameter α from 0.2 to 1.0.

We can see that OA consistently provides the best performance over a wide range
of object access frequency distributions. Specially, OA reduces or improves DSR by 25
percent, 21 percent, and 11 percent compared to LRU , by 18 percent, 15 percent, and 7
percent compared to LNC − R, and by 15 percent, 10 percent, and 5 percent compared
to AE for Zipf parameters of 0.2, 0.6, and 1.0, respectively; the default cache size used
here (4 percent) is fairly large in the context of caching due to the large network under
consideration (e.g. that of a regional ISP ).
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Figure 4.4: Experiment for DSR, RRR, and OHR

• With Considering Cache Consistency

In this following, we compare the performance of the four algorithms with considering
the issue of cache consistency.

In the first experiment set, we compare the performance of different algorithms across
a wide range of cache sizes, from 0.04 percent to 15.0 percent of the total size of all the
objects as shown in Figure 4.5.
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Figure 4.5: Experiment on DSR and SR

The first experiment investigates DSR as a function of the relative cache size. OA
gives on average 13.4% improvement over LRU , 9.8% over LNC − R, and 3.7% over
AE. The maximal improvements over LRU , LNC − R, and AE are 4.1% 10.8%, and
14.5%. From Figures 4.3 and 4.5, we can see that whether considering cache consistency
or not will affect DSR. Since LRU and LNC − R involves some form of consistency,
there is less influence on them. However, OA still exhibits the best performance. The
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second experiment studies SR as a function of the relative cache size. In addition to
improving performance of the cache, OA also constantly reduces stale ratio. On average,
OA achieves a staleness ratio which is by factor of 3.2 better than that of AE, in the
worst case it improves SR of AE by factor of 1.9 when the cache size is 0.5%. OA also
improves SR over LRU and LNC −R. On average, OA achieves a staleness ratio which
is 50.8% better than that of LRU and 50.1% better than that of LNC −R. In the worst
case, it improves SR of LRU by 10.2% when the cache size is 0.5% and improves SR of
LNC −R by 8% when the cache size is 2.0%.

In the second experiment set, we examine the performance of our algorithm by varying
the parameter α of the Zipf-like distribution, where α changes from 0.2 to 1.0. Figure 4.6
shows the performance results of DSR and SR.
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Figure 4.6: Experiment for DSR and SR

4.3 Coordinated Cache Replacement in Transcoding

Proxies

4.3.1 Notations and Definitions

We model the network as a graph G = (V,E) in this paper, where V = {v0, v1, · · · , vn}
is the set of nodes or vertices, and E is the set of edges or links. We assume that every
node is associated with a cache with the same size B and there are m multimedia objects,
i.e., O1, O2, · · · , Ol, maintained by server v0. For each multimedia object Oj, we assume
that it has mj versions: Oj,1, Oj,2, · · · , Oj,mj

and all versions have the same size. Thus,
each node can hold at most B objects. We denote the set of objects cached at node vi by
Y i = {Ai

1, A
i
2, · · · , Ai

m}, where Ai
j ⊆

{
Oj,k1 , Oj,k2, · · · , Oj,kj

}
is the set of different versions

of object Oj cached at node vi. Obviously, Y = {Y 1, Y 2, · · · , Y n} is the set of all objects
cached. For each version of object Oj, we associate each link (u, v) ∈ E a nonnegative
cost Lj,k(u, v), which is defined as the cost of sending a request for version Oj,k and the
relevant response over the link (u, v). In particular, Lj,k(u, u) = 0. If a request goes
through multiple network links, the cost is the sum of the cost on all these links. The cost
in our analysis is calculated from a general point of view. It can be different performance
measures such as delay, bandwidth requirement, and access latency, or a combination of
these measures. Let ri,j,k denote the request for Oj,k at node vi and fi,j,k be the frequency
of ri,j,k.

For notational tidiness, we omit argument j in all parameters and functions throughout
the following analysis since our analysis is based on a specific object. For example, Ok
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denotes version k of object j, Ai is the set of different versions of object j cached at
node vi, Lk(u, v) denotes the cost of sending a request for version Ok and the relevant
response over the link (u, v), ri,k denotes the request for Ok at node vi, and fi,k denotes
the frequency of ri,k. We also make the following assumptions.

• Assumption 1: Lk(vi1 , vi2) = (i1− i2)L for all 1 ≤ k ≤ m as there are i1− i2 links on
the path between node vi1 and node vi2 , and the cost on each link for each version
of Oj is L.

• Assumption 2: The transcoding graph is a linear array and the transcoding cost

between any two adjacent versions is constant, i.e., t(Ok1 , Ok2) =

k2−1∑

k=k1

t(Ok, Ok+1) =

(k2 − k1)
+T , where x+ = x if x ≥ 0 else x+ = ∞.

• Assumption 3: There exists some positive integer δ such that (δ − 1)T ≤ L, and
δT > L. If there does not exist such a δ, i.e., L À T or T À L. Obviously, these
are two trivial cases.

4.3.2 Problem Formulation

Before formulating the problem, we give some explanation on how the requests are served.
As shown in Figure 4.7, a request goes along a routing path from the client (node vn) to
the server (node v0). Note that any request ri,k could find the service from S(ri,k), where
S(ri,k) denotes the serving object for ri,k. Assume that S(ri,k) = Ok1 ∈ Ai1 with k1 ≤ k
and i1 ≤ i, then there may be the following ways of serving ri,k by Ok1 ∈ Ai1 .

• Ok1 is first sent from node vi1 to node vi and then transcoded to Ok at node vi.

• Ok1 is first transcoded to Ok at node vi1 and then Ok is sent from node vi1 to node
vi.

• Ok1 is first sent from node vi1 to node vi2 , transcoded to Ok at node vi2 , and then
then Ok is sent from node vi2 to node vi.

• Ok1 is first sent from node vi1 to node vi2 and transcoded to Ok2 at node vi2 , and
then Ok2 is sent from node vi2 to node vi3 and transcoded to Ok3 at node vi3 , then
Ok3 is sent from node vi3 to node vi and transcoded to Ok at node vi.

• ...

Figure 4.7: System Model for Multimedia Object Caching

All these cases would cost the same under our cost model even though in practice.
However, when a new or updated version of a multimedia object to be cache, denoted by
Oi0 , is passing through each node between nodes vi′ and vi, it should be decided where
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Oi0 should be cached and which version should removed from the relevant cache to make
room for it depending on how ri,k is served. Given X (i.e., the set of cached objects) and

Ok′ ∈ Ai
′
(i
′ ≤ i). Let d(ri,k, Ok′ ) denote the cost of serving ri,k by Ok′ at node vi′ . Then

d(ri,k, Ok′ ) is defined as follows:

d(ri,k, Ok
′ ) = (i− i

′
)L + (k − k

′
)+T (4.4)

where (x− y)+ =

{
x− y if x− y ≥ 0
0 if x− y < 0

Now we begin to formulate the problem addressed in this paper, i.e., determining
where a new or updated version Oi0 should be cached among nodes {v1, v2, · · · , vn} and
which version of object j should be removed at that node to make room for Oi0 such that
the total cost loss is minimized. Suppose that P ⊆ V is the set of nodes at each of which
Xi,ki

∈ Ai should be removed to make room for Oi0 , then this problem can be formally
defined as follows:

L(P ∗) = min
P⊆V

{L(P )} =
∑
vi∈P

(l(Xi,ki
)− gi(Oi0)) (4.5)

where L(P ) is the total relative cost loss, l(Xi,ki
) is the cost loss of removing Xi,ki

from
node vi, and gi(Oi0) is the cost saving of caching Oi0 at node vi.

4.3.3 Dynamic Programming-based Solution

Before presenting the solution, we evaluate the two items, i.e., l(Xi,ki
) and gi(Oi0), shown

in Equation (4.5) in detail .
First, we begin with presenting a solution for finding the best way of serving ri,k, i.e.,

finding S(ri,k). Based on Equation (4.4), the cost of serving ri,k, denoted by c(ri,k), is
defined as follows:

c(ri,k) = min

{
min

O
k
′∈Ai

′
, 1≤i′≤i

d(ri,k, Ok
′ ), iL

}
(4.6)

Therefore, the object for serving ri,k, denoted by S(ri,k), is determined as follows:

S(ri,k) =

{
Ok′ ∈ Ai

′
if c(ri,k) ≥ d(ri,k, Ok′ )

v0 if c(ri,k) = iL (4.7)

The following property will help us simplify the problem of finding the best way of
serving ri,k.

Theorem 25 If both Ok1 and Ok2 are cached at node vi′ , then we have d(ri,k, Ok1) <
d(ri,k, Ok2) for k > k1 > k2.

Proof Based on the definition of d(ri,k, Ok), we have d(ri,k, Ok1) = (i− i
′
)L+(k−k1)

+T
and d(ri,k, Ok2) = (i−i

′
)L+(k−k2)

+T . Since (k−k1)
+ < (k−k2)

+, we have d(ri,k, Ok1) <
d(ri,k, Ok2). Hence, the theorem is proven. ¤
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From Theorem 25, we can see that for request ri,k, we can consider only the least de-
tailed version that can be transcoded to version k. Thus, Equation (4.6) can be simplified
as follows:

c(ri,k) = min

{
min

1≤i′≤i
d(ri,k, Ok∗), iL

}
(4.8)

where Ok∗ is the least detailed version of object j cached at node vi
′ that can be transcoded

to version k.
It is easy to see that the time complexity for computing S(ri,k) is O(log n), where n

is the number of nodes in the network. So the total complexity for computing all S(ri,k)
(1 ≤ i ≤ n and 1 ≤ k ≤ m) is O(mn log n) since there are n nodes and object j has m
different versions.

For each object x ∈ X, the set of requests served by x is expressed as R(x) =

{ri,k|S(ri,k) = x} and the total cost for the requests served by x is C(x) =
∑

ri,k∈R(x)

fi,kd(ri,k, x).

In this paper, we use Rs to denote the set of requests served by the server.
Regarding to R(x), we have the following property.

Property 1 If ri,k ∈ R(x), then ri
′
,k
′ ∈ R(x

′
) ∀ i

′ ≤ i and k
′ ≤ k.

Proof Suppose that x ∈ Ai1 = Ok1 , x
′ ∈ Ai2 = Ok2 and there exists i

′ ≤ i and k
′ ≤ k such

that ri
′
,k
′ ∈ R(Oi2). Since S(ri

′
,k
′ ) = x

′
, we have d(ri

′
,k
′ , x

′
) ≤ d(ri

′
,k
′ , x). Therefore we

have (i
′−i2)L+(k

′−k2)T ≤ (i
′−i1)L+(k

′−k1)T , i.e., (i2−i1)L+(k2−k1)T ≤ 0. Therefore
we have d(ri,k, x) = (i− i1)L+(k−k1)T = (i− i2)L+(k−k2)T +(i2− i1)L+(k2−k1)T =
d(ri,k, x

′
)+(i2− i1)L+(k2−k1)T ≤ d(ri,k, x

′
). So we have S(ri,k) = x

′
, which contradicts

ri,k ∈ R(x). Hence, the property is proven. ¤
From Property 1, we can see that R(x) should be a region that can be divided into

several rectangular regions. This can be seen from Figure 4.8. For example, R(x4) can
be divided into two regions by the vertical broken line from x2.

Regarding to calculating l(Xi,ki
), we first give the following theorem.

Theorem 26 Suppose that only Xi,ki
is cached at node vi, then we have l(Xi,ki

) =
∑

ri,k∈B0

fi,k[i·L−d(ri,k, Xi,ki
)]+

n∑
i=1

∑
ri,k∈Bi

fi,k[d(ri,k, X
i
ki

)−d(ri,k, Xi,ki
)], where B0 = {(α, β)|α =

i0, β ∈ R0

⋂
R(Xi,ki

)}⋂
R(Xi,ki

) and Bi = {(α, β)|α = i0, β ∈ R(X i
ki

)
⋂

R(Xi,ki
)}⋂

R(Xi,ki
).

Proof It is obvious that Bi

⋂
Bj = φ for i 6= j. This guarantees that each request’s

access cost is only calculated one time. Now we prove the correctness of the calculation
of l(Xi,ki

), i.e., the requests in Bi should be served by X i
ki

. Suppose that there exists
a request ri

′
,k
′ ∈ bi which is not served by X i

ki
. Based on Property 1, we have all the

requests in the region B
′
i = {(α, β)|i ≤ α ≤ i0, ki ≤ β ≤ k0 will be not served by X i

ki
. It

is easy to see that R(X i
ki

)
⋂

B
′
i 6= φ, i.e., there exist some requests in region R(X i

ki
) that

are not served by X i
ki

. This obviously contradicts the fact that all the requests in region
R(X i

ki
) are served by X i

ki
. Hence, the theorem is proven. ¤

For example, in Figure 4.8, if x1 is removed, R(x1) can be divided into three regions
(i.e., A, B, and C), which will be served by x4, x3, and the server, respectively. Thus, we
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Figure 4.8: Example for Calculating l(x)

have l(x1) =
∑

ri,k∈A

fi,k[d(ri,k, x4)−d(ri,k, x1)]+
∑

ri,k∈B

fi,k[d(ri,k, x3)−d(ri,k, x1)]+
∑

ri,k∈B

fi,k[i·

L− d(ri,k, x1)].
In practice, the general case is that several versions of the same multimedia object are

cached at node vi at the same time (see Figure 4.9). In this case, calculating l(x) should
also consider the mutual effect of the least more detailed cached version on the removed
version since the requests served by the removed version could be satisfied by this detailed
version. For example, when calculating l(x2), R(x2) might be divided into four parts A,
B, C, and D which will be served by x4, x5, x3, and x1, respectively.

Taking into consideration the caching dependence along the path, calculating l(Xi,ki
)

becomes more complex and it is so obvious to obtain an optimal solution.
Similarly, we can calculate the cost saving of caching Oi0 at node vi. For example in

Figure 4.9, if i0 = y1, then R(x6 can be divided in to two parts: E and F ; if i0 = y2,

then R(x6 can also be divided in to two parts. So we have g(y1) =
∑

ri,k∈G

fi,k[d(ri,k, y1) −

d(ri,k, x6)] and g(y2) =
∑

ri,k∈E

fi,k[d(ri,k, x6)− d(ri,k, y1)] +
∑

ri,k∈F

fi,k[i · L− d(ri,k, y1)].

Now we begin to present an optimal solution for the problem as defined in Equation
4.5. In the following, we call the problem a k-optimization problem if we determine
cache replacement candidates from nodes {v1, v2, · · · , vk}. Thus, the original problem
(Equation (4.5)) is an n-optimization problem. Theorem 27 shows an important property
that the optimal solution for the whole problem must contain optimal solutions for some
subproblems.

Theorem 27 Suppose that X =
{
Xi1,ki1

, Xi2,ki2
, · · · , Xiα,kiα

}
is an optimal solution for

86



Figure 4.9: Example for Calculating l(x)

the α-optimization problem and X
′
=

{
Xi

′
1,k

i
′
1

, Xi
′
2,k

i
′
2

, · · · , Xi
′
β ,k

i
′
β

}
is an optimal solution

for the kiα − 1-optimization problem. Then X∗ =

{
Xi

′
1,k

i
′
1

, Xi
′
2,k

i
′
2

, · · · , Xi
′
β ,k

i
′
β

, Xiα,kiα

}
is

also an optimal solution for the α-optimization problem.

Proof By definition, we first have L(X∗) = l(Xi
′
1,k

i
′
1

) + l(Xi
′
2,k

i
′
2

) + · · · + l(Xi
′
β ,k

i
′
β

) +

l(Xiα,kiα
) = L(X

′
)+ l(Xiα,kiα

) ≥ l(Xi1,ki1
)+ l(Xi2,ki2

)+ · · ·+ l(Xiβ ,kiβ
)+ l(Xiα,kiα

) = L(X).

On the other hand, since X is an optimal solution for the α-optimization problem, we
have L(X) ≥ L(X∗). Therefore,we have L(X) = L(X∗). Hence, the theorem is proven.
¤

Based on Theorem 27, an optimal solution for the n-optimization can be obtained by
checking all possible removed candidates from node v1 to node vn in order. Therefore, it
is east to get that the time complexity of this solution is O(n2 + mn log n) based on our
previous result that the complexity for computing all S(ri,k) is O(mn log n), where n is
the number of nodes in the network and m is the number of versions of object j.

4.3.4 Cooperative Cache Replacement Scheme

Based on the previous analysis, we present the following cooperative cache replacement
scheme. In our scheme, every cache maintains some information about the objects in the
form of object descriptors. An object descriptor contains information that includes the
object size and the access frequencies for all versions of the multimedia object. When
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an updated version of a multimedia object is to be cached, it should be cached at those
nodes where the cache replacement candidates has been calculated by our solution.

Since the cache contents change over time, the access frequency and the cost loss of an
object with respect to a node must be refreshed from time to time. The access frequency
can be estimated based on recent request history, which is locally available (e.g. by using
a “sliding window” technique [88]). The cost loss is updated by the response messages.
Specifically, a variable with an initial value of zero is attached to each object. At each
intermediate node along the way, the variable is increased by the cost of the last link the
object has just traversed. The value is then used to update the cost loss of the object
maintained by the associated cache. If the object is inserted into the cache, the node resets
the value to zero before forwarding the object downstream. In this way, the updated cost
loss is disseminated to all the caches on the way.

4.3.5 Simulation Model

To the best of our knowledge, it is difficult to find true trace data in the open literature
to simulate our model. Therefore, we generated the simulation model from the empirical
results presented in [1, 7, 11,14,23,53].

The network topology was randomly generated by the Tier program [14]. Experiments
for many topologies with different parameters have been conducted and the relative per-
formance of our model was found to be insensitive to topology changes. Here, only the
experimental results for one topology was listed due to space limitations. The character-
istics of this topology and the workload model are shown in Table 4.2, which are chosen
from the open literature and are considered to be reasonable.

The WAN (Wide Area Network) is viewed as the backbone network to which no
servers or clients are attached. Each MAN (Metropolitan Area Network) node is assumed
to connect to a content server. Each MAN and WAN node is associated with an en-route
cache. Similar to the studies in [11,15,46,88], cache size is described as the total relative
size of all objects available in the content server. In our experiments, the object sizes are
assumed to follow a Pareto distribution and the average object size is 26KB. We also
assume that each multimedia object has five versions and that the transcoding graph is as
shown in Figure 4.1 in Section 4.1.1. The transcoding delay is determined as the quotient
of the object size to the transcoding rate. In our experiments, the client at each MAN
node randomly generates the requests, and the average request rate of each node follow–s
the distribution of U(1, 9), where U(x, y) represents a uniform distribution between x and
y. The access frequencies of both the content servers and the objects maintained by a
given server follow a Zipf-like distribution [11,69]. Specifically, the probability of a request
for object O in server S is proportional to 1/(iα · jα), where S is the ith most popular
server and O is the jth popular object in S. The delay of both MAN links and WAN
links follows an exponential distribution, where the average delay for WAN links is 0.46
seconds and the average delay for WAN links is 0.06 seconds.

The cost for each link is calculated by the access delay. For simplicity, the delay caused
by sending the request and the relevant response for that request is proportional to the
size of the requested object. Here, we consider the average object sizes for calculating
all delays, including the transmission delay, and transcoding delay. The cost function is
taken to be the delay of the link, which means that the cost in our model is interpreted
as the access latency in our simulation.
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Table 4.2: Parameters Used in Simulation

Parameter Value
Number of WAN Nodes 200
Number of MAN Nodes 200

Delay of WAN Links
Exponential Distribution

p(x) = θ−1e−x/θ (θ = 0.45 Sec)

Delay of MAN Links
Exponential Distribution

p(x) = θ−1e−x/θ (θ = 0.06 Sec)

Number of Servers 100
Number of Web Objects 1000 objects per srever

Web Object Size Distribution
Pareto Distribution

p(x) = aba

a−1
(a = 1.1, b = 8596)

Web Object Access Frequency
Zipf-Like Distribution

1
iα

(i = 0.7)

Relative Cache Size Per Node 4%
Average Request Rate Per Node U(1, 9) requests per second

Transcoding Rate 20KB/Sec

We apply a “sliding window” technique to estimate the access frequency to make our
model less sensitive to transient workload [88]. Specifically, for each object O, f(O, v) is
calculated by K/(t − tK), where K is the number of accesses recorded, t is the current
time, and tK is the Kth most recently referenced time (the time of the oldest reference
in the sliding window). K is set to 2 in the simulation. To reduce overhead, the access
frequency is only updated when the object is referenced and at reasonably large intervals,
e.g., several minutes, to reflect aging, which is also applied in [90].

4.3.6 Performance Evaluation

In this section, we evaluate the performance of our model (proposed in Section 4.3.3) in
terms of several performance metrics. The performance metrics we used in our simulation
include delay-saving ratio (DSR), which is defined as the fraction of communication and
server delays which is saved by satisfying the references from the cache instead of the
server, average access latency (ASL), request response ratio (RRR), which is defined as
the ratio of the access latency of the target object to its size, object hit ratio (OHR),
which is defined as the ratio of the number of requests satisfied by the caches as a whole
to the total number of requests, and highest server load (HSL), which is defined as the
largest number of bytes served by the server per second. In the following figures CCR
shows the results for our coordinated cache replacement model proposed in Section 4.3.3.
Table 4.3 lists the abbreviations used in this section.
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Table 4.3: Abbreviations Used in Performance Analysis

Meaning Abbreviation Decription
DSR Delay-Saving Ratio (%)
ASL Average Access Latency (Sec)
RRR Request Response Ratio (Sec/MB)Performance Metric

OHR Object Hit Ratio (%)
HSL Highest Server Load (MB/Sec)
CCR Coordinated Cache Replacement
AE Standing for Aggregate EffectCaching Model

LNC −R Least Normalized Cost Replacement
LRU Least Recently Used

Impact of Cache Size

In this experiment set, we compare the performance results of different models across a
wide range of cache sizes, from 0.04 percent to 15.0 percent.

The first experiment investigates DSR as a function of the relative cache size per node
and Figure 4.10 shows the simulation results. As presented in Figure 4.10, we can see
that our model outperforms the other models since our coordinated cache replacement
model determines the replacement candidates cooperatively among all the nodes on the
path from the server to the client, whereas existing solutions, including LRU , LNC −R,
and AE, consider decide cache replacement candidates locally, i.e., only from the view
of a single node. Specifically, the mean improvements of DSR over AE, LNC − R, and
LRU are 21.2 percent, 18.9 percent, and 13.0 percent, respectively.
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Figure 4.10: Experiment on DSR

Figure 4.11 shows the simulation results of ASL and RRR as a function of the relative
cache size at each node. Clearly, the lower the ASL or the RRR, the better the perfor-
mance. As we can see, all models provide steady performance improvement as the cache
size increases. We can also see that CCR significantly improves both ASL and RRR
compared to AE, LNC−R and LRU , since our model determines the cache replacement
candidates in an optimal and coordinated way, while the others decide the replacement
candidates only by considering the situation of a single node. For ASL to achieve the
same performance as CCR, the other models need 2 to 6 times as much cache size.

Figure 4.12 shows the results of OHR and HSL as a function of the relative cache size
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Figure 4.11: Experiment for ASL and RRR

for different models. By computing the optimal replacement candidates, we can see that
the results for our model can greatly outperform those of the other solutions, especially
for smaller cache sizes. We can also see that OHR steadily improves as the relative cache
size increases, which conforms to the fact that more requests will be satisfied by the caches
as the cache size becomes larger. Particularly, the mean improvements of DSR over AE,
LNC−R, and LRU are 27.1 percent, 22.5 percent, and 13.9 percent, respectively. It can
also be seen that HSL for our model is lower than that of the other solutions. We can
also see that HSL decreases as the relative cache size increases.
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Figure 4.12: Experiment for OHR and HSL

Impact of Object Access Frequency

This experiment set examines the impact of object access frequency distribution on the
performance results of different models. Figure 4.13 shows the performance results of
DSR, RRR, and OHR for the values of Zipf parameter α from 0.2 to 1.0.

We can see that CCR consistently provides the best performance over a wide range
of object access frequency distributions. Specially, CCR reduces or improves DSR by
17.7.4 percent, 15.0 percent, and 7.5 percent compared to LRU , LNC − R, and AE,
respectively; the default cache size used here (4 percent) is fairly large in the context of
en-route caching due to the large network under consideration.

Impact of the Number of Client Classes

This experiment set examines the impact of the number of client classes on the perfor-
mance results of different solutions. The number of client classes refers to the number of
transcodable versions. In our experiments, the number of transcodbale versions is 1 − 5
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Figure 4.13: Experiment for DSR, RRR, and OHR

and the relevant vectors are (100%, 0, 0, 0, 0), (50%, 0, 50%, 0, 0), (50%, 0, 30%, 0, 20%),
(40%, 0, 30%, 20%, 10%), and (20%, 15%, 20%, 15%, 30%).

Figure 4.14 shows the simulation results on DSR and RRR. We can see that DSR
and RRR decrease as the number of the transcodable versions increase due to the fact
that the requests from the clients will tend to disperse with increasing the number of the
transcodable versions. Specifically, the mean improvements of DSR over AE, LNC −R,
LRU are 9.5 percent, 8.2 percent, and 5.1 percent, respectively.
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Figure 4.14: Experiment for DSR and RRR

4.4 Chapter Summarization

In this chapter, we proposed two effective cache replacement algorithms for transcoding
proxy caching and conducted some simulation experiments to evaluate our algorithms.
Some of the contents in this chapter can be found in [60,62].
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Chapter 5

Conclusions

5.1 Summarization

In this dissertation, we studied some key problems for coordinated en-route web caching,
including (multimedia) object caching, (transcoding) proxy placement, and cache replace-
ment. The main contents of this dissertation are generalized as follows:

• In Chapter 2, we addressed some key problems (i.e. object caching and proxy
placement) for coordinated en-route web caching and presented extensive simulation
results to evaluate our solutions.

• In Chapter 3, we studied some key problems for coordinated en-route transcoding
proxy caching (i.e. multimedia object caching and transcoding proxy placement).
We also addressed the problem of multimedia object placement for transparent data
replication. We presented extensive simulation results to compare the performance
of our models with those proposed in the literature.

• In Chapter 4, we proposed two effective cache replacement schemes for transcoding
proxy caching and presented some simulation experiments to evaluate our schemes.

5.2 Future Work

The following issues can be considered for future research.

• Coordinated en-route web object caching in other types of regular networks: The
techniques of applying dynamic programming showed in this dissertation may serve
as useful tools for deriving such solutions in other networks, such as mesh networks,
lattice networks, content distribution networks (CDNs).

• Dynamic web object caching: In this dissertation, the object contents addressed
are static. Unlike static Web contents, which only involve file fetches when they are
requested, dynamic object contents are constructed by running application programs
on base data which often change frequently. Although the multimedia objects we
studied can be viewed a kind of dynamic Web contents, more issues should be
studied in future research. For example, a user’s request on a streaming media
can be satisfied by the combination of several streaming chips by applying some
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programs. Studying this problem for en-route web caching is more complex and
interesting.

• Caching for peer-to-peer system: Peer-to-peer (P2P ) systems that provide persis-
tence storage and allow users to interact and share distributed resources in wide-
area environments are gaining an increasing popularity. Many interesting research
challenges have been raised on caching for peer-to-peer systems, such as caching
architecture, caching protocol, object caching, etc.
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